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Abstract

Reducing energy consumption and emissions from freight transport plays an important

role in climate change mitigation. However, there remains a need for enhanced policy

making and research to explore a low carbon future of freight transport. This research

establishes a freight transport model to simulate transport demand (tonne− kilometre),

energy consumption and emissions. The model incorporates macroeconomic factors, pol-

icy indicators, technological characteristics, detailed pro�les of the vehicle stock and travel

distances, and behavioural parameters with discrete based choices. This model is applied

to the freight transport sector in Ireland with scenarios running out to 2050. The results

show that overall freight transport demand increases substantially from 2015 to 2050.

Economy-wide climate policies (i.e. carbon tax) and high fuel prices result in modest

reductions in energy consumption and CO2 emissions in freight transport, compared to

a baseline. Sectoral measures, such as European CO2 emission performance standards,

that aim to improve new vehicle fuel e�ciency/emission rates can potentially lead to sig-

ni�cant reductions, but such measures face a lag in greening the goods vehicle stock in

the short/mid term, and uncertainties in policy compliance and technical barriers in the

long run. Notably, in spite of few commercially mature vehicle technologies, adoption

of biofuel and alternative freight vehicles are expected to bring additional reductions in

future energy consumption and emissions. In all, for a transition to a low carbon future

for freight transport, a comprehensive and dynamic policy agenda should be developed

to promote low or zero emission vehicles, especially for heavy goods vehicles.

Keywords: Freight transport, CO2 emission, Energy consumption, Carbon tax, CO2
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1 Introduction

Globally, the transport sector accounts for more than 50% of total oil consumption (IEA,

2016). Road freight transport1 has the second-largest share at 18% of oil consumption

after road passenger transport (IEA, 2017). From 2010 to 2015, oil consumption of road

freight transport almost tripled, accounting for more than 35% of the net total oil con-

sumption increase (IEA, 2017). Furthermore, road freight transport (light good vehicles

(LGVs) and heavy good vehicles (HGVs)), primarily uses carbon-intensive oil products

- diesel and petrol, which represents a challenge for decarbonization. Approximately,

one-third of transport-related CO2 emissions come from fuel combustion in road freight

transport (Muncrief and Sharpe, 2015). Thus, curtailing emissions from road freight

transport plays an crucial role in climate change mitigation.

Economy-wide policies, such as carbon taxes, fuel taxes and biofuel blending mandates

have been implemented in the transport sector to incentivize broad carbon emission re-

ductions. While sectoral policies such as CO2-based vehicle taxes, and fuel economy/CO2

emission performance standards have been applied to private passenger cars to reduce

energy consumption and emissions, much less attention has been paid to freight trans-

port policies. Without strong policies to support adoption of fuel saving technologies,

HGVs' fuel e�ciency has almost stagnating over the past 15 years (EC, 2016). The EU

�rst introduced a CO2 emission performance standard on new heavy-duty vehicles only

1The sectors are road passenger, road freight, aviation, maritime, other transport, steam and process
heat, petrochemical feedstocks, buildings, power generation and others. Road freight transport consists
of light goods vehicles (unladen weight less than 2 tonnes or gross weight less than 3.5 tonnes in the
EU term) and heavy goods vehicles (unladen weight more than 2 tonnes or gross weight more than 3.5
tonnes)
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in 2019(EC, 2019a). Furthermore, some countries (e.g. Ireland) subsidize fossil fuel use

for freight transport to compensate negative impacts of climate policies on the competi-

tiveness of local industries. There is a need to explore pathways to achieve low emission

freight transport and to inform future policy development.

To explore future pathways for climate policies in the freight transport sector, this paper

deploys a freight transport model to project future freight transport activities (tonne −

kilometre, tkm), energy consumption and emissions given economic, technological and

policy factors. To reach this objective a model combining economic, environment and

energy is needed (Schäfer, 2012; Venturini et al., 2019).

Further research is needed to (i) improve transport modelling, especially for freight trans-

port, with details of vehicle technologies at a national level where transport policies are

generally implemented, (ii) incorporate responses of transport demand to market and cost

changes, and (iii) integrate behavioural realism in transport (energy) models to strengthen

the representation of competition between transport modes and vehicle technologies. To

make contributions to existing transport modelling research, this paper aims to address

these issues. Speci�cally, the paper simulates freight transport activities using a detailed

pro�le of vehicle stock, annual distance travelled, and energy consumption. Historical

vehicle data are disaggregated by fuel type, unladen weight band and year of registration.

Car age (year of registration) is an important dimension, as it is associated with transport-

related behaviours in terms of vehicle scrappage, travelling distance decay, engine dete-

rioration, and fuel economy improvements of new vehicles. Several studies focused on

behavioural aspects using multinomial logit (MNL)-type equations in their models to

simulate choices (Kyle and Kim, 2011; Girod et al., 2013). The model in this paper uses
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the MNL-type equations to model the demand competitions between transport modes

and vehicle technologies in the freight transport model. This transport freight model

contributes to an empirical estimation of parameters in the MNL-type equations based

on a historical vehicle demand pro�le, but also an integration of a detailed vehicle stock

model in the transport demand modelling. The model allows demand shifts between

transport modes and vehicle technologies in response to changes of vehicle costs. This is

a novel contribution to the literature where other national transport energy models do

not consider this (e.g., Brand et al. (2012); Daly and Gallachóir (2011)).

This paper demonstrates a long-term view of the decarbonization of freight transport

through simulating freight transport activities in Ireland, though the modelling framework

can be applied to other countries too. Scenarios for Irish freight transport are constructed

to compare the e�ectiveness of policies on freight transport and explore possible options

with limited resources in the face of future uncertainties, rather than providing precise and

comprehensive projections of future outcomes. Ireland stands as an interesting case as it

is among the EU countries with the highest transport emissions per capita2. Dispersed

spatial development and a priority on infrastructural investment in roads (DCCAE, 2017)

has led to high reliance on road transport for freight in Ireland. The rail freight sector

carries less than 1% of total freight movement, while the contributions of domestic aviation

and shipping to total freight transport demand are negligible (DTTAS, 2018). Meanwhile,

few policies have focused on energy consumption and emissions reduction in the freight

transport sector, especially for HGVs.

The modelling results show that with continuous growth in economic activity, overall

2Eurostat data: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_ac_ainah_r2&lang=en

6



freight transport demand will substantially increase from 2015 to 2050. Economy-wide

climate policies (e.g., an carbon tax up to e80 per tonne) and high fuel prices result in

modest reductions in energy consumption and CO2 emissions in the freight transport;

a 3%-5% reduction for the carbon tax scenario and a 4%-8% reduction for energy price

scenario compared to a baseline in the long run. Sectoral measures, such as European

CO2 emission performance standard, that aim to improve vehicle fuel e�ciency/emission

rates could potentially lead to signi�cant reductions, but such measures face uncertainties

in policy compliance and technical barriers, such as uncertain return on investments in

new technologies. This study also �nds that fuel e�ciency improvements of new vehicles

have dominant direct e�ects on energy consumption reduction, compared to the rebound

e�ects of energy consumption that are induced by corresponding decreased transport

prices (e/tkm).

However, comparing scenarios, the improvements of new vehicle fuel e�ciency do not lead

to lower transport energy consumption than increases in carbon taxes/fuel prices in the

short/mid term due to a lag of updating vehicle stock with new technologies. Since the

Paris Agreement urges a greenhouse gas (GHG) emissions peak as soon as possible, mul-

tiple policy instruments (mandated standards and pricing tools) should be considered in

a dynamic way. Notably, in spite of few commercially mature vehicle technologies, adop-

tion of biofuel and alternative freight vehicles are expected to bring additional reductions

in future energy consumption and emissions. In all, for a low carbon future for freight

transport, integrated e�orts are needed to develop a comprehensive policy agenda and

promote low or zero emission vehicle technologies, especially for HGVs.

This paper is laid out as follows. Section 2 reviews existing literature. Section 3 illustrates
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the methods. Section 4 presents the data and model calibration. Section 5 presents and

discusses simulation results, which is followed with conclusions in Section 6.

2 Literature review

In this section existing modelling research on the representation of the transport sector

in models that combine energy, environment and economy, and also transport-focused

models are reviewed.

Global Change Assessment Model (GCAM) is a multi-region dynamic-recursive partial

equilibrium model with a technology-rich representation of di�erent sectors, including

freight and passenger transport(Kyle and Kim, 2011). The passenger transport model

in GCAM is further expanded by Zhang et al. (2018) and Mishra et al. (2013). In their

transport models, total transport service demand is driven by GDP, an index price for

transportation, and population. The competition between transport modes and vehicle

technologies is based on a nested-logit function where the shares of mode/vehicle demand

are determined by levelized transport costs. Other multi-sector models, such as MES-

SAGE (McCollum et al., 2017), WITCH (Carrara and Longden, 2017), and REMIND

(Luderer et al., 2015), di�er in the way they represent the transport sector. For example,

the total transport demand in the REMIND transport model is endogenously calculated

through a nested CES (constant elasticity of substitution) function, while total transport

demand in the WITCH transport model is exogenously projected based on GDP and car

ownership. In these three models, the competition between transport mode and vehicle

technologies are determined through a least-cost approach.
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Di�erent from the multi-sector models, a global transport-focused model, Mobility Model

(MoMo) relies on expert judgement and detailed country-speci�c transport pro�les of ve-

hicle characteristics, sectoral policies, energy consumption and emissions in the passenger

and freight transport sectors(Fulton et al., 2009). However, it is not possible for MoMo

to endogenously simulate changes in travel demand and shifts between transport modes

and technologies in response to market and cost changes.

To evaluate impacts of climate and transport policies on the transport sector, national

transport energy models have been established with considerable technological details

of transport systems, but most models focus on modelling passenger transport and lack

responses to market and cost changes for the choices between transport modes and tech-

nologies (Brand et al., 2012; Kloess and Müller, 2011; Merven et al., 2012; Mulholland

et al., 2016; Daly and Gallachóir, 2011; Whyte et al., 2013).

Currently in Ireland practitioners rely on running separate models with di�erent modelling

frameworks, such as private car model (Daly and Gallachóir, 2011; Alam et al., 2017),

LGVs model (Mulholland et al., 2016), and HGVs model (Whyte et al., 2013). Daly

and Gallachóir (2011) developed a private passenger car �eet model with car pro�les

by fuel type, engine size and age. Projected overall transport demand is disaggregated

by �xed weight factors that are estimated proportionally based on historical data and

do not respond to cost changes directly. Another Irish passenger car model by Alam

et al. (2017) calculates Tank-to-Wheel (T2W) and Well-to-Wheel (W2W) CO2 emissions.

Mulholland et al. (2016) apply a similar modelling framework as Daly and Gallachóir

(2011) to simulate the Irish LGV �eet. Instead of relying on exogenous variables (income

and its elasticities), Mulholland et al. (2016) project vehicle sales based on the level
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of stock required to satisfy total transport activities. For HGVs Whyte et al. (2013)

model transport demand (tonne − kilometres) and energy consumption (MJ/tonne −

kilometre) using an commodity-based approach without detailed technological pro�les

of HGVs (e.g., vehicle stock and activities). Lastly, apart from these Irish transport

simulation models which describe transport systems based on its logical representation

and historical data-driven assumptions, the Irish TIMES energy system model (Gallachóir

et al., 2012) determines optimal con�gurations for the Irish energy and transport system.

In all, most existing transport models focus on private passenger cars. There is a similar

policy need to model and analyse freight transport in a comprehensive way. Di�erent

from passenger transport modelling, freight transport modelling is subject to more het-

erogeneities among decision makers (e.g. suppliers, shippers, wholesalers, retailers and

consumers), vehicle types, and cargo units. Further research on modelling transport is

needed to i)improve transport modelling, especially for freight transport, with technolog-

ical details at national level where speci�c transport-related policies are usually imple-

mented, ii) incorporate responses of transport demand to market and cost changes, iii)

integrate behavioural realism in the transport (energy) model to strengthen the repre-

sentation of competition between transport modes and vehicle technologies. The present

study establishes a transport model that includes these three aspects to explore future

paths of energy consumption and emissions for freight transport.
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3 Methodology

3.1 Model overview

In this paper, a national freight transport model is developed to analyse the freight trans-

port sector and its emissions by incorporating transport modes and vehicle technological

details by fuel type, unladen weight and year of registration (age). As shown in Figure

1, the model consists of four modules: vehicle stock module, transport demand module,

fuel consumption module and emission module. The model calculates and projects freight

transport activities (kilometre (km) or tonne− kilometre (tkm)), and estimates the as-

sociated energy consumption (litre (l) or megajoule (MJ)), CO2 emissions (tonne) and

air pollutants (tonne). The freight transport model is calibrated based on historical data.

Figure 1: The modelling framework.

Figure 2 displays the nested structure of the freight transport model, which re�ects the

competition between transport modes and between vehicle technologies. Vehicles are
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disaggregated into groups on each level. The model includes all freight transport modes;

road, rail, aviation and shipping. For road freight transport, transport demand and

goods vehicle stock are disaggregated by vehicle fuel types, unladen weight and year of

registration. In this multi-level structure, transport demand is projected with a top-down

approach from total sectoral freight transport demand to demand by vehicles types. The

demand disaggregation is based on the costs of transport modes/vehicles types, including

vehicle prices, taxes and fuel costs. The costs are calculated as weighted averages with a

bottom-up approach from speci�c goods vehicles types, to transport modes, and to the

whole sector of freight transport.

Figure 2: The nested structure of transport demand by mode and vehicle technology.

3.2 Freight transport model

The equations in the following subsections are used to calibrate the freight transport

model. The full list of variables and parameters and their descriptions are given in Table

4 in the Appendix.
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3.2.1 Transport demand module

Overall freight transport

Conventionally, the growth of overall freight transport demand (tkm) is determined by

changes in economic activities (e.g., GDP) and fuel prices (Brand et al., 2012; Mishra

et al., 2013; IEA, 2017). In Equation 1, overall freight transport demand, TDt is de-

rived as an econometric equation of exogenous variables (GDP and fuel price) and their

respective elasticities of demand. Where, t represents the year, ∆GDP is the year-on-

year percentage change in GDP and ∆FC is the year-on-year percentage change in fuel

price. The elasticities, ϕGDP and ϕFP , represent percentage changes in transport demand

corresponding to a change of 1% in GDP and fuel prices, respectively.

TDt = TDt−1 × (1 + ∆GDP × ϕGDP )× (1 + ∆FP × ϕFP ) (1)

Freight transport by transport mode

Overall sectoral freight transport demand consists of demand by modes � rail, road (LGVs

& HGVs), shipping and aviation. The demand breakdown by modes is calculated by

applying demand shares of transport modes in the overall transport demand in Equation

2. TDtm is transport demand by mode, and SDtm is the demand share by mode with m

representing transport modes.

The determination of demand shares by mode depends on indices of transport prices

by modes (e/tkm) which embraces costs related to vehicle purchase and use and by

intangible factors, such as availability of infrastructures, location and time of delivery. The
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calculation of demand shares is shown in Equation 3. SDtm is determined by price index

- generalized price by mode, GPtm (e/tkm). GPtm can be obtained either by dividing

the total revenue of a transport mode (e.g., rail transport) by the total demand, or by

aggregating prices of vehicles (e.g., road transport) by fuel type, unladen weight band and

year of registration. In Equation 3, the representation of competition between transport

modes uses a modi�ed logit equation, following similar applications of this equation by

Mittal et al. (2017) and Zhang et al. (2018) in their global passenger models3. Later,

the revised logit equation is also applied in Equation 6 and Equation 9 to represent the

competition between vehicle technologies.

In Equation 3, αm is a set of alternative-speci�c coe�cients that are calibrated to the base

year. Each alternative-speci�c coe�cient captures speci�c preferences for a particular

choice alternative (a transport mode or a vehicle technology) (Mishra et al., 2013). The

preference may be caused by existing infrastructure, industrial preference, social and

technological barriers to the market. βmode is a price coe�cient for all modes. The price

coe�cient determines the scales of di�erences in demand shares by modes caused by the

price di�erences (Mishra et al., 2013). Di�erent from Mishra et al. (2013), the price

coe�cient in this research is estimated empirically by OLS regression with historical data

based on Equation 34.

Generalized prices are de�ned as weighted average prices based on generalized prices of

the elements in the level below in the nested structure (Figure 2). In Equation 4, the

3The original logit (choice) equation is formulated as s = αi×exp(β×pi)/
∑
i∈I αi×exp(β×pi) (Mishra

et al., 2013). i represents one of the alternatives and I is a set of alternatives. Compared to the original
form, the revised logit equation (Equation 3) is much less sensitive to incremental di�erences in the choice
indicator. For instance, with this revised equation, it takes more time to eliminate uncompetitive old
technologies and adopt new technologies, such as electric vehicles.

4The revised logit equation SD = (αi×GP βi )/
∑
i∈I(αi×GP

β
i ) can be transformed to ln(SDi/SDj) =

β × ln(GPi/GPj) + ln(αi/αj) to estimate β. j ∈ J , but i 6= j.
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generalized prices of road freight by mode are calculated by summing the products of the

generalized prices by mode and fuel type, GPtmf and transport demand share by mode

and fuel type, SDtmf . F is a set of vehicle fuel types within each mode.

TDtm = TDt × SDtm (2)

SDtm =
αtm ×GP βmode

tm∑
m∈M(αtm ×GP βmode

tm )
(3)

GPtm =
∑
f∈F

(SDtmf ×GPtmf ) (4)

Road freight transport by vehicle fuel type

Road freight transport modes are speci�ed with their �eets in this model. The transport

demand of road freight (LGVs & HGVs) by mode can be further divided into demand

by mode and fuel type, TDtmf , in Equation 5. In Equation 6, the shares of transport

demand by transport mode and fuel types, SDtmf are determined by generalized prices

by mode and fuel type (GPtmf ), a price coe�cient (βfuel) and a set of alternative-speci�c

coe�cients (αmf ) for all vehicles by mode and fuel types. GPtmf is calculated as the sum

product of generalized prices by mode, fuel and unladen weight, GPtmfw, and demand

shares by mode, fuel type and unladen weight, SDtmfw in Equation 7. W is a set of

vehicle unladen weight bands within each fuel type.
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TDtmf = TDtm × SDtmf (5)

SDtmf =
αmf ×GP βfuel

tmf∑
f∈F (αmf ×GP βfuel

tmf )
(6)

GPtmf =
∑
w∈W

(SDtmfw ×GPtmfw) (7)

Road freight transport by vehicle fuel type and unladen weight band

The road freight transport demand by mode and fuel types is further broken down into

demand by mode, fuel type and unladen weight, TDtmfw in Equation 8. In Equation 9,

the calibration of SDtmfw depends on GPtmfw. βweight is a price coe�cient by transport

mode, fuel type and weight band. αmfw are alternative-speci�c coe�cients by mode, fuel

type and weight band. In Equation 10, GPtmfw is calculated. GPtmfw is the generalized

price by mode, fuel type, weight band and year of registration. SDtmfwv is the share of

transport demand by mode, fuel type, weight band and year of registration. V is a set of

years for each weight band of vehicles.

TDtmfw = TDtmf × SDtmfw (8)

SDtmfw =
αmfw ×GP βweight

tmfw∑
w∈W (αmfw ×GP βweight

tmfw )
(9)
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GPtmfw =
∑
v∈V

(SDtmfwv ×GPtmfwv) (10)

Road freight transport by vehicle fuel type, unladen weight band and year of registration

The disaggregation by fuel, weight and year of registration is on the bottom level of the

nested structure (Figure 2). The demand shares and generalized prices by fuel, weight

and year of registration, SDtmfwv and GPtmfwv, are calculated in Equations 11 - 13.

SDtmfwv =
TD_OLDtmwfv∑
v∈V TD_OLDtmwfv

(11)

TD_OLDtmwfv = OldV ehicletmfwv × V D_OLDtmfwv × LFtmfw (12)

In Equation 11, the demand share by fuel, weight and year of registration is calculated

intuitively as a portion of the overall demand. TD_OLDtmfwv is the total freight trans-

port demand by transport mode, fuel, weight and year of registration for existing vehicles

survived from the previous year. The total freight transport demand (tkm) is de�ned as

the product of the number of vehicles, annual kilometre travelled per vehicle (km) and

average load factor (tonnes carried per vehicle) in Equation 12. TD_OLDtmfwv is annual

vehicle distance travelled per vehicle for existing vehicles. OldV ehicletmfwv is the number

of existing vehicles survived from the previous year. LFtmfw is average load factor for

good vehicles by fuel type and weight band.

When calculating GPtmfw and SDtmfwv, only existing vehicles are included. It is assumed
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that new vehicles purchased in the current year do not a�ect current GPtmfw since new

vehicles comprise a relatively small share of the total freight vehicle stock. Another reason

is that the numbers of new vehicle sales in the current year are unknown. The new vehicle

sales are projected endogenously with the transport demand in the transport model.

In Equation 13, GPtmfwv is calculated as the sum of di�erent cost components - vehicle

prices (Carpricetmfwv), purchase taxes (PurchaseTaxtmfwv), fuel cost (FuelCosttmfwv),

and annual ownership taxes (OwnershipTaxtmfwv)5. The fuel cost is calculated as the

product of vehicle distance (km), fuel e�ciency (l/km) and fuel price (e/l). Vehicle

prices and purchase taxes are one-o� payments. They are annualized with assumptions

on vehicle life time and discounting rate.

GPtmfwv = Carpricetmfwv + PurchaseTaxtmfwv +OwnershipTaxtmfwv+

FuelCosttmfwv

(13)

In the transport demand module, the referred vehicle distance and car number in Equation

12 and Equation 13 are obtained from the vehicle stock module of the freight transport

model in Section 3.2.2

3.2.2 Vehicle stock module

The vehicle stock module models vehicle stock by fuel type, weight band and year of

registration. The module provides the number of freight vehicles (LGVs and HGVs) and

5Fuel cost represents the main di�erences in operational costs between vehicle technologies (Sharpe,
2017).
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annual vehicle distance travelled. This module enables evaluations of economic, technical

and policy e�ects on the ownership and use of di�erent vehicle types.

The population of freight vehicles changes every year due to the scrappage of existing

vehicles and purchases of new vehicles. In Equation 14, the total number of vehicles by fuel

and weight, TotalV ehiclestmfw, in the current year is equal to the sum of existing vehicles,

OldV ehiclestmfw, survived from the previous year and new vehicles, NewV ehiclestmfw,

purchased in the current year.

The number of existing vehicles in the current year is calculated by subtracting the number

of vehicles scrapped from the number of all vehicles in the previous year. To calculate the

existing vehicle stock, OldV ehiclestmfw, Equation 15 is applied to each vehicle technology

by fuel, weight and year of registration across age groups, a. Age is de�ned as the

di�erence between year of registration, v, and year of calculation, t. The scrappage rate,

ScapRatea,mfw is calculated as an average scrappage rate by fuel, weight, and age based on

historical vehicle registration pro�les (Daly and Gallachóir, 2011), as shown in Equation

16.

TotalV ehiclestmfw = OldV ehiclestmfw +NewV ehiclestmfw (14)

OldV ehiclestmfw =
∑
v∈V

TotalV ehiclest−1,mfwv × ScapRatea,mfw (15)
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ScapRatea,mfw = Averagea,mfw(
TotalV ehicletmfwv − TotalV ehiclet−1,mfwv

TotalV ehiclet−1,mfwv
) (16)

This freight transport model determines the number of new vehicles, NewV ehicletmfw,

endogenously, instead of relying on exogenous variables, such as income, fuel price and

population in many other transport models. The number of new vehicles is calculated as

the number of vehicles that are needed to ful�l the part of transport demand that the

existing vehicles cannot provide. The calculation of new vehicle sales is in Equation 17.

V D_NEWtmfw is the annual vehicle distance travelled per vehicle for new vehicles by fuel

and weight. V D_NEWtmfw is unchanged over time, while annual distance travelled by

existing cars, V D_OLDtmfwv (in Equation 12), declines with increasing age of vehicles.

NewV ehicletmfw =
TDtmfw − TD_OLDtmfw

V D_NEWtmfw × LFtmfw
(17)

3.2.3 Energy and emission modules

Overall energy consumption, TFt, and emissions, TEt, from freight transport are calcu-

lated for all modes. Non-road freight transport modes are not speci�ed with their �eets in

this model. Average energy e�ciency (l/tkm) and emission rates (g/tkm) are applied di-

rectly to calculate their energy consumption and emissions. As for road freight transport

mode, vehicle speci�c fuel e�ciency (MJ/km) and emission rates (g/km) are used.

Overall energy consumption and emissions are calculated as the sum of total energy
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consumption and emissions by vehicle fuel type, weight band and year of registration for

both existing vehicles and new vehicles. Total energy consumption (or emissions) is the

product of the number of vehicles, annual distance travelled and fuel e�ciency (or emission

rates) in Equation 18 and 19. FE_OLDtmfwv and ER_OLDtmfwv are fuel e�ciency

and emission rates for existing vehicles. FE_NEWtmfwv and ER_NEWtmfwv are fuel

e�ciency and emission rates for new vehicles. V D_OLDtmfwv and V D_NEWtmfwv are

annual distance travelled per vehicle for existing and new vehicles.

Fuel e�ciency (emission rates) of existing vehicles increases as vehicles get older due to

engine deterioration, while those of new vehicles have been reduced with technological

progress and technical regulations. The variables for fuel e�ciency and emission rates

for new and existing vehicles vary by year. Therefore, the variables are labelled with a

subscript, t.

TFt =
∑
v∈V

(OldV ehiclestmfwv × V D_OLDtmfwv × FE_OLDtmfwv)+

∑
v∈V

(NewV ehiclestmfwv × V D_NEWtmfwv × FE_NEWtmfwv)

(18)

TEt =
∑
v∈V

(OldV ehiclestmfwv × V D_OLDtmfwv × ER_OLDtmfwv)+

∑
v∈V

(NewV ehiclestmfwv × V D_NEWtmfwv × ER_NEWtmfwv)

(19)
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4 Data and model calibration

The freight transport model is applied to land (rail and road) freight transport sector in

Ireland. The demand of domestic aviation and shipping are negligible in Ireland. In the

model, road freight transport is speci�ed with its vehicle �eet, including two fuel types6,

ten weight bands7 and vehicle year of registration from 1999.

4.1 Transport demand

The yearly data (from 2008 to 2017) of freight transport demand are used to calibrate

this model. Rail freight transport demand data are obtained directly from the Central

Statistics O�ce (CSO)8 Ireland. Road freight transport demand (tkm) is calculated with

annual vehicle distance travelled (km per vehicle), average load factors (tonnes carried

per vehicle) (Table 5 of Appendix), and the numbers of vehicles which is explained later in

Section 4.2. The data of annual vehicle distance travelled by vehicle fuel type, weight band

and year of registration are obtained from the Sustainable Energy Authority of Ireland

(SEAI)9 and the CSO. Further data descriptions are given in Table 8 of Appendix. For

LGVs, average load factors follow the assumptions in the UK transport carbon model

(UKTCM) (Brand et al., 2012). For HGVs, average load factors by weight band are

estimated from the CSO Road Freight Transport Survey dataset, which has a valid sample

6Goods vehicles stock and new sales are dominated by diesel powered vehicles which historically
accounts for more than 99% of the total numbers.

7Goods vehicles are divided into �ve light goods vehicles, LGVs, (<1017 kg, 1017-1270 kg, 1271-1524
kg, 1525-1778 kg, and 1779-2032 kg) and �ve heavy goods vehicles, HGVs, (2033-5080 kg, 5081-7112 kg,
7113-10160 kg, 10161-12192 kg and >12193 kg).

8https://www.cso.ie/en/index.html
9https://www.seai.ie/. Data are originally from Department of Transport, Tourism and Sport in

Ireland and Commercial Vehicle Roadworthiness Test (CVRT)
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size of around 10,000 HGVs.

Overall freight transport demand is projected with future changes in GDP and fuel prices

aare estimated by an Irish computable general equilibrium (CGE) model (named I3E)

(De Bruin, 2019). The long-run GDP and fuel price elasticities of demand (tonne −

kilometre) are assumed to be 0.66 and -0.18 based on a review of tra�c-related elasticities

research (de Jong et al., 2010; Dunkerley et al., 2014; Dimitropoulos et al., 2018). Diesel

price is used to represent the fuel price due to the dominance of diesel-powered goods

vehicles in the Irish freight transport sector. The annual distance travelled by new vehicles

in the future is assumed to be the same as the distance data for new vehicles in the base

year. The historical average decay rates of annual distance travelled by existing vehicles

are estimated to be -2.5% for LGVs and -0.3% for HGVs.

4.2 Vehicle stock

The number of goods vehicles is disaggregated by fuel, weight and year of registration. The

vehicle registration data from 2008 to 2017 are from Department of Transport, Tourism

and Sport (DTTAS) in Ireland for both LGVs and HGVs. The scrappage rates of vehicles

by weight band and age (Appendix Figure 8) are estimated based on the historical data.

4.3 Fuel e�ciency and emissions rates

The vehicle fuel e�ciency data used in the model are by fuel type, weight band and year

of registration. The data are assembled from di�erent datasets from the SEAI and the

Environmental Protection Agency (EPA) in Ireland. The fuel e�ciency data from the
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EPA assumes an average HGV load rate of 50% . In this study, a 20% on-road factor is

considered for the manufacture-labelled vehicle fuel e�ciency. Further data descriptions

are in Table 8 in the Appendix. In addition, the annual deterioration rate of goods

vehicles' engines is assumed to be 0.3% to represent the year-on-year increase in the

fuel consumption per kilometre of used vehicles, as (Van den Brink and Van Wee, 2001)

estimate for cars. The average rate of fuel e�ciency improvement for new vehicles is

estimated to 2.0% for LGVs and 0.4% for HGVs based on historical data.

The CO2 emission rates for petrol and diesel are assumed to be 70.0 g/MJ and 73.3

g/MJ10. Weighted CO2 emission rates (g/MJ) are assumed considering 6% blending

of biofuel (biodiesel and bioethanol) in 2015 (base year for projection in the model), as

required by the Irish Biofuels Obligation Bill 2015.

4.3.1 Other variables and parameters

Vehicle prices of LGVs are collected as recommended prices from manufacturers' websites

and HGV prices follow the assumptions in the UKTCM model (Brand et al., 2012).

Vehicle tax rates and fuel prices are from the ACEA tax guide (ACEA, 2016) and the

CSO. In addition, to discount future vehicle costs, the expected vehicle lifetime is assumed

to be 15 years and the discount rate is 5%. For calculating rail generalized price, annual

freight transport revenue data are taken from the Irish Rail annual reports 11.

Apart from generalized prices, projected transport demand is disaggregated based on sev-

eral sets of alternative-speci�c coe�cients and price coe�cients from the logit-type choice

10https://www.seai.ie/data-and-insights/seai-statistics/conversion-factors/
11https://www.irishrail.ie/About-Us/Company-Information/Iarnrod-Eireann-Annual-Reports
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functions reported in Table 6 and 7 in the Appendix. The coe�cients are estimated based

on historical activity and vehicle stock data from 2008 to 2017 applying OLS regressions.

4.3.2 Policy scenarios

One baseline and four policy scenarios are considered. A description of the scenarios is

given in Table 1. The baseline assumes that policies are unchanged and historical trends

of technological improvements continue. The policy scenarios consider high energy prices,

increases in carbon taxes, the removal of the diesel rebate scheme, and improvements in

fuel e�ciency.

Energy price scenario

Increasing energy prices are assumed over the scenario duration based on projected energy

prices from De Bruin (2019), which in turn is based on the EU Reference Scenario 2016

(Capros et al., 2016). Figure 3 illustrates diesel price, which grows by 23% between 2015

and 2050.

Carbon tax scenario

In Ireland, a carbon tax of e10/tonne was introduced in 2010 and and increased to

e20/tonne in 2014. The carbon tax scenario sets an annual increase of e5 per tonne of

CO2 from 2020 (e30/tonne) to 2030 (e80/tonne)12. After 2030, the carbon tax remains

at e80/tonne.

Diesel rebate scenario

12Budget 2020 increased the level of carbon tax to e26 per tonne in Ireland. The increase applied to
auto fuels from October 2019 and to solid fuels from May 2020.
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A diesel rebate scheme came into e�ect in 2013 in Ireland. It repays some of the mineral

oil tax paid by a qualifying road transport operator (mainly for heavy duty vehicles). The

diesel rebate rates are between e0.000-0.075 per litre13. In the diesel rebate scenario, the

diesel rebate (e/litre) is removed from 2020.

Fuel e�ciency scenario

The European CO2 emission performance standard for new light commercial vehicles and

a newly-introduced standard for new heavy commercial vehicles aim to reduce �eet-wide

average emissions of new light commercial vehicles by 31% by 2030 compared to 2021,

and new heavy commercial vehicles by 30% by 2030 compared to 2005, respectively (EC,

2019b,a). This emission standard implies average annual improvement rates of 4.0% and

1.4% for new LGVs and HGVs. In the fuel e�ciency scenario, the rates are set as 3.0%

and 0.9% for new LGVs and HGVs between 2015 and 2050. These rates in the scenario are

assumed to be lower than the rates implied by the emission standard to re�ect underlying

barriers in adopting new fuel-e�cient and alternative vehicle technologies14.

These policy scenarios lead to changes of GDP and fuel prices based on CGE modelling

of markets (De Bruin, 2019). The resulting GDP and fuel prices are the inputs to the

freight transport model to capture the impacts of the macroeconomic system on transport

activities. Di�erences in projected GDP among scenarios are relatively small, but diesel

prices vary substantially across scenarios, as shown in Figure 3. Removing diesel rebate

13The diesel rebate targets goods vehicles over 7.5 tonnes unleaded weight (HGVs). There is
no repayment when diesel prices, including VAT, are at or below e1.23 per litre. The maxi-
mum amount repayable is 7.5 cent per litre when diesel prices, including VAT, are e1.54 per litre
or over. (https://www.revenue.ie/en/companies-and-charities/excise-and-licences/mineral-oil-tax/diesel-
rebate-scheme/index.aspx)

14The average annual improvement rates of fuel e�ciency for new vehicles implied by the emission
standard are used for sensitivity analysis and results discussion in Section 5.2
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for HGVs or improving new vehicle fuel e�ciency has negligible impacts on national GDP

and fuel prices.

Table 1: Scenario summary

Scenarios Policy changes Technological changes Type of change

Energy Prices Scenario
High international energy
prices for petrol and diesel - Economy-wide

Carbon Tax Scenario
Carbon tax increases to 80
euro per ton by 2030 - Economy-wide

Diesel Rebate Scenario Diesel rebate is removed from 2020 - Sector speci�c

Fuel E�ciency Scenario -

Annual improvement of
3.0% for new LGVs and
0.9% for new HGVs Sector speci�c

Figure 3: Diesel price from 2015 to 2050.

5 Results and discussion

This section presents and discusses the results of the various scenarios focussing on freight

transport demand, energy consumption and CO2 emissions in Ireland from 2015 to 2050.
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5.1 Transport service demand

In Figure 4, total transport service demand (million tkm) projected from 2015 to 2050

is presented. In all scenarios, transport demand increases by approximately 100-110%

(slightly above 2% annually), from 13,080 million tkm in 2015 to approximately 26,000-

27,500 million tkm in 2050. Economic growth over the same period approximately doubles

(210%). The removal of the diesel rebate scheme for HGVs and new vehicle fuel e�ciency

changes do not have substantial e�ects on GDP and fuel prices, and therefore, on the

total transport demand. In the scenarios with higher carbon taxes and energy prices, the

annual growth of demand is slower than that in the baseline.

Comparing transport demand in 2050 in the carbon tax and energy price scenarios to that

in the baseline, the results show that the increases in carbon tax and energy prices lead

to demand reductions of 3% and 4% respectively. A carbon tax increase and changes in

energy prices have economy-wide impacts, mainly a�ecting fuel prices without speci�cally

targeting sectoral performance in transportation. In the current model, the fuel price

elasticity of freight transport demand is -0.18. Even with a relatively high fuel price

elasticity of transport demand, such as -0.3 (de Jong et al., 2010; Dunkerley et al., 2014;

Dimitropoulos et al., 2018), associated demand reductions would be 5% and 8% in 2050.

Such fuel price related demand reductions (in the order of 3-8%) are relatively small

compared to the total growth of transport demand, which is driven mainly by GDP. Fuel

costs only account for 20-30% of operating costs for road haulage companies (Hooper and

Murray, 2018; Sharpe, 2017) and therefore, limited in�uences of fuel price related policies

on transport service price and demand are expected.
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In the carbon tax and energy price scenarios, the carbon tax rate (e/tonne) and fuel price

(e/litre) increase during the period between 2015 and 2030, and are relatively stable after

2030. These increases lead to lower annual growth rates of transport demand for 2015-

2030 compared to 2030-2050. The average annual growth rates of transport demand are

1.91% for 2015-2030 and 2.14% for 2030-2050 in the carbon tax scenario, and 1.85% for

2015-2030 and 2.11% for 2030-2050 in the energy price scenario. However, in the baseline,

such rates for both periods are around 2.10%.

Notably, overall freight transport demand is mainly associated with economic activity

(measured by GDP). Although the decoupling of transport demand and economic activity

is contentious in the empirical research, decoupling can be achieved by factors, such as

logistics optimization and improvements in supply chain management (Alises et al., 2014;

Alises and Vassallo, 2015). Therefore, overall transport demand may be overestimated if

the model is not responsive to aggressive decoupling. Transport demand projections by

other studies estimate a growth in Europe of surface or land transport demand of 86%

from 2015 to 2050 or 82% from 2010 to 2050 (ITF, 2017; Ambel et al., 2017). For the

UK, Brand et al. (2012) project an increase of domestic freight transport by 73% by 2050.

Compared to these estimates, our estimated transport demand in Ireland is somewhat

higher (approximately 100-110%).

29



Figure 4: Total transport service demand projected from 2015 to 2050.

Figure 5 presents the breakdown of total transport demand by transport mode. Among all

land freight transport modes, HGVs account for the bulk of the tonne kilometres in freight

transport (93% - 94%), followed by LGVs (5% - 6%) and rail (less than 1%). In the baseline

from 2015 to 2050, the shares of HGVs and rail in the total demand decrease by 0.5% and

0.1%, respectively, while the share of LGVs increases by 0.6%. This is because that with

higher rates of fuel e�ciency improvements, LGVs have a larger reduction in transport

prices than HGVs. In the other scenarios, changes in demand shares follow similar trends

to those in the baseline. However, the scales of changes vary across scenarios. When the

diesel rebate is removed (impacting mainly HGVs), HGVs show slightly higher reductions

in demand share from 2015 to 2050 (0.6%), compared to the baseline. Removing the diesel

rebate increases fuel costs of HGVs and therefore, discourages HGV activities. However,
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the impact of the diesel rebate on total energy consumption by HGVs and LGVs is rather

small since the rebate rates is less than 2.5% of diesel prices 15.

The reduction of HGV demand share from 2015 to 2050 is higher in the scenarios of carbon

tax and energy price than in the baseline. This is because HGVs are more sensitive to

changes in fuel prices than LGVs due to their higher fuel consumption per kilometre. As

fuel costs of HGVs are signi�cantly reduced in the fuel e�ciency scenario, where HGVs

fuel e�ciency is improved by 0.9% annually, HGVs have the lowest reduction (0.4%) in

demand share in this scenario. In addition, no speci�c policies are implemented to support

a transport freight demand shift to rail in all scenarios. The demand of rail freight, as a

lower emission transport mode, is almost constant between 2015 and 2050.

Figure 5: Transport service demand by modes.

Overall, freight transport demand shifts between the transport modes from 2015 to 2050

are relatively small. This is mainly due to following three reasons:

i) The foreseen interventions in most of the scenarios are moderate, especially for the

15In 2015, the historical average rebate rates are between 0.000 and 0.022 eper litre.
https://www.revenue.ie/en/companies-and-charities/excise-and-licences/mineral-oil-tax/diesel-rebate-
scheme/diesel-rebate-rates.aspx
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period of 2030-2050. Each policy intervention is applied alone and independent in the

scenarios to identify its own impacts on transport demand. The integrated and long-term

e�ects, such as policy-induced improvements in technologies and supply chain manage-

ment, are not included.

ii) Currently options for shifting to other freight vehicles technologies (e.g. natural gas,

electric trucks and hydrogen trucks) are limited (Sharpe, 2017; Kluschke et al., 2019)16.

Additionally, Ireland has a limited capacity and usage of rail for freight transport.

iii) Freight transport activities are less amenable to shifts to low emission modes/vehicles,

compared to passenger transport. This is because freight transport is more heterogenous

concerning modes/vehicle types (load capacity and weight), types of goods delivered by in-

dustries (for instance, courier services for LGVs and carrying fuel and minerals for HGVs),

and decision makers of transport activities (suppliers, transporters, and consumers).

5.2 Energy consumption

Figure 6 shows that total energy consumption increases between 2015 and 2050 across the

scenarios. The baseline has the highest overall growth rate of total energy consumption

(48.2%), followed by the diesel rebate scenario (48.4%), carbon tax scenario (44.0%),

energy price scenario (42.4%), and fuel e�ciency scenario (25.5%). The growth rate of

energy consumption is around half of the growth rate of transport demand, which re�ects

an improvement in average fuel e�ciency (MJ/tkm) in the freight transport. Notably,

energy consumption in the fuel e�ciency scenario may be higher, in the short or mid term,

16In Europe, �ve manufacturers account for nearly 100% of the market, where for cars the top 7 car
manufacturers capture < 50% (Ambel et al., 2017).
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than energy consumption in the carbon tax and energy price scenarios. This is due to a

lag in greening the vehicle stock by introducing new fuel-e�cient technologies gradually

in the fuel e�ciency scenarios.

In the high fuel e�ciency scenario (dash line in Figure 6), the improvements of fuel e�cien-

cies in new LGVs and HGVs are higher than those in other scenarios, which lead to a much

smaller growth of energy consumption by 4.7% from 2015 to 2050. The projections show

fuel e�ciency/CO2 improvements of new vehicles can be very e�ective towards the de-

carbonization of transport sector. Although there has been a stagnation in fuel e�ciency

since 2000 (ICCT, 2016), there is still potential to increase vehicle e�ciency with existing

fuel-saving technologies for diesel/gasoline vehicles. Three vehicle segments - panel van,

rigid box truck, and tractor-trailer, have maximum cost-e�ective technical reduction po-

tentials of 30%-40% (Norris and Escher, 2017). However, full fuel e�ciency improvements

of a whole goods vehicle �eet indicated by the new vehicle emission standards can be am-

bitious considering uncertainties in policy compliance and technical barriers, especially for

alternative vehicle technologies. Four types of barriers are identi�ed as uncertain return

on investment, high capital cost restraints, split incentives between vehicle owner and

operator, and lack of technology availability (Sharpe, 2017).

Comparing energy consumption in the scenarios in 2050 to 2015, the results show that an

increase of carbon tax, higher international energy prices and signi�cant energy e�ciency

improvements of new vehicles lead to energy consumption reductions of 3%, 4% and 10%.

As discussed in Section 5.1, with a higher elasticity of demand to fuel price, increases in

carbon tax and energy prices leads to around 5% and 8% reduction in energy consumption.

However, the removal of diesel rebate (for HGVs) leads to a slight increase of energy
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consumption of 0.2%, as transport demand slightly shifts to LGVs which have higher

energy consumption per tkm than HGVs.

Figure 6: Total energy consumption from 2015 to 2050.

The scenario comparison and growth rates of energy consumption between 2015 and 2050

by transport mode are presented in Figure 5 and Table 3. Overall, HGVs have higher

growth rates of energy consumption than LGVs. In the baseline, the energy consumption

of HGV increases by 81% from 20,791 million MJ in 2015 to 37,541 million MJ in 2050,

while that of LGVs increases by 3% from 14,836 millionMJ in 2015 to 15,241 millionMJ

in 2050. The scenarios follow similar growth trends as the baseline. Only the scenario of

higher fuel e�ciency improvement for new vehicles exhibits a di�erent trend, where the

growth of HGV energy consumption is lower at 58%, while the energy consumption of

LGVs decreases by 20%.
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In the freight transport model, fuel e�ciency improvements have two types of e�ects on

total energy consumption.

i) �direct e�ects�: fuel e�ciency improvements reduce fuel consumption per kilometre

directly, and lower total energy consumption, as shown in Equation 18.

ii) �indirect e�ects�: fuel e�ciency improvements reduce transport generalized prices in

Equation 13, and therefore, lead to higher transport demand and higher energy consump-

tion in the choice functions in Equation 3, 6 and 9. The indirect e�ects are associated

to shifts of transport demand between transport modes and technologies. This refers to

rebound e�ects caused by fuel e�ciency improvements (Khazzoom, 1980).

In the fuel e�ciency scenario, the annual improvement rates of fuel e�ciency for new

LGVs and HGVs (3% and 0.9%) are much higher than baseline (2% and 0.4%). The

results in Table 2 show that energy consumption for HGVs and LGVs in the fuel e�ciency

scenario in 2015 and two scenarios for 2050. The scenario labelled 2050 includes both

direct and indirect e�ects. The scenario labelled 2050* is assumed to have no changes in

relative transport service prices, which lead to �xed demand shares of transport modes

over years. Under the scenario, indirect e�ects are excluded17. In the absence of indirect

e�ects (demand shifts between transport modes and technologies) transport demand for

each mode has the same growth rate of 109% from 2015 to 2050* (109% is the growth

rate of overall transport demand from 2015 to 2050). Applying average energy e�ciency,

MJ/tkm, energy consumption in 2050* are obtained in Table 2.

Net e�ects (direct and indirect e�ects) of fuel e�ciency improvements on energy con-

17In the calculation, the overall freight transport demand is assumed to be a�ected by GDP and fuel
prices. Rebound e�ects of overall demand induced by improved vehicle fuel e�ciency are not considered.

35



sumption are calculated as the di�erences between energy consumption in 2015 and 2050.

Direct e�ects are calculated as the di�erences between energy consumption in 2015 and

2050*. Indirect e�ects are the di�erences between net e�ects and direct e�ects. The

indirect e�ects are smaller, compared to the direct e�ects. As LGVs become more fuel

e�cient, energy consumption decreases. However, greater fuel e�ciency improvements

of LGVs leads to a relatively larger reduction in transport service prices (e/tkm) than

HGVs, which results in demand shifts from HGVs to LGVs and increases LGVs' energy

consumption to some degree.

Table 2: Direct and indirect e�ects of fuel e�ciency improvements

Transport

demand

Energy

consumption

Average

energy e�ciency

Net e�ects on

energy consumption

Direct e�ects on

energy consumption

Inirect e�ects on

energy consumption

(Million tkm) (Million MJ) MJ/tkm (Million MJ) (Million MJ) (Million MJ)

2015 2050 2050* 2015 2050 2050* 2015 2050 2050 2050 2050

HGV 12,277 25,556 25,674 20,791 32,769 32,920 1.69 1.28 11,978 12,129 -151

LGV 707 1,635 1,478 14,836 11,938 10,793 20.99 7.30 -2,897 -4,043 1,146

Rail 96 162 202 25 42 52 0.26 0.26 17 27 10

Total 13,080 27,353 27,353 35,652 44,750 43,765

Table 3 also presents the annual growth rates of vehicle stock, transport demand and

energy consumption for HGVs and LGVs. The vehicle stock grows by around 1.9-2.3%

annually, together with annual growth of 2.0-2.5% in total transport demand, which is

stronger in LGVs than in HGVs. Compared with the growth of transport demand, energy

consumption has lower annual growth rates for HGVs and LGVs, as newer and more

e�cient vehicles enter the stock. In all, in spite of the fuel e�ciency improvements, total

energy consumption for HGVs increases with total transport demand driven by the growth

of GDP, while the total energy consumption of LGVs decreases.
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Table 3: Growth rates of energy and relevant variables from 2015 to 2050 for HGVs and
LGVs.

Energy consumption (million MJ) Overall growth rate (%) Annual growth rate (%)

Scenario Type 2015 2050 Vehicles Transport demand Energy consumption

Baseline HGV 20,791 37,541 80.56 2.00 2.11 1.70

LGV 14,836 15,241 2.73 2.26 2.45 0.08

CarbonTax HGV 20,791 36,279 74.49 1.89 2.02 1.60

LGV 14,836 15,001 1.11 2.22 2.40 0.03

DieselRebate HGV 20,791 37,564 80.67 2.00 2.11 1.70

LGV 14,836 15,289 3.05 2.27 2.46 0.09

EnergyPrice HGV 20,791 35,731 71.86 1.85 1.98 1.56

LGV 14,836 14,982 0.99 2.22 2.40 0.03

FuelE�ciency HGV 20,791 32,769 57.61 1.98 2.12 1.31

LGV 14,836 11,938 -19.53 2.24 2.43 -0.62

5.3 CO2 Emissions

Figure 7 shows that baseline CO2 emissions from freight transport increase by 48.2%

between 2015 and 2050 (from 2.5 million to 3.7 million tonnes), followed by 48.4% in

the diesel rebate scenario, 44.0% in the carbon tax scenario, 42.4% in the energy price

scenario and 25.5% in the fuel e�ciency scenario. The CO2 emissions in the fuel e�ciency

scenario is about 10% less than that in the baseline in 2050. The emission reduction could

be 20% if full potential of new vehicle fuel e�ciency improvements can be realized in the

(high) fuel e�ciency scenario, as shown by the dash line in Figure 7.

In all scenarios a �xed blending rate (6% in volume) of biofuel (biodiesel and bioethanol)

into diesel and gasoline is assumed when calculating CO2 emissions. The blending of

biofuel brings an additional reduction in CO2 emissions of 5.5% for diesel and 3.9% for

gasoline. The blending rate is expected to increase in the future, but there are tech-
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nical ceilings regarding the amount of biofuel that can be blended given current engine

technologies.

The transport sector accounted for 9% of Irish GHG emissions in 1999, while in 2015,

the share increased to 20% (DCCAE, 2017). The 2020 EU non-ETS target is a 20%

reduction, compared to 2005. This target increases to a 30% reduction by 2030 and a

80% reduction by 2050 DCCAE (2013, 2019). The EUWhite Paper on Transport also sets

a 60% reduction target of transport GHG emission in 2050 compared to 1990 (EC, 2011).

Overall emission reduction (or renewable) targets have been set for the whole transport

sector. Most political attention has been paid to passenger transport, such as private

cars. Without strong policy instruments in the freight transport sector, few technological

and commercially matured alternative vehicle technologies will be available to replace the

conventional goods vehicles, especially for HGVs (Kluschke et al., 2019). Given the strong

growth of total CO2 emissions over time in the scenarios, it will be a challenge for freight

transport to make positive contributions to the sectoral emission reductions targets.

Apart from fuel e�ciency improvements, adoption of alternative vehicles (e.g. electric

vehicle and hydrogen/fuel cell vehicles) can also contribute to freight transport decar-

bonization. The combination of using battery electric vehicle technologies, e-highways,

hydrogen or fuel cell trucks could o�er a complementary pathway to zero-emission freight

transport in 2050 (Ambel et al., 2017). DTTAS (2019) presents an indicative forecast of

alternative fuelled vehicles. In 2030 projected vehicle numbers include 23,000 electric light

duty vehicles, 5 electric heavy duty vehicles, 4,500 CNG (compressed natural gas) light

duty vehicles and 150 CNG heavy duty vehicles. A simpli�ed calculation is undertaken

here to show the potential of emission reductions from shifting to alternative vehicles
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(electric and CNG vehicles). The projected new vehicles are assumed to replace LGVs

and HGVs that operate in 2030. A uniform average annual distance travelled per vehicle,

21,519 km18, is used here, although alternative vehicles may have lower distances travelled

than conventional vehicles. If diesel trucks, electric trucks and CNG trucks are assumed

to have CO2 emission rates of 434 g/km, 0 g/km and 363 g/km19, total CO2 emissions can

be reduced by 221,954 tonnes, which is around 8% of overall freight transport emissions

in 2030 (baseline). The simpli�ed estimation with a �what-if� scenario shows an addition

reduction of 8% can be achieved by shifting to alternative vehicles up to 2030. However,

the freight transport model does not directly capture the penetration of new alternative

vehicle and fuel technologies. First, lack of historical data on new alternative vehicles

sales in Ireland is an obstacle to empirically estimate parameters in the choice functions.

Secondly, many of the alternative vehicle technologies are not commercially available in

Ireland. There are uncertainties in the future technical developments of vehicles capacity,

fuel e�ciency and costs, which makes it hard to predict transport service prices. Never-

theless, the coe�cients and parameters can be set arbitrarily based on expert opinions

and technological characteristics, which is out of the scope of this paper.

18https://statbank.cso.ie/px/pxeirestat/Statire/SelectVarVal/De�ne.asp?maintable=THA10&PLanguage=0
19https://www.gasnetworks.ie/business/natural-gas-in-transport/celtic-linen-case-

study/CNG_Case_Study.pdf
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Figure 7: Total CO2 emission projected from 2015 to 2050.

5.4 Policy implications

In this section we discuss the potential policy implications of the results presented in this

paper.

First, increases in carbon tax and international energy prices are able to reduce the total

freight transport demand (tkm) but on a modest scale. Pricing policies, such as carbon

taxes or fuel taxes, have an in�uence on fuel prices and operating costs of freight transport

activities, and therefore, a�ect transport demand. The modest impacts of pricing policies

(or modest demand elasticities to fuel prices) indicate the lack of substitutes between

transport modes and vehicle technologies in the freight transport sector. LGVs and HGVs

have great di�erences in their industrial purpose of freight activities and cannot easily
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be substituted for each other. Additionally, Ireland lacks low emission substitutes of

transport mode (e.g., rail and waterway) for freight activities.

Second, unlike economy-wide policies (e.g., carbon tax), the removal of the diesel rebate for

HGVs barely impacts economic activity, fuel prices and transport demand. The removal

of the diesel rebate increases the operating costs of diesel HGVs. Diesel goods vehicles

dominates current goods vehicle market, in particular for HGVs. The removal of the

diesel rebate is expected to shift energy consumption from diesel to non-diesel fuels and

from HGVs to other transport modes (e.g., LGVs and rail). Without more options in

alternative vehicle technologies (e.g., electric truck) and low emission modes (e.g., rail),

and supply chain optimization, freight energy consumption shifts from diesel to gasoline

and from HGVs to LGVs in our results. This shift does not signi�cantly a�ect total energy

consumption and emissions in the freight transport sector.

Third, sectoral policies to improve vehicle fuel e�ciency have the potential to signi�cantly

reduce energy consumption and emissions from freight transport in the long run to meet

climate targets. Improvements in fuel e�ciency of new vehicles directly reduce energy

consumption without putting restrictions on transport demand (or economic activities),

in spite of small rebound e�ect caused by lower transport prices (e/tkm). However, fuel

e�ciency or CO2 emission performance standards face uncertainties in policy compliances

due to potential technical barriers. Improvements due to new vehicle fuel e�ciency will

have several years to be realised due to the lag in updating the vehicle stock. Pricing

policies, such as a carbon tax have a more immediate e�ect. Given the urgency for

both early and substantial emissions reduction in the Paris Agreement20, multiple policy

20https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
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instruments should be considered.

As shown by the additional calibration and sensitivities analysis in Sections 5.1, 5.2 and

5.3, there are many other factors a�ecting freight transport demand and energy consump-

tion. These factors, such as supply chain management, renewable energy and alternative

vehicle technologies all have a role to play in reducing energy consumption and emissions

from freight transport but are not considered within this analysis. The most obvious

policy conclusion from this analysis is that policies focussed on incentivizing shifts by

increasing costs of emissions to freight transporters will only be e�ective if transporters

have alternative low carbon transport modes and/or technologies.

6 Conclusion

To achieve a low emission future for freight transport, policy instruments (e.g., fuel related

taxation and emission standards) are being discussed in the political arena as well as in

academic research for the purposes of improving energy e�ciency, shifting to low emission

modes, and managing supply chains and logistics. To provide a useful analytical tool to

investigate the implications of policies and pathways to low carbon freight transport,

this paper develops a freight transport model for projecting transport demand, energy

consumption and associated emissions. This necessarily involves policy scenarios, which

do not intend to make precise and comprehensive projections of future outcomes, but

rather are used to compare the e�ectiveness of policies on freight transport and explore

possible options with limited resources in the face of future uncertainties.

In this model, overall transport demand is driven by economic activity (GDP) and fuel
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prices (including carbon tax). Transport demand is attributed to di�erent transport

modes and vehicle technologies using discrete choice functions based on historical pro�les

of activities, vehicle characteristics (fuel types, unladen weight bands and age) and vehicle

costs. Correspondingly, energy consumption and emissions are calculated using a bottom-

up approach. Such a model contributes to the existing literature by providing advanced

technological details in freight transport modelling, responses of transport demand to

market and cost changes, and behavioural responses in the representation of competition

between transport technologies. The model provides insights to policymakers attempting

to in�uence freight transport patterns and achieve substantial emissions reductions from

the sector.

This paper presents results by applying the model to Ireland with scenarios running from

2015 to 2050. The results show a strong growth of land freight transport demand in

Ireland resulting from economic growth (GDP), despite increased carbon taxes, fuel price

�uctuations and other factors discussed in this paper. The modelling results tend to favor

policies improving new vehicle energy e�ciency. Such policies, for example, the European

CO2 emission performance standards on light and heavy-duty vehicles, have the potential

to e�ectively slow down the growth of energy consumption from 2015 to 2050, but policy

compliance and technical barriers need to be considered to fully understand the policy

implications. Additionally, the improvement of new vehicle fuel e�ciency may not lead

to lower transport energy consumption than increases in carbon taxes/fuel prices in the

short/mid term due to a lag in updating the vehicle stock with new technologies.

Given the goals of the Paris Agreement and the limited impacts of policies to decrease

emissions, as seen in this study, multiple policy instruments should be considered. Fur-
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thermore, the timing of various policies needs in depth consideration. For example, it is

observed that LGVs in the fuel e�ciency scenario are more likely to have a reduction in

energy consumption and emissions in later years. Promoting low/zero emission alternative

vehicles and renewable energy can bring substantial reductions in �nal CO2 emissions. In

all, for a low carbon future for freight transport, integrated e�orts are needed to develop

a comprehensive policy agenda (mandated standards, such as fuel e�ciency standards,

and price mechanism, such as carbon taxes) and promote low or zero emission vehicles

technologies, especially for heavy goods vehicles.

The results from the freight transport model di�er from what is usually anticipated in

passenger models which is the focus of the bulk of existing studies on decarbonisation of

transport. Freight transport demand is less elastic to policy-induced price signals, and

CO2 emissions are less likely to be reduced adequately to meet climate targets. By its

nature, freight movements are more heterogeneous with respect to industrial purposes,

decision making agents, and vehicle loads/capacities. The uniqueness of freight transport

should be considered when developing policy initiatives to facilitate a transition to a

low-carbon freight transport sector.

Apart from the full integration of alternative technologies in the modelling framework,

future research calls for applications of the freight transport model to countries with sig-

ni�cant demand share of rail freight, aviation and shipping to provide insight in freight

transport mode shifting. Moreover, further demand-related interactions between trans-

port sector in the transport model and other economic sectors in a macroeconomic model,

such as feedback from transport model to a general equilibrium model, enable an evalua-

tion of economy-wide impacts of transport policies and vehicle �eet changes.
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Appendix

Figure 8: Scrappage rates by weight band for diesel vehicles.

Note: There are a very small number of petrol LGVs and almost no petrol HGVs exist in most of the

weight bands. The scrappage rates for diesel vehicles are applied in this case.
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Table 4: Variables and parameters.

Notation Description Units

Subscripts t Year

m Transport mode (e.g. rail and road)

f Vehicle fuel type (e.g., petrol and diesel)

w Vehicle unladen weight band (e.g., H1(2033-5080 kg))

v Year of registration

a Age

M A set of transport modes. (mM).

F A set of vehicle fuel types. (fF).

W A set of vehicle unladen weight bands. (wW).

V A set of years of registration. (vV).

Variables TD Overall transport demand of freight transport sector tkm

TDOLD Total transport demand of existing goods vehicles tkm

TDNEW Total transport demand of new goods vehicles tkm

V DOLD Annual vehicle distance travelled (per vehicle) for old vehicles km

V DNEW Annual vehicle distance travelled (per vehicle) for new vehicles km

GP Generalized price e/tkm

SD Transport demand share %

TotalV ehicles The total number of all vehicles (existing and new vehicles)

OldV ehicles The total number of old vehicles

NewV ehicles The total number of new vehicles

CarPrice Car price vehicles e

PurchaseTax Purchase tax (vehicle registration tax) e

FuelCost Fuel cost e

OwnershipTax Vehicle ownership tax e

FEOLD Speci�c fuel consumption of old goods vehicles MJ/km

FENEW Speci�c fuel consumption of new goods vehicles MJ/km

EROLD Speci�c emission rate of old goods vehicles g/km

ERNEW Speci�c emission rate of new goods vehicles g/km

TF Overall fuel consumption of freight transport sector MJ

TE Overall emission of freight transport sector g

GDP Gross Domestic Product e

FP Fuel Price e

Parameters LF Average load factor per goods vehicle tonnes

ScrapRate Average scrappage rate %

ϕGDP GDP elasticity of transport demand

ϕFP Fuel price elasticity of transport demand

α A set of alternative-speci�c coe�cients by mode

β Price coe�cient by mode
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Table 5: Load factors.

Average tonnes per vehicle 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

L1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

L2 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

L3 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

L4 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Weight L5 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

bands H1 1.24 1.22 0.93 0.84 0.85 0.78 0.73 0.83 0.77 0.72

H2 3.36 2.86 2.47 2.54 2.68 2.37 2.52 2.99 3.20 3.29

H3 5.81 5.78 5.63 5.39 5.71 5.09 4.92 5.09 5.50 5.43

H4 11.40 11.59 10.45 9.99 10.31 9.95 10.05 9.70 9.61 9.54

H5 11.30 11.29 11.47 11.63 11.57 11.43 11.78 11.85 11.58 11.35

Table 6: Price coe�cients.

Price coe�cient Standard error Number of observations

βmode -1.07 0.2900 9

βfuel -5.50 0.6140 40

βweight -0.71 0.0600 1981
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Table 7: Alternative-speci�c coe�cients.

Mode Fuel type Weight band Alternative-speci�c coe�cients

αm Rail .0018

Road 1

αmf Road diesel 1

Road petrol 1.02

αmfw Road diesel H1 94.08

Road diesel H2 9.71

Road diesel H3 26.78

Road diesel H4 42.96

Road diesel H5 113.89

Road diesel L1 1

Road diesel L2 12.75

Road diesel L3 26.46

Road diesel L4 25.14

Road diesel L5 54.65

Road petrol H1 13.49

Road petrol H2 0.12

Road petrol H3 0.70

Road petrol H4 1.30

Road petrol H5 1.84

Road petrol L1 1

Road petrol L2 2.52

Road petrol L3 2.84

Road petrol L4 2.83

Road petrol L5 3.16

Note: Data source: own estimation.
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Table 8: Data processing.

Data processing

Activity data

For LGVs, the distance data by vehicle fuel and weight are based on the
national commercial vehicle road worthiness test (CVRT). The breakdown
of the distance data by year of registration is calculated by using average
historical distance decay rates. The decay rates are estimated from CSO
road tra�c volume data by year of registration for all LGVs. The road
tra�c volume dataset contains overall kilometres travelled based on
odometer data for Irish goods vehicles. For HGVs, the road tra�c volume
dataset is broken down by weight band and year of registration. The data
for HGVs is divided into vehicle fuel type pro�les by assuming that annual
distance travelled by petrol vehicles is 25% lower than that by diesel
vehicles, since there are very few petrol HGVs in the stock.

Fuel e�ciency data

For LGVs, the fuel e�ciency of new vehicles by fuel and weight from SEAI
have been recorded from 2011 to 2017. Back projection to 1999 is carried
out based on an average rate. For HGVs, the (weighted average) fuel
e�ciency data (MJ/km) by fuel, weight band and year of registration is
obtained by using vehicle stock (by year, fuel, weight band and euro
standard) and fuel e�ciency data (by fuel, weight band and euro standard)
from EMEP/EEA (2016).
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