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Abstract
Technologies that enable frequent, objective, and precise measurement of ataxia severity would benefit clinical trials by lowering
participation barriers and improving the ability to measure disease state and change. We hypothesized that analyzing character-
istics of sub-second movement profiles obtained during a reaching task would be useful for objectively quantifying motor
characteristics of ataxia. Participants with ataxia (N=88), participants with parkinsonism (N=44), and healthy controls (N=34)
performed a computer tablet version of the finger-to-nose test while wearing inertial sensors on their wrists. Data features
designed to capture signs of ataxia were extracted from participants’ decomposed wrist velocity time-series. A machine learning
regression model was trained to estimate overall ataxia severity, as measured by the Brief Ataxia Rating Scale (BARS).
Classification models were trained to distinguish between ataxia participants and controls and between ataxia and parkinsonism
phenotypes. Movement decomposition revealed expected and novel characteristics of the ataxia phenotype. The distance, speed,
duration, morphology, and temporal relationships of decomposed movements exhibited strong relationships with disease sever-
ity. The regression model estimated BARS with a root mean square error of 3.6 points, r2 = 0.69, and moderate-to-excellent
reliability. Classification models distinguished between ataxia participants and controls and ataxia and parkinsonism phenotypes
with areas under the receiver-operating curve of 0.96 and 0.89, respectively. Movement decomposition captures core features of
ataxia and may be useful for objective, precise, and frequent assessment of ataxia in home and clinic environments.

Keywords Movement decomposition . Ataxia . Brief Ataxia Rating Scale . Machine learning .Wearable electronic devices

Introduction

Cerebellar ataxia is a neurologic phenotype caused by a
heterogeneous set of underlying diseases that affect the

function of the cerebellum [1]. Hereditary cerebellar
ataxias (e.g., spinocerebellar ataxias, Friedreich’s ataxia,
and ataxia-telangiectasia) occur at a rate of approximate-
ly 6 cases per 100,000 individuals [2]. Hereditary
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ataxias are generally progressive conditions, resulting in
functional impairments, limited autonomy, and reduced
quality of life over time [3, 4].

Quantification of ataxia severity is important for tracking
disease progression and assessing the efficacy of potential
treatments [5]. Clinical severity is currently assessed using
clinician-performed rating scales [1], such as the Brief
Ataxia Rating Scale (BARS) [6] and the Scale for the
Assessment and Rating of Ataxia (SARA) [7]. Because ad-
ministering existing clinical scales requires in-person motor
examination by trained specialists, frequent assessment of se-
verity can be logistically difficult. Furthermore, access to
specialists—and thus assessment—is often limited in rural
areas, underserved communities, and in populations with re-
duced mobility [8, 9]. The precision and inter-rater reliability
of existing scales is also limited by their reliance on subjec-
tive, visual assessments that are influenced by each assessor’s
clinical experience. Technologies that enable frequent, re-
mote, and objective assessment of severity would, therefore,
benefit clinical trials by lowering participation barriers
and improving the ability to more sensitively and objec-
tively measure disease state and progression. Towards
this end, prior studies estimated ataxia severity using
data collected from various sensing modalities including
cameras [10], wearable sensors [11], instrumented
spoons [12], and computer mice [13].

Miranda et al. recently demonstrated that complex three-
dimensional (3D) hand movements can be viewed as a con-
catenation of short 1D submovements with zero initial and
terminal velocities—which are referred to as movement
elements [14]. The durations of these movement elements
range from a few milliseconds to a couple of seconds, with
an average of about 500 ms [15]. Moreover, movement ele-
ments’ velocities resemble consistent, bell-shaped curves in
neurologically healthy individuals resulting from smooth ac-
celeration and deceleration [14]. Because less smooth, correc-
tive, and segmented movements are core features of ataxia
[16], we hypothesized that movement elements extracted from
ataxicmovements should exhibit more varied velocity profiles
and temporal patterns reflecting increased and potentially dis-
ordered segmentation. Furthermore, the scoring criteria of
BARS and the International Cooperative Ataxia Rating
Scale (ICARS) [17] suggest that segmentation of movement
increases with disease severity on the finger-to-nose test
(FNT). Prior work has also demonstrated that information
extracted from the FNT is related to the presence of ataxia
and its severity [10, 18, 19].

To determine if movement elements extracted from
reaching movements encode ataxia severity, participants were
equipped with wrist-worn inertial measurement units (IMUs)
as they performed the FNT.Movement elements were extract-
ed from participants’ accelerometry data and summarized by a
set of features engineered to capture ataxia-related changes.

Machine learning models were trained using these features to
estimate overall ataxia severity and to distinguish between
ataxia and healthy controls and between ataxia and
parkinsonism.

Methods

Participant Selection

Eighty-eight participants with clinically diagnosed ataxias, 44
with clinically diagnosed parkinsonism, and 34 neurologically
healthy control participants were recruited from the
Massachusetts General Hospital and in collaboration with
the Ataxia-Telangiectasia Children’s Project (see Table 1 for
participant demographics). Ataxia diagnoses included a di-
verse set of underlying conditions. Participants with a clinical
diagnosis of possible or probable multiple system atrophy
were categorized as ataxia-dominant or parkinsonism-
dominant based on their clinical phenotypes. One individual
with a clinical diagnosis of progressive supranuclear palsy had
predominant cerebellar ataxia and was categorized under the
ataxia phenotype. Four participants were diagnosed with pre-
sumed autoimmune-related ataxia based in part on their re-
sponse to immunosuppressant therapy. Inclusion criteria were
that participants were 1) between 2 and 90 years old; 2) were
able to perform the instrumented FNT; and 3) had a clinical
diagnosis of ataxia or parkinsonism, or were neurologically
healthy. Fifteen individuals with ataxia, five with parkinson-
ism, and two controls participated in the experiment multiple
times during separate visits.

Data Collection

Each participant’s overall motor impairment severity was
assessed using BARS (range 0–30, in half-point incre-
ments) for the ataxia group, and the Unified Parkinson’s
Disease Rat ing Sca le (UPDRS) Par t I I I Motor
Examination [20] (range 0–108) for the parkinsonism
group. Higher scores indicate greater motor disease sever-
ity for both scales. BARS, which is based on the Modified
ICARS and correlated to both SARA and ICARS, was
used as the assessment tool for participants with ataxia
because of its brevity and because its scoring criteria for
the FNT emphasize segmentation of movement [21].
Participants were equipped with nine-axis IMUs (Opal,
APDM Wearable Technologies) on both wrists and seated
upright with their feet firmly on the floor in front of a
12.9 in. tablet device (iPad Pro, Apple Inc.) positioned
at approximately 90% arm's reach away in the midline
of the body (i.e., in the frontal plane) and at the partici-
pant’s eye level (Fig. 1a). The tablet displayed a circular
target with a 1.5-cm diameter that alternated between the
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left and right sides of the screen every 10 s. The position
of the tablet and size of the target were chosen to emulate
the physician-performed FNT [22], and the 10-s interval
was chosen to allow participants to perform multiple
reach and return sequences for each target position.

Participants performed a continuous, 40-s FNT task with
each hand (i.e., a total of 80 s). During each task, partic-
ipants repeatedly moved their finger between their nose
and the circular target as quickly and accurately as
possible.

Table 1 Participant demographics

Control Ataxia Parkinsonism

N 34 88 (total)
4 SCA-1, 2 SCA-2,
11 SCA-3, 7 SCA-6,
10 other SCA, 7 A-T, 3 FA,
7 MSA-C, 1 PSP-C, 3 HSP,
4 AIA, 1 BD, 1 HE, 2 EA,
2 ARCA-1, 1 ARCA-3,
1 CH, 3 DN, 2 SA,
1 FXTAS, 1 GHS,
1 LCHND, 1 SRA, 3 TA,
2 SAOA, 5 SAOAN,
2 ADCA

44 (total)
42 idiopathic PD,
1 MSA-P, 1 PSP

Age 21–86
(M ± SD 39.0 ± 18.2)

5–78
(M ± SD 54.4 ± 18.5)

45–85
(M ± SD 67.5 ± 8.2)

Sex 13 male,
21 female

47 male,
41 female

31 male,
13 female

Handedness 33 right,
1 left

78 right,
9 left,
1 ambidextrous

41 right,
3 left

Disease Severity
(total clinical score on BARS [ataxia] or UPDRS [parkinsonism])

0–24
(M ± SD 10.5 ± 5.4)

3–51
(M ± SD 16.3 ± 9.1)

Mmean; SD standard deviation;UPDRSUnified Parkinson’s Disease Rating Scale (Part III Motor Examination); BARS Brief Ataxia Rating Scale; SCA
spinocerebellar ataxia; A-T Ataxia-Telangiectasia; FA Friedreich’s Ataxia; MSA-C multiple system atrophy, cerebellar type; MSA-P multiple system
atrophy, parkinsonian type; PSP-C progressive supranuclear palsy, cerebellar-dominant; PSP progressive supranuclear palsy; HSP hereditary spastic
paraplegia; AIA autoimmune-related ataxia with undefined cause; BD Behcet’s Disease; HE Hashimoto’s Encephalopathy; EA episodic ataxia; ARCA
autosomal recessive cerebellar ataxia; CH cerebellar hypoplasia; DN Downbeat Nystagmus with mild ataxia; SA sensory ataxia; FXTAS Fragile X-
Associated Tremor/Ataxia Syndrome; GHS Gordon Holmes’ Syndrome; LCHND LCH-related neurodegeneration; SRA stroke-related ataxia; TA
transient ataxia, later resolved; SAOA sporadic adult-onset ataxia; SAOAN sporadic adult-onset ataxia with neuropathy; ADCA autosomal dominant
cerebellar ataxia with unidentified genetic cause; PD Parkinson’s Disease
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Fig. 1 a) An illustration of a participant performing the instrumented
finger-to-nose test. b) Five seconds of the anteroposterior velocity time-
series computed from wrist-worn inertial sensor data. The time-series of
three participants with different Brief Ataxia Rating Scale (BARS) scores
are shown. Movement elements are obtained by segmenting the time-
series at the velocity zero-crossings, which are denoted by dashed

vertical lines. Movement elements are also independently obtained from
both the mediolateral and rostrocaudal velocity time-series. c) The
movement element denoted by the solid gray vertical lines. d) The
movement element denoted by the solid gray lines after spatial and
temporal normalization. The shape is the same, but the velocity has
been divided by its mean and resampled
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Pre-processing of Inertial Data

Inertial data were sampled at 128 Hz. Gravity was removed
from acceleration time-series by subtracting the mean and a
sixth order low-pass Butterworth filter with a cutoff frequency
of 20 Hz was used to remove high frequency noise from non-
human sources [23]. Filtered acceleration time-series were
trapezoidally integrated to obtain velocity time-series.
Because the reaching target changed positions every 10 s, a
sixth order band-pass Butterworth filter with cutoff frequen-
cies of 0.1 Hz and 20 Hz was used to remove integration drift
and high frequency noise from velocity time-series [23].

To apply movement decomposition [14], velocity time-
series must be oriented with the body’s anatomical axes.
Because participants sat upright and repeatedly moved a fin-
ger between their nose and a tablet positioned directly in front
of them, the rostrocaudal axis was aligned with gravity and the
anteroposterior axis was assumed to be in the direction of
greatest variance of the velocity time-series identified using
Principal Component Analysis [24] (PCA). Each axis of the
body-oriented 3D velocity time-series was independently seg-
mented into movement elements at its zero-crossings (i.e.,
when the velocity is zero) (Fig. 1b) [15]. As in prior work,
movement elements smaller than 1 mm or shorter than 5 ms—
accounting for 3.0% of the combined total duration of all
movement elements—were regarded as potential sensor noise
and excluded from further analysis [15].

Feature Extraction

Fifty-three features hypothesized to be relevant to ataxia severity
were extracted from each participant’s movement elements.
Movement elements from both hands were pooled together for
feature calculations. It was hypothesized that less-impaired partic-
ipants would generate large, consistent movement elements corre-
sponding to relatively smooth reaching motions between the nose
and tablet. For example, prior work showed that healthy partici-
pants performing a 3D reaching movement towards a target (i.e.,
reaching for a can of soda) generated velocity profiles dominated
by a large, primary movement element in each of the three axes
[14]. In contrast, it was hypothesized that more severe participants
would perform increasingly segmented, oscillatory, and irregular
movements corresponding to smaller, more variable movement
elements. In particular, it was hypothesized that dysmetria would
induce the generation of many small movement elements with
alternating directions reflecting corrective movements.

To capture the size and speed of movement elements, their
time durations, distances, and mean speeds were computed.
Logarithms of distances and mean speeds were used to em-
phasize the differences between smaller movement elements
and because prior work suggested that the logarithms of the
two variables would be approximately linearly related [14].
Each of these attributes were aggregated for each participant

using the mean, standard deviation, minimum, maximum,
range, interquartile range, median, and tenth and ninetieth
percentiles. In neurologically healthy participants, the distance
(D) and mean speed (v ) of movement elements are related by
the two-thirds power law [14], v∝Dα where α = 2/3. A de-
crease in this scaling exponent (α) indicates that slower ve-
locities are generated to achieve a particular movement dis-
tance. Because it was expected that ataxia patients would gen-
erate slower movements [16], αwas computed as a feature by
fitting a least-squares linear regression between the logarithms
of the distances and logarithms of the mean speeds for each
participant and extracting the slope of the regression line.

Temporal relationships were captured by analyzing chang-
es in distance and direction across consecutive movement el-
ements. The probability density of transitions between con-
secutive movement elements was estimated using a normal-
ized 2D histogram of the signed distances (i.e., signed dis-
tances of the prior vs. subsequent movement elements). In
other words, each bin of the 2D histogram represented the
probability of two consecutive movement elements having a
particular distance and direction. To reduce the number of data
features required by our model, only histogram bins corre-
sponding to transitions between small movement elements
were included as data features because it was hypothesized
that transitions between small movements would be more
common in ataxic movements as a result of dysmetria (Fig.
3). The ratios of consecutive unsigned movement element
distances were computed to understand how movement ele-
ment distances changed across consecutive movements when
considering movements with both small and large distances.
The mean, standard deviation, minimum, maximum, range,
interquartile range, median, and tenth and ninetieth percentiles
of the ratios were extracted as data features.

To capture differences in the morphology of movement
elements’ velocity profiles—which relates to the smoothness
and pattern of acceleration and deceleration—movement ele-
ments were spatially normalized by dividing them by their
mean velocities and then temporally normalized by resam-
pling them to sixty samples (Fig. 1c and d), which was chosen
based on the median duration of the extracted movement ele-
ments [14, 15]. PCA was used to summarize the 60D normal-
ized movement elements in a Leave-One-Subject-Out man-
ner. Statistical aggregations (i.e., the mean, standard devia-
tion, minimum, maximum, range, interquartile range, median,
and tenth and ninetieth percentiles) of the first two principal
components representing each normalized movement element
were extracted as features.

Estimation of Clinical Scores

To estimate participants’ total BARS scores, a regression
model (Gaussian Process Regression [25] with a Radial
Basis Function kernel) was trained and evaluated using

Cerebellum



Leave-One-Subject-Out Cross Validation. Pediatric partici-
pants were excluded from the training data to reduce the pos-
sibility of the model learning trends corresponding to imma-
ture motor patterns. Features were scaled such that the training
set had a fixed range [26] and clinician-assessed scores were
normalized such that the training data had zero mean and unit
variance. A similar model was also trained to estimate partic-
ipants’ summed upper-limb BARS scores (range 0–8). Total
BARS was used as the primary label given that the total score
has increased granularity, may be more robust to error as it
integrates information from several domains, and to support
the goal of identifying arm movement properties that relate to
overall disease severity.

Estimation performance was evaluated using r2 and the root
mean square error (RMSE) of the model-estimated and clinically-
assessed scores. The Pearson correlation of the estimation errors to
participant ages was computed to determine if the model was
biased by age. Reliability was evaluated using participants who
received multiple assessments during several visits. Each visit was
separated by several months (283.4 ± 106.1 days; range 126–433
days). Pearson correlation and aWelch’s t-test were used to deter-
mine if changes in clinician-assessed and estimated BARSwere in
agreement for participants with multiple assessments. A single
rater, consistency, two-way mixed-effects model was used to cal-
culate the intraclass correlation (ICC(3, 1)) and 95% confidence
interval (CI) of the repeated model estimates.

To further understand the contribution of dominant and
nondominant hand data in estimating clinical severity and to
further assess model consistency, BARS scores were estimat-
ed based on data features calculated from each hand, separate-
ly. (i.e., the model training process was unaltered and addi-
tional hand-specific estimates were computed.) Pairwise cor-
relations were calculated between dominant-hand-only esti-
mates, nondominant-hand-only estimates, and the original es-
timates based on data from both hands.

Ataxia Classification

To evaluate the specificity of the extracted features to ataxia,
classification models (Gaussian Process Classifier [25] with a
Radial Basis Function kernel) were trained to distinguish be-
tween ataxia participants and healthy controls and between
individuals with ataxia and parkinsonism. The classification
models were trained and evaluated using the same pipeline as
the regression model and performance was evaluated using
the area under the receiver-operating curve (AUC) and its
95% CI. Because the populations were not age-matched,
AUCs for participants in each decade of life were computed
and Pearson correlation was used to determine if a relationship
between age and model error existed. Additional classification
models were also trained using only participants between 18
and 45 years old and using only participants at least 45 years

old to mitigate the possibility that the classifiers were leverag-
ing age-related differences in motor performance [27].

Analyzing Morphological Changes During Task
Performance

Based on the results of the analysis of movement element
morphologies, we investigated if a motor optimization process
was occurring during the performance of the FNT.
Optimization of normalized movement elements has been ob-
served in healthy participants as they become more proficient
at a task [28]. More specifically, the morphology of normal-
ized movement elements converges to the theoretical model
proposed by Hoff for 2D point-to-point movements [29]. To
determine if optimization occurred during the performance of
the FNT, three metrics were computed from the first 20 s and
the last 20 s of each participant’s 40-s FNT time-series for
each hand: 1) the standard deviation of the first principal com-
ponent representing each movement element’s morphology,
2) the standard deviation of the second principal component,
and 3) the coefficient of determination (r2) between each nor-
malized movement element and the theoretical model.
Decreases in the standard deviations of the principal compo-
nents indicated more consistent morphologies in the second
half of the test. Increases in r2 indicated morphologies with
greater similarities to the theoretical model in the second half
of the test. Significant changes were identified using a one
sample t-test with a theoretical mean of zero (i.e., no change).

Additional Statistical Analyses

A significance level of p < 0.05 was used for all tests. Welch’s
ANOVA was used to determine if significant differences
existed between the number of movement elements extracted
from each participant in the three populations. Pearson corre-
lation andWelch’s t-tests were used to measure the strength of
relationships between individual features and BARS,
and to determine if features were significantly different
for healthy and ataxia participants, respectively. Pearson
correlation was used to determine the strength of rela-
tionships between features and age.

To test for significant differences between feature values,
participants were divided into four groups based on their total
BARS severity. The healthy group consisted of controls
(N=34) and three ataxia groups were determined by equally
partitioning the range of BARS scores present in the collected
data (total BARS groups 0–8,N=30; 8.5–16,N=44; and 16.5–
24,N=15). One participant’s data were included in two groups
because their severity increased between subsequent visits.
Significant differences were determined using Welch’s
ANOVA and Games-Howell post-hoc tests.
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Results

The number of movement elements extracted from each
participant’s accelerometry data was 456.1 ± 83.9 for
the healthy population, 448.6 ± 96.0 for the ataxia pop-
ulation, and 411.0 ± 108.9 for the parkinsonism popu-
lation. The population means were not significantly dif-
ferent (F = 2.70; p = 0.07).

Relationships of Features to the Clinical Severity

Movements were segmented into shorter, smaller, and slower
segments in individuals with more severe ataxia (Fig. 2a).
Significant differences were identified between all groups
for mean speed and distance, and between the high severity
group and other groups for the duration. The probability den-
sities of movement element duration, mean speed, and dis-
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Fig. 2 a) Box plots illustrating the per-participant duration, mean speed,
and distance of movement elements for four groups of participants.
Circles denote outliers and dashed lines denote the mean of each group.
Participants were assigned to each group based on their Brief Ataxia
Rating Scale (BARS) scores. Horizontal whiskers and asterisks along
the top of each plot denote significantly different means, determined
using Welch’s ANOVA and Games-Howell post-hoc tests for p < 0.05.

All groups are significantly different for the mean speed and distance. b)
Probability density estimates for all movement elements in each of the
severity groups, calculated using histograms with uniformly spaced bins.
c) Identification of the power-law scaling exponent (α) between
movement element distance and mean speed for each severity group.
The white line is the least squares linear regression
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tance appear to change as a function of disease severity, grad-
ually diverge from the shape of the healthy distribution as
severity increases, and are distinctly different for the high
severity groups (Fig. 2b). In particular, the density of the trav-
eled distances in the region corresponding to the full FNT
reaching distance decreases with severity. The power law re-
lationship between the movement element distances and mean
speeds also showed significant differences between the four
severity groups, with lower mean scaling exponents (α) cor-
responding to higher severity (Fig. 2c). The decrease in α
indicates that more severe participants performed slower
movements for a given distance than less severe participants.

Features capturing temporal changes between consecutive
movement elements also demonstrated strong relationships
with disease severity (Fig. 3). A strong diagonal trend, corre-
sponding to the large alternating movements required by the
task itself, is present in the distribution for the healthy group
but fades in the increasingly severe groups, which instead
show a greater density of very small consecutive movements.

Movement elements demonstrated morphological trends
related to severity (Fig. 4). The first principal component cap-
tured both the sharpness of movement elements’ peaks, which
corresponds to the smoothness of acceleration, as well as the
possible occurrences of multiple peaks. The second principal
component captured the skewness of movement elements,
which represents asymmetric acceleration. For example, a
left-skewedmovement element indicates an initially jerkymo-
tion that gradually slows. Ataxia participants were more likely

to have a larger range of movement element morphologies
with respect to both principal components, indicating that
ataxic movements had more varied and atypical velocity pro-
files. Furthermore, healthy controls and the low severity group
(but not the more severe ataxia groups) demonstrated in-
creased consistency in movement element morphologies and
convergence towards the theoretically optimal model in the
latter 20 s of each FNT task (Fig. 5).

Many individual features had strong correlations with
BARS. In particular, the mean and median of movement ele-
ment distances, the variance of the ratios of consecutive move-
ment element distances, and the value of the power law scal-
ing exponent (α) had strong Pearson correlations with BARS
(i.e., |r| > 0.7; p < 0.01). These simple features together indi-
cate that more severe participants generated smaller, slower
movement elements with a higher chance of transitioning be-
tween movement elements of different sizes. The ten features
with the highest correlation to clinical severity (Table 2) also
exhibited significant differences between ataxia participants
and healthy controls (p < 0.01).

Estimation of Clinical Scores

The regression model was able to estimate BARS with an
RMSE of 3.6 points and r2 = 0.69 (Fig. 6a). No significant
correlation was observed between model error and participant
age (r = − 0.16; p = 0.05). Estimated BARS scores for healthy
controls, excluding two outliers (in their third and sixth
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decades of life), had a mean of 1.4 and a range of −2.5–4.8.
The two outliers had BARS estimates of 10.8 and 8.6; visual
reexamination of the recorded tasks revealed that one outlier
exhibited mild slowness and a mild intention tremor, and the
other outlier performed the FNT faster than recommended and
briefly switched hands in the middle of the task. The estimated
scores of four participants notably increased between subse-
quent visits. There was no significant difference (t = 0.03; p =
0.97) between the changes in the clinician-assessed and
model-estimated scores, indicating no bias in the model’s

repeated measurements with respect to the clinicians’ mea-
surements. The correlation between the changes in the
clinician-assessed and changes in the model-estimated scores
was 0.57, p = 0.01. For individuals with at least two assess-
ments, ICC(3, 1) was 0.85 (p < 0.01; 95% CI of 0.64–0.94),
which indicates moderate-to-excellent reliability [30] (Fig.
6b). BARS estimates obtained from features calculated using
only nondominant-hand data were very strongly correlated
with estimates obtained from features calculated using only
dominant-hand data (r = 0.96; p < 0.01). Furthermore,

0.0

0.5

≥1.0

-0.5

≤-1.0

R
el

at
iv

e 
D

en
si

ty

-8 0 8

-8

0

8

First Principal Component

51.5% of Variance

S
ec

o
n
d
 P

ri
n
ci

p
al

 C
o
m

p
o
n
en

t

2
5
.8

%
 o

f 
V

ar
ia

n
ce

4

0

0

4

0

4

0

4

0

4

0 1000 100 0 100 0 100 0 100

Percent Completion
N

o
rm

al
iz

ed
 S

p
ee

d

More Often

Ataxia

More Often

Controls

Fig. 4 Movement element shapes in ataxia and control participants. The
left plot shows the distribution of spatially and temporally normalized
movement elements based on their first two principal components,
obtained from a principal component analysis of all ataxia participants
and healthy controls. The color corresponds to the relative density of
movement elements of ataxia participants and healthy controls. The
relative density is calculated as the logarithm of the ratio of movement
element densities. A value of 1.0 indicates that movement elements from

ataxia participants are ten times more likely to occur and a value of -1.0
indicates that movement elements from healthy controls are ten times
more likely to occur. The black boxes in the left plot correspond to the
grid of plots on the right. Each plot on the right shows the mean (black
line) and standard deviation (shading) of normalized movement elements
within the corresponding black box. The color of the shading represents
the mean value of the bins within the corresponding box

* * * ** *

-0.6

0.0

0.6

-0.6

0.0

0.6

-0.3

0.0

0.3

C
h
an

g
e 

in
 S

D
 o

f 
1
st

 P
C

C
h
an

g
e 

in
 S

D
 o

f 
2
n
d
 P

C

C
h
an

g
e 

in
 r2

 w
it

h

 H
o
ff

 M
o
d
el

Healthy (HC) Low Severity (LS) Mid Severity (MS) High Severity (HS)

0 ≤ BARS ≤ 8 8 < BARS ≤ 16 16 < BARS ≤ 24

HC LS MS HS HC LS MS HS HC LS MS HS

Fig. 5 Box plots illustrating changes in the morphology of movement
elements between the first and second halves of the finger-to-nose test for
four groups of participants. Circles denote outliers and dashed lines
denote the mean of each group. Participants were assigned to each
group based on their Brief Ataxia Rating Scale (BARS) scores. A
decrease in standard deviation (SD) of each principal component (PC)

represents more consistent movement element morphology in the second
half of the test. An increase in r2 with the Hoff model indicates more-
optimized movement elements in the second half of the test. Asterisks
along the top of each plot denote a significant change between the first
and second halves of the test for the group, determined using a one sample
t-test for p < 0.05

Cerebellum



estimates based on data from both hands (i.e., Fig. 6a) were
very strongly correlated with both nondominant-hand-only
estimates (r = 0.99; p < 0.01) and dominant-hand-only esti-
mates (r = 0.99; p < 0.01).

The proposed model also estimated the summed upper-
limb subscores of BARS with an RMSE of 0.9 points and
r2 = 0.65. This similar performance was expected given the
strong correlation between total BARS and the upper-limb
subscores (r = 0.90, p < 0.01).

Ataxia Classification

The AUC of the classification model for distinguishing be-
tween ataxia participants and healthy controls was 0.96
(95% CI of 0.94–0.99). No significant correlation was

observed between age and per-decade AUC (range 0.93–
1.00; r = 0.26, p = 0.62). The AUC of the control classifier
was 0.93 (95% CI of 0.84–1.00) when only including partic-
ipants between 18 and 45 years old (N = 42) and when only
including participants at least 45 years old (N = 92) was 0.94
(95% CI of 0.90–0.99). The AUC of the classification model
for distinguishing the ataxia and parkinsonism phenotypes
was 0.89 (95% CI of 0.85–0.94). No significant corre-
lation was observed between age and per-decade AUC
(range 0.85–0.95; r = 0.44, p = 0.56). The AUC of the
phenotype classifier was 0.90 (95% CI of 0.85–0.95)
when only ataxia participants that were at least 45 years
old were included (N = 131). The AUCs of the age-
specific models suggest that performance was not de-
pendent on age-related trends, although the ages within

Table 2 The ten data features with the strongest Pearson correlation coefficients (r) with respect to the clinician-assessed Brief Ataxia Rating Scale
scores. All correlations have p < 0.01

r Feature description

-0.73 Mean of movement element distances (in the log scale).

0.72 Interquartile range of the (log) ratios of consecutive movement element distances. Higher values correspond to less consistency in the distances
traveled during consecutive submovements.

-0.72 The power-law scaling exponent (α) between movement element distances and mean speeds.

-0.71 Median of movement element (log) distances.

-0.69 Median of movement element (log) mean speeds.

-0.69 Mean of movement element (log) mean speeds.

0.65 Density of small consecutive movement elements with different sizes and the same direction (towards the tablet). Higher values likely correspond
to small, more segmented movements during the reaching behavior.

-0.64 Ninetieth percentile of movement element (log) mean speeds.

0.64 Density of small consecutive movement elements with the same size and direction (towards the tablet). Higher values likely correspond to small,
more segmented movements during the reaching behavior.

0.63 Standard deviation of the (log) ratios of consecutive movement element distances. (i.e., Higher values correspond to less consistency in the
distances traveled during consecutive submovements
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each population were not controlled. These results sup-
port that the extracted features can distinguish between
ataxia and controls and between ataxia and parkinson-
ism with high accuracy.

Discussion

Decomposing arm movements into discrete, typically sub-
second movement elements is a novel and useful approach
for representing and quantifying the ataxia phenotype.
Characteristics of movement elements including their dis-
tance, speed, duration, morphology, and temporal relation-
ships exhibited strong relationships with disease severity and
were significantly different between ataxia participants and
healthy controls. The performance of the models for
distinguishing a diverse set of ataxia diagnoses from controls
and parkinsonism indicate that movement elements capture
characteristics relevant and specific to the ataxia phenotype.

Ataxia Representation

Existing clinical scales involve semi-quantitative rating of
clinical signs, such as movement segmentation [6] and inten-
tion tremor [7], to evaluate disease severity. Prior approaches
using inertial data analyzed the position trajectory of the hand
during the FNT [18]; analyzed the acceleration, velocity, and
angle (including the frequency domains) of the FNT,
dysdiadochokinesia test, and heel-shin test [11]; and analyzed
the stability, timing, accuracy, and rhythmicity of tests corre-
sponding to multiple motor domains [31]. The movement
element-based approach demonstrated herein provides a com-
plementary and natural lens through which the ataxia pheno-
type can be examined. Movement trajectory cohesiveness and
segmentation is captured by the speed, duration, and distance
of individual movement elements, which change as a function
of disease severity (Fig. 2). Small corrective movements and
dysmetria are captured by the temporal patterns of consecutive
movement elements, i.e., with increasing disease severity, par-
ticipants were more likely to transition between short distance
movement elements. This finding is corroborated by similar
works demonstrating the presence of directional changes and
small corrective movements during performance of the FNT
and other related reaching tasks [10, 13, 32].

Additionally, the power-law relationship between move-
ment element distance and mean speed was strongly altered
in individuals with ataxia (Fig. 2c). It is possible that de-
creased speed for a given distance is compensation by the
motor system for reduced movement accuracy [28]. The dis-
tribution of normalized movement element morphologies also
indicates that ataxia participants generate a broader range of
velocity profiles (Fig. 4). Movement element profiles in ataxia
were more sharply peaked, left or right-skewed, and had

multiple peaks suggesting less smooth and less regular move-
ment components during arm reaching. Investigation of these
varied profiles may provide additional insight into how cere-
bellar disorders influence motor performance [14]. The results
also suggest that healthy controls optimized aspects of their
performance throughout the FNT and that this optimization
process was impaired in individuals with more severe ataxia.
Further study is needed to determine if and how these ob-
served phenomena are related to impairments in motor learn-
ing [33]. One additional advantage of the movement element
representation is that movement elements can be extracted
from any goal-directed 3D movement, including natural arm
behaviors, but also leg movements and gait [28]. Thus, move-
ment element-based analysis may be able to capture dysmetria
and segmented movements during walking or the heel-to-shin
test and may capture ataxia from passive wearable sensor re-
cordings during natural behavior.

Severity Estimation

Technologies for precise and objective estimation of disease
severity are needed to reduce the cost, duration, and sample
size of clinical trials in ataxia. Measurements need to be inter-
pretable and meaningful, reliable, correlated with gold stan-
dard assessments, and sensitive to disease change. The pro-
posed regression model for estimating disease severity was
based on a small number of interpretable and intuitive move-
ment element features, and demonstrated strong agreement
with the clinical ataxia rating scale. Furthermore, the data set
used in this study is relatively large with respect to prior stud-
ies and includes a diverse range of diagnoses, which suggests
that the presented results well-represent the phenotype and
will generalize to other ataxia populations. The regression
model demonstrated moderate-to-excellent reliability despite
the elapsed time between subsequent measurements, and in-
creased its estimation of the severity for four participants on
the second assessment (Fig. 6b). This finding is promising
and, while the change observed in certain participants may
stem from noise or other factors, it may indicate that the move-
ment element representation could be sensitive to disease pro-
gression in some individuals. Longitudinal study is needed to
further investigate this possibility and compare the respon-
siveness of movement element features with other measures.
Future work combining movement element-based severity es-
timation with low-burden assessments of other motor do-
mains, such as speech and eye movements [6, 31], may enable
more accurate, robust, and sensitive estimations. Similarly,
given the highly accurate ataxia versus control classification
performance, the approach used herein may be useful as a
component of an ataxia screening tool, although evaluation
in individuals with early-stage ataxia is needed.

Given the ubiquity and low cost of wearable sensors and
computer tablets, we envision that the presented computer
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tablet variant of the FNT can be deployed in patients’ home
settings to assess ataxia severity as part of observational and
interventional research studies. Home-based assessment tools,
such as this one, could reduce burden and extend accessibility
of clinical research to rural and underserved communities.
Furthermore, this assessment could allow for more frequent
sampling of behavior, enabling reduced variability and in-
creased precision of severity estimates.

Limitations

Many of the presented data features will likely vary as a func-
tion of age/developmental stage and arm length (e.g., someone
with a shorter arm will produce movement elements with
smaller distances). Additional investigation of how the pre-
sented features vary with respect to these factors could further
improve model performance and allow for an understanding
of how movement elements differentially evolve with normal
and abnormal motor development. Though this study ana-
lyzed the motion of the wrist to leverage the acceptability
and accessibility of wrist-worn sensors, analyses of finger-
tip motion may yield additional information. Although con-
trols were screened for neurologic impairments, it is possible
that subtle motor signs could have negatively impacted model
estimates, as seen in one outlier described in the “Results”
section. Though our results indicate that the extracted features
are robust to age-related motor differences, comparison with
an age-matched data set would further validate this finding.
Further study is needed to separate the contributions of motion
decomposition, intention tremor, and truncal ataxia on ob-
servedmovement elements derived from the wrist sensor data.
Additional longitudinal data is also necessary to determine if
the motor optimization effects observed in this study diminish
with repeat performances of the FNT.
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