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* Corresponding Author 

ABSTRACT 

Model-based Predictive Control (MPC) is an effective solution to improve building controls. It consists of the use of 

weather and occupancy forecasts along with a control-oriented model to predict the behaviour of the building a few 

hours or days ahead, and thus optimize the operation of its systems. Although the potential of MPC is widely 

recognized, and plentiful operational data is often available, the development of a model requires a great deal of 

effort, significant technical expertise and knowledge of building systems. The challenge of creating a model is a 

hurdle that makes the on-site implementation of MPC in buildings relatively rare. 

This study tackles the development of a multi-model approach to optimize the operation of electric and natural gas 

boilers in an institutional building to reduce greenhouse gas (GHG) emissions while maintaining the required level 

of comfort. This methodology leverages Machine Learning techniques to rapidly develop and calibrate control-

oriented models using a limited number of input variables (indoor air temperature and temperature set-points, 

weather conditions, power meter data). The proposed multi-model approach consists of five models used to estimate 

the building total heating demand, the electric baseload, the natural gas boiler power, and the indoor air temperature 

under free floating conditions and during warming-up periods in the morning. The models are calibrated and 

validated with operational data and they are then used to optimize the transition between nighttime and daytime 

indoor air temperature. Since these are black-box models that require only a basic understanding of the building 

system and a few inputs, the model development was considerably reduced while the modularity of the proposed 

method makes it flexible. Such an approach could therefore be easily replicated in other buildings equipped with 

similar pieces of equipment. 

This methodology has been implemented in a Canadian institutional building, located in Varennes (QC). Results in 

2020-21 showed that the COVID-19 pandemic has significantly impacted building performance and reduced energy 

use, thus creating a new baseline. The MPC strategy allowed to achieve an additional 20.2% GHG emission 

reduction compared to this new baseline while thermal comfort was improved. Nevertheless, energy costs increased, 

which was mainly due to the impact of the pandemic, which eventually made the pre-COVID-19 model and 

optimization parameters outdated; lower costs are expected with model recalibration, currently ongoing. 

1. INTRODUCTION 

In recent years, model-based predictive control (MPC) has received significant attention as a promising pathway to 

improve energy efficiency and load management in buildings. MPC has often been associated to a laborious 

modelling approach, a cumbersome formulation of an optimization problem, and a challenging implementation in 

the building automation system. As a result, MPC is often perceived as expensive and time-consuming. While there 

have been some success stories in the application of MPC to real cases, this control approach is still not a 

mainstream practice in the industry. 

† Present address: Smart Building Lab, BrainBox AI, Montreal, Quebec, Canada 
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The team by Cigler et al. (2013) investigated the problem of the implementation of MPC in two case studies. The 

authors underscored the suitability of MPC to the supervisory control of building with significant thermal mass 

using simple models. The need to consider controls at the design stage is also mentioned. The authors illustrated 

their methodology with two field pilot test cases – a 70,000-m2 building in Prague, and a 20,000-m2 office building 

in Munich. The mathematical models developed for the two cases employed system identification to find state-space 

models for both buildings. Zacekova et al. (2014) focused on the problem of identifying an appropriate control-

oriented model (which requires, among other criteria, sufficient accuracy, repeatability, ease of calibration and 

implementation within a control algorithm), a central problem for the development of an MPC solution. The authors 

mentioned the difficulties associated with missing data, faulty sensors, and selected a grey-box approach, in which 

each of the five floors was modelled with a 3rd order thermal network. 

Sturzenegger et al. (2014) presented Building Resistance-Capacitance Modeling (BRCM), a MATLAB® Toolbox 

for the creation of physical grey-box models for controls. Sturzenegger et al. (2016) presented the results of a 

comprehensive MPC study in a Swiss office building. The authors employed a bilinear control-oriented model based 

on physical principles and measured data. The study considered simultaneously thermally activated building 

systems, ventilation and motorized blinds for the entire building. The authors incorporated a supervisory control 

layer (reminiscent of the approach presented in this paper). The implementation of MPC was successful, with 

estimated savings of 17% in comparison with an EnergyPlus benchmark. The authors mentioned that while the 

effort involved seems too high for most engineering projects, “a model predictive building automation framework, a 

modeling tool and the training of engineers” may push the technology into the net benefit range. It is worth 

mentioning that the time and effort required to create a model are seldom reported in the literature. This issue is far 

from trivial since this is a critical consideration for field implementation and eventual mass adoption of MPC. 

In Canada, Kavgic et al. (2015) investigated considerations to justify the deployment of MPC in a building; these 

considerations include significant levels of thermal mass, high ventilation rates, predictable internal and external 

gains and fluctuations between levels of occupancy. Hilliard et al. (2017) employed a combination of measured data 

and synthetic data to create a black-box model (random forest) of a 10,000-m2 building. The resulting model was 

then used as the control-oriented model of an MPC strategy, focused on “nudging” zonal temperature setpoints. The 
MPC strategy achieved 29% savings of electric energy and 63% in thermal energy. 

Drgona et al. (2020) presented a comprehensive overview of MPC for buildings. This paper contains significant and 

thorough information on MPC modelling, optimization and performance assessment. The discussion on modelling 

methods (white, grey, and black-box models) provides an overview of implementation pathways. The authors 

emphasized the need for multidisciplinary education to enable the widespread adoption of advanced controls. 

This paper presents recent results of the implementation of an MPC solution in an institutional building. This 

approach is based on the identification of relevant control variables for the objective at hand (in this case, the 

reduction of natural gas consumption), a control-oriented model based on a judicious application of a machine 

learning approach and the availability of building automation data. This article complements and updates the 

information presented in the paper by Cotrufo et al. (2020). 

2. CASE STUDY 

2.1 Building description 
The building under study is a Canadian institutional building located in Varennes (Quebec, Canada). This 5,257-m2 

one-story building hosts 120 workstations and 10 meeting rooms, with typical occupancy schedules from 6:30 to 

17:30 during working days. To satisfy space heating demand, a 200-kW electric boiler and two 470-kW natural gas 

boilers are used. In Quebec, electricity is generated from hydroelectric plants, making electricity generation almost 

free of greenhouse gas (GHG) emissions. Therefore, the electric boiler is operated as the first priority; natural gas 

boilers are used when heating demand cannot be fulfilled by the electric boiler alone. To avoid significant monthly 

electric peak demand (which impacts the electricity bill), the total building electric power is kept below a certain 

limit, the dynamic electric peak, which is reset every month based on educated guess values and adjusted when the 

total building electric power exceeds dynamic electric peak (e.g. high electric baseload). This total building electric 

power is the sum of the electric boiler power and the electric baseload power, which accounts for occupancy-related 

activities (workstations, lighting, appliances, plug loads, ventilation, experimental test benches, etc.). When the total 

building electric demand approaches the “dynamic electric peak”, the electric boiler contribution is thus reduced. 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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The Building Automation System (BAS) collects measurements such as temperatures, flow rates and powers at 10-

min intervals. The existing database covers several years, although there is a significant amount of missing values 

due to technical issues (e.g. network or sensor failures). The building is composed of four main sections, served by 

four secondary loops connected to the central heating plant. On a typical winter workday, the average indoor air 

temperature is kept at 22.5°C during the day and lowered to 19.6°C at night. When it is cold outside (i.e. 

below -5°C), two sections “cancel” the night temperature setback and stay at 22.5°C, which makes an average 

building indoor temperature setpoint of 21.0°C. In normal operation, the transition between nighttime and daytime 

occurs at 6:30 a.m., using a sharp setpoint step transition. Since the electric boiler capacity is not able to satisfy the 

heating demand to achieve such an abrupt change, the gas boilers must be turned on. Such operation is denoted 

Business As Usual (BAU) in this paper. 

2.2 Predictive control in the building: previous work 
Prior predictive control work was performed and implemented in the building during winter season 2018-19 

(Cotrufo & Saloux 2019; Cotrufo et al. 2020). The strategy consisted in optimizing the transition from nighttime to 

daytime conditions to minimize natural gas consumption. Based on weather forecasts 24 hours ahead, the algorithm 

used outdoor air temperature predictions to virtually test several indoor air temperature setpoint profiles to go from 

night setback (19.6°C) to daytime setpoint (23°C) to minimize the use of natural gas. 

Simulations were used to study the response of the building in the 24-h period between 18:00 and 18:00 the next 

day. Different ramps for the transition were tested, ranging from a sudden step to a nearly flat setpoint; the resulting 

optimal profile leading to minimum gas consumption was then applied at 18:00. For this initial implementation, the 

total building electric power limit was kept constant at 230 kW. Results showed that 22% natural gas savings were 

achieved by smoothly warming-up the building using the electric boiler at night, although a 4% additional heating 

demand was observed. While the tests were successful, several details needed to be addressed. For example, a sharp 

nighttime-daytime transition at particularly low temperatures may affect occupant’s thermal comfort in the morning. 
Conversely, ramps that are too “smooth” will cause excessive heating consumption in milder weathers. 

This paper presents an MPC strategy that builds upon the one proposed by (Cotrufo & Saloux 2019; Cotrufo et al. 

2020) and the results from the MPC strategy deployment in a real building during 2020-21 winter season. This new 

MPC strategy includes the following new features: 1) a free-floating model that estimates the average room 

temperature when building rooms cool down to night setback, 2) a thermal comfort model that calculates the 

average indoor air temperature at 7:00 and 8:00, 3) a new objective function to avoid excessive heating demand, 4) 

new temperature setpoint profiles with additional night setbacks, and 5) dynamic electric peak variations. 

2.3 Impact of the COVID-19 pandemic 
The COVID-19 pandemic had a significant impact on building operation and performance. Most employees have 

been teleworking since March 2020, but a non-negligible fraction is back in the office. Obviously, such a major 

change in occupancy affects the building thermal behaviour, specifically, internal gains due to occupants and electric 

baseload power. However, since this effect is difficult to account for, the same model was used for the 

implementation. It is worth mentioning that a lower electric baseload power was observed, which might increase the 

contribution of the electric boiler and thus reduce natural gas consumption. In turn, internal gains due to occupants 

and lighting are expected to be lower, which might increase building heating demand and natural gas consumption. 

(a) (b) 

Figure 1: Hourly electric baseload power as a function of the hour of the day: (a) before COVID-19 pandemic 

(Nov 2019-Mar 2020), (b) after the beginning of COVID-19 pandemic (Nov 2020-Mar 2021). 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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Figure 1 shows the electric baseload power as a function of the hour of the day before and after the beginning of the 

COVID-19 pandemic. These figures show typical profiles during weekdays and weekends, before and after the 

beginning of the pandemic. The behaviour during weekends (in blue) was barely affected, with a mean value 

between 47 and 69 kW before COVID-19 and between 52 and 72 kW after the pandemic beginning. During 

weekdays from 9:00 to 15:00 (in red), the mean value was reduced from 137 kW down to 122 kW. This 15-kW 

difference, which might correspond to an internal gain reduction, is expected to be available for the electric boiler, 

when needed. Conversely, there are around 75 fewer occupants in the building, which might account for 6-kW 

internal gain losses (assuming 75 W/person). A morning peak (139 kW in average) in Fig. 1b can also be noticed. 

3. METHODOLOGY 

3.1 Control-oriented model 
Figure 2 shows the schematic of the new multi-model approach. The control-oriented model developed in previous 

work (Cotrufo & Saloux 2019; Cotrufo et al. 2020) was composed of three black-box models targeting: 1) the 

heating demand, 2) the electric baseload and 3) the natural gas boiler power. Different Machine Learning techniques 

were assessed by Cotrufo et al. (2020) and Gaussian Process Regression (GPR) showed a good promise trade-off 

between accuracy and flexibility in terms of architecture (essentially, a Kernel function to select) as opposed to 

artificial neural networks. The model inputs were determined using a combination of thermodynamics 

considerations, practical issues and correlation analysis. The model inputs were selected so that they are either: (a) 

non-controllable, but known hours ahead (hour of the day, dynamic electric peak, forecasted outdoor air 

temperature) or (b) controllable variables (temperature setpoints). It is worth mentioning that all models use hourly 

average values. The original formulation included these three models: 

 The heating demand is a function of the outdoor air temperature (OAT), the air temperature setpoint (TSP), 

and the temperature setpoint variation (dTSP). The latter was included to account for the additional power 

needed for temperature change. The GPR model used the ardexponential Kernel function. 

 The electric baseload mainly depends on occupancy, which in turn depends on the hour of the day (HH). 

However, since the “baseload” is calculated as the total electric power minus the electric boiler power, it 

implicitly includes other heating elements. For this reason, the OAT was also used as an input. Although 

both the temperature setpoint and electric baseload follow the occupancy, it is worth mentioning that the 

temperature setpoint was not included as an input model, since the proposed approach intends to adjust 

setpoints independently of occupancy. The GPR model used exponential as Kernel function. 

 The natural gas boiler is turned on when the electric boiler, whose contribution depends on the electric 

demand margin (see below), does not suffice to fulfill the building heating demand. Thus, electric demand 

margin (EDM) and heating demand (HD) were used as inputs. The GPR model used exponential as Kernel 

function. 

Figure 2: Schematic of the control-oriented model 

Three new models were added to the original version: 1) free-floating model, 2) electric demand margin and 3) 

thermal comfort model. 

 The free-floating model is a 1R-1C thermal network model (no heat source) that aims to provide a 

correction on the indoor air temperature setpoint and setpoint variation that are inputs of the heating 

demand model. This model accounts for the thermal delay of the building and the difference between the 

6th International High Performance Buildings Conference at Purdue, May 24-28, 2021 
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setpoint and the real temperature. A “corrected” setpoint is then used as the input for the heating demand 

model. 

 The electric demand margin is the difference between the dynamic electric peak (DEP) and the electric 

baseload (EBL), and helps estimate the electric boiler contribution. 

 The thermal comfort model aims to estimate the building behaviour during the ramp-up period. Indoor air 

temperature is calculated from 3:00 to 10:00 and model uses outdoor air temperature and heating demand 

as inputs. The GPR model used ardexponential as Kernel function. 

3.2 The indoor air temperature setpoint profiles 
Figure 3 shows the 21 profiles that were tested as transitions from nighttime (19.5°C) to daytime (22.5°C). As in 

Cotrufo et al. (2020), starting time of the transition varies (Figure 3, left): it can occur at 6:00 or start earlier at night 

(up to 19:00). Other profiles consider ramping up at 18:00 at higher night setback (20.5°C, 21.5°C) while another 

option is a 22.5°C constant temperature setpoint. New temperature setpoint profiles were also included with 

additional night setbacks at 18.5°C (Figure 3, middle) and 17.5°C (Figure 3, right). 

Figure 3: Indoor air temperature set-point profiles tested in the predictive control strategy 

(left: #1-9, middle: #10-15, right: #16-21; #1: 22.5°C constant setpoint). 

3.3 Formulation of the optimization problem 
The objective of the predictive control strategy is to minimize natural gas consumption while maintaining or even 

improving thermal comfort and avoiding excessive energy costs. The optimization problem, which minimizes the 

function J evaluated over the prediction horizon Λ, is written as follows: 
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where TSPi is the ith indoor air temperature profile, natural gas consumption and 

heating demand of the ith indoor air temperature profile, and are the natural gas consumption 

iTSPNG and 
iTSPHD are the 

BAUNG and BAUHD

and heating demand under the “Business As Usual” strategy. There is a constraint on indoor air temperature (IAT) at 

7:00 (first occupants’ arrival), which must be higher than 21.5°C. Weighting factors (0.6 and 0.4) were manually 

tuned to prevent choosing a profile with a small reduction in natural gas but a high increase in heating demand. 

3.4 Predictive control strategy 
The MPC routine was written in MATLAB® and was run automatically the evening before each workday (Sunday 

to Thursday), slightly before 18:00. The indoor air temperature for the free-floating model was assumed to be at 

18.5°C at 18:00 on Sunday evenings, and at 22.5°C the other days. The MPC strategy was implemented during the 

winter season 2020-21, from Nov 12 to Mar 19. The predictive control strategy consists of the following steps: 
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1- Weather forecasts with a prediction horizon of 24 hrs are retrieved using a software tool developed by 

Natural Resources Canada (Natural Resources Canada 2017; Candanedo et al. 2018). 

2- Dynamic electric peak is retrieved from the BAS. 

3- Weather forecasts and dynamic electric peak are used along with the control-oriented model to estimate 

from 18:00 to 18:00 the next day the objective function associated to each indoor air temperature profile. 

4- The indoor air temperature profile that minimizes the objective function is sent to the BAS via a virtual 

controller and is applied to each room of the building from 18:00 until daytime building operation overrides 

nighttime operation (6:30). 

3.5 Assessment of savings 
Two benchmark models were used to evaluate building performance on a daily basis: 1) under “BAU” strategy 
before COVID-19 and 2) under “new BAU”, during the COVID-19 pandemic. The first model helps assess the 

effects of COVID-19 by providing a pre-COVID-19 baseline. The second model helps evaluate the impact of MPC 

strategy by providing a new BAU baseline. BAU models are GPR type and calculate heating demand (Matern32 

Kernel function) and natural gas consumption (Matern52 Kernel function) as a function of daily average outdoor air 

temperature; they were trained using 2015-18 data (Cotrufo et al. 2020). New BAU models are linear and quadratic 

type due to the low amount of available data. For the economic analysis, as building peak demand occurs during the 

day, electricity cost is estimated using only the energy rate (5.03 CAD c/kWh). Compared to previous work (Cotrufo 

& Saloux 2019; Cotrufo et al. 2020), natural gas price is now based on gas utility average cost over winter months 

(5.42 CAD c/kWh), which includes transportation, balance fees, etc. Finally, GHG emissions were assumed to be 

0.00036 t-CO2eq/GJ for electricity and 0.0507 t-CO2eq/GJ for natural gas. 

4. RESULTS 

4.1 Model training and validation 
4.1.1 Control-oriented models: each model of the multi-model approach was individually calibrated using building 

operational data, between November 2017 and March 2019. The dataset was cleaned (outliers, missing values, etc.) 

and non-stratified random partition was used to divide the data into training and validation datasets. For the thermal 

comfort GPR model, data between 3:00 and 9:00 were considered. For the free-floating RC network model, less data 

is required and only 2018-19 winter season was considered. Values between 18:00 and 22:00 were considered, when 

the building was more likely to be in free floating mode. Most of the time, there is a heating demand, even when the 

indoor air temperature is higher than the setpoint; this is most likely a result of local control rules designed to 

dampen load fluctuations and avoid equipment cycling. It was not considered for the calculation of RC parameters 

(R=0.560 K/W, C=351,726 J/K, equivalent to a 55-hr time constant) but was kept in the calculation of HD. 

Figure 4 shows model predictions at time t for one week during winter 2019 for heating load, electric baseload and 

natural gas consumption and Table 1 gives dataset and model accuracy for each model. Values similar to those 

provided by Cotrufo et al. (2020) were obtained for HD, EBL and GAS. While EBL and GAS perform well, HD 

model struggles more to catch peak loads. This can be explained by the fact that the heating demand was calculated 

with the sum of electric boiler and natural gas boiler contributions, and that natural gas boiler power mainly shows 

peaks, deduced from pulse readings. For temperature models (free floating, thermal comfort), the error remains 

below 0.2°C, which fall inside sensor uncertainty range. 

(a) (b) (c) 

Figure 4: Control-oriented model hourly predictions for one week during winter 2019: (a) heating load, (b) electric 

baseload, and (c) natural gas boiler power. 
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Table 1: Control-oriented model dataset and accuracy 

Variable Heating 

demand 

Electric 

baseload 

Gas boiler 

power 

Free 

floating 

Thermal 

comfort 

Dataset 4305 hourly values (50% for training) 207 hourly values 
808 hourly values 

(50% for training) 

RMSE - GPR (train/val) 25.1 / 34.0 (kW) 11.9 / 15.0 (kW) 4.4 / 7.3 (kW) - 0.12 / 0.22 (°C) 

RMSE - RC network - - - 0.14°C -

Figure 5 shows model results when the outdoor air temperature varied between -8°C and 1°C. Indoor air temperature 

in free floating mode decreases until it reaches the setpoint and HD only depends on OAT during this period. From 

this point onwards, TSP and dTSP become inputs of HD model. At 3:00, the thermal comfort model calculates the 

indoor air temperature for the next 7 hours by considering, as initial condition, that the indoor air temperature is 

equal to the setpoint. Note that at 10:00 the value is close to 23°C, slightly higher than the setpoint (22.5°C). In fact, 

the model training was done on a period when the daytime setpoint was 23°C, not 22.5°C. HD is shown in orange 

and the fraction of HD covered by natural gas (GAS) in blue. PID parameters could have been included in the free 

floating model but the current model gives a reasonable estimation of the starting time of equipment ramp-up. 

Figure 5: Control-oriented model results for a typical day and a given temperature setpoint profile. 

4.1.2 Benchmark models: Figure 6 shows measured data under BAU operation (2015-18), new BAU (2020-21) and 

benchmark models (baseline) for daily heating demand and natural gas consumption. Table 2 gives model dataset 

and accuracy for BAU and new BAU, which includes pandemic effects. GPR models were based on daily values in 

2015-18 (Cotrufo et al. 2020); in turn, the new BAU models only considered few values of 2020-21 data. The impact 

of the COVID-19 pandemic is discussed in the next subsection. 

(a) (b) 

Figure 6: Benchmark model for building performance under BAU and new BAU: (a) daily average heating demand 

and (b) daily average natural gas boiler consumption as a function of daily average outdoor air temperature. 

Table 2: Benchmark model accuracy 

Variable Heating demand 

(BAU) 

Gas consumption 

(BAU) 

Heating demand 

(new BAU) 

Gas consumption 

(new BAU) 

Dataset 369 daily values (70% for training) 45 daily values 

GPR (train/val) 0.269 / 0.255 (MWh) 0.241 / 0.283 (MWh) - -

Linear, quadratic - - 0.316 (MWh) 0.100 (MWh) 
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4.2 Energy savings and GHG emission reduction 
Table 3 and Figures 6-7 show results from new BAU and MPC implementation in 2020-21. 

 Effects of the COVID-19 pandemic can be evaluated by comparing BAU with new BAU in Table 3, and the 

grey line (BAU baseline) with red dots (new BAU implementation results) in Figure 6. 

 Benefits of the MPC strategy can be evaluated by comparing MPC with new BAU in Table 3, and the red 

line (new BAU baseline) with green dots (MPC implementation results) in Figure 7. 

Table 3: Performance obtained from new BAU and MPC implementation during winter 2020-21 

Variable BAU 

(baseline) 

New BAU 

(meas.) 
Difference 

New BAU 

(baseline) 

MPC 

(meas.) 
Difference 

Building heating demand 107.5 MWh 87.4 MWh - 18.7 % 78.4 MWh 98.0 MWh + 25.0 % 

Electric boiler consumption 72.8 MWh 70.6 MWh - 3.0 % 63.4 MWh 86.3 MWh + 36.0 % 

Natural gas boiler consumption 34.7 MWh 16.8 MWh - 51.5 % 15.0 MWh 11.7 MWh - 21.8 % 

Total energy cost 5,542 CAN$ 4,463 CAN$ - 19.5 % 4,003 CAN$ 4,976 CAN$ + 24.3 % 

GHG emissions 6.43 t CO2eq 3.16 t CO2eq - 50.8 % 2.81 t CO2eq 2.25 t CO2eq - 20.2 % 

The COVID-19 pandemic has affected the building performance: heating demand was reduced by 18.7% and natural 

gas consumption by 51.5%. This reduction was quite significant at low outdoor air temperatures. With the MPC 

strategy, there are clear benefits in terms of gas consumption, achieving an additional 21.8% reduction compared to 

new BAU. This was obtained by increasing electric boiler use during off-peak periods, but also at higher heating 

demand (25.0%) and energy costs (24.3%). MPC showed substantial reduction at low outdoor air temperature for a 

similar or modest increase in heating demand; however, it was less effective in warmer weather, as heating demand 

was significantly increased for low natural gas savings. The trade-off between heating demand increase and gas 

consumption reduction was handled within the objective function (Eq. 1) and is still based on operational data under 

the original BAU, not the new BAU. When compared to BAU, heating demand and energy cost would have been 

similar (0.4% and 1.7% decrease, respectively, not shown in Table 3). Recalibration with data under the new BAU 

could adjust model and optimization parameters to the new reality and lower energy costs would be expected, as 

obtained by Cotrufo et al. (2020). 

(a) (b) 

Figure 7: (a) Daily average heating demand and (b) daily average natural gas boiler consumption as a function of 

daily average outdoor air temperature under MPC in 2020-21. 

4.3 Trends in the selection of indoor air temperature setpoint profiles 
Cotrufo et al. (2020) investigated the selection of indoor air temperature profiles. It was found that at lower outdoor 

air temperatures, a sharp transition between nighttime to daytime conditions was optimal; at higher temperatures, 

smooth transitions were selected. In fact, at low temperatures, the natural gas boilers are already operating at night 

and building preheating causes an increase in heating demand and thus, in gas consumption. In contrast, this is not 

the case when it is warmer outside: natural gas consumption in the morning during ramp-up can be shifted into 

electric boiler consumption at night. 

Figure 8 shows temperature setpoint profile as a function of daily outdoor air temperature. Adding new night 

setbacks and thermal comfort constraints makes the interpretation of profile selection less evident, although the 

trend is similar. Smooth transitions (profiles #1-4) were selected at higher temperatures; profile #2 (21.5°C night 

setback and starting time at 18:00) was even selected 40% of the time. Profiles #12-16-18 with 17.5-18.5°C night 

setback were selected at low temperatures and on Sunday evening when indoor temperature was already at 18.5°C. 
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Figure 8: Indoor air temperature setpoint profile selected by the MPC strategy as a function of the daily average 

outdoor air temperature. 

4.4 Thermal comfort 
Building daytime schedule starts at 6:30 and occupant’s thermal comfort should be satisfied soon after. Thermal 

comfort was assessed by plotting indoor air temperature at 7:00 (first occupant’s arrival) and 8:00 (indoor air 

conditions expected to be achieved). Results are shown in Figure 9. The constraint on thermal comfort in the 

optimization problem helped increase the indoor air temperature in the morning, by excluding setpoint profiles that 

might have caused discomfort. Compared to BAU and new BAU, MPC was able to almost consistently achieve 

21.5°C at 7:00 while under BAU and new BAU, temperatures between 21°C and 22°C were frequently achieved. 

(a) (b) 

Figure 9: Indoor air temperature as a function of daily average outdoor air temperature: (a) at 7:00 and (b) at 8:00. 

5. LESSONS LEARNED FROM IMPLEMENTATION 

The development of data-driven black-box models is no easy task and it strongly depends on data availability and 

quality (“garbage in, garbage out”). The followed approach intended to develop a strategy that relies on very few 

inputs (essentially, indoor temperatures, electric boiler power, total building electric power and natural gas boiler 

power) for replicability purposes and to maximize data availability. Indeed, it barely happens that all required 

monitoring data is available at the same time and using hourly average values helped increase data availability. 

Training data covered a total of 10 months, on which only 59% of hourly average values were compiled in the 

training dataset due to missing periods (mainly for building total electric power and outdoor air temperature) ranging 

from a few hours to a few days. Averaging indoor temperatures and temperature setpoints was also beneficial, as it 

allowed to exclude missing data (12-26% of the 10-min dataset) for specific rooms within a zone. With data 

availability in mind, Deep Learning models such as long-short term memory artificial neural networks are very 

appealing in terms of accuracy but their actual implementation in typical real buildings might be difficult as they 

require consecutive time-series data. 

Another challenge was the bi-directional communication with the BAS. The optimization consisted in predefined 

setpoint profiles that were manually entered in the control system in such a way that the optimal profile number was 

sent to the BAS and the corresponding profile was applied. A more automatic approach could be explored while the 

compatibility with commercial tools that are given permission to send commands to the BAS could be worth of 

investigation. 
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6. CONCLUSIONS AND FUTURE WORK 

While a significant transformation in the training of building engineer professionals (e.g. in control engineering) is 

desirable, and even necessary, to fully exploit the potential of MPC, the severity and urgency of environmental 

problems call for a practical approach for the deployment of predictive control, even if only a fraction of MPC 

capabilities are achieved. The replicability and the affordability of the method is one of its interesting features. The 

impact of deploying an “imperfect” (but simple and cheap) methodology in hundreds of buildings would surpass the 
benefits of a “full” MPC implementation considering a detailed model with numerous controlled variables. 

Future work includes applying the MPC strategy to other commercial or institutional buildings (under way) to see 

whether similar conclusions (savings, operational trends) could be achieved. Moreover, control-oriented models 

should be recalibrated to account for the new performance under COVID-19 pandemic. The proposed strategy was 

also not very efficient on warmer periods; a dedicated model could be developed for these conditions, targeting 

heating demand reduction while maintaining thermal comfort and low natural gas consumption. In this study, indoor 

air temperature profiles were applied uniformly to all the rooms. This supervisory control strategy could be refined 

with local controls for groups of systems or rooms. Peak load management to support electric grid needs could be 

investigated using a similar approach, with models targeting flexibility, focusing on electric power, while natural gas 

consumption would be treated as a penalty term. Such work could target both heating and cooling systems, focusing 

on occupied hours as the electric peak generally occurs during the day. In this situation, a multi-model approach 

could be very useful. To better quantify flexibility, load disaggregation could be investigated in depth. 
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