
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Environmental Conservation Faculty Publication 
Series Environmental Conservation 

2020 

Forecasting Seasonal Habitat Connectivity in a Developing Forecasting Seasonal Habitat Connectivity in a Developing 

Landscape Landscape 

Katherine A. Zeller 

Jacan M. Bauder 

Javan M. Bauder 

Stephen Destefano 

Follow this and additional works at: https://scholarworks.umass.edu/nrc_faculty_pubs 

 Part of the Environmental Monitoring Commons, and the Natural Resources and Conservation 

Commons 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/nrc_faculty_pubs
https://scholarworks.umass.edu/nrc_faculty_pubs
https://scholarworks.umass.edu/eco
https://scholarworks.umass.edu/nrc_faculty_pubs?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=scholarworks.umass.edu%2Fnrc_faculty_pubs%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages


land

Article

Forecasting Seasonal Habitat Connectivity in a
Developing Landscape

Katherine A. Zeller 1,*,† , David W. Wattles 2, Javan M. Bauder 3 and Stephen DeStefano 1

1 Massachusetts Cooperative Fish and Wildlife Research Unit, Amherst, MA 01003, USA;
sdestef@eco.umass.edu

2 Massachusetts Division of Fisheries and Wildlife, Westborough, MA 01581, USA; dave.wattles@mass.gov
3 Illinois Natural History Survey, Champaign, IL 61820, USA; jbauder@illinois.edu
* Correspondence: Katherine.zeller@usda.gov
† Current affiliation: Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station,

USDA-Forest Service, Missoula, MT 59801, USA.

Received: 18 June 2020; Accepted: 13 July 2020; Published: 18 July 2020
����������
�������

Abstract: Connectivity and wildlife corridors are often key components to successful conservation
and management plans. Connectivity for wildlife is typically modeled in a static environment that
reflects a single snapshot in time. However, it has been shown that, when compared with dynamic
connectivity models, static models can underestimate connectivity and mask important population
processes. Therefore, including dynamism in connectivity models is important if the goal is to
predict functional connectivity. We incorporated four levels of dynamism (individual, daily, seasonal,
and interannual) into an individual-based movement model for black bears (Ursus americanus) in
Massachusetts, USA. We used future development projections to model movement into the year
2050. We summarized habitat connectivity over the 32-year simulation period as the number of
simulated movement paths crossing each pixel in our study area. Our results predict black bears will
further colonize the expanding part of their range in the state and move beyond this range towards
the greater Boston metropolitan area. This information is useful to managers for predicting and
addressing human–wildlife conflict and in targeting public education campaigns on bear awareness.
Including dynamism in connectivity models can produce more realistic models and, when future
projections are incorporated, can ensure the identification of areas that offer long-term functional
connectivity for wildlife.

Keywords: dynamic connectivity; black bear; Ursus americanus; individual-based movement model;
IBMM; GPS-telemetry; wildlife; corridor; agent-based model

1. Introduction

In a developing world, providing connectivity for wildlife is widely recognized as an important
component of successful conservation and management plans [1,2]. Connectivity allows wildlife to
access resource patches during day-to-day movements, facilitates dispersal, encourages gene flow,
and allows for range shifts and range expansion [2,3]. Connectivity, the implementation of which
ranges from a single road crossing structure to large landscape corridors, is being included as a key
part of many conservation plans [4], but well-connected protected areas are still relatively rare and
globally fall well short of the Aichi Target 11 of the Convention on Biological Diversity [5]. More
connectivity plans are therefore encouraged—and one of the components of successful connectivity
plan implementation is the inclusion of one or more focal wildlife species [4].

Connectivity for wildlife is typically modeled in static environments and estimated for a single
snapshot in time (e.g., [6,7]). However, wildlife responses to landscapes are inherently dynamic, as
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are the landscapes themselves (e.g., [8]). Dynamism can also exist among individuals. For example,
individuals from the same population may have differing responses to the same landscape features [9,10],
driven by differences among males and females, age classes, spatial locations, or temperament (e.g.,
boldness) [10–12]. There may also be differing behaviors and responses to landscape features
throughout a diel period and across seasons [11,13]. In addition, interannual variability may exist due
to disturbance-succession processes, climatic variation, human development, and other landscape
changes [14]. All these types of dynamics may interact to affect functional habitat connectivity for
a species.

Incorporating dynamism into wildlife connectivity models is important for several reasons. First,
it allows for more realistic modeling and accurate estimates of connectivity. Dynamic connectivity
models can increase our understanding of temporal changes in connectivity and population processes
across space and time [15,16]. Simulation studies have found that static connectivity models can
underestimate connectivity by an average of 30% compared with models that include space and
time [16], and that dispersal-limited species may have a lower extinction threshold when modeled with
dynamic landscapes compared to static ones [17]. Empirical studies have found that the importance of
connectivity for wildlife population dynamics may be masked or misunderstood in static landscapes
and therefore underestimated as a conservation need [15,18,19]. Furthermore, corridors derived from
static connectivity models may differ substantially from those derived from dynamic models, resulting
in a reduction of functional connectivity and a potential misallocation of conservation resources.

Dynamic connectivity can be modeled using different connectivity algorithms such as least-cost
paths [20,21], resistant kernels [22], circuit theory [23,24], and, increasingly, individual-based movement
models (IBMMs; e.g., [25,26]). In cost-path, kernel, and circuit theory approaches, resistance surfaces
are typically derived for different temporal periods and connectivity is analyzed separately for each
(e.g., [13,27]). The use of IBMMs is attractive because they provide a more mechanistic representation
of functional connectivity by simulating the sequential movements of individuals in response to
context-specific environmental conditions [28,29]. This allows simulated individuals to respond to
a dynamic environment within a single model, resulting in a single summary output. Simulating
sequential movements of individuals may be important for understanding movement response to
future environmental conditions [30]—especially spatiotemporal dynamics of distributional shifts (e.g.,
range expansion, reintroductions) where the leading edges of species’ distributions are conditional upon
individual locations at a given point in time [26,31]. IBMMs can also be parameterized with empirical
data allowing for realistic simulations of movement and behavior for a population of interest [32].
Furthermore, the emergence of higher order patterns (e.g., home range size) from individual-level
behaviors allows simulated patterns to be compared against empirical estimates of those patterns as a
form of model calibration [33,34]. Connectivity estimates from IBMMs can be obtained by calculating
the number or density of individuals moving through every pixel on the landscape [25,26,35].

We incorporated individual, daily, seasonal, and interannual dynamics into an IBMM for black
bears (Ursus americanus) in the Commonwealth of Massachusetts, USA, to predict statewide functional
connectivity. The black bear range in the state is expanding toward the greater Boston metropolitan
area (MassWildlife unpublished data: https://www.mass.gov/service-details/learn-about-black-bears)
and our goal was to predict movement routes and colonization in this expanding range. We simulated
present-day and future movement on an annual basis from the current time step to the year 2050 and
incorporated projected changes in human development into our models. We summarized density
of movement from the IBMMs and identified areas where movement is likely to be concentrated in
the future. Because black bears in Massachusetts are expanding their range towards more populated
areas of the state, this information will be useful to managers for predicting and responding to
human–wildlife conflict, as well as for targeting education campaigns.

2. Data and Methods

All analyses were conducted in R software [36].

https://www.mass.gov/service-details/learn-about-black-bears
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2.1. Black Bear Data

Empirical data for parameterizing the IBMMs were from GPS-collared female black bears in
central and western Massachusetts. Black bears were fitted with Telonics Gen 3 or Gen 4 collars
programmed to acquire a fix every 45 min. Collar data was collected from 34 individuals between 2012
and 2017, totaling 65 bear-years (collar duration, number of fixes, and other collar information are
provided in Appendix A). The GPS data were assessed for positional accuracy and fixes from the Gen 3
collar were removed if the position dilution of precision (PDOP) was > 5. Fixes from the Gen 4 collars
were removed if the fix was unresolved, if the fix had a PDOP > 5 and was uncertain or was a 2D fix,
or if the fix had a PDOP > 20 and was a certain or 3D fix. This filtering was performed to minimize the
locational error to < 100 m and resulted in a mean data loss of 3.93% [37,38]. More capture, handling,
and data processing procedures are detailed in Zeller et al. [11].

2.2. Resistance Surfaces

The IBMMs were modeled across resistance surfaces representing the ease or difficulty of bear
movement across each grid cell in the study area. Individual black bears have varying movement
responses to landscape features during different seasons and different times of day, which may translate
into different resistance surfaces for each season/diel period [11]. Bears in our study area hibernate in
the winter, and during the nonhibernation period they move the least in the spring and the most in the
summer [11]. Movement response to different land cover types also changes seasonally [11]. During a
24-h period, bears tend to move more during the day than at night. However, daily movement patterns
in our study area may change with season and for different land cover types [11]. To incorporate these
movement dynamics into the IBMMs, we used six previously developed resistance surfaces reflecting
bear movement: (1) spring/day, (2) spring/night, (3) summer/day, (4) summer/night, (5) fall/day, and (6)
fall/night (Appendix B).

The resistance surface for each season/diel period was derived through the following four-step
procedure (full details in Zeller et al. [11]). First, a step selection function was developed for each
individual bear using only data for that season/diel period. Second, the step selection function was
used to project the probability of movement across the study area. Third, the movement probability
surfaces were combined across bears in a spatially-weighted approach following Osipova et al. [10]
so that spatial differences in bear behavior and movement were maintained across the study area.
Specifically, we created a Euclidean distance surface for each bear during each season/diel period
from the centroid of that bear’s season/diel minimum convex polygon home range. We then took the
inverse distance values and normalized them to sum to 1 across each surface and used the resulting
surface to weight the individual movement probabilities at each grid cell. We summed the weighted
movement probability surfaces to create a combined movement probability surface. Fourth, we created
a resistance surface by calculating the linear inverse of the combined movement probability surface.
These resistance surfaces have low resistances in grid cells with a high probability of movement and
high resistances in grid cells with a low probability of movement. Resistance surfaces were rescaled
from 0–1 to 1–10 for use in the IBMMs.

2.3. Step Length Distributions

The movement kernels for our IBMMs were based on empirical step length distributions from
the collared bears. Bears in our study area move most in the summer and during daytime periods
compared with other seasons and nighttime periods [11]. To reflect these differences, we calculated
movement distributions for the same six seasons/diel periods as the resistance surfaces. Black bear step
lengths followed a Pareto distribution and the shape and scale parameter of the Pareto distribution
were estimated for each season/diel period with the gpd.fit function of the gPdtest package ([39];
Appendix D; Figure A2).
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2.4. Individual-based Movement Model

The Massachusetts Division of Fisheries and Wildlife estimates there are approximately 5000 black
bears in the western and central parts of the state (unpublished data). The highest density of bears is
to the west of the Connecticut River, with densities diminishing to the east. An ‘expanding’ range
has also been identified, which has a low number of recently established bears (Figure 1). To reflect
these density changes, and the fact that we are only modeling female bears, we distributed 2000
simulated individuals to the west of the Connecticut River, 990 in the established range to the east of the
Connecticut River, and 10 in the expanding range. Start points of these 3000 individuals were sampled
probabilistically on the spring/day probability of movement surface (Figure 1). We assume that, by
simulating females from home range data, our results will be conservative in terms of movement
propagation. However, the focus on female movement is important at the expanding edge of ranges
since they determine population establishment and whether reproduction is occurring in these areas.
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Figure 1. Black bear range in Massachusetts and distribution of start points for 3000 simulated
individuals. In the western range, 2000 individuals were initiated, in the eastern range, 990, and in the
expanding range, 10.

We used a resistance kernel-based approach [22] to simulate individual bear movements that
combined our empirical distributions of step lengths with our dynamic resistance surfaces to estimate
the probability of an individual moving to any given pixel based on the intervening resistance values.
At the beginning of each time step we first built a resistance kernel at the start point of each individual.
We determined the individual’s maximum movement potential (i.e., the extent of the kernel) during a
single time step in resistance distance units defined as the 97.5th quantile of the Pareto distribution
derived from the parameters of the appropriate season/diel period. We hereafter refer to this quantity
as an individual’s ‘bank account.’ We then calculated the resistance distance of every grid cell in the
study area from the start point using the rawspread function in the gridprocess package [40] (Figure 2a).
The extent of the resistance kernel stops when the bank account reaches a value of 0. In areas of low
resistance, the bank account will be spent more slowly allowing the kernel to spread farther than in
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areas of high resistance. The output from the rawspread function provides a surface of proximity values
to the start point. Therefore, we subtracted the values from one to obtain a resistance distance kernel.
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Figure 2. Procedure for simulating one step for the black bear individual-based movement models
(IBMMs). From a start point on the resistance surface, (a) we applied and took the inverse of the
rawspread function [40] which calculates resistance distance from the start point. We then (b) applied
the Pareto density function of the appropriate diel period and season to the resistance distance
surface to create a movement probability kernel and transformed the kernel to sum to 1. We then (c)
probabilistically sampled a destination (end) point on the movement probability kernel.

We converted these resistance distance values to relative probability values using the Pareto
distribution parameters of the appropriate season/diel period. This produced our final movement
probability kernel (Figure 2b). The destination point (end point) for that time step was sampled from
the movement probability kernel with the strata function of the sampling package (Figure 2c; [41]). This
point then became the new start point and the procedure was repeated. We simulated steps for each
bear at 45-min intervals from April 1 to November 15, the average den emergence and entry dates for
our sample of bears, for a total of 7296 steps per individual. We started simulations on the spring/day
resistance surface. We then alternated between the night resistance surface and Pareto parameters
and the day resistance surface and Pareto parameters every 16 time-steps. We replaced the resistance
surface and Pareto parameters from the spring with those of the summer at the 2369th time step and
those of the summer with those of the fall at the 4172th time step. These changes corresponded with
ecologically identified seasons for our collared population of black bears and with the dates of the GPS
data used to estimate the seasonal resistance surfaces (see [11]).

We also describe the IBMM procedure with the standardized Overview, Design Concepts, and
Details (ODD) protocol recommended by Grimm et al. [42,43] in Appendix D.
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2.5. Model Validation and Calibration

We calculated the step lengths and minimum convex polygon home range sizes of our simulated
individuals and compared them with our empirical sample of bears (described above) to determine
how well our IBMMs represented movement and space use of black bears in our study area. Our first
simulations resulted in comparatively short step lengths and small home range sizes (Appendix E). This
is expected because the probability distribution (i.e., our Pareto distributions) used with a resistance
kernel represents the maximum movement potential of an individual in a theoretical landscape with
resistance = 1. In contrast, the observed step lengths used to estimate our Pareto distribution parameters
occurred within real heterogeneous landscapes with varying resistances. Parameterizing a resistance
kernel with an observed distribution of step lengths will therefore underestimate an individual’s
movement potential and the extent of the movement probability kernel when applied to real resistant
landscapes. Because we were unable to estimate the distribution of black bear step lengths in a
nonresistant landscape, we increased the scale parameter of the Pareto distributions by 10% to allow
our resistance kernels to more closely approximate a black bear’s maximum daily movement potential.
This resulted in more realistic step lengths and home range sizes. Increasing the scale parameter above
10% resulted in unrealistically large home range sizes (Appendix E).

2.6. Future Projections

We used data from the Designing Sustainable Landscapes project (DSL, [44]) to incorporate future
landscape change and predict bear movement on the expanding edge of their range in Massachusetts.
The DSL urban growth model simulated human development across the northeastern US at 10-year time
steps from 2020 to 2080 [45]. Resultant development categories were low-, medium-, and high-density
development. We used the years 2020–2050 for our analysis. In the current time step, low-, medium-,
and high-density development measured 5.5%, 3.7%, and 1.4% of the study area. In 2050, these
development categories increased to 6.8%, 4.7%, and 2.5%, a percent increase of 24%, 27%, and 79%
respectively. Over this time period, the human population in the state is projected to grow by at least
6% [46].

Most of our individual bear step selection function (SSF) models had development variables that
matched the DSL categories. In those individuals, we used the DSL output directly in our future
projections. However, approximately 30% of bear SSF models identified percent impervious surface
as the most influential development variable. Therefore, we also transformed the DSL projections
into percent impervious surfaces by reclassifying the low-, medium-, high-density development to
25%, 50%, and 100% impervious surface respectively. We combined these new percent impervious
surfaces with our current (2019) percent impervious surface layer for each of the four future projection
time steps. We predicted the SSF models for each bear for each season/diel period with these future
projections, combined the projected probability of movement surfaces, and transformed them into
resistance surfaces as described above.

We considered our first year of simulation to be 2019 and we simulated bear movement annually
from 2019–2050. We used the last point from each simulated individual from the previous year as
the start point for simulations in the next year. The 2020 resistance surfaces were used for the years
2020–2029, the 2030 resistance surfaces for 2030–2039 and so on. We summed the number of individual
simulated paths crossing a pixel for each year and across all years to develop a movement density
surface. Paths were derived by connecting all consecutive simulated points for each individual in
each year.

3. Results

Our simulated individuals had a mean step length of 82.53 m (range: 0–2249 m) and a mean
home range size of 77.97 km2 (range: 6.85–228.44 km2). Our empirical bears had a mean step length
of 193.34 m (range: 0–1998 m) and a mean home range size of 62.51 km2 (range: 5.47–260.55 km2).
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Therefore, step lengths in our simulated bears are shorter, but home ranges are slightly larger than the
empirical data. However, we did not include memory, territoriality, or interactions with conspecifics
in our IBMMs and would therefore expect slightly shorter step lengths and larger home range sizes.
Movement patterns and space use were visually similar among our simulated and empirical bears
(e.g., Figure 3).
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Figure 3. Examples of empirical black bear paths (in black) and simulated black bear paths in the same
area (in blue). The background map shows roads in white, water bodies in dark grey and conserved
lands in green.

Projected human development from 2020 to 2050 resulted in fewer areas of low resistance and
more areas of high resistance for bears. Across seasons and diel periods, the area covered by pixels
with the lowest resistance values (1–2) decreased by an average of 32%, while the area covered by
pixels with the highest resistance values (9–10) increased by an average of 159%.

Black bear space use in Massachusetts expanded eastward over the 32 years of simulations
(Figure 4). Our results indicate that bear use may increase substantially in two relatively large areas in
the expanding part of bear range (Figure 4e, large yellow circles). The first is from I-190 in the west to
the Assabet River National Wildlife Refuge in the east and from State Route 2 in north to I-290 in the
south. The second is from I-84 in the west to State Route 146 in the east, and I-90 to the north to the
Connecticut and Rhode Island borders in the south. Two smaller areas also may see an increase in
black bear use, the area just to the west of I-95 and the Cambridge Reservoir, and the area around the
town of Carlisle, Massachusetts (Figure 4e, small yellow circles).
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Figure 4. Per-pixel sum of simulated black bear paths for (a) 2019, (b) 2030, (c) 2040, (d) 2050, and (e)
all years (2019 to 2050). From west to east, the black polygons represent black bear range to the west of
the Connecticut River, to the east of the river, and the expanding range. Yellow circles indicate areas
with substantial future black bear use in their expanding range. The locations of the two larger and
smaller circles are described further in the Results section.

4. Discussion

We used an IBMM to model dynamic habitat connectivity for female black bears in Massachusetts,
USA and found that black bears have high future movement potential within and beyond their
expanding range in the state. We were able to incorporate individual, daily, seasonal, and interannual
dynamics into our IBMM. Individual black bear differences were captured in the resistance surfaces
used in the IBMMs by using the spatially-weighted approach presented by Osipova et al. [10]. This
approach allows responses to landscape features to change depending on location. For example, bears
in more developed areas of the state show lower avoidance of human development than more rural
bears [11] and these differences are captured in these weighted surfaces. We also used resistance
surfaces and movement parameters for two times of day and three seasons to capture movement and
behavioral differences during these different periods. Lastly, we incorporated interannual dynamics by
modeling IBMMs annually and incorporating future human development projections at 10-year time
steps. By combining these four levels of dynamism, we were able to create realistic movement models
and predict future connectivity.

IBMMs are well suited for modeling dynamic connectivity. As we demonstrated, they allow
individuals to respond to changeable landscape features at different time steps and can integrate
daily, seasonal, and interannual changes within a single model. More fundamentally, IBMMs allow
population-level responses to emerge from the decisions made by thousands of individuals in response
to local environmental conditions. This provides a more mechanistic approach for estimating dynamic
landscape patterns of resource use and movement and, ultimately, functional connectivity. [32,47].
IBMMs have been used in this way to model dispersal corridors for 55 generations of little owls (Athene
noctua) in Germany and Switzerland [26], connectivity under different land management scenarios for
bighorn sheep (Ovis canadensis) in British Columbia, Canada [48], and connectivity for coral reef larvae
using daily ocean current velocity data and different dispersal capabilities [25].
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Modeling connectivity in a static environment may mask the importance of connectivity for
maintaining wildlife population dynamics and may result in identifying corridors that are only
periodically functional [15,16,18]. Because of the vast resources needed to conserve some wildlife
corridors, it is not only important to model these corridors in a way that reflects behavioral and
landscape dynamics, but also to ensure the longevity of these corridors into the future. To this end, we
included future development projections in our IBMM and summarized connectivity at our final time
step. If connectivity is being modeled at each time step separately (as with cost path, resistant kernel,
or circuit theory approaches; e.g., [10,13]), identifying areas of consistent connectivity regardless of
development or climate change is key to prioritizing conservation for long-term persistence of wildlife
movement (e.g., Jennings et al. this issue).

Our IBMM was built using empirically derived resistance surfaces and movement step lengths
and simulated reasonably realistic patterns of black bear movement and space use. Nevertheless,
we recognize several areas in which our model could be improved. Our empirical population was
comprised of females and all observed movements were within-home-range movements. Including
males, especially young dispersers, would have likely resulted in longer step lengths and more
movement. Female bears do not typically disperse far from their natal ranges [49,50]. However, this
philopatry may be density dependent and females may disperse further in recently established black
bear range [51]. Given that we could only model female home range movement, our model is a
conservative approximation of movement and connectivity for our study area. Incorporating male
bears and data from dispersing individuals would increase our insights into bear movement for the
entire Massachusetts black bear population. A more direct incorporation of individual differences
could also have been included in the IBMM by calculating step lengths and Pareto parameters for
each individual bear and then assigning these parameters to each simulated individual based on a
random draw. Other improvements to our model include incorporating births, natural deaths, and
hunting take as well as different behavioral states, territoriality, and motivation [52]. Incorporating
these parameters may have resulted in step lengths and home range sizes that were further aligned
with our empirical bears, especially if step lengths were modeled as a function of land cover type.
A more accurate understanding of spatial variation in current black bear density across our study
area, particularly in the expanding portion of their range, may also improve our understanding of
future landscape use of black bears. However, given the computational demands of our IBMM, we
were unable to incorporate these model additions and are confident that our results are a reasonable
approximation of black bear movement and connectivity in Massachusetts.

5. Conclusions

Incorporating dynamism into wildlife connectivity models increases their complexity, but also
their realism. Using GPS collar data on black bears as well as future projections of human development,
we were able to include four levels of dynamism—individual, daily and seasonal, and interannual
dynamics – within a single connectivity model. The increasing availability of animal tracking data
as well as historical and future geospatial time series data increases our ability to model dynamic
connectivity for wildlife. Ensuring realism and future longevity of wildlife corridors will be important
for the success of corridor conservation initiatives in providing long-term functional connectivity
for wildlife. With our IBMM, we predicted black bears will increase their colonization within the
current boundary of their expanding range in Massachusetts and will move beyond this boundary
into uninhabited areas of the state. The model developed here might be combined with other
information to determine the location, amount, and spatial configuration of public education needed
to reduce human–bear conflicts (e.g., [53]), or where ordinances may be implemented to remove food
attractants. The model may also be used to identify road-crossing hotspots that may be the target of
mitigation measures. As black bears are expected to continue to move towards and colonize more
populated areas around the greater Boston metropolitan area, information on where this movement
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and colonization may occur is important for developing effective management strategies for preventing
human–wildlife conflict.
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Appendix A

Table A1. Female bear ID, year, and date range of GPS collars used in the analyses. Number of fixes outside the hibernation period are the number of GPS locations
acquired after cleaning data for inaccurate fixes. Number of steps used in the step selection function analysis for each season are also provided. Steps were only used
in the analysis if the start and end points of a step were at consecutive 45-min intervals, indicating that there were no missing fixes between the two locations. Steps
were only used for a season if a full season’s worth of data were available for that bear year.

ID Year Full Date Range of Data
No. Fixes Cleaned and

Outside Hibernation Period
No. Steps

Spring
No. Steps
Summer No. Steps Fall Age of Young

Start End

234 2012 2012.02.22 2013.03.11 3521 502 708 yearling

310 2012 2012.03.28 2013.02.11 4039 462 622 940 newborn

258 2012 2012.03.14 2013.02.08 3668 876 216 998 yearling

253 2012 2012.03.09 2013.02.07 4186 320 574 1068 newborn

323 2012 2012.03.21 2013.03.01 3770 748 480 608 yearling

258 2013 2013.03.17 2014.02.27 3277 338 998 newborn

298 2013 2013.04.02 2014.03.25 6503 228 860 2204 newborn

388 2013 2013.02.21 2013.09.11 4262 868 944 yearling

393 2013 2013.05.09 2014.02.24 3624 228 750 newborn

310 2013 2013.02.15 2014.03.07 4743 586 386 492 yearling

395 2013 2013.05.21 2014.01.19 3726 1234 912 newborn

391 2013 2013.05.02 2014.01.17 2786 668 606 none

356 2013 2013.05.01 2014.03.17 4410 1196 982 none

253 2013 2013.02.23 2014.03.06 5845 944 1284 1266 yearling

370 2013 2013.03.06 2014.02.28 4475 286 598 1306 newborn

323 2013 2013.03.02 2013.09.09 2307 510 504 none

355 2013 2013.03.01 2014.03.10 3452 686 622 992 newborn

373 2013 2013.03.05 2014.03.14 2727 286 598 1306 none

393 2014 2014.02.22 2015.03.02 4239 1072 748 542 yearling
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Table A1. Cont.

ID Year Full Date Range of Data
No. Fixes Cleaned and

Outside Hibernation Period
No. Steps

Spring
No. Steps
Summer No. Steps Fall Age of Young

Start End

298 2014 2014.03.26 2014.06.17 1065 552 yearling

406 2014 2014.06.19 2015.02.12 2114 482 Unknown

258 2014 2014.02.28 2015.02.17 3665 440 338 120 yearling

391 2014 2014.03.11 2015.02.10 3805 746 596 none

356 2014 2014.02.26 2015.01.08 5024 426 1214 966 newborn

373 2014 2014.03.15 2014.11.01 3365 816 466 none

269 2014 2014.02.24 2015.03.02 3481 478 yearling

355 2014 2014.03.10 2015.01.28 4693 524 756 1284 newborn

370 2014 2014.03.01 2015.01.01 3271 816 466 yearling

406 2015 2015.03.11 2016.01.05 4102 346 496 1434 newborn

426 2015 2015.05.30 2016.01.04 3647 550 1228 newborn

393 2015 2015.03.10 2015.12.01 4043 804 532 newborn

391 2015 2015.03.02 2016.01.09 5003 386 522 1380 newborn

395 2015 2015.03.05 2016.01.19 5153 436 724 1504 newborn

403 2015 2015.02.19 2015.11.23 2973 518 392 none

356 2015 2015.03.06 2015.12.13 3318 156 526 518 newborn

404 2015 2015.02.12 2015.06.18 1526 800 none

432 2015 2015.07.15 2015.12.14 2594 1026 newborn

428 2015 2015.05.01 2016.01.04 2590 668 none

425 2015 2015.05.30 2016.01.04 2110 352 newborn

373 2015 2015.03.16 2015.08.25 2632 540 580 newborn

269 2015 2015.03.13 2015.11.10 3176 336 1052 newborn

355 2015 2015.01.29 2015.12.02 802 766 488 yearling
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Table A1. Cont.

ID Year Full Date Range of Data
No. Fixes Cleaned and

Outside Hibernation Period
No. Steps

Spring
No. Steps
Summer No. Steps Fall Age of Young

Start End

436 2016 2016.03.22 2016.12.06 4492 440 1006 newborn

425 2016 2016.03.09 2016.12.13 5025 586 1156 newborn

432 2016 2016.02.16 2017.01.23 3752 758 416 yearling

424 2016 2016.03.11 2016.12.27 4320 416 808 1242 newborn

356 2016 2015.12.21 2106.12.06 3287 204 350 624 newborn

395 2016 2016.01.19 2016.12.20 4515 1302 878 1504 yearling

406 2016 2016.01.05 2016.12.06 4185 954 524 700 yearling

426 2016 2016.02.01 2016.12.26 4883 1190 yearling

433 2017 2017.02.03 2017.11.27 4211 670 704 604 none

426 2017 2017.03.09 2017.11.28 4814 518 newborn

450 2017 2017.02.23 2017.11.14 4024 386 none

476 2017 2017.07.06 2017.12.21 3092 1528 none

309 2017 2017.03.10 2017.12.01 5052 534 1400 newborn

470 2017 2017.06.16 2018.01.07 2410 392 none

424 2017 2017.02.24 2017.12.04 4415 694 848 yearling

472 2017 2017.06.20 2017.12.18 3186 822 1412 none

432 2017 2017.03.06 2017.12.05 5270 466 882 newborn

425 2017 2016.12.12 2017.11.14 4724 990 848 860 yearling

436 2017 2016.11.15 2018.01.02 4823 480 740 1206 yearling

465 2017 2017.05.27 2017.11.14 3335 856 754 yearling

451 2017 2017.03.22 2017.12.09 5842 598 1930 newborn

445 2017 2017.03.30 2017.11.07 3743 604 448 yearling

471 2017 2017.06.17 2018.01.02 3435 708 newborn
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parameters for each season/diel period. The shape of the Pareto distribution determines the shape of
the tail of the distribution and the scale the spread.

Appendix D

The American black bear (Ursus americanus) individual based movement model details presented
in the standardized Overview, Design Concepts, and Details (ODD) format [42,43].
1. Purpose

The purpose of the individual based movement model was to simulate future black bear movement
to understand movement, connectivity, and potential for range re-establishment at the leading edge of
their range in Massachusetts. Understanding how black bears will move closer to the greater Boston
metropolitan area will help inform bear management and reduce human-bear interactions.
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2. Entities, state variables, and scales
The model was comprised of one lower hierarchical level—the individual—and one higher

hierarchical level—the environment. Individuals (i.e., entities) were all female black bears of breeding
age in the state of Massachusetts. Movement characteristics of individuals were derived from within
home-range movements of our sample of GPS collared bears in the state. Because 45-min GPS data
were used, each time step in the model was 45-min. For a single year (i.e., the non-hibernation period:
April 1st to November 15th), there were 7296 time steps. These dates correspond to the average den
exit and entry rates for the sample population. Three thousand individuals were simulated for each
year of the simulation.

The individuals moved through their environment, in which each 30 m pixel was assigned a
resistance to movement value from 1–10. The model used six different resistance surfaces: spring/day,
spring/night, summer/day, summer/night, fall/day, fall/night. The resistance surfaces were derived
from step selection functions (SSFs) that predicted the probability of movement for each pixel in the
study area. GPS data from 76 bear-years were combined with the following environmental variables to
create the SSFs: land cover, ruggedness, slope, roads, development, and water. Details on the SSF and
probability of movement surfaces are provided in Zeller et al. [11]. The linear inverse of the probability
of movement surfaces were re-scaled to a range of 1–10 to obtain the resistance surfaces.

The first year of the simulation was 2019 and was considered to be the current environment. To
incorporate future development, we used data from the Designing Sustainable Landscapes Project
urban growth model, which provides development projections at 10-year intervals starting in 2020 [45].
In our 2020 model, these projected development variables were incorporated into the resistance surfaces
to reflect a growing human footprint. The 2020 resistance surfaces were used for 10 years of the
simulation. This process was repeated again for 2030, 2040, and 2050. The extent of the modeling
environment was the entire state of Massachusetts plus a 10 km buffer to prevent edge effects.
3. Process overview and scheduling

The movement model began in the year 2019 and 7296, 45-min time steps were run for each year.
For each bear in each year, simulations started on the spring day surface. The resistance surfaces
and movement parameters (determined by the Pareto distribution, see below) were changed within
the modeling environment at the corresponding time steps. Every 16 time steps the night surfaces
and movement parameters replaced the day ones. The summer surfaces and movement parameters
replaced the spring ones at step 2369 and the fall surfaces and movement parameters replaced the
summer ones at step 4172. This process was repeated annually for 31 more years to the year 2050. The
years were run sequentially and the last location for an individual in a given year was used as the
starting location for that same individual the following year.
4. Design concepts

Basic principles: The model used individual movements to simulate population-level patterns
of movement and connectivity across the study area. The model incorporated the principle that
individuals will move in a manner that minimizes the costs of movement (e.g., energetic costs, mortality
risks) and used resistance surfaces to quantify these costs. Furthermore, the model explicitly accounted
for changes movement costs among individuals, between diel periods (i.e., day and night), and across
seasons. The model did not directly evaluate changes in movement costs but rather cumulative effects
on population-level movement processes.

Emergence: The movement of thousands of individuals over many decades allowed for the
emergence of population-level movement and connectivity across a large study area. Using movement
rules that change an individual’s response to the environment during different seasons and times of
day while incorporating a changing environment allowed for the realistic emergence of concentrated
movement pathways connecting habitat patches.

Adaptation: Individual movements were simulated as a function of landscape resistance such that
individuals were more likely to move across low-resistance pixels. Resistance was inversely related
to habitat suitability as estimated through step selection functions such that low-resistance pixels
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represented more suitable habitats (e.g., better foraging opportunities, suitable shelter sites), lower
mortality risk (e.g., reduced human influence, lower risk of road mortality), or some combination thereof.

Objectives: The endpoints following each time step were probabilistically sampled using resistance
surfaces so that individuals were more likely to cross pixels with low resistance values.

Learning: None
Prediction: By simulating future individual movements, the model predicted how individuals

may move in response to environmental features and growing human development. This allowed for
the identification of concentrated areas of movement and connectivity along the expanding edge of the
black bear’s range in Massachusetts and areas of potential range expansion.

Sensing: Individuals could sense (i.e., had a nonzero probability of moving to) pixels within some
distance of the starting point at each time step that was based on observed step lengths for a given time
of day and season. This maximum distance was defined as the 97.5th quantile of a Pareto distribution
fit to observed step lengths across bears for a given time of day and season. However, the probability
of moving to a given pixel decreased with increasing distance from the starting point according to a
cumulative cost distance function as reflected in the resistance kernel (see below).

Interaction: None
Stochasticity: Each simulated step length was sampled probabilistically from a resistance kernel

surface (see below).
Collectives: None
Observation: The location of the endpoints of all movement steps for each individual were the

basis for observations from the model. From these points, step lengths and home range sizes were
calculated. Paths were also constructed for each individual in each year by connecting consecutive
points. Paths were used to calculate our connectivity metric which was the number of paths crossing
a pixel.
5. Initialization

The study area was divided into three sections: west of the Connecticut River, east of the
Connecticut River, and the expanding range. Unpublished data from the Massachusetts Division
of Fisheries and Wildlife indicates that bear densities are highest in the western section, lower in
the eastern section, with just a few bears currently living in the expanding range. To reflect these
differences, 2000 individuals were initialized in the western range, 990 in the eastern range, and 10 in
the expanding range.

The location of the start points was determined by sampling probabilistically on the spring/day
movement surfaces so that start points tended to be in areas with higher movement probabilities. At the
first time step in the first year, movement was initiated from each of these locations on the spring/day
resistance surface with movement parameters drawn from the Pareto Distribution parameterized with
GPS data from spring daytime locations of the collared sample of bears.
6. Input

There were three data inputs to the model. One was the initial start locations of the 3000
individuals. The second were the season- and time-specific resistance surfaces. The third were the
season- and time-specific parameters for estimating the Pareto Distribution. To derive these Pareto
parameters, the GPS collar data from our sample of female black bears were parsed into six data sets
matching the seasons and times of day used in the SSFs and the resistance surfaces. From these GPS
data, step lengths were calculated, a Pareto distribution was fit to the step length distribution, and the
two parameters of the Pareto, shape and scale, were estimated.
7. Submodels

The procedure for simulating each movement step for an individual was as follows:
A resistance kernel was built around the start point. The shape and spread of this kernel was

determined by the Pareto distribution for that season/time of day (after model calibration the scale
parameter for the Pareto was increased by 10% to allow for more realistic simulated movements,
see main text and Appendix E). The kernel spread was bounded at the 97.5th quantile of the Pareto
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distribution and this boundary determined the maximum movement potential for a step. The rawspread
function in the gridprocess R package [36,40] was used to calculate the resistance distance from the
start point to every grid cell in the study area on the resistance surface for that season/time of day. The
spread stopped when the boundary value was reached. This output was subtracted from one to obtain
a resistance distance kernel around the start point.

The Pareto distribution parameters were again used to convert the resistance distance values
around the start point to relative probability values. The destination point was then sampled from this
probability surface with the strata function of the sampling R package [41]. The start point and end
point make a movement step and the procedure was then repeated with the end point becoming the
start point for the next step.

Appendix E

Table A2. Minimum convex polygon home range sizes and step lengths of our sample of empirical
and simulated bears. For the simulated bears, we calibrated the individual-based movement models by
increasing the scale of the Pareto distribution. We selected a 10% increase in the scale of the Pareto
distribution for our final models since this resulted in the most realistic combination of home range
sizes and step lengths for female black bears in Massachusetts.

Mean Step Length Mean Home Range Size

Empirical bears 193.34 m (Range: 0–1998 m) 62.51 km2 (Range: 5.47–260.55 km2)

Percent of Pareto distribution
scale parameter

0 73.29 m (Range: 0–902 m) 44.38 km2 (Range: 10.82–110.31 km2)
10 82.53 m (Range: 0–2249 m) 77.97 km2 (Range: 6.85–228.44 km2)
20 94.73 m (Range: 0–1757 m) 104.74 km2 (Range: 29.75–231.53 km2)
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