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Abstract: As the leading cause of acute gastroenteritis worldwide, human noroviruses (HuNoVs)
have caused around 685 million cases of infection and nearly $60 billion in losses every year. Despite
their highly contagious nature, an effective vaccine for HuNoVs has yet to become commercially
available. Therefore, rapid detection and subtyping of noroviruses is crucial for preventing viral
spread. Over the past half century, there has been monumental progress in the development of
techniques for the detection and analysis of noroviruses. However, currently no rapid, portable
assays are available to detect and subtype infectious HuNoVs. The purpose of this review is to survey
and present different analytical techniques for the detection and characterization of noroviruses.

Keywords: human norovirus; detection; review

1. Introduction

Human noroviruses (HuNoVs) are the leading cause of foodborne illnesses in the United States
and lead to around 21 million cases of acute gastroenteritis annually, resulting in more than 70,000
hospitalizations and nearly 800 deaths [1]. The economic impact from foodborne and waterborne
outbreaks of NoV illnesses is estimated to be $5.8 billion annually in the U.S. [2]. Approximately 5%
of people among all ages are infected by HuNoV every year, according to the surveillance data from
Netherlands, UK and USA [3]. HuNoVs are transmitted through the fecal-oral route, aerosolized
vomitus, contaminated water or food, fomites, and direct person-to-person contact [4]. They are very
persistent in the environment, being resistant against freezing/thawing (at least 14 cycles), drying,
low pH (gastric pH 3–4) and common chemical disinfectants [5,6]. HuNoVs have particularly been
shown to be able to survive for long periods of time in various food products, environmental water,
and on contact surfaces [7–10]. The infection course of HuNoVs is all year long, though it is more
often reported during the winter and early spring months, possibly due to the tendency for people to
congregate in enclosed environments and take less exercise [4].

Noroviruses (NoVs) are members of the Norovirus genus within the Caliciviridae family. With
a size of around 27~38 nm and a genome length of around 7.4~7.7 kb, NoVs are non-enveloped
viruses with a single-strand, positive-sense RNA genome inside a protein capsid shell. Among the six
genogroups of NoV, genogroup I and II (designated GI and GII) are of the greatest interest as they are
the most common genogroups that infect humans. To date, there are at least nine genotypes of HuNoVs
in GI and 22 in GII, which constitutes over 150 strains [11,12]. HuNoVs have a wide degree of antigenic
and genetic variation. Based on the differences of the amino acid sequences for the major capsid
protein of noroviruses, the variations between genogroups, genotypes, and strains are 44.9–61.4%,
14.3–43.8% and 0–14.1%, respectively [13]. Among all the different forms of HuNoVs, GII.4 is the most
prevalent genotype across the world, which accounts for around 80% of all norovirus outbreaks since
2002 [14]. GII.4 NoVs comprise the majority of norovirus illnesses, and undergo substantial antigenic
variation via recombination and mutation, resulting in a new pandemic GII.4 strain circulating every
2–4 years [15].
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The large antigenic variations of HuNoV among genotypes and genogroups are one of the primary
reasons why NoV vaccines have still yet to be developed. Other factors that have complicated the
design of a vaccine include the lack of appropriate modeling, an unknown duration of protection
by the vaccines, few human challenge studies, and complex patterns of vaccine performance due to
unknown pre-exposure history [15]. Since no vaccine is available, the only effective way to mitigate
HuNoV outbreaks is through prevention, early detection, and control. Due to the highly contagious
nature of HuNoVs, once an outbreak starts, it is very important to identify the virus and its source
immediately in order to control the damage [1]. However, significant technical challenges exist for the
development of rapid assays with high sensitivity and specificity, especially for infectious HuNoVs.
The current gold-standard reverse transcription-polymerase chain reaction (RT-PCR) method lacks
portability, takes ≥ 40 min, is sensitive to complex matrices, and is unable to differentiate infectious
from non-infectious HuNoV. Hence, the development of a rapid or near real-time detection method
for HuNoVs has become even more necessary. Although challenges still exist, much progress has
been made in the area of detection and biochemical analysis of noroviruses since their discovery
nearly half a century ago. This review will survey past and present norovirus detection and analytical
techniques. In general, detection techniques for NoVs can be grouped into ligand-based, nucleic
acid-based, biosensor-based, microarray-based, omics-based and others. Comparisons among different
types of methods for HuNoV detection have been summarized in Table 1.



Foods 2020, 9, 318 3 of 37

Table 1. Comparison of different types of methods for human norovirus (HuNoV) detection.

Method Cost Time Sensitivity Specificity Detection Limit Advantages Disadvantages

Electron microscopy
(EM) High 15 min 1 Low Low 106 viral

particles/mL stool

Fast; capable of visually
observation of viral

morphology

Low sensitivity and specificity;
laborious and expensive
operation (including the

requirement of trained personnel)

Enzyme-linked
immunosorbent assay

(ELISA)
Medium 60~90 min 1 31.6%~92.0% 65.3%~100.0% 104~106 viral

particles/mL stool
Cheap reagent; long shelf-life;

widely available

Measurement of enzyme activity
may be complex and the enzyme

activity may be affected by
plasma constituents

Immunochromatography
(ICG) Medium 15 min 17.0%~83.0% 87.5%~100.0% NA

Fast; long shelf life (12~24
months); ease of use;

relatively low cost and
relative ease in manufacturing

Varied performance

Real time RT-qPCR High
40 min~3 h (with

pre-extracted
nucleic acid)

High High Around 10~100
gc/g sample

High sensitivity and
specificity

Reagent-intensive; requirement of
specific equipment

Biosensor High Short (Varied) High High Varied Potentials for point-of-care
diagnostics

Sample preparation; matrix
effects and system integration

1 According to Vinjé [11].
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2. Ligand-Based Detection Techniques

2.1. Ligands

Ligands that can bind with HuNoVs are key components in many assays for HuNoV detection.
One of the more pressing challenges presently is the lack of a ligand that is broadly reactive enough
to bind with all HuNoV genotypes. However, some ligands, including histo-blood group antigens
(HBGAs), porcine gastric mucins (PGM) (containing HBGAs), aptamers and monoclonal antibodies
(mAbs), have been widely used for the detection of HuNoVs. Each of these ligands can bind to some
specific genotypes or strains of HuNoVs but not all, and each has their own limitations. The comparison
of these four ligands is shown in Table 2.
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Table 2. Comparison of bio-recognition elements for HuNoV detection.

Bioreceptor Availability Cost 1 Component Specificity Sensitivity Advantages Disadvantages Reference

Monoclonal
antibody

Some are
commercially

available; some
are currently
available in

research
laboratories

Varied
large (~150 kDa)

multimeric
proteins

High Medium High specificity and
selectivity

Produced from animal systems, more
expensive; the binding conditions

cannot be modulated; heat sensitive
and binding irreversible; limited

shelf-life

[16,17]

Aptamer

Available in
some research

laboratories; can
be synthesized
commercially
upon request

$6–16/nmol 2
DNA

oligonucleotide,
single strand

High Medium

Chemical synthesis; the
binding conditions can be

modulated; heat stable and
recoverable; less expensive;

long shelf-life

Rapid degradation of aptamers by
nucleases in biological media or in
blood; time- and labor-consuming;
may also bind to molecules with a
similar structure; require purified

target molecules for generation

[18,19]

Porcine gastric
mucin (PGM)

Easily available
commercially $3.84/g 3

Type A, H type
1 and Lewis b

HBGA, other
carbohydrates

as well as
protein (20%)

Low High Low cost, easily available,
and broad reactivity

Low specificity, since it can also bind
to other microbes; PGM also contains

another broadly recognized
receptor-sialic acid

[20–22]

Histo-blood
group antigens

(HBGAs)

Difficult to
obtain since

only one
company
produces

HBGAs, and it′s
possibly

backordered

~ $260/mg 4
ABH, secretor

and Lewis
antigens

Low High
Commercially available;

bind to all NoVs except for
a few genotypes

Low specificity, since they can also
bind to other viruses and bacteria,

including Rotavirus and rabbit
hemorrhagic disease virus

[20]

1 Prices are in USD. 2 Price based on IDT listing for RNA synthesis. Available online: https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/ultramer-dna-oligos (Accessed on
6 March 2020). 3 Price based on SigmaAldrich.com listing. Available online: https://www.sigmaaldrich.com/catalog/product/sigma/m1778?lang=en&region=US (Accessed on 10 Feburary
2020). 4 Price is based on H type 1 synthetic HBGA (Led (H type 1)-PAA-biotin) on Glycotech Corp. (Gaithersburg, MD). Available online: http://www.glycotech.com/probes/multivalbio.html
(Accessed on 10 Feburary 2020). For other HBGAs, the price may be different.

https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/ultramer-dna-oligos
https://www.sigmaaldrich.com/catalog/product/sigma/m1778?lang=en&region=US
http://www.glycotech.com/probes/multivalbio.html
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2.1.1. Histo-Blood Group Antigens

Histo-blood group antigens (HBGAs) are suggested to be receptors or co-receptors for HuNoV
infection. HBGAs which include ABO, secretor and Lewis antigens are highly polymorphic [23].
They are widely present in red blood cells, mucosal epithelial cells and free antigens in body fluids,
such as blood, saliva, milk and the intestinal contents [24,25]. Type A-like HBGA is also found in
oyster gastrointestinal cells and responsible for the binding with recombinant norovirus-like particles
(NoV VLPs) [26]. One inherent advantage of utilizing HBGAs in detection is that less noninfectious
viral particles will be detected. HBGAs are commonly used as a reagent in removing signal from
noninfectious viral particles under the assumption that if a viral particle is unable to bind its cellular
receptor/co-receptor, it is not likely to infect a host cell.

Binding between HuNoVs and HBGAs is strain-specific [27]. At least eight binding patterns
have been reported, which can be divided into two major binding groups based on shared HBGA
targets. These include the A/B binding group (which mainly recognizes the A/B/H epitopes) and
the Lewis binding group (which only recognizes the Lewis epitopes) [28,29]. HBGA-binding
interfaces include a central binding pocket (CBP) and a variable surrounding region. The CBP
is highly conserved and it interacts with a common major binding saccharide of HBGAs, while the
surrounding region is very flexible, which allows for the binding of HuNoVs to diverse saccharides of
HBGAs [23]. The binding between HBGAs and HuNoVs involves multiple epitopes, and is essentially
a protein–carbohydrate interaction, with the amino acids in the protruding domain of the viral capsid
interacting with oligosaccharides on HBGAs [30]. However, the mechanism is very complex, since
several factors contribute to the binding interactions, including capsid loop movements, HBGA
alternative conformations, and rotations. In particular, the capsid loop can be repositioned to allow for
HBGA binding, which involves hydrogen bonds and water-mediated bonds [31].

HBGAs as receptors for HuNoVs can also be further described by the fact that HBGA-expressing
bacteria can aid in the cultivation of HuNoVs in a B cell line [32]. In addition, different NoV strains
have variable binding abilities to HBGA-expressing bacteria [32–34]. Even though almost all HuNoVs
bind to HBGAs, some strains of GI VLPs, GII.1 VLPs and GII.14 VLP do not bind to any type of HBGAs
nor any saliva [28,35]. For these strains, it is suggested that some other receptors may be involved
in the binding process [36]. In addition, HBGAs have the shortcoming of low specificity as HuNoV
receptors, since many other viruses (including rotavirus and rabbit haemorrhagic disease virus) and
bacteria (e.g., Escherichia coli) also recognize HBGA as receptors for attachment [20]. As an example,
spike protein VP8* from major human rotavirus genotypes (P [4], P [6] and P [8]) has been reported to
bind with H type 1 HBGA [37].

Since HBGAs are terminal carbohydrate structures present on the sugar chains of oligosaccharides,
glycans (containing HBGA), glycoconjugates (including glycolipids and glycoproteins) and saliva,
have also been incorporated in the study of HBGAs with NoVs [38]. It has been reported that NoV
VLPs bind to glycosphingolipids (GSL) in a strain-specific manner where Norwalk virus (NV) VLPs
bind to A, H, and difucosylated Lewis, but not B histo-blood group active GSL [39,40]. Similarly,
human milk glycans (human milk oligosaccharide (HMOS)) and HMOS-based neoglycoconjugates
(including neoglycoproteins and oligosaccharide-glycine derivatives) can bind with NoV VLPs (VA387
and Norwalk) in a strain-specific manner and inhibit VLPs binding to their host receptors [41]. A study
conducted by Rydell et al. [42] showed that aside from secretor-gene dependent α1,2-fucosylated
carbohydrates, some HuNoV GII strains can also recognize sialyl Lewis x neoglycoproteins as
binding receptors.

2.1.2. Porcine Gastric Mucin

Porcine gastric mucin (PGM) has been widely used as a model for human gastric mucin in studies,
since it shows similarities in terms of anatomy, physiology and sequence [43,44]. Both human and
porcine gastric mucin have been reported to have a “necklace”-like structure under atomic force
microscopy (AFM) [45]. PGM is composed of protein (20%) and carbohydrates (such as hexosamine
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(37%), hexoses (27%), fucose (10%) and sialic acid (6%)) [21]. The presence of HBGA (type A, H type 1
and Lewis b) in PGM (type III, Sigma-Aldrich) has been determined by enzyme-linked immunosorbent
assay (ELISA) with the incorporation of anti-HBGA antibodies [46]. Due to the fact that PGM can be
more readily obtained and can be less costly than purified HBGAs, numerous reports exist utilizing
PGM for capture of noroviruses. Like HBGAs, PGM has the potential added benefit of selecting less
nonviable viral particles. Specifically, this ability is premised upon the assumption that if a viral particle
is not capable of binding a putative co-factor/receptor necessary for infection, then it will not be able to
infect a cell. Further, PGM has the added benefit of containing multiple HBGA types and sialic acid,
making it capable of binding and capturing a broader range of noroviruses. This is because specific
HBGA binding profiles differ among different norovirus genotypes and strains [31,47]. The binding of
NoV VLPs with HBGA on epithelial cells of porcine gastrointestinal tissue has been observed by using
fluorescent labelled anti-HBGA antibodies and secondary antibodies through confocal microscopy [48].

PGM binds to NoV VLPs, as well as inhibits the binding of NoV VLPs to HBGAs and Caco-2
cells [49]. Specifically, NoV VLPs could be efficiently captured by PGM coated on plates. However,
the binding of NoV VLPs to PGM can be inhibited by HBGA in saliva, Lewis b and Lewis d synthetic
oligosaccharides. In a study conducted by Tian et al. [50], all GI (8 strains) and 85% of GII (11
strains) recombinant NoVs tested were successfully captured and concentrated via PGM conjugated
magnetic beads (PGM-MB). However, as not all NoVs bind to HBGAs, not all can be captured by
PGM as well. For example, some NoV VLPs of GII.4 strains (Sakai, Hunter and Bristol) could not
be concentrated by the PGM-MB assay [50]. Although PGM is broadly available and reactive among
HuNoV genotypes [26], it has low specificity since it can also bind to other viruses and bacteria [22].

2.1.3. Antibody

Antibodies are often recognized as the most popular bio-recognition elements due to their
sensitivity and specificity [51]. Antibodies (including polyclonal, monoclonal and recombinant
antibodies) as well as their fragments (antigen-binding fragment and variable domain) are often used
in immunological diagnostics and biomarker detection [52]. Polyclonal antibodies (pAbs) of NoVs
were found to be highly specific for the immunized genotypes, which hindered the development of
immunological diagnosis. Thus, interest was turned towards the development of mAbs, which are
also more stable than pAbs in terms of their application in rapid immunological assays [53]. Although
numerous commercially available antibodies exist (12 available from Abcam against GI and GII; with
others available from ThermoFisher #MA1-7405, and Sigma-Aldrich #MABF2097, among others), they
will not be discussed for the purposes of this review.

Monoclonal antibodies against HuNoV can be produced from BALB/c mice (hybridoma cell
line) with HuNoV VLPs [54]. Broadly reactive mAbs are often preferred for HuNoV detection from
clinical samples. Previously reported broadly reactive mAbs can be classified into several groups
based on their epitope properties [54]. The first group of mAbs are cross-reactive, since they recognize
the inter-genogroup cross-reactive linear epitopes on the shell or protruding domain. The second
group of mAbs are genogroup-specific, capable of recognizing the intra-genogroup cross-reactive
conformational epitopes, and the third group are strain-specific [54].

mAb NV23, which recognizes an epitope on the VP1 protruding domain (residues 453~472) of
GI, GII, and GIV NoVs, was shown to be cross-reactive by both surface plasmon resonance (SPR) and
ELISA methods [55]. Specifically, it was able to detect HuNoV VLPs from 16 genotypes by sandwich
ELISA, and detect HuNoV from stool specimens with a Ct value <31, as shown by Kou et al. [16]
Studies incorporating two different antibodies have shown to be able to detect more HuNoV genotypes.
In particular, another study conducted by Kou et al. [56] combining mAb NV23 and single-chain
variable fragments (scFv) (HJT-R3-A9 antibody) for NoV capture and detection by a sandwich ELISA
assay showed that all 25 NoV genotypes from stool samples could be identified with a Ct value of
<31 and a limit of detection (LOD) of 1 ~ 10 ng/well for 8 GI and 13 GII genotypes, except 50 ng/well
for GII.7 strains. In addition, Hurwitz et al. [57] identified two scFvs (NJT-R3-A2 and NJT-R3-A3)



Foods 2020, 9, 318 8 of 37

that could detect NoV from infected clinical stool samples [57]. The LOD of NJT-R3-A2 scFv for the
detection of GI.1 and GI.7 VLPs were 0.1 and 0.2 ng, respectively. Zheng et al. [58] also identified two
mAbs (8D8 and 10B11) that could bind to all eight major VP1 capsid proteins of NoV with varied
binding affinities. However, mAb 8D8 did not bind with intact VLPs in solution.

Nanobodies, known as the smallest fragments of antibodies with a single-domain [59], have
raised researchers’ interest and have been used for NoV detection. The advantages of nanobodies
over antibodies include the fact that nanobodies are more stable than conventional antibodies, and the
former can be produced in large quantities with the atomic resolution structure of binding pockets
easier determined than the latter [60]. The nanobody can bind to the top, bottom and side of NoV
protruding domain [61]. In a study conducted by Koromyslova and Hansman [62], a nanobody
(nano-85) was broadly reactive, as it could bind to GII. 4, GII. 10, and GII. 12 NoV, as well as being
able to detect NoV from stool samples via ELISA. Another study conducted by Doerflinger et al. [60],
showed that nano-85 was able to bind to four GII NoV VLPs (including GII.4, GII.10, GII.12 and GII. 17),
and the nanobody-based lateral flow immunoassay was able to detect GII.4 outbreak specimens, with
a sensitivity of 80% and specificity of 86% in ~5 min. Interestingly, NoV VLPs appeared to fall apart if
incubated with nanobodies, since nanobodies bind so close to the icosahedral contacts of the virus.
Specifically, nanobodies can cause NoV capsid morphological changes, resulting in the degradation of
capsid protein and exposure of viral RNA [61].

Synbodies which are synthetic bivalent ligands with two 15- to 20-mer peptides have similar
affinities and specificities to antibodies [63]. A series of synbodies has been developed by using NoV
GII.4 VLPs with dissociation constants (Kd) < 10 nM [64]. The synbodies were reported to be broadly
cross-reactive with NoV VLPs from multiple GI and GII genotypes, but they are not reactive to all.
By using a synbody (ASU1052)-based magnetic bead capture assay, NoV could be concentrated from
dilute stool solutions [63]. The utilization of a synbody (ASU1052)-based magnetic bead capture assay
could result in 1000-fold increase in the sensitivity of a low-cost eye-readable assay for the detection of
NoV (GII.4 Sydney), from clinical stool samples with a LOD of 270 zM in 3 h [63].

Though antibodies have been widely used in the detection of HuNoVs in a number of formats,
including immunoassays and biosensor-based assays, currently developed antibodies are only partially
broadly reactive towards HuNoVs. Specifically, 29 genotypes of HuNoVs exhibit 142 dissimilar
antigenic behaviors. In addition, certain strains of HuNoVs undergo antigenic drift over time [11].

2.1.4. Aptamers

Aptamers are small single stranded DNA or RNA oligonucleotides (usually 20 ~ 60 nucleotides)
that can fold into well-defined three-dimensional (3D) structures and bind to target molecules with
high affinity and selectivity [19,65]. Through the systematic evolution of ligands by exponential
enrichment (SELEX) process, the derived aptamers are selected against various targets, including
cells, microorganisms, proteins, and chemical compounds [66]. Compared with the aforementioned
ligands (HBGA, PGM and mAbs), much less research has been conducted on utilizing aptamers
for HuNoV detection. AG3, an aptamer selected for murine norovirus (MNV) through SELEX by
Giamberardino et al. [67], can bind with HuNoV GII.3 capsids. An electrochemical biosensor made of
gold nanoparticles-modified screen-printed carbon electrode coupled with the thiolated aptamer AG3
could achieve a LOD of around 180 virus particles of MNV, though the selectivity was not very high
and non-specific binding occurred [67]. Similarly, a study conducted by Kitajima et al. [68] utilized
an AG3 aptamer to develop a miniaturized and potentially portable electrochemical biosensor for
detection of MNV. More recently, by using the AG3 aptamer, Weerathunge et al. [69] developed a
rapid (10 min) and ultrasensitive colorimetric NanoZyme aptasensor for the detection of MNV with
an experimental LOD of 200 viruses/mL and calculated LOD of 30 viruses/mL. Specifically, gold
nanoparticles (AuNPs) that have enzyme-mimic catalytic activity (i.e., NanoZyme activity) were
immobilized with the AG3 aptamer (Kd of 18.5 nM) for MNV detection. The NanoZyme activity of
AuNPs, capable of converting 3,3′,5,5′-tetramethylbenzidine substrates to a blue colored product, was
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lost upon binding with aptamers, but the activity resumed upon binding with the target (MNV). The Kd
of AG3 aptamer to MNV is ~10−12 M, therefore, upon the presence of MNV, aptamer would detach from
AuNPs and bind with MNV. An advantage of this method is that the AuNPs-functionalized aptasensor
is stable in solution, thus may be suitable for storage or transportation and point-of-care devices.

Similar to mAbs, currently identified aptamers do not target all genotypes of HuNoV [18]. In a
study by Escudero-Abarca et al. [18], aptamers selected for GII.2 HuNoV could bind to 13 of the 14
VLPs tested, especially to GII.2 and GII.4 VLP. By using aptamer 25, aptamer magnetic capture coupled
with reverse transcription quantitative polymerase chain reaction (RT-qPCR) method could detect
GII.4 from artificially contaminated lettuce with a LOD of 10 genomic copies (gc) per 3 g lettuce and
a capture efficiency of 2.5%~36%. For partially purified stool specimens collected from outbreaks,
enzyme-linked aptamer sorbent assay (ELASA) assays using aptamer 25 were able to detect GI.1,
GII.1, GII.2, GII.3, and GII.4 HuNoV, but not strains of GI.6 or GII.7. In the exclusivity study, aptamer
25 has been shown to have a significantly higher binding affinity to GII.2 VLPs than to hepatitis A
virus (HAV) or poliovirus via ELASA test [18]. Using the 6-carboxyfluorescein labeled aptamer with
the same DNA library as that described by Escudero-Abarca et al. [18], Weng and Neethirajan [70]
developed a paper-based microfluidic device using graphene oxide as the fluorescence quencher for
determination of GII NoV VLPs with a LOD of 3.3 ng center dot/mL.

Aptamers selected against the capsid protruding (P) domain of a HuNoV GII.4 strain have been
developed in a more recent study by Moore et al. [71]. Among all the aptamers, aptamer M6-2 had the
broadest reactivity, with low to moderate binding affinity to all of the 14 VLPs tested and could be
used to detect GII.4 NoV from partially purified stool samples, by using ELASA and aptamer magnetic
capture together with RT-qPCR. Though similar broad reactivity and signal/noise ratio were achieved
when compared to the study by Escudero-Abarca et al. [18], the aptamer M6-2 displayed a capture
efficiency of 4.88–6.79 log10 gc of virus input, which was lower than the capture efficiency of aptamer
25, due to the lower number of counter-SELEX rounds performed in generating M6-2 [71]. In addition,
aptamers targeting NoV P domain had also been selected by Schilling et al. [72], with a Kd of 17.42 nM.
However, the aptamers did not bind with the P-domain in the presence of food matrix (such as frozen
strawberries, lettuce, whole oyster, and oyster digestive diverticula). Matrix-related inhibition and
non-specific binding remain challenges for the utilization of aptamers in complex matrices.

2.2. Immune Electron Microscopy (IEM)

In 1968, the outbreak of a winter vomiting disease that occurred in an elementary school in
Norwalk, Ohio brought an unknown virus into the light of researchers [73]. The prototype norovirus,
also referred to as the Norwalk virus, was discovered in 1972 via the immune electron microscopy
method [74]. Despite the fact that electron microscopy (EM) could visualize the shape and size
of viruses, the morphology of HuNoV was very difficult to differentiate from other small round
structured viruses (e.g., sapovirus) through the use of this method (which has a LOD of around 106

viral particles per ml of stool) [75]. Therefore, an IEM method, which was based on electron microscopy
but incorporated the use of antibodies to precipitate the virus from clarified stool filtrates, was applied
to aid in the identification of non-cultivatable HuNoVs. Though EM and IEM were able to detect
viral particles in a short time period (15 min), several disadvantages limited their application in the
diagnostics of HuNoV; including high cost, low sensitivity and specificity, laborious operation and
requirement of trained personnel. Due to these limitations, electron microscopy-based methods are
largely only performed for analytical purposes and not detection.

2.3. Immunoassays

Immunoassays could be applied to detect the presence or concentration of protein analytes
(antibody or antigen), based on the incorporation of specific ligands (antigen or antibody). They can be
categorized into several types, based on the labelling methods used to detect or quantify the analytes.
In the case of HuNoV detection, radio-immunoassays (RIA) with the label of radioisotopes, enzyme
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immunoassays (EIA) with enzyme labelling, immune adherence hemagglutination assay (IAHA), and
immuno-chromatography (ICG) tests will be discussed in detail. In general, immunoassays have the
advantage of portability, ease of operation, and rapid results; however, these assays generally tend to
lack analytical sensitivity, specificity, and are limited in their ability to subtype.

2.3.1. Immune Adherence Hemagglutination Assay (IAHA)

After the successful application of IAHA tests to the measurement of some animal viruses (herpes
simplex virus, simian virus 40, adeno- and enteroviruses) and their antibodies in 1966 [76], this method
has been investigated and applied in the detection of other viruses as well as antibody responses to
them. For example, an IAHA test conducted by Kapikian et al. [77] was applied for the detection of
antibody against Norwalk virus from acute epidemic nonbacterial gastroenteritis, by using purified
viruses from stool as an antigen. Around the late 1970s, IAHA tests began to replace EM and IEM for
the detection of NoVs in clinical samples [78]. IAHA used the agglutination of human erythrocytes
with the antigen-antibody complex to study HuNoV sero-prevalence. Though this method is rapid,
simple, and inexpensive, its inability to differentiate immunoglobulin subclasses as well as the problem
of the virus agglutinating red blood cells inhibits its application. In addition, the method is not suitable
for direct NoV detection in fecal samples [79,80].

2.3.2. Radio-Immunoassays (RIA)

Ultimately, IAHA was replaced by RIA, which used radio-labelled immunoglobulin G (IgG) to
detect NoV antigen or antibody. RIA is often conducted in a microtiter format and could be used
to detect viral antigens (or antibodies) by involving a competitive binding between unlabeled and
radioisotope (125I), labeled corresponding antibodies (or antigens). In 1978, a study by Greenberg et
al. [81] using a microtiter solid-phase RIA successfully detected Norwalk virus (from stool samples)
and its antibody with a much higher sensitivity than IAHA assay. When utilized for the detection
of NoV antigen in stool samples, the IgG which was purified from a convalescent serum of a NoV
infected patient was used as an antibody and radiolabeled. The radiolabeled IgG was then added to
competitively bind with NoV antigen against unlabeled IgG. A reduction of 50% or more radioactivity
defines the presence of the viral antigen.

The blocking RIA assay for NoV antibody detection was 10 to 200 folds more sensitive than IAHA
and required much less antigen [82]. There have been a number of studies however, where the RIA
assay was not able to detect any NoV strains [83]. Since both IAHA and RIA methods require reagents
from human volunteers, their applications for the detection of HuNoV are considered to be limited [82].

2.3.3. Enzyme Immunoassays (EIA)

Enzyme immunoassays (EIA) incorporate specific viral antibodies (or antigens) for the detection
of viral antigens (or antibodies). EIA is similar to RIA, but utilizes enzymes rather than radioisotopes
for detection. Aside from not having the potential of being exposed to radioisotopes, EIA has several
advantages when compared to RIA, which includes the increased stability of reagents used, decreased
assay time, and simpler equipment operation. Specifically, the radioisotope labelled antibody only
has several days to weeks of shelf-life, while the antibody labelled by the enzyme or biotin has a
shelf-life of several months. In addition, the assay time can be reduced by several days when compared
to RIA [82]. The use of colorimetric and bioluminescent EIA methods for HuNoV detection will be
discussed here in detail.

In the 1990s, the cloning of NoV capsid protein enabled the production of NoV VLPs. These were
produced from baculovirus recombinants that contained NoV VP1. In particular, NoV VLPs were
shown to be antigenically and morphologically similar to native NoVs, and thus have been widely
used for the structural studies of NoV [84]. The use of VLPs has also allowed the detection of viral
antibodies [85].
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Cloned NoV capsid protein can also be used to induce antibodies against NoVs, which can then be
applied in enzyme-linked immunosorbent assay (ELISA) for detection. A number of commercial ELISA
kits are available for NoV detection (both GI and GII). The two most commonly used kits are IDEIA
Norovirus (Oxoid Ltd., Hampshire, United Kingdom; two generations available) and RIDASCREEN
Norovirus (R-Biopharm, Darmstadt, Germany; three generations available). There are wide ranges
of reported sensitivity and specificity for these kits. The sensitivities for IDEIA and RIDASCREEN
Norovirus range from 38.0% to 78.9% and 31.6% to 92.0%, respectively, while their specificities range
from 85.0% to 100.0% and 65.3% to 100.0%, respectively [86]. Several factors contribute to the different
performance of commercial EIA kits in terms of detection of norovirus outbreaks. These include the
viral titer and viral genotypes present in clinical samples (since the antibodies in EIA kits have varied
affinities to different NoV genotypes), specimen collection (the time collected after symptoms onset),
infection extent (outbreak or sporadic), and patient demographics (pediatric or adults) [86].

Compared to the 2nd generation IDEIA ELISA test, the 3rd generation RIDASCREEN ELISA has
much higher sensitivity for the detection of NoVs. According to a comparison study of these two kits
by Kirby et al. [87], the sensitivity of the 3rd generation RIDASCREEN was 63% and the specificity
was more than 98%, while the sensitivity of IDEIA was only 45%. Due to its combination of several
cross-reactive monoclonal and polyclonal antibodies, RIDASCREEN has the capability to detect some
HuNoV genotypes. Despite these advantages, RIDASCREEN tests generally have low sensitivity.
In particular, samples from sporadic NoV cases with GI and mixed infections (GI/GII) were unlikely
to be detected by the kit [88]. With a LOD of 104–106 viral particles/mL of stool by ELISA, it is not
likely to be sensitive enough for detection of NoVs in food or environmental samples [78]. Moreover,
since HuNoVs exhibit at least 142 dissimilar antigenic behaviors, the development of an EIA that is
cross-reactive to all HuNoV genotypes is difficult [11].

Considered to be more than just a routine ELISA test, a bioluminescent enzyme immunoassay
(BLEIA) conducted by Sakamaki et al. [89], was reported to be able to detect HuNoV VLPs, including 6
GI and 8 GII. This assay had a good reproducibility, with a turnaround time of 46 min and a throughput
of 120 tests/h. A similar BLEIA method by Shigemoto et al. [90] could detect 3 NoV GI genotypes and 10
GII genotypes from fecal samples with a LOD of 106 gc per gram of stool and below and a sensitivity of
96.3%. Similar results were observed in the study by Suzuki et al. [91], with higher sensitivity (93.1%),
specificity (100%) and detection rate (95.7%) of BLEIA method compared to the reverse transcription
loop-mediated isothermal amplification (RT-LAMP) method, for the detection of HuNoVs from fecal
samples. It was found in these studies that BLEIA assays did not show cross-reactivity towards bacteria
or other enteric viruses and the sensitivity was around 105–106 copies/g stool samples, which is roughly
comparable to that observed for ELISA.

2.3.4. Immuno-Chromatography (ICG)

Aside from the use of commercial ELISA tests, a number of commercial ICG lateral flow assay
(LFA) kits are also available for NoV detection (both GI and GII). ICG kits have a number of advantages,
including a short timeline (result achieved within 15~30 min), long shelf life (12~24 months), ease of use,
relatively low cost (not requiring specific laboratory equipment), and relative ease in manufacturing.
Such kits include Ridaquick Norovirus (R-Biopharm, Darmstadt, Germany), SD Bioline Norovirus
(Standard Diagnostics, Inc., Kyonggi-do, South Korea), ImmunoCardSTAT!® Norovirus (Meridian
Bioscience Europe, Nice, France), and NOROTOP® (ALL.DIAG SA, Strasbourg, France). A study
comparing these four kits concluded that the clinical sensitivity for the detection of GII.4 stool samples
is 78%, 59%, 61%, and 67%, respectively [92]. The ICG kits, including two commonly used kits
(Ridaquick and SD Bioline Norovirus), are shown to have a wide variability of performance, due to
similar reasons as those described for ELISA kits, and are related to challenges with the antibodies used.
Specifically, the sensitivities for Ridaquick and SD Bioline Norovirus range from 17.0% to 83.0% and
23.0% to 92.0%, respectively, while the specificities for Ridaquick and SD Bioline Norovirus range from
87.5% to 100.0% and 99.7% to 100.0%, respectively [86]. Due to the wide variation of the sensitivity
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and specificity, more sensitive molecular detection methods are recommended for samples that have
negative results from the ELISA or ICG kits [86].

The detection of the Ridaquick Norovirus ICG kit is based on incorporating gold-labeled anti-NoV
antibodies and biotinylated anti-NoV antibodies. A streptavidin test line could capture the sandwich
complex, while the unbound complex would migrate to the control line. The high LOD of traditional
LFA by using blue latex or AuNPs could be improved by pre-concentration or the use of other
reporter particles (e.g., enzyme labeled particles, photoluminescent particles, and phage nanoparticles).
An example is the LFA study conducted by Hagström et al. [93], who incorporated M13 phage
nanoparticles as reporters, and an antibody pair to detect GI.1 Norwalk VLPs. This assay gave a LOD
of 107 VLPs/mL, which was 100-fold more sensitive than a conventional gold nanoparticle LFA test.

2.3.5. Western Blot

The western blot (also called protein immunoblot) assay has been widely used for the analysis of
proteins in tissue homogenates or extracts and its use is composed of several steps. First, the proteins of
the analytes are separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE),
according to their molecular weight. Then the protein bands are transferred to a nitrocellulose
membrane, followed by blocking and the addition of a specific primary antibody and enzyme labeled
secondary antibody. The step of gel electrophoresis reduces the probability of the cross-reactivity of
antibodies. Therefore, western blot seldom gives false positive results and it is the most commonly
used technique to confirm the positive results from ELISA tests [94]. However, compared to ELISA
tests, western blot is more difficult to perform and it requires higher skill.

Western blot has been used for the detection of NoV GII.4 VLPs. The VLPs are separated
by SDS-PAGE, then IgG and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG were
incorporated to capture and detect VLPs. The immunogenicities of VLPs and P particles were studied
by western blot, and the results showed that VLPs had higher immunogenicity than P particles [95].

Western blot has also been used in the study of mapping NoV antibodies. By testing the
interaction of mAbs with the deletion mutants of GII.4 VLP, the binding sites of the antibodies could
be identified [55]. Finally, Western blot has also been applied in the evaluation of antibody response
after viral infection, by using a crude small round-structured virus sample as an antigen. The major
viral structural protein could also be determined by Western blot [96].

3. Nucleic Acid-Based Techniques

The sequencing of the NoV genome contributed to the development of nucleic acid based assays
for HuNoV detection [97]. During the mid-1990s, the first conventional RT-PCR targeting a relatively
conserved small region of the RNA polymerase gene in open reading frame (ORF)1 was used for
the detection of NoV [11]. Since then, more real-time rapid and sensitive assays, including TaqMan
RT-PCR, SYBR Green RT-PCR and isothermal amplification assays have been developed for NoV.
By targeting the detection of a conserved genome region at the ORF1-ORF2 junction, real-time nucleic
acid based methods are more sensitive and broadly reactive than antigen detection assays [78].

3.1. Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

RT-PCR is currently considered to be the gold standard for detecting HuNoVs in clinical samples,
food, water, or environmental samples. It is also recommended by the International Organization
for Standardization (ISO) in technical specification documents ISO/TS 15216 to be applied for the
quantitative and qualitative detection of NoV in food and water [98,99]. However, problems associated
with false positives or inhibition can occur in RT-qPCR assays. It is also known that some PCR
inhibitors are present within samples such as food and stool [78]. Therefore, a good elution/extraction,
concentration and purification method before viral nucleic acid testing is very important. In addition,
the RT-PCR method is reagent-intensive, relatively slow (40 min~3 h) and generally requires connection
to an electrical grid [100]; though microfluidics-based techniques have been reported that address these.
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Further, this method cannot differentiate infectious from non-infectious HuNoVs. One of the additional
challenges with RT-qPCR and other nucleic acid-based techniques is the high diversity of norovirus
strain sequences coupled with the comparatively short length of the genome. However, numerous
broadly reactive primers (generally limited to genogroup-level reactivity) have been reported, with
most targeting the ORF1-ORF2 junction of the genome [11].

Multiplexed RT-qPCR can be used in the simultaneous detection of GI and GII strains or GI, GII,
and GIV strains of HuNoVs [101–103]. Several FDA-cleared multiplex molecular tests are commercially
available, including the xTAG(®) Gastrointestinal Pathogen Panel (GPP), FilmArray™ and Verigene®

Enteric Pathogens Nucleic Acid Test, and can achieve results within several hours [11]. For example,
the xTAG(®) GPP (Luminex Corporation, Toronto, Canada) could detect 15 gastrointestinal pathogens
(including viruses, bacteria and parasites) within 5 h for >90% of pathogens. It has an overall sensitivity
and specificity of 94.3% and 98.5%, respectively, according to a test of 901 stool specimens from
both children and adults [104]. There are also several molecular assays as in vitro diagnostic devices
approved by Europe with CE Marking certificate, including AndiaTee Norovirus real RT-PCR kit,
RealStar Norovirus RT-PCR kit, Xpert Norovirus kit and Allplex™ Gastrointestinal Panel Assays [105].

3.2. Isothermal Amplification Methods

Although still considered one of the most sensitive and gold standard techniques, real-time
RT-PCR has the limitations of lack of portability, takes ≥ 40 min to get a result, and is sensitive
to inhibitors. Due to this fact, numerous isothermal amplification techniques for the detection of
NoV have been reported; specifically the nucleic acid sequence-based amplification (NASBA) [106],
loop-mediated isothermal amplification (LAMP) [107] and recombinase polymerase amplification
(RPA) [108]. For instance, Moore et al. [106] found that NASBA is an alternative highly sensitive and
specific method for NoV detection. Specifically, the sensitivity and specificity of NASBA as compared to
that of RT-PCR was 100% and 80%, respectively [106]. In addition, Moore and Jaykus [108] developed
a rapid (<30 min) RPA assay for the detection of HuNoV RNA from outbreak samples, with a LOD of
~3.4 log10 gc. Jeon et al. [109] developed a one-step RT-LAMP assay for the detection of GI and GII
HuNoV and found that one step RT-LAMP was 10~100 times more sensitive than real time RT-PCR.
A colorimetric RT-LAMP assay with a metal ion-binding indicator dye (hydroxynaphthol blue dye)
was reported to have a sensitivity of 103 gc per reaction and a detection rate of 94.83% in detection of
GII NoV [110]. Different to the conventional RT-LAMP assay, the test result could be visually observed.
Positive samples showed a color change from violet to sky blue. The turbidity of the reaction could be
measured with a turbidimeter and the value could be compared against a cutoff value [110].

3.3. Nucleic Acid Based Methods to Assess HuNoV Infectivity

Currently, there is no standard method to assess HuNoV infectivity. Although some advanced
nucleic acid based assays have been explored to assess infectivity [111], each method has their own
limitations or shortcomings. Due to the fact that amplification-based techniques focus only on detection
of the presence of nucleic acid, they will not be able to discriminate between nucleic acid associated
with infectious virus versus that which is not. A few of the methods to better estimate viral infectivity
will be discussed; including long template RT-PCR, RT-PCR with intercalator, enzymatic pretreatment,
and receptor binding-pretreatment. For all of the mentioned techniques, none are able to completely
able to predict the signal observed with cultivable surrogates in inactivation studies, though many do
remove a notable portion of noninfectious particles.

Long template RT-PCR, which uses a long range of viral sequences for amplification, has been
investigated by several researchers due to its potential for assessing the integrity of the viral genome.
Currently, the real time RT-qPCR test only focuses on a small conserved region to test virus RNA
titer. However, it is possible that other regions of the genome are at risk of being damaged, while no
RNA reduction is shown by the real time RT-qPCR test. Since viral genome regions demonstrated
heterogeneous sensitivities to some inactivation treatments (e.g., UV), the damage of the genome does
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not follow the Poisson distribution [112]. A long template RT-PCR, which allows for the amplification
of a near full-length genome of NoV (7295~7360 nucleotides), had been used for the determination of
the near complete genome sequence of two GII clinical isolates [113]. However, long template RT-PCR
has low efficiency, sensitivity, and takes a long time, due to the amplification of such a large target [112].
In addition, Seo et al. [114] showed that long template RT-PCR gave a significantly underestimated
reduction of infectious NoV surrogates (MNV and MS2) after heat, salt or pH treatments; indicating
that noninfectious RNA was amplified. This is likely due to the fact that this method alone does not
account for RNA encapsidated in fatally damaged or mutated capsids.

Nucleic acid intercalators, including photoactivatable dye propidium monoazide (PMA) and
ethidium monoazide (EMA), have been used to assess the viability of bacterial cells (including
Escherichia coli and Bacillus subtilis) and viruses (including bacteriophage MS2 and HAV) [115,116].
Upon excitation by visible light (high power halogen lamps or specific LED devices), the azide group in
the dye converts to a nitrene radical, which covalently binds to nucleic acid and results in stable products
non-amplifiable by PCR. The intercalators are impermeable to intact cell membrane or viral capsids,
and only crosslink with nucleic acids from damaged cell membranes or viral capsids. By incorporating
a PMA pre-treatment prior to RT-PCR, the detection of noninfectious viruses could be eliminated to
some extent [115]. Although this method has been used to selectively differentiate infectious and
noninfectious viruses, under some circumstances, it can be unreliable due to its inconsistency in
performance. For example, RT-PCR with PMA pre-treatment has successfully differentiated intact viral
particles (MNV-1 and NV) from naked viral RNA, but it is unable to do so between infectious and
noninfectious NV (by any treatment) [117]. In addition, it was shown that EMA-coupled RT-qPCR
underestimated GII.4 HuNoV reduction by cold plasma [118]. Improved versions of PMA and EMA
(PMAxx and PEMAX) are commercially available, and PMAxx has been shown to have a better
performance than conventional photoactivatable dyes (PMA and EMA) in assessing NoV infectivity.
According to a study conducted by Randazzo et al. [117], pretreatment with PMAxx and surfactant
(Triton X-100) was able to discriminate infectious and thermally inactivated NoV, with the latter
having ~1.4 to > 2 log reductions of RT-PCR signals. In addition, this pretreatment step could be
easily incorporated into the ISO 15216 method for detection of HuNoV or HAV in food and water
samples [117]. However, in theory, this method would not account for particles with damaged or fatally
mutated P domain, for which icosahedral contacts maintain intact, which is a possibility observed
for this and enzymatic pretreatment (below) [119]. More research needs to be conducted to show the
efficacy of this method in assessing NoV infectivity.

Enzymatic pretreatment (ET), combined with a nucleic acid-based detection method, has also
been proposed as a potential assay to detect infectious HuNoVs. Enzyme pre-treatment (a combination
of proteinase K and RNase A) (one step) was introduced by Nuanualsuwan and Cliver [120], which
could reduce false-positive signals by degrading damaged viral capsids as well as naked viral RNA.
Though no false positive results were observed when ET combined with the real time NASBA method
were applied for detection of heat treated feline calicivirus (FCV) and HuNoV according to Lamhoujeb
et al. [9], further investigation of how accurate this method is for the detection of other virus strains
and inactivation treatments is needed. In addition, although RNase treatment can degrade viral RNA
with damaged viral capsids (not intact viral particles) and is very stable, the presence of small low
molecular weight RNA fragments or ribonucleoproteins (RNPs) can be detected by RT-PCR. Moreover,
RNase resistant RNPs can be released from HuNoV viral particles under heat inactivation treatments
(e.g., 45 ◦C for 1.5 min) [112]. The partially damaged capsid may also render the residual protection of
RNA. Furthermore, the combination of proteinase K and RNase A is very difficult to control, since the
RNase could be degraded by proteinase K, which needs to be stabilized in 1 mM calcium ions [112].
Though separating ET by adding proteinase K and RNase A sequentially (two steps) were reported to
be more sensitive at reducing false-positive signals than one step ET, neither was able to completely
remove false-positive signals [121].
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Among all the proposed nucleic acid-based methods for infectious HuNoV detection, the use of a
ligand binding step prior to detection by RT-qPCR is the most widely used and has been shown to
be both a rapid and sensitive technique for removing noninfectious viral particles. Magnetic beads
can be conjugated with different ligands (i.e., PGM, HBGA, antibodies or aptamers) for the specific
capture of HuNoV from samples. Cannon and Vinjé [122] utilized a binding step with magnetic
beads conjugated with H type 1 HBGA followed by RT-PCR and were able to detect 30~300 gc of the
Norwalk virus from environmental waters. The use of PGM-MB combined with the RT-qPCR assay was
proposed by Dancho et al. [123] as a potential method to discriminate infectious from non-infectious
NoVs, since a reduced binding of NoVs to PGM-MB was observed after inactivation treatments (UV,
thermal or high pressure). However, the efficacy of this method varies, depending on the HuNoVs
strains and inactivation treatments, as shown by Afolayan et al. [124], where complete elimination
of RT-PCR signals was achieved for both GI.1 and GII.4 when inactivated by the levulinic acid plus
sodium dodecyl sulfate treatment but not after heat treatment (99 ◦C for 5 min). It is believed that
non-infectious viruses could also be detected in the RT-qPCR assay with the PGM-MB pre-treatment,
since partially damaged viral capsids may have a portion that is able to both protect viral RNA from
RNase degradation, but also bind to PGM after inactivation treatments [124,125]. Aside from HBGA
and PGM, antibodies have also been conjugated to magnetic beads to capture NoV from contaminated
samples and combined with RT-qPCR for detection, which would still likely result in removal of naked
RNA and matrix-associated inhibitors but would likely capture damaged capsids. Interestingly, Moore
et al. [119] demonstrated that aptamer M6-2 displayed similar dependence on intact viral capsids for
binding as HBGAs, suggesting that aptamer M6-2 could be utilized in a binding step to detect intact
viral particles. Park et al. [126] successfully detected NoV from artificially contaminated strawberries
with a LOD of 3 ~ 7 RT-PCR units and a recovery rate of 14% ~ 30%. The use of magnetic bead separation
with RT-qPCR has several advantages, including concentrating viruses and removing inhibitors from
the food matrix. By conjugating with antibodies, PGM or HBGA, the magnetic separation method could
only bind to viral capsid (not naked viral RNA), which could eliminate the detection of inactivated
viruses with a naked viral RNA. However, these methods are also unable to completely differentiate
infectious from noninfectious viruses with fatally mutated or damaged genomes, and the specificity of
this method is strongly dependent on that of the capture ligand used. The fact that broadly reactive
ligands are unavailable also hampers the application of this technique in the detection of various
HuNoV strains [127].

4. Biosensors

Biosensors have received much interest over the past decade and have been increasingly studied
for NoV detection. A biosensor is an analytical device that converts a biological response into an
electrical signal by integrating a biologically active element with an appropriate physicochemical
transducer or transducing system. Biosensors are primarily grouped into optical, electrochemical,
piezoelectrical, thermal, magnetic and micromechanical biosensors, according to the signal transducers
used [128]. A summary of the available biosensor-based methods for the detection of NoV and its
surrogates is shown in Table 3.
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Table 3. Biosensor methods for detection of norovirus and its surrogates.

Biosensor Method Target Platform Detection Material Ligand
Chosen Sample Type Detection

Time Linear Range Detection Limit Specificity Reference

SERS FCV Functionalized
gold chips AuNP mAb Cell culture N/A 1.0 × 106~2.5 × 108

viruses/mL
1 × 106 viruses/mL (or ~70

captured viruses)
N/A [129]

SERS MNV Gold coated
silicon wafers Gold substrate N/A Mixture virus strains N/A N/A Titer of 100 N/A [130]

SERS- ICG NoV VP1
protein

Polyethylene
polyvinyl chloride

base strip
Colloidal gold Antibody Centrifuged fecal

specimen ~15 min 3~150 ng/mL detection
range 0.5 ng/mL Good [131]

LSPR-based
fluorescence NoV VLPs NP solution AuNP and QDs Antibody N/A ~5 min 10~100 pg/mL 0.4 pg/mL N/A [132]

LSPR-induced
optical sensor

NoV VLPs
and HuNoV Liquid CdSeTeS QDs/AuNP nanocomposite Antibody NoV VLPs and

clinically isolated NoV
Response

time 1 min

10 fg/mL~1 ng/mL NoV
VLPs and 100~100,000

copies/mL

12.1 fg/mL NoV VLPs and
95 copies/mL clinically

isolated HuNoV
Superior [133]

Plasmonic biosensor NoV capsid
and HuNoV LSPR layer AuNP Affinity

peptide
NoV capsid protein and

HuNoV N/A 10~105 copies/mL
0.1 ng/mL NoV capsid

protein in culture media
and 9.9 copies/mL HuNoV

High [134]

LSPR-amplified
fluorescence
assisted by

magnetic field

NoV VLPs
and HuNoV Liquid AuNP/MNP hybrid nanocomposites

and CdSeS QDs GII antibody
NoV VLPs in feces and

feces containing
HuNoV

N/A

1 pg/mL to 5 ng/mL
NoV VLPs; 102~107

RNA copies/mL GII
isolated clinical HuNoV

0.48 pg/mL NoV VLPs in
feces; 84~934 copies/mL GII

HuNoV
High [135]

SPR FCV Au sensor chip Thin gold layer Antibody
Purified cell culture

lysates or spiked oyster
matrices

<15 min 3 × 104~106 TCID50
FCV/mL 104 TCID50 FCV/mL N/A [136]

SPR HuNoV
(GII.4) Au sensor chip Polyacrylate beads Con A Spiked lettuce,

strawberries, and milk 15 min N/A up to 10 RT-PCR units/mL N/A [137]

SPR-assisted
fluorescence NoV VLPs

Al film on
polystyrene

substrate

CdSe-ZnS-based quantum dot
fluorescent dye

mAb and
pAb N/A N/A 0.01~1 ng/mL 0.01 ng/mL (or 100 VLPs) N/A [138]

Fluorescence NoV GII
RNA Liquid AuNR@CdSeTe QDs

MB
containing

20 bp
complementary
to NV RNA

Purified and mixed
virus RNA N/A 2~18 copies/mL 1.2 copies/mL High [139]

Fluorescence Single NoV
VLP (GII.4)

Lipid bilayer
coated

glass-bottom
microtiter wells

Rhodamine-labeled lipid vesicle H type 1
GSL N/A <2 h 12~200 fM 16 fM (single-molecule) High [140]

Fluorescence FCV

Fabricated
nanoporous

membranes in
glass

microchannels

Protein A superparamagnetic beads
and fluorescent liposomes

mAb and
pAb

Purified and dialyzed
virus Within 2.5 h N/A 1.6 × 105 PFU/mL N/A [141]

Fluorescence
Single

strand NoV
RNA

96 well plates
Fluorescent F0F1-ATPase molecular

motor containing ε-subunit
antibody-streptomycin-biotin-probe

NoV RNA
probe Extracted RNA Within 1 h N/A 0.005 ng/mL High [142]

Fluorescence NoV capsid
protein

Paper-based
microfluidic

platform
MWCNT or GO Aptamer Spiked mussel samples ~10 min 13 ng/mL to 13 µg/mL 3.3~4.4 ng center dot per

mL High [70]
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Table 3. Cont.

Biosensor Method Target Platform Detection Material Ligand
Chosen Sample Type Detection

Time Linear Range Detection Limit Specificity Reference

Chemiluminescence NoV GII
capsid

Magnetic NP
solution GO/Fe3O4 nanocomposite Modified

aptamer
Tap water and artificial

urine

30 min
incubation

time
0.16–10 µg/mL 80 ng/mL (in tap water) High [143]

BLI NoV
antibody Octet BLI sensor Co(III)-NTA

Avidin and
His-tagged

NVLPs
Human serum samples

10–15 min
oxidation

time
N/A N/A N/A [144]

BLI NoV
antibody Octet BLI sensor Ni-NTA

NoV VLPs
or NoV

P-particles
Human serum samples

10-20 min
with

pre-functionalized
sensors

N/A Dilutions up to 1:100,000 N/A [145]

BLI
NoV VLPs
(GI.1 and

GII.4)

Needle-shaped
sensor N/A Antibodies N/A 2 min 10~20 µg/mL 5 µg/mL N/A [146]

3D dual-view light
sheet microscopy

based

NoV GI
capsid

Gold nanoarray
on glass wafer AuNS and AgNP Antibody NoV capsid spiked

lettuce leaf N/A 7.8 zM~240 aM 7.8 zM

Signal
slightly
increase
towards

other
antigens

[147]

Photoluminescence
based biosensor

NoV GII
RNA 96-well plate SiO2-coated CdZnSeS QD Molecular

beacon
Buffer and human

serum

3 min
hybridization

time

2~16 copies/mL in
buffer and 0~8

copies/mL in human
serum

8.2 gc/mL in human serum
and 9.3 gc/mL in buffer high [148]

Near-field
illumination

biosensor assisted
by external

magnetic field

NoV VLPs Liquid cell Magnetic bead and polystyrene bead Antibody Contaminated water N/A N/A 40 particles per 100 mu l in
contaminated water N/A [149]

Nake-eye biosensor HuNoV Dot-blotting Polyhedral Cu nanoshell deposited
AuNPs Antibody Stool

Signal
generation
time 10 min

2.7 × 103~2.7 × 105

copies
2700 copies NoV in clinical

stool samples High [150]

Silver-enhanced
nanozyme-based

colorimetric
immunoassay

NoV VLP
and GII.4

feces
Microtiter plate Au/Ag NPs GII antibody Human feces N/A

10~105 pg/mL NoV
VLP ; 10~104 and

102~105 copies/mL fecal
solution for NoV GII.3
and GII.4, respectively

10.8 pg/mL NoV VLP;
13.2~16.3 gc/mL fecal NoV
GII.3 and GII.4 (or 132~163

gc/g feces)

High [151]

Colorimetric
NanoZyme
aptasensor

MNV Liquid AuNP AG3
Aptamer

Cell culture in presence
of matrix 10 min

200−10,000 viruses/mL,
or 1320−19,800
viruses/mL, or

3300−33,000 viruses/mL

200 viruses/mL
(experimental) and 30

viruses/mL (calculated)
High [69]

Electrochemical GII NoV
VLPs

PDMS
microfluidic chip

GRP-AuNPs composite modified
carbon electrode Aptamer

Spiked blood samples
and samples with other

interferences
N/A 100 pM~3.5 nM 100 pM High [152]

Electrochemical NoV RNA Planar Pt-IDE Au/iron-oxide MNP-decorated CNT Probe RNA N/A N/A 1 pM~10 nM 8.8 pM High [153]
Electrochemical NoV VLPs Pt-IDE Au/MNP-decorated GRPs Antibody N/A N/A 0.1 pg/mL~1 ng/mL 1.16 pg/mL High [154]

Electrochemical
NoV capsid
proteins or

HuNoV

Three-electrode
cell Au electrode Affinity

peptide
Spiked fetal bovine

serum N/A
0.01~1000 µg/mL NoV
capsid proteins; 1~103

or 103~106 NoV

99.8 nM for NoV capsid
proteins and 7.8 copies/mL

for HuNoV
Varied [155]



Foods 2020, 9, 318 18 of 37

Table 3. Cont.

Biosensor Method Target Platform Detection Material Ligand
Chosen Sample Type Detection

Time Linear Range Detection Limit Specificity Reference

Electrochemical NoV capsid
Chromium IDE
fabricated glass

substrate
Chromium IDE N/A Recombinant NoV

capsid 5 min N/A 2.5 ng/mL N/A [156]

Voltammetric
electrochemical NoV (GII.4) PDMS bonded

glass substrate Au electrode
Con A and

NoV
antibodies

Lettuce 1 h 102 and 106 copies/mL 60 copies/mL 98% [157]

Electrochemical FCV

Fabricated
nanoporous

membranes in
glass

microchannels

Protein A superparamagnetic beads
and electrochemical liposomes

mAb and
pAb

Purified and dialyzed
virus 2.5 h N/A 3.2 × 106 PFU/mL N/A [141]

Electrochemical MNV Fabricated silicon
substrate Au working electrode Aptamer

AG3 Cell culture N/A 10~104 PFU/mL 10 PFU/mL N/A [68]

Electrochemical MNV SPE AuNP Aptamer
AG3 Cell culture 60 min 20~120 aM (ca.

360~2170 viral particles) 10 aM (~180 virus particles) Not high [67]

Impedance
electrochemical

HuNoV
GII.4 SPE Au electrode

NoroBP-nonFoul
(FlexL)2
peptide

Clinical HuNoV Within 30
min

0 to 104 copies/mL
HuNoV GII.4; 10 to 105

copies/mL extracted
NoV from oysters

1.78 gc/mL HuNoV GII.4
and 2.47 gc/mL NoV from

oysters
High [158]

Field effect
transistor based NoV VLPs Kapton films Inkjet-printed graphene materials Antibody NoV VLPs N/A 0.1 to 100 µg/mL NoV

VLPs ~0.1 µg/mL N/A [159]

Photoelectrochemical NoV RNA
An

electrochemical
workstation

CdSe–ZnO DNA probe Spiked diluted serum N/A 0~5.10 nM NoV RNA 0.50 nM N/A [160]

Abbreviations: Surface-enhanced Raman spectroscopy (SERS); immunochromatography (ICG); localized surface-plasmon resonance (LSPR); surface plasmon resonance (SPR); feline
calicivirus (FCV); murine norovirus (MNV); norovirus (NoV); recombinant norovirus-like particles (NoV VLPs); multi-walled carbon nanotubes (MWCNT); graphene oxide (GO);
interdigitated electrode (IDE); Concanavalin A (Con A); polydimethylsiloxane (PDMS); glycosphingolipids (GSL); screen-printed electrode (SPE); biolayer interferometry (BLI); norovirus
like particles (NoV VLPs); monoclonal antibody (mAb); polyclonal antibody (pAb); 50% tissue culture infective dose per mL (TCID50/mL); gold nanoparticle (AuNP); magnetic nanoparticle
(MNP); quantum dots (QD); carbon nanotubes (CNT); aluminum (Al); gold (Au); graphenes (GRPs); three-dimensional (3D); gold nanospots (AuNSs); silver nanoparticles (AgNP);
molecular beacon (MB).
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4.1. Optical Biosensors

Optical biosensors have several subclasses based on the measurement of adsorption, reflection,
refractive index, Raman, infrared (IR), fluorescence, chemiluminescence, and energy transfer [161,162].
A number of optical biosensors, including surface-enhanced Raman spectroscopy (SERS), surface
plasmon resonance (SPR), and evanescent wave-based biosensors, have been applied in virus
detection. These detection methods are often rapid, label-free and have high sensitivity or specificity.
Unlike ELISA-based techniques, optical biosensors require minimal sample preparation and can detect
at near real-time.

4.1.1. Surface Enhanced Raman Scattering (SERS)

Surface enhanced Raman scattering, or surface enhanced Raman spectroscopy (SERS), is an
optical detection technique that enhances Raman scattering of molecules adsorbed on or close to
metal nanostructures. SERS is a rapid method that has been used frequently for pathogen detection
and disease diagnosis. It has been applied for the detection and differentiation of a number of
viruses, including adenovirus [130] and rotavirus [163]. The SERS technique can provide a ‘fingerprint’
spectrum for each sample, giving information on structure and constituents. Compared with other
detection methods, SERS has the benefit of less volume input, high sensitivity, and high specificity.
Furthermore, it can also be used as a qualitative or quantitative detection method for virus samples.
Quantification of virus titers is possible if proportional relationships are achieved between SERS peak
intensities and sample concentrations [164].

When the SERS technique is applied for detection purposes, the two formats designated as
intrinsic and extrinsic are usually used. For intrinsic SERS (also known as label-free) detection methods,
the spectrum is obtained from the target molecule without the use of extrinsic Raman labels (ERLs),
while extrinsic SERS uses ERLs. Among the two, the intrinsic detection method is considered to be
more preferable as the introduction of ligands or Raman labels may bring in uncertainties [165].

SERS has also been applied towards the detection and differentiation of HuNoV surrogates FCV
and MNV. Driskell et al. [129] successfully utilized SERS to detect FCV. This was achieved through a
sandwich structure composed of a mAb immobilized gold substrate to capture FCV from cell culture
and an ERL, as depicted in Figure 1. Specifically, the ERL consisted of mAb conjugated AuNPs, linked
with a Raman reporter molecule 5,5′-dithiobis(succinimidyl-2-nitrobenzoate). A LOD of 106 viruses/mL
was achieved for FCV with this method [129]. MNV detection using SERS has been demonstrated
by Fan et al. [130], whom successfully detected and differentiated the norovirus strain MNV-4 from
other virus strains (i.e., adenovirus and rotavirus), based on their intrinsic SERS spectrum. Results also
showed that purified MNV-4 was differentiable from unpurified MNV-4 (containing Vero cell lysate)
and control (Vero cell lysate). The bands from MNV-4 at 744 and 937 cm−1 corresponded to adenine
and C−COO− stretch, respectively.

Despite these achievements in the detection of HuNoV surrogates, SERS has not yet been applied
in the detection and differentiation of HuNoVs. A major obstacle lies in the fact that HuNoV clinical
samples are collected from feces of infected individuals, with a large variation in sample impurities.
Therefore, some pretreatment of the samples may be required to selectively capture HuNoV from the
feces or remove impurities. Additionally, the equipment cost for SERS is high (approximately $15,000),
and incubation time may be long, though miniaturized instruments are available [141].
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R3-A9), that could bind with multiple NoV VLPs [166]. Aside from antibody binding studies, SPR 
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nM and 49 nM, respectively. Similarly, Kim et al. [137] demonstrated that concanavalin A (Con A) 
can bind with HuNoV (GII.4), with the metal coordination region of Con A identified as a major 

Figure 1. Detection of feline calicivirus (FCV) by extrinsic surface enhanced Raman scattering (SERS)
(reprinted from Driskell et al. [129] with permission from the publisher).

4.1.2. Surface Plasmon Resonance (SPR)

Surface plasmon resonance (SPR) is an oscillating phenomenon that occurs in thin conducting
films placed at the interface between two media of different refractive indices. When a binding event
occurs, changes in mass near the sensor chip surface causes a change in the refractive index. SPR is a
highly sensitive, quantitative and rapid label-free technique used to study the binding affinity between
biomolecules. It has been widely used for virus detection, including Epstein–Barr virus, hepatitis B
virus (HBV) and human immunodeficiency virus type 1 (HIV-1) as well as viral protein detection, such
as HA proteins in the influenza virus (serotypes H1N1 and H3N2) [36].

SPR analysis has been utilized to study the binding affinity and kinetics of ligands with NoVs.
Specifically, Kou et al. [16] reported the strong binding of multiple mAbs, with a Kd value of <10 nM
with NoV VLPs. In addition, SPR could be used for the identification of a broadly reactive scFv
(HJT-R3-A9), that could bind with multiple NoV VLPs [166]. Aside from antibody binding studies, SPR
has also been applied to the study of the interaction between human milk glycan and NoV VLPs (strains
VA387 and Norwalk), as well as ABH antigens binding to VLPs [41,167]. Shang et al. [41] utilized SPR
imaging to show that human milk glycan motif specifically binds to NoV and competitively inhibits
viral capsid binding to host receptors. By SPR, Hurwitz et al. [57] identified two scFvs (NJT-R3-A2 and
NJT-R3-A3) that could bind to GI.1 and GI.7 VLPs, with Kd values of 27 nM and 49 nM, respectively.
Similarly, Kim et al. [137] demonstrated that concanavalin A (Con A) can bind with HuNoV (GII.4),
with the metal coordination region of Con A identified as a major region of the interaction. Specifically,
the Kd values determined for native Con A and metal coordinating region-mutated Con A by SPR
were 71.5 ± 6.7 nM and 22.0 ± 17.0 µM, respectively. By using Con A-immobilized polyacrylate beads,
HuNoV (GI and GII) could be rapidly detected in 15 min with 90% recovery over a wide range of pH
values (pH 3.0~10.0) [137].
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Furthermore, a localized SPR-based immunofluorescence nanobiosensor developed by Takemura
et al. [132] was able to achieve a LOD of 0.4 pg/mL of NoV VLPs, by incorporating antibody conjugated
AuNPs and quantum dots (QDs). A similar study of an SPR-assisted fluorescence sensor developed by
Ashiba et al. [138] using QDs, with incorporation of mAb (12A11) and pAbs as capture and detection
antibody against NoV VLPs, had a LOD of 0.01 ng/mL of NoV VLPs. Aside from application of
detection of NoV VLPs, SPR had also been used for FCV detection [136], as shown in Figure 2. Via
immobilization of an anti-FCV antibody onto a SPR chip surface, this assay was rapid (within 15 min)
and had a low LOD of around 104 TCID50 FCV/mL for purified cell culture lysates. Moreover, this
assay had a potential of detecting FCV from spiked oyster matrices if an extraction procedure was
applied [136]. However, SPR has several limitations. One limitation is that the native configuration
of ligands may change upon immobilization on sensor surface, which may hinder the binding of
analytes [168]. In addition, non-specific binding needs to be carefully controlled when using SPR for
the biosensing of molecular interactions [168].
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Figure 2. Detection of feline calicivirus (FCV) via a surface plasmon resonance (SPR) assay. (a) The
diagram of the detection assay. (b) The sensorgram (reference flow cell subtracted) for FCV (with
different concentrations) and secondary antibody (Ab). A greater response (RU) achieved when FCV
and secondary Ab binds (reprinted from Yakes et al. [136] with permission from the publisher).

4.1.3. Other Optical Biosensor Methods

Aside from SERS and SPR, a number of other optical biosensor methods, including biolayer
interferometry, fluorescence, bioluminescence and colorimetric based biosensors have also been shown
to successfully detect NoV. For example, a label- and fluidic-free detection system based on a biolayer
interferometry (BLI) biosensor has been proven to be able to detect NoV antibodies from human serum
samples [145]. The scheme is depicted in Figure 3. This assay is considered rapid (10~20 min if the
sensor was pre-functionalized) and could detect NoV antibodies in serum dilutions up to 1:100,000 [145].
Similarly, Auer et al. [144] used a Co (III)-NTA functionalized BLI sensor immobilized with His-tagged
VLPs for the detection of NoV antibodies from human serum. The functionalization with Co(III)-NTA
offers highly stable immobilization for His-tagged proteins which could withstand harsh chemical
conditions. However, these two BLI based biosensor methods did not offer the direct detection of
HuNoV. Future research is needed to investigate the possible application of BLI based biosensors for
direct HuNoV detection.
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and a GSL contained rhodamine-labeled vesicle to emit a fluorescent signal after total internal 
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microfluidic biosensor was shown to be able to detect FCV with a LOD of 1.6 × 105 PFU/mL within 
2.5 hr. Another fluorescence based biosensor developed by Zhao et al. [142] had been shown to be 
able to detect NV RNA with a limit of quantification of 0.005 ng/mL within 1 hr. The F0F1-ATPase 
molecular motor biosensor was applied to detect NV RNA with a “ε-subunit antibody-streptomycin-
biotin-probe” system. The fluorescence intensity change compared to the control showed that the 
virus was successfully captured and conjugated to the probe [142]. 

 

Figure 3. Detection of norovirus-like particles (VLPs) using the biolayer interferometry (BLI) based
biosensor method. (A) Schematic representation of the BLI detection method utilizing NoV VLP or
P-particles functionalized sensor. (B) Sensorgrams of a NoV-positive serum sample. The red and blue
curve correspond to the NoV P-particle and VLP functionalized sensor, respectively. (Reprinted from
Auer et al. [145] with permission from the publisher).

A fluorescence based biosensor developed by Bally et al. [140] was able to successfully detect
single NoV VLP (GII.4), by incorporating a H type 1 GSL attached lipid bilayer as a substrate support
and a GSL contained rhodamine-labeled vesicle to emit a fluorescent signal after total internal reflection
fluorescence (TIRF) illumination, as shown in Figure 4. This assay could achieve a LOD of 16 fM and a
single-molecule sensitivity, since individual vesicles could be visualized by TIRF microscopy [140].
In another study conducted by Connelly et al. [141], a fluorescence based microfluidic biosensor was
shown to be able to detect FCV with a LOD of 1.6 × 105 PFU/mL within 2.5 h. Another fluorescence
based biosensor developed by Zhao et al. [142] had been shown to be able to detect NV RNA with a limit
of quantification of 0.005 ng/mL within 1 h. The F0F1-ATPase molecular motor biosensor was applied
to detect NV RNA with a “ε-subunit antibody-streptomycin-biotin-probe” system. The fluorescence
intensity change compared to the control showed that the virus was successfully captured and
conjugated to the probe [142].

Due to much lower background noise, chemiluminescence was described to be more sensitive
than UV-vis absorbance and fluorescence [143]. Kim et al. [143] developed a chemiluminescence based
biosensor by using a modified DNA aptamer for the rapid and highly specific detection of NoV GII
capsid in tap water with a LOD of 80 ng/mL. In addition, colorimetric based sensors have also been
used for NoV detection. For instance, Khoris et al. [151] developed a silver-enhanced nanozyme-based
immunoassay for detection of NoV VLPs with naked-eye, as shown in Figure 5. The enhanced
immunoassay could achieve a LOD of 10.8 pg/mL NoV VLP, as well as 13.2 and 16.3 copies/mL fecal
solution (or 132 and 163 copies/g feces) for NoV GII.3 and GII.4, respectively [151]. Similarly, Ahmed
et al. [169] used peroxidase-like graphene-AuNPs for visible detection of NoV VLPs with a LOD of
92.7 pg/mL. Han et al. [170] also developed a naked eye microfluidic 3D slip paper-based analytical
device for the detection of GII.4 NoV from human feces with a LOD of 9.5 × 104 gc/mL. Furthermore,
Lee et al. [171] developed a supersensitive sensor using a 3D total internal reflection scattering defocus
microscopy, with wavelength-dependent transmission grating for the detection of NoV with a LOD of
820 yM. This method was stated to be applicable for the early stage infection of HuNoV.
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4.2. Electrochemical Biosensors

Although optical methods have broad applications in the detection of HuNoV, several
biosensors utilizing electrochemical techniques have also been successfully used in NoV detection.
Electrochemical biosensors transduce a biological recognition event to electrochemical (i.e.,
amperometric, potentiometric or impedimetric) signals. Specifically, these have included bacteriophage
MS2, HBV, adenovirus and rotavirus with a LOD of 103~1010 viral particles/mL [172]. Electrochemical
biosensors have been used for the detection of small analytes as well as large molecules.
Some advantages of electrochemical detection assays were reported to be inexpensive, simple
and robust [173].
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For example, a dielectrophoretic impedance measurement method developed by Nakano et al. [156]
could detect 2.5 ng/mL of NoV capsid in 5 min. Compared with the immunochromatography method,
this method had comparable sensitivity but required shorter time. Target viruses could be captured in
the gap of microelectrodes by dielectrophoresis and the resulting conductance increase is associated
with the number of viruses being trapped [156]. In another study [157], an electrochemical biosensor
composed of a gold electrode conjugated with Con A could detect 60 copies/mL of NoV (GII.4) from
lettuce, with a 98% selectivity within 1 h. The detection was achieved by immobilizing Con A on a gold
sensor surface for the selective capture of NoV, followed by addition of NoV antibodies and alkaline
phosphatase (ALP)-labeled secondary antibodies. ALP could convert 4-aminophenylphosphate
monosodium salt hydrate to aminophenol, which could then be oxidized and generate current.
The signal of the current was proportional to the amount of NoV captured on the sensor surface.
Similarly, an electrochemical microfluidic biosensor developed by Connelly et al. [141] was able
to detect FCV, with a LOD of 3.2 × 106 PFU/mL. The detection was achieved by loading anti-FCV
pAb-labeled Protein A superparamagnetic beads onto the device to create a capture bed, followed by
the addition of pre-incubated mixture of FCV and anti-FCV mAb-electrochemical liposomes. Finally, a
detergent was added to lyse the liposomes and the integrated current signal was positively correlated
with virus concentration [141]. More recently, Baek et al. [158] developed an electrochemical biosensor
(as shown in Figure 6) for the highly selective detection of clinical HuNoV GII.4 samples by using a
NoroBP-nonFoul (FlexL)2 peptide assembled gold screen-printed electrode (SPE) with a LOD of 1.7
copies/mL, which is 3-fold lower than other reported methods [148,150,170]. The SPE was reported
to have higher reproducibility and reliability than the conventional electrochemical sensors using
non-fixed three-electrodes (i.e., working electrode, counter electrode and reference electrode).
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Figure 6. Schematic illustration for norovirus detection using an impedance electrochemical biosensor.
(a) Peptides were immobilized as self-assembly monolayers (SAMs) on the gold-working electrode.
(b) Working buffer solution can be used for oxidation and reduction. Dropped norovirus conjugated
with the affinity peptide on the gold screen-printed electrode (SPE) and measured by electrochemical
impedance spectroscopy. (Reproduced from Baek et al. [158] with permission from the publisher).

4.3. Piezoelectric Biosensors

Piezoelectric mass-based biosensors have been investigated for virus detection [173]. Mass based
biosensors include quartz crystal microbalance (QCM) and microcantilever arrays (mainly atomic
force microscopy (AFM)). Quartz crystal microbalance with dissipation monitoring (QCM-D) has
been used for real time characterization of molecular interaction with surfaces or interactions between
molecules [174]. QCM has been used for the detection of a variety of viruses (e.g., HBV) [172].
AFM has been used for 3D surface topological studies of viruses and cells. It is nondestructive and
noninvasive [175]. AFM has also been used for the detection of a number of viruses (e.g., HIV) [173].
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Currently, mass-based biosensors are in their preliminary stage of development in terms
of detecting HuNoVs. QCM-D has been used for studies in the binding of NoV VLPs with
galactosylceramide and GSL [39,176]. QCM monitoring has also been studied for the detection
of NoV RNA by using a Padlock probe and rolling circle amplification method [177]. Thus far, no
or few studies have reported the LOD of NoV or its VLPs by the QCM-D method. By studying a
sandwich-type proximity ligation assay for NoV VLP detection, Neumann et al. [178] demonstrated
that a pronounced slipping effect can occur in multilayer biological systems, which could cause
energy dissipation followed by mass underestimation when using QCM. Therefore, the piezoelectric
mass-sensitive devices have limited applications.

AFM has also been used for NoV detection. Driskell et al. [129] reported that AFM could be used
for the quantification of FCV, as signal increased with higher virus concentrations, and the results
corresponded with that determined by SPR. Recently, Aybeke et al. [179] used high-speed AFM and
SERS for analysis of MNV infection. AFM has also been used for imaging the integrity of NoV VLPs
by a nanoindentation study [180].

5. Microarray

Microarrays consist of a large panel of specific probes immobilized on surfaces, which could detect
virus genotypes based on solid phase probe hybridization. Microarray tests allow for simultaneous
detection and subtyping of thousands of genes or target sequences within a short period of time [181].
Moreover, the rapid detection and differentiation of viruses is possible by determining the identity of
the viruses directly from the detection signals [182]. As an example, a long oligonucleotide (70-mer)
DNA microarray developed by Wang et al. [183] was able to detect hundreds of viruses at one time.

Over past years, microarrays have been explored for rapid detection and genotyping of
NoVs. Pagotto et al. [184] at Health Canada developed an oligonucleotide array (NoroChip2.0),
for simultaneously detecting and genotyping NoVs (GI and GII), through hybridization with a 917-bp
RT-PCR product of NoV. Following that, Mattison et al. [165] developed the NoroChip v3.0, which has
the capability of screening for over 600 interactions at one time, and had been validated in several
international laboratories. However, limitations existed in the application of NoroChip v3.0 for strain
typing, due to the difficulty of obtaining a long and specific amplicon from all NoV strains [185].
Another study conducted by Yu et al. [186], who optimized a custom DNA microarray (FDA_EVIR)
for the detection of NoV, showed that the amplification-free detection of NoV within 250~500 copies of
viral RNA could be achieved. A variation in the microarray technique was introduced by Brinkman
and Fout [187], who developed a generic tag array for successful detection and genotyping of 8
NoV genotypes (GI and GII) in tap and river water samples. This was achieved through the use
of RT-PCR amplicons in a single base extension reaction with labeled genotype specific probes and
hybridization to a GenFlexTM Tag Array. In addition, Quinones et al. [188] developed a microarray
based platform for sensitive genotyping of 12 (GI/GII) HuNoV genotypes and 2 HAV genotypes from
clinical samples, with a detection threshold of < 10 transcript copies. Won et al. [189] also developed an
oligonucleotide-based microarray for the detection of foodborne viruses (including NoV, HAV, human
rotavirus and human astrovirus), with the selected probes having a detection limit of 100 ng DNA
for each virus. Even though microarray-based approaches have high throughput and are relatively
inexpensive, problems such as high background (due to cross-hybridization) and limited detection
range may hamper their application.

6. Omics-Based Approaches and Other Detection Methods

The omics-based approaches (including metagenomics, proteomics and metabolomics) have also
been explored for NoV detection [190]. For instance, next generation sequencing has been applied
for the subtyping of HuNoV with maximum resolution [191–193]. However, this technique cannot
identify the infectivity of viruses, unless the viral genome is damaged. Mass spectrometry (MS) is
another technique that has been applied for the identification of viral proteins and intact viruses [194].
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The application of MS in the identification of NoV protein was first reported by Colquhoun et al. [195]
using matrix-assisted laser desorption ionization (MALDI) coupled with a time-of-flight (TOF) and
nano-electrospray ionization mass spectrometry (ESI-MS) in the detection of NoV VLPs in clinically
relevant matrices. Even though the detection of intact proteins showed poor selectivity and sensitivity,
peptide mass fingerprinting was able to detect up to 16 viral peptides and 0.1 pmol ~ 50 pmol of the 56
kDa NoV capsid protein in authentic standards of VLPs, in addition to more than 250 fmol of NoV
capsid protein in stool extracts [195]. By comparison, Colquhoun [161] showed that MALDI-TOF MS
performed more rapidly, was less expensive and could be used for the screening of relatively clean
samples; while ESI-MS may be more suitable for complicated matrices and confirmatory analysis.
Another interesting study conducted by Hellberg et al. [196] incorporated RT-PCR with ESI-MS for
the detection and differentiation of NoV. This technique had a high sensitivity of 92% and specificity
of 100% within one working day. Moreover, 98% of NoVs at the genogroup level and 75% of NoVs
at the genotype level can be identified by this method, which could also be improved to obtain an
even higher identification rate if more reference samples could be added to the database [196]. Direct
ESI-MS has also been used for the quantitative study of the interaction between the P2 domain of
GII.4 with HBGAs by Han et al. [25] Unfortunately, the high cost of the equipment and large space
requirement limits the application of MS for the detection of NoV [194].

The omics-based methods are still under development and they have not been applied for NoV
detection. The requirement of extraction of nucleic acids, proteins and metabolites from the NoV
contained sample matrix may hinder the application of omics-based approaches in the rapid diagnosis
and genotyping of NoV [190]. However, the omics-based approaches were described to have potentials
for biomarker detection that could be applied for rapid kit development for NoV detection [190].

Aside from the aforementioned techniques, several other methods have also shown potential
in NoV detection. For example, the capillary isoelectric focusing-whole column imaging detection
(CIEF-WCID) method [197] has been used for determination of the isoelectric point (pI) values of NoV
VLPs. This particular method introduces the possibility of differentiating different NoVs based on their
pI values, as long as their pI values are different [197]. However, the CIEF-WCID method requires
optimized sample preparation and extraction conditions to obtain high purity virus samples (without
sample matrix or environmental contaminants), as well as high purity reagents to avoid impurity peaks.
In addition, theoretical pI values of NoV VLPs based on the capsid sequence of VLPs were close, with
a range of 5.2 to 5.7, though experimental determinations maybe slightly different [197]. Therefore, the
application of CIEF-WCID method may have limitations for rapid detection and genotyping of NoV.
Similarly, the dynamic light scattering (DLS) technique has also been investigated for NoV detection,
however, high concentrations of purified capsids are required for the accurate determination of viruses
by this technique [198]. The mechanism of using the DLS technique for NoV detection is that DLS can
be used for detection of dispersed or aggregated viruses, as well as viral capsid proteins and dimers
with the condition that the identity and purity of the analyte are known [198]. Virus aggregation is a
sign of loss of capsid integrity due to the easy aggregation of disrupted capsids [198].

7. Future Perspective

Over the past 50 years, the methods for HuNoV detection have undergone dramatic improvements.
Significant advances in the epidemiology, surveillance and diagnostics of HuNoVs have propagated its
awareness and detection. However, challenges remain in currently available detection methods. First,
the lack of broadly reactive ligands to be used for the detection of all HuNoV strains has hampered the
development of a universal ligand-based method for HuNoV detection. Second, the limit of detection
for HuNoV in these methods is still high. Further improvement is needed in the sensitivity for better
application in real world situations. Third, several methods (i.e., PCR and ELISA) take hours in its
detection of HuNoV, while others currently under development (e.g., biosensor methods) have yet
to be applied to real world applications, though the detection could be achieved rapidly. Another
major challenge is the ability to effectively concentrate a small number of viruses from large, complex
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food and environmental samples. Furthermore, methods still need to be developed for the real time
detection of HuNoV, especially those that can differentiate infectious from non-infectious viruses and
those capable of rapid subtyping.

Although currently no perfect real-time methods are available for detecting and subtyping
infectious HuNoVs, the technology is evolving and has already introduced a number of new techniques
into the field. Biosensor and microarray-based methods have especially shed light on the possible
development of rapid and highly sensitive detection assays, as well as the differentiation of infectious
and non-infectious viruses. However, more work is needed to improve sample preparation/removal
of inhibitors, identification of strong but broadly reactive ligands, discrimination of infectious virus
particles from noninfectious, and techniques for both rapidly detecting and subtyping virus portably.
Over the course of half of a century an astounding amount of progress has been made in analytical and
detection techniques for noroviruses, however challenges remain and more research is needed.
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