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ABSTRACT 
Rain impacts roadways such as wet pavement, standing water, decreased visibility, and wind gusts 
and can lead to hazardous driving conditions. This study investigates the use of high fidelity 
Doppler data at 1 km spatial and 2-minute temporal resolution in combination with commercial 
probe speed data on freeways.  

Segment-based space-mean speeds were used and drops in speeds during rainfall events of 
5.5 mm/hour or greater over a one-month period on a section of four to six-lane interstate were 
assessed. Speed reductions were evaluated as a time series over a 1-hour window with the rain 
data. Three interpolation methods for estimating rainfall rates were tested and seven metrics were 
developed for the analysis. The study found sharp drops in speed of more than 40 mph occurred at 
estimated rainfall rates of 30 mm/hour or greater, but the drops did not become more severe beyond 
this threshold. The average time of first detected rainfall to impacting speeds was 17 minutes. 

The bilinear method detected the greatest number of events during the 1-month period, with 
the most conservative rate of predicted rainfall. The range of rainfall intensities were estimated 
between 7.5 to 106 mm/hour for the 39 events. This range was much greater than the heavy rainfall 
categorization at 16 mm/hour in previous studies reported in the literature. The bilinear 
interpolation method for Doppler data is recommended because it detected the greatest number of 
events and had the longest rain duration and lowest estimated maximum rainfall out of three 
methods tested, suggesting the method balanced awareness of the weather conditions around the 
roadway with isolated, localized rain intensities. 
 
 
Keywords: probe data, commercial vehicle, high-fidelity radar data, doppler, rain intensity, back-
of-queue crash, impact duration, recovery time  
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1. INTRODUCTION 
According to the Federal Highway Administration (FHWA), 46% of weather-related crashes are 
due to rain and 76% of crashes happen on wet pavement (1). Rainfall can affect visibility distance, 
pavement friction, and obstructs or submerges the roadway. A 10 year average of the data from 
2004 to 2014 found that there were 573,784 crashes, 228,196 injuries, and 2,732 fatalities annually 
related to rain conditions alone (1). Compared to crashes due to all winter-related conditions of 
snow/sleet, and icy pavement conditions combined, there were 7% more crashes, 67% more 
injuries and 49% more fatalities annually from rain (1). While costs of types of crashes vary 
nationally, a rough estimate for property damage alone using the default comprehensive crash unit 
cost amounts to over $4 billion a year (2). 

Recent developments of the National Weather Service’s (NWS) Next-Generation RADAR 
(NEXRAD) network and improved data distribution interfaces have now enabled high-temporal 
and spatial fidelity data to be accessible to the public (3, 4). In addition, developments in 
commercially-available crowdsourced probe vehicle data have enabled agencies and practitioners 
to leverage traffic speed information captured from smartphones, fleet, embedded vehicle 
telematics and GPS units to make tactical decisions in real-time, assess operational strategies, 
perform after-action reviews, and pro-actively monitor roadway conditions (5, 6, 7, 8, 9). There 
are new opportunities to synergize these technologies and leverage the high-fidelity datasets to 
engage in high-impact research that can predict and potentially mitigate rain-related incidents. 

2. LITERATURE REVIEW 
Previous studies correlating traffic impacts with rainfall events make use of in-pavement loop (11, 
12, 13), or mounted radar detectors (13) at specific points along the roadway, and some studies 
have used probe data to track speeds but only on urban arterials (14, 15). In terms of weather data, 
many rainfall estimates used in these studies were localized, such as from Road Weather 
Information System (RWIS) stations, or had relatively low spatial and temporal resolution such as 
Automated Surface Observation System (ASOS, 10), or from nearby weather stations such as an 
airport (11, 12, 13, 14, 15) that gave rainfall rates in hourly increments over large areas. Due to 
the coarse nature of these data sources, rainfall intensities were typically categorized into 
gradations such as light, moderate, and heavy. 

Early research by Ivey, et al. have concluded that speeds were reduced during heavy rainfall 
at intensities of 25 mm/hour or more due not only to reduced visibility, but also from hazardous 
passing maneuvers and the existing speed of traffic (16). While there were many studies that have 
focused on reductions in capacity close to at-capacity conditions, results regarding how much 
speed is reduced during free-flow conditions due to rain vary across studies. The Highway 
Capacity Manual suggests reductions of speed in free-flow traffic in the range of 4.8% to 6.4% in 
heavy rain (17). Maze et al. estimates that heavy rain reduces roadway capacities by 14% to 15% 
(18). Ibrahim and Hall estimated speeds dropped about 1.2 mph in light rain and 3.1 to 6.2 mph in 
heavy rain in uncongested conditions (11), while Brilon and Ponzlet found speed reductions in wet 
conditions were 5.9 mph in two-lane sections and 7.5 mph in three-lane sections of roadway (12). 
Rakha, et al. estimated reductions of free-flow speeds of 2% to 3.6% in light rain conditions of 0.1 
mm/hour and 6% to 9% in heavy rain conditions of 16 mm/hour (13) but did not provide estimates 
above this rate. Angel, et al. found speed reductions of 2.1 mph in light rain (less than 2.8 
mm/hour), 3.9 mph in moderate rain, (2.8 to 7.6 mm/hour), and 4.1 mph in heavy rain (greater 



6 

than 7.6 mm/hour) but noticed different effects of heavy during the morning and evening 
commutes (19). 

Few studies have investigated methods to improve the resolution of weather data for traffic 
impact analysis. Research by Jung, et al. used the inverse-squared method to better approximate 
rainfall intensity using three close-by weather stations at reporting intervals of 15-minutes but 
mentioned few data sources were available at the time to provide finer, minute-based 
measurements (20). Finally, Omaranian, et al. employed a high spatial resolution grid of 4 km 
square to estimate crash risk but did not examine the effects on speed (21). Recent research have 
emphasized the need for high spatial and temporal fidelity data to identify locations of unexpected 
sharp decreases in speed that affect motorist safety (22, 23). These locations have been shown to 
have increased crash rates by a factor of 24 compared to uncongested, free-flowing conditions. 

3. METHODOLOGY 
3.1 Traffic Speed Data 
In this study, traffic speed data was obtained from INRIX. The provider aggregates multiple 
sources of fleet, GPS, smartphone and telematics data into representative minute-by-minute 
average speeds over segments of roadway at nominally 1 km in length (9). The focus was on warm-
weather rain precipitation events in central Indiana on I-65 from mile marker 122 to 171. The study 
area consists of four to six-lane sections with 12′ shoulders, with speed limits of 65 and 70 mph. 
The area is shown in Figure 1a and a distribution of segment lengths are shown in Figure 1b.  

Data from overnight periods were excluded due to two reasons: visibility conditions 
affecting driver behavior, and data penetration. INRIX provided a metric of whether the source of 
data came from real-time sources, historical data, or posted speed limit where neither of the first 
two were available. For this study, only real-time sources from daylight hours of 6:30 am to 8:30 
pm were used. For each segment, consecutive space-mean speed values were scanned and any 
drop in speed below 50 mph and a rain intensity value of over 5.5 mm/hour within the consecutive 
interval was flagged for examination. The speed threshold thus requires the preexisting traffic 
conditions to be uncongested. 
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(a) Segments of interest on I-65 

 
 

(b) Segment length distribution 

Figure 1. Probe data segmentation. 
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3.2 Doppler Data 
NEXRAD Doppler weather data was obtained through a dataset known as the Multi-
RADAR/Multi-Sensor System (MRMS) (4) curated by the National Severe Storms Laboratory 
(NSSL) alongside to determine rainfall intensity at the road segment level. The provider makes 
quality controlled logarithmic reflectivity at the lowest possible vertical level available through a 
variable called Seamless Hybrid Scan Reflectivity (SHSR) (24). SHSR is often used to calculate 
surface precipitation rates.  

The Doppler data used in this study provides gridded weather data at a 1 km square 
resolution and a temporal resolution of two minutes. There are approximately 102,500 grid points 
in the dataset for the state of Indiana and approximately 16,000 grid points in the area of interest 
for the study. For the month of June, approximately 3.3 million records were processed. Prior to 
using the reflectivity value to estimate rainfall intensity by interpolation, it was necessary to 
convert from logarithmic reflectivity to linear reflectivity by the following equation (25). Big Z 
denotes logarithmic reflectivity while little z denotes linear reflectivity.  

𝑍𝑍 = 10 × 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑧𝑧) Equation 1 

Rearranged for linear reflectivity, the equation becomes the following. 

𝑧𝑧 = 10
𝑍𝑍
10 Equation 2 

A 5 km buffer of Doppler grid points were used for the analysis to allow for a window 
around each segment that was representative of the surrounding environment. The surrounding 
Doppler grid points were used to perform three methods of interpolation. 

3.3 Interpolation Methods 
Each road segment was assigned an approximate center point using SQL to assign a rainfall 
intensity value to the segment based on three interpolation methods, nearest neighbor interpolation, 
bilinear interpolation, and bicubic interpolation. These methods rely on the surrounding weather 
data to assign an estimated Doppler reflectivity value to the road segment. All three methods and 
their surrounding grid points can be seen in Figure 2. 
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 Nearest neighbor interpolation is the simplest of the three methods and relies on a single 
weather data point. The closest data point to the road segment in question is calculated and then 
used to assign a reflectivity value to the road segment’s center point. 

Bilinear interpolation is a little more involved than nearest neighbor but still relatively 
simple. Bilinear interpolation makes use of linear interpolation over multiple steps. Consider the 
value halfway between one and ten as five. Bilinear interpolation makes use of this process using 
the four data points surrounding a point of interest. Linear interpolation is applied to the top two 
data points and the bottom two data points separately. Following the two separate linear 
interpolations, a third linear interpolation is carried out to determine the point of interest. The 
figure below provides an example of this process in the same manner that is used for this study. 
An example for bilinear interpolation is presented in Figure 3. 

Bicubic interpolation, is more involved than bilinear interpolation. Bicubic interpolation 
extends the number of data points used in the interpolation process to sixteen as seen in Figure 2 

 
Figure 2. Graph of grid, roadway segment center point, buffer area, and cells used for interpolation 

method. 

 
Figure 3. A simple bilinear interpolation example. 
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and Figure 4. Bicubic interpolation uses the extra data points to fit cubic splines between each data 
point. The result tends to be a smoother interpolation. This study makes use of the R package 
“Akima” (26) to carry out the bilinear and bicubic interpolation. 

After the interpolation is carried out and the linear reflectivity has been converted back to 
logarithmic reflectivity, rainfall intensity values are calculated by the following equation, which 
can be derived from the Palmer Z-R relationship (25). 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙 𝐼𝐼𝑅𝑅𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝐼𝐼𝐼𝐼 �

𝑚𝑚𝑚𝑚
ℎ𝑟𝑟

� = 0.036 × 100.0625×𝑍𝑍 Equation 3 

The speed data was joined with the rainfall intensity data for storm event analysis. The combined 
weather/speed dataset was then subjected to a flagging algorithm intended to detect heavy 
localized rainfall events where no pre-existing congested traffic conditions existed. A rainfall 
intensity threshold of 35 dBz, or 5.5 mm/hour were used. Biggerstaff et al. (27) indicate 35 dBz 
and above as convective rainfall that at or beyond this threshold has the greatest impact on visibility 
and driving conditions. One-hour windows around each flagged rainfall event were constructed 
and used to produce a number of statistics that include the following: delta speed, maximum 
rainfall intensity, impact duration, rain duration, time to impact, maximum impact time, recovery 
time. 

It should be noted that limitations do exist in the use of Doppler reflectivity to derive rainfall 
intensity at any location. Reflectivity values can be affected by blockage, biological debris, hail, 
and many other factors which can lead to errors in the rainfall estimate. The MRMS dataset does 
attempt to remedy these errors through an automated quality control step (28). 

Figure 5 displays an example event from June 9th, 2018, from 12:40 to 13:40. All three 
interpolation methods are shown. Callout i shows the time instance where traffic speeds were high 
and the storm had just begun. Callout ii shows the storm having modest impact at just under 40 
mm/hour and the traffic speeds starting its decline to its lowest point below 40 mph. Callout iii 
shows as the rain tapered off, the speeds start to recover, but not as high as before the storm. There 
are considerations of time synchronization between the traffic data and the Doppler data as to when 
the storm creates the greatest impact, which from this storm was approximately 5 minutes. Figure 
6a, b, and c shows the maps overlaid with the Doppler imagery and speed data of the time slices 
at Callout i, ii, and iii, respectively. The circles on the map at the segment locations indicate points 

 
Figure 4. Bicubic interpolation method. 
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where the speed drops suddenly between segments, with the reddish coloration indicating greater 
speed drops. 

Comparing the three methods, the data suggests the nearest neighbor may produce the 
highest peak intensity rainfall values due to its localized nature, while the bicubic method detects 
heavy incoming rain earlier by considering a greater number of data points around the area of 
analysis. The bilinear method appears to be a good compromise between the two methods by using 
four closest points. 

 

 

Figure 5. Three methods for interpolating rain intensity, with traffic speed overlay, I-65 northbound at 
mile marker 130, June 9, 2018. 
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4. ANALYSIS 
4.1 Performance Metrics for Assessing Rain Impact 
Seven metrics were calculated from the combined weather/speed dataset. The metrics are as 
follows: delta speed, maximum rainfall intensity, impact duration, rain duration, time to impact, 
maximum impact time, and recovery time. These statistics were calculated according to the 
flagging and analysis process shown in Figure 7 a, b. An example of statistics calculated for one 
event are shown in Figure 8. Delta speed was calculated by finding the difference between the 
speed when rain first passed the threshold and the minimum speed and is given in miles per hour. 
The maximum rainfall intensity is the maximum intensity value for the one hour window given in 
millimeters per hour. Impact duration was calculated by taking the difference between the time 
when speed returns above the threshold and the time before it first goes below the speed threshold, 
given in minutes. Rain duration was calculated as the number of minutes in the window that rain 
was above the threshold. Time to impact was calculated by finding the difference between the first 
time speed was below the threshold and the first time rain was above the threshold, given in 
minutes. Maximum impact time was calculated by finding the difference between the time when 
speed was at a minimum and the first time rain was above the threshold, given in minutes. Finally, 
recovery time was calculated by finding the difference between the time when speed returns above 
the threshold and the minimum speed time, given in minutes.  

 

(a) Rain nears the segment (t=13:00:00) 

 

(b) speed begins to drop (t=13:06:00)p 

 

(c)  Just past maximum impact point (t=13:22:00) 

Figure 6. Radar overlay on traffic speed condition map on June 9, 2018. 
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a. Flagging algorithm 

 
b. Statistics generation. 

Figure 7. Process for construction of +/- 30 minute time windows and generating the seven metrics of 
interest.  
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Figure 8. MM 130, June 9th, 2018. 

 
 

 
  

Table 1. Statistics for interpolation methods 
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Table 2. I-65 Weather/speed drop events detected using the bilinear method, MM 122-171, 6:30–20:30 in 
June 2018 (events highlighted in orange are likely related to congestion) 
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Table 1 and Table 3 shows the statistics for the three interpolation methods tested in this study. 
The nearest neighbor method estimated the greatest rainfall amount but also incidents with the 
most intense speed drops. The bilinear method detected the greatest number of events at 39, and 
also had the longest duration of rainfall and lowest estimated maximum rainfall. The bicubic 
method estimated the shortest durations of rainfall and recovery time, possibly due its bias for 
storms that cover a wider area, included areas that had less intense precipitation, and therefore fell 
below the 5.5 mm/hour threshold. The nearest neighbor and bilinear methods had a similar time to 
impact at 16.5 and 17 minutes, respectively, while the bicubic method was closer to 19 minutes. 
Recent studies have used 15-minute time windows for evaluating rain events which, even 
accounting for a 5 minute latency and driver response, suggests time-series analysis may be 
necessary to correlate rain time of different windows to traffic impact time at these temporal 
resolutions. 

4.2 Rain Intensity and Traffic Impact Correlation 
As an example, Table 2 shows a list of speed drops and performance metrics as detected from the 
bilinear interpolation method. The bilinear method detected the greatest number of events during 
the 1-month period, with the most conservative rate of predicted rainfall. The range of rainfall 
intensities were estimated between 7.5 to 106 mm/hour for the 39 events. This range was much 
greater than the heavy rainfall categorization at 16 mm/hour in previous studies (13). Periods of 
potential congestion are highlighted in orange. Congestion was flagged for each event if, for the 
same time of day and day of week one week prior, a similar reduction in speed was found at that 
location without precipitation. Notably, congestion events tended to have lower relative peak delta 
speeds when compared to the rest of the data set in Table 2. Table 3 shows two crashes that were 
flagged as relating to wet conditions from the Indiana crash report database for June 2018. Even 
though no reported crash events were connected to any of the detected speed drops, this shows that 
there are potentially many more hazardous wet-weather events that create near-miss situations that 
may go unreported. Conversely, there are also scenarios where the rainfall and speeds may not 
meet detection thresholds, but where crashes occur due to other factors.  

Figure 9 shows the relationship between maximum rainfall intensity and calculated delta 
speeds for the incidents detected using the bilinear method in Table 2. Events potentially related 
to congestion are highlighted in yellow. In general, there was no strong correlation between the 
rainfall intensities and delta speeds. The highest delta speeds experienced above 40 mph tended 
occur at rainfall intensities of 30 mm/hour or greater, bounded by dashed lines. Also, there does 
not appear to be a strong influence of the width of the roadway with the speed drops. The majority 
of the speed drops were in the range of 10 to 35 mph. Four cases called out in the figure will be 
discussed in the next section. 

Table 3. Crashes during June along I-65 between mile markers 122 and 171 
 

 

Date and Time Route Direction
Mile 

Marker
Vehicles 
Involved

Trailers 
Involved

TYPE OF 
CRASH

Visibility 
related?

Loss of 
control? Comments

6/10/18 11:10 I65 S 121.2 1 0 PDO NO YES HYDROPLANING
6/21/18 14:51 I65 N 133.6 2 0 PDO NO YES HYDROPLANING
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5. RESULTS AND DISCUSSION 
The data from the study suggests that on an uncongested four to six-lane interstate with 12′ wide 
shoulders, during daylight hours, there was no linear correlation between rainfall intensity and 
drops in speed. Due to the continuous nature of weather, bicubic interpolation allows data points 
far from the point of interest to influence the value at that location, resulting in a slightly negative 
correlation. 
 The nearest neighbor and bilinear interpolation methods warrant further investigation. 
Factors affecting speeds during rainfall events can be investigated and compared to see why some 
types of events saw large drops in speed and other events less so. Figure 10 details a few cases in 
which it suggests rainfall intensity alone impacted traffic speeds. These are the corresponding 
events called out with a through d in Figure 9. The bilinear interpolation method was used in these 
examples. Three callouts (A, B, C) at times before, during and after the storm impact are noted on 
each time-series graph, with the corresponding radar and traffic map shown. Figure 10a, event 
#31, exhibits the lowest rainfall intensity, peaking at 20 mm/hour but resulting in a 23 mph drop 
in speed. As is indicated by the radar callouts at A, B, and C, the storm moves across the segment 
rapidly. Wind gusts could partially explain such a significant drop in speed. Figure 10b, event #39, 
exhibits a rainfall intensity up to 73 mm/hour resulting in a substantial drop in speeds of 46 mph. 
Given the high rates of precipitation and the storm’s fast moving nature, the corresponding drop 
in speed seems to make sense. It is likely that visibility was greatly impaired over the ten minutes 

 
Figure 9. Rainfall rate versus peak delta speed using bilinear interpolation. 
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that the rain remained very close to its maximum intensity. The prolonged intensity of the rain also 
may have contributed to the longer recovery time shown in the graph, such as lane being partially 
inundated with water. Figure 10c, event #32, exhibits a case in which there was relatively steady 
rainfall over the period of the window with peaks of up to 35 mm/hour resulting with a 27 mph 
drop in speeds. The major drop in speed seems to correspond with the spike in rainfall and may be 
related to visibility. Finally, Figure 10d, event #35, exhibits a case in which the speed did not drop 
very much at 19 mph, but the rain intensity was detected to be over 106 mm/hour. This may be the 
case that at these high reflectivity conditions, the values can be affected by blockage, biological 
debris, hail, and other factors could have led to errors in the rainfall estimate.   
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(a) Event 31 

 
 

 
 

(b) Event 39 
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(c) Event 32 

 
 

 
 

(d) Event 35 

Figure 10. Four rain storm use cases overlaying traffic and weather data. 
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6. CONCLUSIONS 
This study investigated the use of high fidelity Doppler data at 1 km spatial and 2-minute temporal 
resolution in combination with commercial probe speed data on freeways to assess drops in speeds 
during rainfall events. One-month of weather data of about 3.3M records on a section of four to 
six-lane interstate was analyzed. The speed records used were segment-based and reflected the 
space-mean-speed on the roadways. Previous studies on weather impacts have used point sensors 
or probe data in urban environments and have mostly used rain data over relatively coarse spatial 
and temporal fidelities.  

Three interpolation methods for estimating rainfall rates were tested and seven metrics were 
developed for the analysis. Events were generated by triggers from both data sets where 
uncongested traffic dropped below 50 mph and a corresponding rainfall value was greater than 5.5 
mm/hour. Much more intense localized rainfall amounts than used in previous studies were 
estimated using the high fidelity data, from 7.6 mm/hour up to 106 mm/hour. The bilinear 
interpolation method for Doppler data was recommended because it detected the greatest number 
of events and lowest estimated maximum rainfall out of three methods tested, suggesting the 
method balanced awareness of the weather conditions around the roadway with isolated, localized 
rain intensities. The nearest neighbor method favored localized, intense storms with higher rainfall 
estimates, while the bicubic method biased storms that covered a wider area and produced 
estimates that were less intense. 

The key findings were the following: 
1. Sharp drops in speed more than 40 mph occurred at rainfall rates of 30 mm/hour or greater. 
2. Beyond estimated rainfall rates over 30 mm/hour, there were no obvious correlation 

between rate of rainfall and drops in speed. 
3. The average time of first detected rainfall to impacting speeds was 17 minutes. 
4. The bilinear method detected the greatest number of events during the 1-month period, 

with the most conservative rate of predicted rainfall. The range of rainfall intensities were 
estimated between 7.5 to 106 mm/hour for the 39 events. This range was much greater than 
the heavy rainfall categorization at 16 mm/hour in previous studies reported in the 
literature.  

There are opportunities to expand this research beyond the investigated roadway segments, 
capacity and periods analyzed. The methods presented provide a scalable technique to estimate 
and detect speed impact using estimated high-fidelity rainfall data over a large area without human 
intervention. The difference in reporting time of the weather and speed data will require 
reconciliation due to driver response, and latency of both systems. In addition, traffic density in 
the uncongested conditions, percent heavy vehicles, visibility, wind gusts, and standing water in 
lanes may play a role in speed impact as well. Future studies could aim to isolate these factors 
further to establish a more precise relationship between rainfall intensity and traffic speed.  
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