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level perimeter heater energy requirement 

Darwish Darwazeh1,* , Jean Duquette2, and Burak Gunay1 

1 Carleton University, Department of Civil and Environmental Engineering, Ottawa, Ontario, Canada 
2Carleton University, Department of Mechanical and Aerospace Engineering, Ottawa, Ontario, Canada 

* Corresponding author e-mail address: darwish.darwazeh@carleton.ca 

ABSTRACT 
Virtual metering provides a cost-effective alternative to physical meters to monitor building energy performance and 

capture unmetered energy flows at the zone-level. Virtual metering accuracy depends on the modelling method and 

its ability to represent the heating and cooling processes at a building thermal zone. This paper employs three virtual 

metering methods to estimate the heating energy of zone-level perimeter heaters: a steady-state modelling method, a 

transient modelling method, and a load disaggregation modelling method. Inverse models representing these three 

virtual metering methods are trained using data obtained from seven perimeter offices in an academic building in 

Ottawa, Canada. Model parameters are identified using the genetic algorithm and used for creating virtual meters that 

estimate the energy requirement of zone-level perimeter heaters. The virtual meters' accuracy is assessed by comparing 

the results to measured heating energy obtained from physical meters installed in the seven offices. The three virtual 

metering methods' performance is evaluated through illustrative examples in terms of modelling assumptions, data 

requirements, and virtual metering accuracy. The results indicate that the three virtual metering methods can estimate 

the daily heating energy supplied by perimeter heaters at a normalized root-mean-square error between 13% and 23%. 

1. INTRODUCTION 

Metering of building heating and cooling energy at the zone-level is uncommon due to cost and practical issues, 

leaving critical quantities unmeasured such as the heat added by perimeter radiant heaters. Virtual metering provides 

a non-intrusive alternative to physical meters that can capture zone-level unmetered energy flows by utilizing available 

sensor and actuator measurements from a building automation system (BAS). Virtual meters (VMs) can be employed 

at a building zone-level to support operational decisions and improve energy performance and occupant comfort by 

allowing early detection of operational inefficiencies. However, virtual metering accuracy depends on the modelling 

method utilized and its ability to represent zone-level heating and cooling processes. These modelling methods involve 

assumptions regarding data processing and the degree to which the model agrees with the physical reality. 

Selection of a suitable modelling method that can represent energy flows at a building thermal zone is essential for 

developing accurate zone-level VMs, describing building energy performance, identifying energy consumption 

patterns, developing model-based predictive control strategies, and detecting zone-level system faults (Bacher & 

Madsen, 2011; Gunay et al., 2016). The process of developing a zone model includes the selection of a model structure, 

the estimation of model parameters, and model validation (Madsen et al., 2016). The purpose of the zone model and 

the measured data available from a building thermal zone guide selecting a suitable model structure. Data collected 

from zone-level sensors, meters, and actuators are processed and used to train the model. Model parameters that 

represent unmeasured values are estimated using a model optimization algorithm that fits the model prediction to 

measured values (Balan et al., 2011). These estimated model parameters should be within a reasonable range of the 

underlying physical characteristics they represent; for example, an over-estimated value for the parameter representing 

the zone thermal resistance under ideal operating conditions indicates an unsuitable model structure. 

VMs can be used to estimate unmetered heating energy of zone-level heating devices to understand its impact on the 

energy consumption of a building. Perimeter zones are subjected to internal heat gains from lights, occupants, and 

equipment, solar heat gains through windows, and heat gains by transmission through the envelope. The zone air 

temperature setpoint is maintained using supply air provided by an air handling unit (AHU) through a variable air 

volume (VAV) terminal box. These zones are often equipped with hydronic radiant heaters to satisfy the heating 

loads. 
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VMs can be employed to estimate the heat added by hydronic radiant heaters using the following three distinct 

modelling methods that emulate the heat transfer mechanisms within a given perimeter zone: 

(1) A steady-state inverse greybox modelling method: this modelling method is useful for describing linear and 

stationary relations between model inputs and output (Madsen, 2008; Madsen et al., 2016) by assuming no energy 

is stored within the zone (Nassif et al., 2008a). The measurements' sampling time is usually averaged over a 

longer period since the system's dynamic behaviour is not described (Madsen et al., 2016; Rabl, 1988). Steady-

state models are commonly used to evaluate energy efficiency measures and retrofit performance (Corrado & 

Fabrizio, 2007; Dall' o' et al., 2012; Firth & Lomas, 2009; Heo et al., 2012), and to find the effective thermal 

resistance of a building wall (Albatici et al., 2015; Nardi et al., 2015; Zheng, Cho et al., 2016). 

(2) A transient inverse greybox modelling method: this modelling method describes the dynamic behaviour of the 

zone at different levels of complexity (Afram & Janabi-Sharifi, 2014b; Rabl, 1988). Heat transfer mechanisms 

are usually approximated by an equivalent thermal resistance-capacitance network (i.e., RC network) (Gunay et 

al., 2017; Madsen et al., 2016). Transient models are typically used to evaluate building retrofits (Abushakra, 

1999; Braun & Chaturvedi, 2002; Dong et al., 2005), to develop model-based predictive control strategies 

(Candanedo et al., 2013; Gunay et al., 2014; Ma et al., 2012; Široký et al., 2011), to detect HVAC system faults 

(Capozzoli et al., 2015; Ranade et al., 2020; Shi et al., 2016), and to characterize heating and cooling load patterns 

(Gunay et al., 2017; Wang et al., 2016). 

(3) A load disaggregation modelling method: this modelling method breaks down the total load measured at the 

source into subsystem loads. The disaggregated loads provide a better understanding of the subsystems' energy 

performance (Yan et al., 2012). Load disaggregation models are commonly used in the literature to disaggregate 

the total electricity load across zone-level appliances in buildings (Dinesh et al., 2016; Patri et al., 2014; Valovage 

& Gini, 2017), and to disaggregate building total water consumption across zone-level water devices (Larson et 

al., 2012;  Wang et al., 2018). 

While models derived from these modelling methods are proposed in the literature for building energy management 

and building operation applications, to our knowledge, no comparisons have been made of these three modelling 

methods for virtual metering of heat added by perimeter radiant heaters. To this end, this paper analyzes the 

performance of the three modelling methods by developing VMs to estimate the heat added by zone-level perimeter 

heaters. Data obtained from seven perimeter offices in a highly instrumented academic building in Ottawa, Canada, 

are used to train the models. The accuracy of the VMs is assessed by comparing the results to measured heat obtained 

from physical meters installed in these seven offices. The modelling methods' performance is demonstrated through 

illustrative examples that compare modelling assumptions, data requirements, and virtual metering accuracy. 

2. METHODOLOGY 

As illustrated in Fig. 1, three distinct zone model structures are formulated via the application of a steady-state inverse 

greybox modelling method, a transient inverse greybox modelling method, and a load disaggregation modelling 

method. Data obtained from seven perimeter offices are used to train the models. Model parameters are identified 

using the genetic algorithm (GA) and used to develop VMs to estimate the heating energy of zone-level radiant heaters. 

VM results are compared with measured heat data obtained from physical meters installed at Zones (1) to (7). The 

root-mean-square error normalized by the range of daily measured heat at each radiant heater (NRMSE) is used to 

verify the accuracy of the VMs and evaluate the performance of the three modelling methods. 

2.1 Data Collection and Processing 
Data from seven perimeter offices in an academic building in Ottawa, Canada, are collected from November 2019 to 

January 2020 at 15-minute intervals. As illustrated in Fig. 2, the seven offices are served by two VAV terminal boxes 

𝑉𝐵1 and 𝑉𝐵2 that receive supply air from an AHU. The supply air is reheated in the VBs and discharged into the 

offices via discharge air diffusers. These perimeter offices are provided with hydronic radiant heaters that use hot 

water from a steam/hot water heat exchanger. The radiant heaters are equipped with modulating valves to control the 

hot water flow rate into the offices. The seven offices are considered as seven thermal zones since each office uses an 

independent radiant heater to control the office temperature during the period of this study. The zone air temperature, 

𝑇𝑧,1(℃) to 𝑇𝑧,7(℃), modulating valve state, 𝑋1(%) to 𝑋7(%), and the occupancy indicators, 𝐵1 to 𝐵7 ,  are measured 
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Figure 1: Schematic illustrating  the use of  three  distinct 

modelling  methods  to  develop  zone-level radiant heater  

VMs.  The accuracy  of  the VMs  is  used  to  evaluate the 

performance  of  the modelling  methods  

Figure 2: Data collected from seven perimeter zones in 

the academic building. 𝑇𝑧,𝑖(℃), 𝑋𝑖(%), and 𝐵𝑖 

are zone air temperature, modulating valve state, and 

occupancy indicator in zone (𝑖), respectively. 𝑇𝑑𝑎,𝑗(℃) 
3̇and 𝑉𝑑𝑎,𝑗(m ⁄s) are the discharge air temperature and 

discharge airflow rate from 𝑉𝐵𝑗 , respectively. qw(kW) 
represents the total hot water load. 

at each zone, whereas the discharge air temperature, 𝑇𝑑𝑎,1(℃) and 𝑇𝑑𝑎,2(℃), and discharge airflow rate, �̇� ⁄𝑠)𝑑𝑎,1(𝑚3 

and 𝑉𝑑𝑎,2(𝑚3⁄𝑠), are measured at the two VAV terminal boxes. Additionally, the total hot water load, 𝑞𝑤(𝑘𝑊), iṡ 

measured at the heat exchanger hot water outlet. The zone air temperature and the discharge air temperature are 

modelled as single temperature nodes by averaging the measured data at every time step (Bleil et al., 2012; Platt et 

al., 2010). The total discharge airflow rate is obtained by summing up the discharge airflow rates from the two VAV 

terminal boxes 𝑉𝐵1 and 𝑉𝐵2. Finally, the binary occupancy signals (i.e., 0 for non-occupied, 1 for occupied) are 

summed up for the seven zones. The processed dataset is used to train the three model structures developed in the 

following section. 

2.2 Development of Zone Model Structures 
Three distinct model structures are developed by applying a transient inverse greybox modelling method, a steady-

state inverse greybox modelling method, and a load disaggregation modelling method. A description of each 

modelling method is provided in the following sections. 

2.2.1 Transient inverse greybox modelling method 

As shown in Fig. 3, the primary sources of heat gains and losses at a perimeter zone are internal heat gains from lights, 

occupants, and equipment, 𝑞𝑖𝑔(𝑊), heat transfer through the envelope, 𝑞𝑒𝑛𝑣 (𝑊), heat added or extracted through the 

discharge air diffuser, 𝑞𝑑𝑎(𝑊), solar heat gains, 𝑞𝑠𝑜𝑙 (𝑊), and heat added by the radiant panels, 𝑞𝑟𝑎𝑑 (𝑊). The rate of 

change in zone internal energy can be expressed as (Afram et al., 2014a; Nassif et al., 2008b): 

𝑑𝑇𝑧 
𝑐𝑎 ∙ 𝜌𝑎 ∙ 𝑉𝑧 ∙ = 𝑞𝑑𝑎 + 𝑞𝑒𝑛𝑣 + 𝑞𝑟𝑎𝑑 + 𝑞𝑖𝑔 + 𝑞𝑠𝑜𝑙 𝑑𝑡 (1) 

where 𝑐𝑎 is the specific heat of air (1006 𝑡 2 ), 𝜌𝑎 is the density of air (1.225 𝑘𝑔⁄𝑚3), 𝑇𝑧 (℃) is the𝐽⁄𝑘𝑔. ℃  𝑎 0 ℃ 
zone air temperature, and 𝑉𝑧 (𝑚3) is the zone volume. The transient heat flow is approximated by an equivalent RC 

network with one resistance and one capacitance (i.e., 1R1C network), as described in Fig. 4. The thermal capacitance, 

𝐶𝑧 (𝐽⁄℃), represents the lumped thermal capacitance of a zone; and the thermal resistance, 𝑅𝑧 (℃⁄𝑊), represents the 
effective thermal resistance between zone indoors and outdoors, including heat transfer through the zone envelope 

and via air infiltration. Taking these terms into consideration, Equation (1) can be rewritten as (Gunay et al., 2016): 
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Figure 3: A  schematic representation  showing  the 

primary  sources  of  heat gains/losses in  a single building  

VAV  zone.   

Figure 4: An  approximation  of  transient heat flow with  

an  equivalent thermal network  comprising  one 

resistance  and  one capacitance  (i.e.,  1R1C  network).  

Temperatures (℃)  of  zone air  (𝑇𝑧)  and  outdoor  air  (𝑇𝑜𝑎) 

are presented  as electric voltages, whereas  heat gains  

(𝑊)  from  internal heat gains  (𝑞𝑖𝑔),  solar  radiation 

(𝑞𝑠𝑜𝑙 ),  radiant panels (𝑞𝑟𝑎𝑑 ),  and  discharge air  (𝑞𝑑𝑎)  are 

presented  as electric current. 𝐶𝑧  (𝐽⁄℃)  and  𝑅𝑧  (℃⁄𝑊) 
represent the lumped  thermal capacitance  and  resistance  

of  the zone,  respectively.  

̇
𝑧 (2) 

𝑑𝑇𝑧 (𝑇𝑜𝑎 − 𝑇𝑧)
𝐶𝑧 ∙ = 𝑉𝑑𝑎 ∙ 𝑐𝑎 ∙ 𝜌𝑎 ∙ (𝑇𝑑𝑎 − 𝑇𝑧) + + 𝑞𝑟𝑎𝑑 + 𝑞𝑖𝑔 + 𝑞𝑠𝑜𝑙 𝑑𝑡 𝑅

where �̇� ⁄𝑠) is the discharge airflow rate into the zone; and 𝑇𝑑𝑎 (℃) and 𝑇𝑜𝑎 (℃) are the discharge air𝑑𝑎 (𝑚3 

temperature and outdoor air temperature, respectively. A linear relationship is assumed between the hot water 

modulating valve state, 𝑋𝑟𝑎𝑑 (%), and the heat added by the radiant heater, 𝑞𝑟𝑎𝑑 (𝑊), and between the binary 

occupancy indicator, 𝐵, and internal heat gains from lights, occupants, and equipment, 𝑞𝑖𝑔 (𝑊). The impact of solar 

heat gains, 𝑞𝑠𝑜𝑙 (𝑊), on the zone energy balance is minimized by only considering data points occurring after 4 pm 

and before 9 am. Under these assumptions, Equation (2) is further expanded to estimate the heat added or extracted 

through the discharge air diffuser as follows: 
𝑘−1) 𝑘−1 

𝑘−1) = 
(𝑇𝑜𝑎

𝑘−1 − 𝑇𝑧 𝑇𝑧
𝑘 − 𝑇𝑧 

�̇� + 𝑥2 ∙ 𝐵𝑘−1 + 𝑑 ∙ 𝑋𝑘−1 − 𝑥3 ∙𝑑𝑎 ∙ 𝑐𝑎 ∙ 𝜌𝑎 ∙ (𝑇𝑧
𝑘−1 − 𝑇𝑑𝑎 𝑥1 ∆𝑡 (3) 

where the superscript 𝑘 is the index number of measured data, and ∆𝑡 (s) is the time step interval. Parameters 𝑥1 to 𝑥3 

estimate the effect of the zone thermal resistance, internal heat gains, and the transient response of zone thermal 

capacitance, respectively, on the energy balance of the zone, and parameter 𝑑 estimates the capacity of the radiant 

heater. Equation (3) represents a single-zone model that can be expanded to multi-zones by taking the average zone 

air temperature, 𝑇𝑧,𝑎𝑣𝑔(℃), the average discharge air temperature, 𝑇𝑑𝑎,𝑎𝑣𝑔(℃), the total airflow rate from the discharge 

air diffusers, ∑ �̇� ⁄𝑠), and the total occupancy indicator from the individual zones, ∑ 𝐵𝑖 . Hence, the transient 𝑑𝑎,𝑖(𝑚3 

inverse greybox model for the seven perimeter zones is expressed as: 

7 7𝑘−1 )
̇ 

(𝑇𝑜𝑎
𝑘−1 − 𝑇𝑧,𝑎𝑣𝑔 𝑘−1 𝑘−1 𝑘−1 𝑘−1𝑐𝑎 ∙ 𝜌𝑎 ∙ ∑ 𝑉𝑑𝑎,𝑖 ∙ (𝑇𝑧,𝑎𝑣𝑔 − 𝑇𝑑𝑎,𝑎𝑣𝑔) = + 𝑥2 ∙ ∑ 𝐵𝑖 𝑥1 (4) 

𝑖=1 𝑖=1 

7 𝑘 𝑘−1 
𝑘−1 𝑇𝑧,𝑎𝑣𝑔 − 𝑇𝑧,𝑎𝑣𝑔 

+ (∑ 𝑑𝑖 ∙ 𝑋𝑖 ) − (𝑥3 ∙ ) + 𝑒 
∆𝑡 

𝑖=1 

Parameters 𝑑1 to 𝑑7 estimate the capacity of the radiant heaters in Zones (1) to (7), and parameter 𝑒 is an error term 

that accounts for unmodelled heat flows within the zone. 

2.2.2 Steady-state inverse greybox modelling method 

The steady-state modelling method assumes no thermal storage in the zone and hence no change in the zone air 

temperature occurs over time (Nassif et al., 2008b). The steady-state model is formulated by omitting the transient 
𝑘 𝑘−1term in Equation (4) (i.e., 𝑇𝑧,𝑎𝑣𝑔 − 𝑇𝑧,𝑎𝑣𝑔 = 0) as follows: 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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7 7𝑘−1 )
𝑘−1 𝑘−1 

(𝑇𝑜𝑎
𝑘−1 − 𝑇𝑧,𝑎𝑣𝑔 𝑘−1 𝑘−1𝑐𝑎 ∙ 𝜌𝑎 ∙ (∑ �̇� ) = ( ) + (𝑥2 ∙ ∑ 𝐵𝑖 )𝑑𝑎,𝑖 ) ∙ (𝑇𝑧,𝑎𝑣𝑔 − 𝑇𝑑𝑎,𝑎𝑣𝑔 𝑥1 (5)

𝑖=1 𝑖=1 
7 

𝑘−1+ (∑ 𝑑𝑖 ∙ 𝑋𝑖 ) + 𝑒 
𝑖=1 

Since the steady-state modelling method neglects the transiency of the heat and mass transfer processes, the measured 

data can be averaged over more extended sampling periods (i.e., downsampling). The impact of temporal averaging 

of data on the steady-state model's performance is evaluated by averaging the data collected from Zones (1) to (7) 

over sampling periods ranging from 0.25 hours to 24 hours. VMs results corresponding to each sampling period are 

compared with measured heat to assess the impact of temporal averaging of data on the accuracy of the VMs. 

2.2.3 Load disaggregation modelling method 

The load disaggregation method breaks down the total energy supplied to a group of radiant heaters into individual 

radiant heater energy components based on the state of the modulating valve. As illustrated in Fig. 5, hot water is 

provided by a steam/hot water heat exchanger that distributes hot water to the radiant heaters in the seven perimeter 

zones. The total hot water load, 𝑞𝑤 (𝑘𝑊), is disaggregated across the seven radiant heaters by utilizing the modulating 

valve analog signals, 𝑋𝑖 (%) , that control the hot water flow rate into the zone-level radiant heaters as expressed in 

Equation (6). 
7 

𝑞𝑤 = (∑ 𝑑𝑖 ∙ 𝑋𝑖) + 𝑒 (6) 
i=1 

Model parameters 𝑑1 to 𝑑7 correspond to individual radiant heater capacities at Zones (1) to (7), respectively, and the 

error term 𝑒 accounts for errors in the measured data and any potential leakage. 

2.3 Virtual Metering and Model Performance Evaluation 
The dataset created for the seven perimeter zones is used to train the three model structures given by Equations (4) to 

(6). An optimization problem is formulated to minimize the root-mean-square error (RMSE) between the estimated 

and measured discharge air load, 𝑞𝑑𝑎 (𝑘𝑊), for the transient and steady-state models, and between estimated and 

measured total hot water load, 𝑞𝑤 (𝑘𝑊), for the load disaggregation model. The GA is selected to solve the 

optimization problem and search for optimal model parameters since the upper and lower bounds for the parameters 

can be identified from the physical quantities presented by the models. The estimated values of model parameters 

Figure 5: A schematic showing the disaggregation of total hot water load 

measured at the outlet of a steam/hot water heat exchanger across zone-level 

radiant heaters using the modulating valve state signals 𝑋1 to 𝑋7. 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 



  

  

                

               

    

  

                

               

               

               

  

 

             

               

             

              

               

                

           

         
              

           

            

               

               

       

               

           

    

        

          

          

          

    

        

          

          

          

    

     

          

          

          

310044, Page 6 

corresponding to each modelling method are used to create VMs to estimate the daily heat added by the radiant heaters, 

�̂�𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 (𝑘𝑊ℎ⁄𝑑𝑎𝑦), at each of the seven perimeter zones. The daily heat is obtained by summing the energy at 15-

minute intervals for each zone as follows: 
𝑀 𝑀 

𝑘 𝑘 �̂�𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 = ∑ �̂�𝑟𝑎𝑑 = ∑(𝑞𝑟𝑎𝑑 ∙ ∆𝑡) (7) 
𝑘=1 𝑘=1 

𝑘 where �̂� (𝑘𝑊ℎ) is the estimated heat added during time step 𝑘, ∆𝑡 (ℎ𝑟𝑠) is the timestep interval, and 𝑀 represents 𝑟𝑎𝑑 

the number of time steps in one day. Measured data collected from physical meters are used to calculate the actual 

daily heat added by radiant heaters, 𝐸𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 (𝑘𝑊ℎ⁄𝑑𝑎𝑦) at Zones (1) to (7). The measured daily heat is utilized to 

verify the VM results using the RMSE (𝑘𝑊ℎ⁄𝑑𝑎𝑦) normalized by the range of daily measured heat at each zone 

(NRMSE), as follows: 

√ 1 ̂ )2 
(8)

𝑀 𝑘 𝑘 
𝑀

. ∑𝑘=1(𝐸𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 − 𝐸𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 
𝑁𝑅𝑀𝑆𝐸 = 

𝑚𝑎𝑥 𝑚𝑖𝑛 )(𝐸𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 − 𝐸𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 

𝑚𝑎𝑥 𝑚𝑖𝑛 represent the maximum and minimum values of measured daily heat. The accuracy where 𝐸𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 and 𝐸𝑟𝑎𝑑,𝑑𝑎𝑖𝑙𝑦 

of the VMs is used to analyze the performance of the steady-state, transient, and load disaggregation models. The 

three modelling methods are compared in terms of modelling assumptions, data requirements, and VMs accuracy. 

3. RESULTS AND DISCUSSION 

VM results corresponding to the three modelling methods are compared with measured heat collected from physical 

meters at Zones (1) to (7) to assess the accuracy of the VMs and evaluate the performance of the underlying modelling 

methods. As shown in Table 1, the three modelling methods can estimate the daily heat added by radiant heaters at an 

average NRMSE between 13% and 23%. The average RMSE from the seven zones for the transient modelling method, 

the steady-state modelling method, and the load disaggregation modelling method is 1.73 𝑘𝑊ℎ⁄𝑑𝑎𝑦, 

2.67 𝑘𝑊ℎ⁄𝑑𝑎𝑦, and 1.63 𝑘𝑊ℎ⁄𝑑𝑎𝑦, respectively, as shown in Fig. 6. These results indicate better performance for 

the transient and load disaggregation modelling methods as compared to the steady-state modelling method. The 

decrease in accuracy for the VMs developed using a steady-state modelling method can be related to steady-state 

modelling assumptions and model inputs. For example, Fig. 7 shows the total estimated heat supplied by radiant 

heaters at Zones (1) to (7) from November 2019 to January 2020 using the three modelling methods. The total 

Table 1: VM results assessment for the three modelling approaches 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Overall 

Total measured heat (kWh) 334.61 231.05 274.83 405.67 335.29 194.02 357.63 2133.10 

Transient inverse greybox modelling approach 

Measured data required ̇[𝑇𝑜𝑎(℃)] , [𝑇𝑧(℃)], [𝑇𝑑𝑎(℃)], [𝑉𝑧 (𝑚3⁄𝑠)], (𝐵𝑧 ), [𝑋𝑧 (%)] 

Total estimated heat (kWh) 346.23 216.06 337.19 460.02 357.57 177.06 359.34 2253.48 

RMSE (kWh/day) 1.62 1.95 1.59 2.05 1.86 1.39 1.52 1.73 

NRMSE (%) 19.29% 18.12% 23.19% 21.31% 15.36% 17.31% 13.04% 14.01% 

Steady-state inverse greybox modelling approach 

Measured data required ̇[𝑇𝑜𝑎(℃)] , [𝑇𝑧(℃)], [𝑇𝑑𝑎(℃)], [𝑉𝑧 (𝑚3⁄𝑠)], (𝐵𝑧 ), [𝑋𝑧 (%)] 

Total estimated heat (kWh) 141.37 51.55 259.10 118.90 88.51 161.42 103.90 924.73 

RMSE (kWh/day) 2.57 2.85 1.34 3.60 3.47 1.42 3.46 2.67 

NRMSE (%) 30.66% 26.45% 19.52% 37.37% 28.62% 17.71% 29.65% 22.84% 

Load disaggregation modelling approach 

Measured data required [𝑞𝑤 (𝑘𝑊)], [𝑋𝑧 (%)] 

Total estimated heat (kWh) 332.01 222.47 283.02 393.81 324.88 182.77 356.08 2095.03 

RMSE (kWh/day) 1.58 1.95 1.36 1.74 1.82 1.39 1.52 1.63 

NRMSE (%) 18.80% 18.10% 19.79% 18.09% 15.03% 17.26% 13.03% 13.26% 
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Figure 6: Predictive accuracy of VMs in the seven zones of the academic building developed by using (a) a transient 

modelling method, (b) a steady-state modelling method, and (c) a load disaggregation modelling method 

Estimated heat for the seven zones when applying the steady-state modelling method is around 43% of the total 

measured heat. This substantial difference between the measured and estimated heat is believed to be related to the 

steady-state model structure, which assumes that no change in zone air temperature occurs over time. By checking the 

zone air temperature behaviour in Zone (3) for three days in January 2020, as shown in Fig. 8, it is noticed that the 

zone air temperature starts to decline when the VAV system shuts down at 22:45 hrs., and rises again upon VAV 

system start-up at 7:00 hrs. During the VAV system shut-down and start-up periods, the zone exhibits a dynamic 

behaviour not captured by the steady-state model. When data points corresponding to these periods are used as model 

inputs, the accuracy of the VMs declines, as indicated in Table 1. 

The results presented in Table 1 are obtained using a 15-minute data sampling frequency for the three modelling 

methods. At this sampling frequency, a higher error is noticed for the steady-state modelling method than the transient 

and load disaggregation modelling methods (see Table 1). The impact of temporal averaging of measured 

Figure 7: Estimated heat supplied by radiant heaters 

at Zones (1) to (7) from November 2019 to January 

2020 using three modelling methods. The size of the 

bubble is proportional to the NRMSE obtained for 

each zone. 

Figure 8: Zone air temperature in Zone (3) for three 

days in December 2019. During the start-up and shut-

down of the VAV system, the zone's dynamic behaviour 

is not captured by the steady-state modelling method due 

to modelling assumptions. 
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data on the accuracy of the steady-state modelling method is examined by training the steady-state model using 

datasets averaged over sampling periods from 15 minutes to 24 hours. VMs are developed using the parameters 

identified from the trained models corresponding to each sampling period. As shown in Fig. 9, the average NRMSE 

of the VMs from the seven zones declines from 23% at a 15-minute sampling period to 13% when the sampling period 

is extended to 24 hours. The total predicted heat added by the radiant heaters in the seven zones compared to the 

measured heat indicates a better performance of the steady-state model at longer sampling periods. The decline in 

error at more extended sampling periods is attributed to minimizing the transient effect when the measured data is 

averaged over intervals with similar initial and final conditions. For example, the transient effect caused by starting-

up and shutting-down the VAV system in Fig. 8 can be minimized by averaging the data over a 24-hour sampling 

period. Although using longer sampling periods with the steady-state modelling method improves the VM accuracy, 

additional data processing is required to average the data over longer sampling periods. In contrast, short sampling 

periods are appropriate for the transient and load disaggregation modelling methods. 

Since the three modelling methods require different sorts of data, the availability of measured data from the BAS can 

be used as a means to select an appropriate modelling method. Measurements of outdoor air temperature, 𝑇𝑜𝑎(℃), 

zone air temperature, 𝑇𝑧,𝑖(℃), occupancy indicator, 𝐵𝑖 , discharge airflow rate, 𝑉𝑑𝑎,𝑖, and radiant heater modulating ̇ 

valve position, 𝑋𝑖 (%), are often available in the BAS of commercial and institutional buildings. However, 

measurements of discharge air temperature from the VAV system, 𝑇𝑑𝑎,𝑖 (℃), and total hot water load from the 

steam/hot water heat exchanger, 𝑞𝑤 (𝑘𝑊), are not always available. In cases when the total hot water load 

measurement is not available, the transient or the steady-state models should be selected, provided that the 

measurements required for these two modelling methods are available. Similarly, in cases when the measurement of 

discharge air temperature is not available, the load disaggregation modelling approach should be selected, provided 

that the total hot water load measurement is available. Hence, the availability of sensors and meters plays a critical 

role in the model selection process. 

This study demonstrates the use of a steady-state modelling method, a transient modelling method, and a load 

disaggregation modelling method for creating VMs that estimate the heat added by zone-level perimeter heaters. The 

three modelling methods are compared in terms of modelling assumptions, data requirements, and virtual metering 

accuracy. The models developed upon applying these three modelling methods can be integrated into the BAS to 

estimate unmetered heat added by perimeter heaters. The estimated heating energy at a building zone-level provides 

critical information to building operators and facility managers to improve building energy performance and facilitate 

operational decisions. 

Figure 9: Total estimated heat supplied by the radiant 

heaters in Zones (1) to (7) compared to measured heat 

using the steady-state modelling method. Measurements 

are averaged over sampling periods from 15 minutes to 

24 hours. The size of the bubble is proportional to the 

NRMSE obtained for each sampling period. 
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4. CONCLUSION 

This paper evaluated the performance of three zone modelling methods used in developing VMs that can estimate the 

heat supplied by zone-level perimeter radiant heaters. Zone models were developed by applying a transient inverse 

greybox modelling method, a steady-state inverse greybox modelling method, and a load disaggregation modelling 

method. The models were trained using a dataset comprising three months of measured data collected from seven 

offices in an academic building in Ottawa, Canada. VMs were created by using model parameters that were identified 

using the genetic algorithm. The accuracy of the VMs was assessed using additional heat measurements collected 

from physical meters installed at the seven offices. The three modelling methods were compared in terms of modelling 

assumptions, model data requirements, and VMs accuracy. 

The VMs' accuracy assessment showed that the three modelling methods could estimate the heat added by perimeter 

radiant heaters at an average NRMSE between 13% and 23%. The accuracy of the steady-state modelling method was 

further analyzed by checking the impact of temporal averaging of measured data over longer sampling periods. The 

results showed that the NRMSE improves by 10% when the sampling period increases from 15 minutes to 24 hours. 

The model selection process was discussed by comparing the measurements required for the three modelling methods. 

Practical scenarios were presented, showing how the availability of measured data from the BAS impacts the selection 

of a suitable modelling method. Although an initial evaluation of the three modelling approaches was presented in this 

paper, there remain several unresolved issues for future research such as a) evaluating the performance of the three 

modelling methods as the number of zones increases, and b) developing visualization tools to present the VMs results 

to different building stakeholders.  
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