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Simple Summary: Osteosarcoma is the most common primary bone tumor and has a poor prognosis.
Therefore, it is important to understand the mechanism of the development of osteosarcoma to
overcome therapy resistance. Several mathematical models have been developed to study the
initiation and progression of many cancer types. However, there are currently no mathematical
models for the progression of osteosarcoma, to the best of our knowledge. In this work, we develop a
data-driven mathematical model to analyze the impact of the immune cell interactions on the growth
of osteosarcoma tumors that have distinct immune patterns. Our model provides a foundation for
investigating the effect of various treatments on the dynamics of key players in the primary tumor,
including immune cells and cytokines, and ultimately the whole tumor.

Abstract: As the immune system has a significant role in tumor progression, in this paper, we
develop a data-driven mathematical model to study the interactions between immune cells and the
osteosarcoma microenvironment. Osteosarcoma tumors are divided into three clusters based on their
relative abundance of immune cells as estimated from their gene expression profiles. We then analyze
the tumor progression and effects of the immune system on cancer growth in each cluster. Cluster 3,
which had approximately the same number of naive and M2 macrophages, had the slowest tumor
growth, and cluster 2, with the highest population of naive macrophages, had the highest cancer
population at the steady states. We also found that the fastest growth of cancer occurred when the
anti-tumor immune cells and cytokines, including dendritic cells, helper T cells, cytotoxic cells, and
IFN-γ, switched from increasing to decreasing, while the dynamics of regulatory T cells switched
from decreasing to increasing. Importantly, the most impactful immune parameters on the number
of cancer and total cells were the activation and decay rates of the macrophages and regulatory T
cells for all clusters. This work presents the first osteosarcoma progression model, which can be later
extended to investigate the effectiveness of various osteosarcoma treatments.

Keywords: osteosarcoma; data-driven mathematical model; immune variations; sensitivity analysis;
gene expression profiles; tumor deconvolution; immune interactions; tumor microenvironment

1. Introduction

Osteosarcoma is the most common form of bone malignancy, which is a rare type of
cancer with about 1000 new cases diagnosed each year in the United States [1]. Osteosar-
coma has a bimodal age distribution, with the first peak in the 10–14-year-old range and the
second peak in adults older than 65 years [2,3]. Past treatments with radiotherapy or anti-
cancer drugs and having heritable syndromes and certain conditions, such as Li-Fraumeni
syndrome, hereditary retinoblastoma, and Bloom and Werner syndromes, are considered
as risk factors, and surgery, chemotherapy, radiation therapy, and targeted therapy are the
types of standard treatment for osteosarcoma [4].

Despite improved outcomes from neoadjuvant chemotherapy in the treatment of
osteosarcoma, the average survival of patients with metastasis has remained poor over
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the last three decades [5–7]. Immunotherapy and targeted therapy have recently demon-
strated significant results in the treatment of certain cancer types [8,9]. Although these are
also popular alternative treatments for osteosarcoma, they are still ineffective for many
patients [10]. Osteosarcoma tumors have also been reported to be resistant to the radio-
therapy [11,12]. For this reason, a novel technique, hyperthermia, has been developed
to increase the effectiveness of radiation [13–16]. There are some studies that focus on
hyperthermia to optimize the treatments for osteosarcoma [17,18]. However, there is of yet
no mathematical model that focuses on the tumor microenvironment to provide insights
on how to increase the effectiveness of these treatments. Therefore, it is important to
investigate the osteosarcoma tumor microenvironment to understand the variability in
response to these treatments to overcome therapy resistance [19].

Several studies have shown that cancer cells and tumor infiltrating immune cells
(TIICs) play a key role in tumor progression and the identification of malignant tumor
types [20–22]. Research found that innate immune cells contribute to tumor suppression in
several ways, such as recognition and killing of cancer cells [23]. The immune response in
the cancer microenvironment can be triggered by tumor antigen detection by immature
dendritic cells, which then mature into dendritic cells [24]. Dendritic cells present these
antigens to helper and cytotoxic T cells, leading to their activation and the direct killing of
cancer by cytotoxic cells [25–27]. Helper T cells and cytotoxic T cells also produce IFN-γ
that inhibits tumor growth [27–29].

On the other hand, certain immune cells have promoting or dual effects on can-
cer progression. Regulatory T cells inhibit the differentiation and activities of helper
and cytotoxic T cells, thus, indirectly promoting tumor by suppressing the immune
response [26,29–31]. Macrophages, the most abundant immune cells in many cancers,
have anti-tumor properties by activating helper and cytotoxic T cells through IL-12 and
IL-23 production [26,29,32,33] and also have pro-tumor properties through secreting IL-6,
which supports cancer cell proliferation [32,34–37]

The relationship between clinical outcome and immune cells in osteosarcoma has
been found in many studies. Cytotoxic T cells are the primary effector cells of adaptive
immunity targeting osteosarcoma [27], and they were found to play a significant role in the
immune responses of osteosarcoma patients [38]. Treatments using the antitumor immuno-
competence of innate immune cells, such as NK cells and γδ T cells, have been shown to be
effective for osteosarcoma tumors [39,40]. Accumulating evidence demonstrates the critical
roles of the relative abundance of various immune cells and their interaction network in
the initiation and development of osteosarcoma tumors.

There are many studies that use mathematical models to explain the dynamics of
tumor growth, to develop clinical responses, to identify the right therapy combination,
and to overcome drug resistance in various cancer types [41–49]. Although some studies
include bone modeling, osteoblast cells, or osteosarcoma treatments [50–54], to the best
of our knowledge, there is currently no mathematical model explaining the progression
of osteosarcoma tumors. The relationship between immune cells and tumor cells have
been used as an alternative approach in the mathematical modeling of different cancers
types in some studies [55–58]. Objective of this study is to build a data-driven model
for the progression of osteosarcoma tumors that considers immune cell interactions with
tumor cells.

We recently found that there are three distinct groups of immune patterns of osteosar-
coma primary tumors through estimating immune cell proportions by applying a tumor
deconvolution method on primary tumor gene expression profiles [59]. In this study,
we develop a data-driven mathematical model of osteosarcoma based on the network
given in Figure 1 and use a system of ordinary differential equations (ODEs) to represent
the interactions.

We then investigate the differences in the tumor growth of patients belonging in three
distinct groups of immune patterns, which are obtained by clustering patients based on
their immune profiles. We calculate the patient-specific parameters from data in each group
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to generate “virtual patients” to use in the mathematical model. Lastly, we analyze the
dynamics of tumors in each group to find relationships that could be used to explain the
effects of the tumor microenvironment on the progression of osteosarcoma tumors.
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Figure 1. Interaction network of the tumor microenvironment in osteosarcoma. Activations and
proliferations are shown by blue arrows, and inhibitions are indicated by red arrows.

2. Materials and Methods

We built a kinetic model based on the key interactions between the immune system
and osteosarcoma cells. In particular, we utilized a system of ordinary differential equations
to study the changes in population of the various components of tumor microenvironment
throughout time in units of days. To avoid too much complexity, we did not model the
spatial distributions of these variables, chemotaxis, or other non-linear phenomena. For
biochemical processes A + B → C, we apply the mass action law dC

dt = λAB, where λ is
the production rate of C from A and B. For all the equations in our model, the symbol λ
denotes proliferation, activation, or production rates, and the symbol δ denotes inhibition,
decay, or death rates. The variables in the model are given in Table 1 and their interactions
are illustrated in Figure 1.

Table 1. Model Variables. Names and descriptions of the variables used in the model.

Variable Name Description

TN Naive T-cells
Th Helper T-cells
TC Cytotoxic cells includes CD8+ T-cells and NK cells
Tr Regulatory T-cells
Dn Naive dendritic cells
D Activated dendritic cells antigen presenting cells

MN Naive macrophages includes naive macrophages and monocytes
M Macrophages includes M1 macrophages and M2 macrophages
C Cancer cells
N Nectrotic cells
H HMGB1
µ1 Cytokines group µ1 includes effects of TGF-β, IL-4, IL-10 and IL-13
µ2 Cytokines group µ2 includes effects of IL-6 and IL-17
Iγ IFN-γ
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2.1. Cytokines

We modeled the dynamics of cytokines through the rate at which they are produced
and their natural decay. We assumed that cytokine production rates are proportional to
the population of cells that produce them, similar to [60], and that cytokine decay rates are
proportional to their own population, which is a common approach [60–64]. In order to
simplify the system of equations, we combine some cytokines with similar functions and
use the quasi-steady state assumption on other cytokines.

We combine TGF-β, IL-4, IL-10, and IL-13 as µ1. TGF-β and IL-10 are secreted by
helper T cells, M2 macrophages, and cancer cells [32,33,35,65–67]. IL-4 and IL-13 are
secreted by helper T cells and M2 macrophages [32,65,68]. Thus, we model the dynamics
of µ1 as:

d[µ1]

dt
= λµ1Th [Th] + λµ1 M[M] + λµ1C[C]− δµ1 [µ1] (1)

µ2 consists of IL-6 and IL-17, where IL-6 is produced by M1 macrophages, helper T
cells, and cancer cells [33,36,65,67,69], and IL-17 is produced by helper T cells [32]. The
corresponding equation for µ2 is:

d[µ2]

dt
= λµ2Th [Th] + λµ2 M[M] + λµ2C[C]− δµ2 [µ2] (2)

IFN-γ is secreted by helper T cells, cytotoxic T cells, and natural killer cells [29,32,70].
As a result, the equation for IFN-γ is written as:

d[Iγ]

dt
= λIγTh [Th] + λIγTc [Tc]− δIγ [Iγ] (3)

HMGB1 is passively released by necrotic cells [25,71–73] and actively released by
macrophages and dendritic cells [71,72,74–77], leading to the following equation:

d[H]

dt
= λHM[M] + λHD[D] + λHN [N]− δH [H] (4)

We use the quasi-equilibrium state assumption on the other cytokines and estimate
them to be proportional to the number of cells that produce them. IL-12 and IL-23 are both
secreted by M1 macrophages and dendritic cells [29,32,65–67,78]; therefore, we model the
concentration of these cytokines as:

[IL-12] ≈ c1 × [M] + c2 × [D] (5)

[IL-23] ≈ c3 × [M] + c4 × [D] (6)

where c1, c2, c3, and c4 are constants.

2.2. Cells in the Tumor Microenvironment

Since mature immune cells are differentiated from naive immune cells, we model the
population of each mature immune cell to be proportional to its respective naive immune
cell, where the proportion is determined by the cells/cytokines that activate the naive cells.
Similar to the cytokine equations, for each mature immune cell, we also include a natural
death rate δcell.

2.2.1. Macrophages

Since macrophages have many phenotypes and are constantly changing their pheno-
type, we model all macrophages together as one variable to avoid overly great complexity.
M1 and M2 macrophages are differentiated from naive macrophages or monocytes. M1
macrophages are activated by IFN-γ [35,66,67], while M2 macrophages are activated by
IL-4, IL-10, and IL-13 [33,66,67,79], where IL-4, IL-10, and IL-13 belong to µ1. Therefore, we
can write the dynamics of macrophages as:
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d[M]

dt
=
(

λMIγ [Iγ] + λMµ1 [µ1]
)
[MN ]− δM[M] (7)

By taking into account the activations from Equation (7) and introducing the indepen-
dent naive macrophage/monocyte production parameter AMN , we have the equation for
naive macrophages/monocytes:

d[MN ]

dt
= AMN −

(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN [MN ] (8)

2.2.2. T Cells and NK Cells

We model the following subtypes of T cells: helper T cells, regulatory T cells, and
cytotoxic cells, where cytotoxic cells include cytotoxic T cells and natural killer cells.

Helper T cells are activated by dendritic cells, IL-12, and IL-23 [26,29,32,80], and are
inhibited by regulatory T cells, IL-10, and TGF-β [29,31,81,82], resulting in the equation:

d[Th]

dt
=
(
λTh M[M] + λThD[D]

)
[TN ]−

(
δThTr [Tr] + δThµ1 [µ1] + δTh

)
[Th] (9)

Regulatory T cells are activated by IL-10 and TGF-β [29,83], hence their dynamics are
modeled by:

d[Tr]

dt
= λTrµ1 [µ1][TN ]− δTr [Tr] (10)

Cytotoxic cells (cytotoxic T cells and NK cells) are activated by helper T cells, dendritic
cells and IL-12 [25–27,29,33,84,85] and are inhibited by regulatory T cells, IL-10, and TGF-
β [26,30,67,83]. The corresponding equation is:

d[Tc]

dt
=
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]−

(
δTcTr [Tr] + δTcµ1 [µ1] + δTc

)
[Tc] (11)

Combining all the activations from Equations (9)–(11) as well as adding parameter
ATN for the independent production rate of naive T cells, we obtain the equation for naive
T cells:

d[TN ]

dt
=ATN −

(
λTh M[M] + λThD[D]

)
[TN ]− λTrµ1 [µ1][TN ]

−
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]− δTN [TN ]

(12)

2.2.3. Dendritic Cells

Dendritic cells are activated by cancer cells and HMGB1 [26,71,74,76,77]. However,
cancer cells can also promote apoptosis in dendritic cells through many tumor-derived
factors, such as gangliosides, neuropeptides, etc. [78]. By introducing the independent
production rate of naive dendritic cells ADN , we can describe the dynamics of naive and
mature dendritic cells with the following system:

d[D]

dt
= (λDC[C] + λDH [H])[DN ]− (δDC[C] + δD)[D] (13)

d[DN ]

dt
= ADN − (λDC[C] + λDH [H])[DN ]− δDN [DN ] (14)

2.2.4. Cancer Cells

Osteosarcoma cells are typically of osteoblastic origin and are characterized by abnor-
mally high proliferation and low apoptosis. We denote the high proliferation rate of cancer
cells as λC.

Osteosarcoma growth is promoted by IL-6, IL-17, and TGF-β [29,34–37,69,86,87]. Tu-
mor cells are killed by cytotoxic cells [26,88,89], while their growth is inhibited by IFN-
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γ [26,27,70]. In the mathematical modeling of cancer, it is common to estimate the growth
to be proportional to [C]

(
1− [C]

C0

)
, where C0 is the carrying capacity [90,91]. As a result,

we have the following equation for cancer cells:

d[C]
dt

=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)
[C]
(

1− [C]
C0

)
−
(

δCTc [Tc] + δCIγ
[Iγ] + δC

)
[C]

(15)

2.2.5. Necrotic Cells

Necrotic cells, which are cells that go through the process of necrotic cell death, are
promoted by cancer cells since, when cancer cells are killed by cytotoxic cells, a proportion
of them become necrotic cells. In particular, the “production” rate of necrotic cells can be
modeled as a fraction of the dying cancer cells, resulting in the following dynamics:

d[N]

dt
= αNC

(
δCTc [Tc] + δCIγ

[Iγ] + δC

)
[C]− δN [N] (16)

2.3. Data of the Model

There are some popular tumor deconvolution methods to estimate the relative fre-
quency of cells from the gene expression data of a bulk of cells, and CIBERSORTx B-
mode [92] has been shown in recent studies to have the best performance among these
methods [93,94]. In our previous study [59], we used the gene expression data sets from
two cohorts, TARGET and GSE21257 [95] downloaded from the UCSC Xena web portal [96]
and GEO website respectively, to use in CIBERSORTx B-mode to estimate the immune
cell frequencies. Then, K-means clustering [97] was applied on the estimated immune
cell fractions. The number of clusters for the K-means algorithm was chosen using the
elbow method [98]. As a result, we found that there were three distinct immune patterns
of osteosarcoma tumors.

In this study, we used the same cluster assignment for the TARGET data with 88 sam-
ples and used our mathematical model to study the dynamics of the tumor microenviron-
ment of each cluster from the initial time of diagnosis until reaching their steady state. The
general workflow of this study is described in Figure 2, and the average immune fractions
of various cell types in each cluster are shown in Figure 3, where the vertical bars denote
the 95% confidence intervals.

The outputs of CIBERSORTx only provide the fractions of each immune cell within
the tumor tissue; however, we need the number of immune cells along with the number of
cancer and necrotic cells as inputs to our model. Thus, we download the supplementary
data of the TARGET project, which has information on the percentage of normal, stroma,
tumor, and necrotic cells of each sample. We used the percentage of normal cells to
represent the percentage of total immune cells in the sample.

First, we converted the immune cell fractions to the immune cell population by
multiplying the fractions with a scaling factor αdim. Then, knowing the percentage of total
immune cells, cancer cells, and necrotic cells, we derived the population of cancer and
necrotic cells from the population of total immune cells. For example, given the total
immune population I, the cancer and necrotic cell abundance can be calculated as

C = I × % of cancer cells
% of total immune cells

(17)

N = I × % of necrotic cells
% of total immune cells

(18)

where C and N are the cancer and necrotic cell population, respectively.
To choose a reasonable value for αdim, we first estimated the average osteosarcoma

tumor volume. We found the mean volume of Ewing sarcomas to be 275 mL based on
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the tumor volumes given in [99], and Ewing sarcoma has been reported to have a similar
volume to osteosarcoma [100]. Thus, we estimated the average osteosarcoma’s volume to
be 275 mL.

Osteoblasts, which are the cells of origin of osteosarcoma, have a diameter of
20–50 µm [101]; therefore, we approximated osteosarcoma cells to have an average di-
ameter of 35 µm, resulting in an average of 6.4× 109 osteosarcoma cells in osteosarcoma
tumors. We then choose αdim = 1.765× 108 to match the average number of cancer cells
among all patients in our data to 6.4× 109 cells. However, it is important to note that αdim
is simply a scaling factor and does not have any effects on the dynamics of cells or on the
relative cell abundance between clusters.

K-meansclustering

Combinewithclinical information

andcytokines’ geneexpression

CIBERSORTxB-mode

Immunecells’

fractions

Cluster 1’s

immunefractions

Cluster 3’s

immunefractions
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immunefractions

Cluster 1’spopulationof

immune,cancer, necrotic
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Combinewithclinical information

andcytokines’ geneexpression
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Combinewithclinical information
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Geneexpression
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Dynamicsof cellsand

cytokines incluster1

Dynamicsof cellsand
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Figure 2. The general workflow of this study. Given the gene expression data of tumors, immune cell fractions were
estimated using CIBERSORTx B-mode. Then, K-means clustering was applied to find three clusters with distinct immune
compositions. For each cluster, the populations of immune, cancer, and necrotic cells were derived from immune fractions
and clinical information. These cell populations and cytokine expression levels were used as input (either as the initial
conditions or steady states) in the system of ODEs to find the dynamics of the components of the tumor microenvironment
in each cluster.
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Figure 3. The immune cell fractions used in the model. Clusters were derived based on differences in 22 immune cell
types of osteosarcoma tumors.



Cancers 2021, 13, 2367 8 of 34

2.4. Parameter Estimation

Some parameters of our model, such as the decay/death rates of immune cells and
cytokines, were taken from available research (more details in Appendix B.1), while others
were estimated. We follow the common approach from mathematical biological models
to use assumptions on the steady state values of the system to derive those unknown
parameters [102,103]. In particular, we make the assumption that after a tumor reaches a
very large size, the immune variation within the tumor microenvironment is minuscule,
and we denote this state as the steady state of our system.

Different immune patterns of tumors, such as high or low levels of helper and cytotoxic
T cells in one group versus another group, indicate that the activation rates of different T
cell sub-types from naive T cells vary from one group of tumors to another group. Hence,
many parameters of the model, such as the activation rates of T cell sub-types, depend
on the tumor immune profile, and therefore we estimated the parameters separately for
each cluster.

We assumed the samples with a large number of cancer cells were at the steady
state. For each cluster, we used the 85th percentile of cancer abundance as the cutoff, and
calculated the steady state values for the cluster by averaging the values from samples that
had more cancer cells than this cutoff. Table 2 shows the steady state values of every cluster.

Table 2. Steady-state abundance of cells and cytokines.

Cluster M∞
N M∞ T∞

N T∞
h T∞

r

1 6.236× 106 1.977× 107 4.926× 106 7.092× 106 3.675× 106

2 3.248× 107 1.842× 107 1.047× 107 1.973× 106 8.673× 105

3 1.944× 107 2.698× 107 1.368× 107 1.205× 106 1.405× 106

T∞
c D∞

N D∞ C∞ N∞

1 2.292× 107 4.826× 105 9.865× 105 1.343× 1010 3.764× 108

2 3.155× 105 8.927× 105 7.135× 105 1.604× 1010 4.257× 108

3 1.802× 106 4.591× 105 3.732× 105 1.340× 1010 1.544× 109

I∞
γ µ∞

1 µ∞
2 H∞

1 0.868 21.510 2.067 5.076
2 0.049 20.714 1.611 4.948
3 0.263 23.663 1.371 4.453

Our assumption above asserts that the rate of change of our model’s variables is
0 at the steady state, or equivalently dX

dt = 0 at the steady state. With the additional
assumptions in Appendix B.1, as well as knowing the steady state values of our model’s
variables, we can derive parameter values for each cluster using the fsolve function from
the SciPy package in Python. The parameter values for each cluster are given in Table A1.

2.5. Non-Dimensionalization

To remove the scale dependence and obtain additional numerical stability, we ap-
plied non-dimensionalization on all equations of our system. For a model variable X
converging to the steady state value X∞, we created a non-dimensional variable X such
that X = X

X∞ . Then, X satisfies the equation dX
dt = F(X, θ, t), where θ is the vector of

non-dimensional parameters. The full system of non-dimensionalized equations are given
in Appendix C.

To solve the non-dimensional dynamical system for each cluster, we applied the odeint
function from the SciPy package [104], with the initial conditions from a data point of
interest from the TARGET data set.
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2.6. Sensitivity Analysis

To evaluate the quality of our parameters through how they affect the dynamics of
the system, we performed a global gradient-based sensitivity analysis on all parameters of
our system.

For the non-dimensional system dX
dt = F(X, θ, t) with N parameters θ = θ1, . . . , θN ,

the (first order) sensitivity si of parameter θi was defined as the gradient of the model
output with respect to the parameter [105]:

si =
dX
dθi

(19)

We calculated the sensitivity si for each parameter at the steady state of the equation
for two quantities of interest: cancer cell abundance and total cell abundance. Consider the
general steady state system as F(X∗, θ) = 0, with X∗ being the equilibrium values of our
model’s variables. The sensitivity vector s can be obtained analytically by differentiating
the steady-state equation with respect to parameter vector θ, that is,

∇F(X∗, θ)
dX∗

dθ
+

∂F(X∗, θ)

∂θ
= 0 (20)

where ∇F(X∗, θ) is the Jacobian matrix of F(X∗, θ) with respect to X. Then, to compute
sensitivity vector s at equilibrium, or equivalently dX∗

dθ , we simply need to numerically
invert ∇F(X∗, θ).

Generally, si varies for different values of the parameter set; thus, we define the local
sensitivity Si of parameter θi for a chosen neighborhood Ω(θ) of the given parameter set as

Si =
∫

Ω
si(θ)dθ (21)

where the integral is evaluated numerically using sparse grid points [106,107].
Since we made many assumptions to derive the parameter values for our model and

different assumptions can lead to different parameter values, we vary these assumptions
by a scaling factor of 0.01 to 100 for K times and obtain the local sensitivity Sk

i , with
k = 1, . . . , K, for parameter θi derived from the kth set of new assumptions. Then, the
global sensitivity Si of parameter θi is a weighted average of the local sensitivities Sk

i for
k = 1, . . . , K:

Si =
K

∑
k=1

wkSk
i (22)

where wk is chosen so that the parameter values that are closer to the original parameter
set have larger weights and the parameter values that are very different from the original
parameter set have smaller weights. This method of choosing wk is based on the idea of
the weighted average of local sensitivities in [105].

3. Results

We obtained the dynamics of the components in the tumor microenvironment by
solving the above mentioned system of ODEs with parameters derived from the can-
cer patient data using the steady state assumption as mentioned in Section 2.4. Given
non-negative initial conditions and non-negative parameters, the solution of the systems
remains non-negative and globally bounded (Appendices A.2 and A.3).

3.1. Dynamics of the Tumor Microenvironment

We are interested in exploring the dynamics of different components of the osteosar-
coma microenvironment as well as the difference in cancer progression between clusters.
Hence, we want to model the dynamics with similar initial cancer populations among
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clusters. We first choose the sample with the smallest cancer population in cluster 1,
and then choose a sample from cluster 2 and 3 that has the most similar cancer popula-
tion to the chosen sample in cluster 1. We use these samples as the initial conditions for
their corresponding cluster. Table 3 shows the dimensionless initial condition values of
each cluster.

Table 3. The non-dimensional initial conditions for each cluster.

Cluster MN/M∞
N M/M∞ TN/T∞

N Th/T∞
h Tr/T∞

r Tc/T∞
c DN/D∞

N

1 2.367 1.005 0.019 0.794 0.764 0.828 1.122
2 0.954 0.753 1.299 1.451 2.313 0.062 0.071
3 0.866 1.104 0.572 0.340 0.484 0 1.643

D/D∞ C/C∞ N/N∞ Iγ/I∞
γ µ1/µ∞

1 µ2/µ∞
2 H/H∞

1 0 0.020 0.160 2.394 1.104 1.806 1.059
2 0.693 0.005 0.018 0.859 1.307 3.259 0.988
3 0 0.014 0.0008 0.276 1.030 1.296 1.284

We observe that, as the cancer population grows, helper T cells, dendritic cells, cyto-
toxic cells, and IFN-γ populations first increase and then decrease over time. This makes
sense since, in the early stage of cancer, naive dendritic cells come in contact with tumor
antigens, inducing the activation and increase in the number of dendritic cells [24,26].
Dendritic cells present tumor antigens to helper T cells and cytotoxic cells and activate
them [108], resulting in an increase of these cells. Helper T cells and cytotoxic cells then
produce IFN-γ [29,32,70], leading to this cytokine’s increased abundance. As the tumor
grows bigger, some cancer cells develop variants that are resistant to detection by naive
dendritic cells [109], and thus the number of dendritic cells finally decreases, eventuating
in the decrease in helper T cells and cytotoxic cells, and accordingly the decrease in IFN-γ.
This is likely the escape phase of immunoediting, when cancer cells escape the immune
system and outgrow the immune cells.

The switch in dynamics from increasing to decreasing in dendritic cells, helper T cells,
cytotoxic cells, and IFN-γ occurs around the same time that cancer cells start growing fast.
Contrastingly, the number of regulatory T cells decreases when these cells increase and
increases when these cells decrease. Hence, regulatory T cells start increasing in density
when the tumor is at its peak of growing. Regulatory T cells have the role of modulating
the immune system and consequently promote tumor growth; therefore, we can expect
the opposite dynamics to anti-tumor immune cells and cytokines, such as dendritic cells,
helper T cells, cytotoxic cells, and IFN-γ. In general, it is important to study this switch
in the dynamics since it can be used as the predictor of the highest growth of cancer cells
during tumor development.

On the other hand, the macrophage population first decreases and then increases
during osteosarcoma progression, while necrotic cells, HMGB1, along with the cytokine
groups µ1 and µ2 increase in population as cancer cells grow. As both µ1 and µ2 support
tumor growth, their population growth over time could contribute to the fast progression
of osteosarcoma. Necrotic cells are mainly cancer cells that were killed by cytotoxic cells or
IFN-γ; thus, it is reasonable to see their population grow over time. As a result, HMGB1,
which is largely produced by necrotic cells, increases in abundance as the tumor progresses.

Cluster 2’s cancer cells begin by growing more slowly than cluster 1; however, at
around 500 days, they start growing very fast and end up having the highest cancer
population at the steady state out of all clusters. Our previous study [59] based on the
clinical information of the TARGET dataset also indicates that patients in cluster 2 had the
worst survival outcomes among the three clusters.

Figure 4 shows that cluster 2 had the lowest number of cytotoxic cells, macrophages,
and IFN-γ and the highest number of naive macrophages during tumor progression. A
high population of cytotoxic cells and IFN-γ are generally associated with a good prognosis
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because they directly kill cancer cells, while a high level of naive macrophages have been
found in our previous study to associate with poor prognosis [59]. Cluster 2 also had the
slowest growth rate of necrotic cells. A high number of necrotic cells means many cancer
cells have been killed by the immune system and is an indication of a good prognosis.
Thus, cluster 2, with a slow growth rate of necrotic cells, high growth rate of cancer, and
the highest cancer population at the steady state, had a poor prognosis based on our
model’s dynamics.
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Figure 4. Dynamics of cells and cytokines in osteosarcoma tumors. Evolution of the cells and cytokine population in the
model is plotted over the time in units of days. This figure shows the dynamics of the variables of the model starting from
the time of the first diagnosis of small tumors in each cluster until reaching their steady state values, i.e., the average values
of the largest tumors in the same cluster. The different color lines describe the dynamics of different clusters.

Cluster 3 had the slowest cancer growth rate among all clusters and a smaller cancer
population at the steady state compared with cluster 2. Cluster 3’s necrotic cells had the
fastest growth rate and the highest population at the steady state out of the 3 clusters.
Hence, the dynamics of cluster 3 appear to be the most favorable. This is in agreement with
the findings on the survival outcomes of cluster 3 in our previous study [59].

Cluster 3 had the smallest amount and the slowest growth rate of the cytokine group
µ2, which has tumor-promoting effects, both initially and at the steady state (Figure 4).
Interestingly, cluster 3 also had the lowest population of helper T cells and dendritic cells
over time. These two cells are known to correlate with good prognoses. If we were to
simply look at the immune composition of the patients in cluster 3, we might make the
wrong prediction on their prognosis due to the low abundance of certain immune cells with
good prognostic values. Therefore, it is important to take into consideration the interaction
between immune cells and cancer cells, and investigate the dynamics of cancer in addition
to studying the immune composition.

Cluster 1 had a high cancer growth rate from the beginning and thus its cancer
population reached the steady state faster than the other clusters. However, its cancer cells
did not reach as high population at the steady state as the cancer cells in cluster 2. Cluster 1
had the highest levels of both immune cells and cytokines with good prognoses, including
cytotoxic cells, helper T cells, dendritic cells, and IFN-γ, and those with poor prognoses,
such as regulatory T cells and µ2 during tumor progression. Thus, it is again necessary to
look at the interactions within the tumor microenvironment for such clusters.
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We observed that µ1 and µ2 grew fast and reached the steady states very quickly in
cluster 1. Since both µ1 and µ2 promote tumor proliferation, this could be the reason why
cancer cells quickly reach the steady state in cluster 1. Overall, since cluster 1 has a lower
cancer population at the steady state compared with cluster 2 but a higher cancer growth
rate than cluster 3, its cancer dynamics are worse than cluster 3 but better than cluster 2,
which aligns with the results of our previous study [59].

3.2. Sensitivity Analysis

We performed global sensitivity analysis with parameters derived from patient data
with the steady state assumption in each cluster. The sensitivity analysis was performed
on the dimensionless system, and evaluated at the steady states. We were interested in
finding which parameters in our system strongly affected the growth of tumors, and thus
we used the cancer population and total cell population as variables of interest in the
sensitivity analysis.

Figure 5A presents the six most sensitive parameters in every cluster. Since we also
want to study the effects of the immune system on cancer progression, we looked at the
five most sensitive parameters from the immune cells equations as well. Therefore, we
plotted the top five most sensitive parameters excluding the parameters from the cancer
cell Equation (15) and necrotic cell Equation (16) (Figure 5B).

Most sensitive immune parametersMost sensitive parametersA B

Figure 5. Sensitivity analysis. (A) The sensitivity level of the most sensitive parameters for cancer and total cell population
at the steady state. (B) The most sensitive parameters associated with immune cells. The most sensitive parameters for each
cluster are shown in each row of plots.

The most sensitive parameters across the three clusters were the cancer proliferation
and inhibition parameters in the cancer Equation (15). As expected, an increase in any of
the cancer proliferation parameters (λC, λCµ1 , λCµ2) resulted in an increase in the number
of cancer cells, and an increase in any cancer inhibition parameters (δCTc , δCIγ

, δC) resulted
in a decrease in the number of cancer cells. It is worth noting that all sensitive parameters
presented in Figure 5 had similar effects on cancer populations as on total cell populations.

The most sensitive immune parameters were activation and the decay rates of macrophages
and regulatory T cells for all clusters. An increase in any activation rates of macrophages
and regulatory T cells led to higher cancer and total cell numbers, while an increase in
their decay rates caused a decrease in these quantities of interest. This implies that both
macrophages and regulatory T cells had tumor-promoting effects.
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Since regulatory T cells inhibit helper T cells and cytotoxic cells, they hinder IFN-γ
production and, thus, down-regulate cytotoxic cells and IFN-γ’s ability to kill cancer cells.
Macrophages, on the other hand, have both anti-tumor phenotype (M1 macrophages)
and pro-tumor phenotype (M2 macrophages). However, the predominant portion of
macrophages in the patient data across all three clusters was M2 macrophages (Figure 3),
which can cause the main effect of macrophages in our model to be pro-tumor.

3.3. Dynamics with Varying Assumptions

Since we made some assumptions in order to derive the parameter values for each
cluster, we wanted to see how the dynamics of cancer population would change when
we varied these assumptions. Based on the results of the global sensitivity analysis,
we determined that the parameters in the equations of cancer cells, macrophages, and
regulatory T cells were the most sensitive parameters. We varied each assumption relating
to these sensitive parameters (Equations (A15)–(A19)) by five times in both directions
(scale five-times bigger or five-times smaller) and observed how the progression of cancer
changed with the new assumptions (Figure 6). For example, since λC and λCµ1 are sensitive
parameters, we varied the assumption λC = 40λCµ1 µmean

1 (Equation (A16)) by five times,
resulting in the following new assumptions:

λC = 200λCµ1 µmean
1 , λC = 8λCµ1 µmean

1 , (23)

where the cancer dynamics with the original assumption (Equation (A16)) is the left plot in
Figure 6A (scale = 1), and the cancer dynamics with the new assumptions (Equation (23))
are the middle and right plots in Figure 6A (scale = 1/5 and scale = 5).

We noticed that when we varied the assumptions of the most sensitive parameters,
the time for the cancer population to reach the steady state changed by a relatively small
amount; however, the overall observation of the cancer dynamics between clusters did
not change (Figure 6). That is, these different assumptions led to the same observations:
cluster 1’s cancer population reached a steady state the fastest among all clusters, cluster 2’s
tumors grew slower than cluster 1’s at first but then began growing fast and resulted in the
highest steady state population, and cluster 3 had the most favorable cancer progression
with the slowest growth of cancer cells and one of the lowest steady state cancer populations.

The largest changes in the dynamics of cancer were due to the assumptions for the
activation rates of macrophages (Figure 6E):

λMIγ Imean
γ

λMµ1 µmean
1

=
Mmean

1
Mmean

2
.

This assumption was based on the fact that M1 and M2 macrophages are activated
by IFN-γ and µ1, respectively, and thus the ratio of macrophages activated by IFN-γ
to macrophages activated by µ1 should be approximately equal to the ratio of M1 to M2
macrophages. This is a reasonable assumption that uses patient data to derive the activation
rates of macrophages. We expect to see the ground truth ratio of macrophages activated
by IFN-γ to macrophages activated by µ1 to be close to our assumption, rather than to
differ by five times. Therefore, it is very unlikely to observe cancer dynamics, such as in
the middle and right plots in Figure 6E with our data. On the other hand, the assumptions
for the death rate of cancer by IFN-γ and the apoptosis rate of cancer, δCIγ

Imean
γ = 10δC,

appeared to have a negligible to no impact on cancer progression (Figure 6D).
The shaded regions in Figure 6 denote the changes in dynamics when we varied

the most sensitive parameters (λC, λCµ1 , λCµ2 , δCTc , δCIγ
, δC, λMIγ , λMµ1 , δM, λTrµ1 , and δTr )

by 10% in negative and positive directions. We observed that varying the most sensitive
parameters by 10% did not create large changes to the cancer dynamics. Overall, Figure 6
shows that, when we change the assumptions of the most sensitive parameters or vary the
sensitive parameters themselves, the observations we made about cancer development
between clusters in Section 3.1 were not affected. Furthermore, even though several
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assumptions were made to estimate the parameters, the dynamics of cancer did not greatly
depend on these assumptions.

Assumption

scale = 1 scale = 1/5 scale = 5

𝑠𝑐𝑎𝑙𝑒×𝜆! = 40𝜆!"!𝜇#
$%&'
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$%&' = 20𝛿!
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A

B

C

D

E

Figure 6. The dynamics of cancer when the assumptions of the sensitive parameters are varied. (A–E) The cancer growth
of all three clusters for each assumption of sensitive parameters. The left plot in every sub-figure is the original cancer
dynamics, the middle and right plots are the cancer dynamics obtained when the given assumption is scaled by 1/5 and by
5, respectively.

3.4. Dynamics with Different Initial Conditions

For each cluster, we also looked at the dynamics with different initial conditions from
the different samples within that cluster (Figure 7). We observed that different initial
conditions in a cluster led to similar growth patterns of cancer. This makes sense since
the dynamics are determined by the parameters of the ODE system, which were derived
from the patient data through the steady state assumption in each cluster. As a result, the
cancer growth rates and patterns were similar among patients within the same cluster but
different among patients in different clusters. Thus, if we know which cluster a patient
belongs to, we can predict their cancer growth more accurately than by using the same
cancer progression model for all patients.
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Cluster 1

Cluster 3

C

Cluster 2

B

A

Figure 7. The dynamics with varying initial conditions. (A–C) The dynamics of cells and cytokines with initial conditions
from different patients in clusters 1, 2, and 3, respectively.
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To verify that the parameters in each cluster are what drives the dynamics of the
cluster, we examined the dynamics of each cluster with the initial conditions from other
clusters (Figure A1 in Appendix D). In particular, we plotted dynamics of cluster 1 with
the initial conditions in Table 3 from clusters 2 and 3. These cross-cluster initial conditions
quickly converged to the same dynamics, confirming that the dynamics in each cluster
were more influenced by the parameters rather than by the initial conditions.

4. Discussion

Cancer is a heterogeneous disease with numerous components, such as immune cells,
cancer cells, and lymphatic vessels [110], and in typical in vitro and in vivo researches,
cancer mechanisms or components are usually studied one at a time. While these experi-
mental studies provide relevant insights about the mechanisms, none of them can provide
the adequate required information to understand the complexity of cancer [111]. There
are also many mathematical biological papers that model the interactions of immune cells
and cancer cells; however, most of them only examine one or two immune cells in their
framework [112–119].

A study by Wilkie et al. modeled the combination of all immune cells as one variable
and analyzed its effects on tumor growth [120]. However, the impacts of the immune
system on cancer are diverse with some immune cells having anti-tumor effects while others
had pro-tumor effects, and thus modeling the whole immune system as one variable would
fail to capture these important interactions. Only a few papers explore multiple immune
cells [61–63], but even these models did not investigate the influence of macrophages,
which have been shown to be the most abundant cell type in the tumor microenvironment.
Moreover, no studies have investigated the interactions between the immune system and
cancer cells in osteosarcoma to the best of our knowledge.

The growing availability of biological experimental data and recent advancements in
tumor deconvolution methods have increased the demand for data-driven mathematical
models that enable us to model different pathways simultaneously and research the sys-
tem’s complexity more effectively [121]. In this study, we developed the first data-driven
mathematical model that takes each tumor’s characteristic into consideration for the pro-
gression of an osteosarcoma tumor by utilizing the estimated immune patterns using the
gene expression profiles from primary osteosarcoma tumors.

Our results show that, as cancer cells grow in number, the helper T cell, dendritic
cell, cytotoxic cell, and IFN-γ populations increase at first and then decrease with time,
while regulatory T cells first decrease in population and then increase. This switch in
the dynamics of immune cells happens around the time that cancer cells have the fastest
growth. The decrease in population of the anti-tumor immune cells and cytokines are likely
because, when the tumor enlarges, some cancer cells adapt to the changes that help them
escape immunosurveillance [109].

Notably, we also found that, in order to make reasonable predictions regarding the
prognosis of cancer patients, it is necessary to study the interactions between immune
cells rather than to simply look at the abundance of a certain immune cell type. This
observation can be supported by [122], which stated that the immune response following
from activation of T cells was dependent on the presence of other immune protagonists,
such as macrophages, implying that the interactions between immune cells can affect the
immune response.

Our results indicate that cluster 3 had the slowest cancer growth and a relatively low
population of cancer cells at the steady state. Meanwhile, cluster 2 had one of the fastest
cancer growth rates and, more importantly, the highest number of cancer cells at the steady
state. Thus, cluster 3 had the most favorable cancer progression, and cluster 2 had the least
favorable cancer progression. These results are in agreement with the findings from clinical
data in our previous study in that cluster 3 had the best outcomes and cluster 2 had the
worst outcomes [59].
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Our global sensitivity analysis shows that the rate at which cytotoxic cells kill cancer
cells has a large impact on the growth of osteosarcoma. Therefore, it is probable that
treatments that attempt to increase this rate of cytotoxic cells attacking tumor cells, such
as PD-1 or CTLA-4 inhibitors, would work well for osteosarcoma. In fact, a phase 2 trial
reported that some improvement in cancer progression was observed in osteosarcoma
patients treated with the anti PD-1 drug, Pembrolizumab [123]. The combined treatment
of PD-1 and CTLA-4 blockade therapy has shown even better responses compared with
single checkpoint inhibitors in bone sarcoma [124].

In the mathematical modeling of cancers, one of the main challenges is the large
number of unknown parameters and a limited availability of data sets to derive parameters
from. To combat this challenge, many mathematical models adopted one or a couple of the
following approaches: assuming biologically feasible values for some parameters, using
estimated parameters from other diseases or rodent studies, calibrating parameters to fit
the biological behaviors from an experimental data set, and varying the parameter values
within a reasonable range to study the impact of those parameters on the results.

In our work, we acquired parameter values from experimental studies in the literature
and estimated the others using the steady state assumption with the steady state values de-
rived from patient gene expression data. Importantly, we also performed global sensitivity
analysis on the estimated parameters.

All mathematical models thus far used the same parameters for all patients, while our
model estimates parameters separately for each cluster of patients with distinctive immune
compositions. Since patients with different immune compositions have shown different
prognoses and different responses to treatment [125–129], estimating the parameters for
each cluster separately helps us model the effects of immune cells on cancer growth and
their responses to treatment more accurately.

To avoid adding complexity to an already complex network, our study does not model
the healthy cells in the tumor microenvironment. While several mathematical models for
tumor growth study the competition between healthy cells and cancerous cells [60,130–132],
these models typically only investigate a small subset of immune cells, unlike our model,
which focuses on many important components of the immune system. Moreover, as the
cancer self-proliferation rate (λC) in our model is taken from osteosarcoma growth data
in humans, which is naturally the growth of tumors with the presence of healthy cells,
this parameter already encodes the inhibition of cancer growth due to competition with
healthy cells. Therefore, even though we do not explicitly model healthy cells, the impact
of healthy cells on cancer growth is incorporated implicitly through λC.

While it would be ideal to use time course data to derive the parameters in each
cluster, the availability of such data is currently limited, and so instead we use the large
tumors in each cluster as the steady state values to estimate these parameters. Despite this
limitation due to the lack of time course data, our model still provides valuable insights
on the progression of osteosarcoma and the impact of the immune system on its growth,
and many studies can build upon this one. Ways to improve this model include utilizing
partial differential equations to study the growth of osteosarcoma tumors, both in space
and in time, or in applying different parameter fitting algorithms [133–136] to better match
the dynamics of the system to real patient data.

Our model provides a foundational work that can be easily adopted by other re-
searchers to determine effective treatment strategies in osteosarcoma. In particular, many
cancer treatments, such as chemotherapy, radiotherapy, and hyperthermia, are known to
have effects on the immune system. Chemotherapy can be both immunosuppressive and
immunostimulatory, depending on the drug and dosage. For example, Cisplatin at high
doses can reduce the production of IFN-γ by T cells [137] and suppress the generation of
anti-tumor effector cells [138], while Doxorubicin in low doses has been reported to induce
immunogenic cell death, leading to the maturation of dendritic cells and the proliferation
of cytotoxic T cells [139–142].
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Similar to chemotherapy, radiation can both weaken the immune system by lowering
the white blood cell count [143] and enhance anti-tumor immune responses through
the release of pro-inflammatory cytokines and tumor antigens [144]. Hyperthermia can
activate cytotoxic T cells, dendritic cells, and natural killer cells as well as inhibit immune
suppression [145]. Knowing the effects of a treatment on the immune system and cancer
cells, one can build upon our model by adding the interactions between the treatment and
various components in our network and, thus, find the optimal dosage for a treatment.

5. Conclusions

We built a data-driven mathematical model of osteosarcoma progression while taking
into account the interactions between immune cells and cancer cells. We determined that,
out of the three clusters of osteosarcoma patients with distinct immune compositions,
cluster 3 appeared to have the most favorable tumor growth, and cluster 2 had the least
favorable growth. During osteosarcoma progression, the number of dendritic cells, helper
T cells, cytotoxic cells, and the amount of IFN-γ first increased and then decreased, while
the regulatory T cell population decreased and then increased. This switch in the dynamics
of immune cells and cytokines happens around the same time that cancer cells have the
fastest growth.

The global sensitivity analysis indicated that the cancer death rates by cytotoxic cells
and IFN-γ, the cancer proliferation rates by cytokines groups µ1 and µ2, as well as the
cancer self-proliferation and apoptosis rates were the most impactful parameters on cancer
growth. Additionally, among all immune parameters, the activation and decay rates of
macrophages and regulatory T cells had the most impact on cancer growth. This study also
shows that it is important to investigate the complex interactions between immune cells
and cancer cells instead of purely looking at the abundance of certain immune cells as a
marker for the disease’s progression.
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Appendix A. System Analysis

Appendix A.1. System of ODEs

Combining Equations (1)–(16) we obtain the following system

d[MN ]

dt
= AMN −

(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN [MN ], (A1)

d[M]

dt
=
(

λMIγ [Iγ] + λMµ1 [µ1]
)
[MN ]− δM[M], (A2)

d[TN ]

dt
= ATN −

(
λTh M[M] + λThD[D]

)
[TN ]

− λTrµ1 [µ1][TN ]

−
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]− δTN [TN ], (A3)

d[Th]

dt
=
(
λTh M[M] + λThD[D]

)
[TN ]−

(
δThTr [Tr] + δThµ1 [µ1] + δTh

)
[Th], (A4)

d[Tr]

dt
=
(
λTrµ1 [µ1]

)
[TN ]− δTr [Tr], (A5)

d[Tc]

dt
=
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]

−
(
δTcTr [Tr] + δTcµ1 [µ1] + δTc

)
[Tc], (A6)

d[DN ]

dt
= ADN − (λDC[C] + λDH [H])[DN ]− δDN [DN ], (A7)

d[D]

dt
= (λDC[C] + λDH [H])[DN ]− (δDC[C] + δD)[D], (A8)

d[C]
dt

=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)
[C]
(

1− [C]
C0

)
−
(

δCTc [Tc] + δCIγ [Iγ] + δC

)
[C], (A9)

d[N]

dt
= αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C]− δN [N], (A10)

d[Iγ]

dt
= λIγTh [Th] + λIγTc [Tc]− δIγ [Iγ], (A11)

d[µ1]

dt
= λµ1Th [Th] + λµ1 M[M] + λµ1C[C]− δµ1 [µ1], (A12)

d[µ2]

dt
= λµ2Th [Th] + λµ2 M[M] + λµ2C[C]− δµ2 [µ2], (A13)

d[H]

dt
= λHM[M] + λHD[D] + λHN [N]− δH [H]. (A14)

Appendix A.2. Positivity

Following [58], to prove that the system with positive coefficients and positive initial
conditions has a positive solution, let us consider the set of integrating factors, one for
each variable:
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ηMN (t) = exp
t∫

0

(
λMIγ [Iγ] + λMµ1 [µ1] + δMN

)
ds

ηTN (t) = exp
t∫

0

(
λTh M[M] + λThD[D] + λTrµ1 [µ1]

+λTcTh [Th] + λTc M[M] + λTcD[D] + δTN

)
ds

ηTh(t) = exp
t∫

0

(
δThTr [Tr] + δThµ1 [µ1] + δTh

)
ds

ηTC (t) = exp
t∫

0

(
δTcTr [Tr] + δTcµ1 [µ1] + δTc

)
ds

ηDN (t) = exp
t∫

0

(
λDC[C] + λDH [H] + δDN

)
ds

ηD(t) = exp
t∫

0

(δDC[C] + δD)ds

ηC(t) = exp
t∫

0

(
δCTc [Tc] + δCIγ [Iγ] + δC −

(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)(
1− [C]

C0

))
ds

ηM(t) = exp(δMt), ηTr (t) = exp(δTr t), ηN(t) = exp(δNt), ηH(t) = exp(δHt),

ηIγ(t) = exp(δIγ t), ηµ1(t) = exp
(
δµ1 t

)
, ηµ2(t) = exp

(
δµ2 t

)
.

These integrating factors will not allow us to derive explicit solution as some of them
are defined through the unknown variables. However, it is important to note that the
factors are strictly positive and allow us to rewrite the system as

d
(
[MN ]ηMN

)
dt

= AMN ηMN ,

d([M]ηM)

dt
=
(

λMIγ [Iγ] + λMµ1 [µ1]
)
[MN ]ηM,

d
(
[TN ]ηTN

)
dt

= ATN ηTN ,

d
(
[Th]ηTh

)
dt

=
(
λTh M[M] + λThD[D]

)
[TN ]ηTh ,

d([Tr]ηTr )

dt
=
(
λTrµ1 [µ1]

)
[TN ]ηTr ,

d([Tc]ηTc)

dt
=
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]ηTc ,

d
(
[DN ]ηDN

)
dt

= ADN ηDN ,

d([D]ηD)

dt
= (λDC[C] + λDH [H])[DN ]ηD,

d([C]ηC)

dt
= 0,

d([N]ηN)

dt
= αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C]ηN ,
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d
(
[Iγ]ηIγ

)
dt

=
(

λIγTh [Th] + λIγTc [Tc]
)

ηIγ ,

d
(
[µ1]ηµ1

)
dt

=
(
λµ1Th [Th] + λµ1 M[M] + λµ1C[C]

)
ηµ1 ,

d
(
[µ2]ηµ2

)
dt

=
(
λµ2Th [Th] + λµ2 M[M] + λµ2C[C]

)
ηµ2 ,

d([H]ηH)

dt
= (λHM[M] + λHD[D] + λHN [N])ηH .

We see that the right-hand side of each equation in this system is non-negative, which
means that the variable-factor product ([X]ηX) is non-decreasing for each variable [X],
and thus, if positive, initially remains positive at all times. Since the integrating factor is
positive by design, the positivity of the variables follows.

Appendix A.3. Boundedness

Similar to [58], we prove the upper bounds on variables after grouping them by types.

Appendix A.3.1. Macrophages

Adding Equations (A1) and (A2), we obtain

d([MN ] + [M])

dt
= AMN − δMN [MN ]− δM[M] ≤ AMN −min

(
δMN , δM

)
([MN ] + [M]).

Thus, integrating, we obtain

[MN ] + [M] ≤
AMN

min
(
δMN , δM

)(1− e−min(δMN , δM)t
)

+ e−min(δMN , δM)t([MN ](0) + [M](0)).

Since the right-hand side is bounded and each variable is positive, this proves that
each variable is bounded.

Appendix A.3.2. T-Cells

Adding Equations (A3)–(A6) and using the positivity of all variables, we obtain

d([TN ] + [Th] + [Tr] + [Tc])

dt
=ATN − δTN [TN ]− δTr [Tr]

−
(
δThTr [Tr] + δThµ1 [µ1] + δTh

)
[Th]

−
(
δTcTr [Tr] + δTcµ1 [µ1] + δTc

)
[Tc]

≤ATN −min
(
δTN , δTh , δTc , δTr

)
([TN ] + [Th] + [Tr] + [Tc]).

Then, integrating, we obtain

[TN ] + [Th] + [Tr] + [Tc] ≤
ATN

min
(
δTN , δTh , δTc , δTr

)(1− e−min
(

δTN , δTh
, δTc , δTr

)
t
)

+ e−min
(

δTN , δTh
, δTc , δTr

)
t
([TN ](0) + [Th](0) + [Tr](0) + [Tc](0)).

Since the right-hand side is bounded and each variable is positive, this proves that
each variable is bounded.
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Appendix A.3.3. Dendritic Cells

Adding Equations (A7) and (A8) and using the positivity of [C], we obtain

d([DN ] + [D])

dt
=ADN − δDN [DN ]− (δDC[C] + δD)[D]

≤ADN −min
(
δDN , δD

)
([DN ] + [D]).

Similar to the previous cases, integrated bound

[DN ] + [D] ≤
ADN

min
(
δDN , δD

)(1− e−min(δDN , δD)t
)
+ emin(δDN , δD)t([DN ](0) + [D](0))

proves the upper bound on [DN ] and [D].

Appendix A.3.4. Cancer Cells

Let us rewrite Equation (A9) as follows

d([C]− C0)

dt
+

(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)
[C]

C0
([C]− C0)

= −
(

δCTc [Tc] + δCIγ [Iγ] + δC

)
[C] ≤ 0.

Integrating the inequality with implicit dependence on [C], [µ1], and [µ2], we obtain

[C] ≤ C0 − (C0 − [C](0)) exp

(
−
∫ t

0

(
λC + λCµ1 [µ1](s) + λCµ2 [µ2](s)

)
[C](s)

C0
ds

)
.

Since [C], [µ1], and [µ2] are proven to be positive, the right-hand side is bounded and,
thus, [C] is bounded.

Appendix A.3.5. Interferon-γ

We require the bound on interferon before proving the bound on necrotic cells. Since
[Th] and [Tc] are proven to be bounded, we could claim that

λIγTh [Th] + λIγTc [Tc] ≤ λmax
Iγ

.

This, together with Equation (A11), yields the following inequality:

d[Iγ]

dt
+ δIγ [Iγ] ≤ λmax

Iγ
,

which, when integrated, gives the upper bound on [Iγ] as follows:

[Iγ] ≤
λmax

Iγ

δIγ

(
1− e−δIγ t

)
+ e−δIγ t[Iγ](0).

Appendix A.3.6. Remaining Variables

For each of the remaining variables, the bounds proven above result in the upper
bounds for the positive parts of the right-hand side in each equation as follows

αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C] ≤λmax

N ,

λµ1Th [Th] + λµ1 M[M] + λµ1C[C] ≤λmax
µ1

,

λµ2Th [Th] + λµ2 M[M] + λµ2C[C] ≤λmax
µ2

,

λHM[M] + λHD[D] + λHN [N] ≤λmax
H .
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Then, Equations (A10) and (A12)–(A14) result in the following differential inequalities

d[N]

dt
+ δN [N] ≤λmax

N ,

d[µ1]

dt
+ δµ1 [µ1] ≤λmax

µ1
,

d[µ2]

dt
+ δµ2 [µ2] ≤λmax

µ2
,

d[H]

dt
+ δH [H] ≤λmax

H .

Integrating, we obtain

[N] ≤
λmax

N
δN

(
1− e−δN t

)
+ e−δN t[N](0),

[µ1] ≤
λmax

µ1

δµ1

(
1− e−δµ1 t

)
+ e−δµ1 t[µ1](0),

[µ2] ≤
λmax

µ2

δµ2

(
1− e−δµ2 t

)
+ e−δµ2 t[µ2](0),

[H] ≤
λmax

H
δH

(
1− e−δH t

)
+ e−δH t[H](0),

thus, proving the upper bounds.

Appendix B. Derivation of the Parameter Set

Appendix B.1. Additional Assumptions

We adopt natural degradation/decay rates of immune cells and cytokines based
on information about their half life from the literature (see Table A1). For example, the
degradation/decay rate of X is calculated as

δX =
ln2

half life of X in days

The decay rate of µ1 is estimated to be a weighted average of the decay rates of
cytokines within µ1, where the weights are proportional to the abundance of these cytokines.
A similar procedure is carried out for µ2. The obtained natural decay rates are as follows:

δMN = 0.693, δM = 0.015, δO = 1.219, δTN = 0.00042,

δTh = 0.231, δTr = 0.063, δTc = 0.406, δDN = 1.664,

δD = 0.277, δIγ = 33.27, δµ1 = 487.48, δµ2 = 5.15,

δH = 58.7

For the proliferation rate of tumor cells, we gathered information on osteosarcoma
growth in humans. A study reported that the mean exponential growth constant of primary
osteosarcoma tumors was between 0.0054 and 0.02784 [146]. We took the average of these
values and chose λC = 0.01662. Then, we made the assumption that the proliferation rate
of cancer cells themselves was 20 times larger than the proliferation rate of cancer for the
cytokines group µ2; that is,

λC = 20λCµ2 µmean
2 (A15)
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µ2 consists of IL-6, which is a major pro-tumor cytokine; therefore, we assume that µ2
is twice as effective at promoting tumor growth compared with µ1:

λCµ2 µmean
2 = 2λCµ1 µmean

1

or equivalently, λC = 40λCµ1 µmean
1 (A16)

We also assume that cytotoxic cells kill tumor cells twice as fast as IFN-γ, and IFN-γ
is 10-times more effective at killing cancer cells compared with the cancer cell natural
death rate:

δCIγ
Imean
γ = 10δC (A17)

δCTc Tmean
c = 2δCIγ

Imean
γ or δCTc Tmean

c = 20δC (A18)

Since M1 and M2 macrophages are activated solely by IFN-γ and µ1, respectively, we
assume that the ratio of macrophages activated by IFN-γ to macrophages activated by µ1
equals to the ratio of M1 to M2 macrophages:

λMIγ Imean
γ

λMµ1 µmean
1

=
Mmean

1
Mmean

2
(A19)

We make the assumption that helper T cells are predominantly activated by antigen
presenting dendritic cells and that the inhibition of helper T cells by regulatory T cells and
by µ1 are more effective than natural decay:

λThDDmean = 200λTh M Mmean (A20)

δThTr Tmean
r = δThµ1 µmean

1 = 20δTh (A21)

We also assume that the activation of cytotoxic cells by dendritic cells (both through
antigen presentation and IL-12) is twice as effective compared with activation by helper T cells,
and four-times as effective compared with activation by macrophages (through IL-12):

λTcDDmean = 2λTcTh Tmean
h = 4λTc M Mmean (A22)

while the inhibition of cytotoxic cells by regulatory T cells and by µ1 are each 20-times
larger than with natural decay:

δTcTr Tmean
r = δTcµ1 µmean

1 = 20δTc (A23)

For dendritic cells, we make the assumption that activation by HMGB1 is twice as
effective compared with activation by cancer cells and that the inhibition by cancer cells is
equivalent to the dendritic cells’ innate decay rate:

λDH Hmean = 2λDCCmean (A24)

δDCCmean = δD (A25)

Additionally, the following assumptions were used for the production rates of cytokines:

λIγTc Tmean
c = 4λIγTh Tmean

h (A26)

λµ1Th Tmean
h = λµ1 M Mmean = λµ1CCmean (A27)

λµ2 M Mmean = λµ2CCmean = 2λµ2Th Tmean
h (A28)

λHN Nmean = 10λHM Mmean = 20λHDDmean (A29)

Lastly, we assume that αNC = 3/4 and that carrying capacity of cancer is twice the
steady state value of cancer, that is C0 = 2C∞.
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Appendix B.2. Parameter Values and Sources

Table A1. Non-dimensional parameter values for each cluster.

Parameter Cluster 1 Cluster 2 Cluster 3 Source

λMIγ 4.3649× 10−3 8.4234× 10−4 2.8083× 10−3 Estimated
λMµ1 1.0635× 10−2 1.4158× 10−2 1.2192× 10−2 Estimated
λTh M 3.3434× 10−2 1.9270× 10−2 2.2194× 10−2 Estimated
λThD 1.0963× 10 7.3778 9.8325 Estimated
λTrµ1 6.3× 10−2 6.3× 10−2 6.3× 10−2 Estimated
λTcTh 6.1171 2.3846 2.8415 Estimated
λTc M 1.7478 1.2263 1.4683 Estimated
λTcD 1.1463× 10 9.3900 1.3011× 10 Estimated
λDC 4.0114× 10−1 4.8942× 10−1 5.9472× 10−1 Estimated
λDH 4.1518× 10−1 4.2621× 10−1 4.1729× 10−1 Estimated
λC 1.662× 10−2 1.662× 10−2 1.662× 10−2 [146]

λCµ1 3.7101× 10−4 3.5910× 10−4 4.0692× 10−4 Estimated
λCµ2 7.1405× 10−4 6.3207× 10−4 5.7910× 10−4 Estimated
λIγTh 6.3095 1.1946× 10 4.1848 Estimated
λIγTc 2.6961× 10 2.1324× 10 2.9085× 10 Estimated
λµ1Th 1.8813× 102 1.1491× 102 1.0315× 102 Estimated
λµ1 M 1.0751× 102 1.1818× 102 1.0661× 102 Estimated
λµ1C 1.9184× 102 2.5440× 102 2.7772× 102 Estimated
λµ2Th 1.2313 6.8806× 10−1 6.0936× 10−1 Estimated
λµ2 M 1.4073 1.4153 1.2595 Estimated
λµ2C 2.5113 3.0467 3.2811 Estimated
λHM 4.4046 5.8355 1.8254 Estimated
λHD 3.6107 5.5856 2.0218 Estimated
λHN 5.0685× 10 4.7279× 10 5.4853× 10 Estimated
δMN 6.93× 10−1 6.93× 10−1 6.93× 10−1 [147–149]
δM 1.5× 10−2 1.5× 10−2 1.5× 10−2 [150,151]
δTN 4.2× 10−4 4.2× 10−4 4.2× 10−4 [152]

δThTr 6.6404 3.1732 5.0991 Estimated
δThµ1 4.1253 3.9929 4.5246 Estimated
δTh 2.31× 10−1 2.31× 10−1 2.31× 10−1 [153]
δTr 6.3× 10−2 6.3× 10−2 6.3× 10−2 [154]

δTcTr 1.1671× 10 5.5771 8.9620 Estimated
δTcµ1 7.2505 7.0179 7.9524 Estimated
δTc 4.06× 10−1 4.06× 10−1 4.06× 10−1 [153]
δDN 1.664 1.664 1.664 [155]
δDC 5.3932× 10−1 6.3864× 10−1 7.3501× 10−1 Estimated
δD 2.77× 10−1 2.77× 10−1 2.77× 10−1 [156]

δCTc 1.2269× 10−2 9.6574× 10−3 8.4017× 10−3 Estimated
δCIγ

4.5923× 10−3 6.4192× 10−3 8.4660× 10−3 Estimated
δC 3.0078× 10−4 1.0390× 10−3 2.4530× 10−4 Estimated
δN 4.5935× 10−1 4.8360× 10−1 1.1137× 10−1 Estimated
δIγ 3.327× 10 3.327× 10 3.327× 10 [157]
δµ1 4.8748× 102 4.8748× 102 4.8748× 102 [158–161]
δµ2 5.15 5.15 5.15 [162,163]
δH 5.87× 10 5.87× 10 5.87× 10 [164]

AMN 7.4055× 10−1 7.0151× 10−1 7.1382× 10−1 Estimated
ATN 1.0581× 102 1.7917 3.1561 Estimated
ADN 3.3325 2.3958 2.4867 Estimated

αMN M 3.1701 5.6721× 10−1 1.3878 Scaling factor
αTN Th 1.4396 1.8848× 10−1 8.8053× 10−2 Scaling factor
αTN Tr 7.4588× 10−1 8.2864× 10−2 1.0267× 10−1 Scaling factor
αTN Tc 4.6531 3.0144× 10−2 1.3172× 10−1 Scaling factor
αDN D 2.0440 7.9922× 10−1 8.1299× 10−1 Scaling factor
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Appendix C. Non-Dimensionalization

We obtained the following non-dimensional system:

d
[
MN

]
dt

= AMN − αMN M

(
λMIγ

[
Iγ

]
+ λMµ1 [µ1]

)[
MN

]
− δMN [MN ] (A30)

d
[
M
]

dt
=
(

λMIγ

[
Iγ

]
+ λMµ1 [µ1]

)
[MN ]− δM

[
M
]

(A31)

d
[
TN
]

dt
= ATN − αTN Th

(
λTh M

[
M
]
+ λThD

[
D
])[

TN
]

− αTN Tr λTrµ1 [µ1]
[
TN
]

− αTN Tc

(
λTcTh

[
Th
]
+ λTc M

[
M
]
+ λTcD

[
D
])[

TN
]
− δTN

[
TN
]

(A32)

d
[
Th
]

dt
=
(
λTh M

[
M
]
+ λThD

[
D
])[

TN
]
−
(
δThTr

[
Tr
]
+ δThµ1 [µ1] + δTh

)[
Th
]

(A33)

d
[
Tr
]

dt
=
(
λTrµ1 [µ1]

)[
TN
]
− δTr

[
Tr
]

(A34)

d
[
Tc
]

dt
=
(
λTcTh

[
Th
]
+ λTc M

[
M
]
+ λTcD

[
D
])[

TN
]

−
(
δTcTr

[
Tr
]
+ δTcµ1 [µ1] + δTc

)[
Tc
]

(A35)

d
[
DN
]

dt
= ADN − αDN D

(
λDC

[
C
]
+ λDH

[
H
])[

DN
]
− δDN

[
DN
]

(A36)

d
[
D
]

dt
=
(
λDC

[
C
]
+ λDH

[
H
])[

DN
]
−
(
δDC

[
C
]
+ δD

)[
D
]

(A37)

d
[
C
]

dt
=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)[
C
](

1−
[
C
]

C0

)
−
(

δCTc

[
Tc
]
+ δCIγ

[
Iγ

]
+ δC

)[
C
]

(A38)

d
[
N
]

dt
= αNC

(
δCTc

[
Tc
]
+ δCIγ

[
Iγ

]
+ δC

)[
C
]
− δN

[
N
]

(A39)

d
[
Iγ

]
dt

= λIγTh

[
Th
]
+ λIγTc

[
Tc
]
− δIγ

[
Iγ

]
(A40)

d[µ1]

dt
= λµ1Th

[
Th
]
+ λµ1 M

[
M
]
+ λµ1C

[
C
]
− δµ1 [µ1] (A41)

d[µ2]

dt
= λµ2Th

[
Th
]
+ λµ2 M

[
M
]
+ λµ2C

[
C
]
− δµ2 [µ2] (A42)

d
[
H
]

dt
= λHM

[
M
]
+ λHD

[
D
]
+ λHN

[
N
]
− δH

[
H
]

(A43)

The non-dimensional parameters are defined as:

AMN =
AMN

M∞
N

, ATN =
ATN

T∞
N

, ADN =
ADN

D∞
N

,

αMN M =
M∞

M∞
N

, αTN Th =
T∞

h
T∞

N
, αTN Tr =

T∞
r

T∞
N

,

αTN Tc =
T∞

c
T∞

N
, αDN D =

D∞

D∞
N

, αNC = αNC
C∞

N∞ ,

C0 =
C0

C∞ , λMIγ =
λMIγ I∞

γ M∞
N

M∞ , λMµ1 =
λMµ1 µ∞

1 M∞
N

M∞ ,
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λTh M =
λTh M M∞T∞

N
T∞

h
, λThD =

λThDD∞T∞
N

T∞
h

, λTrµ1 =
λTrµ1 µ∞

1 T∞
N

T∞
r

,

λTcTh =
λTcTh T∞

h T∞
N

T∞
c

, λTc M =
λTc M M∞T∞

N
T∞

c
, λTcD =

λTcDD∞T∞
N

T∞
c

,

λDC =
λDCC∞D∞

N
D∞ , λDH =

λDH H∞D∞
N

D∞ , λCµ1 = λCµ1 µ∞
1 ,

λCµ2 = λCµ2 µ∞
2 , λIγTh =

λIγTh T∞
h

I∞
γ

, λIγTc =
λIγTc T∞

c

I∞
γ

,

λµ1Th =
λµ1Th T∞

h
µ∞

1
, λµ1 M =

λµ1 M M∞

µ∞
1

, λµ1C =
λµ1CC∞

µ∞
1

,

λµ2Th =
λµ2Th T∞

h
µ∞

2
, λµ2 M =

λµ2 M M∞

µ∞
2

, λµ2C =
λµ2CC∞

µ∞
2

,

λHM =
λHM M∞

H∞ , λHD =
λHDD∞

H∞ , λHN =
λHN N∞

H∞ ,

δThTr = δThTr T∞
r , δThµ1 = δThµ1 µ∞

1 , δTcTr = δTcTr T∞
r ,

δTcµ1 = δTcµ1 µ∞
1 , δDC = δDCC∞, δCTc = δCTc T∞

c ,

δCIγ
= δCIγ

I∞
γ .

The assumptions (Equations (A15)–(A29)) in non-dimensional form are:

λC = 20λCµ2

µmean
2
µ∞

2
= 40λCµ1

µmean
1
µ∞

1
,

δCTc

Tmean
c
T∞

c
= 2δCIγ

Imean
γ

I∞
γ

= 20δC,

λMIγ
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Appendix D. Dynamics of the Tumor Microenvironment with Cross-Cluster
Initial Conditions

Parameters

from cluster 1

C

B

A

Parameters

from cluster 2

Parameters

from cluster 3

Figure A1. Dynamics with cross-cluster initial conditions. (A) The dynamics of cells and cytokines with parameters from
cluster 1 and initial conditions from clusters 2 and 3. (B) The dynamics of cells and cytokines with parameters from cluster 2
and initial conditions from clusters 1 and 3. (C) The dynamics of cells and cytokines with parameters from cluster 3 and
initial conditions from clusters 1 and 2.
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