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The Role of Dynamic Wetting Behavior during Bubble Growth and 

Departure from a Solid Surface1 

Taylor P. Allred2, Justin A. Weibel3, Suresh V. Garimella4 

School of Mechanical Engineering and Birck Nanotechnology  

Purdue University, West Lafayette, IN 47907 

 

ABSTRACT  

Surface wettability is known to have a major influence on the ebullition characteristics of a 

bubble growing from a solid surface. Yet, simplistic static characterization of the wetting 

behavior is still relied upon to indicate performance characteristics during boiling. In this study, a 

theoretical framework is developed for the wetting and dewetting processes occurring during 

bubble growth based upon the dynamic contact angles. This framework is incorporated into 

adiabatic volume-of-fluid simulations to capture the influence of the surface wettability on 

contact line and contact angle dynamics during bubble growth and departure. The simulations 

span a large range of dynamic wetting behaviors and fluid properties. The receding contact angle 

is shown to govern the early stages of bubble growth as the contact line recedes outward from 

the bubble center and is the dominant wetting characteristic that determines the maximum 

contact diameter and departure size. The advancing contact angle dictates the departure 

morphology as the contact line retracts inward and has a secondary role in determining the 
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departure size. Following, improved reduced-order models are developed that establish fluid-

property-independent correlations for the maximum contact diameter and departure diameter as a 

function of the dynamic contact angles. The results call for the need to redefine wettability 

classifications based on dynamic contact angles rather than static contact angle in the context of 

boiling.  Hygrophilicity and hygrophobicity are redefined in this context, and an additional 

classification, ambiphilicity, is introduced for boiling surfaces exhibiting low receding contact 

angles and high advancing contact angles.  

 
Keywords: bubble growth, bubble departure, contact lines, multiphase flow, phase change, 
boiling, dynamic wetting 
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1. INTRODUCTION 

Proper understanding of the bubble dynamics during boiling is critical to achieving effective 

and predictable heat transfer in applications such as refrigeration, distillation, and high-density 

cooling of nuclear reactors and power electronics. Changes in the bubble morphology and 

contact line dynamics are known to have a substantial impact on transport during boiling 

processes. Ebullition characteristics such as the bubble departure diameter, departure frequency, 

and growth rate are widely studied1,2 due to their governing role in heat transfer and 

hydrodynamics. For the vast majority of applications featuring heterogeneous bubble nucleation 

that occurs at a solid surface, the wettability of the surface is known to dictate bubble 

morphology throughout the ebullition cycle3–8.  

Surface wettability is commonly characterized by the contact angle9 measured from the solid-

liquid interface to the liquid-water interface at the three-phase contact line of a droplet viewed 

from the side. On an ideal, smooth surface, the contact angle is defined as the equilibrium 

contact angle given by Young’s equation10, coslv E sv slγ θ γ γ= − , where γlv is the liquid-vapor 

interfacial tension, γsv the solid-vapor interfacial tension, γsl the solid-liquid interfacial tension, 

and θE the equilibrium contact angle. For real surfaces, there are three contact angles that are 

considered: static, advancing, and receding. The static contact angle, θstatic, measured for a sessile 

droplet resting on a horizontal surface as shown in figure 1(a), is the most commonly reported 

wettability metric in studies on boiling. The static contact angle is often erroneously considered 

as a proxy for the equilibrium contact angle, but this is only an appropriate assumption in cases 

where the contact angle hysteresis (difference between the advancing and receding contact 

angles) is very low9. The static contact angle can manifest as any angle between the advancing 

and receding contact angle, depending on the droplet history (e.g., deposition method, 
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evaporation, etc.), and it is therefore an inexact measure for the majority of real surfaces which 

have appreciable contact angle hysteresis11. The advancing (θadv) and receding (θrec) contact 

angles are measured during motion of the three-phase contact line. For example, for a droplet 

sliding on a tilted surface, as illustrated in figure 1(b), the advancing contact angle can be 

measured at the leading edge of the droplet and the receding contact angle at the trailing edge. 

Dynamic contact angles can alternatively be measured by inserting a small needle into the 

droplet and adding or removing liquid until the contact line begins to move. These dynamic 

contact angles are indicative of the unique contact line behavior on a surface and are not 

dependent on droplet history, permitting consistent measurement regardless of the contact angle 

hysteresis.  

 

Figure 1. Schematic illustrations of (a) the static contact angle measured for a sessile droplet on 

a surface and (b) the dynamic advancing and receding contact angles measured for a sliding 

droplet. 

In the context of bubble dynamics during departure from a solid surface, studies that 

incorporate the effect of surface wettability are often limited to static contact angle 

characterizations. The seminal Fritz correlation12 for bubble departure diameter, given as 

0.0208 2 / ( )d static l vD gθ σ ρ ρ= − , predicts that the departure diameter increases linearly with 
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static contact angle. Most extant studies regarding the effect of surface wettability on boiling 

behavior only characterize the static contact angle and correlate changes in the boiling behavior 

with differences in the static contact angle4,6,13–17. Notionally hydrophilic surfaces characterized 

by static contact angles with water of less than 90 deg are observed to have relatively small, 

rapidly departing bubbles. Notionally hydrophobic surfaces characterized by static contact angles 

with water greater than 90 deg are observed to have large bubbles that tend to spread over the 

surface and remain attached for extended periods of time. This simplistic approach of describing 

wetting behavior during boiling with static characterizations offers an adequate, yet imprecise, 

understanding of the role of wettability, but only for surfaces having relatively low contact angle 

hysteresis. However, this approach severely misrepresents the role of surface wettability on 

boiling for surfaces with high contact angle hysteresis. For example, recent reports of bubble 

dynamics on certain textured hydrophobic surfaces do not follow the expected trends based on 

static contact angle8,18,19.  

Superhydrophobic surfaces are commonly known for having high static contact angles and 

low contact angle hysteresis. This behavior is exhibited when the liquid rests on top of a surface 

texture in the Cassie-Baxter wetting state, minimizing liquid-solid contact20. However, the 

Cassie-Baxter state is typically metastable, and if disturbed, the liquid can transition into the 

Wenzel wetting state by penetrating into the surface texture21. In contrast to the Cassie-Baxter 

state, very high contact angle hysteresis is observed in the Wenzel state22. The authors have 

recently demonstrated that superhydrophobic surfaces display contrasting bubble dynamics 

depending on whether the surface is initially primed to have liquid in the Cassie-Baxter wetting 

state or the Wenzel wetting state19. Large bubbles spread over large portions of the surface when 

the liquid is in the Cassie-Baxter state, as expected based on the trends established using static 
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characterizations. However, very small bubbles with pinned contact diameters grow from the 

surface when the liquid is in the Wenzel state despite the surface possessing a high static contact 

angle. Additionally, the authors have shown that parahydrophobic surfaces, which exhibit very 

high contact angle hysteresis, generate small vapor bubbles during boiling despite having high 

static contact angles8. These findings contradict the current understanding of the effect of surface 

wettability on bubble dynamics during boiling that has been established based on flawed static 

contact angle characterizations. The dynamic wetting behavior, which has been show to play an 

important role in other phase change processes such as condensation23–27 and droplet 

evaporation28–32, must be taken into account to correlate boiling characteristics to surface 

wettability due to their role in contact line dynamics.  

While several studies have observed the dynamic contact angle evolution during bubble 

growth8,33–35, the effect of these dynamic contact angles has not been adequately incorporated 

into models for bubble ebullition. Some bubble departure models have been developed that 

solely include either the advancing36 or receding contact angle8, but not both. Mukherjee and 

Kandlikar37 performed single bubble growth simulations that incorporated dynamic contact 

angles, but only considered hydrophilic surfaces having a small range of dynamic contact angles. 

Chen et al.38 performed simulations of single bubble growth from an orifice plate and considered 

a wide range of dynamic contact angles, but the conclusions drawn regarding the effects of 

advancing and receding contact angles on bubble morphology are not directly applicable to 

bubble growth during boiling due to the orifice dictating the contact diameter during portions of 

the ebullition cycle. 

The current study seeks to develop a comprehensive understanding of the roles of both the 

advancing and receding contact angles during bubble growth from a solid surface. This 



7 

 

understanding is incorporated into readily usable models that accurately predict ebullition 

characteristics. First, a basic theoretical framework for bubble growth is proposed based upon 

fundamental wetting and dewetting processes that occur on a solid surface. This dynamic wetting 

framework is incorporated into numerical simulations that examine the effect of differing 

receding and advancing contact angles on bubble growth and departure morphologies. The 

numerical results are compared against experiments, and fluid-property-independent correlations 

are extracted for the maximum contact diameter and bubble departure diameter.  

2. METHODS 

2.1 Theoretical Framework for Dynamic Wetting during Bubble Growth and Departure 

We propose an intuitive framework for the contact angle and contact line dynamics during 

bubble growth that is based on well-established fundamental wetting dynamics9. The key 

assertion is that contact line motion (or lack thereof) is governed by the dynamic contact angles. 

If the liquid is at the receding contact angle, the contact line can recede (dewetting) if the forces 

acting so dictate, but it cannot advance. Similarly, the contact line can only advance (wetting) 

when the liquid is at the advancing contact angle. At any contact angle between the advancing 

and receding contact angles, the contact line will be pinned in place; instead of inducing contact 

line motion, any forces acting in this state will alter the contact angle and bubble morphology.  

When discussing the proposed framework for bubble growth and departure, the contact 

angles referenced are always with respect to the liquid. The dominant forces considered during 

quasi-steady growth are the buoyant force ( ( )b l vF Vgρ ρ= − , where ρl is the liquid density, ρv 

the vapor density, V the bubble volume, and g the gravitational acceleration), and the vertical 

component of the surface tension force ( sins cF Dσπ θ= , where σ is the surface tension, Dc the 
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contact diameter, and θ the instantaneous contact angle). During the initial stage of bubble 

growth, the receding stage, the contact line expands from the nucleation site as the bubble grows 

(i.e., the liquid recedes from the nucleation site), as shown in figure 2(a). During this dewetting 

process, the liquid is at the receding contact angle. Eventually, a critical force balance is reached 

where the surface tension forces can no longer compensate for the increasing buoyant forces at 

the receding contact angle. Because the bubble is still at the receding contact angle at this instant, 

the contact line will not yet advance to depart, as it can only advance at the advancing contact 

angle. Instead, during the pinning stage, the contact line will remain pinned in place, as shown in 

figure 2(b), while the contact angle will begin to increase to accommodate the increasing 

buoyant force acting on the growing bubble. Once the bubble has grown such that the advancing 

contact angle is reached, the advancing stage begins and the liquid can rewet the surfaces as the 

contact line advances at the advancing contact angle, as shown in figure 2(c). To summarize, the 

bubble initially grows in a constant contact angle mode at the receding contact angle during the 

receding stage, followed by a constant contact radius mode as the contact angle increases over 

the span of contact angle hysteresis in the pinning stage, and finally a constant contact angle 

mode at the advancing contact angle in the advancing stage. Kim et al.35 reported a similar three-

stage process based on experimental measurements and attributed the transitions between stages 

to differences in free energy rather than the dynamic contact angles. The resulting dynamics are 

analogous to those commonly reported for droplet evaporation featuring constant contact radius 

and constant contact angle modes28. 
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Figure 2. Illustration of the wetting dynamics during bubble growth: (a) the receding stage 

during which the contact line dewets the surface at the receding contact angle; (b) the pinning 

stage during which the contact angle increases while there is no contact line motion; and (c) the 

advancing stage during which the contact line rewets the surface at the advancing contact angle. 

Following this framework, the bubble morphology during growth and departure is governed 

by the dynamic contact angles; the static contact angle need not be considered as it has no role in 

contact line or contact angle dynamics. The bubble morphology during the early stages of growth 

is governed by the receding contact angle, and the departure morphology is governed by the 

advancing contact angle. For this analysis, the growth is assumed to be quasi-steady and 

dominated by surface tension and buoyancy effects. Accordingly, the effect of contact line 

velocity on the dynamic contact angles is neglected, though it may have an influence during 

rapid bubble growth11,39.  

2.2 Numerical Simulation of Bubble Growth and Departure with Dynamic Wetting Effects 

The framework for the contact line and contact angle dynamics during bubble growth and 

departure is implemented within a transient, two-phase, continuum surface force volume-of-fluid 

(CSF-VOF) simulation (ANSYS Fluent40) to determine the roles of the advancing and receding 

contact angles on the bubble morphology, departure diameter, and maximum contact diameter. 

For a discussion regarding the impact of the assumptions used in developing these simulations 
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and their applicability to boiling situations, please refer to Section 3.5. The simulations are 

performed using a rectangular, 2D axisymmetric domain as shown in figure 3. A uniform square 

mesh with cell widths of 0.01 mm is applied throughout the domain. This mesh size provides a 

minimum of 30 cells across the radius of curvature of any bubble in the study and is expected to 

provide sufficient mesh size independence. The domain size is adjusted for each case based on 

the bubble size to minimize computational time while avoiding interactions with the side walls. 

Because of the quasisteady nature of the simulations, the velocities in the liquid are low and no 

impactful interactions between the bubble and the side wall were observed. The top boundary 

acts as an outlet at a constant pressure of 1 atm. The outer radial boundary is a no-slip wall. A 

user-defined boundary condition for the contact angle and contact line of the bubble is applied to 

the bottom boundary based on the proposed dynamic wetting framework. The simulation is 

adiabatic and bubble growth occurs through addition of mass to the vapor region; no heat 

transfer or phase change is considered.   
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Figure 3. The rectangular, axisymmetric numerical simulation domain. The zoomed view shows 

the mesh geometry. 

In the VOF simulations, the phases are tracked based on the volume fraction, φ, within each 

individual cell. In this work, the phases are defined based upon the vapor volume fraction. As 

labeled in figure 3, liquid is present where φ = 0 (shown in blue) and vapor is present where φ = 

1 (shown in red). The interface is found anywhere 0 < φ < 1. In the VOF solver, a single set of 

the Navier-Stokes equations incorporating the volume fraction is solved to determine the flow 

field. The interface is tracked using a geometric reconstruction interpolation scheme (Geo-

Reconstruct). The volume fraction is used to determine the location of the contact line and the 

value of the contact angle for the duration of the simulation. The contact line is considered to be 

located at the cell adjacent to the bottom boundary with volume fraction closest to 0.5. The 

contact angle can be calculated based on the gradient of the volume fraction at the contact line as 

( )1cos ( ) / | |zθ φ φ−= ∇ ∇ .. Both the contact line location and the contact angle are tracked 

throughout the simulation. A variable time step is implemented to ensure that the maximum 

Courant number remains less than 0.25, with a maximum time step of 1×10-6 s to mitigate the 

development of spurious currents.  

The domain is initialized to be entirely liquid, except for an initial bubble. For each case, the 

bubble is initialized as a spherical cap at the receding contact angle where the radius of curvature 

is 0.3 mm. This provides a stable bubble with a sufficiently small contact radius to ensure that the 

maximum bubble radius and departure size are not influenced by the initial condition while 

remaining adequately resolved by the mesh. The bubble grows as a result of a user-defined mass 

source that is evenly distributed (volumetrically) across all vapor cells where φ = 1. It is well 

known that inertia can play a dominant role in the bubble growth and departure process at high 
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growth rates. In this study, the goal is to characterize quasi-steady bubble growth independent of 

inertial effects. Oguz and Prosperetti42 defined a critical volumetric growth rate for bubbles 

growing adiabatically from a needle, below which the departure size is independent of growth rate. 

It is adapted here based on the contact diameter rather than the needle diameter and is given as  
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The growth rate for the simulations is conservatively set to be 10% of the critical growth rate 

given by equation 1 in all cases, except those with both water as the working fluid and a 30 deg 

receding contact angle. In these cases, a constant growth rate of 50 mm3/s was used for 

numerical stability, which represents 8-12% of the critical growth rate. 

The contact angle boundary condition and the contact line motion at the bottom boundary are 

controlled using a user-defined function (UDF). This UDF consists of two key components: a 

variable contact angle boundary condition and a contact line pinning mechanism. The contact 

angle boundary condition is native to ANSYS Fluent and sets the volume fraction gradient at the 

cell adjacent to the wall accordingly. To pin the contact line, a momentum source is applied at 

the contact line, similar to the approach used in the study of droplet impingement by Malgarinos 

et al.43 The momentum source is analogous to a proportional-derivative controller and takes the 

form ( )2

1 2m CL pin CL CLS k r r k rρ= ± − −  , where k1 and k2 are proportionality constants, rCL is the 

radial position of the contact line, rpin the location where the contact line should be pinned, ρCL 

the density of the cell that contains the contact line, and CLr the radial velocity of the contact line. 

The first term of the momentum source acts to push the contact line toward the pinned location 

based on the current distance between the contact line and the pinned location, with the sign set 

accordingly. The second term counteracts the current contact line velocity to minimize contact 
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line motion. To minimize instabilities, the momentum source is distributed throughout a total of 

six cells (the cells at and adjacent to the radial location of the contact line, within the two mesh 

rows closest to the surface). The constants k1 and k2 are tuned such that the contact line generally 

remains within one cell from the target pinning location during the simulations.  

Implementation of the UDF simply ensures that the contact line is only able to recede if it is 

at the receding contact angle and advance at the advancing contact angle. In this way, the wetting 

dynamics are consistent with theory, but the proposed framework for bubble growth is not 

artificially forced. If the contact angle is less than or equal to the receding contact angle and the 

contact line is moving outward (dewetting), the contact angle boundary condition is set to the 

receding contact angle and no momentum source is applied. If the measured contact angle is 

greater than or equal to the advancing contact angle and the contact line is moving inward 

(wetting), the contact angle boundary condition is set to the advancing contact angle and no 

momentum source is applied. If either the contact angle or contact line motion does not satisfy 

these criteria, the contact line is pinned by applying the momentum source and the contact angle 

boundary condition is set to the measured contact angle at the end of each time step. For 

instance, if the contact angle is less than the receding contact angle but the contact line is moving 

toward the vapor, or the contact angle is between the advancing and receding contact angles, 

pinning is applied. The combination of the momentum source and reassigning of the contact 

angle boundary condition keeps the contact line pinned in place but allows the contact angle to 

change with each time step. For cases with no contact angle hysteresis, adv recθ θ= , no pinning 

condition is applied, and the contact angle boundary condition remains constant throughout the 

simulation. This is the inherent assumption of using a single, static contact angle to describe 

contact line dynamics during boiling.   
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A wide range of dynamic contact angles (each inputs to the simulations) are evaluated for 

three different fluids, as summarized in table 1. Water, propane, and HFE-7100 were chosen due 

to their differences in capillary length ( /c gλ σ ρ= ∆ ), which span a range typical of most 

fluids that would be considered for use in two-phase systems. The properties of each fluid used 

in the simulations are provided in table 2. The saturated fluid properties at a pressure of 1 atm 

were used for all fluids, with the exception of the viscosity. The viscosity generally does not play 

an important role in quasi-steady bubble dynamics2, but a low viscosity increases the 

susceptibility to spurious currents during numerical simulations44,45. For this reason, a fixed 

liquid viscosity value of 32.79 10lµ −= ×  N/m was used for all fluids, which is an order of 

magnitude larger than the saturation viscosity of water.  

 

Table 1. Matrix of simulations performed where “W” indicates a simulation using water (

2.5mmcλ = ), “P” propane ( 1.7 mmcλ = ), and “H” HFE-7100 ( 0.9mmcλ = ). 

 Advancing Contact Angle (deg) 

R
ec

ed
in

g 
C
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ta

ct
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ng
le

 (d
eg

)  30 60 90 120 150 

30 W,P W,P W,P W,P W,P 

60 - W,P,H W,P,H W,P,H W,P,H 

90 - - W,P,H W,P,H W,P,H 

120 - - - W,P,H W 

140 - - - - W,P,H 
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Table 2. Fluid properties used during the simulations for each of the three fluids saturated at a 

pressure of 1 atm. 

Fluid Liquid 
Density  

(ρl, kg/m3) 

Vapor 
Density  

(ρv, kg/m3) 

Surface 
Tension  
(σ, N/m) 

Capillary 
Length  

(λc, mm) 
Water 957.9 0.6 0.0589 2.5 

Propane 580.9 2.4 0.0158 0.9 

HFE-7100 1370.2 9.9 0.0106 1.7 

 

3. RESULTS AND DISCUSSION 

A representative progression of the typical bubble growth as simulated with contact angle 

hysteresis is shown in figure 4 (water with θrec = 30 deg and θadv = 120 deg). Figure 4(a-b) show 

the temporal evolution of the contact radius and contact angle, respectively, during bubble 

growth with vertical lines dividing the stages of growth. Figure 4 (c-e) show the progression of 

bubble morphology within each of the growth stages. In the first stage of growth (receding, 

figure 4(c)), the bubble grows at the receding contact angle. The contact radius increases during 

this stage (figure 4(a)) as the surface dewets while the contact angle remains nearly constant 

(figure 4(b)). A maximum contact radius is reached at the start of the second stage of bubble 

growth (pinning, shown in figure 4(d)). The contact radius then remains constant as the contact 

line is pinned in place and the contact angle increases as the bubble grows. Eventually, the third 

stage (advancing, shown in figure 4(e)) commences once the contact angle reaches the advancing 

contact angle. The contact radius decreases rapidly as the surface rewets and the bubble quickly 

departs from the surface. There is not a pronounced constant contact angle mode during the 

advancing stage for this case because the stage lasts for such a short duration. The specific nature 
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of each of these stages varies depending on the dynamic contact angles and fluid properties, but 

the general behavior remains the same. In cases with no contact angle hysteresis, the pinning 

stage does not occur, and the contact angle is constant throughout the growth and departure 

process. For reference, the animations for all of the simulations using water are presented in 

movie S1. 

 

Figure 4. Simulated bubble growth and departure characteristics for water with θrec = 30 deg and 

θadv = 120 deg. Temporal evolution of (a) contact radius and (b) contact angle with vertical 

dashed lines dividing the annotated stages of growth. Phase contours showing the bubble 

morphologies during progression through the (c) receding, (d) pinning, and (e) advancing stages 

of growth.  
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3.1 The Role of Receding Contact Angle during Bubble Growth 

According to the proposed framework, we theorize that the receding contact angle dictates 

the morphology of the bubble during the early stage of bubble growth because the contact line is 

receding as liquid dewets the surface. Therefore, the receding contact angle is expected to govern 

the maximum contact diameter, which occurs as the bubble transitions from the receding stage to 

the pinning mode. Figure5 (a-c) shows the phase contours for bubbles as the maximum contact 

diameter is reached (i.e., the transition between the receding and pinning stages) for receding 

contact angles of 30, 90, and 140 deg. Animations of all of the simulated cases with a 30 deg 

receding contact angle with water as the working fluid are presented in movie S2. For low 

receding contact angles, the contact diameter remains small as the bubble grows, as shown for 

θrec = 30 deg in figure 5(a). Thus, the surface tension forces act over a relatively short contact 

line length and the critical force balance (at which the contact angle must begin to increase to 

compensate for increasing buoyant forces) occurs at small bubble sizes, resulting in an early 

transition to the pinning mode and a small maximum contact diameter. As the receding contact 

angle increases, as demonstrated by the cases shown in figure 5(b,c), the bubble morphology 

changes such that the contact diameter becomes increasingly larger relative to the overall size of 

the bubble. The increased contact line length increases the overall surface tension force and 

requires a larger bubble volume to reach the critical balance between surface tension and 

buoyancy forces. As a result, the receding mode is prolonged, and the maximum contact 

diameter increases. With the dramatic increase in maximum contact diameter, the overall bubble 

volume at the point of transition to the pinning stage also increases substantially with increasing 

receding contact angle. Figure 5(d) shows the relative influence, or lack thereof, of the advancing 

and receding contact angles on the maximum contact diameter for water. The receding contact 
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angle has a dominant role; the maximum contact diameter changes by more than an order of 

magnitude when the receding contact angle is increased from 30 deg to 140 deg. The advancing 

contact angle, plotted along the abscissa, has no apparent influence on the contact diameter. For a 

given advancing contact angle, the maximum contact diameter remains constant even when the 

advancing contact angle is increased from 30 deg to 150 deg. Because the receding contact angle 

governs the bubble morphology during the initial bubble growth stage prior to pinning of the 

contact line, it is the key surface wettability metric that determines the maximum contact 

diameter of a bubble. 

 

Figure 5. Phase contours of simulated water bubbles upon reaching the maximum contact 

diameter at the transition from the receding to the pinning stage of growth: (a) θrec = 30 deg, (b) 

θrec = 90 deg, and (c) θrec = 140 deg. Note that the scale bar in (a) differs from that of (b) and (c). 

(d) Maximum contact diameter plotted versus advancing contact angle for different receding 

contact angles for simulations of water bubble growth and departure. 
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3.2 The Role of Advancing Contact Angle during Bubble Departure 

Following the proposed framework, we theorize that the advancing contact angle governs the 

bubble departure process as the liquid advances to rewet the surface. Effectively, the advancing 

contact angle acts as the threshold which dictates the end of the pinning stage at which point the 

contact line is allowed to advance. As a result, the bubble morphology during departure is 

determined by the advancing contact angle. Figure 6(a,b) show water bubble morphologies at the 

moment the contact line begins to advance for cases with the same receding contact angle (θrec = 

30 deg) and two different advancing contact angles (θadv = 30 deg, 90 deg, respectively). For θadv 

= 30 deg, there is no contact angle hysteresis. Thus, there is no pinning stage and the bubble 

morphology is identical to that at the end of the receding stage shown in figure 5(a). The contact 

line is able to advance upon reaching the maximum contact diameter and the surface rewets as 

the bubble departs. As the advancing contact angle is increased to 90 deg, the contact line stays 

pinned after the receding stage until the contact angle increases to 90 deg. This keeps the bubble 

attached to the surface for a longer duration as the bubble continues to grow, resulting in an 

increased departure size. Because the contact diameter remains constant during the pinning stage 

of growth, the bubble morphology changes significantly and the region near the base begins to 

neck. If the advancing contact angle is increased further to 150 deg, as shown in figure 6(c), the 

bubble pinches off above the surface during the pinning stage before the advancing contact angle 

is reached, leaving a residual vapor bubble behind on the surface. This pinch-off mechanism, 

with or without advancement of the contact line, was observed in all simulations with θadv > 90 

deg and has been observed in experiments on hydrophobic surfaces5,6,8. As a result of this 

phenomenon, bubbles will successively grow and depart at this same location with no waiting 
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time necessary for nucleation to occur. Side-by-side comparisons of animations of cases with 

differing advancing contact angles are presented in movie S1. 

 

Figure 6. Phase contours showing the morphology of water bubbles at the moment when the 

contact line begins to advance for two advancing contact angles of (a) 30 deg and (b) 90 deg, and 

(c) the moment when pinch-off occurs for an advancing contact angle of 150 deg. (d) Bubble 

contact radius plotted versus bubble volume for water cases with a receding contact angle of 30 

deg and a range of advancing contact angles. The black dashed line indicates the start of the 

pinning stage. For all cases shown, the receding contact angle is fixed to be 30 deg. 

To illustrate the impact of advancing contact angle on the ebullition process, figure 6(d) 

shows the bubble contact radius plotted against the bubble volume for a constant receding 

contact angle (θrec = 30 deg) and multiple advancing contact angles ranging from 30 deg to 150 

deg. For this constant receding contact angle, all five cases exhibit an identical trend of 

increasing bubble contact radius as the volume increases during the receding stage; as discussed 
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in Section 3.1, the advancing contact angle has no effect on the bubble morphology during this 

stage. After the maximum contact radius is reached, the duration of the pinning stage and the 

contact radius at which departure occurs differ between the cases. As the advancing contact 

angle increases, the duration of the pinning mode increases allowing the bubble to stay attached 

to the surface and grow larger before departure. Thus, an increased advancing contact angle leads 

to a larger departure volume. After the end of pinning, the contact radius reduces to zero during 

the advancing stage of growth for θadv = 30, 60, and 90 deg as the bubble departs from the 

surface. This indicates that the bubble completely departs from the surface (i.e., the surface fully 

rewets between departure events). For θadv = 120 deg, the contact line partially advances, but the 

bubble pinches off as the contact diameter approaches ~0.1 mm, leaving behind a residual 

bubble. As mentioned previously, for θadv = 150 deg (figure 6(c)), the contact line does not have 

the opportunity to advance and the bubble pinches off at the maximum contact radius during the 

pinning stage. The advancing contact angle thus plays two keys roles in bubble ebullition. First, 

it determines the duration that the bubble spends in the pinning stage, affecting the final 

departure volume. Second, it determines the departure morphology, namely, whether the bubble 

fully departs from the surface or pinches off, leaving behind a residual bubble. 

3.3 Redefining Wettability Regimes Based on Dynamic Contact Angle 

With this understanding of the roles of advancing and receding contact angles, three fluid-

property-independent classes of surface wettability can be defined in the context of boiling based 

upon the dynamic contact angles and the resulting qualitative bubble morphologies. For each 

classification, simulated results are compared directly against experimental observations on 

surfaces with characterized dynamic wetting behavior.  
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First, hygrophilic surfaces (where “hygro-” refers to any arbitrary liquid46) are defined as 

having both a low receding contact angle (less than 90 deg) and a low advancing contact angle 

(less than 90 deg). A bubble growth and departure simulation for a hygrophilic surface (θrec = 

30°, θadv = 30°) is shown alongside experimental bubble visualizations for a smooth aluminum 

surface in figure 7. The aluminum surface was prepared and tested in a pool boiling facility as 

described in our prior work19. The static, receding, and advancing contact angles were measured 

to be 10 deg, <5 deg, and 29 deg, respectively. The simulation accurately replicates the 

progression of the bubble morphology observed experimentally. Boiling on hygrophilic surfaces 

is characterized by bubbles having relatively small contact diameters, owing to the low receding 

contact angle, which fully depart the surface without leaving behind any residual vapor due to 

the low advancing contact angle. Thus, our redefinition of hygrophilicity relies on the key bubble 

characteristics that result from the dynamic contact angles, rather than arbitrary correlation to the 

static contact angle. In this way, the terminology accurately represents the wetting dynamics and 

resulting bubble morphologies that are important to boiling.  
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Figure 7. (a) Experimental images and (b) simulated phase contours for a progression of times, 

normalized by the departure time (t* = t/tdepart), showing the evolution of bubble morphology 

during growth and departure on a hygrophilic surface.  

Similarly, hygrophobic surfaces can be defined for boiling as those having high receding 

contact angles (greater than 90 deg) and high advancing contact angles (greater than 90 deg). A 

bubble growth and departure simulation for a hygrophobic surface (θrec = 120°, θadv = 120°) is 

shown in figure 8 alongside our prior experimental visualization for a hygrophobic smooth 

Teflon surface8. Again, the simulations accurately capture the critical features of the bubble 

morphology when compared with the experimental results. Bubbles growing on hygrophobic 

surfaces have large contact diameters due to the large receding contact angle. The large 

advancing contact angle leads to the bubbles departing by pinching off above the surface, leaving 

behind a pocket of vapor which can immediately begin to grow, with no intervening waiting 

period for nucleation. As a result of these growth characteristics, specifically during the receding 

growth stage, vapor can readily spread along the surface and coalescence events can occur with 
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neighboring bubbles. This leads to large bubbles which can quickly cover and entire surface in 

boiling applications, resulting in premature film boiling4,6,8,19.  

 

Figure 8. (a) Experimental images8 and (b) simulated phase contours for a progression of times, 

normalized by the departure time (t* = t/tdepart), showing the evolution of bubble morphology 

during growth and departure on a hygrophobic surface.  

Lastly, in the context of boiling, we define ambiphilic surfaces (“ambi-” referring to both 

liquid and vapor) as those having a low receding contact angle (less than 90 deg) but a high 

advancing contact angle (greater than 90 deg). These surfaces attract both the liquid (via low 

receding contact angle) and the vapor (via high advancing contact angle) of a given fluid. A 

bubble growth and departure simulation for an ambiphilic surface (θrec = 30°, θadv = 120°) is 

shown alongside experimental visualizations for an ambiphilic smooth PDMS surface (θrec = 10°, 

θadv = 110°)8 in figure 9. During boiling on ambiphilic surfaces, the low receding contact angle 

results in a small contact diameter as bubbles grow. The contact line then pins and the contact 

angle increases to a high advancing contact angle above 90 deg, such that the bubble necks and 
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pinches off, resulting in a residual vapor bubble left behind on the surface. As a result, 

ambiphilic surfaces exhibit favorable bubble dynamics: by minimizing vapor spreading over the 

surface similar to hygrophilic surfaces, but also eliminating the waiting time until the next 

bubble nucleates after departure similar to hygrophobic surfaces. A single static contact angle 

measurement cannot accurately portray an ambiphilic surface because the behavior results from 

contrasting receding and advancing contact angles. Animations comparing the experimentally 

observed and simulated bubble morphologies throughout the growth process on hygrophilic, 

hygrophobic, and ambiphilic surfaces are presented in movie S3. 

 

Figure 9. (a) Experimental images8 and (b) simulation phase contours for a progression of times, 

normalized by the departure time (t*=t/tdepart), showing the evolution of bubble morphology 

during growth and departure on an ambiphilic surface. Scale bars are 1 mm. 

Surfaces with extreme contact angle hysteresis, such as parahydrophobic8,47 and 

superhydrophobic surfaces with liquid in the Wenzel state19, are likely to fall under this 

ambiphilic wettability classification. These surfaces are particularly poorly represented by a 
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static contact angle characterization making it critical to consider their dynamic wetting 

behavior. Because the contact line advances onto the surface during deposition of a sessile 

droplet, the static contact angle is usually closer to the advancing contact angle. Thus, these 

surfaces would commonly be (erroneously) classified as hygrophobic based on a static contact 

angle characterization8,19.However, in comparing the bubble morphologies shown in figure 8 and 

figure 9, the simulated and observed ebullition characteristics of ambiphilic surfaces are in stark 

contrast with those of hygrophobic surfaces. Additionally, these surfaces display favorable 

nucleation characteristics8,19, making them promising candidates for enhanced boiling surfaces. 

3.4 Contact and Departure Diameter Models 

In addition to defining these qualitative wettability classifications for boiling, the simulations 

provide quantitative data regarding the dependency of both maximum contact diameter and 

departure diameter on the dynamic contact angles. In order to determine a fluid-property-

independent relationship between the dynamic contact angles and these parameters, the 

maximum contact diameter and departure diameter are nondimensionalized by dividing by the 

capillary length ( ( )/c l v gλ σ ρ ρ= − ). The bubble growth and departure processes are 

dominated by buoyant and surface tension forces. This nondimensionalization removes the 

influence of the fluid properties that affect buoyancy and surface tension, isolating the role of the 

bubble morphology, which is governed by the dynamic contact angles. 

Figure 10 shows the relationship between the maximum contact diameter and the receding 

contact angle extracted from the simulation data. As previously demonstrated in Section 3.1, the 

advancing contact angle does not play a role in determining the maximum contact diameter, and 

therefore only the dependence on the receding contact angle is considered. Figure 10(a) shows 
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dimensional results for the three different fluids (water, propane, and HFE-7100). For each fluid, 

the trend of increasing contact diameter with increasing receding contact angle is observed, 

though the magnitudes of the contact diameters differ significantly. After nondimensionalizing, 

the normalized maximum contact diameters for the three fluids collapse neatly onto a single 

master curve.  

Buoyant deformation of the bubble plays a significant role in determining the complex 

bubble shape. This makes it difficult to determine a relationship between bubble volume and 

contact diameter as the bubble grows. We are therefore precluded from making assumptions 

about the bubble geometry (e.g., it is not a spherical cap) in order to develop a reduced-order 

analytical solution for the maximum contact diameter using a force balance between surface 

tension and buoyancy. Instead, a correlation is determined by fitting the nondimensionalized 

simulation data shown in figure 10(b) 

 4 22.28 10c
rec

c

D θ
λ

−= ×  . (2) 

This equation provides a novel correlation for the maximum base diameter based on the dynamic 

wetting behavior of a surface. A prediction of the maximum contact diameter is critical in the 

understanding of the wetting and coalescence dynamics during boiling.  
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Figure 10. The maximum contact diameter, shown (a) dimensionally and (b) 

nondimensionalized by the capillary length, plotted versus receding contact angle for water, 

propane, and HFE-7100. In (b), the correlation presented in equation 2 is compared against the 

simulation results. 

A bubble departure model is developed to determine the departure diameter based on the 

dynamic contact angles. In a simplified representation, the departure diameter can be 

approximated as the equivalent diameter of the bubble at which the buoyant force ( bF Vgρ= ∆ ) 

balances the maximum vertical component of the surface tension force ( sins cF Dσπ θ= ). The 

buoyant force monotonically increases as the bubble grows. On the other hand, the surface 

tension force can increase or decrease depending on the contact diameter and contact angle. As 

the bubble grows, the contact diameter and contact angle can change to counteract the increasing 

buoyancy within the constraints imposed by the dynamic contact angles. Thus, the surface 
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tension force threshold that the buoyant force must overcome for departure is the maximum 

surface tension force possible for a given set of dynamic contact angles. As established in the 

discussions above, the receding contact angle determines the maximum contact diameter, which 

corresponds to the maximum contact line length and thereby the highest surface tension force. 

Further, the vertical component of the surface tension is maximized when the contact angle 

approaches 90 deg. Because the advancing contact angle governs when the contact line will 

advance for bubble departure, it is considered to be the critical contact angle in this situation. 

Thus, if the advancing contact angle is less than or equal to 90 deg, the maximum possible 

surface tension force occurs at the maximum contact diameter and the advancing contact angle. 

After this condition is reached, departure is unhindered because the contact line will begin to 

advance and the contact line length will decrease, further reducing the surface tension force. If 

the advancing contact angle is greater than 90 deg, the maximum surface tension force occurs 

when the contact angle is 90 deg at the maximum contact diameter. After this point, the bubble 

begins to depart, but still must undergo morphological changes for the contact line to advance. 

Incorporating the correlation from equation 2 for the maximum contact diameter, this gives a 

piecewise relation for the departure diameter of a bubble based upon only the receding contact 

angle, the advancing contact angle, and the capillary length of the fluid 

 
2/3 1/3

2/3

   if 90deg0.111 sin
   if 90deg0.111
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D θθ θ
θλ θ

<
=  >
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Figure 11 shows the simulation results (symbols) and model predictions (lines) for the 

normalized departure diameter plotted against the advancing contact angle with different colored 

series representing different receding contact angles. The different shaded regions, from lightest 

to darkest, show the hygrophilic, ambiphilic, and hygrophobic regimes. The model from equation 
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3 accurately captures two keys trends based upon the advancing and receding contact angles. First, 

at a fixed advancing contact angle, the departure diameter increases significantly with increasing 

receding contact angle. The increase in the receding contact angle leads to a larger contact diameter 

and higher surface tension force, keeping the bubble attached to the surface up to larger sizes. 

Second, for a fixed receding contact angle, there is a slight increase in the departure diameter as 

the advancing contact angle increases up to 90 deg, after which the departure diameter remains 

constant.  

From the simulations, the departure diameter is considered to be the equivalent diameter based 

on the bubble volume just after the bubble pinches off or leaves the surface. The force balance 

model, which predicts departure to occur immediately when the buoyant force balances the 

maximum surface tension force, does not account for the time it takes for the bubble to rise and 

leave the surface. For low contact angles, this time is negligible and does not notably affect the 

departure size. However, for high contact angles, the bubble can grow significantly during this 

longer-duration process. For example, for a surface with a receding contact angle of 120 deg and 

an advancing contact angle of 150 deg for water, the bubble grows an additional 7% between the 

point at which the contact line begins to advance and the bubble fully departs from the surface. 

This is the reason that the force balance model underpredicts the departure diameter for 

hygrophobic surfaces with high advancing contact angles. 
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Figure 11. Simulation results and model predictions for the departure diameter, 

nondimensionalized by the capillary length, for water, propane, and HFE-7100 for a range of 

advancing and receding contact angles.  

The predicted maximum contact diameter (equation 2) and departure diameter (equation 3) 

are compared with experiments5,7,8,48 using water for a wide range of dynamic contact angles in 

figure 12. Each case in this bar chart is denoted by the receding (R##) and advancing (A##) 

contact angles at the bottom of the chart. The cases are organized as hygrophilic, ambiphilic, or 

hygrophobic, as indicated by the background shading matching that of figure 11. The wetting 

characteristics of each of the experimental surfaces are provided in table 3. From figure 12(a), it 

is observed that equation 2 accurately captures the experimental trends in maximum contact 

diameter with changes in the dynamic contact angle. However, the absolute contact diameter for 

cases with very low receding contact angle (~10 deg or less) are notably underpredicted. This is 

likely due to the quasi-steady nature of the simulations which ignores the inertia-controlled 

growth period commonly observed in the early stages of bubble growth49. It is speculated that the 

contact line expands to a larger diameter than the very small maximum contact diameter 

predicting using the quasi-steady assumption during this inertia-controlled stage of growth.  
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Figure 12(b) shows a comparison between the newly developed bubble departure diameter 

model (equation 3) and experimental measurements alongside the Fritz correlation12. The new 

model reduces the mean absolute error (MAE) in predicting the experimental departure diameter 

for these cases from 73% when computed using the Fritz correlation to 29% with equation 3. The 

greatest improvement is obtained for the ambiphilic surface with its substantial contact angle 

hysteresis. On this flat PDMS surface8 (R10A110), the experimental departure diameter is 

reported as 2.3 mm. The Fritz correlation severely overpredicts a departure diameter of 7.8 mm 

(239% error) due to use of the static contact angle of 106 deg. Accounting for both the advancing 

and receding contact angles, the present model predicts a bubble departure diameter of 1.3 mm 

(43% error). Due to the aforementioned underprediction in the contact diameter for cases with 

very low receding contact angles, the experimental departure diameter is also underpredicted. 

Overall, the model developed here improves upon the existing standard for predicting departure 

diameter and accurately captures the relationship between surface wettability and bubble size. 
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Figure 12. Comparisons between experimental results5,7,8,48 and model predictions of the (a) 

maximum contact diameter and (b) departure diameter for bubble growth and departure during 

boiling. (*The case “R39A53” is at reduced gravity, ' 0.04g g= ).  

Table 3. Measured contact angle values for the surfaces5,7,8,48 compared in figure 12. 

Label θrec 
(deg) 

θadv 
(deg) 

θstatic 
(deg) 

Reference 

R6A8 6 8 8 Nam et al.7 
R10A66 10 66 52 Allred et al.8 
R38A43 38 43 44 Nam et al.5 
R39A53 
(g’=0.04g) 

39 53 55 Qui et al.48 

R48A58 48 58 55 Qui et al.48 
R10A110 10 110 106 Allred et al.8 
R111A129 111 129 123 Allred et al.8 
R122A130 122 130 120 Nam et al.5 
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3.5 Implications and Limitations of the Study 

The new understanding of the role of surface wettability during bubble growth and departure 

developed in this work suggests altering the design goals for surfaces in boiling applications. First, 

it is clear that the static contact angle is not an adequate predictor of the bubble dynamics during 

boiling. While it may provide a reasonable estimate for surfaces with very low contact angle 

hysteresis, static contact angle characterization risks dramatic overprediction of the departure size 

for surfaces with moderate-to-high contact angle hysteresis. Instead, the dynamic contact angles 

should be characterized for all boiling surfaces, as indicators of the bubble morphology and 

departure size, due to their role in the dewetting and rewetting processes throughout the ebullition 

cycle. 

The wettability regimes of hygrophilic, hygrophobic, and ambiphilic, redefined based on the 

dynamic wetting behavior of the surface, provide a more complete understanding of how surfaces 

will behave in boiling applications. Hygrophilic surfaces minimize dewetting during bubble 

growth and readily rewet upon bubble departure. This results in small, rapidly departing bubbles 

and complete rewetting upon bubble departure. Hygrophobic surfaces both maximize dewetting 

during bubble growth and mitigate rewetting upon bubble departure. While they have exhibited 

potential advantages by offering high nucleation site densities and low boiling incipience 

temperatures, their dynamic wetting behavior leads to premature insulating vapor film coverage 

over the surface and precludes their use in most boiling applications4–6,8,15. The unique bubble 

dynamics of ambiphilic surfaces are clearly revealed in this study. Ambiphilic surfaces produce 

small bubbles that pinch off above the surface upon departure. The majority of the surface remains 

wetted, explaining the observed critical heat flux values on par with those of hygrophilic 

surfaces8,19. However, ambiphilic surfaces are also reported to exhibit higher heat transfer 
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coefficients than hygrophilic surfaces8,19. Based on the minimal rewetting on these surfaces owing 

to the high advancing contact angles, it is expected that they trap vapor within cavities on the 

surface very easily, replicating the favorable nucleation characteristics of hygrophobic surfaces. 

Additionally, the pinch-off departure mechanism completely eliminates the waiting time between 

the growth of successive bubbles and may result in more efficient heat transfer. These findings 

call for development of ambiphilic surfaces for boiling applications for a variety of fluids. 

While the model proposed herein captures the contact line and contact angle dynamics across 

a wide range of dynamic wetting behaviors, it does have limitations based on the model 

assumptions. First, as discussed in the sections above, the quasi-steady assumption may not be 

valid for all situations during boiling, particularly for low receding contact angles. The growth rate 

of a bubble is highly dependent on the surface superheat during boiling49 and can be influenced by 

the presence of a microlayer. Based on the analysis by Oguz and Prosperetti42, the growth rate 

threshold under which the quasi-steady assumption is valid is expected to scale with the contact 

diameter. Thus, surfaces with low receding contact angles are more prone to inertia-dominated 

growth and the effect will increase with higher surface superheats. Additional studies on the 

contact line and contact angle dynamics during inertia-controlled growth would provide a pathway 

for improved accuracy at low receding contact angles.  Second, this model considers an adiabatic 

analysis based purely on wetting dynamics. Thus, contact line evaporation, which may have an 

influence on the maximum contact diameter over time, is ignored. Convective currents which may 

influence the force balance acting on the bubble are also neglected. Despite these simplifications, 

the newly developed models for the maximum contact diameter and departure diameter provide 

more accurate estimates of these parameters for most surfaces due to their consideration of the full 

spectrum of dynamic wetting behavior.  
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4. CONCLUSIONS 

This study introduces a theoretical framework for the contact line and contact angle evolution 

during bubble growth that is based on wetting dynamics. The bubble growth process is divided 

into three stages: receding, pinning, and advancing. The bubble initially grows as the liquid 

dewets the surface at the receding contact angle, followed by contact line pinning as the contact 

angle increases from the receding contact angle to the advancing contact angle; finally, the liquid 

rewets the surface at the advancing contact angle as the bubble departs. Numerical simulations of 

bubble growth and departure are performed based on this framework to investigate the effect of 

varying dynamic surface wettability on the ebullition characteristics. The receding contact angle 

solely determines the maximum contact diameter during bubble growth. The receding contact 

angle is also the dominant wetting characteristic that dictates the departure diameter, but the 

advancing contact angle also plays a lesser role. In general, lower dynamic contact angles result 

in smaller contact diameters and departure diameters. These findings reinforce the assertion that 

dynamic contact angles, rather than the static contact angle, should be considered when 

characterizing boiling surfaces. For boiling applications, the hygrophilic and hygrophobic 

wetting regimes are redefined based on the dynamic contact angles rather than a single static 

contact angle. Additionally, a new class of ambiphilic boiling surfaces is defined as having 

receding contact angles less than 90 deg and advancing contact angles greater than 90 deg. These 

surfaces display unique bubble dynamics that combine salutary elements from hygrophilic and 

hygrophobic surfaces and warrant further investigation. Models for the maximum base diameter 

and departure diameter of a bubble are developed requiring inputs of only the dynamic contact 

angles and the fluid properties. By accounting for the dynamic contact angles, the predictive 
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accuracy for departure diameter is significantly improved compared with the widely used Fritz 

correlation. 
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