
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Computer Science Department Faculty 
Publication Series Computer Science 

2012 

Self-Learning Variable Structure Control for a Class of Sensor-Self-Learning Variable Structure Control for a Class of Sensor-

Actuator Systems Actuator Systems 

Sanfeng Cheng 

Shuai Li 

Bo Liu 

Yuesheng Lou 

Yongsheng Liang 

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/478904701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages


Sensors 2012, 12, 6117-6128; doi:10.3390/s120506117
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Self-Learning Variable Structure Control for a Class of
Sensor-Actuator Systems
Sanfeng Chen 1,†, Shuai Li 2,†, Bo Liu 3,?, Yuesheng Lou 4 and Yongsheng Liang 1

1 Key Lab of Visual Media Processing and Transmission, Shenzhen Institute of Information
Technology, Shenzhen 518029, Guangdong, China; E-Mails: chensanf@sziit.com.cn (S.C.);
liangys@sziit.com.cn (Y.L.)

2 Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken,
NJ 07030, USA; E-Mail: sam.shuai.li@gmail.com

3 Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA
4 School of Mechatronics and Information, Yiwu Industrial and Commercial College, Yiwu 322000,

Zhejiang, China; E-Mail: lusion@mail.ustc.edu.cn

† These authors contributed equally to this work.

? Author to whom correspondence should be addressed; E-Mail: boliu@cs.umass.edu;
Tel.: +1-551-333-9638; Fax: +1-413-362-5733.

Received: 4 April 2012; in revised form: 16 April 2012 / Accepted: 29 April 2012 /
Published: 10 May 2012

Abstract: Variable structure strategy is widely used for the control of sensor-actuator
systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model
structure and model parameters are often required for the control design. In this paper, we
consider model-free variable structure control of a class of sensor-actuator systems, where
only the online input and output of the system are available while the mathematic model
of the system is unknown. The problem is formulated from an optimal control perspective
and the implicit form of the control law are analytically obtained by using the principle of
optimality. The control law and the optimal cost function are explicitly solved iteratively.
Simulations demonstrate the effectiveness and the efficiency of the proposed method.

Keywords: sensor-actuator system; principle of optimality; Bellman equation; variable
structure control; self-learning
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1. Introduction

With the development of mechatronics, automatic systems consisting of sensors for perception
and actuators for action are more and more widely used in applications [1–4]. Besides the proper
choices of sensors and actuators and an elaborate fabrication of mechanical structures, the control law
design also plays a crucial role in the implementation of automatic systems especially for those with
complicated dynamics. For most mechanical sensor-actuator systems, it is possible to model them in
Euler-lagrange equations [4,5]. In this paper, we are concerned with the sensor-actuator systems modeled
by Euler-lagrange equations.

Due to the importance of Euler-lagrange equations in modeling many real sensor-actuator systems,
much attention has been paid to the control of such kind systems. According to the type of constraints, the
Euler-lagrange system can be categorized into Euler-lagrange system without nonholonomic constraints
(e.g., fully-actuated manipulator [6,7], omni-directional mobile robot [8]), and the system subject
to nonholonomic constraint [9] (e.g., the cart-pole system [10], the under-actuated multiple body
system [11]). For Euler-lagrange system without nonholonomic constraints, the dimension of inputs
are often equal to the dimension of output and the system are often able to be transformed into a
double integrator system by employing feedback linearization [12]. Other methods, such as control
Lyapunov function method [13], passivity based method [14], optimal control method [15], etc., are
also successfully applied to the control of Euler-lagrange system without nonholonomic constraints.
In contrast, as the dimension of inputs is lower than that of outputs, it is often impossible to directly
transform the Euler-lagrange system subject to nonholonomic constraints to a linear system and thus
feedback linearization fails to stabilize the system. To tackle the difficulty, variable structure control
based method [16], backstepping based control [17], optimal control based method [18], discontinuous
control method [19], etc., are widely investigated and some useful design procedures are proposed.
However, due to the inherent nonlinearity and nonholonomic constraints, most existing methods [16–19]
are strongly model dependent and the performance are very sensitive to model errors. Inspired by
the success of human operators for the control of Euler-lagrange systems, various intelligent control
strategies, such as fuzzy logic [20], neural networks [21], evolutionary algorithms [22], to name a few of
them, are proposed to solve the control problem of of Euler-lagrange systems subject to nonholonomic
constraints. As demonstrated by extensive simulations, these type of strategies are indeed effective to the
control of Euler-lagrange systems subject to nonholonomic constraints. However, rigorous proof on the
stability are difficult for this type of methods and there may exist some initializations of the state, from
which the system cannot be stabilized.

In this paper, we propose a self-learning control method applicable to Euler-lagrange systems. In
contrast to existing work on intelligent control of Euler-lagrange systems, the stability of the close loop
system with the proposed method is proven in theory. On the other hand, different from model based
design strategies, such as backstepping based design [17], variable structure based design [16], etc.,
the proposed method does not require information of the model parameters and therefore is a model
independent method. We formulate the problem from an optimal control perspective. In this framework,
the goal is to find the input sequence to minimize the cost function defined on infinite horizon under the
constraint of the system dynamics. The solution can be found by solving a Bellman equation according
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to the principle of optimality [23]. Then an adaptive dynamic programming strategy [24–26] is utilized
to numerically solve the input sequence in real time.

The remainder of this paper is organized as follows: in Section 2, preliminaries on Euler-lagrange
systems and variable structure control are given briefly. In Section 3, the problem is formulated as a
constrained optimization problem and the critic model and the action model are employed to approximate
the optimal mappings. The control law is then derived in Section 4. In Section 5, simulations are given
to show the effectiveness of the proposed method. The paper is concluded in Section 6.

2. Preliminaries on Variable Structure Control of the Sensor-Actuator System

In this paper, we are concerned with the following sensor-actuator system in the Euler-Lagrange form,

D(q)q̈ + C(q, q̇)q̇ + φ(q) = u (1)

where q ∈ Rn, D(q) ∈ Rn×n is the inertial matrix, C(q, q̇) ∈ Rn×n, φ(q) ∈ Rn and u ∈ Rn. Note
that the inertial matrix D(q) is symmetric and positive definite. There are three terms on the left side of
the above equation. The first term involve the inertial force in the generalized coordinates, the second
one models the Coriolis force and friction, the values of which depend on q̇ and the third one is the
conservative force, which is in correspondence to the potential energy. The control force u applied on
the system drives the variation of the coordinate q. It is also noteworthy that we assume the dimension of
u is equal to that of q here. This definition also admits the case for u with lower dimension than that of
q by imposing constraints to u, e.g., the constraint u = [u1, u2, ..., un] with u1 = 0 restricts u in a n− 1

dimensional space. Defining state variables x1 = q and x2 = q̇, the Euler-Lagrange Equation (1) can be
put into the following state-space form:

ẋ1 = x2

ẋ2 = −D−1(x1)
(
u+ C(x1, x2)x2 + φ(x1)

)
(2)

Note that the matrixD(x1) is invertible as it is positive definite. The control objective is to asymptotically
stabilize the Euler-Lagrange system (2), i.e., design a mapping (x1, x2) → u such that x1 → 0 and
x2 → 0 when time elapses.

As an effective design strategy, variable structure control finds applications in many different type of
control systems including the Euler-Lagrange system. The method stabilizes the dynamics of a nonlinear
system by steering the state to a elaborately designed sliding surface, on which the state inherently
evolves towards the zero state. Particularly for the system (2), we define s = s(x1, x2) as follows:

s = c0x1 + x2 (3)

where c0 > 0 is a constant. Note that s = c0x1 + x2 = 0 together with the dynamics of x1 in
Equation (2) gives the dynamics of x1 as ẋ1 = −c0x1 for c0 > 0. Clearly, x1 asymptotically converges
to zero. Also we know x2 = 0 when x1 = 0 according to s = c0x1 + x2 = 0. Therefore, we conclude
the states x1, x2 on the sliding surface s = 0 for s defined in Equation (3) converge to zero with time.
With this property of the sliding surface, a control law driving the states to s = 0 definitely grantees
the ultimate convergence to the zero states. Accordingly, the stabilization of the system can be realized
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by controlling s to zero. To reach this goal, a positive definite control Lyapunov function V (s), e.g.,
V (s) = s2, is often used to design the control law. For stability consideration, the time derivative of
V (s) is required to be negative definite. In order to guarantee the negative definiteness of the time
derivative of V (s), exact information about the system dynamics (2) is often necessary, which results in
the model based design strategies.

About the Euler-Lagrange Equation (1) for modeling sensor-actuator systems, we have the following
remark:

Remark 1 In this paper, we are concerned with the class of sensor-actuator systems modeled by
the Euler-Lagrange Equation (1). Actually, the dynamics of mechanical systems can be described
by the Euler-Lagrange equation according to the rigid body mechanics [4,5], which is essentially
equivalent to Newton’s laws of motion. Therefore, mechanical sensor-actuator system can be modeled by
Equation (1). In this regard, the Euler-Lagrange equation employed in the paper models a general class
of sensor-actuator systems.

3. Problem Formulation

Without losing generality, we stabilize the system (1) by steering it to the sliding surface s = 0

with s defined in Equation (3). Different from existing model based design procedures, we design a
self-learning controller, which does not require accurate knowledge about D(q), C(q, q̇) and φ(q) in
Equation (1). In this section, we formulate such a control problem from the optimal control perspective.

In this paper, we set the origin as the desired operating point, i.e., we consider the problem of
controlling the state of the system (1) to the origin. For the case with other desired operating points,
the problem can be equivalently transformed to the one with the origin as the operating point by shifting
the coordinates. At each sampling period, the norm of s = c0x1 + x2, which measures the distance from
the desired sliding surface s = 0, can be used to evaluate the one step performance. Therefore, we define
the following utility function associated with the one-step cost at the ith sampling period,

Ui = U(s) (4)

with

U(s) =

{
0 |s1| < δ1, |s2| < δ2, ..., |sn| < δn

1 otherwise
(5)

where s is defined in Equation (3) and s = [s1, s2, ..., sn]T , |si| denotes the absolute value of the ith
component of the vector s, the parameter δi > 0 for i = 1, 2, ..., n. At each step, there is a value Ui and
the total cost starting from the kth step along the infinite time horizon can be expressed as follows,

Jk = J(x(k), ū(k)) =
∞∑
i=k

γi−kUi (6)

where x(k) is the state vector of system (1) sampled at the kth step with x(k) = [xT1 (k), xT2 (k)]T ,
γ is the discount factor with 0 < γ < 1, ū(k) = (uk, uk+1, ..., u∞) is the control sequence starting
from the kth step. Note that for the deterministic system (1), the preceding states after the kth step are
determined by x(k) and the control sequence ūk. Accordingly, Jk is a function of x(k) and ū(k) with
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Jk = J(x(k), ū(k)). Also note that both the cost function Jk and the utility function Uk are defined based
on the discrete samplings of the continuous system (1). Now, we can define the problem of controlling
the sensor-actuator system (1) in this framework as follows,

min
u(0),u(1),...,u(∞)∈Ω

J0 =
∞∑
i=0

γiUi (7a)

subject to:{
ẋ1(t) = x2(t)

ẋ2(t) = −D−1(t)(x1(t))
(
u(t) + C(x1(t), x2(t))x2(t) + φ(x1(t))

) (7b)

u(t) = u(i) for iτ ≤ t < (i+ 1)τ (7c)

where Ui is defined by Equations (4) and (5), τ > 0 is the sampling period, the set Ω defines the feasible
control actions, J0 is the cost function for k = 0 in Equation (6). It is worth noting that J0 is a function of
ū(0) = (u0, u1, ..., u∞) and x(0) according to Equation (6). The optimization in Equation (7) is relative
to ū(0) with a given initial state x(0). Also note that in the optimization problem in Equation (7), the
decision variable u(0), u(1), ..., u(∞) are defined in every sampling period. The control action keeps
the value in the duration of two consecutive sampling steps. This formulation is consistent with the real
implementations of digital controllers.

Remark 2 There are infinitely many decision variables, which are u(0), u(1), ..., u(∞), in the
optimization problem in Equation (7). Therefore, this is an infinite dimensional problem. It cannot
be solved directly using numerical methods. Conventionally, such kind of problem is often solved by
using a finite dimensional approximation [27]. In addition, note that the dynamic model of the system
appears in the optimization problem in Equation (7) and it will also show up in the finite dimensional
relaxation of the problem, which means the resulting solution requires model information and thus is
also model-dependent. In contrast, in this paper we investigate the model-independent variable structure
control of sensor-actuator systems on the infinite time horizon.

4. Model-Free Control of the Euler-Lagrange System

In this section, we present the strategy to solve the constrained optimization problem efficiently
without knowing the model information of the chaotic system. We first investigate the optimality
condition of Equation (7) and present an iterative procedure to approach the analytical solution. Then,
we analyze the convergence of the iterative procedure and the stability with the derived control strategy.

4.1. Optimality Condition

Denoting J∗ the optimal value to the optimization problem in Equation (7), i.e.,

J∗ = minu(0),u(1),...,u(∞)∈Ω J0 (8)

subject to: (7b), (7c)
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According to the principle of optimality [23], the solution of Equation (7) satisfy the following Bellman
equation:

J∗(y) = min
uk∈Ω

(Uk + γJ∗(z)) ∀x ,∀k = 0, 1, 2, ... (9)

where z is the solution of Equation (7b) at t = k + 1 with x(k) = y and the control action u(t) = uk for
kτ ≤ t < (k + 1)τ . Without introducing confusion, we simply write Equation (9) as follows

J∗ = min(Uk + γJ∗) (10)

Define the Bellman operator B relative to function h(z) as follows

Bh(z) = min
(
Uk + γh(z)

)
(11)

Then, the optimality condition in Equation (10) can be simplified into the following with the Bellman
operator,

J∗ = BJ∗ (12)

Note that the function Uk is implicitly included in the Bellman operator. The Equation (12) constitutes
the optimality condition for problem in Equation (7). It is difficult to solve the explicit form of J∗

analytically from Equation (9). However, it is possible to get the solution by iterations. We use the
following iterations to solve J∗,

Ĵ(n+ 1) = BĴ(n) (13)

subject to: (7b), (7c)

The control action keeps constant in the duration between the kth and the k + 1th step, i.e., u∗(t) = u∗k
for kτ ≤ t < (k + 1)τ . u∗k can be obtained from Equation (9) based on Equation (13),

u∗k = argminuk∈Ω(Uk + γJ∗) (14)

4.2. Approximating the Action Mapping and the Critic Mapping

In the previous sections, the iteration (13) is derived to calculate J∗ and the optimization (14) is
obtained to calculate the control law. The iteration to approach J∗ and the optimization to derive u∗

have to be run in every time step in order to obtain the most up-to-date values. Inspired by the learning
strategies widely studied in artificial intelligence [26,28], a learning based strategy is used in this section
to facilitate the processing. After a enough long time, the system is able to memorize the mapping of
J∗ and the mapping of u∗. After this learning period, there will be no need to repeat any iterations or
optimal searching, which will make the strategy more practical.

Note that the optimal cost J∗ is a function of the initial state. Counting the cost from the current time
step, J∗ can also be regarded as a function of both the current state and the optimal action at current time
step according to Equation (10). Therefore, Ĵ(n), the approximation of J∗, can also be regarded as a
function relative to the current state and the current optimal input. As to the optimal control action u∗, it
is a function of the current state. Our goal in this section is to obtain the mapping from the current state
and the current input to Ĵ(n) and the mapping from the current state to the optimal control action u∗
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using parameterized models, denoted as the critic model and the action model, respectively. Therefore,
we can write the critic model and the action model as Jn(u∗n, xn,Wc) and u∗n(xn,Wa) respectively, where
Wc is the parameters of the critic model and Wa is the parameters of the action model.

In order to train the critic model with the desired input-output correspondence, we define the following
error at time step n+ 1 to evaluate the learning performance,

ec(n+ 1) = BĴ(n)− Ĵ(n+ 1)

Ec(n+ 1) =
1

2
e2
c(n+ 1) (15)

Note that BĴ(n) is the desired value of Ĵ(n+1) according to Equation (13). Using the back-propagation
rule, we get the following rule for updating the weight Wc of the critic model,

Wc(n+ 1)

= Wc(n) + δWc(n)

= Wc(n)− lc(n)
∂Ec(n)

∂Wc(n)

= Wc(n)− lc(n)
∂Ec(n)

∂Ĵ(n)

∂Ĵ(n)

∂Wc(n)
(16)

where lc(n) is the step size for the critic model at the time step n.
As to the action model, the optimal control u∗ in Equation (14) is the one that minimizes the cost

function. Note that the possible minimum cost is zero, which corresponds to the scenario with the state
staying inside the desired bounded area. In this regard, we define the action error as follows,

ea(n) = Ĵn

Ea(n) =
1

2
e2
a(n) (17)

Then, similar to the update rule of Wc for the critic model, we get the following update rule of Wa for
the action model,

Wa(n+ 1) = Wa(n)− la(n)
∂Ea(n)

∂Ĵ(n)

∂Ĵ(n)

∂u(n)

∂u(n)

∂Wa(n)
(18)

where la(n) is the step size for the action model at the time step n.
Equations (16) and (18) update the critic model and the action model progressively. After Wc and

Wa have learnt the model information by learning for a long enough time, their values can be fixed at
the one obtained at the final step and no further learning is required any longer, which is in contrast to
Equation (14) requiring to solve an optimization problem even after a long enough time.

5. Simulation Experiment

In this section, we consider the simulation implementation of the proposed control strategy. The
dynamics given in Equation (1) model a wide class of sensor-actuator systems. Particularly, to
demonstrate the effectiveness of the proposed self-learning variable structure method, we apply it to
the stabilizations of a typical benchmark system: the cart-pole system.
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The cart-pole system, as sketched in Figure 1, is a widely used testbed for the effectiveness of control
strategies. The system is composed of a pendulum and a cart. The pendulum has its mass above its
pivot point, which is mounted on a cart moving horizontally. In this part, we apply the proposed control
method to the cart-pole system to test the effectiveness of our method.

5.1. The Model

The cart-pole model used in this work is the same as that in [29], which can be described as follows.

θ̈ =
g sin θ + cos θ[−F −mlθ̇2 sin θ + µc sgn(ẏ)]− µpθ̇

ml

l(4
3
− m cos2 θ

mc+m
)

(19)

ÿ =
F +ml[θ̇2 sin θ − θ̈ cos θ]− µc sgn(ẏ)

mc +m
(20)

where

sgn(x) =


1, if x > 0

0, if x = 0

−1, if x < 0

(21)

with the following values of the parameters:

g : 9.8 m/s2, acceleration due to gravity;
mc : 1.0 kg, mass of cart;
m : 0.1 kg, mass of pole;
l : 0.5 meter, half-pole length;
µc : 0.0005, coefficient of friction of cart on track;
µp : 0.000002, coefficient of friction of pole on cart;
F : ±10 Newtons, force applied to cart center of mass.

This system has four state variables: y is the position of the cart on track, θ is the angle of the pole
with respect to the vertical position, and ẏ and θ̇ are the cart velocity and angular velocity, respectively.

Define A1(θ) = − l
cos θ

(4
3
− m cos2 θ

mc+m
), A2(θ) = −g sin θ

cos θ
, A3(θ, θ̇) = mlθ̇ sin θ + µp

ml cos θ
,

A4(ẏ) = −µcsgn(ẏ)
ẏ

, A5 = mc + m, A6(θ, θ̇) = mlθ̇ sin θ, A7(θ) = −ml cos θ. With these notations,
Equation (19) can be re-written as:

A1θ̈ = F + A2 + A3θ̇ + A4ẏ
A1A5

A1 + A7

ÿ = F +
A2A7

A1 + A7

+
A1A6 + A3A7

A1 + A7

θ̇ +
A1A4 + A4A7

A1 + A7

ẏ (22)

By choosing

D =

[
A1 0

0 A1A5

A1+A7

]
, C = −

[
A3 A4

A1A6+A3A7

A1+A7

A1A4+A4A7

A1+A7

]

φ = −

[
A2

A2A7

A1+A7

]
, q =

[
θ

y

]
, u =

[
F

F

]
the system of Equation (19) coincides with the model of Equation (1). Note that the input u in this
situation is constrained in the set Ω = {u = [u1, u2]T , u1 = u2 ∈ R}.
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Figure 1. The cart-pole system.

Figure 2. State profiles of the cart-pole system with the proposed control strategy.
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5.2. Experiment Setup and Results

In the simulation experiment, we set the discount factor γ = 0.95, the sliding surface parameter
k = 10, δ1 = 2, δ2 = 24. The feasible control action set Ω in Equation (7) is defined as Ω = {u =

[u1, u2]T , u1 ∈ R, u2 ∈ R, u1 = u2 = ±10 Newtons}. This definition corresponds to the widely used
bang-bang control in industry. To make the output of the action model within the feasible set, the output
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of the action network is clamped to 10 if it is greater than or equal to zero and clamped to −10 if less
than zero. The sampling period τ is set to 0.02 seconds. Both the critic model and the action model are
linearly parameterized. The step size of the critic model, which is lc(n) and that of the action model,
which is la(n) are both set to 0.03. Both the update of the critic model weight Wc in Equation (16) and
the update of the action model weight Wa in Equation (18) last for 30 seconds. For the uncontrolled
cart-pole system with F = 0 in Equation (19), the pendulum will fall down. The control objective is to
stabilize the pendulum to the inverted direction (θ = 0). Time history of the state variables are plotted
in Figure 2 for the system with the proposed self-learning variable structure control strategy. From
this figure, it can be observed that θ is stabilized in a small vicinity around zero (with a small error of
±0.1 rads), which corresponds to the inverted direction.

6. Conclusions and Future Work

In this paper, the self-learning variable structure control is considered to solve a class of
sensor-actuator systems. The control problem is formulated from the optimal control perspective and
solved via iterative methods. In contrast to existing models, this method does not need pre-knowledge
on the accurate mathematic model. The critic model and the the action model are introduced to make the
method more practical. Simulations show that the control law obtained by the proposed method indeed
achieves the control objective. Future work on this topic includes the theoretical proof of the convergence
and exploration on the performance limit of the proposed strategy. Also, the control of other mechanical
systems modeled by Euler-Lagrange system, such as manipulators etc., will be explored in our future
work.
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