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Abstract: This study, which was contracted by the European Commission and is geared towards
easy replicability by practitioners, compares the accuracy of individual and combined approaches to
forecasting tourism demand for the total European Union. The evaluation of the forecasting accuracies
was performed recursively (i.e., based on expanding estimation windows) for eight quarterly periods
spanning two years in order to check the stability of the outcomes during a changing macroeconomic
environment. The study sample includes Eurostat data from January 2005 until August 2017, and out
of sample forecasts were calculated for the last two years for three and six months ahead. The analysis
of the out-of-sample forecasts for arrivals and overnights showed that forecast combinations taking
the historical forecasting performance of individual approaches such as Autoregressive Integrated
Moving Average (ARIMA) models, REGARIMA models with different trend variables, and Error
Trend Seasonal (ETS) models into account deliver the best results.

Keywords: Bates–Granger weights; uniform weights; (REG) ARIMA; ETS; Hodrick–Prescott trend;
Google Trends indices

1. Introduction

The perishable nature of tourism products and services such as hotel overnights, airplane seats,
or restaurant tables makes forecasting an important prerequisite for setting efficient strategies to ensure
business success. The special characteristics of tourism products and services such as perishability,
intangibility, and consumption at the point of service delivery, external factors such as natural and
man-made disasters, as well as unsteadiness of human nature make forecasting an important issue for
international government bodies, national governments, academics, and practitioners alike.

In the past decades, many studies have dealt with the challenge of improving tourism demand
forecasting accuracy, yet all these research efforts have led merely to the conclusion that no single
forecasting method outperforms all others in all situations [1]. Furthermore, discussions of complexity
have become increasingly relevant in the academic literature aiming to improve forecasting accuracies.
Green and Armstrong [2] note that the trend to develop increasingly complex approaches has a
long history, yet is at odds with scientific principles that advocate simplicity. An alternative way
to use complex techniques to improve forecasting accuracy would be to combine the forecasts of
individual forecasting models with the help of various combination techniques, as it has been shown
that combined methods minimize the risk of extreme inaccuracy by “averaging out” the weaknesses of
single models [3]. Forecast combinations are also capable of introducing adjustments and additional
information balancing out measurement errors, which could negatively affect forecasting power [4].
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Despite the many tourism studies carried out to date, the application of forecast combination
techniques as a tool to create complexity remains rare. In contrast to other disciplines, research into
combination methodologies for tourism demand forecasting has a short history, which started only
in the early 1980s. Research into combining forecast methodologies was stimulated significantly
earlier in various other economic and business fields by the seminal work of Bates and Granger [5].
They examined the performance of combining two sets of forecasts of airline passenger data, whereby
the weights of the individual forecasts were calculated based on the historic predictive performance
of each individual approach, and found that the combined forecasts showed lower errors than the
individual forecasts. Only 20 years after the 1969 Bates and Granger paper, Clemen [6] summarized
the intensive work that had been done around the topic of forecast combinations in the interim,
and delivered an encompassing literature survey about these activities.

The manageable number of studies about forecast combinations in tourism have, in general,
delivered the outcome that the combined forecast outperformed the forecasts generated by individual
models [3,7–13]. Our work compares forecasting accuracies for eight quarterly report periods spanning
the period from March 2015 until August 2017 in order to check the stability of the results during a
changing macroeconomic environment. In other words, the forecast evaluation exercise is not only
carried out once for different forecasting horizons but eight times recursively (i.e., based on expanding
estimation windows), which corresponds to a “natural” practitioner’s situation.

To meet these different challenges, we developed forecasting models for arrivals and overnights
and used Eurostat data according to our commissioned study for the European Union as a whole.
These models were tested across eight different quarterly periods for their stability and accuracy.
In addition, we calculated combined forecasts based on the forecasts produced by the various individual
forecasting models, and assessed the accuracies of these combined forecasts. Therefore, the objective of
this study was to analyze whether combined forecasts of selected models are able to outperform the
forecasts generated by the individual models in terms of forecasting accuracy.

Forecasting for the European Union as a whole for the indicated period and predicting three and six
months ahead, as well as using both single forecasting models and forecast combination techniques that
are easily replicable by practitioners were requirements by the European Commission, which contracted
the present study [14]. Tourism plays a major economic role in the European Union: 13.6 million
people (9.5% of all employees in the non-financial sector) were employed by 2.4 million tourism
businesses (around 10% of all non-financial businesses) in 2016 [15]. In the same year, the tourism
industry accounted for 3.9% of turnover and 5.8% of value added in the non-financial sector.

The remainder of this paper is as follows: After the literature review (Section 2), we discuss
the advantages of forecast combinations and the most-used combination methods (Section 3). In the
methodological section (Section 4), we present the chosen modeling approaches, the accuracy measures
and their application, as well as the data used. The subsequent section provides and discusses the
forecasting performance of the different approaches (Section 5). Conclusions and recommendations
are the final section of the paper (Section 6).

2. Related Literature

The prediction competition for time series forecasting already has a history of about 50 years.
According to Hyndman [16], the earliest scientific study of time series forecasting accuracy—the
Nottingham study—was done by David Reid [17]. Paul Newbold and Clive Granger took the next
step by conducting a study of forecasting accuracy involving 106 time series [16,18]: one important
result of their study was that forecast combination improves forecasting accuracy. Comparing forecasts
became fashionable and, over the years, “forecasting competition” has become an important term in
the forecasting literature.

The first big forecasting competition took place in 1982 and was organized by Spyros Makridakis
and Michele Hibon. For this competition—known in the forecasting literature as the “M(akridakis)
competition” —anyone could submit forecasts related to 1001 time series taken from demography,
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industry, and economics [16,19]. The following M-2 competition was organized in collaboration
with four companies, this time using only 29 time series and with the main purpose of simulating
real-world forecasting. A peculiarity of this M-2 competition was that forecasters were allowed to use
personal judgements, to ask questions about the data, and to revise their previous forecasts for the
next forecast [20]. The succeeding M-3 competition had the objectives of replicating and extending the
features of the previous competitions, with more methods, more researchers, and more (i.e., 3003) time
series [21]. The most recent competition that had already been completed while this study was written,
M-4, ran from January to May 2018, used 100,000 time series, and considered all major forecasting
methods, including those based on Artificial Intelligence, as well as traditional statistical ones [22].
Informing the major objective of our paper, a stable result across all the M competitions was that
combined approaches, on the average, outperformed individual forecasts [17–22].

Other competitions have also been organized in parallel to the M competitions. Mathematicians
and physicists interested in forecasting ran their own competition at the Santa Fe Institute, beginning
in January 1992 [23]. Other examples for forecasting competitions are the application of neural
networks [24] or the global energy forecasting competitions [25,26].

In tourism, research into combination approaches and their efficacy started significantly later
than in other disciplines. One of the first studies about forecast combinations in tourism was that by
Fritz et al. [10] about the combination of time series and econometric forecasts. Their paper presents
parsimonious methods of improving forecasting accuracy by combining various forecasting techniques.
The Box-Jenkins stochastic time-series method was combined with a traditional econometric technique
to forecast airline visitors to the State of Florida. Some years later, Calantone et al. [8] confirmed the
results of Fritz et al. [10] and showed, also for the State of Florida, that forecasts of tourist arrivals
obtained by forecast combination were more accurate than forecasts based on individual approaches.
Shen et al. [3] tested the accuracy of forecast combinations compared to the forecasting results of seven
different techniques over different forecasting horizons and demonstrated that combinations were
superior to the best of the individual forecasts. Song et al. [27] shed further light on these results by
showing that combined forecasts may be more beneficial for long-term forecasting. Shen et al. [28]
compared six different combination methods and found that those that consider the historical
performance of individual forecasts perform better than simple uniform average methods. In contrast,
Gasmi [11] demonstrated that from three combination techniques, the Granger-Ramanathan regression
method [29] delivered superior results in comparison to the simple uniform average technique and the
Bates–Granger variance-covariance technique [5].

Andrawis et al. [7] suggested combining forecasts based on diverse information using different time
aggregations (e.g., monthly and annual data). In comparing several forecast combination techniques,
they show that the approach using forecasts based on time series with diverse time aggregations
outperformed the combined individual forecasts based on time series with the same time structure.
For improving tourism forecasts, Cang [30] proposed a non-linear combination method using multilayer
perception neural networks, which can map the non-linear relationship between inputs and outputs.

On the other hand, a minority of studies has shown that combined forecasts do not always
outperform the best individual forecasts, but are almost certain to outperform the worst individual
forecasts [27]. Furthermore, Song et al. [27] stated that combined methods outperform the best single
forecast in fewer than 50% of cases on average. A few years later, Song et al. [31] similarly stated that
according to their results, forecast combination only improved forecasting performance in the tourism
context in just over 50% of all cases compared with the most accurate single prediction. In a similar vein,
Gunter and Önder [12] found that combined forecasts based on Bates–Granger weights, on multiple
forecast encompassing tests, as well as on a combination of the two approaches [32]. The authors
applied the aforementioned forecast combination techniques to Google Analytics indicators used as
leading indicators for forecasting tourist arrivals to Vienna. However, these quite complex techniques
only performed well for longer forecasting horizons.



Forecasting 2020, 2 214

To the best of the authors’ knowledge, only one true forecasting competition focused on tourism
time series data has been held to date [33]. The data set included 366 monthly, 427 quarterly,
and 518 annual time series, all supplied by either tourism bodies or academics who had used them in
previous tourism forecasting studies. The forecasting methods implemented in the competition were
univariate and multivariate time series approaches, and econometric models. Surprisingly, however,
this competition did not evaluate the accuracies of combined forecasts compared to individual forecasts.

3. Advantages of Forecast Combination

Why do combined forecasts perform better than individual forecasts in many contexts? Bates and
Granger [5] stated that the simple portfolio diversification argument justifies the idea of combining
forecasts. Forecast combinations offer diversification gains that make it efficient to combine individual
forecasts rather than taking forecasts from just one single model. The information set underlying
the individual forecasts is often unobservable for the forecast user: potentially because it comprises
private information. Differences between the subjective judgements of various forecasters could
therefore reflect differences in their respective information sets. In this situation, it is not possible
to pool the underlying information set and construct a superior model that captures each of the
underlying forecasting models. On the other hand, the higher the degree of overlap in the information
set used to produce the underlying forecasts, the less useful a combination of forecasts is likely to
be [34]. Furthermore, when forecast users have access to the full information set used to construct
the individual forecasts, combinations are sub-optimal and it might be better to recommend finding a
superior single model [35,36].

A second reason for using forecast combinations is that individual forecasts are differently
influenced by structural breaks caused, for example, by institutional change or technological
developments. Some models may adapt fast and only be affected by the structural break for a
short time, while other models have parameters with slower adaption speeds. Since it is typically
difficult to detect structural breaks in real time, it is plausible that, on average–i.e., across periods
with varying degrees of stability–combinations of forecasts from models with different degrees of
adaptability will outperform forecasts from individual models [37]. Similarly, Stock and Watson [38]
report that in cases of structural breaks, the performance of combined forecasts tends to be far more
stable than that of individual forecasts.

Third, forecast combination could be viewed in the sense that additional forecasts act like intercept
corrections (ICs) relative to a baseline forecast. ICs can improve forecasting not only if there are
structural breaks, but also if there are deterministic misspecifications [39].

Fourth, pooling of forecasts can also be understood as a shrinkage estimation. According to this
approach, the unknown future value is viewed as a “meta-parameter” of which all the individual
forecasts are estimates [39]. In these cases, averaging may improve the estimates.

Often, we also measure the wrong things. Demand data are rarely, if ever, available: thus, instead
of measuring demand, we measure supply data (e.g., in periods with over-utilization of production
capacities). However, it is obvious that such proxies of apparent demand introduce systematic biases
in measuring real demand and therefore increase forecasting errors [4]. Averaging forecasts, in turn,
would balance out these potential errors. Similar conclusions can be drawn for measurement errors
and unknown misspecifications.

Moreover, statistical models assume that patterns and relationships remain constant. This is not
always given: especially in the real world, where events and actions or fashions bring systematic
changes and therefore introduce non-random errors in forecasting. Combining forecasts would help to
increase their accuracy. Combining is also expected to be useful when experts are uncertain of which
method to choose. This may be because we encounter novel situations (e.g., Brexit, the COVID-19
pandemic, stock market crashes, etc.) or have to make forecasts for a longer time horizon.

A further argument for combining forecasts is that the underlying forecasts may be based on
different loss functions [40]: let us assume there are two forecasters, both have the same information
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set for forecasting a specific variable; however, forecaster #1 dislikes large negative forecasting errors,
while forecaster #2 dislikes large positive forecasting errors. As a consequence, forecaster #1 will
under-predict, while forecaster #2 will over-predict. If the bias is not constant over time, a forecast
user with a rather symmetric loss function would find a combination of these two forecasts better than
following the individual ones.

While forecast combination has advantages, there are also several arguments against it.
Following the literature, forecast combinations are at a disadvantage over a single forecasting models
because they produce parameter estimation errors in cases where the weights to combine the different
forecasts need to be estimated [40]. This important consideration of avoiding errors in estimating the
weights for the forecast combination has led simple uniform weighing methods to dominate more
complex combination methods in mainstream scientific practice. The important advantage is that
the weights are known and therefore do not have to be estimated: this plays a role if there is little
evidence on the performance of the individual forecasts or if the parameters of forecasting model are
time-varying. Furthermore, in many situations, a simple uniform average of forecasts will result in a
significant reduction in variance and bias through averaging out the individual biases [40,41]. In the
literature, the most used simple combination approaches are the Simple Average Combination (SAC)
method and the VAriance-COvariance (VACO) method [3,5].

The SAC method assigns equal weights to each of the individual forecasts instead of using any
optimal weights to minimize the variance of the combined forecasts. Although forecast combinations
with equal weights could be biased, they might contribute to the reduction of the forecasting error as
these weights are not influenced by other errors accruing from the estimation of optimal weights [3,42].
According to Palm and Zellner [41], the SAC method has the following advantages. When there is little
evidence on the performance of the individual forecasts, it is an important advantage that the weights
are known and therefore, no estimation is necessary. Furthermore, in many situations, the application
of the SAC method contributes to the reduction of the variance and the bias through averaging out
individual biases. Another advantage of the SAC method is its avoidance of sampling errors and
model uncertainty in estimating optimal weights.

According to the VACO method, past errors of each individual forecast are used to determine
the weights in forming the combined forecasts [5,6]. Bates and Granger [5] suggest assigning higher
weights to good forecasts (low errors) and lower weights to poor ones (high errors).

4. Forecasting Tourism Demand for the European Union

The objective of the commissioned study based on the research period 2005–2017 was to find
the model best at forecasting arrivals and overnights for the total European Union in the short term.
The competing models should have a low degree of complexity, as the “winning” model was to be
applied by the European Commission and Eurostat to an actual database in order to look ahead into
the near future and to mitigate the lack of tourism data reporting [14]. This study was designed for the
European Commission in order to help them forecast tourism demand for the European Union as a
whole. Thus, similar models were used to test the forecasting accuracy at each time period.

In doing so, we analyze if the combined forecasting approaches according to the SAC and
VACO methods based on the outcome of Autoregressive Integrated Moving Average (ARIMA) models,
REGARIMA models with different trend variables, and Error Trend Seasonal (ETS) models (a state-space
framework comprising traditional exponential smoothing models) outperform the single models,
in general and over all periods, or if specific individual models show superiority [4,43–45]. Similar to
the choice of the forecast combination techniques, the single forecasting models were also chosen based
on the criterion of easy replicability by practitioners.

The database for the model estimations comprised the monthly arrivals and overnights statistics
from Eurostat for the total of the EU-27 (unfortunately, no data were available for Ireland) from
January 2005 until August 2017. In the estimations and forecasts, we separated between non-residents
and residents (see also Figures 1 and 2). For calculating the forecasting accuracy, we performed
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out-of-sample forecasting for three and six months ahead. For the computations, we used EViews 9.5,
and EViews 10 for the final quarterly report.Forecasting 2020, 2 216 

 
Figure 1. Arrivals of residents (solid line) and non-residents (dashed line) for the EU-27 (seasonally 
adjusted by the multiplicative ratio to moving average method). Source: Eurostat and own 
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adjusted by the multiplicative ratio to moving average method). Source: Eurostat and illustration. 
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4.1. An Outline of the Models Used

For solving the forecasting problem, we used four different approaches:

1. Autoregressive Integrated Moving Average (ARIMA) models,
2. REGARIMA models with different trend variables,
3. Error Trend Seasonal (ETS) models, and
4. Combined forecasts (with Bates–Granger weights (VACO) and uniform weights (SAC)) based on

the forecasts produced by the different single forecasting models mentioned above.

4.2. ARIMA and REGARIMA Models

A general ARIMA (p, d, q) model for a first and seasonally differenced forecast variable ∇∇syt

(i.e., d = 1) in period t (t = 1, . . . , T) reads as follows:

ϕ(L)∇∇syt = a + ϑ(L)et (1)
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where ϕ(L) and ϑ(L) in Equation (1) denote lag polynomials of finite orders p and q, while a denotes
the intercept and et denotes the random error term. In this study, yt corresponds either to overnights
or to arrivals for the total EU-27.

A general REGARIMA (p, d, q) model for a first and seasonally differenced forecast variable ∇∇syt

(i.e., d = 1) with a contemporaneous exogenous variable trendt, in turn, reads as follows:

ϕ(L)∇∇syt = a + ϑ(L)et + trendt (2)

where the notation in Equation (2) corresponds to that of Equation (1). In this study, trendt corresponds
either to a Hodrick–Prescott trend of the arrivals and the overnights or to various Google Trends indices.
It should be noted that the forecast variable is only first or second-differenced in the REGARIMA
models with Google Trends indices, but not seasonally differenced.

4.3. Employed ARIMA Models

For all variables used in the ARIMA models, we applied seasonal differencing to remove any
deterministic or stochastic seasonal patterns. Because of the existence of non-seasonal unit roots,
we additionally took first differences to achieve difference-stationary processes.

For the three and six month forecasting periods and to achieve the best model fit, we employed an
ARIMA (2, 1, 0) approach to model the overnights of residents and non-residents. To model the arrivals
of non-residents, we applied the ARIMA (2, 1, 1) model, while we chose the ARIMA (2, 1, 0) model
for the residents. All the estimated coefficients were statistically significant. The estimated equations
also had excellent results in terms of out-of-sample forecasting accuracy (see as an example the
forecasting accuracies for arrivals and overnights for the study period December 2017 in Tables A1–A8
in Appendix A).

4.4. Employed REGARIMA Models with Hodrick–Prescott Trends

In order to manage the short-term forecast problem, a quasi-causal model was constructed to
explain arrivals and overnights. This model is based on a REGARIMA approach, which uses the
flexible trend of the overnights/arrivals being explained through the model as its contemporaneous
exogenous variable. The flexible trend was identified by the Hodrick–Prescott (HP) filter method and
indicates important exogenous aggregated information in the model [43,46]. Correcting the forecast
based on the flexible trend with AR and MA errors optimized the results.

In doing so, the overnights/arrivals values were transformed into absolute previous year differences
of the moving 12-month averages of the log-transformed original values. 12-month averages were
used to adjust for seasonal fluctuations, calendar effects, and special events. The explanatory variables
are absolute previous year differences of the flexible overnights/arrivals trends identified by the HP
filter method [43,46]. As the HP filter is based on the moving 12-month average of the log-transformed
original values, these variables are easy to extrapolate by using exponential smoothing methods for
forecasting purposes [4].

For the three and six month forecasting periods, we employed REGARIMA approaches and
corrected the processes with AR (1) errors for modeling non-residents’ and residents’ overnights.
To model the arrivals of non-residents, we applied approaches corrected with MA (1) errors, while for
the residents we corrected with AR (1) errors. All the estimated coefficients were statistically significant.
The estimated equations also had excellent results in terms of out-of-sample forecasting accuracy.

4.5. Employed REGARIMA Models with GoogleTrends

Based on the REGARIMA models outlined in the previous section, we also used model variants
with Google Trends indices instead of HP trend variables. In order to achieve stationarity, we took the
first or second difference of the variables (no seasonal differencing was performed). First differences
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were taken of arrivals, while the Google Trends indices were used as they came. Second differences
were taken of overnights, while the Google Trends indices were employed in first differences.

For the three and six month forecasting periods, we employed the aforementioned REGARIMA
approaches. Various correction processes were necessary for both the arrivals and overnights data.
To model the arrivals of the non-residents, we applied approaches corrected with AR (2) and MA (1)
errors, while for the residents, we corrected with AR (2) errors. For modeling overnights, we applied
AR (2) errors throughout.

Next, we explain what Google Trends are, where we can find them, and how we can use
them. Google provides search data at an aggregated level (as an index) on its Google Trends page
(http://trends.google.com/trends/), where users can identify the topics trending in search results or
investigate a specific search term to learn about its popularity in different parts of the world. These data
are open and free of charge to Google account holders, and can be downloaded in common spreadsheet
formats to be used for analytical purposes, including forecasting.

In order to determine which web search term was more useful, we collected and developed
four types of Google Trends variables: (i) a Google Trends index with country name (EU_trends),
(ii), a Google Trends index with country names and flights (EU_flights), (iii) a Google Trends index
with country names and hotels (EU_hotels), and iv) a Google Trends index with country names, flights,
and hotels (EU_travel). There is not a consensus among researchers about how to choose the keywords
for analysis. One method was directly choosing the keywords by subjective assessment of a set of text
or data [47] and in this study we used the keywords that are related to travel planning (i.e., flights,
hotels) under the travel category of Google Trends.

To calculate the EU_trends variable, the name of each of the 27 European Union countries was
used as the search term to retrieve the respective monthly search indices from the Google Trends
website. The data were retrieved in monthly intervals between January 2016 and December 2017 and
compiled in a single Excel file. Then, to generate a regional EU_trends variable, the average of the index
values across the 27 countries was calculated for each month separately. The EU_flights and EU_hotels
variables were also calculated in a similar way: the search terms being each country’s name followed
by “flights” or “hotels”, respectively. As a last variable using Google Trends indices, we generated an
EU_travel variable by summing all the search indices used for the previously calculated monthly “EU”
indices, such that EU_trends + EU_hotels + EU_flights = EU_travel.

In most cases, the estimated models had statistically significant parameters and satisfactory
forecasting accuracy results (for an example see Tables A1–A8 in Appendix A). The reason why
insignificant variables were retained was so the models could be tested using the same variables for the
whole duration of the study period. A second reason was that, although some variables were indeed
statistically insignificant in specific periods but not over the whole duration time of the study, this does
not imply that these variables are unimportant for forecasting. In doing so, we follow a recent statement
of the American Statistical Association (ASA) pointing out very clearly that the widespread use of
statistical significance—to be understood as a 5% p-value threshold—as a justification for scientific
findings leads to a biased perception of the scientific process [48]. The ASA statement has been an
impulse to the scientific community to move further toward a world beyond p < 0.05 and a signal to
recognize that statistical inference is not equivalent to scientific inference [49,50].

4.6. Error Trend Seasonal (ETS) Models

The Error Trend Seasonal (ETS) model class was developed by Hyndman et al. [45,51] and
encompasses various well-known exponential smoothing methods (e.g., single exponential smoothing,
double exponential smoothing, additive and multiplicative seasonal Holt-Winters) within a theoretically
founded state-space framework which is estimated recursively by employing maximum-likelihood
methods. The ETS framework consists of a signal equation for the forecast variable and a number of
state equations for the three components that cannot be directly observed: level, trend, and seasonal.

http://trends.google.com/trends/
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Since the ETS framework can automatically detect both trend and seasonal patterns and apply the
most suitable model, further data transformation was not necessary.

Generally speaking, an ETS(·, ·, ·) model is represented by one of the following configurations
of the error, trend, and seasonal components of the forecast variable, i.e., total EU-27 overnights or
arrivals in this study [52]:

E(Error) ∈ {A, M}, T(Trend) ∈ {N, A, Ad, M, Md}, S(Seasonal) ∈ {N, A, M} (3)

where A in Equation (3) corresponds to additive, Ad to additive damped, M to multiplicative, Md to
multiplicative damped, and N to none.

This makes a total of 30 possible ETS specifications. From these, the most suitable specifications
were automatically selected by employing information criteria such as the Akaike information criterion
(AIC) and the Schwarz or Bayesian information criterion (BIC). Information criteria such as AIC and
BIC are means for model selection and offer a relative estimate of the information lost in terms of the
log likelihood function when a given model, e.g., a particular ETS specification relative to all other
ETS specifications, is used to represent the process that generates the data [44]. Here, AIC and BIC
have been calculated for all 30 possible ETS specifications, and the specifications characterized by the
minimum AIC value and BIC values were then used for estimation and forecasting.

As an example of an ETS specification for three months ahead forecasting of overnights of
non-residents in the EU-27 as selected by BIC, please see Table A5 in Appendix A. The one signal and
two state equations of the selected ETS (M, N, A) specification read as follows [52]:

yt = (lt−1 + st−m)(1 + et) (4)

lt = lt−1 + α(lt−1 + st−m)et (5)

st = st−m + γ(lt−1 + st−m)et (6)

where Equation (4) corresponds to the signal equation for the forecast variable yt, Equation (5) to
the state equation for the unobservable level component lt, and Equation (6) to the state equation for
the unobservable seasonal component st. α and γ denote the two smoothing constants, while the
remaining notation in Equations (4) to (6) corresponds to that of Equations (1) and (2). It should be
noted that the ETS(M, N, A) specification does not contain a state equation for the unobservable trend
component since it is not present.

4.7. Forecast Combinations

Apart from the individual forecasting models, also the merits of two forecast combination
techniques are evaluated. Bates and Granger [5] indicate that combination forecasts can yield lower
forecasting errors, a finding which was later confirmed by Clemen [6]. To this aim, the forecasts
produced by the 64 models, separately for forecast horizons three months and six months ahead,
were all combined (or averaged) based on two methods that are common in the literature: simple
uniform weights (unweighted average, or SAC) and so-called Bates–Granger weights (weighted
average, or VACO). On the other hand, there are more complex combination approaches available, with
the given disadvantage that additional errors through parameter estimations might flaw the results.
To avoid these additional errors sources, we used only combination methods based on calculated
weights in this study.

More formally, a simple uniformly combined forecast FU
h of overnights/arrivals for non-residents/

residents for a forecast horizon h (h = 3, 6) is calculated as follows:

FU
h =

M∑
m=1

1
M

Fm
h (7)
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where Fm
h in Equation (7) is a forecast value produced by one of the single m (m = 1, . . . , M) competing

single forecasting models.
The Bates–Granger weight of an individual forecasting model is calculated as the inverse of the

mean square error of that forecasting model relative to the sum of the inverses of the mean square
errors of all forecasting models. Hence, a better individual forecasting model receives a relatively
higher weight when calculating the average forecast.

More formally, a Bates–Granger [5] combined forecast FBG
h of overnights/arrivals for non-residents/

residents for a forecast horizon h (h = 3, 6) is calculated as follows:

FBG
h =

M∑
m=1

1/MSEm
h∑M

m=1

(
1/MSEm

h

)Fm
h (8)

where Fm
h in Equation (8) is a forecast value produced by one of the single m (m = 1, . . . , M) competing

single forecasting models, and MSEm
h denotes the corresponding mean square error.

5. Results

The forecasting models were assessed based on the comparison of their ex-post out-of-sample
forecasting accuracy in terms of the root mean square error (RMSE), the mean absolute error (MAE),
and the mean absolute percentage error (MAPE). The averaged (or combined) forecasts were then
treated the same way as the forecast values produced by the individual forecasting models, which means
that the same error measures are also calculated for them.

To evaluate the forecasting accuracy of the different models, we ranked the values yielded by the
various forecasting accuracy measures employed and summated the scores: this procedure allows for
the interpretation that the forecasting model with the lowest total score delivers the best forecasting
accuracy (see as an example the results for the December 2017 report in Tables A1–A8 in Appendix A).
In the next step, we compared the total scores added over eight report periods (March 2016, June 2016,
September 2016, December 2016, March 2017, June 2017, September 2017, December 2017) and over
three forecasting accuracy measures (RMSE, MAE, and MAPE) to determine whether or not the
combined forecasting methods outperformed the single forecasting models (see Tables 1 and 2).
These tables present an evaluation by forecast horizon separated between non-residents and residents,
as well as an overall rank. In addition, one goal of the commissioned study was to give an overall
recommendation across forecasting accuracy measures, report periods, and forecasting horizons.
Therefore, presenting an overall rank became necessary as well.

Comparing the forecasting performance between March 2015 and August 2017, incorporating eight
different forecasting situations as well as different macroeconomic environments, the combined forecasts
with Bates–Granger weights continuously deliver the most accurate forecasts (see Tables 1 and 2).
Generally speaking, this is the case for arrivals, overnights, all forecast horizons, and tourist types.
However, in one case, the six months ahead forecasts of overnights by non-residents, the combined
forecast approach based on Bates–Granger weights ranked second behind the ARIMA (2,1,0) model,
thus failing to perform best as it had in all other cases, although the differences in the rank totals were
so small that both methods could be considered as sharing the first rank.
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Table 1. Summary ranking of the overall results for arrivals forecasts. Source: European Commission (2017) and own calculations. Boldface indicates the single
forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

Arrivals 3 Months
Non-Residents

6 Months
Non-Residents

3 Months
Residents

6 Months
Residents Sum Overall Rank

ARIMA (2,1,0) 109 117 119 161 506 4
REGARIMA AR(1) 194 181 180 144 699 9

ETS (AIC) 189 199 140 125 653 8
ETS (BIC) 194 204 168 164 730 10

REGARIMA + Google Trends (EU_trends) 124 72 115 109 420 3
REGARIMA + Google Trends (EU_flights) 132 122 150 158 562 6
REGARIMA + Google Trends (EU_ hotels) 117 112 151 152 532 5
REGARIMA + Google Trends (EU_travel) 145 106 154 173 578 7

Combined forecasts (uniform weights) 59 118 91 76 344 2
Combined forecasts (Bates–Granger weights) 57 62 52 54 225 1

Table 2. Summary ranking of the overall results for overnights forecasts. Source: European Commission (2017) and own calculations. Boldface indicates the single
forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

Overnights 3 Months
Non-Residents

6 Months
Non-Residents

3 Months
Residents

6 Months
Residents Sum Overall Rank

ARIMA (2,1,0) 87 55 138 78 358 3
REGARIMA AR(1) 132 130 122 103 487 4

ETS (AIC) 168 211 104 106 589 6
ETS (BIC) 164 196 117 106 583 5

REGARIMA + Google Trends (EU_trends) 148 127 168 165 608 7
REGARIMA + Google Trends (EU_flights) 173 150 129 154 606 9
REGARIMA + Google Trends (EU_ hotels) 171 122 157 168 618 8
REGARIMA + Google Trends (EU_travel) 165 130 165 164 624 10

Combined forecasts (uniform weights) 63 140 86 101 390 2
Combined forecasts (Bates–Granger weights) 49 56 39 59 203 1
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In the competition for the top three ranks, the combined forecasts with Bates–Granger weights
ranked first seven times and came second once. The ARIMA models ranked first once, tightly beating
the weighted combined forecasts, ranked second once, and ranked third twice. The combined forecasts
with uniform weights achieved the second rank five times and the third rank once. The REGARIMA
models with Google Trends indices for the European Union scored one second rank and two thirds.
The ETS (AIC) models and REGARIMA models with Google Trends indices for hotels and travel each
achieved the third rank a single time.

When analyzing the overall ranks of the two employed forecasting combination techniques
separately for the eight report periods, combined forecasts based on Bates–Granger weights achieved
the lowest sum of ranks in 22 out of 64 possible cases, whereas combined forecasts based on uniform
weights achieved the lowest sum of ranks in 16 cases (detailed results are available from the authors
on request). Thus, for approximately 60% of all cases and when only considering best ranks, averaging
over the results of the individual forecasting models was definitely worthwhile. It should also be
noted that none of the individual forecasting models performed extremely poorly and that the results
were quite similar across report periods. For the given sample, minimizing the impact of individual
forecasting models performing slightly poorly in terms of assigning a lower weight when calculating
the Bates–Granger combined forecast proved to be sufficient. Consequently, more complex approaches
(e.g., using a formal screening procedure based on statistical criteria such as a forecast encompassing
test) was not necessary (and would also have been at odds with the simplicity requirement for the
methodology).

6. Conclusions

This study compared the accuracy of individual and combined approaches to forecasting tourism
demand for the total European Union. The evaluation of the forecasting accuracies was performed
recursively for eight periods spanning two years in order to check the stability of the outcomes during
a changing macroeconomic environment. The analysis of the out-of-sample forecasts for arrivals
and overnights showed that forecast combinations taking the historical forecasting performance
of individual approaches such as Autoregressive Integrated Moving Average (ARIMA) models,
REGARIMA models with different trend variables, and Error Trend Seasonal (ETS) models into account
deliver the best results.

The analysis of the three months ahead and six months ahead out-of-sample forecasts for arrivals
and overnights (non-residents, residents) showed that the VACO method was clearly more accurate,
followed by the ARIMA approach, and the uniformly weighted combined forecasting method (SAC).
The results and their stability over a two-year observation period demonstrate that taking the historical
forecasting performance into account contributes to a significant improvement of forecasting accuracy
and is recommended for practical application.

One particular advantage of the SAC and VACO methods in addition to their excellent performance
is that they can be easily implemented by practitioners, which typically is not the case for more complex
forecast combination techniques such as multiple encompassing tests. This simplicity also holds
for the employed single forecasting models, which are typically part of any modern statistics and
econometrics software. One further advantage is the ready availability of the different trend variables
employed as exogenous variables in the REGARIMA models, such as HP trends and the various
Google Trends indices.

Limitations of our study are that we used very simple models for practical reasons and did not test
whether the introduction of complex models in the forecasting competition would have changed the
rank orders in terms of the forecasting accuracies. In line with the general need to improve forecasting
accuracy, discussions of complexity have also become increasingly relevant in the academic literature,
although building complex approaches is at odds with scientific principles that advocate simplicity.
On the other hand, a way to use complex techniques in order to improve forecasting accuracy is
also the combination of the forecasts of individual forecasting models, as employed in this study,



Forecasting 2020, 2 223

since combined methods minimize the risk of high inaccuracy by “averaging out” the weaknesses
of the single forecasting models. They are also capable of introducing adjustments and additional
information, which can balance out measurement errors and thereby affect forecasting power.

Future research efforts could concentrate on developing forecasting models for the single European
Union countries and testing if the forecasting accuracy performances of the different methods stay stable
across countries or if significant differences can be detected. For practical reasons, such country-level
approaches could even be more useful for governments and national tourism boards. Another research
endeavor could investigate the sensitivity of the forecasting performances of the different methods in
terms of different data frequencies (e.g., quarters instead of months).
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Appendix A

Appendix A.1. Arrivals (December 2017 Results)

Table A1. Forecasting accuracy (December 2017): arrivals, non-residents, three months ahead. Source: European Commission (2017) and own calculations.
Boldface indicates the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

3 Months Forecasting Horizon: Non-Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,1) 1,962,919.00 5 1,389,331.00 5 3.78 5 15
REGARIMA MA(1) 1,968,167.00 6 1,558,767.00 8 4.63 9 23

M, MD, A (AIC) 674,491.76 2 669,504.32 2 1.97 2 6
M, N, A (BIC) 1,947,636.44 4 1,773,359.65 10 4.98 10 24

REGARIMA (2,1,1) + Google Trends (EU) 2,142,712.00 10 1,618,392.00 9 4.42 8 27
REGARIMA (2,1,1) + Google Trends (EU_flights) 2,031,774.00 8 1,451,146.00 6 3.95 6 20
REGARIMA (2,1,1) + Google Trends (EU_hotels) 1,981,988.00 7 1,368,884.00 4 3.69 4 15
REGARIMA (2,1,1) + Google Trends (EU_travel) 2,058,870.00 9 1,493,207.00 7 4.07 7 23

Combined forecasts (uniform weights) 1,103,099.45 3 977,291.59 3 2.73 3 9
Combined forecasts (Bates–Granger weights) 624,338.87 1 625,290.19 1 1.81 1 3

Table A2. Forecasting accuracy (December 2017): arrivals, non-residents, six months ahead. Source: European Commission (2017) and own calculations.
Boldface indicates the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

6 Months Forecasting Horizon: Non-Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,1) 1,491,331.00 7 1,339,141.00 7 4.95 7 21
REGARIMA MA(1) 2,447,610.00 8 1,874,815.00 8 7.01 8 24

M, MD, A (AIC) 3,869,291.14 9 3,180,772.49 10 10.07 10 29
M, N, A (BIC) 3,274,107.22 10 2,567,872.69 9 7.90 9 28

REGARIMA (2,1,1) + Google Trends (EU) 1,465,033.00 5 1,231,018.00 3 4.50 4 12
REGARIMA (2,1,1) + Google Trends (EU_flights) 1,460,824.00 4 1,280,448.00 6 4.69 6 16
REGARIMA (2,1,1) + Google Trends (EU_hotels) 1,397,517.00 2 1,234,282.00 4 4.47 3 9
REGARIMA (2,1,1) + Google Trends (EU_travel) 1,467,741.00 6 1,274,591.00 5 4.67 5 16

Combined forecasts (uniform weights) 1,412,399.45 3 996,892.74 1 3.78 1 5
Combined forecasts (Bates–Granger weights) 1,344,569.48 1 1,199,343.49 2 4.45 2 5
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Table A3. Forecasting accuracy (December 2017): arrivals, residents, three months ahead. Source: European Commission (2017) and own calculations. Boldface indicates
the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

3 Months Forecasting Horizon: Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,0) 1,460,675.00 6 1,114,304.00 7 2.47 7 20
REGARIMA AR(1) 1,769,949.00 10 1,645,885.00 10 3.86 10 30

M, M, M (AIC) 784,126.59 2 717,596.63 2 1.71 2 6
M, N, M (BIC) 625,913.79 1 505,672.84 1 1.22 1 3

REGARIMA (2,1,0) + Google Trends (EU) 1,567,547.00 9 1,037,070.00 5 2.27 5 19
REGARIMA (2,1,0) + Google Trends (EU_flights) 1,464,579.00 8 1,127,056.00 9 2.50 9 26
REGARIMA (2,1,0) + Google Trends (EU_hotels) 1,456,503.00 5 1,120,557.00 8 2.48 8 21
REGARIMA (2,1,0) + Google Trends (EU_travel) 1,462,131.00 7 1,076,862.00 6 2.38 6 19

Combined forecasts (uniform weights) 1,029,620.56 3 796,857.07 3 1.77 3 9
Combined forecasts (Bates–Granger weights) 1,211,760.77 4 920,354.25 4 2.04 4 12

Table A4. Forecasting accuracy (December 2017): arrivals, residents, six months ahead. Source: European Commission (2017) and own calculations. Boldface indicates
the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

6 Months Forecasting Horizon: Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,0) 1,803,223.00 8 943,557.00 9 2.41 9 26
REGARIMA AR(1) 1,665,416.00 10 1,482,656.00 10 3.84 10 30

M, A, M (AIC) 556,627.45 2 476,424.56 2 1.20 2 6
M, N, M (BIC) 501,694.40 1 394,697.50 1 1.01 1 3

REGARIMA (2,1,0) + Google Trends (EU) 1,073,848.00 6 849,060.20 5 2.16 5 16
REGARIMA (2,1,0) + Google Trends (EU_flights) 1,075,211.00 7 940,386.60 7 2.41 8 22
REGARIMA (2,1,0) + Google Trends (EU_hotels) 982,754.80 5 861,745.50 6 2.18 6 17
REGARIMA (2,1,0) + Google Trends (EU_travel) 1,085,191.00 9 921,788.10 8 2.36 7 24

Combined forecasts (uniform weights) 818,608.72 4 726,462.04 4 1.87 4 12
Combined forecasts (Bates–Granger weights) 583,003.73 3 531,839.88 3 1.36 3 9
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Appendix A.2. Overnights (December 2017 Results)

Table A5. Forecasting accuracy (December 2017): overnights, non-residents, three months ahead. Source: European Commission (2017) and own calculations.
Boldface indicates the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

3 Months Forecasting Horizon: Non-Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,0) 6,605,540.00 4 4,387,028.00 3 5.00 4 11
REGARIMA AR(1) 6,320,525.00 3 4,001,776.00 2 3.21 2 7

M, MD, A (AIC) 9,737,534.88 6 12,199,817.86 6 6.75 5 17
M, N, A (BIC) 8,645,659.56 5 11,330,813.11 5 8.86 6 16

REGARIMA (2,2,0) + Google Trends (EU) 16,916,357.00 10 16,700,366.00 10 13.32 10 30
REGARIMA (2,2,0) + Google Trends (EU_flights) 15,693,427.00 8 15,485,019.00 8 12.36 8 24
REGARIMA (2,2,0) + Google Trends (EU_hotels) 15,068,359.00 7 14,830,699.00 7 11.84 7 21
REGARIMA (2,2,0) + Google Trends (EU_travel) 15,903,711.00 9 15,693,577.00 9 12.53 9 27

Combined forecasts (uniform weights) 6,176,397.10 2 5,631,492.19 4 4.53 3 9
Combined forecasts (Bates–Granger weights) 2,166,930.13 1 1,883,165.39 1 1.44 1 3

Table A6. Forecasting accuracy (December 2017): overnights, non-residents, six months ahead. Source: European Commission (2017) and own calculations.
Boldface indicates the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

6 Months Forecasting Horizon: Non-Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,0) 5,465,725.00 1 4,463,842.00 1 5.09 1 3
REGARIMA AR(1) 7,197,605.00 2 5,660,215.00 2 6.97 3 7

M, MD, A (AIC) 15,570,760.51 9 13,704,608.24 9 12.80 9 27
M, N, A (BIC) 15,918,015.56 10 14,012,547.74 10 13.07 10 30

REGARIMA (2,2,0) + Google Trends (EU) 12,370,566.00 5 10,752,681.00 5 10.27 5 15
REGARIMA (2,2,0) + Google Trends (EU_flights) 13,029,867.00 7 11,283,221.00 7 10.69 7 21
REGARIMA (2,2,0) + Google Trends (EU_hotels) 14,427,259.00 8 12,459,483.00 8 11.64 8 24
REGARIMA (2,2,0) + Google Trends (EU_travel) 12,820,154.00 6 11,109,223.00 6 10.55 6 18

Combined forecasts (uniform weights) 11,420,444.83 4 9,918,838.29 4 9.50 4 12
Combined forecasts (Bates–Granger weights) 7,814,152.04 3 6,596,603.17 3 6.95 2 8
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Table A7. Forecasting accuracy (December 2017): overnights, residents, three months ahead. Source: European Commission (2017) and own calculations. * AIC and
BIC selected the same model. Boldface indicates the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

3 Months Forecasting Horizon: Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,0) 4,646,991.00 5 4,386,662.00 5 4.02 5 15
REGARIMA AR(1) 3,202,677.00 3 2,468,029.00 3 2.55 3 9

A, N, M (AIC)* 2,255,395.99 2 1,859,448.54 2 1.90 2 6
A, N, M (BIC)* 2,255,395.99 2 1,859,448.54 2 1.90 2 6

REGARIMA (2,2,0) + Google Trends (EU) 8,644,081.00 9 7,432,814.00 9 6.59 9 27
REGARIMA (2,2,0) + Google Trends (EU_flights) 6,884,342.00 7 5,586,683.00 7 4.91 7 21
REGARIMA (2,2,0) + Google Trends (EU_hotels) 6,347,254.00 6 5,179,781.00 6 4.55 6 18
REGARIMA (2,2,0) + Google Trends (EU_travel) 7,349,120.00 8 6,081,357.00 8 5.36 8 24

Combined forecasts (uniform weights) 4,024,454.10 4 3,681,202.32 4 3.32 4 12
Combined forecasts (Bates–Granger weights) 1,880,723.47 1 1,486,759.71 1 1.51 1 3

Table A8. Forecasting accuracy (December 2017): overnights, residents, six months ahead. Source: European Commission (2017) and own calculations. * AIC and BIC
selected the same model. Boldface indicates the single forecasting model(s)/forecast combination technique(s) characterized by the lowest sum of ranks.

6 Months Forecasting Horizon: Residents RMSE Rank MAE Rank MAPE Rank Sum of Ranks

ARIMA (2,1,0) 3,157,904.00 3 2,598,295.00 3 3.17 3 9
REGARIMA AR(1) 5,375,422.00 4 4,629,242.00 4 6.04 5 13

A, N, M (AIC)* 2,271,676.09 1 1,851,199.77 1 2.22 1 3
A, N, M (BIC)* 2,271,676.09 1 1,851,199.77 1 2.22 1 3

REGARIMA (2,2,0) + Google Trends (EU) 9,454,403.00 6 8,432,516.00 6 8.98 6 18
REGARIMA (2,2,0) + Google Trends (EU_flights) 10,433,326.00 8 9,174,597.00 8 9.63 8 24
REGARIMA (2,2,0) + Google Trends (EU_hotels) 11,910,297.00 9 10,428,86.00 9 10.88 9 27
REGARIMA (2,2,0) + Google Trends (EU_travel) 10,027,850.00 7 8,855,383.00 7 9.34 7 21

Combined forecasts (uniform weights) 5,684,099.00 5 5,174,079.48 5 5.71 4 14
Combined forecasts (Bates–Granger weights) 2,319,373.77 2 1,971,291.24 2 2.43 2 6
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