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ABSTRACT: Oppositely charged polymerized ionic liquids
(PILs) were used to form complex coacervates in two different
organic solvents, 2,2,2-trifluoroethanol (TFE) and hexafluoro-2-
propanol (HFIP), and the corresponding phase diagrams were
constructed using UV−vis, NMR, and turbidity experiments. While
previous studies on complex coacervates have focused almost
exclusively on aqueous environments, the use of PILs in the
current work enabled studies in solvents with substantially lower
dielectric constants (27.0 for TFE, 16.7 for HFIP). The critical salt
concentration required to induce complete miscibility was roughly
2-fold larger in HFIP compared with TFE, and two different PIL
complexes, solidlike precipitates and liquidlike coacervates, were
found in both systems. This study provides insight into the effects of low-dielectric-constant solvents on complex coacervation,
which has not been widely studied because of the limited solubility of conventional polyelectrolytes in these media.

KEYWORDS: polymerized ionic liquids, complex coacervates, low-dielectric-constant solvents, phase diagrams

Complex coacervation is an active research topic because
of its relevance in various fields such as food science,1,2

biology,3−6 biomedical science,7,8 and polymer science9−12

along with its importance in the behavior of a variety of
natural4,13,14 and synthetic15−22 charged macromolecules. Over
the past decade, major advances in our fundamental under-
standing of complex coacervation have been achieved using
almost exclusively aqueous systems,23,24 which provide good
solubility for both weak15−20,25−29 and strong polyelectrolyte
pairs.30−36 Specifically, systematic studies have focused on
characterizing the influence of varying numerous parameters,
including the polyanion/polycation ratio,18,20,25 polymer chain
length,16,17,19,35,36 polymer chemistry,22,29,35,37 salt choice,26

pH,18,25,28 and temperature.18,38

To date, however, there have been only a few studies on the
effect of solvent quality on complex coacervation, and those
that have been conducted are limited to aqueous mixtures with
organic solvents.15,21,34,39 Interestingly, increasing the volume
ratio of organic solvent to water can either strengthen15 or
weaken34 the salt resistance of coacervates depending on the
choice of organic solvent and polyelectrolyte pair, although a
detailed understanding of the underlying mechanisms to
explain this variability is lacking. In one example, the addition
of an organic solvent to an aqueous solution was found to
convert the physical state of polyelectrolyte complexes formed
from conjugated polyelectrolytes from solidlike precipitates to
fluidlike coacervates as a result of the enhanced solubility of
the polyelectrolyte pair in the organic solvent.21 Very recently,
the effect of solvent quality has been explored in aqueous

systems by comparing two polyelectrolyte pairs with different
backbone chemistries: the hydrophobic polymers showed
higher salt resistance than the hydrophilic polymer pair in
water.40 This experimental finding was in agreement with
theoretical predictions of the coacervate phase diagrams that
varied the effective Flory−Huggins parameter (χ) from poor to
theta to good solvent. In addition to variations in the polymer
backbone, changes in side-chain structure were found to
impact coacervate phase behavior, including an increase in salt
resistance driven by a decrease in local polarity.22 Despite these
findings, the effect of the solvent environment on complex
coacervation has not been explored in the relatively low
dielectric solvent regime (εr ≲ 30) because of the scarcity of
polyelectrolytes that are soluble in solvents with relatively low
polarity. In high-dielectric environments, the entropic gain due
to counterion release is understood to dominate coacervate
formation.15,41−44 Enthalpic effects due to interactions among
the solvent, polymers, and counterions (captured in χ) can
modulate this phase behavior,34,35,40,45 but it remains unclear
under which conditions the strength of electrostatic
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interactions, e.g., as set by the solvent dielectric constant, will
have a major influence.42,46

As a class of polyelectrolytes, polymerized ionic liquids
(PILs) comprising ionic liquid moieties as both fixed ions and
associated counterions enable studies in diverse solvent
systems because of the relatively weak coordination between
ions and the broad chemical tunability of both the polymer
chain and counterion.47−50 In particular, PILs can frequently
be rendered soluble in nonaqueous solvents by introducing
relatively nonpolar components such as hexafluorophosphate
(PF6

−) or bis(trifluoromethanesulfonyl)imide (TFSI−) as
either the polymerized ion or the counterion.51 Although
PIL systems have been mainly studied for various applications
as ion conductors in electrochemical devices,52−55 dispersants/
surfactants,56,57 carbon dioxide sorbents,58,59 and anion-
sensitive smart materials,60,61 only a few studies of their
behavior in the context of complex coacervation have been
reported to date.62,63

In this work, we studied the complex coacervation of PILs in
two organic solvents with low dielectric constants. For the
resultant coacervate phase diagrams, we found a significant
difference in the salt resistance of the two solvent systems and
observed the formation of fluid coacervates and solid
precipitates in both solvents. Here we discuss these findings
in the context of enthalpy changes upon complexation, as
dictated by Flory−Huggins interaction parameters (χ), as well
as the possible influence of the solvent dielectric constant (εr).
To enable our study, we selected a pair of oppositely

charged PILs, a polycation containing 1-(2-acryloyloxyethyl)-
3-butylimidazolium bis(trifluoromethanesulfonyl)imide (AT)
and a polyanion containing 1-ethyl-3-methylimidazolium 3-
sulfopropyl acrylate (ES) (Figure 1). A small fraction (≤2 mol
%) of a dye monomer (rhodamine B methacrylate or
fluorescein o-acrylate) was incorporated into each PIL by
RAFT polymerization, and both PILs were characterized by
NMR spectroscopy (Figures S1 and S2). The molecular
weights were estimated as Mn = 27 kDa for poly(AT-co-RhB)
by size-exclusion chromatography with poly(methyl methacry-
late) standards and Mn = 35−38 kDa for poly(ES-co-Flu) by
1H NMR end-group analysis (see details in the Supporting
Information (SI) and Figures S3 and S4). Given the much
higher molecular weight of the AT monomer compared with

that of the standards, we note that this value is likely a
significant underestimate. After screening several possible
organic solvents, we identified two fluorinated alcohols,
2,2,2-trifluoroethanol (TFE) and hexafluoro-2-propanol
(HFIP), that readily dissolved both PILs (up to approximately
10 wt %) and the salt. We note that the two solvents have
relatively low dielectric constants at 300 K (εr = 27.0 for
TFE64,65 and 16.7 for HFIP66,67) compared with water64 (εr =
78.0). For each solvent, separate solutions of the polycation
and polyanion were first prepared with a chosen (and equal)
concentration of polyelectrolyte cpoly(ES) = cpoly(AT), expressed in
terms of the molar concentration of ionizable monomeric
units, as well as an additional amount csalt of the ionic liquid 1-
ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
([EMIM][TFSI]), which corresponds to the salt formed by
the two counterions. The two solutions were then rapidly
mixed and allowed to equilibrate for at least 24 h prior to
further characterization.
Because of the presence of fluorophores with well-resolved

absorption spectra in the two PILs, it was possible to measure
the concentration of each polymer in each phase using UV−vis
spectroscopy (Figure 2). We first constructed a calibration
curve for each PIL (Figure S5 and Table S1). The calibration
curves of poly(AT-co-RhB) followed the Beer−Lambert
equation (A = εlc + b with b = 0), whereas the calibration
curves of poly(ES-co-Flu) required a nonzero intercept (b ≠
0). The reasons for this deviation from Beer−Lambert are not
well-understood at present, but we note that in a prior report68

the presence of an imidazolium-based IL was found to strongly
suppress absorbance by fluorescein. Subsequently, the molar
concentration of each PIL was obtained by measuring the
UV−vis absorbance of each phase (Figure S6), dissolved in 2
M [EMIM][TFSI] solution for dilution/homogenization. The
total polymer concentration cpolymer in the phase diagrams was
obtained by summation of the polycation and polyanion
concentrations in each phase, cpolymer = cpoly(ES) + cpoly(AT)
(Table S2).
To determine the molar concentration of the TFSI anion in

each phase, we used 19F NMR spectroscopy, where the TFSI
anion peak was distinguishable from other fluorine compo-
nents in the mixtures (Figures S7−S9). The molar
concentration of the EMIM cation in the two phases was

Figure 1. Synthesis of polymerized ionic liquids (PILs): (a) poly(AT-co-RhB) and (b) poly(ES-co-Flu).
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calculated by combining the UV−vis and 19F NMR results in
the equation cEMIM = cpoly(ES) + cTFSI − cpoly(AT), which arises by
assuming electroneutrality of each phase. The total concen-
tration of small ions cions in the phase diagrams was obtained by
summation of the TFSI and EMIM ion concentrations in each
phase, cions = cEMIM + cTFSI (Table S3), and includes both
counterions and added salt. We also determined the
compositions of the polymers and the small ions in each
phase (Figures S10 and S11). Most notably, poly(ES) was
found to preferentially partition into the dilute phase in both
solvents, exceeding the concentration of poly(AT) by 10−20
mM. Although the origin of this effect is unclear, we speculate
that it may arise from asymmetry in the molecular weights of
the polymers or preferential interactions of the solvents with
poly(ES) relative to poly(AT).
To determine the salt resistance, the turbidity (T) was

measured by making three different samples with polymer
concentrations in the range of 10−50 mM. The salt resistance
was defined as the first point at which T dropped below 0.01,
following a literature precedent.16 As shown in Figure 3, the
choice of solvent had a significant impact, with HFIP yielding a
roughly 2-fold higher salt resistance than TFE (csalt ≈ 600 and
300 mM, respectively). The possible factors underlying this
difference will be discussed further below.

The coacervate phase diagrams of PILs in TFE and HFIP
were constructed by combining the results of the UV−vis, 19F
NMR, and turbidity measurements (Figure 4). Several
interesting observations from the phase diagrams can be
made. First, there is a pronounced difference in the sizes of the
two-phase regions for the two solvent systems. Specifically, the
HFIP system has a higher salt resistance compared with the
TFE system. One possible explanation is that the solvents may
have different effective Flory−Huggins interaction parameters
(χ) with the charged species, i.e., TFE is a better solvent than
HFIP for the two polymers and associated counterions.
However, swelling tests on cross-linked networks of each of
the individual polyelectrolytes showed little difference between
the two solvents (each containing 2 M [EMIM][TFSI]),
suggesting that there is not a pronounced difference in the
quality of the two solvents (see details in the SI and Figure
S12).
Alternatively, the strength of electrostatic interactions, for

example as captured in the Bjerrum length (λB = e2/
(4πεrε0kBT)), where λB = 2.1 nm in TFE and 3.4 nm in
HFIP at 300 K (compared with 0.7 nm in water), may play a
role in stabilizing coacervates to higher salt concentrations in
HFIP than in TFE. Although theory has suggested that this
electrostatic effect is negligible in high-polarity solvents (εr ≥
60.0),46 the lower-polarity solvents employed here could
potentially represent a different physical regime. For example,
the degree of dissociation of ILs has been found to be relatively
low in organic solvents with low dielectric constants.69,70 This
leads to tighter binding of counterions to the polymer chains as

Figure 2. UV−vis absorption spectra of poly(AT-co-RhB) and
poly(ES-co-Flu) solutions of varying polymer concentration in the
range of 5−30 mM in (a) TFE and (b) HFIP with 2 M
[EMIM][TFSI]. These calibration data were subsequently used to
determine the polymer concentrations in each phase.

Figure 3. Turbidity measurements of PIL mixtures with different
polymer concentrations (cp) as a function of the added salt
concentration (csalt) in (a) TFE and (b) HFIP.
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well as a lower degree of dissociation of small ions in solution,
presumably reducing both the entropic driving force for
complex coacervates to form and the effect of added IL.
Whether these effects have a net influence on coacervate
stability in low-dielectric environments requires further study.
The slopes of the tie lines relating the salt concentrations in the
polymer-dense and polymer-dilute phases can in principle
provide additional information. For example, positively sloped
lines have been shown to correspond to a positive enthalpy
change of complexation in aqueous systems.45 Unfortunately,
however, the uncertainties in the measured values of cions
prevent us from reaching any conclusions with respect to the
slopes of the tie lines in the phase diagrams presented here.
Finally, both solvent systems showed transitions in the

physical states of the polymer-dense phases from solidlike
precipitates to fluidlike coacervates and eventually to a
homogeneous solution with increasing concentration of small
ions, as reported previously for aqueous systems.14,17,32,71 As
expected, the solidlike precipitates were formed with no added
salt or at low added salt concentrations, indicating that the PIL
pairs have strong enough interactions in both solvents to form
precipitates. These precipitates are kinetically trapped, as
evidenced by their irregular (nonspherical) aggregates in
contrast to the dispersed spherical droplets formed initially by
coacervates (Figure S13).7,30,72 In addition, even following 24
h of aging and subsequent centrifugation, polymer-dense
phases with no added salt remained cloudy, while those at
higher salt concentrations formed clear coacervate phases.
Given the trapped nature of the solidlike precipitates at csalt = 0,
we do not extend the two-phase region in Figure 4 to low ion
concentrations because of the lack of certainty about the
equilibrium compositions of polymer-dense phases in this
regime. A decrease in the concentration of the polymer in the
polymer-dense phase with no (or low) added salt was found in
both systems, which has been observed previously at the
boundaries between solidlike precipitates and fluidlike
coacervates and attributed to expansion of the polymer-dense
phase by the solvent.17,32,72,73

In summary, two oppositely charged PILs were used to form
complex coacervates in nonaqueous solvents with relatively

low dielectric constants (εr = 27.0 for TFE and 16.7 for HFIP).
By combining UV−vis, 19F NMR, and turbidity measurements,
we constructed coacervate phase diagrams and confirmed that
the solvent quality is an important parameter that can
significantly alter the stability of coacervates upon addition
of salts (i.e., [EMIM][TFSI] in this study), in agreement with
previous studies.15,34 In addition, both solvent systems showed
two physical states of the polymer-dense phase (i.e., solidlike
precipitates and fluidlike coacervates). Although we speculate
that the origin of the different levels of salt stability is due to
the influence of the low dielectric constant, further study is
required to better understand this effect. In future studies, it
will be interesting to expand the scope of experimental and
theoretical studies of complex coacervation in waterless,
hydrophobic environments to include a variety of different
IL moieties and solvents, in addition to changing factors
related to the polymers, e.g., the charge density. Such work
may provide novel routes for processing of coacervate-based
materials in non-aqueous solvents as well as new fundamental
insight into complex coacervation by allowing for control over
the level of dielectric mismatch between polymer-dense and
polymer-dilute phases.74−78
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