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Abstract: Suburban growth and its impacts on surface runoff were investigated using the soil
conservation service curve number (SCS-CN) model, compared with the integrated advanced remote
sensing and geographic information system (GIS)-based integrated approach, over South Kingston,
Rhode Island, USA. This study analyzed and employed the supervised classification method on
four Landsat images from 1994, 2004, 2014, and 2020 to detect land-use pattern changes through
remote sensing applications. Results showed that 68.6% urban land expansion was reported from
1994 to 2020 in this suburban area. After land-use change detection, a GIS-based SCS-CN model
was developed to examine suburban growth and surface runoff estimation. The developed model
demonstrated the spatial distribution of runoff for each of the studied years. The results showed an
increasing spatial pattern of 2% to 10% of runoff from 1994 to 2020. The correlation between runoff
co-efficient and rainfall indicated the significant impact of suburban growth in surface runoff over
the last 36 years in South Kingstown, RI, USA, showing a slight change of forest (8.2% area of the
total area) and agricultural land (4.8% area of the total area). Suburban growth began after 2000, and
within 16 years this land-use change started to show its substantial impact on surface runoff. We
concluded that the proposed integrated approach could classify land-use and land cover information
to understand suburban growth and its potential impact on the area.

Keywords: urbanization; suburban growth; land-use and land cover

1. Introduction

Urbanization and suburban growth increase challenges to the surface water bodies, in-
cluding flooding, channel erosion, water quality degradation, biodiversity, and climate [1,2].
The current global environmental change pattern based on land use and land cover is of con-
cern [3]. Urbanization, particularly uncontrolled expansion associated with urban sprawl,
is fueled by population growth and increasing demand for residential areas. Most notably
in the environmental sector, rapid urbanization degrades watershed functions and reduces
agricultural and forest lands [3–5]. Eventually, the quick changes in land-use and land
cover impact the annual water balance locally and, potentially, regionally [6–8], with severe
consequences on the frequency, volume, and peak rates of surface runoff. The proportion
of rainfall that becomes surface runoff increases along with increases in imperviousness
of a watershed. Infrastructural developments such as building construction, residential
development, lack of green areas, and impervious surfaces such as parking lots accelerate
runoff [9]. An increase in impervious surfaces and built-up land is more vulnerable to
flooding than the surrounding environment. Higher runoff volumes lead to increased
occurrences of flood and expansion of floodplains. Therefore, land-use changes associated
with urban development, vegetation, and hydrologic conditions are the major factors that
affect urban flooding in many ways [10], leading to environmental degradation [8,11].
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Recent investigations have focused on characterizing land-use changes and their ad-
verse effects on landscape characteristics that generate flood hazards, including inundation
and erosion [11]. Therefore, information on land-use and land cover (LULC), which greatly
influence hydrologic applications and water quality [12–14], aids in fully understanding
urbanization and its impact on local hydrology and water quality [15,16].

Urban growth has various stages, and each stage affects local hydrology in different
ways [8–14]. For example, during the first stage of urbanization, hydrology is changed
due to the removal of trees and vegetation [14,17], leading to decreased interception,
evapotranspiration, and sedimentation. During the second stage of urbanization, houses,
commercial buildings, streets, culverts, and parking lots increase imperviousness, thereby,
affecting and changing the water balance. Specifically, this stage increases storm flows
and runoff depth and degrades surface and groundwater quantity and quality in urban
and suburban areas. The decrease in infiltration often leads to increased runoff flashiness
and peak discharge for even small-sized storms. As a result, flood and waterlogging
become a significant concern for highly and moderately urbanized and suburban areas. The
combination of a remote sensing (RS) and a geographic information system (GIS) approach
can viably assess such hydrologic changes [18–22] and produce a LULC detection map for
assessing the detailed changes in an area [23]. RS has made an immense contribution to
detecting change in the LULC which has helped researchers to think about the impact of
LULC modifications [23,24].

Remote sensing (RS) data products are cost-effective and readily available as inputs
to hydrologic and watershed models [25–27]. The RS technique gathers multispectral,
multiresolution, and multitemporal data or images and then transforms the images into
information for urban land-cover datasets [7]. Multispectral bands play a vital role in
numerous urban growth studies, emphasizing the necessity for advanced land-use and land
cover change information for remote sensing optical satellite imagery application [28–30].
Multispectral satellite images have been used as source data for LULC change and water
body detection applications since the 1960s [31]. Multispectral remote sensing includes
the acquisition of visible, near-infrared, and short-wave infrared images in many broad
wavelength bands [32]. Different materials reflect and absorb differently at different
wavelengths, and this absorbance and emissivity characteristic are used to detect LULC
changes [33].

Multispectral images are primarily applied in detection of urban land-use changes,
rather than hyperspectral images [34,35]. Digital data in the form of satellite images
enable accurate computing of various LULC categories and help maintain the spatial
data infrastructure, which is essential for monitoring urban expansion and for land-use
studies [36]. Consequently, RS and GIS data products are effectively used in watershed,
town, urban, and regional planning [37]. Since most of the surface runoff modeling and
landcover detection parameters are geographic data, integration of RS and GIS techniques
is expected to be more effective in evaluating the impacts of urban LULC. GIS has been
extensively applied in hydrologic models [27,38,39] because of its spatial analysis function,
especially for model data preparation, model input parameters extraction, or model output
visualization [39].

The Soil Conservation Service Curve Number (SCS-CN) method, one of the most
widely used in rainfall–runoff modeling, was developed by the Natural Resources Con-
servation Service (SCS), U.S. Department of Agriculture (USDA) [40–42]. According to
numerous studies [43–48], the SCS-CN method was developed beyond its original scope
and turned into an integral part of simulation models. This method was applied for dif-
ferent landscape structures, soils, and climate conditions [49–53]. These research outputs
indicated that the SCS-CN runoff method could be used effectively for large and small
watershed areas. In this study, we combined RS and GIS to measure stormwater runoff
and establish a relationship between rainfall and the stormwater runoff coefficient (i.e., the
ratio of surface runoff to total rainfall). Stormwater runoff coefficient, a crucial parameter
in hydrology, is frequently used to examine the impacts of urban LULC, which leads to
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urban runoff generation [54]. Stormwater runoff, pollutants management, and subsequent
accumulation in soils, surface water, and groundwater pose significant challenges to many
Federal and State agencies. These challenges warrant a better assessment of the impacts of
suburban growth on runoff changes and local hydrology.

Due to rapid urbanization and its impact on the environment, researchers often
concentrate on highly urban areas to detect LULC changes and degradation rather than
focusing on suburban areas. Because of population demand and the interest in and need
for infrastructural development, suburban land-use is also gradually changing over time,
turning into urban areas. Only a limited number of studies have been done on suburban
LULC change detection, and no research has been conducted in the selected suburban
area. A recent study in this suburban area has revealed high chloride concentration in
the impervious zone due to road salt during the winter season [12]. The study area also
experienced two significant flood events within a short duration; one happened in March
2010, and another occurred in March 2013 (Figure 1) [55–62]. The 2010 flood event resulted
from the combination of the March Nor’easter storm and reservoir management, while the
2013 flood was a precipitation event. The flood duration for 2010 and 2013 was three days
and one day, respectively, but the damage amount was massive. The magnitude of these
flood events and damages has cost the urban and suburban infrastructure, which led us
to investigate the land-use changes and assess the impact of suburban growth on surface
runoff.
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Figure 1. A glimpse of flood events from 2010 (a,b) and 2013 (c,d) in the conducted research area.
Source: 2010 flood [56] and 2013 flood [60].

This study included an integrated approach to estimate the surface runoff and ex-
amine suburban growth effects on LULC pattern change. The main objectives are: (a) to
detect suburban LULC changes using satellite RS and GIS and to study spatial patterns
of suburban growth; (b) to examine the effect of such suburban growth on surface runoff
generation; and (c) to detect the most affected area within the urban watershed.

2. Study Area

This study is focused on a suburban municipality (South Kingstown) in southern
Rhode Island, USA (Figure 2). According to the definition of ‘suburban’ [63], the population
density is usually between 1000–1200 individuals per square kilometer. In our study, the
population is slightly lower, i.e., 206.2 per square kilometer according to the 2010 census,
than the population for defined suburban areas. The study area is predominantly flat,
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low relief, and the annual average rainfall is approximately 1.34 m [62]. Based on bore
log data, the groundwater level in this area is 3.12 m from the surface, and the upper
part of the aquifer is dominated by sand with some gravel [64,65]. The geology of the
aquifer, combined with the shallow groundwater table and the prevalence of impervious
surfaces, classifies this system’s water as a high-risk area for pollution-induced by surface
runoff [65].
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Figure 2. The geographical location for the study site: South Kingstown, RI, USA.

This study used four multispectral (MS) satellite images at 30 m spatial resolution
from USGS EarthExplorer [63]. Specifically, to ensure the original image’s spectral quality,
we used MS imagery, which includes standard red-green-blue (RGB) channels and narrow
spectral channels from near- or middle-infrared regions’ reflectance spectra [29,30]. Four
candidate image scenes were chosen from four different years, and their respective features
are presented in Table 1. It is noted that each image scene was radiometrically corrected
using a relative radiometric correction method [66] with Erdas Imagine. The scanline error
correction was also conducted for the Landsat 7 ETM image. Scanline error correction
is required for LANDSAT 7 ETM images except LANDSAT 5 TM. Striping is one of the
limitations for LANDSAT 7 ETM images. The striping arises due to the scanline corrector
(SLC) failure in 2003 [33,35]. Finally, surface runoff estimates were obtained from these
satellite image scenes applying GIS application.
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Table 1. General characteristics of four candidate image scenes.

S.No. Date of Images Satellite Sensors Resolution (m) Bands Thermal Band

1. 19 September 1994 LANDSAT-5 TM 30 7 6

2. 14 September 2004 LANDSAT-5 TM 30 7 6

3. 18 September 2014 LANDSAT-7 ETM 30 8 6

4. 9 August 2020 LANDSAT-8 OLI 30 11 10 and 11

3. Methodology
3.1. Surface Runoff Model

In this research, we applied the Soil Conservation Service (SCS) method in rainfall–
runoff modeling. The SCS method utilizes several significant factors such as soils, water-
shed characteristics, i.e., slope, elevation, shape, and land-use over the study area [67,68].
The other two noteworthy factors that affect runoff are rainfall duration and intensity. The
SCS-CN model was extensively used to determine the CN, ranging from 0–100 [67]. The es-
timates of surface runoff depend on the potential retention in the catchment. Surface runoff
is largely impacted by three factors, i.e., interception, surface retention, and infiltration,
which vary for different soil types. The SCS-CN equation is mathematically represented as
Equation (1):

Q =
(P − 0.2S)2

(P + 0.8S)
(1)

Here, Q indicates storm runoff which is estimated from rainfall (P), and S specifies
maximum potential storage and is defined as,

S = (
1000
CN

)− 10 (2)

Here, CN indicates the runoff curve number of a hydrologic soil group–landcover
complex. Two parameters are required to solve the equation: rainfall (p) and CN. The
rainfall data is collected from the National Oceanic and Atmospheric Administration
(NOAA). CN is used to estimate the runoff from rainfall, ranging between 30 to 100 based
on soil properties of land types (Table 2). In this study, rainfall–runoff depth is estimated
for nine different kinds of land type: (1) Agricultural land, (2) Commercial land, (3) Forest,
(4) Grass and pasture, (5) Residential, (6) Industrial, (7) Open Space, (8) Parking lot and
street, and (9) Water. The permeability characterizes the hydrological soil group (HSG) (A, B,
C, D). The infiltration rate is higher in group A (>0.30 in/h) or >7.62 mm/h) even when the
soil is thoroughly wetted, while group D has the lowest permeability and infiltration rate
(0–0.05 in/h or 01.27 mm/h) for the runoff. Group B (0.15–0.30 in/h or 3.81–7.62 mm/h)
and C (0.05–0.15 in/h or 1.27–7.62 mm/h) soils are intermediate between groups A and D.
Group A and D consist of sand and clay, respectively. Rango et al. (1983) [68] claimed only
a 5% error in land-cover estimates from Landsat data at the basin level and a much higher
error at the cell level. A composite CN can be computed for the different land-uses for a
watershed using the following equation:

CNc =
CN1A1 + CN2A2 + . . . . . . . . . + CNiAi + . . . . + CNnAn

∑n
i=1 Ai

(3)

where CNi is the curve number of area i, Ai is the area of each LULC for area i and n is the
number of land uses. In this study, CN is calculated for each land class using ArcGIS 10.6
from the vector soil dataset.
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Table 2. General characteristics of four candidate image scenes.

Land Type A B C D

Agricultural Land 64 75 82 85
Commercial 89 92 94 95

Forest 30 55 70 77
Grass/Pasture 39 61 74 80

Residential 60 74 83 87
Industrial 81 88 91 93

Open Space 49 69 79 84
Parking and paved spaces 98 98 98 98

Water/Wetlands 0 0 0 0
Adapted from 210-VI-TR-55, Second Ed., June 1986 [64].

3.2. Integrated RS-GIS Approach to Surface Runoff Modeling

Integrated RS-GIS approaches are used for surface runoff modeling. The analysis
comprises three main parts: (a) derivation of the land class of the study area using RS,
(b) hydrological parameter determination applying GIS, and (c) runoff modeling using
GIS. For the land class derivation, four MS image scenes were selected from four different
years. The land class type and soil information provided the hydrological curve number,
one of the key parameters needed for the hydrologic models. Hydrological parameters
(directly related to runoff calculation), such as maximum storage, were determined using
the curve number. The land-use types were used as independent variables for the proposed
methodology. Lastly, the runoff was determined using precipitation and the maximum
storage dataset. In the succeeding sub-sections, all three processes are described in detail.

3.2.1. Land-Use and Land Cover Type Using Remote Sensing

We used land-use and land cover patterns for four different years from 1994 to 2020
at the same and almost the same time (Table 2). For all the images, we considered less
than 10% cloud cover. Initially, all images were corrected using a common Universal
Transverse Mercator (UTM) coordinate system [69]. Every image was then radiometrically
corrected according to the Jensen method [67]. Scanline error correction was done for the
2014 images. For the land-use and landcover derivation, supervised classification with a
maximum likelihood algorithm was applied [70,71]. The MS image for 2020 was collected
from Landsat 8 OLI (Operational Land Imager), and scanline error correction was not
required for this image.

A supervised classification method was used for image classification. This method
usually requires a priori knowledge of each of the land types. A group of training data sets
was collected to identify each of the land types. Four different classification algorithms
were available to proceed with the supervised classification. In this study, we applied
the maximum likelihood approach for land-use change analysis. The algorithm uses the
spectral signature of the pixels from the training dataset to classify the whole image. The
spectral signature file used the training information to define the statistics, such as mean
and variance of each land type. Every training dataset consists of at least 5 to 10 data
points [71]. The more data points represented, the greater the accuracy of the classification.
In this study, we collected 12 to 15 data points for each of the land classes. The process was
subsequently applied to 1994, 2004, 2014, and 2020 (Figure 3).
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Figure 3. The Process of Land-use and land cover Change Detection.

Every classified image was superimposed by land-use and land cover shapefiles from
Anderson land classes to determine the accuracy of the classification [70], which were used
to categorize the land use. Land use and land cover vector files are available for 1995,
2004, and 2011 in the Rhode Island Geographic Information System (RIGIS). Therefore,
the classified images are evaluated with the publicly available land-use and land cover
vector datasets. 1995, 2004, and 2011 data were used to evaluate 1994, 2004, and 2014 land
classification. Since the current land-use and land cover shapefile for 2020 is not available,
no image accuracy evaluation was done for 2020 land classes.

In this study, residential, commercial, industrial, and parking lot and street areas were
considered urban class types as they are also directly related to population growth. A
total of nine land-use classes (Table 2) were derived from the images. In terms of using
multispectral perspective, three-band combinations: Green (band 2), Red (band 3), and
near-infrared (band 4) were used to derive the land classification. A flow chart is presented
in Figure 3 to describe the detailed process.

The classified suburban growth image was overlaid with the vector files to calibrate
the suburban expansion area. All the raster files were created using 30 m cell size, and
this cell size area was calculated for every land class. The town boundary vector file was
utilized to detect the suburban expansion for the particular year.

To detect urban expansion in the suburban area, curve number (CN) values were
used (Table 2). Table 2 represents the CN value for different land types and hydrologic
soil groups.

3.2.2. Hydrogeological Parameter Determination Using GIS

In this step, we prepared soil and precipitation images to generate hydrogeological
parameters, and the overall processes are discussed below:
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Derivation of Soil Data

The soil data is prepared from a digital soil survey with a detailed soil geographic
data level, jointly developed by the Rhode Island Soil Survey and National Cooperative
Soil Survey, and was downloaded from the Rhode Island Geographic Information System
(RIGIS) [72]. The map data contains detailed information such as hydrological group,
shape area, shape length, and soil name. For this study, we applied hydrologic soil group
(HSG) (A, B, C, and D) (Figure 4b) information (Table 2) for each land type. All four types
of HSG were found in the study area. As shown in Figure 4b, the HSG in group B occupied
about 29% (61 sq. km) of the total area. About 22% (48 sq. km) of the total area belonged to
group D. However, group A and C occupied approximately 17.7% (37 sq. km) and 9.1%
(19 sq. km), respectively. Considering the HSG proportion, the study mainly consisted of a
moderate infiltration rate (group B) of 3.81 to 7.62 mm/h. A raster file is then generated for
the study area based on the hydrologic group using the runoff curve number (CN) values.
The maximum storage of the area was then calculated using the raster calculator.
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Derivation of Slope, Elevation, and Stream Order Data

A slope is an essential parameter of watershed characteristics representing an angle
between the inclined ground surface and the horizontal plane. A slope map was produced
(Figure 4c) using a DEM with a 30 m resolution for the study area applying the ‘surface’
option from the spatial analyst tool of ArcGIS. The slope map showed the slope variation in
degree. About 75% of the area had a slope between (0–5) degree, and 18% of the area had a
slope of (5.1–15) degree, mainly in the southern part of the study area. Consequently, eleva-
tion (Figure 4d) and stream order (Figure 4a) maps were also developed to represent the
overall scenario of the hydrogeological parameter of the study area. This area’s elevation
ranges from 0 to 323 m and has predominantly first and second-order streams.

Rainfall Data

Rain data was derived from the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) [73–75] climate mapping system. Since only one USGS weather
station was available in the study area, there were insufficient neighboring stations to
create the spatial distribution of rainfall in a given area. Therefore, the PRISM-derived
high-resolution precipitation data were considered for this study. PRISM precipitation
products are spatially gridded at 4 km resolution. Elevation is the primary variable that
controls the precipitation pattern [76–78]. PRISM data accounts for elevation impacts and,
therefore, could be used reliably for this study.

For this study area, 10 PRISM stations are projected and used for the analysis. The
kriging application [79] was used to generate the spatial distribution image by assigning
average yearly rainfall in the coverage with a 30 m cell size for the raster. Kriging is
expressed as:

ZK =
n

∑
i=1

ňiZi (4)

where Zk is an estimate by kriging, ň is a weight for Zi and Zi is a variable. The weight is
determined to ensure unbiasedness [79].

PRISM data helped to calculate the storage for the entire study area for each of the
land classes.

3.2.3. Hydrological Modeling within GIS

We applied GIS for the runoff modeling of this suburban watershed (Figure 5). Multi-
ple images (a land cover image and soil image) were used to construct the CN image. Each
area’s CN value was estimated using USDA 1972 [67] standard SCS values (Table 2). Poten-
tial maximum storage, S, was derived using map algebra application of GIS for the entire
time series. Then, storm runoff depth images were prepared from rainfall, and potential
maximum storage images using Equation (1). Four images for 1994, 2004, 2014, and 2020
were created for four different years applying the same methodology. The resulting runoff
images were reclassified into runoff ranks. Suburban growth and its development were
most prominent in the potential maximum storage images.

We then developed the relationship between rainfall–runoff coefficients for this study
area. The runoff coefficient was calculated for each of the selected years’ ten largest storm
events based on the rainfall amount. A runoff coefficient curve was then constructed as a
function of the flood size. A significant change of the suburban effect based on the runoff
coefficient pattern was observed over time.
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Figure 5. A schematic representation of the geographic information system (GIS) based soil conser-
vation service curve number (SCS-CN) model in estimating the surface runoff.

4. Results and Discussion
4.1. Suburban Growth in the Study Area

Suburban growth represents the expansion of residential, commercial, industrial, and
roads and parking lots, and results indicate an increasing trend as shown in Table 3. Land
type change detected both areal expansion and reduction. The 36 years analysis results
(Table 3) showed that the suburban area expanded by about 68.6% (6564 acres) within this
administrative region.

Table 3. Satellite-detected suburban expansion in South Kingstown, Rhode Island.

Land Type
Calculated Area (Acre) Change Detection of the Area

1994 2020 Area (Acre) %

Urban 9569 16,133 6564 68.6
Agriculture 2684 2814 130 4.8

Forest 18,440 16,934 −1506 −8.2
Grass/Pasture 6662 710 −5952 −89.3

Simultaneously, the agricultural area increased considerably (by approximately 5%),
and the forest area decreased by nearly 8.2%. The proportion of urban area to the total land
area was 18%, 20.4%, 29%, and 31% in 1994, 2004, 2014, and 2020, respectively. According
to land-use change detection, from 1994 to 2004 suburban areas did not expand. Differences
in LULC change from 1994 to 2020 from satellite image analysis are presented in Table 3.

In this study, suburban land-use expansion (Figure 6) is the main predictor in an-
alyzing the surface runoff pattern. Suburban growth is directly related to percentage
imperviousness. Increasing imperviousness leads to an increase the suburban runoff.
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In the study area, suburban expansion started from 2000 to 2020 along with consid-
erable population growth [75]. Suburban institutional development also exhibited the
overall expansion of the suburban area. For suburban growth, the main driving factor is
population growth and residential zone demand [4–6]. The suburban area expanded by
68.6% during this time; if the trend continues, the suburban area will quickly convert to an
urban area.

4.2. Impact of Suburban Growth on Surface Runoff

The impact of suburban expansion on surface runoff was examined by comparing the
measured runoff volume from 1994 to 2020. With the growth in suburban expansion, runoff
is also expanded over time. This study found that suburban growth increased surface
runoff. The GIS-based SCS-CN model was used to evaluate the surface runoff for the years
1994, 2004, 2014, and 2020. For each of the years, runoff areas for different runoff depths
were calculated. The resulting images of runoff depth showed the runoff depth changes in
this area (Figure 7).
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The spatial distribution of modeled runoff (Figure 8) showed the runoff change in
2014 and 2020 compared to 1984. A moderate runoff depth (Figure 7) and runoff area
increased over time in the study area. The runoff increase was relatively low from 1994 to
2004 and higher in 2014; even in 2020, the runoff depth increased significantly (by about
15% on average) compared to 2014 (Figure 7).
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We then ranked runoff from 1 to 9 based on the runoff depth, indicating the lowest
runoff depth as rank 1 (i.e., a decrease or no change in runoff depth) and the highest rank
as 9 (i.e., zones having the highest runoff depth of 9 mm in 2020). Each of these ranks is a
continuous and discontinuous extension expressed with a different color in the raster file
for 1994, 2014, and 2020. The yellow color represents the runoff depth of 3 to 4 mm in 1994
and 2014. Noticeably, yellow holds a major portion of the study area in 1994 (17.2% of total
area) and 2014 (16.6% of the total area). However, in 2020, the noticeable portion of the site
has a runoff depth of 4 to 5 mm, indicating that the area had a higher runoff depth in 2020.
In 2020, the maximum runoff depth was reported as 9 mm, which was not observed in the
previously investigated years (1994, 2004, and 2014). A visual and detailed interpretation of
the study area’s areal extent and spatial occurrence was created by aggregating categories
6 to 8 for 2014 (Figure 8). Due to a small amount of suburban growth between 1994 and
2004, the spatial distribution of runoff depth for 2004 did not show much change relative
to 1994. The modeled runoff spatial distribution of each of the years (1994, 2014, and 2020)
reflected suburban expansion in this area. The land-use classification showed that urban
land type for 2020 increased by approximately 8.3% from 2014, and these land changes led
to an increase of runoff depth from 2014.

The total area of runoff depth under the ranks increased by around 21.7% from 1994
to 2020. Despite the decrease in rainfall, we still found an increasing trend in runoff depth.
This was higher in the northwestern part of the study site. This northwestern area was
also becoming more vulnerable, due to expansion in suburban growth and land use. A
correlation between the distributed runoff area and the suburban expansion area was
examined using the ordinary least square (OLS) tool from the spatial statistical option in
ArcGIS. The result showed a strong positive correlation between two mapped patterns
with multiple r-values of 0.63 (average) (p < 0.05), where the correlation value indicated an
increasing trend along with the increasing suburban growth in the study area.

4.3. Impact of Suburban Growth on Rainfall–Runoff Relationship

The runoff coefficient was measured according to the ten highest rainfall events for
each of the years. The runoff coefficient range varied based on imperviousness, rainfall
depth, duration, and intensity [15]. Figure 9 showed the relationship between rainfall
and runoff coefficient for the study area. A higher runoff coefficient was expected when
there was more rainfall volume over the suburban area. According to the SCS model, the
rainfall and runoff coefficient relationship is governed by maximum potential storage. The
impervious zone has low or no potential storage, and the runoff coefficient value showed a
strong relationship in these areas. This strong relationship illustrates the effects of suburban
growth in this study area. The two dynamic variables are the suburban growth rate and
the maximum potential storage. A correlation between the suburban growth rate and
the maximum potential storage variables generated r = 0.45 in 1994, r = 0.68 in 2014 and
r = 0.71 in 2020. The highest runoff coefficient was 0.51 in 1994, 0.72 in 2014, and 0.97 in
2020. During the entire period from 1994 to 2020, the runoff coefficient increased by about
0.46. This increasing trend indicated that urbanization played a vital role in the rainfall–
runoff relationship. Thus, urbanized areas are more prone to increased runoff and flooding
events because lower potential storage often implies that the same amount of rainfall
may generate more runoff depth depending on imperviousness [13,14]. Furthermore, the
land-use change detection showed about 68.6% increased suburban growth from 1994 to
2020 (Table 3). The standard deviation of the runoff coefficient, ranging from 0.16 to 0.021
for these 36 years, indicates suburban growth.
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Figure 9. Rainfall–runoff relationship for the study period.

5. Conclusions

We developed an integrated approach using a RS and GIS-based SCS-CN model to as-
sess suburban growth influences in surface runoff. The combined effort of RS-GIS confirms
it to be an efficient tool for suburban growth analysis. By applying this methodology, we
developed a linkage between suburban growth and surface runoff through spatial analysis,
which showed a positive and significant correlation.

Land-use and land cover changes are examined through remote sensing using four
different Landsat images applying supervised classification. We emphasized the change
detection in the urban land type. The analyzed output showed that urban areas expanded
by about 68.6% from 1994 to 2020, whereas forest (decreased by only 8.2%) and agricultural
(decreased by only 4.8%) land types showed a little change in this area. Despite this slight
change in forest and agriculture, significant urban land change impacted the surface runoff,
and this change confirmed suburban growth in suburban areas. The output raster file of
land use changes from remote sensing was used as an input parameter along with soil and
precipitation in the GIS-based SCS-CN model.

The GIS-based SCS-CN approach was applied to develop the model for estimating
runoff for four different years. The significant advantage of employing the GIS application
in rainfall–runoff modeling is that more accurate sizing and calculation can be achieved
compared to traditional methods. We relied on GIS analysis to detect the suburban growth
effect on surface runoff in the study areas. Surface runoff and its areal extension were
also examined from the analysis. The modeled output indicated that runoff depth had
increased from 2–10% from 1994 to 2020. The spatial distribution of the surface runoff also
signifies a moderate to significant effect of suburban growth. Furthermore, the increasing
trend of runoff coefficient with time and rainfall events indicates the positive impact of
suburban growth.

The integrated approach worked successfully in suburban areas and could arrive at
the stormwater quality impacts in this study. Stormwater quality degradation could be
the scope of work for further analysis. The two primary factors that were predictors of
the surface runoff are rainfall and the hydro group soils (HSG) group. From 1994 to 2020,
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both runoff depth and spatial extension of runoff areas enlarged. Due to the increase of
suburban expansion in the northwestern part of the study area, the runoff depth primarily
increased. This integrated approach is a valuable tool to analyze suburban growth and its
impact on surface runoff by developing rainfall–runoff modeling, especially for suburban
areas. This research’s final output strongly supports the impact of urbanization impact in
this suburban region on surface runoff. Further research should be focused on stormwater
management in terms of quality and quantity to minimize the future environmental impact
in suburban areas.
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