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Abstract: Currently, online social networks are essential platforms for political organizations to
monitor public opinion, disseminate information, argue with the opposition, and even achieve spin
control. However, once such purposeful/aggressive articles flood social sites, it would be more
difficult for users to distinguish which messages to read or to trust. In this paper, we aim to address
this issue by identifying potential “cyber-armies/professional users” during election campaigns on
social platforms. We focus on human-operated accounts who try to influence public discussions,
for instance, by publishing hundreds/thousands of comments to show their support or rejection of
particular candidates. To achieve our objectives, we collected activity data over six months from
a prominent Taiwan-based social forum before the 2018 national election and applied a series of
statistical analyses to screen out potential targets. From the results, we successfully identified several
accounts according to distinctive characteristics that corresponded to professional users. According
to the findings, users and platforms could realize potential information manipulation and increase
the transparency of the online society.

Keywords: social networks; political propaganda; cyber-army; information manipulation

1. Introduction

Platforms of social media have been considered as beneficial for the deepening of democratization,
since they allow users to engage in political discussions and deliberation more easily [1,2]. Sites for
online political discussion lower the barriers of political participation, since it takes less time and
effort to start new discussion topics, without the hassle of real-world organization and coordination.
Social media also allows people to get together and share their thoughts on politics with others [3,4].
The anonymity of online platforms makes it less likely for users to face problems of social desirability
or cross-pressure so that they can express their thoughts more freely, feel free to disagree with others,
and even post hate speech [5–7]. Additionally, in the case of the Arab Spring uprisings in 2012, social
media and online platforms enabled ordinary people to be engaged in political mobilization to fight
against the oppressive state authorities [8,9]. Without the Internet and social media as a means to
keep people connected and informed, the popular resistance against authoritarian regimes in the Arab
Spring could hardly be imaginable [10,11].

All of the perspectives mentioned above seem to support the idea that social media and the
Internet open up new possibilities for democracy and civil political participation to deepen. However,
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we need to critically rethink the validity of this argument, which advocates technological determinism
and optimism. Regardless of the advantages that the Internet and social media may bring to us for
a more extensive degree of political participation amongst the public, some of the potential dangers
that online platforms may cause to harm democracy need to be highlighted. Firstly, while the Internet
makes it easier for people, on average, to gain more opportunities to take part in political discussions
with others, it also, at the same time, silences certain groups of people who may not have access to
or the ability to use this technology [12]. Secondly, it has been found that in cases of Scandinavian
countries like Denmark and Sweden, online forums are used to spread anti-democratic propaganda
and to help the rise of reactionary movements by fueling populist sentiments and spite [13].

One additional potential concern of using online platforms as the major means of political
communication is that online political discussions may be manipulated by cyber-armies to shape how
the public evaluates certain politicians. Political organizations and parties may recruit cyber-armies
to monitor discussions, influence public opinion, and promote their candidates. If people do not
understand the potential threat of information manipulation in online political discussions and trust
the information and knowledge they gain in such discussions, these instances of cyber-armies will
discredit the very idea of democracy, since people make their political judgments and voting decisions
based on misinformation or manipulated arguments [14,15].

To avoid political propaganda and opinion shaping using recruited cyber-armies on online
platforms, identifying such users and expelling them is an intuitive approach. However, currently,
only governmental investigation can confirm the existence and identities of cyber-armies. To provide a
systematic and efficient method for detecting these users, in this study, we attempt to detect potential
cyber-armies by identifying aggressive accounts during election campaigns. In the first step, we
hypothesized that recruited users are very active and stay firm in their political stances. They may
support specific candidates and attack others. In order to examine these characteristics, we address the
first Hypothesis H1.

Hypothesis 1. There is a group of users giving a lot of negative/positive ratings to articles talking about
particular candidates.

In a second step, as cyber-armies are recruited users by certain groups, we hypothesized that they
should spend much more time than ordinary users to monitor messages, promote their candidates,
and respond to attacks in a speedy manner. To identify such users, we describe the second Hypothesis H2.

Hypothesis 2. There is a group of users who can rapidly respond to any articles talking about particular candidates.

In a third step, from a behavioral pattern viewpoint, we investigate the daily activities of users.
As recruited users may follow regular work times to reply to and rate articles, we would like to address
the third Hypothesis H3 and identify users corresponding to this characteristic.

Hypothesis 3. There is a group of users who are active on weekdays and inactive on weekends.

To address the above hypotheses, we first propose a series of systematic methods for identification.
Next, we collect our dataset from the most prominent political discussion forum in Taiwan, where a
national election was held in November 2018. The dataset includes more than 25,000 articles published
between May and November 2018. Statistical methods are employed to investigate commenting
behaviors of the articles. The findings help us to better understand the phenomenon of online political
information manipulation and to start thinking about possible ways to counter the negative effects of
cyber-armies and restore the function of online forums as a public sphere for democratic deliberation
and discussion.

The remainder of this paper is organized as follows. Section 2 discusses the related works.
The overview of the proposed approach and data collection are presented in Section 3. In Section 4, we



Sustainability 2020, 12, 2248 3 of 18

exhibit in-depth analysis results according to our method. The validation of the proposed method and
results is presented in Section 5. The main issues to address in the future and the conclusion of our
research are presented in Section 6.

2. Related Works

2.1. Political Propaganda on Social Networks

Social networks have become a vital tool for information diffusion and exchanges of political
opinions [16–19]. Taufiq et al. [20] conducted a survey of students at the University of Narowal,
Pakistan, and figured out that the majority of the students have been using social media for political
discussions. In [21], by investigating Twitter messages related to the German federal election,
the authors concluded that Twitter has actually been used for political discussions and that the
messages truly reflect the election results. Emotional analysis of online messages is also receiving much
attention from researchers. In [22], the authors examined political tweets on Twitter to identify the
factors that affect users’ retweet behaviors. They found that the retweet behavior of a user is strongly
affected by the tweet’s emotional and political affiliation. In [23], the authors provided a hybrid method
for predicting the election results based on the number of articles, the online ratings toward candidates,
and the sentiment scores of articles. In [24], the authors focused on reddit, a popular American-based
social forum, to investigate different characteristics of controversy in political discussions. Regarding
political leaning, a political leaning inference scheme was proposed in [25] based on tweets and
retweets. In this paper, the authors assumed that tweet and retweet behaviors on Twitter are consistent.
To identify influential spreaders on Twitter during the Malaysian General Election in 2013 and to clarify
whether they have effects on election results, Sun et al. [26] proposed an influential spreader-detection
scheme based on k-shell decomposition. The authors concluded that both political and non-political
Twitter accounts have potential influences on the election results, especially the non-political accounts.
However, the party which these non-political accounts support or attack is not addressed in this paper.
In addition, these accounts may manipulate the public opinion, which made a significant impact on
the final election results.

2.2. Cyber-Armies and Online Information Manipulation

Nowadays, the Internet serves as an essential platform for every aspect of our daily lives;
the potential threat of cyber-armies cannot be over-emphasized [27]. Given the lack of a comprehensive
scholarly discussion on what constitutes cyber-armies in previous literature, the meaning of this term
changes in response to the context in which it is used [28]. Common characteristics of cyber-armies
include a coordinated action taken by a group of individuals to shape the way that people think
about politics and politicians [29]. Cyber-armies can mainly be categorized into two broad types,
which differ in their targets and goals. The first type of cyber-army is highly associated with the
concept of terrorism and other malicious and criminal activities [30]. In these instances, the goal of
the hacking attacks is to create panic, fear, or disruption in people’s daily lives, and these render the
targeted political system unstable. These instances of terrorist cyber-attacks have been discussed in
literature on international relations and security studies [28,31]. The second type of cyber-army aims to
manipulate domestic public opinion and to sway electoral outcomes to favor certain partisan groups
and political parties [32,33]. This term has become especially salient in Taiwanese politics after the
2014 local election, where instances of cyber-armies were reported to shape public perceptions on
the two mayoral candidates of the capital Taipei City [34]. However, currently, there is no efficient
and accurate method except for judicial investigation by the government, which can assure who
the cyber-armies are. In [35], the authors identified social bots and their behaviors during Japan’s
2014 general election by using a corpus-linguistic technique. They showed that a cyber-army of bots,
who favored Shinzo Abe, played an important role in his success in this election. This paper only
considered repeated tweets as a criterion for a social bot detection algorithm; however, other features,
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such as rating behaviors, are also essential factors in identifying public opinion. In addition, in [36],
the authors investigated reddit using network analysis and comment intervals to distinguish bot
accounts. However, activities of bots or programmable accounts may have regularity compared to
human-operated accounts. Leveraging human features, such as political preference and working-time
patterns, for human-operated cyber-army detection remains scant. Thus, in this paper, we attempt to
identify such users by recognizing active accounts on the most popular social forum in Taiwan during
the 2018 Taiwanese capital election. We pursue our analysis from various perspectives and show a
number of distinctive users with obvious political leanings, thousands of comments, minute-long
response times, and regular behaviors on weekdays and weekends.

The importance of the Internet as a source of political information has been increasing rapidly
in the last two decades [37–39]. However, greater access to the Internet as a means to obtain political
information also implies that there are higher risks of misinformation, fake news, and political
manipulation [40]. Many studies have been conducted in economics and commerce research to
explore how exposure to online comments and public opinion would affect the way that people
perceive certain products and companies. It has been found that higher proportions of online negative
consumer reviews will make it likely for consumers to adopt the opinions of the reviewers [41–43].
Although information manipulation of online discussions has been found effective in the area
of business, there has been little systematic analysis of whether online information manipulation
impacts vote decisions in real-world elections [21,44]. Furthermore, before discussing the impacts
of cyber-armies, a fundamental question is whether we can detect their existence in the first place.
Therefore, this paper aims to find the behavioral patterns of online professional commenters who
attempt to shape public opinion and the way that people perceive specific candidates.

3. Methodology

To address our hypotheses, we start by distinguishing users based on their online behaviors,
including comments, ratings, and other activities. Compared with regular users, “recruited users”
have distinctive characteristics, as follows. (1) These users are active in commenting on political articles.
(2) They are eager and tenacious in showing their support/rejection of specific candidates. (3) These
users may respond to articles quickly and spend too much time on the forum. To verify the existence
of such users, we collected the articles from the most significant political discussion forum in Taiwan
before the national election, which was held in November 2018.

3.1. Dataset

The dataset was crawled from the most influential forum in Taiwan, namely the PTT Bulletin
Board System (PTT). PTT consists of over 20,000 boards discussing about various topics. “Gossiping,”
one of the most popular boards, is concentrated on news discussions, especially for political issues.
We collected all articles and comments in the Gossiping Board from 24 May to 24 November, 2018
(the election day), a six-month-long observation timeframe. Each article posted on PTT consists of the
following information:

1. Author information: IP address, author ID, and nickname.
2. Article metadata: Publication time.
3. Article content: Textual part of the article.
4. User comment and rating: User’s comment and positive/neutral/negative ratings.

The crawled data was grouped into three subdatasets according to the three major candidates,
including Wen-Je Ko (the current mayor of Taipei city), Shou-Chung Ting (nominated by the major
opposition party, Kuomingtang), and Wen-Chih Yao (nominated by the ruling party, the Democratic
Progressive Party). To concentrate on articles focusing on particular candidates, articles containing
multiple candidates’ names are not included in our dataset. Table 1 summarizes our dataset.
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Table 1. A summary of our dataset.

Candidate # Articles # Commenters # Authors # Comments

Ko 19,316 68,334 4549 1,632,681
Yao 3928 29,348 1709 230,438
Ting 1903 21,197 973 105,539

3.2. Users with Obvious Political Preferences

To address Hypothesis H1, we demonstrate a series of formalized methodologies as follows.
Hypothesis H1 can be interpreted as identifying active users with a strong political preference/disfavor
toward certain candidates. To address this hypothesis, we define the user polarity to measure the
attitude of a user toward a candidate, as in Definition 1.

Definition 1. For each commenter u, we compute the total number of positive and negative ratings toward
candidate c, denoted as PRu,c and NRu,c, respectively. The rating polarity of commenter u toward candidate c is
denoted as polarityu,c.

polarityu,c = PRu,c −NRu,c (1)

Next, we transform the user’s attitude toward candidates into a polarity point in an n-dimensional
space. The definition of the polarity point is described in Definition 2.

Definition 2. Assume that there are C candidates; the polarity point of u is defined as pu in a C-dimensional
space, where pu = (polarityu,1, polarityu,2, polarityu,3, ..., polarityu,C).

From the definition, every user will be given a point in a C-dimensional space. Next, we define a
pivot point, representing the median polarity of users toward candidates, as a reference in this space.
If some users are relatively far from the pivot point, they should reveal obvious attitudes toward
candidates. We describe the definition of the pivot point in Definition 3.

Definition 3. The median value of the polarity scores of N users toward candidate c is denoted as polarity.medc.
For a total of C candidates, the pivot polarity point of C candidates is defined as p.med in a C-dimensional space,
where p.med = (polarity.med1, polarity.med2, polarity.med3, ..., polarityC).

To identify the “outlier” users, we measure the political preferences of users by calculating the
Euclidean distances between the user point pu and the pivot point p.med. The political preference of
user u is calculated according to Equation (2):

prefu =

√√√√ C

∑
k=1

(polarityu,k − polarity.medk)
2. (2)

According to the above measurement, we can assess the distance between each user and the pivot
points; thus, we can systematically investigate users matching the criteria described in Hypothesis H1.

3.3. Users with Rapid Response Times

To address Hypothesis H2, the best way is retrieving the online time or login/logout time of each
user. However, most of the social service sites do not reveal these data due to user privacy. Therefore,
to address this hypothesis, we turn to measure the response time of each user. If a user wishes to
respond to an article within a few minutes, this user should spend more time online to keep focusing
on certain posts.

According to the above assumptions, we analyze the comment activity and measure the response
time of every user in our dataset. The definition of the response time is described in Definition 4.
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Definition 4. For user u who has commented on article a published at publish.timea a total of t times,
the comment timestamps are denoted as comment.timeu,a,1, comment.timeu,a,2, ..., comment.timeu,a,t. We take
the first timestamp to calculate the response time, since it is the first activity of user u on article a. Thus,
the response time of u to a is defined as resp.timeu,a.

resp.timeu,a = comment.timeu,a,1 − publish.timea (3)

The set of articles related to candidate c is denoted as Ac.

To measure the activity of users toward articles about particular candidates, we compute the
response time of every user toward each candidate. According to Definition 4, the response time of
user u toward candidate c is denoted as resp.candu,c, and it can be expressed as Equations (4) and (5).

Ru,a = {resp.timeu,a | a ∈ Ac} (4)

resp.candu,c = median(Ru,a) (5)

resp.minu = min{resp.candu,1, ..., resp.candu,C} (6)

For C candidates, we identify the users who rapidly respond to articles according to Equation (6).
From the method, these users are who we wish to recognize in Hypothesis H2.

3.4. Users Acting as Office Workers

According to Hypothesis H3, we try to distinguish if there are some users that behave like
office workers and are active mostly during regular hours (e.g., Monday to Friday). To address
Hypothesis H3, we first compute the daily activities of each user in the last six months of observation
(i.e., 27 weeks). Next, we take the average of the behavior of each user regarding the number of
comments, the comment polarity toward candidates, and the response time according to 27 groups of
weekdays and weekends.

Definition 5. For user u during week w, we calculate the total number of comments on weekdays and weekends,
denoted as com.weekdayu,w and com.weekendu,w. The observation period is N weeks, and the total number of
active weeks of user u is denoted as Nu.

From the above definition, the average activity difference of each user between weekdays and
weekends is computed as follows:

diffu =
∑Nu

k (
com.weekdayu,k

5 − com.weekendu,k
2 )

Nu
. (7)

Users selected according to Equation (7) may contain those who are only active for a very short
period of time (e.g., two weeks). To identify those who have a long-term activity pattern, we only
study those users who have activities in at least P% (in this study, we use 30% as the example
threshold, though the value can be adjusted according to the application situation) of our N-week-long
observation.

4. Analysis

In this section, we analyze our data collection in terms of the numbers of comments, the polarities
of ratings given by users, and the response times of users. These metrics are employed to find users
with apparent political preferences and those who can respond to articles in a brief period. We also
investigate the daily activities to find commenters with an apparent behavioral difference between
weekdays and weekends.
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4.1. Daily Quantity

Figure 1 demonstrates the daily number of comments for each candidate during the
six-month-long observation. From the figure, we find the incumbent, Mayor Wen-Je Ko, is in heated
discussions, with many more comments than the other two candidates. We also denoted the top four
peaks of the frequencies for each candidate in the same figure. Except for the election day/eve, we
find that the other three peaks in Ko’s line (2018-09-04, 2018-10-04, and 2018-11-21) are located in the
last three months of the election cycle, and have obvious growths compared with those of the first
three months of the observation. In contrast, for the other two candidates, Ting and Yao, some of their
peaks are situated in the first three months; however, they were not able to bring the high volumes at
the initial stage of the campaign to the final months. From the number of comments observed on a
daily basis, we can see significant differences between each candidate. To further investigate if a large
number of comments are posted by particular groups of users, in the following paragraphs, we discuss
the individual behaviors of top commenters.
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Figure 1. Daily number of comments about each candidate during our observation.

4.2. Candidate Popularity

Table 1 shows that the most popular candidate is the incumbent, Taipei city mayor Wen-Je Ko.
Figure 2 presents the complementary cumulative distribution function (CCDF) of comments of users
for each candidate. In the figure, we take the logarithm of both the x- and y-axes for better readability.
We observe that the probability difference of the three candidates becomes more substantial when the
number of comments is over 100. The probability of having users with high numbers of comments
about Ko is bigger than for the other two candidates, which shows that Ko gets much more attention
from active users than the other two candidates. From another point of view, the distribution of
comments about each candidate follows the power-law distribution, indicating that a majority of
commenters have very few comments and a significant number of comments are posted by a tiny
portion of commenters. In addition, we observe that more points of Ko are farther from the distribution
pattern (as shown in the circle in Figure 2) than those of the other two candidates. The results indicate
that active users are much more likely to comment on Ko’s articles rather than on other candidates’.
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Figure 2. The distribution of comments given by commenters.

We present the network graphs of commenters and authors for the three candidates in Figure 3.
For each candidate, we only consider the top ten commenters with the highest numbers of comments.
The top ten commenters are denoted as the labeled nodes, and the unlabeled nodes represent the
authors. We do not plot the authors whose articles do not receive comments from these commenters.
There will be a link between commenter u and author v if commenter u has commented on an article
posted by author v. The size of the labeled node is determined by its degree; the bigger the node,
the higher its degree. The weight of an edge denotes the number of comments that commenter u has
given to author v. As shown in the figure, the number of nodes and the density of Ko’s network are
much higher than those of the other two candidates, which again shows that Ko is the most discussed
candidate. In terms of the active users in the networks, user 001 is the most active user among the
three candidates. This may imply that this user is the most influential user on the three networks.
However, considering each network individually, we find that each network has its own major users.
For example, user 022 in Yao’s network, which does not belong to the top ten commenters of Ko and
Ting, gives many comments to Yao’s articles. Similarly, user 130 comments a lot on Ting’s articles.
From another perspective, there are strong links between user 130 and other users in the top ten
commenters of Ting’s articles, which shows that this user gives or receives many comments from the
other top ten users in Ting’s group.

4.3. Commenter Polarity

Using the polarity of users towards candidates, we attempt to address the Hypothesis H1. We
first select the top 100 commenters in our dataset according to their comment quantity to investigate.



Sustainability 2020, 12, 2248 9 of 18

Wen-Je Ko
Wen-Chih Yao

Shou-Chung Ting

Figure 3. Network graph of the top ten commenters for each candidate.

4.3.1. Comment Polarity and Quantity of Active Commenters

Figure 4 shows the top commenters for the three candidates. The top 10% of the positive users
and the top 10% of the negative users are marked in yellow diamonds. This figure shows that these
commenters behave distinctly among the three candidates. From the horizontal locations of points,
we can observe that the top commenters are significantly more active in Ko’s discussions than in
the other two candidates’. We also find that active users are more polarized in Ko’s articles than
in Yao’s and Ting’s. In Figure 4, in Ko’s distribution, points are more distant from the horizontal line
representing polarity = 0. These results may be attributed to the fact that Ko is the incumbent and the
most-discussed candidate; thus, the favors and disfavors toward him are more obvious than for the
other two challengers.

Furthermore, we calculate the Pearson’s correlation between the polarity and the number of
comments of the users for each candidate. The Pearson’s correlations for Ko, Yao, and Ting are 0.458,
0.139, and 0.343, respectively. From the results, we observe that a higher number of comments does
not reflect higher online ratings, particularly for Yao. According to the above statistics, we find that the
correlation coefficient in Ko’s dataset is considerably higher than in Yao’s and Ting’s. This observation
demonstrates that the active commenters are likely to give more negative ratings to Yao’s and Ting’s
articles than to Ko’s articles, while Ko receives more positive ratings than the other two candidates. In
addition, these coefficients correspond to a series of poll results during the campaign and to the final
election results (https://en.wikipedia.org/wiki/2018_Taiwanese_municipal_elections), where Ko had
much more support than Ting and Yao during the campaign, and won the election.

https://en.wikipedia.org/wiki/2018_Taiwanese_municipal_elections
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Figure 4. Analysis of the number of comments and the polarity of the top 100 commenters for the
three candidates.

From the viewpoint of the individual users shown in Figure 4, we observe some of them whose
behaviors of online commenting are distinctive from those of the majority of users, and they are
treated as targets to address H1; for example, users 004 (most positive) and 078 (most negative) in
Ko’s articles, 012 (most positive) and 011 (most negative) in Yao’s, and 012 (most positive) and 011
(most negative) in Ting’s. Note that user 011 gives the most negative ratings to both Yao’s and Ting’s
articles, but not to Ko’s, demonstrating an apparent political preference. These users correspond to our
first hypothesis that there are some users that give extremely polarized ratings to certain candidates.
However, from only the polarity perspective, it is not convincing enough to make the judgment that
candidates recruit these users. In the next section, we present the analysis of the comment polarities of
the top commenters between the three candidates.

4.3.2. Analysis of Top Commenters’ Polarities towards Candidates

A major objective of users recruited by a political campaign is to promote their candidates and to
attack other candidates. To figure out the user preferences towards candidates, we demonstrate the
polarities of the top commenters for the three candidates, as shown in Figure 5. We first discuss the
third quadrant, indicating negative ratings for both candidates. We observe that there are more points
in the third quadrant of the middle sub-figure (Yao-Ting). The results also reveal that more users tend
to give Ko positive ratings, but not for the other two candidates.
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Figure 5. Analysis of the polarities of comments of popular commenters for the three candidates.

For individuals, we find that some users have obvious political preferences. For example, 053
(Ko: 55, Yao: –12, Ting: –6), 089 (Ko: 49, Yao: –29, Ting: –7), and 027 (Ko: 118, Yao: –2, Ting: –1) rate
positively on Ko’s articles and negatively on Ting’s and Yao’s articles. In addition, user 011 (Ko: 123,
Yao: –263, Ting: –56) gives positive ratings to Ko’s articles, but gives significantly negative ratings to
the other two candidates’ articles. According to the results, the users that we identified have strong
political preferences, and they can be categorized into four types. (1) Users 004, 001, 012, 063, 002, and
066 hold positive opinions about three candidates, but they give extremely high ratings to Ko’s articles
compared with the other two candidates’, as shown in Table 2. (2) User 011 has strong negative ratings
for Yao’s and Ting’s articles and positive ratings for Ko’s. (3) User 005 has strong negative ratings for
Ko’s articles but stays neutral for the other two candidates’ articles. (4) Users 078 and 082 are negative
for the three candidates’ articles but are more obvious in Ko’s.

The users mentioned above reveal political support/rejection of candidates. Thus, based on the
overview and the case studies in the previous results, we identify some users with frequent activities
and strong political preferences; they are the users for Hypothesis H1.

4.4. Commenters’ Response Times

To address the Hypothesis H2, we focus on measuring the response times of each user toward
candidates’ articles. Figure 6 shows the median value of the response times of the top 100 commenters.
It is noted that, in the figure, we mark the top 20% of the commenters with the smallest response times
in yellow diamonds. It can be seen from the figure that users 006 and 054, filtered from the previous
analysis, reply rapidly to the three candidates’ articles. Users 090 and 042 also respond extremely
quickly to the three candidates’ articles. We also find that a significant number of users give a lot of
comments to each candidate and respond to the articles within a short period (the bottom-right points).
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Figure 6. Analysis of the number of comments and the response times (median) of the top 100
commenters for the three candidates

In Table 2, the top 20 users with the shortest response times for the three candidates are shown.
From the table, we find that these users responded very quickly to candidates’ articles. Most of these
users replied within 2–7 min after articles were published. For example, users 006 and 054 respond
very rapidly (the median of the response time ≤ 3 min) to candidates’ articles, which means that at
least 50% of their comments are published in 3 min. Compared with ordinary users who casually
glance at the board and comment, the results imply that these users spend a lot of time monitoring and
discussing related articles. From the statistics, we consider that these users correspond to the target
of H2.

4.5. Users with the Three Characteristics

According to the above analyses of comments, political preferences, and response times, we select
those active users with many comments, strong favorites, and fast replies. We rank the 100 active
users by the three features and find fourteen users ranking in the top 50% in all of the characteristics,
as shown in Table 3. From the results, we consider the users who satisfy the three features we proposed
as professional users.
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Table 2. Top 20 users for number of comments, polarity, and response time.

# Comments Polarity Response (min)
ID Ko Yao Ting Total ID Ko Yao Ting Pref ID Ko Yao Ting Minimum
001 13,849 813 475 15,137 004 1817 129 1 1698.967 006 3.0 2.0 2.0 2.0
002 7652 44 148 7844 001 1579 140 57 1463.485 054 3.0 3.0 2.0 2.0
003 5699 312 352 6363 012 1440 223 59 1335.758 090 3.0 3.0 2.0 2.0
004 5744 511 37 6292 063 1200 80 24 1080.265 042 3.0 2.0 3.0 2.0
005 5019 357 18 5394 002 1111 11 46 989.893 061 3.0 3.0 3.0 3.0
006 4446 339 164 4949 066 1009 117 30 893.455 031 3.0 3.0 3.0 3.0
007 4176 554 197 4927 013 858 166 43 752.746 022 4.0 4.0 3.0 3.0
008 3521 550 258 4329 029 860 88 21 741.996 081 4.0 6.0 3.0 3.0
009 4106 60 60 4226 009 834 20 15 712.119 086 6.0 5.0 3.0 3.0
010 3322 352 232 3906 050 790 100 40 674.603 027 15.0 14.0 3.0 3.0
011 2772 680 161 3613 057 677 112 32 564.455 038 4.0 4.0 4.0 4.0
012 3103 369 91 3563 043 670 44 23 549.205 049 4.0 5.0 4.0 4.0
013 2624 368 105 3097 036 659 56 56 541.223 037 6.0 5.0 4.0 4.0
014 2670 293 127 3090 078 -399 -37 -10 523.581 067 6.0 6.0 4.0 4.0
015 2509 258 89 2856 008 622 105 46 510.125 030 6.0 6.0 4.0 4.0
016 2355 360 47 2762 005 -382 4 0 504.096 060 5.0 4.5 5.0 4.5
017 2298 177 261 2736 049 599 91 23 483.709 085 5.0 5.0 6.0 5.0
018 2620 78 37 2735 003 593 20 37 472.207 034 5.0 5.0 6.0 5.0
019 2540 74 20 2634 099 589 41 15 467.968 011 5.0 5.0 7.0 5.0
020 2372 147 27 2546 080 577 32 -9 455.582 093 6.0 5.0 6.0 5.0

Table 3. The overlapping users in the top 50% for number of comments, polarity, and response time.

# Comments Polarity Response (min)
ID Ko Yao Ting Total Ko Yao Ting Pref Ko Yao Ting Minimum
001 13,849 813 475 15,137 1579 140 57 1463.485 10.0 11.0 12.0 10.0
002 7652 44 148 7844 1111 11 46 989.893 9.0 11.0 6.0 6.0
003 5699 312 352 6363 593 20 37 472.207 14.0 10.0 11.0 10.0
006 4446 339 164 4949 490 34 28 369.379 3.0 2.0 2.0 2.0
008 3521 550 258 4329 622 105 46 510.125 6.0 6.0 6.0 6.0
011 2772 680 161 3613 123 -263 -56 282.448 5.0 5.0 7.0 5.0
016 2355 360 47 2762 439 34 -1 317.734 8.0 6.0 5.0 5.0
026 2223 81 90 2394 538 47 15 417.532 11.0 12.0 11.0 11.0
030 2052 91 68 2211 545 34 18 423.752 6.0 6.0 4.0 4.0
031 1944 144 115 2203 526 40 22 405.301 3.0 3.0 3.0 3.0
036 1833 121 146 2100 659 56 56 541.223 11.0 10.0 8.0 8.0
037 1954 65 57 2076 539 26 25 417.731 6.0 5.0 4.0 4.0
044 1736 171 53 1960 482 50 22 362.344 14.0 15.0 10.0 10.0
049 1689 192 33 1914 599 91 23 483.709 4.0 5.0 4.0 4.0

4.6. Daily Behavior

In addition to the previous studies, we address the third hypothesis by analyzing the daily behavior.
To understand if some users act differently between weekdays and weekends, we calculate the weekday
and weekend difference according to Equation (7). From the results, we present the commenting
behavior of the three users with a significant difference between weekdays and weekends, as shown in
Figure 7.

From the figure, we notice the obvious difference in commenting activities from the colored
area. The three users frequently comment on the three candidates during weekdays, but discuss at
few times during weekends. For example, users 006 and 042 comment actively on weekdays during
the six-month observation, and they are almost inactive on weekends. For user 022, we also find
a significant difference between weekdays and weekends. These users match the characteristics
described in H3.
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Figure 7. The top users with significant differences in comment quantity between weekdays and
weekends (left panel: Weekends; right panel: Weekdays).

4.7. Sockpuppet Analysis

Identifying sockpuppets (multiple accounts belonging to a single user) in social media is also
a major task for confronting potential information manipulation. In this study, we use behavioral
analysis and find that two accounts, users 006 and 042, shown in Figure 7, have very similar behavioral
patterns. Firstly, these two users have comparable activities, but are just perfectly separated by weeks
30 to 31. User 042 commented frequently before week 31 and hibernated after that time; in contrast,
user 006 started to behave actively on week 30. Both of them are very active in commenting on the
three candidates, especially for Ko, only on weekdays. Secondly, the IDs of the two users are VV***
and W*** (the * digits are the same). These two IDs are very similar and only have a difference between
W and VV. Finally, from IP investigation, we find that the two accounts have five mutual IP addresses.
Such evidence may imply that the two IDs could belong to the same user.

5. Validation with IP Address Tracking

Currently, retrieving the ground truth of cyber-armies is a difficult task, as only formal investigation
by the government can confirm if an account is a professional user who is part of a cyber-army. To validate
our proposed method and results, in this study, we compare our work with the results of IP address
tracking, which is used in identifying sockpuppet accounts on Wikipedia [45,46].

5.1. Users Sharing the Same IP Address

To identify users using the same IP address, we measure the similarity between the used IP
address sets of two users using the Jaccard index. The Jaccard index for each pair of users is calculated
as follows:

J
(
ui, uj

)
=

∣∣Γ(ui) ∩ Γ(uj)
∣∣∣∣Γ(ui) ∪ Γ(uj)
∣∣ , 0 ≤ J

(
ui, uj

)
≤ 1, (8)

where Γ(ui) and Γ(uj) are the sets of used IP addresses of user ui and user uj, respectively.
We only consider the users sharing the same IP address with the Jaccard index ≥ 0.5, as shown in

Table 4. We observe that users 006 and 042, the accounts that we suspected to be owned by the same
person, use five and six different IP addresses, respectively, and, not surprisingly, five of the six IP
addresses are exactly the same. In addition, the response times of these two users are also equal (2 min).
In terms of polarization, it is obvious that the two users have similar political preferences. From these
analyses, we can confirm that the users 006 and 042 belong to the same owner. Similarly, users 028 and
031 use almost exactly the same IP address (Jaccard index = 0.970). The polarities of these two users
are also similar. Unlike users 006 and 042, the users 028 and 031 have different response times, but the
difference is not too big. Therefore, the results imply that these two accounts belong to the same user
or, at least, have similar political stances. Another pair of users using the same IP address includes the
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users 018 and 070. The IP addresses that these two users used are 70% similar. The response times of
the two users are nearly the same, 5.5 min for 018 and 8 min for 070. However, the political reference
scores of these two users are quite different; user 018 gives positive ratings to the three candidates,
while user 070 stays neutral.

Table 4. A sample group of users sharing the same IP addresses.

ID # Used IP # Shared IP Jaccard Ind. of IP Resp. Time (min)
# Comments Polarity

Ko Yao Ting Ko Yao Ting

028 33 32 0.970 11.0 1764 336 173 112 14 0
031 32 3.0 1944 144 115 526 40 22

018 34 28 0.700 5.5 2620 78 37 77 8 12
070 34 8.0 1346 233 98 0 0 0

006 6 5 0.833 2.0 4446 339 164 490 34 28
042 5 2.0 1679 282 26 224 39 6

049 2 2 0.500 4.0 1689 192 33 599 91 23
079 4 25.5 1381 150 40 452 16 16

5.2. Comparison between the Proposal and the IP Tracking Method

In Table 3, we list 14 mutual users with a high rank in the three features: Comment quantity,
preference score, and response time. These users can be considered as potential cyber-armies, identified
according to our proposal. Next, we compare if these users can be validated as sockpuppets using IP
tracking. From Tables 3 and 4, users 006, 031, and 049 are included in the results of both our proposal
and IP tracking. This outcome demonstrates that our results can detect a number of active sockpuppets
identified by the existing methods. In addition, our method can provide more potential candidates
with professional user characteristics for further cyber-army investigations.

6. Conclusions

To identify potential targets of recruited users in online spaces, we conducted a behavioral
analysis according to an online observation of a popular forum during the 2018 election in Taiwan.
First, by analyzing the commenting and endorsement behaviors of users toward candidates, we
identified several users who regularly rate positively/negatively for specific politicians. In addition,
we examined the time intervals between publishing articles and posting comments to measure the
response times of users. Several users were found with response times within only 2–7 min of articles
being posted. Moreover, a number of users commented more than 1000 times, but they were only
active during weekdays. With a verification using IP tracking, we identified groups of active accounts
with very similar IP histories. Through this work, we demonstrate a series of approaches to identifying
and validating potential recruited/professional users. To conclude this study, three main contributions
are described as follows:

1. We collected a dataset consisting of over 25,000 articles and 73,000 users during a
national election from PTT, a large-scale social platform in Taiwan.

2. We investigated the dataset according to multiple behavioral features to distinguish
cyber-armies, and several potential targets are recognized from our results.

3. We validated the identified accounts using the IP tracking method. From the results, we
found that groups of users shared a large number of IP addresses when posting and
commenting.

With the increasing popularity and influence of online social platforms, messages on social media
could be powerful and representative in both online and conventional mass media. Thus, issues
about recruiting users or employing bots for online information manipulation are becoming crucial
for modern society. In this paper, we strive to identify such professional users and to provide a series
of numerical results to address the hypotheses proposed. According to the research outcomes, we
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believe that this work could benefit the government as well as organizations to understand online
user behaviors using an overview and case studies. Moreover, online platforms could leverage
the methods for identifying potential opinion shaping, especially during elections and large-scale
social events. For the next steps of this research, we aim to improve the proposed approaches to be
adopted in different platforms and countries. In addition, verification approaches for the identified
accounts based on content analysis or other clues are required. Through these approaches, we hope
to increase the transparency and democracy of online information and discourse for next-generation
communication paradigms.
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