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Abstract: The present study investigated the role of graphitic carbon nitride (C3N4) in alleviating
cadmium (Cd)- and arsenic (As)-induced phytotoxicity to rice (Oryza sativa L.). A high-temperature
pyrolysis was used to synthesize the C3N4, which was characterized by transmission electron
microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering. Rice seedlings
were exposed to C3N4 at 50 and 250 mg/L in half-strength Hoagland’s solution amended with
or without 10 mg/L Cd or As for 14 days. Both Cd and As alone resulted in 26–38% and 49–56%
decreases in rice root and shoot biomass, respectively. Exposure to 250 mg/L C3N4 alone increased
the root and shoot fresh biomass by 17.5% and 25.9%, respectively. Upon coexposure, Cd + C3N4

and As + C3N4 alleviated the heavy metal-induced phytotoxicity and increased the fresh weight by
26–38% and 49–56%, respectively. Further, the addition of C3N4 decreased Cd and As accumulation
in the roots by 32% and 25%, respectively, whereas the metal contents in the shoots were 30% lower
in the presence of C3N4. Both As and Cd also significantly altered the macronutrient (K, P, Ca, S,
and Mg) and micronutrient (Cu, Fe, Zn, and Mn) contents in rice, but these alterations were not
evident in plants coexposed to C3N4. Random amplified polymorphic DNA analysis suggests that
Cd significantly altered the genomic DNA of rice roots, while no difference was found in shoots.
The presence of C3N4 controlled Cd and As uptake in rice by regulating transport-related genes.
For example, the relative expression of the Cd transporter OsIRT1 in roots was upregulated by
approximately threefold with metal exposure, but C3N4 coamendment lowered the expression.
Similar results were evident in the expression of the As transporter OsNIP1;1 in roots. Overall,
these findings facilitate the understanding of the underlying mechanisms by which carbon-based
nanomaterials alleviate contaminant-induced phyto- and genotoxicity and may provide a new
strategy for the reduction of heavy metal contamination in agriculture.

Keywords: rice; g-C3N4; synthesis; cadmium; arsenic; accumulation; metal transporters

1. Introduction

Heavy metal contamination in soils has become a major threat to global agriculture
due to both direct toxicity to crops and the subsequent impacts on human health [1–3].
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Heavy metals in agricultural soils can be derived from both geogenic (soils) and anthro-
pogenic (mining, smelting, solid waste, etc.) sources [4–6]. Cadmium (Cd) and arsenic (As)
are two heavy metals that are commonly found in soils [7]. Due to its elemental properties,
Cd can replace Ca and cause chronic Cd poisoning, called itai-itai disease [8]. Inorganic As
has been classified as a human carcinogen by the United States Environmental Protection
Agency (USEPA) [9] and can also cause a series of human diseases [10]. In addition, heavy
metals have caused ecotoxicological effects on soil organisms (microorganisms, plants, and
animals) due to their toxicity, bioaccumulation, and persistence in environments [11–14].
According to Tóth et al., the average topsoil concentrations of Cd and As in the European
Union were 0.09 ± 0.11 and 3.72 ± 2.92 mg/kg, respectively [15]. Similarly, Cd and As
concentrations in soils in the United States were 0.2–2 and 0.4–40 mg/kg [16,17]. Heavy
metal-induced phytotoxicity to crops has been extensively investigated, with detailed stud-
ies addressing metal speciation and accumulation, bioavailability, physiological responses,
crop yield, and quality, as well as plant defense mechanisms [18–22]. In addition, efforts
have been made to stabilize heavy metal contaminants in agricultural soils using differ-
ent types of amendments (minerals, organic matters, biofertilizers, rhizosphere microbial
community), which have subsequently reduced metal accumulation in crops and risk of
human exposure [23–25]. Thus, it is important to not only explore novel, sustainable, and
efficient strategies to reduce heavy metal uptake but also reveal the underlying interaction
and uptake mechanisms to maximize benefits.

Nano-enabled techniques have been widely used in agriculture for the purposes
of monitoring plant health, enhancing crop yield, and suppressing abiotic and biotic
stresses [26–29]. A number of recent studies have demonstrated positive impacts of both
metal- and carbon-based nanomaterials on alleviating contaminant-induced abiotic stress
and toxicity. For example, Ma et al. (2020) reported that zinc oxide (ZnO) nanoparticles
(NPs) could significantly reduce the Cd and As accumulation in rice tissues when grown
in metal co-contaminated rice paddies, including reduced grain contamination [7]. Similar
findings of ZnO NPs alleviating heavy metal toxicity to Leucaena leucocephala seedlings were
also reported [30]. Other metal-based NPs, such as TiO2 [31,32] and CuO [33], also exhib-
ited positive impacts by alleviating heavy metal phytotoxicity and enhancing crop growth.
With regard to carbon-based nanomaterials, most of the studies have been conducted to fa-
cilitate understanding of the interactions between nanomaterials and contaminants [34–37].
Only a small number of studies have evaluated the impacts of carbon-based nanomaterials
on alleviating contaminant-induced toxicity to crops. For example, nanoscale biochar
reduced Cd accumulation in rice and subsequently ameliorated Cd-induced phytotoxicity
as measured by plant growth, pigment production, and lipid peroxidation [38]. In addi-
tion, Jia et al. (2020) reported that magnetic carbon nanotubes altered phenanthrene and
associated metabolite accumulation in lettuce, suggesting this approach as a novel strategy
for soil remediation [39]. Additional investigations exploring the potential of sustainable
carbon-based nanomaterials to reduce heavy metal accumulation and phytotoxicity to
crops are needed.

Graphitic carbon nitride nanosheets (C3N4) have attracted attention in recent years
due to their unique structure and excellent catalytic properties. Containing only carbon
and nitrogen, C3N4 can be easily synthesized using low-cost nitrogen-enriched compounds
such as urea and melamine under heat condensation [40–42]. Xiao et al. (2019) reported the
superior adsorption performance of C3N4 for heavy metal removal from wastewater; the
maximum adsorption capacities of Cd, lead (Pb), and chromium (Cr) were approximately
123, 37, and 684 mg/g, respectively [43]. Similar results were demonstrated for C3N4
quantum dots (QD) removal of mercury chloride (HgCl2), with a binding efficiency of
24.63 mg HgCl2/10 mg C3N4 [44]. However, biotic and in vivo experiments investigating
C3N4 potential for reducing heavy metal accumulation in crops are very limited. Hao et al.
(2021) reported that C3N4 not only significantly reduced the Cd content of rice tissues
but also increased the nitrogen content to offset the Cd-induced nitrogen deficiency [45].



Nanomaterials 2021, 11, 839 3 of 14

However, a mechanistic understanding of C3N4 regulation of heavy metal transporters at
the molecular level remains elusive.

Rice, a semiaquatic annual grass species, is the most important cereal crop in de-
veloping countries and the most consumed staple food all over the world [46]. In the
present study, rice (Oryza sativa L.) seedlings were hydroponically exposed to C3N4 and
Cd- or As-amended nutrient solutions under greenhouse conditions for 14 days. At har-
vest, physiological parameters and elemental content of rice tissues were measured across
all treatments. In addition, the relative expression of Cd- and As-related transporters
was analyzed as affected by C3N4 and both Cd and As. The findings provide important
information on the role of C3N4 in reducing Cd and As bioavailability and subsequent
phytotoxicity to crops. More importantly, the work further demonstrates the use of sus-
tainable nano-enabled techniques as a novel strategy for soil remediation to ensure a safe
food supply.

2. Materials and Methods
2.1. C3N4 Synthesis and Characterization

Graphitic carbon nitride nanosheets (C3N4) were synthesized with urea (20 g) in a
vacuum tube furnace. The ramping rate was 5 ◦C/min, and the temperature was kept
at 550 ◦C under nitrogen flow for 4 h [47]. The synthesized C3N4 was cooled down to
ambient temperature in the vacuum tube furnace and then washed with deionized water
three times. The C3N4 yield in each batch was approximately 2% (w/w). The procedures
were repeated several times to prepare sufficient C3N4 for experimentation. All batches of
C3N4 were mixed thoroughly and then freeze-dried in a lyophilizer (<1.5 mbar, −50 ◦C,
FreeZone® Benchtop Freeze Dryers, Model 70020, Labconco Corporation, Kansas City,
MO, USA)

For imaging characterization, the synthesized C3N4 was dispersed in deionized water
and a small volume diluted with methanol (1:1 v/v). One drop (2 µL) was deposited onto
carbon-coated Cu grids and left to dry at room temperature. Images were taken in a Hitachi
model HT7800 transmission electron microscope equipped with a lanthanum hexaboride
(LaB6) filament in high contrast mode at an accelerating voltage (HV) of 80 kV. (Hitachi
Incorporation, Tokyo, Japan)

For analysis by Fourier-transform infrared spectroscopy (FTIR, Spectrum One,
PerkinElmer Inc, Waltham, MA, USA) equipped with the universal ATR sampling
accessory, approximately 50 mg C3N4 was pressed into a thin layer and loaded onto
the instrument’s crystal; the samples were scanned, and spectra of C3N4 in the range of
450–4000 cm−1 were collected [48].

In addition, 50 and 250 mg/L C3N4 suspensions were separately prepared in deionized
water and half-strength Hoagland’s solution. Hydrodynamic diameter and zeta potential
were measured by dynamic light scattering (90 Plus Particle Size Analyzer, Brookhaven,
Upton, NY, USA) [48].

2.2. Hydroponic Experimental Design

Rice seeds (Oryza sativa L.) were sterilized with 70% (v/v) ethanol for 10 min and rinsed
three times with deionized water. The sterilized seeds were germinated and grown in vermi-
culite for 2 weeks prior to the hydroponic experiment. Vermiculite on the root surfaces was
gently removed in tap water, and then plants were transferred into a 100 mL glass jar con-
taining half-strength Hoagland’s solution (mg/L: 57.52 ammonium phosphate, monobasic;
1.43 boric acid; 328.2 calcium nitrate; 0.04 cupric sulfate·5H2O; 1.68 Na2EDTA·2H2O; 1.3 fer-
rous sulfate·7H2O; 120.38 magnesium sulfate, anhydrous; 0.91 manganese chloride·4H2O;
0.008 molybdenum trioxide; 303.3 potassium nitrate; 0.11 zinc sulfate·7H2O, PhytoTechnol-
ogy Laboratories Inc., Lenexa, KS, USA). After a 5-day acclimation period, rice seedlings
were exposed to 50 and 250 mg/L C3N4 with or without 10 mg/L As (sodium arsenate,
Na3AsO4) or Cd (cadmium chloride, CdCl2); additionally, As and Cd single analyte expo-
sures were established as metal controls. Five biological replicates were established for
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each treatment. The plants were grown for 14 days. At harvest, all seedlings were rinsed
with deionized water three times to remove the surface-attached C3N4 and As and Cd. The
fresh biomasses of shoots and roots across all treatments were recorded, and all tissues
were stored at −80 ◦C until further analysis.

2.3. Elemental Analysis of Rice Tissues

Shoot and root samples were freeze-dried in a lyophilizer and then ground into fine
powder. Approximately 50 and 150 mg of root or shoot tissue were weighed into digestion
tubes containing 3 mL concentrated HNO3. The mixtures were digested at 115 ◦C for
40 min in a heat block and then cooled to ambient temperature. To complete the digestion,
500 µL H2O2 was added to each tube for another 20 min of heating at 115 ◦C. The cooled
digests were diluted to 25 mL with deionized water. Inductively coupled plasma optical
emission spectrometry (ICP-OES; iCAP 6500, Thermo Fisher Scientific, Waltham, MA, USA)
was used to determine the As, Cd, and nutrient element (macronutrients (P, S, Ca, Mg, and
K) and micronutrients (Cu, Fe, Mn, and Zn)) contents in the acid digested samples [49].
Yttrium (Y) was used as an internal standard, and a sample of known concentration was
measured at every 30 samples.

2.4. Real-Time Quantitative PCR Analysis of As and Cd Transporters in Rice

Fresh tissues of all five biological replicates in each treatment with 250 mg/L C3N4
were ground into a fine powder in liquid nitrogen. A Sigma-Aldrich Spectrum Plant Total
RNA kit (Sigma-Aldrich Corp. St. Louis, MO, USA) was used to isolate total RNA from
roots and shoots. The total RNA concentration and quality were determined by a Thermo
Scientific NanoDrop Lite Spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific,
Waltham, MA, USA). One microgram of the extracted RNA was used as template to syn-
thesize complementary DNA (cDNA) with a Verso cDNA synthesis kit. A complete list of
primer sequences for As and Cd transporters is provided in Table S1 [50–52]. The synthe-
sized cDNA was diluted to 50 ng/µL, and was used as the template for the following qPCR
analysis. Bio-Rad SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Incorporation,
Hercules, CA, USA) was used to run the qPCR, and the working concentration of each
primer was 10 µM. The thermal program profile for qPCR amplification was 95 ◦C for
30 s, 95 ◦C for 15 s, and 63 ◦C for 30 s, repeating 40 cycles, melting curve from 65 to 95 ◦C.
The total volume of each reaction was 20 µL, and histone H3 was used as a housekeeping
gene for normalization. The relative expression of each gene was calculated through the
2−∆∆Ct method [53].

2.5. Random Amplified Polymorphic DNA (RAPD) Analysis

The total DNA of shoots and roots in the treatments with 250 mg/L C3N4 with or
without the addition of As or Cd and the treatments with As or Cd alone were extracted
using a Qiagen DNeasy Plant Mini Kit. Random (Qiagen Incorporation, Germantown,
MD, USA) amplified polymorphic DNA (RAPD) analysis was performed using Taq DNA
polymerase with a standard Taq buffer. The amplification profile was 92 ◦C for 1 min, 35 ◦C
for 1 min, and 72 ◦C for 2 min, and the cycle was repeated 39 times. The RAPD primer used
in this assay was OPC20 (ACT TCG CCA C) [54]. PCR products were run in 1% agarose
gel, and images were taken under UV light in a gel dock.

2.6. Statistical Analysis

For each assay, the means of four to five replicates were calculated; error bars represent
the standard error of the mean. A one-way analysis of variance (one-way ANOVA) followed
by Duncan’s multiple comparison test was used to determine statistical significance at
p < 0.05 across all treatments. For gene expression, a Student’s t-test was used to determine
statistical difference (p < 0.05 or p < 0.01) between the control and each treatment.
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3. Results and Discussion
3.1. C3N4 Characterization

Figure 1A,B shows the morphology of the synthesized C3N4. The FTIR spectra demon-
strate characteristic peaks at 810 cm−1 and 1600–1200 cm−1 (Figure 1C), corresponding
to the breathing mode of triazine units and the stretching mode of CN heterocycles, re-
spectively [55]. All of this indicates successful C3N4 synthesis. The zeta potential value
indicates that C3N4 was negatively charged (−18 to −24 mV in both deionized water and
nutrient solutions); half-strength Hoagland’s solution further decreased the zeta potential
as compared with deionized water. The hydrodynamic diameters of C3N4 in half-strength
Hoagland’s solution and deionized water were similar at 50 mg/L. However, at 250 mg/L,
the hydrodynamic diameters of C3N4 in half-strength Hoagland’s solution and deionized
water were decreased to approximately 600 and 250 nm, respectively (Figure 1D). The
possible explanation could be that a high concentration of C3N4 simply formed large
aggregates, which could settle faster in the solution.
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3.2. Fresh Biomass

After a 14-day exposure, 50 and 250 mg/L C3N4 stimulated the growth of rice as
plants grew better than the untreated controls (Figure S1). In the treatments with Cd or As,
phenotypic images show overt phytotoxicity to rice in terms of the shoot size; the addition
of different concentrations of C3N4 alleviated both As- and Cd-induced toxicity and notably
elevated the aboveground biomass (Figure 2A,B). In the C3N4 alone treatment, exposure to
250 mg/L increased the fresh mass of roots and shoots by 17.5% and 25.9%, respectively.
Although the presence of 50 mg/L C3N4 also increased the fresh weight of both tissues,
large variance across the five biological replicates caused the statistical significance to be
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elusive. In the heavy metal alone treatments, both Cd and As resulted in 26–38% and
49–56% decreases in rice root and shoot biomass, respectively, when compared with the
corresponding control (Figure 2C,D). It is notable that Cd induced greater phytotoxicity to
rice than As. However, the addition of different concentrations of C3N4 alleviated the heavy
metal-induced toxicity, leading to significant increases in aboveground biomass in a dose-
dependent fashion. The addition of 250 mg/L C3N4 increased the Cd-treated root and shoot
fresh mass by approximately 47% and 50%, respectively, relative to the Cd alone treatment
(Figure 2C,D). Similarly, approximately 51% and 29% increases were evident in As-treated
roots and shoots upon exposure to 250 mg/L C3N4 (Figure 2C,D). Similarly, Hao et al.
(2021) reported that the addition of 200 mg/L C3N4 increased the shoot height and root
length of Cd-treated rice by 14% and 42%, respectively, relative to the Cd alone treatment.
Additionally, the authors reported a 20% increase in rice fresh weight upon cotreatment
with Cd and C3N4, but a low dose of C3N4 (20 mg/L) had no impact on enhancing the
biomass of Cd-treated rice [45]. Nanoscale biochar amendment also increased the dry
weight of Cd-treated rice tissues by approximately 20–40% relative to the Cd control; the
pigment content in the Cd-treated rice showed a dose-dependent increase with greater
nanoscale biochar doses [38]. Conversely, although alkaline fertilizer amendment with
or without Mn reduced Cd accumulation in rice, the yield was not significantly altered
as compared with the Cd control [56]. The coexposure of nanomaterials and an organic
contaminant, TiO2 NPs, also alleviated the tetracycline-induced toxicity to Arabidopsis and
rice [57,58], suggesting the significant potential of nanoscale materials as amendments for
soil remediation, or alleviated heavy metal phytotoxicity.
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3.3. Cd and As Content in Rice Tissues

In the As and Cd alone treatments, the shoot and root Cd contents were 105 and
1643 mg/kg, which were 3.5- and 2.3-fold of the As contents in shoot and root tissues, re-
spectively (Figure 3). The Cd and As contents in rice tissues were reduced upon exposure to
250 mg/L C3N4, particularly the roots (Figure 3). For example, addition of 250 mg/L C3N4
decreased the Cd contents in roots and shoots by 32% and 35%, respectively, as compared
with the control. However, due to large variance of the shoot Cd content, the decrease was
statistically insignificant as compared with the Cd alone treatment (Figure 3A). Similarly,
250 mg/L C3N4 resulted in approximately 25% and 36% decrease in As in the roots and
shoots, respectively (Figure 3B), clearly demonstrating the potential of C3N4 to alter the
heavy metal and metalloid uptake and distribution in rice. It is worth noting that the Cd
and As translocation factors were not significantly altered as compared with the respective
metal controls (data not shown). Exposure to 50 mg/L C3N4 had no impact on Cd and As
contents. Yue et al. (2020) also reported that nanoscale biochar beyond 500 mg/kg reduced
the Cd content in rice tissues by more than 50% and significantly outperformed bulk-sized
biochar [38]. Metal-based NPs have also been shown to decrease the bioavailability of
heavy metals to crop species. Sharifan et al. (2019) demonstrated that ZnO NPs’ exposure
reduced the Cd contents in lettuce roots and shoots by 49% and 30%, respectively [59].
Similarly, both bulk- and nano-sized TiO2 NPs reduced the Pb accumulation in rice [60]. In
the current study, we hypothesize that the adsorption of As and Cd onto the C3N4 surface
in the rhizosphere subsequently reduces metal bioavailability [43].
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asterisk “*” indicates the significant difference between control and each treatment at p < 0.05 using a Student’s t-test.

3.4. Macro- and Micronutrient Content Analysis in Rice Tissues

Both macro- and micronutrients are involved in critical metabolism and development
processes throughout the plant life cycle [61]. Upon exposure to abiotic stressors, such
as heavy metals, displacement of nutrient uptake and distribution in rice could result in
phytotoxicity and may trigger plant defense mechanisms. Consequently, the macro- and
micronutrient contents of rice tissues upon coexposure to Cd or As and C3N4 were mea-
sured. Exposure to both Cd and As significantly altered rice root and shoot macronutrients,
although the observed changes were metal specific (Figure 4 and Figure S2). For example,
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exposure to Cd increased shoot P content by more than 90% as compared with controls,
regardless of the C3N4 presence (Figure 4B), whereas no difference was found with As
treatments (Figure 4B). Similarly, the shoot S content was increased by more than 40%
and 60% upon Cd treatments as compared with the control and the As treatments, respec-
tively (Figure 4D). Exposure to As led to decreases in the tissue macronutrient content
relative to the Cd treatments. For example, the lowest K contents in both roots and shoots
were evident in the As-treated tissues, regardless of the presence of C3N4 (Figure S2C,D).
Similar results were also observed for the shoot S, Ca, and Mg contents (Figure 4D,F and
Figure S2B). Importantly, the addition of C3N4 had little impact on macronutrient content,
the exception being shoot S and Ca in the 250 mg/L C3N4 treatment, where the contents
were significantly higher than those in the control (Figure 4D,F).
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Figure 4. The contents of macronutrients in rice roots and shoots upon exposure to As and Cd with or without the addition
of C3N4. (A,C,E) represent the P, S, and Ca contents in rice roots across all treatments, respectively. (B,D,F) represent the P,
S, and Ca contents in rice shoots across all treatments, respectively. Values of each nutrient content in shoots followed by
different letters are significantly different at p < 0.05.

In general, changes to the tissue micronutrient content were of a lesser magnitude than
those to the macronutrient content, although some statistically significant changes were
evident (Figure 5). For example, the Cu contents in roots cotreated with As and C3N4 were
significantly lower than those in the control (Figure 5A). Similarly, root Fe content in the Cd
treatments with or without C3N4 was increased by more than 100% relative to the control
(Figure 5C); additionally, 50–80% increases in the shoot Zn contents were found in the Cd
treatments, regardless of C3N4 exposure (Figure 5G). In comparison with Cd, As exerted
less impact on micronutrient displacement in rice, the exception being shoot Fe, where the
Fe content was decreased by 20% relative to the control (Figure 5D). Overall, the nutrient
analysis demonstrates that heavy metal exposure can induce nutrient displacement in rice
and that C3N4 amendment has little impact on these alterations.
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Figure 5. The contents of micronutrients in rice roots and shoots upon exposure to As and Cd with or without the addition
of C3N4. (A,C,E,G) represent the Cu, Fe, Mn, and Zn contents in rice roots across all treatments, respectively. (B,D,F,H)
represent the Cu, Fe, Mn, and Zn contents in rice shoots across all treatments, respectively. Values of each nutrient content
in roots followed by different letters are significantly different at p < 0.05.

Nutrient displacement and dysfunction induced by exposure to heavy metals or other
contaminants can severely compromise crop health. For example, tetracycline reduced the
macronutrient (K, P, and S) contents of rice by approximately 20% relative to the control [58].
High doses of metal-based NPs, such as Ag, CeO2, and In2O3, can significantly decrease
Fe content and subsequently compromise plant metabolism [49,62]. No published studies
have reported on the levels of mineral nutrients in crops affected by C3N4 exposure. It is
worth noting that the addition of C3N4 had little impact on nutrient accumulation in rice,
suggesting that the mode of action may be through stabilization of heavy metals in soils.

3.5. Plant Molecular Response
3.5.1. RAPD Analysis upon Exposure to C3N4 and Heavy Metals

RAPD was employed to assess the potential of both C3N4 and heavy metals to induce
DNA damages in rice. In shoot tissues, the amplicon sizes of all bands were between
500–1500 bp, and there were no significant changes in the total number of DNA bands
across all C3N4 and heavy metal treatments relative to the control. In root tissues, the
presence of Cd significantly altered the total number of DNA bands. Two additional DNA
bands (>1500 bp) were evident in the Cd alone treatment, and one band (>1500 bp) was
found in the cotreatment with Cd and C3N4. Conversely, the total number of DNA bands
was unchanged upon As treatment (Figure S3), indicating that Cd had more negative
impact on rice DNA than As. C3N4 had no significant impact on the total number of DNA
bands in rice tissues. These findings align with those of Venkatachalam et al., who reported
that 50 mg/L Cd caused an additional band at 1100 bp in exposed Leucaena leucocephala
seedlings; conversely, ZnO NPs alone had no impact relative to the control [30]. Mosa et al.
(2018) used three different primers (OPA7, OPA8, and OPA9) in cucumber to demonstrate
that copper NPs induced additional bands as compared with the corresponding control,
suggesting that copper NPs can also cause genomic alteration [63].

3.5.2. Relative Expression of Cd and As Transporters

In order to explore the underlying mechanisms by which C3N4 altered heavy metal
accumulation in rice, the relative expressions of Cd- and As-related transporters in root and
shoot tissues were evaluated (Figure 6, Figure 7, Figure S4 and S5). The relative expression
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of rice iron-regulated transporter 1, OsIRT1, in roots in the Cd alone treatment was upregu-
lated by approximately threefold of the control; however, the addition of C3N4 reduced this
expression by 25% (Figure 6A). No difference was noted in the expression of the other IRT
gene (OsIRT2) in the roots with Cd alone or with coexposure to C3N4 (Figure 6B). However,
the addition of C3N4 significantly reduced the Cd-related transporter expression of rice
heavy metal P-type ATPases (OsHMA2 and OsHMA3) and natural resistance-associated
macrophage protein 5 (OsNramp5) in metal-treated roots (Figure 6C,D,F). The expression of
OsNramp1 was rather insensitive to Cd exposure, with an expression increase less than 50%
of the control. Although C3N4 slightly increased the OsNramp1 expression, the increase was
also less than 50% as compared with the control and the Cd alone treatment (Figure 6E).
In the shoots, the relative expression of Cd-related transporters was not significantly up-
regulated upon exposure relative to the control (Figure S4A–E), with the exception being
OsNramp5, whose level was approximately 50% higher than that of the control (Figure S4F).
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Figure 6. The relative expression of Cd transport-associated genes in rice roots upon exposure to Cd with or without
the addition of C3N4. (A,B) represent the relative expression of Fe-regulated transporters IRT1 and IRT2, respectively, in
roots. (C,D) represent the relative expression of heavy metal ATPases HMA2 and HMA3, which mediate the Cd loading
and translocation from roots to shoots, in roots. (E,F) show the relative expression of the natural resistance-associated
macrophage proteins Nramp1 and Nramp5, respectively, in rice roots affected by As and C3N4. Single asterisk “*” indicates
the significant difference between control and each treatment at p < 0.05; double asterisks “**” indicate the significant
difference between control and each treatment at p < 0.01 using a Student’s t-test.

With regard to As-related transporters (both arsenite and arsenate), exposure to As
induced upregulation of rice nodulin 26-like intrinsic proteins, OsNIP1;1, and phosphate
transporter, OsPT4, in the roots relative to the control (Figure 7D,E). Either the expression of
the remaining genes was increased by less than 50% of the control, or no change was evident
upon exposure to As and C3N4 (Figure 7A–C). Downregulation of the OsPT8 expression
was evident in both the As alone and cotreatment with C3N4 (Figure 7F). Similarly, in shoots
the regulation of As-related transporters in the As treatments was similar to the control
(<50% change) (Figure S5). However, the addition of C3N4 downregulated the expression
of low silica transporters, Lsi1 and Lsi2, and OsPT4 in shoot tissues (Figure S5A,B,E).
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Figure 7. The relative expression of As transport-associated genes in rice roots upon exposure to As with or without
the addition of C3N4. (A–C) represent the relative expression of the Si transport-related genes (Lsi1, 2, and 6), which
have a demonstrated association with arsenite transport in roots. (D) shows the relative expression of nodulin 26-like
intrinsic proteins (NIPs1;1) associated with arsenite uptake in roots. (E,F) show the relative expression of the Pht1 family
genes, OsPT1 and OsPT8, involving arsenate uptake, respectively, in rice roots as affected by As and C3N4. Single asterisk
“*” indicates the significant difference between control and each treatment at p < 0.05; double asterisks “**” indicate the
significant difference between control and each treatment at p < 0.01 using a Student’s t-test.

The expression and function of genes involved in Cd and As transport in rice have
been extensively studied. In the present work, exposure to Cd upregulated both OsIRTs in
rice, which is consistent with the amounts of Fe and Cd detected in rice tissues. Similar
results were reported by Jiang et al. (2020), who demonstrated that Cd transporter-related
genes were elevated in rice upon exposure to Cd, while the presence of glutamate lowered
their expression and consequently reduced the Cd uptake [52]. Ma et al. (2016) also demon-
strated that the expression of Fe-related transporters in Arabidopsis was downregulated
upon CeO2 NP treatment, which could explain the reduced Fe content as compared with
the control [49]. Regarding As, aquaporin-related genes in wheat and tomato were notably
upregulated upon exposure to graphene and As; additionally, coexposure to these two ana-
lytes could result in relatively higher expression of these genes relative to the single analyte
treatments [64].

4. Conclusions

In summary, C3N4 significantly alleviated Cd- and As-induced phytotoxicity to rice
without exerting any additional or unique negative impact on plant growth as determined
by phenotype and biomass. In addition, C3N4 modulated the expression of Cd and As
transporter genes and subsequently reduced contaminant accumulation or bioavailability,
offering one of the mechanistic insights into the observed effects. Further investigation
evaluating grain yield and quality in rice coexposed to heavy metals and C3N4 is warranted.
Overall, the present work demonstrates that C3N4 nanosheets are able to alleviate the
phytotoxicity and reduce the accumulation of Cd and As in rice. Therefore, the use of C3N4
is a promising material to be studied as a sustainable and safe nano-enabled strategy for
reducing heavy metal accumulation in important food crops grown in contaminated soils.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/4/839/s1, Figure S1: Phenotypic image of rice treated with 50 and 250 mg/L C3N4 for 14 days;
Figure S2: The content of macronutrients (Mg and K) in rice roots and shoots upon exposure to

https://www.mdpi.com/2079-4991/11/4/839/s1
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As, Cd with or without the addition of C3N4; Figure S3: Random Amplified Polymorphic DNA
(RAPD) analysis with random oligonucleotide primer OPC20; Figure S4: The relative expression
of Cd transport-associated genes in rice shoots upon exposure to Cd with or without the addition
of C3N4; Figure S5: The relative expression of As transport-associated genes in rice shoots upon
exposure to As with or without the addition of C3N4; Table S1: A list of used primers.
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