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Strategies for Using a Spatial Method to Promote Active Learning of Probability
Concepts

Jeffrey J. Starns, Andrew L. Cohen, John M. Vargas, and William F. Lougee-Rodriguez

Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA

ABSTRACT
We developed and tested strategies for using spatial representations to help students understand core
probability concepts, including the multiplication rule for computing a joint probability from a marginal
and conditional probability, interpreting an odds value as the ratio of two probabilities, and Bayesian
inference. The general goal of these strategies is to promote active learning by introducing concepts in an
intuitive spatial format and then encouraging students to try to discover the explicit equations associated
with the spatial representations. We assessed the viability of the proposed active-learning approach with
two exercises that tested undergraduates’ ability to specify mathematical equations after learning to use
the spatial solution method. A majority of students succeeded in independently discovering fundamental
mathematical concepts underlying probabilistic reasoning. For example, in the second exercise, 76% of
students correctly multiplied marginal and conditional probabilities to find joint probabilities, 86% correctly
divided joint probabilities to get an odds value, and 69% did both to achieve full Bayesian inference. Thus,
we conclude that the spatial method is an effective way to promote active learning of probability equations.

KEYWORDS
Bayesian inference;
Multiplication rule; Spatial
cognition

1. Introduction

Probability concepts are a cornerstone of Science, Technology,
Engineering, and Math (STEM) education, especially in the
many fields that rely on statistical methods to draw conclu-
sions. Unfortunately, people are prone to many fundamental
misunderstandings of probabilistic reasoning, so educators face
a strong headwind when they attempt to teach these concepts.
The cognitive psychology literature documents many of these
confusions, such as thinking that conjunctions of features can be
more likely that the individual features themselves (Tversky and
Kahneman 1983) or erroneously transposing conditional prob-
abilities (Diaconis and Freedman 1981). The high risk of confu-
sion is likely exacerbated by the fact that probability concepts are
usually taught using mathematical notation that is unfamiliar to
many students, so exploring more intuitive representations is a
promising approach for improving understanding.

The current article discusses strategies for using spatial rep-
resentations of probability concepts in statistics instruction. We
present evidence that many students can succeed in active-
learning activities that challenge them to translate spatial rep-
resentations into symbolic equations. As detailed below, we
explored spatial methods for (1) distinguishing marginal, con-
ditional, and joint probabilities; (2) finding a joint probability
from a marginal and conditional probability (i.e., the multipli-
cation rule); (3) finding an odds value by dividing two prob-
abilities; and (4) Bayesian inference. The first three concepts
are common elements of undergraduate statistics courses, and
Bayesian inference is quickly becoming an important part of
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the statistics curriculum (Martinez and Achar 2014). Bayesian
inference is also a central concept in various STEM subject
areas such as naïve Bayes algorithms in computer science (Koski
and Noble 2009) and diagnostic test interpretation in medicine
(Gigerenzer and Hoffrage 1995).

1.1. Background

Without training, people are typically poor at probabilistic rea-
soning, a fact that is perhaps most clearly illustrated by studies
on Bayesian reasoning. Bayesian inference is the process of
combining probabilistic evidence sources to determine what
is likely to be true. Bayesian reasoning experiments typically
explore this ability by presenting word problems that challenge
participants to find the probability that some hypothesis is true
given that some observation has been made.

Solving Bayesian reasoning problems requires basic proba-
bility skills that are common learning objectives for undergrad-
uate statistics courses, such as distinguishing marginal, condi-
tional, and joint probabilities and applying the multiplication
and addition rules for combining probabilities. Experiments
investigating Bayesian reasoning typically use problems with
two hypotheses (e.g., a patient has a disease not) and a dichoto-
mous observed variable (e.g., a positive or negative diagnostic
test for the disease), which is the simplest version of Bayesian
inference and a good starting point for courses that cover
Bayesian statistics (Kruschke 2011).

Following this formula, a classic Bayesian reasoning example
is finding the probability that a patient has a disease (hypothesis)
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given that they get a positive diagnostic test (observation). Prob-
lems typically report the proportion of cases overall for which
the hypothesis is true (e.g., the base rate of the disease in the
general population), the proportion of hypothesis-is-true cases
that are consistent with the observation (e.g., the proportion
of people with the disease who get a positive test result), and
the proportion of hypothesis-is-false cases that are consistent
with the observation (e.g., the proportion of people without the
disease who get a positive test result).

A clear finding in this literature is that most people cannot
perform the probabilistic reasoning needed to answer Bayesian
reasoning questions; instead, they tend to rely on heuristics
(Gigerenzer and Hoffrage 1995; Cohen and Staub 2015) or prior
knowledge (Cohen, Sidlowski, and Staub 2017). Simplifying the
problem by providing nested frequencies helps (e.g., Gigerenzer
and Hoffrage 1995), but still leaves solution rates around 24%
compared to 4% when problem information is presented as
percentages/proportions (McDowell and Jacobs 2017). Other
changes in problem format can also impact success rates. For
example, Böcherer-Linder and Eichler (2019) reported success
rates of 60–75% when the elements of frequency-format prob-
lems were presented as a contingency table compared to 20–50%
when the problem elements were presented as a tree diagram.
Expanding the tree diagram to include all values in the con-
tingency table—what the authors call a double-tree diagram—
improved performance relative to standard tree diagrams, but
still left accuracy rates substantially below the contingency table
format. Unit squares and icon arrays, which represent probabil-
ities with the areas of rectangles, also fell short of contingency
tables, although icon arrays produced performance levels simi-
lar to contingency tables for 3 out of their 4 word problems.

The wide variability in effectiveness across formats reported
by Böcherer-Linder and Eichler (2019) is representative of the
literature as a whole. Generally, studies have found that provid-
ing visual representations of Bayesian inference problems can
improve performance, but some display formats are not effec-
tive (Cosmides and Tooby 1996; Sloman et al. 2003; Yamagishi
2003; Brase 2009, 2014; Micallef, Dragicevic, and Fekete 2012;
Sirota, Kostovièová, and Juanchich 2014; Binder, Krauss, and
Bruckmaier 2015; Böcherer-Linder and Eichler 2017, 2019; Wu
et al. 2017; Reani et al. 2018). Clearly, more work is needed
to determine the relative effectiveness of these approaches. In
particular, not all proposed representations have been thor-
oughly compared, including, for example, “truth tables” that
enumerates the logical relationships between hypotheses and
observations (Satake and Vashlishan Murray 2015).

Researchers have also explored systematic, instructional pro-
grams for Bayesian inference. Sedlmeier and Gigerenzer (2001)
investigated computer-based tutorials to compare the effec-
tiveness of three instructional approaches. Rule-based training
taught participants to directly input the probabilities reported
in the problem into the Bayes’ theorem equation. Frequency-
grid training taught participants to translate the probabilities
reported in the problem into frequencies and mark components
of an icon array to represent these frequencies. Frequency-tree
training was similar to the frequency grid, except that partici-
pants were taught to enter frequencies as numbers in a tree dia-
gram. Although all of these training versions improved Bayesian
inference performance, the frequency versions produced more

durable learning, as assessed by follow-up sessions weeks or
months after the initial training.

Kurzenhäuser and Hoffrage (2002) investigated instructional
programs similar to the rule-based and frequency-based train-
ing from Sedlmeier and Gigerenzer (2001) in an in-person class-
room setting. The frequency-based, or “representation,” training
taught participants to solve Bayesian problems by translating
probabilities to frequencies and filling in contingency tables and
tree diagrams with those frequencies. A delayed test that came
months after training showed a clear advantage for representa-
tion training over rule-based training.

One consistent characteristic of effective visual displays is
that they represent probabilities with simple spatial features
such as length (Wu et al. 2017). Starns et al. (2018) developed an
instructional program for Bayesian inference that capitalizes on
this spatial advantage. In a six-minute video, participants were
taught how to perform approximate Bayesian inference using
a spatial representation devised by a participant in Gigeren-
zer and Hoffrage (1995). In four laboratory experiments, they
showed that undergraduate students can quickly learn this spa-
tial method, resulting in a dramatic improvement in their per-
formance on Bayesian reasoning problems. A classroom sample
also showed clear performance improvements after training in
this spatial method.

1.2. The Current Project

The current project explores the potential for using the spa-
tial method from Starns et al. (2018) as an instructional aid
in statistics courses that cover basic probability concepts. The
spatial method could have unique advantages that complement
the approaches described in the previous section. Most criti-
cally for the current purposes, the spatial method provides a
way to demonstrate key probability concepts and have students
work through problems without relying on equations. Thus, this
method provides a more accessible and intuitive introduction to
Bayesian reasoning and related probability concepts. Although
an intuitive understanding is valuable in itself, students in a
statistics course would also need to learn to work with equations,
of course. Thus, an important question is whether students can
relate an intuitive spatial understanding of probability concepts
to explicit equations.

We will focus on a particularly ambitious goal for linking
spatial representations and equations; specifically, teaching stu-
dents with the spatial method and then challenging them to
discover the associated equations in an active-learning exercise.
Basic research from psychology shows that self-generated infor-
mation is remembered much better than passively viewed infor-
mation (Slamecka and Graf 1978), so students who succeed in
discovering the mathematical analogs of the spatial techniques
should experience substantial learning benefits. Moreover, pre-
exposure to the spatial representations can help all students
meaningfully interpret the symbols in equations when they
later receive direct instruction on mathematical procedures (see
Section 2.2). Indeed, the opportunity to correct misconceptions
can provide a rich learning experience even for students who
initially apply the wrong equations (Wiggins 1998). Beyond
these likely learning benefits, educational research shows that
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students prefer active-learning activities to passive lecturing
(Freeman et al. 2014). Thus, educators have many good reasons
to develop techniques that promote active-learning success.

Starns et al. (2018) reported a cursory evaluation of students’
ability to translate the spatial method into explicit equations.
Specifically, in the last phase of the classroom activity, students
formed small groups and worked together to try to specify
how each step of the spatial technique could be translated into
a mathematical equation. Over 80% of the groups succeeded,
suggesting that a meaningful proportion of individual students
can discover the mathematics of probabilistic reasoning after
learning the spatial technique. However, succeeding at the group
level requires only a single group member with the correct
answer, and it is possible that information was sometimes shared
across groups in this relatively uncontrolled setting. Thus, the
classroom sample does not rule out the possibility that only
a small subset of students discovered the required math and
relayed this information to their classmates.

In summary, the results from Starns et al. (2018) highlight the
possibility that the spatial technique is a good way to promote
active learning by presenting initial problems in an intuitive
format and providing students with a chance to discover the
link between these representations and the associated equations.
Our goals for the current article are to discuss strategies for using
spatial representations in classroom instruction on probability
concepts and to test whether a substantial proportion of students
can independently discover mathematical equations after learn-
ing the spatial method. To obtain more accurate estimates of the
proportion of students who can succeed at this task, we assessed
individual performance instead of group work in a classroom
setting.

In Section 2, we outline techniques for using spatial displays
in probability instruction. In Sections 3 and 4, we present results
from two studies that tested whether participants could translate
the spatial method into equations. Finally, we discuss future
directions in the practice of using spatial representations to
illustrate probability concepts.

2. Instructional Strategies

2.1. Probabilistic Reasoning Without Equations

In this section, we show how spatial representations can help
students conceptually understand probability concepts before
they are confronted with equations. This strategy offers educa-
tors the opportunity to convey key concepts without eliciting
potentially negative reactions to mathematical content. For this
initial discussion, readers should try to understand the general
principles without concern for exact mathematical solutions.

Consider the following problem:

The police need to find a potential witness to an accident.
The witness was seen driving a pickup truck, and the police
are considering whether or not they should focus their search
in a nearby rural community. 10% of residents in their juris-
diction live in the rural community, and 90% do not. 45%
of residents in the rural community drive a pickup truck,
compared to 10% of residents who do not live in the rural
community.

In traditional Bayesian reasoning studies, one might be asked
to provide the probability that the witness lives in the rural
area (hypothesis) given that they drive a truck (observation).
The current study used multiple question prompts in line with
our interest in evaluating more basic probability concepts in
addition to Bayesian inference. For example, in one of our
active-learning exercises we used prompts with the following
structure:

What is the probability that a resident lives in the rural
community and drives a truck?

What is the probability that a resident does NOT live in the
rural community and drives a truck?

Given that the witness drives a truck, is it more likely that the
witness lives in the rural community or not?

How many times more likely?

Problems of this sort are usually solved by applying equa-
tions, but they are also amenable to a spatial solution method
that could be more intuitive for many people (Starns et al.
2018). Figure 1 represents the population of residents in this
jurisdiction, with bar lengths corresponding to the information
reported in the problem. The total lengths of the bars show the
total proportions of residents who do and do not live in the
rural community, 10% and 90%, respectively (“∼” means “not”
in this context). The relative length of the bars shows which
hypothesis is more likely overall and how many times more
likely. Here, it is more likely that a resident does not live in the
rural area; moreover, this possibility is nine times more likely
than the possibility that the witness does live in the rural area. In
other words, for every resident who lives in the rural community
there are nine residents who do not (the Rural bar fits into the
Not Rural bar nine times). This ratio of two probabilities is a
statistical concept called odds, and in the context of Bayesian
inference this is called the prior odds because it represents a
situation before new information is learned.

Information about the type of vehicle is represented by filling
in the bars with the proportion of residents who drive a pickup

Figure 1. Example showing the spatial method for assessing the hypotheses that
a witness does or does not live in a rural area (“Rural” and “∼Rural,” respectively)
based on the observation that the witness drives a pickup truck. See text for further
details.
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truck, as in Figure 1(B). The “Rural” bar is filled to 45% of its
total length, and this filled part represents people who both live
in the rural community and drive a pickup truck. The “Not
Rural” bar is filled to 10% of its total lengths to represent people
who do not live in the rural community but do drive a pickup
truck. By evaluating the length of these filled portions of the bars
relative to the full x-axis (i.e., all residents), one can determine
the proportion of residents who live in the rural area and drive a
truck (blue filled bar) and the proportion of residents who do
not live in the rural area and drive a truck (green filled bar).
These are the probabilities requested in the first two questions
in our four-question sequence.

One can determine which hypothesis is more likely to be
true given the observation by comparing the length of the filled
bars. Here, there are more residents who do not live in the rural
community and drive a pickup truck than residents who do live
in the rural community and drive a pickup truck (the bottom
filled portion is longer than the top filled portion), so it is more
likely that a pickup truck-driving resident does NOT live in the
rural community than that they do (Question 3). The relative
length of the filled portions shows the posterior odds, that is, the
odds after the observed information is considered. In this case,
the filled part of the “Not Rural” bar is twice as long as the filled
part of the “Rural” bar, revealing a posterior odds value of 2:1 in
favor of the Not Rural hypothesis.

In summary, although driving a pickup truck is certainly
more characteristic of people who live in the rural community,
this new evidence was not strong enough to overturn the very
uneven base rates indicating that a small proportion of residents
overall live in the rural community. The bar display highlights
all of the relevant inputs, making it obvious that the relative
lengths of the filled bars are influenced by both the lengths
of the original bars and the proportion of each bar that are
filled. Thus, creating the display discourages common fallacies
of probabilistic inference that involve disregarding one or more
of the relevant factors, like the base-rate fallacy (e.g., Bar-Hillel
1980), the prosecutor’s fallacy of confusing the compliment of the
false positive rate for the posterior probability (Thompson and
Shumann 1987), or simply confusing the true positive rate and
the posterior probability (Gigerenzer and Hoffrage 1995; Cohen
and Staub 2015).

This spatial display provides a way to help students under-
stand the essence of Bayesian inference without using equations:
New information changes the odds that a hypothesis is true
because it rules out some of the possibilities. The full bars repre-
sent all possibilities (before new information arrives), the open
part of the bars represents the possibilities that are ruled out by
the new information, and the filled part of the bars represents
the possibilities that are consistent with the new information. In
the current example, once the police consider the observation
that the witness drives a pickup truck, they should disregard
all other residents and just focus on pickup drivers. That is,
updating beliefs in response to the observed information simply
means switching from looking at the full bars to focusing on
just the filled portions. Having a simple spatial representation of
the logic of Bayesian inference should be particularly helpful for
students who are unlikely to glean the basic principle just from
studying equations. Below, we will discuss how elements of the
spatial display have a one-to-one mapping to terms in the Bayes’

theorem equation, but we also wish to emphasize that creating
the spatial display can stand alone as an (approximate) solution
method.

There are many ways that educators can use this sort of
spatial representation to help students build an intuition for the
purpose and logic of probabilistic reasoning before introducing
any equations. Here, we will make a few suggestions. Perhaps the
most basic strategy is simply showing students a number of dis-
plays and asking them to provide approximate answers based on
interpreting the display. This is a good way to quickly go through
a number of different scenarios, because judging bar lengths
takes a lot less time than reading word problems and attempt-
ing to solve them mathematically. The initial displays could
even be presented without any corresponding numbers, which
encourages students to focus on deeper conceptual aspects of
the problem situation (Givven et al. 2019). To challenge students
a bit more, one possibility is to give them verbal descriptions
of scenarios and ask them to draw corresponding bar displays.
The scenarios could be things like “You start out thinking the
hypothesis is likely to be true but seeing the observation makes
you think it is likely to be false” or “You start out with no idea
whether or not the hypothesis is true or false and seeing the
observation makes you strongly believe that it is true.” In a large
lecture class, this could be transformed into a multiple-choice
question (“Which of these four bar displays is consistent with the
given scenario?”) so students could use an electronic student-
response system.

2.2. Linking Equations to Spatial Representations

A major advantage of the spatial technique is that components
of the display have a one-to-one correspondence with elements
of Bayes’ theorem, the equation for performing Bayesian infer-
ence. Moreover, elements of the display have a direct link to
related probability concepts that are standard topics in statis-
tics courses. In this section, we use the pickup truck example
to link the spatial method to explicit equations. Our goal is
to demonstrate how educators can buttress understanding of
the equations with a supporting structure that students might
find more intuitive. Figure 2 shows spatial representations and
mathematical notation for four core probability concepts: (1)
distinguishing marginal, conditional, and joint probabilities; (2)
the multiplication rule; (3) finding an odds value by dividing
probabilities; and (4) Bayesian inference. The example starts
with the simplest concept in Row 1 and builds in complexity as
one moves down the rows.

Marginal probability (Row 1) is the probability of observing
one level of a variable out of a full population, ignoring all other
variables. For example, in Figure 2, P(R) denotes the probability
of living in the rural community and P(∼R) denotes the prob-
ability of not living in the rural community. These values apply
to all residents in the jurisdiction without regard to any other
variable (e.g., pickup truck ownership). In the spatial display,
marginal probabilities are represented by total bar lengths. Here,
the “Rural” bar goes to .1 because P(R) = 0.1 and the “Not Rural”
bar goes to 0.9 because P(∼R) = 0.9.

Conditional probability (Row 2) is the probability of observ-
ing a certain level of one variable for a given level of another
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Figure 2. Illustration of the link between the spatial method and explicit equations
for a range of probability concepts, using the pickup truck problem as an example.
Each row introduces a new concept with increasing levels of complexity, and the
panels in the row show how the concept is represented in the spatial display and
in mathematical notation. “Rural” and “∼Rural” represent the hypotheses that the
witness does and does not live in a rural area, respectively. See text for details.

variable. In this case, we need to consider the probability of
driving a pickup truck (denoted with “T”) given that a resident
lives in the rural community, P(T|R), and the probability of
driving a pickup truck given that a resident does not live in the
rural community, P(T| ∼R) (“|” means “given” in this context).
The critical concept here is that specifying a condition restricts
the population to a certain subset. Thus, the axes in these panels
end at the end of the bars, because we are considering only the
residents in the Rural or Not Rural categories, respectively. A
conditional probability is represented by the filled portion of a
bar. Here, we fill in 45% of the Rural bar because P(T|R) = 0.45
and 10% of the Not Rural bar because P(T| ∼R) = 0.10.

Joint probability (Row 3) is the probability of a combination
of multiple variables (e.g., both a rural community resident
and a pickup truck owner) out of a full set (e.g., all residents).

The mathematical procedure for finding joint probabilities is
called the multiplication rule. Here, taking 45% of the 10% of
rural residents leaves 4.5% of residents overall who both live
in the rural community and own a pickup truck [P(T|R)P(R)
= 0.45 × 0.1 = 0.045], and taking 10% of the 90% of nonrural
residents leaves 9% of residents overall who do not live in the
rural community but do drive a pickup truck [P(T| ∼R)P(∼R)
= 0.1 × 0.9 = 0.09]. Rather than an abstract formula, the bar
representation translates the multiplication rule into an explicit
spatial mechanism. The third row of Figure 2 displays the logic
of this step by placing the filled bars from Row 2 on the axis
representing all residents. On this full axis, the filled parts of
the “Rural” and “Not Rural” bars end at 0.045 and 0.09, respec-
tively. Comparing Rows 2 and 3 reveals that the only difference
between conditional and joint probabilities is the scale. For joint
probability, we are back to considering all residents, not just
rural or nonrural residents. In other words, we are back on the
original x-axis.

One ambitious strategy for capitalizing on the direct link
between the spatial representation and the equation for the mul-
tiplication rule is to show students the spatial method for finding
a joint probability (fill in a bar representing the marginal proba-
bility proportional to the conditional probability) and challenge
them to figure out how that translates into a mathematical
equation. The exercises below investigate whether a substantial
proportion of students can succeed in this task. Even if an
instructor does not want to take this active-learning approach,
supplementing discussion of the multiplication rule with the
spatial technique could help students understand why multi-
plying the marginal and conditional probabilities results in the
joint probability. In particular, multiplying by a decimal cuts the
original value down to a proportion of its value. The marginal
probability gives the proportion of cases that meet Condition A
(total bar length) and multiplying by the conditional probability
of B given A limits this set to just those that also meet Condition
B (filled bar length).

Finally, comparing joint probabilities achieves Bayesian
inference, as shown in Rows 4 and 5. Row 4 puts both hypotheses
on the same axis to create the spatial display discussed above
(Figure 1(B)). The equations in Row 5 are the odds version
(5a) and probability version (5b) of Bayes’ theorem as applied
to the pickup truck example. Notice that both equations are
simply new arrangements of the joint probabilities from Row
3. Working with only the joint probabilities means that we have
discarded all of the possibilities that are inconsistent with the
observed information to create a new reference population (only
residents who drive a pickup truck). For the left panel, the fact
that the Not Rural bar is twice as long as the Rural bar visually
displays the posterior odds of 2:1 in favor of the hypothesis that
the witness does not live in the rural area.

Mathematically, the posterior odds are calculated by divid-
ing one joint probability by another; for example, dividing the
joint probability for “Not Rural and Truck Driver” by the joint
probability for “Rural and Truck Driver” gives the “2:1 against”
value evident in the display (0.09/0.045 = 2). For the right panel,
all that has happened is that the Rural and Not Rural joint
probabilities (the filled bars) are combined on the same axis for
comparison. The fact that the blue part of the bar goes up to
1/3 on the axis reveals that the posterior probability of Rural is



44 J. J. STARNS ET AL.

1/3, or about 33%. In other words, out of all the residents who
drive pickup trucks, 1/3 of them live in the rural community.
The corresponding equation answers this question: “Out of all
the residents who drive a pickup truck, what proportion of them
live in the rural community?” This can be found by dividing
the 4.5% of residents who both live in the rural community and
drive a pickup truck by the 13.5% of residents overall who drive
a pickup truck. The latter value is found by taking the 4.5% of
rural, truck-driving residents and adding in the 9% of nonrural,
truck-driving residents.

Again, one strategy for using the link between the spatial
display and the Bayes’ theorem equation would be to show
students the spatial method of finding posterior odds (look at
how many times longer one joint-probability bar is than the
other) and challenge them to specify the corresponding math-
ematical procedure (divide one joint probability by the other).
The exercises below test whether a substantial proportion of
students can independently discover the math required to find
the posterior odds after learning the spatial technique. Although
not tested here, a similar procedure could be used for posterior
probabilities to see if students can translate the spatial solution
method (look at the proportion covered by each joint probability
bar when they are stuck together) to an equation-based method
(divide each joint probability by the sum of both joint probabili-
ties).1 Educators could also decide to forego this active-learning
approach but still supplement instruction on equations with the
spatial representations to help students intuitively understand
what the equations achieve.

3. Active-Learning Exercise 1

We have suggested that educators use spatial representations
in initial instruction on probability concepts and then give
students the chance to discover the associated mathematics in an
active-learning process. We imagine that most educators would
only want to attempt this if they can expect that a substantial
proportion of their students will succeed in the active-learning
challenge. The goal of this exercise was to test whether or not
this is the case. As mentioned above, Starns et al. (2018) showed
that a strong majority (>80%) of small groups of undergraduate
statistics students were able to correctly specify the mathematics
associated with applying the spatial display in an active-learning
exercise. This result is promising, but the classroom setting
makes it difficult to rule out the possibility that only a small
subset of students succeeded in the active-learning exercise
and then shared the information with their peers. Accordingly,
for the current exercise undergraduate students attempted the
active-learning task as individuals.

Exercise 1 was completed as part of author WL-R’s under-
graduate honors thesis project. College undergraduates were
tutored in the spatial method for solving probabilistic reasoning
problems in one-on-one sessions, and then they completed a

1We did not test both posterior odds and posterior probability in the exer-
cises below because they provide redundant information; an odds value
can be transformed to a probability and vice versa. We focus on odds
instead of probability because the former is more directly observable in the
spatial display.

“math induction” worksheet that presented the visual solution to
a problem and asked participants to specify the equations associ-
ated with each step. The example problem involved determining
the odds that a student knows how to read music given that
they own an instrument. Similar to the pickup-truck problem
above, participants were given the base rate of students overall
who know how to read music, the probability of owning an
instrument for students who know how to read music, and the
probability of owning an instrument for students who do not
know how to read music. The worksheet also included a bar
display for the problem that had the filled parts of the bar labeled
with letters, as shown in Figure 3.

Participants were asked three questions: “Mathematically,
how do you figure out where the shaded region of the ‘Read
Music’ bar ends on the x-axis (marked by the letter A)?”; “Math-
ematically, how do you figure out where the shaded region of
the “Don’t Read Music” bar ends on the x-axis? (marked by the
letter B)?”; and “Mathematically, how do you figure out how
many times longer the shaded region is for ‘Read Music’ than
‘Don’t Read Music’?” We will refer to the first two questions as
the “Multiplication Rule” questions and score each participant
as correctly applying the multiplication rule if they multiply
the appropriate marginal and conditional probabilities on both
questions. We will refer to the third question as the “posterior
odds” question and score it correct if the participant divides the
joint probabilities computed in questions 1 and 2.

3.1. Methods

3.1.1. Participants
We recruited 23 undergraduate students from the psychology
department’s participant pool. One participant was removed
from analyses because the instructor mistakenly revealed the
math before the math induction sheet (this was the first partic-
ipant run by that instructor). Participants received extra credit
in their psychology classes as remuneration.

3.1.2. Procedure
The exercise consisted of six steps summarized in Figure 4. Each
step was presented to participants as an individual worksheet.

When participants arrived, they were first asked to read and
sign the consent form. The form allowed the participants to
indicate whether or not they consented to having their ses-
sion audio recorded, and 19 participants granted permission
for recording. The primary purpose of the recordings was to
ensure that proper instruction procedures were followed by
the undergraduate researchers who conducted the sessions. A
graduate student reviewed all of the recordings to ensure that
the instructor never revealed the math linked to the spatial
method before having the participant complete the math induc-
tion sheet. As mentioned in Section 3.1.1, one instructor did
reveal the math in the first session that he conducted, and
data from this session were removed from analyses. The audio
recordings are available on the OSF (https://osf.io/aq7w3/?view_
only=ccb6dc5b367e419facc7965b3a0caaf5).

After signing the consent form, participants began the
sequence of six worksheets summarized in Figure 4. All work-
sheets involved Bayesian reasoning problems that asked partic-

https://osf.io/aq7w3/?view_only=ccb6dc5b367e419facc7965b3a0caaf5
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Figure 3. The problem and bar display on the math induction sheet for Exercise 1.

Figure 4. Summary of the worksheet sequence in Exercise 1. See text for a description of each step.
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ipants to assess the hypothesis that a student in a class knows
how to read music given the observation that the student owns
an instrument (scans of responses on all worksheets from all
participants are available on OSF, https://osf.io/aq7w3/?view_
only=ccb6dc5b367e419facc7965b3a0caaf5).

The first and second worksheets asked participants to solve
problems without any training to establish baseline perfor-
mance. The first worksheet (“Frequency baseline”) presented the
following problem:

In a class, 10 of the students know how to read music and 40
do not.

Out of the 10 who know how to read music, 8 own a musical
instrument and 2 do not.

Out of the 40 who do not know how to read music, 4 own a
musical instrument and 36 do not.

Participants reported the prior and posterior odds associated
with the problem in four steps. First, they were asked to consider
a student in the class without knowing whether or not this
student owned an instrument and select whether the student
was more likely to know how to read music or not. Second, they
were asked how many times more likely the option they selected
was than the other option. Responses to those two questions
together constituted the prior odds. Third, they were asked to
consider another student in the class who owns an instrument
and select whether the student was more likely to know or not
know how to read music. Fourth, they were asked how many
times more likely the option they selected was than the other
option. Responses to the third and fourth questions constituted
the posterior odds. After the participant recorded all responses,
the instructor provided quick feedback on the problem (more
formal feedback was provided during the frequency feedback
worksheet described below). The feedback simply noted the
different numbers that need to be compared for any general
student from the class and for a student who owns an instrument
(e.g., “There are 8 students who own an instrument and read
music and 4 students who own an instrument and do not read
music, so there are twice as many students who do know how to
read music in this set.”).

The second worksheet (“Probability baseline”) was very sim-
ilar to the first, except that it presented a new problem in
probability format:

10% of the students in a class know how to read music, and
90% do not.

45% of the students who know how to read music own a
musical instrument.

20% of the students who do not know how to read music own
a musical instrument.

The participants were asked to report the prior and posterior
odds that a student from this class knows how to read music in
the same four-step sequence as the first worksheet. No feedback
was provided for this worksheet, because answering the prob-
ability format questions involved the same math that we later
tested with the math-induction task.

After completing the first two worksheets, participants
received instruction based on the spatial solution method.
Instruction began with a feedback sheet that covered the
frequency-format problem from the first worksheet (“Freq. spa-
tial feedback”). The feedback sheet included the original prob-
lem text along with a bar display representing the problem
information. The instructor explained that the total bar lengths
represented all the students who could and could not read music
(top and bottom bars, respectively) and the filled parts of the
bars represented the students who owned an instrument. The
instructor reinforced this by pointing out that the end of the two
full bars and the two filled portions matched the corresponding
numbers in the problem text. The feedback sheet also had the
same questions as the first worksheet, but this time with the
answers filled in. The instructor explained how the answers
could be discovered by looking at the bar display; namely, that
the answers to questions 1 and 2 could be found by noting which
of the two full bars was longer and estimating how many times
the shorter bar could fit into the longer one and that the answers
to questions 3 and 4 could be found by following the same
procedure with just the filled portions of the bars. Participants
were not told how to derive the correct answers mathematically.

Instruction continued with a sheet that presented the same
problem as the frequency baseline and the frequency feedback
sheet, but this time in a probability format (“Prob. spatial feed-
back”). The instructor compared the two problems to show that
they contained the same information in different formats. The
sheet displayed a bar representation of the problem information,
and the instructor again explained what each component of
the display represented. The instructor also noted that the bar
display looked exactly the same as the one for the frequency
format problem other than a change in the x-axis. The answers
were again filled in, and the instructor again reviewed the pro-
cedure for finding the answers with the bar display. As before,
the instructor did not provide information on the mathematical
equations needed to find the correct answers.

The training culminated with a new probability-format
Bayesian inference problem that gave participants a chance to
implement the spatial solution method with guidance from the
instructor (“Probability test”). The problem text was at the top
of the page, and a blank bar display appeared just below it.
Participants were asked to draw bars that would represent the
information in the problem. After their attempt, the instructor
helped them correct any mistakes they made to create a display
that matched the problem, if necessary. The participant then
answered the same four questions from the previous worksheets
using the spatial display, with help from the instructor, if needed.
The instructor only provided guidance in applying the spatial
method to answer the questions. No instruction was provided
on how to find the answers with mathematical equations.

Next, participants were asked to complete the math induc-
tion worksheet (“Math induction”). Participants were shown
the same Bayesian problem from worksheet two, but this time
accompanied by a corresponding bar display. Participants were
first asked how to mathematically calculate the shaded regions
of both the displayed bars; that is, the joint probabilities.
Each question had a fill-in-the-blank format, with two blank
spaces for the numerical components of the equation, one
blank space for a mathematical operation (addition, subtraction,

https://osf.io/aq7w3/?view_only=ccb6dc5b367e419facc7965b3a0caaf5
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multiplication, or division), and one blank space for the result-
ing answer. A correct answer required entering the appropriate
marginal and conditional probabilities from the problem for
the numbers and multiplication for the math operation. We
will collectively call the first two items the “multiplication rule
questions,” and we scored this component as a success if the
participant entered the correct equation for both items. A third
question asked participants to write a mathematical equation to
find how many times longer one shaded region was than the
other; that is, the posterior odds. Here too, the question was
given as a fill-in-the-blank format requiring numerical values
and a mathematical operation. A correct response required
entering the two joint probabilities calculated in the first two
questions for the numerical components and entering a division
sign for the math operation. We will call the third item the
“posterior odds” question.

After the participant completed the math induction sheet,
the instructor collected it and then explained how to find the
correct answers (“Math solution”). The instructor also asked the
participant if they had ever seen problems like the ones from the
exercise and if so, where they had seen them (“Survey”).

3.2. Results

As in past research (e.g., Gigerenzer and Hoffrage 1995), we
found higher success rates for untrained Bayesian reasoning
problems presented in a nested-frequency format compared to
a conditional-probability format. Specifically, 45% of our par-
ticipants correctly specified both the prior and posterior odds
for the frequency-format problem compared to just 14% for
the probability-format problem. To make inferences about pop-
ulation success rates, we used Bayesian parameter estimation
with a prior distribution that assigned equal likelihood to all
probability values (a Beta distribution with shape parameters of
1 and 1). Credible intervals for the frequency (90% CI [0.30,
0.62]) and probability (90% CI [0.06, 0.30]) formats did not
overlap, supporting high confidence that the difference between
the two is not attributable to sampling variability.

In contrast to the low success rate for the initial probability-
format problem (14%), over half (55%) of participants suc-
ceeded on all of the math induction questions after learning the
spatial method. Broken down by question type, 73% of partic-
ipants succeeded for both of the multiplication-rule items and
59% succeeded for the posterior odds item. Bayesian estimates
of population success rates ruled out the possibility that only a
small proportion of students are able to succeed in this sort of
active learning exercise. Specifically, our results are consistent
with population success rates of 0.54 (90% CI [0.38, 0.70]) for
correctly answering all math induction questions, 0.71 (90%
CI [0.55, 0.85]) for correctly answering the multiplication rule
questions, and 0.59 (90% CI [0.42, 0.74]) for correctly answering
the posterior odds question.

Success rates on the math induction task were encouragingly
high. Nearly 3/4 of the students in Exercise 1 multiplied the
appropriate conditional and marginal probabilities to find joint
probabilities, and inferential tests support high confidence that
the population success rate is above 50% (0.98 of the posterior
distribution was above this value). Thus, educators can expect

that a majority of students will succeed in this aspect of the
math-induction task after training in the spatial method. Results
were not as strong when it came to discovering that one needs to
divide the joint probabilities to obtain the posterior odds, with
a slim majority of students succeeding in this task and weaker
evidence that the population success rate is above 50% (0.80 of
the posterior distribution was above this value). One of the goals
for Exercise 2 was to see if we could amend the procedures to
increase success rates for the posterior odds question.

4. Active-Learning Exercise 2

We reviewed the session recordings from Exercise 1 to see if
we could clarify the process of finding the posterior odds based
on spatial relationships. The resulting changes are described in
detail in Section 4.1.2, but for now we will highlight a few of the
biggest changes. First, the Exercise 2 training phase began with
a problem that the instructor (author JMV) solved by creating
the bar display and noting the spatial relationships needed to
answer the questions. The instructor carefully explained each
component of the display as he created it and emphasized the
process of estimating the posterior odds by imagining how many
copies of the shorter filled section could fit into the longer filled
section. We hoped that this would help participants thoroughly
understand each component of the display by seeing the step-
by-step process of creating the bars as opposed to getting a
feedback sheet with the full display already visible as in Exercise
1. Second, we asked participants to directly estimate the joint
probabilities from the spatial display during the spatial training,
as opposed to just having them estimate the prior and posterior
odds as in Exercise 1. We hoped that having rough values for
these components would help participants gain insight into how
they could mathematically produce the posterior odds that they
see in the spatial display.

A secondary goal for Exercise 2 was to estimate baseline
performance on the math induction task. We designed the math
induction task to test whether students can translate the spatial
method into equations, but doing so involved breaking the
problem into steps that are each linked to a component of the
spatial display. This “road map” might enhance performance on
its own. This would be important to know, because it would
mean that educators can implement a successful active-learning
procedure without the need to teach the spatial solution method
(although the spatial method could have other benefits besides
supporting successful active learning, of course). In Exercise 2,
we explored the impact of breaking the problem into steps by
asking participants the math-induction questions both before
and after they learned the spatial method.

Finally, we added two new assessments to the procedure
in Exercise 2. We included a problem that participants were
challenged to answer by drawing the spatial display without
guidance from the instructor. This problem allowed us to esti-
mate the proportion of students who successfully learned the
spatial solution method. Participants also completed a “purely
spatial” task in which they considered two planks cut down to
a percentage of their original length. Participants were asked to
specify how they could mathematically find (1) the length of the
remaining part of each plank and (2) how many times longer one
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Figure 5. Summary of the worksheet sequence in Exercise 2. See text for a description of each step.

remaining section was than the other. The goal was to measure
their ability to link spatial representations to math equations
outside the context of a probability question.

4.1. Methods

4.1.1. Participants
We obtained data from 29 undergraduate students in the UMass
psychology department subject pool who had not participated
in Exercise 1. All but three of these participants consented
to have the audio of their session recorded, and the result-
ing files are available on OSF (https://osf.io/aq7w3/?view_only=
ccb6dc5b367e419facc7965b3a0caaf5).

4.1.2. Procedure
After signing the consent form and indicating whether
or not they agreed to audio recording, participants com-
pleted a series of steps presented as worksheets, as sum-
marized in Figure 5. Scans of worksheets from all partici-
pants are available on OSF (https://osf.io/aq7w3/?view_only=
ccb6dc5b367e419facc7965b3a0caaf5).

The first worksheet (“Math ind. baseline,” where ind. stand
for induction) presented a probability-format Bayesian reason-
ing problem with the same “music reading” scenario used in
Exercise 1. Participants were asked to specify (1) the math
needed to find the proportion of students in the class who both
know how to read music and own an instrument, (2) the math
needed to find the proportion of students in the class who don’t
know how to read music but do own an instrument, (3) whether
a student in the class who owned an instrument was more likely
to know how to read music or not, and (4) the math needed
answer the question, “How many times more likely is the option

you selected on question 3 than the other option?” As in Exercise
1, there were large boxes to indicate where the participant should
fill in numbers and small boxes to indicate where they should
fill in math operations. After the participant recorded their
responses, the instructor collected the response sheet without
providing feedback of any sort. As before, we will refer to the first
two questions as the “multiplication rule” questions and score
this component as correct if the participant correctly multiplies
the appropriate conditional and marginal probabilities for both
questions, and we will refer to the last two questions as the
“posterior odds” question and score this component as correct
if the participant correctly selects the more likely hypothesis
and divides the joint probabilities that they calculated above to
answer “How many times more likely?”

The second worksheet (“Spatial baseline”) introduced a new
problem that described a carpenter cutting two planks of wood
to a proportion of their original length to complete a construc-
tion project. The goal was to measure the participant’s ability
to link spatial representations to math equations outside the
context of a probability question. The problem was presented
numerically to participants in a fashion analogous to the first
worksheet, with numbers provided for the original length of
each plank and the proportion of each plank that remained
after they were cut. Participants also saw a bar display that
represented the problem visually. The instructor read through
the problem and briefly described how the content of the prob-
lem was represented on the visualization, describing only the
basic components of the bar display such as the axis labels and
legend. The participants were given no instructions on how to
utilize the bar display to answer any of the worksheet’s ques-
tions but were encouraged to use the display as a tool to assist
in their answering. After the instructions from the instructor,
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participants answered four questions that were analogous to
those on the first worksheet. Once complete, the worksheet was
set aside, and participants were given no feedback on whether
their answers were correct.

Beginning with the third worksheet (“Bar method demo”),
the participants learned how to construct and use the bar dis-
play. The participants were shown a worksheet that presented
the same Bayesian reasoning problem from the first worksheet
and were told that the instructor would draw a bar display to rep-
resent the information visually. For their role in the drawing, the
participants were asked to follow along as the instructor created
the bar display by hand and were encouraged to ask questions
at any point during the instructions. The instructor identified
each component of the Bayesian reasoning problem as he drew
the bars and emphasized that all of the information given in
the problem was explicitly highlighted in the visualization itself.
Once the bar display was complete, the instructor demonstrated
how each of the four questions from the first worksheet could
be answered through estimations obtained from the visual. For
example, the joint probability could be estimated by examining
the length of the shaded region of each bar relative to the x-axis,
and the posterior odds could be estimated by assessing spatially
how many times longer one shaded region was compared to the
other. Participants received no instruction on how to solve the
problem with equations.

The fourth worksheet (“Bar method guided”) was again
instructional and followed a format similar to the previous sheet,
except that participants were tasked with verbally explaining
how estimations for each of the four questions could be achieved
using the bar display. For this worksheet, a new Bayesian reason-
ing problem was introduced and a bar display representing the
new problem was created by the instructor. The instructor then
read aloud each of the four questions and asked the participants
to verbally explain how to approximately answer each question
using the display. The participants were encouraged to fully
explain their answers and to physically point to parts of the bar
display that they were using to obtain each answer. The purpose
of such verbalization was to test the participant’s understanding
of the bar display and to provide an opportunity for additional
clarification if the participants were struggling to understand
components of the display. Again, no indication was given as
to how each answer could be obtained mathematically.

Following instruction, the participant completed a new
Bayesian reasoning problem in a two-worksheet sequence. First,
they worked the problem on their own using the spatial method
(“Bar method test”). This worksheet presented the problem text
and asked participants to draw a bar display representing the
problem. The instructor checked the display to ensure that it
matched the problem information (all participants drew the
display correctly without further guidance). After drawing the
display, participants were asked to report the joint probabilities
and posterior odds with the same four-question sequence as the
“Bar method demo” and “Bar method guided” worksheets. No
feedback was provided on their responses. When they finished,
they were given the math-induction worksheet with the same
problem text as the last worksheet (“Math ind. post-test I”). The
instructor explained to the participant that they were going to
work the same problem again, but this time they were going to
attempt to solve it with equations instead of the spatial method.

This post-training math induction sheet had the same questions
and response options as the baseline math induction sheet (but
not the same numbers in the problem). The instructor also gave
the participant a sheet displaying a computer-generated figure
of the correct bar display to use as a reference.

The final worksheet (“Math ind. post-test II”) provided a
second chance to answer the math induction questions and was
only administered to participants who responded incorrectly
on Math ind. post-test I. This worksheet was identical to the
previous one, except that the bar display was labeled to show
which aspect of the display mapped to each math induction
question. The participants were asked to double-check that their
answers corresponded appropriately to the bar display. Each
question was given a letter identification that corresponded to
the labels on the bar display. In this way, the participants were
prompted to remember how to estimate answers using the bar
display and encouraged to use those estimations to reevaluate
their mathematical answers.

We used two versions of the task, where Version B was
created by taking Version A and switching the problem used
before training on the “Math ind. baseline” and “Bar method
guided” worksheets with the problem used after training on the
“Bar method test” and “Math ind. post-test” worksheets. We
alternated versions across subjects, and ended up with 15 and
14 participants run with Versions A and B, respectively.

4.2. Results

Our primary interest was the math induction success rates
before and after training (from “Math ind. baseline” to “Math
ind. post-test I” on Figure 5). Generally, success rates were
pretty high even before training and increased after participants
learned the spatial task. Specifically, success rates for correctly
answering all components of the math induction sheet went
from 41% to 69%, success rates for correctly answering both of
the multiplication rule questions went from 59% to 76%, and
success rates for correctly answering the posterior odds question
went from 55% to 86%.

We used a multinomial model to estimate the proportion of
students in the overall population who will succeed (“S”) and
fail (“F”) on the math induction task before and after spatial
training, creating four mutually exclusive categories (F-F, F-S, S-
F, S-S). We used a Dirichlet distribution to define uncertainty in
the multinomial parameters for the proportion of participants
in each of the four categories, and we set all shape parameters
to 1 for the prior distribution. Thus, our posterior distributions
reflect only information from our sample. We combined the S-F
and S-S categories to estimate success rates before training and
the F-S and S-S categories to define success rates after training.

Figure 6 shows posterior distributions for the training effect
(post-training minus pre-training success rates) where success
is defined either by answering all of the math induction ques-
tions, by answering just the multiplication-rule questions, or
by answering just the posterior-odds question. In all cases, the
lower limit of the credible interval is above zero, indicating a
high probability (over 95%) of positive training effects at the
population level. Point estimates for the training effect indicated
a meaningful effect size, and suggested that learning the spa-
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Figure 6. Posterior distributions for the effect of spatial training; that is, the difference in success rates between pre- and post-training math induction tasks. The three
histograms show three different criteria for success: answering all of the math induction questions correctly, answering the two multiplication rule questions correctly, and
answering the posterior odds question correctly. The dashed vertical lines show 90% credible intervals.

tial technique increases student success rates by 24 percentage
points for the “complete success” measure, 15 percentage points
for the multiplication rule questions, and 27 percentage points
for the posterior odds question.

As described in the procedure, we gave participants who
erred on the math induction post-test a second chance with two
added advantages: (1) a spatial display that more clearly linked
elements of the display to the math induction problems, and
(2) instructions to make sure that their math-derived answers
match what they see on the spatial display (Math ind. post-test
II in Figure 5). We did not see evidence that this additional
prompting is a substantial help for the students who initially
failed the math induction exercise. In fact, there was only one
participant who recovered after an initial incorrect response
for the multiplication rule questions and only one (separate)
participant who recovered after an initial incorrect response for
the posterior odds question.

Exercise 2 included a problem that participants were asked to
solve using the spatial method without help from the instructor
(spatial test in Figure 5). To assess how well they learned the
spatial method, we scored whether they drew a bar display that
correctly represented the problem information, whether they
accurately estimated both joint probabilities (to within 0.05 of
the true values), and whether they accurately estimated the pos-
terior odds (to within 1 of the true value).2 Results showed that
participants were very successful in learning to use the spatial
method. Every participant drew the bars in a way that accurately
represented the problem information. We also observed a 100%
success rate for estimating the value of both joint probabilities
from the display. For the posterior odds, 93% of participants (all
but 2) made accurate estimates.

2We used each participant’s estimates of the joint probabilities to define
the correct posterior odds. We did this to accommodate variation in how
participants drew the spatial display, with the rationale that their own
responses carry the best information about what they are seeing on the
display they created.

The plank-task results showed that, before the spatial train-
ing, about half of the participants were able to map spatial
relationships to math equations. We observed that 51% of par-
ticipants answered all of the questions correctly, 62% were able
to calculate the length of the remaining portion of both planks,
and 62% were able to figure out that they needed to divide to
figure out how many times longer one remaining portion was
than the other.

Four participants who were scored as incorrect on the multi-
plication rule question subtracted the unfilled portion of each
bar from the total length of the bar to get the correct values
for the joint probabilities. Thus, the response was technically
correct, but we scored it as incorrect because the unfilled portion
of the bars was not given as a number in the problem, meaning
that they relied on the visualization, and not an equation, to
get part of their answer. It is possible that some or all of these
participants would have applied the multiplication rule if we had
clarified that they cannot use any numbers that they estimated
from the display, but instead could only use numbers reported
in the problem or calculated in a previous step.

The key finding from Exercise 2 is that our revised proce-
dures succeeded in increasing post-training success rates for
the posterior odds portion of the math induction task. Indeed,
Exercise 2 produced higher success rates for all aspects of the
task, and the results suggest that a strong majority of students
can succeed in actively discovering the mathematical principles
of Bayes’ theorem and related probability concepts. We also
saw a clear increase in success rates from before to after spatial
training on all aspects of the math induction task.

5. Discussion

We explored ways that a spatial technique for solving Bayesian
inference problems could be used to teach probability con-
cepts. We showed that elements of the spatial display have a
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one-to-one mapping to important equations underlying proba-
bilistic reasoning, and we suggested that educators could use the
parallel representations to promote active learning by challeng-
ing students to discover these equations after learning a spatial
method for approximating the desired quantities. To explore
the viability of this suggestion, we ran two tutoring exercises
to estimate the proportion of students who can succeed in the
active learning exercise.

One aspect of the math-induction task involved discovering
the multiplication rule for finding the joint probability that a
hypothesis is true and an observation is made. The participants
practiced approximating this quantity by creating one bar that
represented the marginal or prior probability of the hypothesis,
P(H), and filling in this bar proportional to the conditional
probability of the observation given the hypothesis, P(O|H),
and we tested their ability to translate this spatial method
into explicit equations. Success rates for correctly applying the
multiplication rule were over 70% in both exercises. Thus, we
have strong evidence that the majority of students are capable
of discovering this mathematical principle after learning an
analogous spatial method. Moreover, success rates were just
under 60% even before the visual training in the Exercise 2
math induction baseline, which is further encouragement for
an active learning approach to teaching this concept. Finally,
our results supported a strong inference that multiplication rule
performance increased after the spatial training even though it
started from a fairly high baseline, so teachers can expect that
using the spatial representation will help more of their students
succeed in actively discovering the multiplication rule.

The fairly high success rate that the we observed for base-
line multiplication rule performance contrasts with the low
untrained performance on Bayesian inference problems, which
is generally around 4% (McDowell and Jacobs 2017) and was
14% in our Exercise 1. This suggests that untrained students can
achieve much higher success rates when asked to apply isolated
components of Bayesian inference compared to when they are
asked to combine components without guidance on individual
steps.

Another aspect of the math-induction task involved find-
ing the posterior odds that a hypothesis is true given an
observation—that is, dividing the joint probability that the
hypothesis is true and the observation is made by the joint
probability that the hypothesis is false and the observation is
made. Students learned to approximate this value by comparing
the lengths of the filled portions of the two bars in the spatial
display, and then they were challenged to specify an equation
that corresponded to this spatial comparison. We observed that
59% of students succeeded in this active learning task in Exercise
1, and we designed Exercise 2 to try to improve success rates
by showing students the step-by-step process of creating the bar
display and by emphasizing the process of estimating posterior
odds. These changes appeared to be successful, as we observed
a success rate of 86% after spatial training in Exercise 2.

Overall, our results demonstrate that spatially-guided active-
learning exercises will be successful for many students. This is
significant for educators, because self-generated information is
remembered substantially better than passively received infor-
mation (Slamecka and Graf 1978) and students report preferring
active-learning exercises over standard lecturing (Freeman et al.

2014). Moreover, all students will learn an independent solution
method that the instructor can use to provide insight into the
structure of the equations as learning progresses. In Exercise
2, we tested participants’ ability to implement the spatial tech-
nique on their own after a brief instruction phase in which the
instructor demonstrated the technique for two other problems.
The vast majority of participants (93%) correctly applied the
technique to estimate both the joint probabilities and the poste-
rior odds for a Bayesian inference problem, demonstrating that
instruction with spatial representations has tangible benefits
even for students who do not succeed in translating them into
explicit equations.

Exercise 2 produced higher math induction success rates,
so we recommend that educators emulate the Exercise 2 pro-
cedure when designing active-learning exercises. Specifically,
we recommend that educators allow students to see the steps
involved in creating the spatial display with a clear description
of what each new element of the display represents. This could
be achieved by drawing the display on the board or with staged
slides showing a computer-generated display with a new compo-
nent appearing on each new slide. For practice problems, we also
recommend getting explicit confirmation from students about
what components of the display they are using and why. This
would ideally be an explicit part of answering the problem, for
example, “Circle the part of the bar display you used to estimate
the proportion of students in the class who both know how to
read music and own an instrument.”

5.1. Math-Induction Mechanisms

The current exercises were designed to test whether an active
learning approach is viable for educators, not to explore the
theoretical processes involved in our math-induction task. Our
results suggest that many students will succeed in active learning
supported by spatial representations, but future investigations
are needed to explore how the spatial training promotes success
in math induction. Some of the underlying processes might be
fairly prosaic, and might not rely on the spatial nature of our
solution method. In this section, we discuss two of these general
factors.

Linking the spatial display to explicit mathematics involves
breaking the Bayes’ theorem equation into steps that correspond
to identifiable elements of the display. Exercise 2 suggests that
this “road map” to finding a solution is beneficial in itself.
With the problem broken down into steps, 41% of participants
were able to specify the correct math for all steps even before
they learned the spatial method. This number is well above
the expected rate of solving probability-format Bayesian rea-
soning problems for untrained participants, which is typically
below 10% (McDowell and Jacobs 2017) and was 14% for
the probability-baseline problem in our Exercise 1. Although
our Exercise 2 baseline performance was impressively high for
untrained participants, training in the spatial method substan-
tially increased success rates, with 69% of participants able to
specify the correct math for all steps by the end of the session. So
the results strongly suggest that the spatial training is useful for
helping students gain insight into the mathematical principles
of Bayes’ theorem and related probability concepts. Also, the
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spatial display provides a way to show students why those steps
are part of finding a solution, helping them understand how
the step-by-step procedure relates to the larger goal of inferring
what is likely to be true based on probabilistic information.

Our active learning procedure also gives students a chance to
work through problems and get approximate answers without
having to learn equations. This opportunity to solve practice
problems could play a role in the observed success on the math-
induction task. Past results suggest that college students are
unlikely to figure out how to solve Bayesian reasoning problems
just from repeated practice, even when they complete dozens
of problems and receive feedback on the correct answer after
each problem (e.g., Starns et al. 2018). However, it is possible
that direct experience with example problems is more beneficial
for our math-induction task because it isolates individual steps
in the solution process. The role of general practice effects
is an interesting topic for future theoretical experiments. For
now, we note that attributing performance gains to practice
effects would not detract from the value of the spatial method
as an instructional tool. Indeed, one of the key benefits of
the method is that is gives students a quick, intuitive way to
perform approximate probabilistic reasoning before they are
confronted with equations, so it provides a meaningful way
for them to practice applying probability concepts. We doubt
that students would respond positively to being confronted with
multiple practice problems without knowing any method for
answering them. The spatial method gives students a way to
work practice problems without denying them the opportunity
to independently discover the necessary equations as an active
learning exercise. We are not aware of any other method that
gives students a way to solve probability problems without
teaching them any explicit equations, but if such methods are
developed it will be interesting to compare them to the spatial
method.

In summary, we acknowledge that factors like breaking the
solution procedure into meaningful steps and experiencing
practice problems are not uniquely tied to the spatial method,
but the method provides a way to harness these benefits while
also illustrating concepts in a format that some students might
find more intuitive. Our results demonstrate that the method
is a promising tool for educators, and this is true regardless of
which specific underlying mechanisms support performance on
the math-induction task.

5.2. Future Directions

5.2.1. Classroom Applications
The spatial method discussed here could be expanded in many
ways in future research and application. One important question
is how the spatial method compares to alternative teaching
approaches in the classroom, both in terms of students’ initial
learning experiences and the durability of their learning. We are
beginning to address this question with a multiple-year class-
room study. Another important question is whether students
who fail to discover the correct math after learning the spatial
technique could succeed with another active learning strategy.
An optimal curriculum will likely need to incorporate a number
of different ways to represent the same concept and explain

the logic of solution procedures. The current results show that
spatial methods are a useful element of this toolkit. Yet another
future goal is to explore how spatial representations can help
students understand more complex applications of Bayesian
inference, such as parameter estimation.

Our goal was to estimate the proportion of students who
are able to transfer a spatial solution method into explicit
equations when working independently, and as a result, we
also had students who received individual instruction on the
spatial method. Using individual instruction potentially limits
the external validity of the current results, as group instruction
is more common in classrooms. Although we acknowledge the
need for more exploration of our active learning approach in
a group setting, Starns et al. (2018) reported one example of
successful classroom-based application. When Starns et al. is
considered together with the current results, we have evidence
that our techniques can work in real classrooms as a group
assignment and evidence that a high proportion of students can
discover the equations independently. As such, we would expect
to find high rates of success with group instruction followed by
individual work on the math induction task, and we will explore
this in future studies. In addition to further classroom work,
another potential future direction is to develop a computerized
“virtual tutor” system that students complete independently as
a homework assignment, ideally one that adapts to the needs of
individual students by tracking their accuracy at each step of the
active-learning process.

An important goal for future research is exploring how the
spatial method interacts with student characteristics. Unlike
alternative visual displays, such as contingency tables and tree
diagrams, the bars represent information both numerically and
spatially. This dual representation could be especially beneficial
for students who struggle with math or have negative attitudes
about math, potentially helping a more diverse range of students
succeed in fields with heavy statistical requirements.

5.2.2. Frequency Versus Probability
Past research shows that untrained participants are more likely
to solve Bayesian inference problems in a nested-frequency
format than a probability format (Gigerenzer and Hoffrage 1995;
McDowell and Jacobs 2017). We replicated this pattern in Exer-
cise 1, with participants achieving solution rates of 45% and 14%
for the untrained frequency- and probability-format problems,
respectively. Our primary goal is helping students understand
probability and statistical reasoning, so we have focused on
whether participants can discover the math for probability-
format problems. Generally, statistics instructors will also want
their students to be able to work directly with probabilities,
of course. That said, linking the nested-frequency and proba-
bility formats might enhance the success of an active learning
approach by capitalizing on peoples’ keener intuition for the
nested-frequency format. Starns et al. (2018) showed how the
bar display could be used to translate between frequency and
probability formats by demonstrating to students that the spatial
relationships of the display components are exactly the same
for the two formats. Future studies can evaluate whether spatial
representations help students recognize the shared features of
frequency and probability formats.
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5.3. Conclusion

Probabilistic reasoning is a fundamental skill for many STEM
fields and the backbone of statistical inference. Given the well-
documented learning benefits of self-generation (Slamecka and
Graf 1978) and the educational benefits of promoting active
learning (Freeman et al. 2014), we have attempted to develop
techniques that allow students to independently discover the
equations associated with important probability concepts by
analogy to a spatial solution method. Our results suggest that
the majority of students can specify the mathematical steps
required to find a joint probability, calculate an odds value,
and apply Bayes’ theorem after learning a spatial method for
approximating the solution to probability problems.
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