
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Computer Science Department Faculty
Publication Series Computer Science

2021

Correlation Clustering in Data Streams Correlation Clustering in Data Streams

Kook Jin Ahn

Graham Cormode

Sudipto Guha

Andrew McGregor

Anthony Wirth

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages

Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-021-00816-9

1 3

Correlation Clustering in Data Streams

Kook Jin Ahn1 · Graham Cormode2 · Sudipto Guha1 · Andrew McGregor3 ·
Anthony Wirth4

Received: 9 November 2018 / Accepted: 19 February 2021
© The Author(s) 2021

Abstract
Clustering is a fundamental tool for analyzing large data sets. A rich body of work
has been devoted to designing data-stream algorithms for the relevant optimization
problems such as k-center, k-median, and k-means. Such algorithms need to be both
time and and space efficient. In this paper, we address the problem of correlation
clustering in the dynamic data stream model. The stream consists of updates to the
edge weights of a graph on n nodes and the goal is to find a node-partition such that
the end-points of negative-weight edges are typically in different clusters whereas
the end-points of positive-weight edges are typically in the same cluster. We present
polynomial-time, O(n ⋅ polylog n)-space approximation algorithms for natural prob-
lems that arise. We first develop data structures based on linear sketches that allow
the “quality” of a given node-partition to be measured. We then combine these data
structures with convex programming and sampling techniques to solve the relevant
approximation problem. Unfortunately, the standard LP and SDP formulations are
not obviously solvable in O(n ⋅ polylog n)-space. Our work presents space-efficient
algorithms for the convex programming required, as well as approaches to reduce
the adaptivity of the sampling.

Keywords Correlation clustering · Data streams · Linear sketches · Linear
programming

1 Introduction

Correlation Clustering is a widely studied model of clustering within graphs where
edges are marked as positive or negative. The aim is to choose clusters so that most
edges within clusters are positive, while most edges between clusters are negative.
The correlation clustering problem was initially proposed for complete unweighted
graphs. The motivation for this formulation is an intuitive one: there are many

 * Graham Cormode
 G.Cormode@warwick.ac.uk

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0698-0922
http://orcid.org/0000-0003-3746-6704
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00816-9&domain=pdf

 Algorithmica

1 3

scenarios where some measure of affinity between entities can be quantified (say, in
social networks), and we seek to group entities into clusters of similar objects.

The correlation clustering problem was first formulated as an optimization prob-
lem by Bansal, Blum and Chawla [12]. The input is a complete weighted graph G
on n nodes, where each pair of nodes uv has weight wuv ∈ ℝ . A positive-weight
edge indicates that u and v should be in the same cluster, whereas a negative-weight
edge indicates that u and v should be in different clusters. Given a node-partition
C = {C1,C2,…} , we say edge uv agrees with C , denoted by uv ∼ C , if the relevant
soft constraint is observed. The goal is to find the partition C that maximizes

or, equivalently, that minimizes ��������(G, C) ∶=
∑

uv �wuv� − �����(G, C) . Solving
this problem exactly is known to be NP-hard, but a constant factor approximation
algorithm for the minimization problem was one of the first results on this problem
[6].

Since it was first studied, a large body of work [6, 12, 17, 21, 30, 48]
has been devoted to approximating ���−�����(G) = maxC �����(G, C) and
���−��������(G) = minC ��������(G, C) , along with variants ���−��������k(G)
and ���−�����k(G) , where we consider partitions with at most k clusters. In this
paper, we focus on multiplicative approximation results. If all weights are ±1 , there
is a polynomial time approximation scheme (PTAS) for ���−����� [12, 30] and a
2.06-approximation for ���−�������� [19]. When there is an upper bound, k, on the
number of clusters in C , and all weights are ±1 , Guruswami [30] introduced a PTAS
for both problems. Even k = 2 is interesting, with an efficient local-search approxi-
mation introduced by Coleman, Saunderson and Wirth [21].

If the weights are arbitrary, there is a 0.7666-approximation for ���−�����
[17, 48] and an O(log n)-approximation for ���−�������� [17, 23]. These methods
use convex programming: as originally described, this cannot be implemented in
O(n polylog n) space, even when the input graph is sparse. This aspect is well known
in practice, and Elsner and Schudy [25], Bagon and Galun [11], and Bonchi, Garcia
Sorino and Liberty [14] discuss the difficulty of scaling the convex programming
approach.

Applications. When first formulated, correlation clustering was a theoretical and
rigorous attempt to answer the co-reference problem in natural language process-
ing [12]. However, that followed a similar formulation, called cluster editing, whose
genesis lay in clustering gene expression patterns [45]. The clustering aggregation
and consensus clustering problems build on correlation clustering [29]. Meanwhile,
the inconsistent soft constraints in correlation clustering model problems in dupli-
cate detection [24, 37], record linkage [33] as well as crowdsourcing approaches to
entity resolution [49, 50].

Clustering and Graph Analysis in Data Streams. Given the importance of cluster-
ing as a basic tool for analyzing massive data sets, it is unsurprising that consider-
able effort has gone into designing clustering algorithms in the relevant computa-
tional models. In particular, in the data-stream model we are permitted a limited

�����(G, C) ∶=
∑
uv∼C

|wuv|

1 3

Algorithmica

number of passes (ideally just one) over the data while using only limited memory.
This model abstracts the challenges in traditional applications of stream processing
such as network monitoring, and also leads to I/O-efficient external-memory algo-
rithms. Naturally, in either context, an algorithm should also be fast, both in terms of
the time to process each stream element and in returning the final answer.

Classical clustering problems including k-median [18, 36], k-means [7], and
k-center [16, 34, 42] have all been studied in the data stream model, as surveyed
by Silva et al.[46]. Non-adaptive sampling algorithms for correlation clustering can
be implemented in the data stream model, as applied by Ailon and Karnin [8], to
construct additive approximations. Chierichetti, Dalvi and Kumar [20] presented the
first multiplicative approximation data stream algorithm: a polynomial-time (3 + �)

-approximation for ���−�������� on ±1-weighted graphs using O(�−1 log2 n) passes
and semi-streaming space — that is, a streaming algorithm using space as a function
of n that is �(n polylog n) [26]. Pan et al.[44] and Bonchi et al.[14] discuss faster
non-streaming implementations of related ideas but the work of Chierichetti, Dalvi
and Kumar [20] remained the state of the art data stream algorithm until our work.
Using space roughly proportional to the number of nodes can be shown to be neces-
sary for solving many natural graph problems including, it will turn out, correlation
clustering. For a recent survey of semi-streaming algorithms and graph sketching
see [43].

1.1 Computational Model

In the basic graph stream model, the input is a sequence of edges and their
weights. For semi-streaming algorithms, the available space to process the stream
and perform any necessary post-processing is O(n polylog n) bits, focusing on the
dependence on n, rather than on parameters such as � . Our results also extend to
the dynamic graph stream model where the stream consists of both insertions and
deletions of edges; the weight of an edge is specified when the edge is inserted and
deleted (if it is subsequently deleted). For simplicity, we assume that all weights
are integral. We will consider three types of weighted graphs: (a) unit weights,
where all wuv ∈ {−1, 1} ; (b) bounded weights, where all weights are in the range
[−w∗,−1] ∪ [1,w∗] for some constant w∗ ≥ 1 ; and (c) arbitrary weights, where all
weights are in the range [−w∗,w∗] and here w∗ = poly (n) . We denote the sets of
positive-weight and negative-weight edges by E+ and E− , respectively, and define
G+ = (V ,E+) and G− = (V ,E−) . Within this streaming model of computation, we
are concerned with how much space is required, and how many passes through the
input data are needed.

We note that many of our algorithms, such as those based on sparsification [3],
can also be implemented in MapReduce.

1.2 Techniques and Results

In Sect. 2, we present three basic data structures for the ����� and �������� query
problems where a partition C is specified at the end of the stream, and the goal

 Algorithmica

1 3

is to return an approximation of �����(G, C) or ��������(G, C) . They are based on
linear sketches and incorporate ideas from work on constructing graph sparsi-
fiers via linear sketches. These data structures can be constructed in the semi-
streaming model and can be queried in Õ(n) time. As the algorithms rely on rela-
tively simple matrix-vector operations, they can be implemented fairly easily in
MapReduce.

In Sects. 3 and 4, we introduce several new ideas for solving the LP and SDP for
���−�������� and ���−����� . In each case, the convex formulation must allow each
candidate solution to be represented, verified, and updated in small space. But the
key point made here is that the formulation plays an outsized role in terms of space
efficiency, both from the perspective of the state required to compute and the opera-
tional perspective of efficiently updating that state. In the future, we expect the space
efficiency of solving convex optimization to be increasingly important.

We discuss multipass for algorithms for ���−�������� in Sect. 5. Our results are
based on adapting existing algorithms that, if implemented in the data stream model,
may appear to take O(n) passes. However, with a more careful analysis we show that
O(log log n) passes are sufficient. Finally, we present space lower bounds in Sect. 6.
These are proved using reductions from communication complexity and establish
that many of our algorithms are space-optimal.

In more detail, our results on the different formulations of correlation clustering
(whether the weights are unit, bounded or arbitrary; whether to maximize agree-
ments, or minimize disagreements; and whether the number of clusters is fixed) are
as follows.

Max-Agree. For ���−����� , we provide the following single-pass streaming algo-
rithms, each needing Õ(npoly(k, 𝜀−1)) space: (i) a polynomial-time (1 − �)-approxi-
mation for bounded weights (Theorem 4), and (ii) an algorithm with approximation
factor 0.7666(1 − �) for arbitrary weights in Õ(n𝜀−10) time (Theorem 11).

Min-Disagree We show that any constant pass algorithm that can test whether
���−��������(G) = 0 in a single pass, for unit weights, must store �(n) bits (The-
orem 15). For arbitrary weights, the lower bound increases to �(n + |E−|) (Theo-
rem 16) and to �(n2) in the case the graph of negative edges may be dense (Theo-
rem 14). We provide a single-pass algorithm that uses s = Õ(n𝜀−2 + |E−|) space and
Õ(s2) time and provides an O(log |E−|) approximation (Theorem 9). Since Demaine
et al.[23] and Charikar et al.[17] provided approximation-preserving reductions
from the “minimum multicut” problem to ���−�������� with arbitrary weights, it
is expected to be difficult to approximate the latter to better than a log |E−| factor in
polynomial time. For unit weights when ���−��������(G) ≤ t , we provide a single-
pass polynomial time algorithm that uses Õ(n + 𝜀−2t) space (Theorem 2). We pro-
vide a Õ(n𝜀−2)-space PTAS for ���−��������2 for bounded weights (Theorem 6).

We also consider multiple-pass streaming algorithms. For unit weights, we
present an algorithm with O(log log n) passes that mimics the algorithm of Ailon
et al.[6], and provides a 3-approximation in expectation (Theorem 12), improving
on the result of Chierichetti et al.[20]. For ���−��������k(G) , on unit-weight graphs
with k ≥ 3 , we give a min(k − 1,O(log log n))-pass polynomial-time algorithm using
Õ(npoly(k, 𝜀−1)) space (Theorem 13). This result is based on emulating an algorithm
by Giotis and Guruswami [30] in the data stream model.

1 3

Algorithmica

We summarize all our results in Table 1 in the order that they appear subsequently.
The table shows the various problems (using the notation introduced in Sect. 1), based
on how many passes are used, and whether edge weights are unit, bounded by a con-
stant, or arbitrary (see Sect. 1.1).

2 Basic Data Structures and Applications

We introduce three basic data structures that can be constructed with a single-pass over
the input stream that defines the weighted graph G. Given a query partition C , these
data structures return estimates of �����(G, C) or ��������(G, C) . Solving the correla-
tion clustering optimization problem with these structures directly would require expo-
nential time or �(n polylog n) space. Instead, we will need to exploit them carefully to
design more efficient solutions. Meanwhile, in this section, we present a short applica-
tion of each data structure that illustrates their utility.

2.1 First Data Structure: Bilinear Sketch

Consider a graph G with unit weights (wij ∈ {−1, 1}) and a clustering C . Our first data
structure allows us to solve the query problem, which is, given G and C , to report (an
approximation of) ��������(G, C) . Define the matrices MG and MC where
MG

ij
= max(0,wij) and

Note that if wij = 1 , then

MC

ij
=

{
0 if i and j are separated in C

1 if i and j are not separated in C .

Table 1 Summary of approximation results in this paper

Section/Theorem Problem Weights Passes Space Bound Approximation Factor

§2.1 Thm 1 �������� Unit 1 Õ(𝜀−2) 1 + �

§2.1 Thm 2 ���−�������� Unit 1 Õ(n + 𝜀−2t) 1 + � if
���−��������(G) ≤ t

§2.2 Thm 4 ���−����� Bounded 1 O(n poly (k, �−1)) 1 − �

§2.3 Thm 5 ��������2 Arbitrary 1 Õ(n𝜀−2) 1 ± �

§2.3 Thm 6 ���−��������2 Bounded 1 Õ(n poly (𝜀−1)) 1 + �

§3.4 Thm 9 ���−�������� Arbitrary 1 Õ(n𝜀−2 + |E−|) 3(1 + �) log |E−|
§4 Thm 11 ���−����� Arbitrary 1 Õ(n𝜀−2) 0.7666(1 − �)

§5.1 Thm 12 ���−�������� Unit log log n Õ(n) 3
§5.2 Thm 13 ���−��������k Unit log log n Õ(n poly (k, 𝜀−1)) 1 + �

§6 Thm 15 ���−�������� Unit p �(n∕p) Any
§6 Thm 16 ���−�������� Arbitrary 1 �(n + |E−|) Any
§6 Thm 17 ��������3 Arbitrary 1 �(n2) Any

 Algorithmica

1 3

whereas, if wij = −1 then

Hence, the (squared) matrix distance, induced by the Frobenius norm, gives exactly

To efficiently estimate ‖MG −MC‖2
F
 when C is not known a priori, we can repurpose

the bilinear sketch approach of Indyk and McGregor [38]. The basic sketch is as
follows:

1. Let � ∈ {−1, 1}n and � ∈ {−1, 1}n be independent random vectors whose entries
are 4-wise independent; in a single pass over the input, compute

 Specifically, we maintain a counter that is initialized to 0 and for each ij ∈ E+
in the stream we add �i�j to the counter and if ij ∈ E+ is deleted we subtract �i�j
from the counter; the final value of the counter equals Y. Note that � and � can
be determined by a hash function that can be stored in Õ(1) space such that each
entry can be constructed in Õ(1) time.

2. G i v e n q u e r y p a r t i t i o n C = {C1,C2,…} , r e t u r n
X =

�
Y −

∑
�

�∑
i∈C

�

�i

��∑
i∈C

�

�i

��2

.

To analyze the algorithm we will need the following lemma due to Indyk and
McGregor [38] and Braverman et al.[15].

Lemma 1 Given n2 values {fij ∈ ℝ}i,j∈[n] , we have for each fij ,
�

�
(
∑

i,j �i�jfij)
2
�
=
∑

i,j f
2
ij
 and �

�
(
∑

i,j �i�jfij)
2
�
≤ 9(

∑
i,j f

2
ij
) 2.

The following theorem will be proved by considering an algorithm that com-
putes multiple independent copies of the above sketch and combines the estimates
from each.

Theorem 1 For unit weights, there exists an O(�−2 log(�−1) log(n))-space algo-
rithm for the �������� query problem which succeeds, i.e., returns a 1 + �-approxi-
mate solution, with probability 1 − � . Each positive edge is processed in Õ(𝜀−2) time,
while the query time is Õ(𝜀−2n).

(MG
ij
−MC

ij
)2 = (1 −MC

ij
)2 = I[i and j are separated in C]

(MG
ij
−MC

ij
)2 = (MC

ij
)2 = I[i and j are not separated in C] .

��������(G, C) = ‖MG −MC‖2
F
=
�
ij

(MG
ij
−MC

ij
)2 .

Y =
∑
ij∈E+

�i�j.

1 3

Algorithmica

Proof We first observe that, given Y, the time to compute X is Õ(n) . This follows
because for a cluster C

�
∈ C , on n

�
 nodes, we can compute

∑
i∈C

�

�i and
∑

i∈C
�

�i in
Õ(n

�
) time. Hence the total query time is Õ(

∑
�

n
�
) = Õ(n) as claimed.

We next argue that repeating the above scheme a small number of times in paral-
lel yields a good estimate of ��������(G, C) . To do this, note that

We then apply Lemma 1 to fij = MG
ij
−MC

ij
 and deduce that

Hence, running O(�−2 log �−1) parallel repetitions of the scheme and averaging the
results appropriately yields a (1 ± �)-approximation for ��������(G, C) with probabil-
ity at least 1 − � . Following a fairly standard approach, we partition the estimates
into O(log �−1) groups, each of size O(�−2) (see [22, Section 1.4.1] for example). We
can ensure that with probability at least 2/3, the mean of each group is within a 1 ± �
factor by an application of the Chebyshev bound; we then argue using the Chernoff
bound that the median of the resulting group estimates is a 1 ± � approximation with
probability at least 1 − � . ◻

Remark We note that by setting � = 1∕nn in the above theorem, it follows that we
may estimate ��������(G, C) for all partitions C using Õ(𝜀−2n) space. Hence, given
exponential time, we can also (1 + �)-approximate ��� − ��������(G) . While
this is near-optimal in terms of space, in this paper we focus on polynomial-time
algorithms.

Application to Cluster Repair. Consider the Cluster Repair problem [32], in
which, for some constant t, we are promised ���−��������(G) ≤ t and want to find
the clustering argmin C��������(G, C).

We first argue that, given a spanning forest F of (V ,E+) we can limit our attention
to checking a polynomial number of possible clusterings. The spanning forest F can
be constructed in the dynamic graph stream model using an algorithm with space
Õ(n) [4]. Let CF be the clustering corresponding to the connected components of E+ .
Let F1,F2,… ,Fp be the forests that can be generated by adding t1 and then removing
t2 edges from F where t1 + t2 ≤ t . Let CFi

 be the node-partition corresponding to the
connected components of Fi.

Lemma 2 The optimal partition of G is CFi
 for some 1 ≤ i ≤ p . Furthermore,

p = O(n2t).

Proof Let E+
∗
 be the set of edges in the optimal clustering that are between nodes

in the same cluster and let E+
∗
= (E+ ∪ A) ⧵ D , i.e., A is the set of positive edges

that need to be added and D is the set of edges that need to be deleted to transform
E+ into a collection of node-disjoint clusters. Since ���−��������(G) ≤ t , we know

X =

(∑
ij∈E+

�i�j −
∑
�

(∑
i∈C

�

�i

)(∑
i∈C

�

�i

))2

=

(∑
ij

�i�j(M
G
ij
−MC

ij
)

)2

.

�[X] = ��������(G, C) and � [X] ≤ 9(��������(G, C))2 .

 Algorithmica

1 3

|A| + |D| ≤ t . It is possible to transform F into a spanning forest F′ of E+ ∪ A by
adding at most |A| edges. It is then possible to generate a spanning forest of F′′ with
the same connected components as E+

∗
= (E+ ∪ A) ⧵ D by deleting at most |D| edges

from F′ . Hence, one of the forests Fi considered has the same connected components
at E+

∗
.

To bound p, we proceed as follows. There are less than n2t1 different forests that
can result from adding at most t1 edges to F. For each, there are at most nt2 forests
that can be generated by deleting at most t2 edges from the, at most n − 1 , edges
in F′ . Hence, p <

∑
t1,t2∶0≤t1+t2≤t

n2t1+t2 < t2n2t . ◻

The procedure is then to take advantage of this bounded number of partitions
by computing each CFi

 in turn, and estimating ��������(G, CFi
) . We report the CFi

that minimizes the (estimated) repair cost. Consequently, setting � = 1∕(p poly (n))
in Theorem 1 yields the following theorem.

Theorem 2 For a unit-weight graph G with ���−��������(G) ≤ t where t = O(1) ,
there exists a polynomial-time data-stream algorithm using Õ(n + 𝜀−2t) space that
with high probability 1 + � approximates ���−��������(G).

2.2 Second Data Structure: Sparsification

The next data structure is based on graph sparsification and works for arbitrar-
ily weighted graphs. A sparsification of graph G is a weighted graph H such that
the weight of every cut in H is within a 1 + � factor of the weight of the corre-
sponding cut in G. A celebrated result of Benczúr and Karger [13] shows that it is
always possible to ensure the the number of edges in H is Õ(n𝜀−2) . A subsequent
result shows that this can be constructed in the dynamic graph stream model.

Theorem 3 ([5, 31]) There is a single-pass algorithm that returns a sparsification
using space Õ(n𝜀−2) and time Õ(m).

The next lemma establishes that a graph sparsifier can be used to approximate
����� and �������� of a clustering.

Lemma 3 Let H+ and H− be sparsifications of G+ = (V ,E+) and G− = (V ,E−) such
that all cuts are preserved within factor (1 ± �∕6) , and let H = H+ ∪ H− . For every
clustering C,

and

Furthermore, ���−�����(G) = (1 ± �)���−�����(H).

�����(G, C) = (1 ± �∕2)�����(H, C) ± �w(E+)∕2

��������(G, C) = (1 ± �∕2)��������(H, C) ± �w(E−)∕2 .

1 3

Algorithmica

Proof The proofs for ����� and �������� are symmetric, so we restrict our attention
to ����� . Let �� = �∕6 . The weight of edges in E− that are cut is estimated within a
1 + �� factor in the sparsifier. For an arbitrary cluster C ∈ C , and letting w�(⋅) repre-
sent the weight in the sparsifier,

where the third line follows because, for each u ∈ C , the weights of cuts
({u},V ⧵ {u}) and (C,V ⧵ C) are approximately preserved. The final line simply
combines and rewrites the two error terms, since

 Summing over all clusters C ∈ C , the total additive error is

(assuming � ≤ 1), as required.
The last part of the lemma follows because w(E+) ≤ ��� − �����(G) , as can be

seen by considering the trivial all-in-one-cluster partition. ◻

Application to ���−����� with Bounded Weights. In Sect. 3, based on the spar-
sification construction, we develop a poly (n)-time streaming algorithm that returns
a 0.7666-approximation for ���−����� when G has arbitrary weights. However, in
the case of unit weights, a RAM-model PTAS for ���−����� is known [12, 30].
It would be unfortunate if, by approximating the unit-weight graph by a weighted
sparsification, we lost the ability to return a 1 ± � approximation in polynomial time.

We resolve this by emulating an algorithm by Giotis and Guruswami [30] for
���−�����k using a single pass over the stream1. Their algorithm is as follows:

1. Let {Vi}i∈[m] be an arbitrary node-partition, where m = ⌈4∕�⌉ and
⌊n∕m⌋ ≤ �Vi� ≤ ⌈n∕m⌉.

2. For each j ∈ [m] , let Sj be a random sample of r = poly (1∕�, k, log 1∕�) nodes in
V ⧵ Vj.

3. For all possible k-partitions of each of S1,… , Sm :

w(uv ∈ E+ ∶ u, v ∈ C) = w(uv ∈ E+ ∶ u ∈ C, v ∈ V) − w(uv ∈ E+ ∶ u ∈ C, v ∉ C)

=
∑
u∈C

w(uv ∈ E+ ∶ v ∈ V) −
∑
u∈C

w(uv ∈ E+ ∶ v ∉ C)

= (1 ± ��)
∑
u∈C

w�(uv ∈ E+ ∶ v ∈ V)

− (1 ± ��)
∑
u∈C

w�(uv ∈ E+ ∶ v ∉ C)

= w�(uv ∈ E+ ∶ u, v ∈ C) ± 2��w�(uv ∈ E+ ∶ u ∈ C, v ∈ V) ,

��
∑
u∈C

w�(uv ∈ E+ ∶ v ∉ C) ≤��
∑
u∈C

w�(uv ∈ E+ ∶ v ∈ V)

=��w�(uv ∈ E+ ∶ u ∈ C, v ∈ V).

2��w�(E+) ≤ 2��(1 + ��)w(E+) ≤ �w(E+)∕2 ,

1 Note ���−�����
k
(G) ≥ (1 − �)���−�����(G) for k = O(1∕�) [12].

 Algorithmica

1 3

• For each j, let {Sj
i
}i∈k be the partition of Sj.

• Compute and record the cost of the clustering in which each v ∈ Vj is
assigned to the ith cluster defined by the (fixed) Sj

i
 as

4. For all the clusterings generated, return the clustering C that maximizes �����(G, C)
.

Giotis and Guruswami [30] prove that the above algorithm achieves a 1 + � approxi-
mation factor with high probability if all weights are {−1,+1} . We explain in Sec-
tion A that their analysis actually extends to the case of bounded weights. The more
important observation is that we can simulate this algorithm in conjunction with a
graph sparsifier. Specifically, the sets V1,… ,Vm and S1,… , Sm can be determined
before the stream is observed. To emulate step 3, we just need to collect the rnm
edges incident on each Si during the stream. If we simultaneously construct a sparsi-
fier during the stream we can evaluate all of the possible clusterings that arise. With
r and m as set in the algorithm above, the space needed is rmn = O(npoly(k, �)) .
Focusing on n, rather than k or � , and recalling that a semi-streaming algorithm is
one that uses O(npolylogn) space, this leads to the following theorem.

Theorem 4 For bounded-weight inputs, there exists a polynomial-time semi-
streaming algorithm that, within Õ(n poly (k, 1∕𝜀)) space, with high probability,
(1 − �)-approximates ���−�����(G).

2.3 Third Data Structure: Node‑Based Sketch

In this section, we develop a data structure that supports queries to ��������(G, C) for
arbitrarily weighted graphs when C is restricted to be a 2-partition. For each node i,
define the vector, ai ∈ ℝ

(n
2
) , indexed over the

(
n

2

)
 edges, where the only non-zero

entries are:

Lemma 4 For a two-partition C = {C1,C2} ,
��������(G, C) = ‖∑

�∈C1
a� −

∑
�∈C2

a�‖1.

Proof The result follows immediately from consideration of the different possible
values for the {i, j} th coordinate of the vector

∑
�∈C1

a� −
∑

�∈C2
a� . The sum can be

expanded as

i = argmax
i

⎛
⎜⎜⎝

�
s∈S

j

i
∶ sv∈E+

wsv +
�

s∉S
j

i
∶ sv∈E−

�wsv�
⎞
⎟⎟⎠
.

ai
ij
=

⎧⎪⎨⎪⎩

wij∕2 if ij ∈ E−

wij∕2 if ij ∈ E+, i < j

−wij∕2 if ij ∈ E+, i > j

1 3

Algorithmica

Hence
����
�∑

�∈C1
a� −

∑
�∈C2

a�
�
ij

���� = �wij� if and only if the edge is a disagreement.

 ◻

We apply the �1-sketching result of Kane, Nelson and Woodruff [40] to com-
pute a random linear sketch of each ai.

Theorem 5 For arbitrary weights, and for query partitions that contain two clus-
ters there exists an O(�−2n log �−1 log n)-space algorithm which provides a 1 ± �
approximation to a ��������2 query with probability at least 1 − � . The query time is
O(�−2n log �−1 log n).

Unfortunately, for queries C where |C| > 2 , �(n2) space is necessary, as shown
in Sect. 6.

Application to ���−��������2(G) with Bounded Weights. We apply the
above node-based sketch in conjunction with another algorithm by Giotis and
Guruswami [30], this time for ��� − ��������2 . Their algorithm for general k is as
follows:

1. Sample r = poly (1∕�, k) ⋅ log n nodes S and for every possible k-partition {Si}i∈[k]
of S:
(a) Consider the clustering where v ∈ V ⧵ S is assigned to the ith cluster where

2. For all the clusterings generated, return the clustering C that minimizes
��������(G, C).

As with the max-agreement case, Giotis and Gurusawmi [30] prove that the
above algorithm achieves a 1 + � approximation factor with high probability if all
weights are {−1,+1} . We explain in Section A that their analysis actually extends
to the case of bounded weights. Again note we can easily emulate this algorithm
for k = 2 in the data stream model in conjunction with the third data structure.
The sampling of S and its incident edges can be performed using one pass and
O(nr log n) space. We then find the best of these possible partitions in post-pro-
cessing using the above node-based sketches. Focusing on n, rather than k or � ,
the space cost is Õ(n) , and hence the algorithm is semi-streaming.

������

��
�∈C1

a� −
�
�∈C2

a�

�

ij

������
=

⎧⎪⎪⎨⎪⎪⎩

���wij∕2 − wij∕2
��� if ij ∈ E− and i, j in different clusters

���wij∕2 + wij∕2
��� if ij ∈ E− and i, j in the same cluster

���wij∕2 + wij∕2
��� if ij ∈ E+ and i, j in different clusters

���wij∕2 − wij∕2
��� if ij ∈ E+ and i, j in the same cluster

.

i = argmax
j

⎛⎜⎜⎝
�

s∈Sj∶sv∈E
+

wsv +
�

s∉Sj∶sv∈E
−

�wsv�
⎞⎟⎟⎠

 Algorithmica

1 3

Theorem 6 For bounded-weight inputs, there exists a polynomial-time semi-
streaming algorithm that, within space Õ(n poly (1∕𝜀)) , with high probability (1 + �)

-approximates ���−��������2(G).

3 Convex Programming in Small Space: ���−��������

In this section, we present a linear programming-based algorithm for ���−�������� .
At a high level, progress arises from new ideas and modifications needed to imple-
ment convex programs in small space. While the time required to solve convex pro-
grams has always been an issue, a relatively recent consideration is the restriction
to small space [2]. In this presentation, we pursue the Multiplicative Weight Update
technique and its derivatives. This method has a rich history across many different
communities [9], and has been extended to semi-definite programs [10]. In this sec-
tion, we focus on linear programs in the context of ���−�������� ; we postpone the
discussion of SDPs to Sect. 4.

In all multiplicative weight approaches, the optimization problem is first reduced
to a decision variant, involving a guess, � , of the objective value; we show later how
to instantiate this guess. The LP system is

where � ∈ ℝ
N×M
+

 , �, � ∈ ℝ
M
+

 , and � ∈ ℝ
N
+

 . To solve the MWM-LP approximately,
the multiplicative-weight update algorithm proceeds iteratively. In each iteration,
given the current solution, � , the procedure maintains a set of multipliers (one for
each constraint) and computes a new candidate solution �′ which (approximately)
satisfies the linear combination of the inequalities, as defined in Theorem 7.

Theorem 7 ([9, Theorem 3.3]) Suppose that, � ≤
1

2
 and in each iteration t, given a

vector of non-negative multipliers �(t) , a procedure (termed Oracle) provides a can-
didate ��(t) satisfying three admissibility conditions (where �,� are parameters that
describe the Oracle’s guarantees),

 (i) �T��(t) ≥ �;
 (ii) �(t)T���(t) − �(t)T� ≤ �

∑
i �i(t) ; and

 (iii) −� ≤ −� ≤ �i�
�(t) − �i ≤ � , for all 1 ≤ i ≤ n.

We set �(t + 1)i = (1 + �(�i�
�(t) − �i)∕�)�(t)i . Assuming we start with �(0) = � ,

after T = O(���−2 lnM) iterations the average vector, � =
∑

t �
�(t)∕T , satisfies

�i� − �i ≤ 4� , for all i.
The computation of the new candidate depends on the specific LP being

solved. The parameter � is called the width, and controls the speed of conver-
gence. The parameter � is bounded by � , but a better bound on � allows a better
convergence estimate. A small-width Oracle is typically a key component of an
efficient solution, for example, to minimize running times, number of rounds, and

MWM-LP:

{
�T� ≥ �

s.t. �� ≤ �, � ≥ � ,

1 3

Algorithmica

so forth. However, the width parameter is inherently tied to the specific formula-
tion chosen. Consider the standard LP relaxation for ���−�������� , where vari-
able xij indicates edge ij being cut:

The triangle constraints state that if we cut one side of a triangle, we must also cut
at least one of the other two sides. The size of the formulation is in �(n3) , where n is
the size of the vertex set, irrespective of the number of nonzero entries in E+ ∪ E− .
In what follows, we will make use of sparsifications of the edge sets in order to
reduce the size of problems. However, note that for this LP formulation, since the
size is always �(n3) , an edge sparsification would not in any way change the size
of the above linear program. To achieve Õ(n) space, we need new formulations, and
new algorithms to solve them.

The first hurdle is the storage requirement. We cannot store all the edges/vari-
ables which can be �(n2) . This is avoided by using a sparsifier and invoking (the
last part of) Lemma 3. Let H+ be the sparsification of E+ with m� = |H+| . For
edge sq ∈ H+ let wh

sq
 denote its weight after sparsification. For each pair ij ∈ E−

and some set of edges E′ , let Pij(E
�) denote the set of all paths between i and j

involving edges only in the set E′ . Consider the following LP for ���−�������� ,
similar to that of Wirth [51], but in this sparsified setting:

The intuition of an integral (0/1) solution is that zij = 1 for all edges ij ∈ E− that are
not cut, and xsq = 1 for all sq ∈ H+ that are cut. Therefore, the relevant variable in
the objective function is 1 whenever the assignment to an edge disagrees with the
input.

By Lemma 3, the objective value of LP1 is at most (1 + �) times the optimum
value of ���−�������� . However, LP1 now has exponential size, and it is unclear
how we can maintain the multipliers and update them in small space. To over-
come this major hurdle, we follow the approach below.

3.1 A Dual Primal Approach

Consider a primal minimization problem, for example, ���−�������� , in the
canonical form:

min
∑
ij∈E+

wijxij +
∑
ij∈E−

|wij|(1 − xij)

xij + xj� ≥ xi� for all i, j,�

xij ≥ 0 for all i, j

.

(LP1)

min
∑
ij∈E−

|wij|zij +
∑

sq∈H+

wh
sq
xsq

∀p ∈ Pij(H
+), ij ∈ E− zij +

∑
sq∈p

xsq ≥ 1

∀ij ∈ E−, sq ∈ H+ zij, xsq ≥ 0

 Algorithmica

1 3

The dual of the above problem for a guess, � of the optimum solution (to the Primal)
becomes

which is the same as the decision version of MWM-LP as described earlier. We
apply Theorem 7 to the Dual LP, however we still want a solution to the Primal LP.
Note that despite approximately solving the Dual LP, we do not have a Primal solu-
tion. Even if we had some optimal solution to the Dual LP, we might still require a
lot of space or time to find a Primal solution, though we could at least rely on com-
plementary slackness conditions. Unfortunately, similar general conditions do not
exist for approximately optimum (or feasible) solutions. To circumvent this issue:

(a) We apply the multiplicative-weight framework to the Dual LP and try to find an
approximately feasible solution � such that �T� ≥ (1 − O(�))� and �� ≤ �, � ≥ 0

.
(b) The Oracle is modified to provide a � , subject to conditions (i)–(iii) of Theo-

rem 7, or an � that, for some f ≥ 1 , satisfies

 Intuitively, the Oracle is asked to either make progress towards finding a fea-
sible dual solution or provide an f-approximate primal solution in a single step.

(c) If the Oracle returns an � then we know that �T� > (�T�)∕f is not satisfiable. We
can then consider smaller values of � , say � ← �∕(1 + �) . We eventually find a
sufficiently small � that the Dual LP is (approximately feasible) and we have a �
satisfying

 Note that computations for larger � continue to remain valid for smaller �.
This idea, of applying the multiplicative-weight update method to a formulation
with exponentially many variables (the Dual), and modifying the Oracle to provide a
solution to the Primal (that has exponentially many constraints) in a single step, has
also benefited solving MaxiMuM Matching in small space [3]. However in Ahn and
Guha [3], the constraint matrix was unchanging across iterations (the objective func-
tion value did vary) – here we will have the constraint matrix vary across iterations
(along with the value of the objective function). Clearly, such a result will not apply
for arbitary constraint matrices and the correct choice of a formulation is key.

One key insight is that the dual, in this case (and as a parallel with matching) has
exponentially many variables, but fewer constraints. Such a constraint matrix is eas-
ier to satisfy approximately in a few iterations because there are many more degrees
of freedom. This reduces the adaptive nature of the solution, and therefore we can

Primal LP:

{
min �T�

s.t. �T� ≥ �, � ≥ � .

Dual LP:

{
�T� ≥ �

s.t. �� ≤ �, � ≥ � ,

�T� ≤ f ⋅ �, �T� ≥ �, � ≥ 0 .

�T� ≤ f ⋅ (1 + �)�, �T� ≥ �, � ≥ 0 .

1 3

Algorithmica

make a lot of progress in satisfying many of the primal constraints in parallel. Other
examples of this same phenomenon are the numerous dynamic connectivity/sparsi-
fication results due to Guha et al.[35], where the algorithm repeatedly finds edges in
cuts (dual of connectivity) to demonstrate connectivity. In that example, the O(log n)
seemingly adaptive iterations collapse into a single iteration.

Parts of the three steps, that is, (a)–(c) outlined above, have been used to speed
up running times of SDP-based approximation algorithms [10]. In such cases, there
was no increase to the number of constraints nor consideration of non-standard for-
mulations. It is often thought, and as explicitly discussed by Arora and Kale [10],
that primal-dual approximation algorithms use a different set of techniques from the
primal-dual approach of multiplicative-weight update methods. By switching the
dual and the primal, in this paper, we align both sets of techniques and use them
interchangeably.

The remainder of Sect. 3 is organized as follows. We first provide a generic Ora-
cle construction algorithm for MWM-LP, in Sect. 3.2. As a first example, we then
apply this algorithm on the multicut problem in Sect. 3.3—the multicut problem is
inherently related to ���−�������� for arbitrary weights [17, 23]. We then show how
to combine all the ideas to solve ���−�������� in Sect. 3.4.

3.2 From Rounding Algorithms to Oracles

Recall the formulation MWM-LP, and Theorem 7. Algorithm 1 takes an f-approx-
imation for the Primal LP and produces an Oracle for MWM-LP. This is a generic
transformation that satisfies conditions (i) and (ii) of Theorem 7 for any problem
whose dual matches MWM-LP. As a consequence of the transformation the analysis
need only focus on condition (iii) as discussed in the statement of Theorem 7. The
main steps correspond to (1) producing a (possibly) infeasible primal solution; (2)
attempting to round that (possibly) infeasible primal solution; (3) deciding the suc-
cess/failure of the rounding step and identifying a set of violated constraints in case
of failure; and (4) the indices of the violated constraints supply the coordinates of an
admissible dual candidate � (as defined by Theorem 7). Each one of these steps has
associated costs that depend on the problem formulation in terms of the number of
variables, constraints (dual variables) and the choice of the rounding algorithm. We
revisit these costs in the specific context of correlation shortly.

 Algorithmica

1 3

The following lemma shows how to satisfy the first two conditions of Theorem 7;
the width parameter has to be bounded separately for a particular problem.

Lemma 5 If cj > 0 for each Primal constraint, and
∑

i u(t)i > 0 , then Algorithm 1
returns a candidate � that satisfies conditions (i) and (ii) of Theorem 7.

Proof By construction, �T� = � , addressing condition (i). So it remains to prove that
�(t)T�� − �(t)T� ≤ 0 . Since �(t) is a scaled version of �,

The inequality in the second line follows from yj only being positive if the corre-
sponding Primal LP constraint is violated. Finally, by construction,

∑
j yjcj = � and ∑

i bixi = � ; since we also assumed that
∑

i u(t)i > 0 , the lemma follows. ◻

3.3 Streaming Multicut Problem

The MiniMuM Multicut problem is defined as follows. Given a weighted undirected
graph and � pairs of vertices (si, ti) , for i = 1,… , � , the goal is to remove the lowest
weight subset of edges such that every i, si is disconnected from ti.

In the streaming context, suppose that the weights of the edges are in the
range [1, W] and the edges are ordered in an arbitrary order defining a dynamic
data stream (with both insertions and deletions). We present a O(log �)

1∑
i u(t)i

�
�(t)T�� − �(t)T�

�
=

1∑
i xi

�
i

xi(�i� − bi)

=
1∑
i xi

��
i

xi�i� −
�
i

xibi

�

=
1∑
i xi

��
j

yj(�
T
j
�) −

�
i

xibi

�

≤
1∑
i xi

��
j

yjcj −
�
i

xibi

�
= 0

1 3

Algorithmica

-approximation algorithm for the multicut problem that uses Õ(n𝜀−2 logW + 𝜅)
space and Õ(n2𝜀−7 log2 W) time excluding the time to construct a sparsifier. The
Õ(n2) term dominates the time required for sparsifier construction. The relevant
papers have more details regarding streaming sparsifiers [35, 41]. The algorithm is
defined in terms of a parameter, � , which will eventually be set to O(�) .

MC1 Sparsify the graph defined by the dynamic data stream, preserving all cuts,
and thus the optimum multicut, within a 1 ± � factor. Let E′ be the edges in
the sparsification and |E�| = m� , where m� = O(n�−2 logW) , from the results
of Ahn et al.[5]. Let (wjq) refer to weights after the sparsification.

MC2 Given an edge set E′′ ⊆ E′ , let P�(i,E��) be the set of all si–ti paths in the
edge set E′′ . The LP that captures Multicut is best viewed as relaxation of
a 0/1 assignment. Variable xjq is an indicator of whether edge (j, q) is in the
multicut. If we interpret xjq as an assignment of lengths, then for all i ∈ [�] ,
all p ∈ P�(i,E�) have length at least 1. The relaxation is therefore:

MC3 Compute an initial upper bound �0 ∈ [(1 + 4�)�∗, (1 + 4�)n2�∗] (see
Lemma 6).

MC4 Following the dual-primal approach in Algorithm 1, as � decreases (note the
initial �0 being high, we cannot hope to even approximately satisfy the dual),
we consider the (slightly modified) dual

 More specifically, we consider the following variation: given � , let E�(�) be the set
of edges of weight at least ��∕m� , and we seek:

MC5 Run the Oracle provided in Algorithm 2.
MC6 If an � is received, set � ← �∕(1 + �) as in (c) in Sect. 3.1. This step

occurs at least once (Lemma 7). Note that reducing � corresponds to
adding constraints as well as variables to LP4 due to new edges in
E�(�∕(1 + �)) − E�(�) . Set ui� (t + 1) = (1 − �∕�)t for each new constraint i′
added, assuming that the Oracle in step (MC5) has been run a total of t times
thus far. Lemma 8 shows that this transformation provides a � and a collec-
tion �(t) as if the multiplicative weight algorithm for LP4 was run for the
current value of � = �1.

(LP2)
�∗ = min

∑
(j,q)∈E� wjqxjq

s.t.
∑

(j,q)∈p xjq ≥ 1 for all i ∈ [�], p ∈ P�(i,E�)

xjq ≥ 0 ∀(j, q) ∈ E�

(LP3)

∑
p yp ≥ �

1

wjq

∑
p∶(j,q)∈p yp ≤ 1 for all (j, q) ∈ E�

yp ≥ 0 for all i ∈ [�], p ∈ P�(i,E�)

(LP4)

∑
p yp ≥ �

1

wjq

∑
p∶(j,q)∈p yp ≤ 1 for all (j, q) ∈ E�(�)

yp ≥ 0 for all i ∈ [�], p ∈ P�(i,E�(�))

 Algorithmica

1 3

MC7 If the number of iterations required by Theorem 7 have been completed, then
average the � returned. This ensures that we obtain an approximately feasible
solution for LP4. This corresponds to a proof of (near) optimality. We return
the � returned corresponding to the previous value of � (which was �(1 + �))
as the solution. This is an f (1 + O(�)) approximation (Lemma 7). If we have
not completed the number of iterations, we return to (MC5).

Lemma 6 Consider introducing the edges of E′ from the largest weight to smallest.
Let w be the weight of the first edge whose introduction connects some pair (si, ti) .
Set �0 = (1 + 4�)n2w . Then �0 ∈ [(1 + 4�)�∗, (1 + 4�)n2� ∗].

Proof Note w is a lower bound on �∗ ; moreover, if we delete the edge with weight w
and all subsequent edges in the ordering we have a feasible multicut solution. There-
fore �∗ ≤ n2w . The lemma follows. ◻

Naively, this edge-addition process runs in Õ(m�𝜅) time, since the connectivity
needs to be checked for every pair. However, we can introduce the edges in groups,
corresponding to weights in (2z−1, 2z] , as z decreases; we check connectivity after
introducing each group. This algorithm runs in time Õ(m� + 𝜅 logW) and approxi-
mates w, i.e., overestimates w by a factor of at most 2, since we have a geometric
sequence of group weights. The initial value of � can thus be set to (1 + 4�)2zn2.

Lemma 7 � is decreased, as in (MC6), at least once. The solution returned in
(MC7) is an f (1 + O(�)) approximation to �∗.

Proof Using Theorem 7 once we are in (MC7) multiplying the average of the yp
by 1∕(1 + 4�) gives a feasible solution for LP4 for the edge set E(�) . Moreover, for
all paths p, containing any edge in E� − E�(�) , we have yp = 0 . Therefore this new
solution is a feasible solution of LP3. Therefore �∕(1 + 4�) ≤ �∗ once we reach the
required number of iterations in (MC7). This proves that we must decrease � at least
once, because �0 is larger than (1 + 4�)�∗ (Lemma 6).

The solution � corresponds to f�(1 + �) . Since � is bounded above by �∗(1 + 4�) ,
the second part of the lemma follows as well. ◻

1 3

Algorithmica

Corollary 1 We decrease � at most O(�−1 log n) times in step MC6.

Proof If we decrease � then at some point line (7) of Algorithm 2 provides a solu-
tion ≪ 𝛼∗ , which is infeasible. Note that the solution would have value f� . But this
has to be at least �∗ . Thus � cannot decrease arbitrarily. Combined with the upper
bound in Lemma 6, the result follows. ◻

Lemma 8 Algorithm 2 returns an admissible � (defined in Theorem 7) for LP4 with
(width) � = m�∕� and � = 1 . Moreover the set of assignments of yp (over the differ-
ent iterations) that were admissible for � = �2 remains admissible if � is lowered to
𝛼1 < 𝛼2 and � updated as described in (MC6).

Proof Using Lemma 5, Algorithm 2 returns a � which satisfies conditions (i) and
(ii) of Theorem 7. By construction, in Algorithm 2 yp = � and only one yp has a
non-zero value. Since we removed all the edges of weight less than ��∕m� , the width
parameter is bounded by �m�∕(��) = m�∕� . Observe that � = 1.

If 𝛼1 < 𝛼2 , then E�(𝛼1) ⊇ E�(𝛼2) , and therefore P(i,E�(𝛼1)) ⊇ P(i,E�(𝛼2)) . There-
fore, for the formulation LP4, we are adding new variables corresponding to new
variables (paths) as well as new constraints corresponding to the newly added edges.
We can interpret the � for �2 to have 0 values for the new variables. This would
immediately satisfy (i). This would satisfy (iii) for the old constraints as well. Con-
dition (iii) is satisfied for the newly introduced constraints because the old paths p
with yp > 0 for �2 did not contain an edge in E�(�1) . Thus �i�(t) = 0 for the new
constraints and � = � and −� ≤ −1 ≤ �.

For (ii), �(t)T��(t) − �(t)T� ≤ �
∑

i �(t) , the first term in the left hand side
remains unchanged. The left hand side decreases for every new constraint, and the
right hand side increases for every new constraint. ◻

 Algorithmica

1 3

The next lemma arises from a result of Garg et al.[28]; in this context, Z = �
and defines the set {�j} in Step 3 of Algorithm 2.

Lemma 9 ([28]) Let Z =
∑

(u,v) xuvwuv . For r ≥ 0 , let B(u, r) = {v ∣ dx(u, v) ≤ r}
where dx is the shortest path distance based on the values xuv . Let vol(B(u, r)) be

 Suppose that for a node 0 � , the radius r of the ball around � is increased until
cut(B(� , r)) ≤ C ⋅ vol(B(� , r)) . If C = 3 ln(� + 1) , the ball stops growing before
the radius becomes 1/3. We start this process for �1 = s1 . Repeatedly, if some sj is
not in a ball, then we remove B(�i, ri) (all edges inside and those being cut) and
continue the process with �i+1 = sj , on the remainder of the graph. The collec-
tion of B(�1, r1),… ,B(�g, rg),… satisfy the condition that rg ≤ 1∕3 for all g and ∑

g cut(B(�g, rg)) ≤ CZ.

The proof follows from the fact that cut(B(� , r)) is the derivative of vol(B(� , r))
as r increases and the volume cannot increase by more than a factor of � + 1 ,
because it is at least Z/k and cannot exceed Z∕k + Z . For nonnegative xjq the
above algorithm runs in time Õ(m�) using standard shortest-path algorithms.

Using Theorem 7, the total number of iterations needed in MC7, for a particu-
lar � is O(��−2 logN) = O(m��−3 log n) , since the number of constraints N = O(n2)
and � ≤ m�∕� . This dominates the O(1

�
⋅ log n) times we decrease �.

Observe that the algorithm repeatedly constructs a set of balls with non-neg-
ative weights; which can be performed in O(m� log n) time. In each of these balls
with m̃ edges, we can find the shortest path in O(m̃ log n) time (to find the violated
pair si–ti). Summed over the balls, each iteration can be performed in O(m� log n)
time. Coupled with the approximation introduced by a sparsifier, setting � = O(�)
we get:

Theorem 8 There exists a single-pass O(log �)-approximation algorithm for the
multicut problem in the dynamic semi-streaming model that runs in Õ(n2𝜀−7 log2 W)
time and Õ(n𝜀−2 logW + 𝜅) space.

3.4 ���−�������� with Arbitrary Weights

In this section, we prove the following theorem:

Theorem 9 There is a 3(1 + �) log |E−|-approximation algorithm for ���−��������
that requires Õ((n𝜀−2 + |E−|)2𝜀−3) time, Õ(n𝜀−2 + |E−|) space, and a single pass.

Consider the dual of LP1, where � = ∪ij∈E−Pij(H
+).

Z

�
+

∑
(v,v�)

v,v�∈B(u,r)

xvv�wvv� +
∑
(v,v�)

v∈B(u,r),v�∉B(u,r)

(r − dx(u, v))wvv�

1 3

Algorithmica

Recall that LP1 was based on the fact that each path between the two endpoints
of a negative edge had to be of a certain length (or else there is a separation). The
dual of that formulation corresponds to assigning weights to those paths and trying
to “pack” paths such that the total amount of weight (across different paths) does
not exceed the cost (in the primal formulation) of cutting the edge. Note that the
dual formulation in this case corresponds to a lower bound of the primal minimiza-
tion problem – the optimal solution of this packing problem will satisfy some of the
constraints with equality (complementary slackness) and those will precisely corre-
spond to the edges having nonzero value in an optimum primal formulation in LP1.
To reiterate, the overall idea is to continually increase this lower bound using the
multiplicative weights approach and Algorithm 1 — or fail and have a feasible pri-
mal solution. We apply Theorem 7 (the multiplicative-weight update framework) to
the dual of LP1, but omit the constraints in the dual corresponding to small-weight
edges, exactly along the lines of MC1–MC7. For each � ≥ 0 , let H+(�),E−(�) be the
set of edges in H+,E− , respectively, with weight at least ��∕(m� + |E−|) . Consider
now the decision version of LP5:

where �(�) =
⋃

ij∈E−(�) Pij(H
+(�)).

We attempt to find an approximate feasible solution to LP6 for a large value
of � . If the Oracle fails to make progress then it provides a solution to LP1 of
value f ⋅ � . In that case we set � ← �∕(1 + �) and try the Oracle again. Note
that if we lower � then the Oracle invocations for larger values of � continue to
remain valid; if �1 ≤ �2 , then Pij(H

+(𝛼1)) ⊇ Pij(H
+(𝛼2)) exactly along the lines of

Lemma 8.
Eventually we lower � sufficiently that we have a feasible solution to LP6, and

we can claim Theorem 9 exactly along the lines of Theorem 8. The Oracle is pro-
vided in Algorithm 3 and relies on the following lemma:

(LP5)

max
∑
p

yp

1

|wij|
∑

p∈Pij(H
+)

yp ≤ 1 ∀ij ∈ E−

1

wh
sq

∑
p∈�∶sq∈p

yp ≤ 1 ∀sq ∈ H+

yp ≥ 0 ∀p ∈ �

(LP6)

∑
p

yp ≥ �

1

|wij|
∑

p∈Pij(H
+(�))

yp ≤ 1 ∀ij ∈ E−(�)

1

wh
sq

∑
p∈�∶sq∈p

yp ≤ 1 ∀sq ∈ H+(�)

yp ≥ 0 ∀p ∈ �(�)

 Algorithmica

1 3

Lemma 10 Let � = |E−| , Z =
∑

uv∈H+(�) xuvw
h
uv

 . Using the definition of dx() and B()
as in Lemma 9, let

Suppose that, for a node � , the radius r of its ball is increased until
cut(B(� , r)) ≤ Cvol(B(� , r)) . If C = 3 ln(� + 1) , the ball stops growing before the
radius becomes 1/3. We start this process setting �1 to be an arbitrary endpoint of an
edge in E− , and let the stopping radius be r1 . We remove B(�1, r1) and continue the
process on the remainder of the graph. The collection of B(�1, r1),B(�2, r2),… sat-
isfy the condition that each radius is at most 1/3 and

∑
g cut(B(�g, rg)) ≤ CZ.

The above lemma is essentially the same as Lemma 9, applied to the terminal
pairs defined by the endpoints of each edge in E− . Again, for nonnegative xsq , stand-
ard shortest-path algorithms lead to a running time of Õ(m�) . We bound the width of
the above oracle as follows :

Lemma 11 � = (m� + |E−|)∕� , � = 1 for Algorithm 3.

Proof Note that the weights are least ��∕(m� + |E−|) in the set of edges
H+(�),E−(�) . The admissible candidate (Step 6 of Algorithm 3) corresponds to
assigning weight � to a single path (and 0 weight to all other paths). Therefore the
left hand side of any edge in formulation LP6 is at most �∕(��∕(m� + |E−|)) which

vol(B(u, r)) =
Z

𝜅
+

∑
vv� ∈ H+(𝛼)

v, v� ∈ B(u, r)

xvv�w
h
vv�

+
∑

vv� ∈ H+(𝛼)

dx(u, v) ≤ r < dx(u, v�)

(r − dx(u, v))wh
vv�

.

1 3

Algorithmica

is the upper bound on � . The � = 1 arises since each of the constraints in formula-
tion LP6 has 1 in the right hand side and the left hand side is always nonnegative
(based on the assignment proposed in step 6 of Algorithm 3). ◻

The total weight of positive edges cut by the solution returned in line 8 of Algo-
rithm 3 is at most 3�Qu∕(Qu + Qv) ⋅ ln(|E−| + 1) . Each negative edge that is not cut
corresponds to setting zij = 1 but zij ≥ 1∕3 ; hence the cost of these edges is 3�Qv

Qu+Qv

 .
Finally, the cost of the edges in neither E−(�) nor H+(�) is at most 2�� . The overall
solution has cost (3 ln(|E−| + 1) + 2�)�.

Finally, we show how to initialize � along the lines of Lemma 6. Divide the edges
of H+ according to weight, in intervals (2z−1, 2z] , as we decrease z. For each group z,
we find the largest weight edge ij ∈ E− , call this weight g(z), such that i and j are
connected by H+-edges of group z or higher. Observe that g(z) is an increasing func-
tion of z. Let the smallest z such that g(z) ≥ 2z be z0 . Then it follows that the opti-
mum solution is at least 2z0−1 . Again, 2z0n2 serves as an initial value of � , which is
an O(n2) approximation to the optimum solution.

4 Convex Programming in Small Space: ���−�����

In this section we discuss an SDP-based algorithm for ���−����� . We will build
upon our intuition in Sect. 3 where we developed a linear program based algorithm
for ���−�������� . However several steps, such as switching of primals and duals,
will not be necessary because we will use a modified version of the multiplicative
weight update algorithm for SDPs as described by Steurer [47]. As will become
clear, the switch of primals and duals is already achieved in the internal working of
Steurer’s technique [47]. Consider:

Definition 1 For matrices �,� , let �◦� denote the Frobenius product,
∑

i,j �ij�ij ,
let � ⪰ � denote that � is positive semidefinite, and let � ⪰ � denote � − � ⪰ �.

A semidefinite decision problem in canonical form is:

where �,� ∈ ℝ
n×n and � ∈ ℝ

q

+ . Denote the set of the feasible solutions by X . Typi-
cally we are interested in the Cholesky decomposition of � , a set of n vectors {�i}
such that �ij = �T

i
�j . Consider the following theorem:

Theorem 10 ([47]) Let � be a fixed diagonal matrix with positive entries, and
assume X is nonempty. Suppose there is an Oracle with parameters � and � , so
that for each positive semidefinite � either (a) tests and declares � to be approxi-
mately feasible — for all 1 ≤ i ≤ q , we have �i◦� ≤ gi + � , or (b) provides a real
symmetric matrix � and a scalar b satisfying (i) �◦� ≤ b − � and for all �� ∈ X ,
�◦�′ ≥ b and (ii) �� ⪰ � − b� ⪰ −�� , then a multiplicative-weight-style

MWM SDP:

{
�◦� ≥ �

s.t �j◦� ≤ gj, ∀1 ≤ j ≤ q, � ⪰ �

 Algorithmica

1 3

algorithm produces an approximately feasible � , in fact its Cholesky decomposition,
in T = O(�2�−2 ln n) iterations.

The above theorem does not explicitly discuss maintaining a set of multipliers.
But interestingly, the algorithm due to Steurer [47] that proves Theorem 10 can
be viewed as a dual-primal algorithm. This algorithm collects separating hyper-
planes to solve the dual of the SDP: on failure to provide such a hyperplane, the
algorithm provides a primal feasible � . The candidate � generated by the algo-
rithm is an exponential of the (suitably scaled) averages of the hyperplanes (A, b):
this would be the case if we were applying the multiplicative-weight update para-
digm to the dual of the SDP in canonical form! Therefore, along with maximum
matching [3] and ���−�������� (Sect. 3) we have another example where switch-
ing the primal and the dual formulations helps. However in all of these cases, we
need to prove that that we can produce a feasible primal solution in a space effi-
cient manner, when the Oracle (for the dual) cannot produce a candidate.

We now prove the following theorem:

Theorem 11 There is a 0.7666(1 − �)-approximation algorithm for ���−�����(G)
that uses Õ(n𝜀−2) space, Õ(m + n𝜀−10) time and a single pass.

We use Lemma 3 and edge set H = H+ ∪ H− . Let wh
ij
 correspond to the weight

of an edge ij ∈ H . Our SDP for ���−����� is:

If two vertices, i and j, are in the same cluster, their corresponding vectors �i
and �j will coincide, so �ij = 1 ; on the other hand, if they are in different clusters,
their vectors should be orthogonal, so �ij = 0 . Observe that under the restriction
�ii = �jj = 1 , the contribution of an ij ∈ H− is 1

2
(�ii + �jj − 2�ij) = (1 − �ij) , as

intended. However, this formulation helps prove that the width is small.

Definition 2 Define di =
∑

j∶ij∈H �wh
ij
� and

∑
i di = 2W . Let � be the diagonal

matrix with �ii = di∕2W.

A random partition of the graph provides a trivial 1/2-approximation for maxi-
mizing agreements. Letting W be the total weight of edges in H, the sparsified
graph, we perform binary search for � ∈ [W∕2,W] , and stop when the interval
is of size �W , for some suitably small user chosen � . This increases the running
time by a O(log �−1) factor.

(SDP)

∑
ij∈H+

wh
ij
�ij +

∑
ij∈H−

|wh
ij
|(�ii + �jj − 2�ij)

2
≥ �

�ii ≤ 1 ∀i ∈ V

−�ii ≤ −1 ∀i ∈ V

−�ij ≤ 0 ∀i, j ∈ V

� ⪰ �

1 3

Algorithmica

The diagonal matrix � specified in Definition 2 sets up the update algorithm
of Steurer [47]. The choice of � will be critical to our algorithm: typically, this �
determines the “path” taken by the SDP solver, since � alters the projection to den-
sity matrices. Summarizing, Theorem 11 follows from the Oracle provided in Algo-
rithm 4. The final solution only guarantees �i ⋅ �j ≥ −� . Even though the standard
rounding algorithm assumes �ij ≥ 0 , the fractional solution with �ij ≥ −� can be
rounded efficiently. Ensuring �i ⋅ �j ≥ 0 appears to be difficult (or to require a sub-
stantially different oracle).

Lemma 12 Algorithm 4 satisfies criterion (i) of Theorem 10, i.e., for all returned
(�, b) , �◦� ≤ b − � and ∀�� ∈ X,�◦�� ≥ b where X is the feasible space of SDP.

Proof For line 7, �◦� ≤
∑

i∈S1
−di(1 + �)∕�1 = −1 − � , since ‖xi‖2 ≥ 1 + �

for all i ∈ S1 . On the other hand, for a feasible �′ , ‖x�
i
‖2 = 1 for all i. Hence

�◦�� =
∑

i∈S1
−di∕�1 = −1 . This proves that the oracle is �-separating when it

returns from line 7. For lines 10 and 13, the proof is almost identical.
For line 17, we do not use the violated constraints; instead we use �′ to con-

struct � , and show that ��
◦�� ≥ (1 − 3�)� . We start from the fact that �◦�′ ≥ � ,

since �′ is feasible for SDP. By removing all nodes in S1 , we remove all edges inci-
dent on the removed nodes. The total weight of removed edges is bounded by �1 ,
which is this case is less than �� . Similarly, we lose at most �� for each of S2
and S3 . Hence, the difference between �′

◦�′ and �◦�′ is bounded by 3�� , and so
��

◦�� ≥ (1 − 3�)� which implies �◦�� ≥ 1 − 3� . Therefore we have � separation
because �◦� = ��

◦�∕𝛼 < 1 − 4𝛿 . ◻

 Algorithmica

1 3

Lemma 13 Algorithm 4 satisfies criterion (ii) of Theorem 10, i.e.,
�� ⪰ � − b� ⪰ −�� for some � = O(1∕�).

Proof Since |b| ≤ 1 it suffices to show that for every positive semidefinite � ,
|�◦�| = ��◦� . For line 7, the proof is straightforward. To start, � is a diago-
nal matrix where |�ii| = di∕�1 ≤ di∕(��) . On the other hand, �ii = di∕2W , while
� ≥ W∕2 , so we have |�ii| = O(1∕�)�ii which proves that |�◦�| = O(1∕�)�◦� .
The proof is identical for line 10.

For lines 13 and 17, consider the decomposition of � , i.e., {�i} such that
�ij = �i ⋅ �j . We use the fact that �i ⋅ �j ≤ ‖�i‖2 + ‖�j‖2 for every pair of vectors �i
and �j . Therefore for �ij = �i ⋅ �j , we have at line 13,

which implies |�◦�| ≤ O(1∕�)�◦� given � ≥ W∕2 and �3 ≥ �� . For line 17, let
H+|G� ,H−|G� denote H+,H− as modified by line 15, then

which implies that �◦� = O(1)�◦� . Summarizing, Algorithm 4 is O(1∕�)
-bounded. ◻

Lemmas 12 and 13, in conjunction with Theorem 10 prove Theorem 11. The
update procedure [47] maintains (and defines) the candidate vector � implicitly. In
particular it uses matrices of dimension n × d , in which every entry is a (scaled)
Gaussian random variable. The algorithm also uses a precision parameter (degree
of the polynomial approximation to represent matrix exponentials) r. Assuming
that TM is the time for a multiplication between a returned � and some vector, the
update process computes the tth � in time O(t ⋅ r ⋅ d ⋅ TM) , a quadratic dependence
on t in total. We will ensure that any returned � has at most m′ nonzero entries, and
therefore TM = O(m�) . The algorithm requires space that is sufficient to represent a
linear combination of the matrices � which are returned in the different iterations.
We can bound � = O(1∕�) , and therefore the total number of iterations is Õ(𝛿−4) .
For our purposes, in ���−����� we will have d = O(�−2 log n) , r = O(log(�−1) ,
and TM = O(m�) , giving us a Õ(n𝛿−10) time and Õ(n𝛿−2) space algorithm. However,
unlike the general � used in Steurer’s approach, in our oracle the � is used in a very

��◦�� = �
ij∈S3

�wh
ij
�

�3

�ij ≤
�
ij∈S3

�wh
ij
�

�3

(‖�i‖2 + ‖�j‖2)

=
1

�3

�
i

‖yi‖2
�

j∶ij∈S3

�wh
ij
� ≤ 1

�3

�
i

di‖yi‖2

=
1

�3

�
i

2W�ii�ii =
2W

�3

�◦� ,

�◦� =
1

�
��

◦� =
1

2�

∑
ij∈H+|G�

2wh
ij
�ij +

1

2�

∑
ij∈H−|G�

|wh
ij
|(�ii + �jj − 2�ij)

≤
1

2�

∑
ij∈G�

2|wh
ij
|(�ii + �jj) ≤

1

�

∑
i

di�ii =
2W

�
�◦�

1 3

Algorithmica

specific way. This leaves open the question of determining the exact space-versus-
running-time tradeoff.

Rounding the Fractional Solution: Note that the solution of the SDP found above
is only approximately feasible. Since the known rounding algorithms can not be
applied in a black box fashion, the following lemma proves the correctness of the
rounding algorithm.

Lemma 14 If Algorithm 4 returns a clustering solution, it has at least
0.7666(1 − O(�))� agreements.

Proof We show that the rounding algorithm returns a clustering with at least
0.7666(1 − O(�))��

◦� agreements. Combined with the fact that ��
◦� > (1 − 4𝛿)𝛼

(line 19), we obtain the desired result.
We use the rounding algorithm of Swamy [48] (see also [27]), with caveats. The

analysis in [48] starts from a completely feasible solution of SDP, namely −�ij ≤ 0
and the analysis appears to depend on this non-negativity. Likewise, the analysis
of Swamy [48] requires that �ii = 1 . So while the same algorithm is used, a new
analysis is required. The algorithm is as follows: we consider the Cholesky decom-
position of the matrix which gives us vectors {xi} such that �ij = xi ⋅ xj . We rescale
every {xi} to have length 1. We now run the algorithm of Swamy [48] (which refers
to an analysis from Frieze and Jerrum [27] for a different problem). The analysis has
three steps:

(1) Changes introduced due to eliminating �ii ≠ 1.
(2) We then fix edges (i,j) −2� ≤ �ij ≤ 0 by changing the weight of the edge in

the objective function to 0. These could be a holdover from the approximately
feasible solution which have become more violated due to the scaling in step 1.

(3) We now consider the analysis in prior work [27, 48].

For step (1), since the SDP deals with �′ instead of � , we can ignore all nodes and
edges in S1 , S2 , and S3 . Our first step is to rescale the vectors in � to be unit vec-
tors. Since all vectors that are not ignored (not in S1 nor S2) have length between
1 − O(�) and 1 + O(�) (since we take the square root), this only changes the objective
value by O(�wij) for each edge. Hence the total decrease in the objective function is
bounded by O(�W) = O(��).

For step (2), we then change the objective value of edges (i, j) with −2𝛿 < �ij < 0
by changing their weight function in the objective function to 0. This step decreases
the objective value by at most 2�|wij| for each negative edge (and does not decrease
the objective for the positive edges). Again, the objective value decreases by at most
O(��).

For step (3) we observe that the rounding algorithm [27, 48] obtains a 0.7666
approximation factor based on an analysis over pairs of vertices that satisfy the con-
straint xi ⋅ xj ≥ 0 . Note that the analysis is irrelevant for the other pairs because their
weight is 0 due to steps (1) and (2). Therefore, we obtain a clustering that has at
least 0.7666(1 − O(�))��

◦� − O(��) agreements. ◻

 Algorithmica

1 3

5 Multipass Algorithms

In this section, we present O(log log n)-pass algorithms for ���−�������� on unit
weight graphs: these apply to both a fixed and unrestricted number of clusters.

In each pass over the data, the algorithm is presented with the same input,
although not necessarily in the same order.

5.1 ���−�������� with Unit Weights

Consider the 3-approximation algorithm for ���−�������� on unit-weight graphs due
to Ailon et al.[6].

It may appear that emulating the above algorithm in the data stream model
requires �(n) passes, since determining whether vi should be chosen may depend on
whether vj is chosen for each j < i . However, we will show that O(log log n)-passes
suffice. This improves upon a result by Chierichetti et al.[20], who developed a
modification of the algorithm that used O(�−1 log2 n) streaming passes and returned
a (3 + �)-approximation, rather than a 3-approximation. Our improvement is based
on the following lemma:

Lemma 15 Let Ut be the set of uncovered nodes after iteration t of the above algo-
rithm, and let

With high probability, |Ft,t� | ≤ 5 ⋅ ln n ⋅ t�2∕t.

Proof Note that the bound holds vacuously for t ≤ 10 ln n so in the rest of the proof
we will assume t ≥ 10 ln n . Fix the set of t′ elements in the random permutation and
consider the induced graph H on these t′ elements. Pick an arbitrary node v in H. We
will consider the random process that picks each of the first t entries of the random
permutation by picking a node in H uniformly at random without replacement. We
will argue that at the end of these t steps, with probability at least 1 − 1∕n10 , either
v is covered or at most �t�∕t neighbors of v in H are uncovered where � = 10 ln n .
Hence, by the union bound, all uncovered nodes have at most �t�∕t uncovered

Ft,t� = {vivj ∈ E+, i, j ∈ Ut, t < i, j ≤ t�} .

1 3

Algorithmica

neighbors and hence the number of edges in H whose both endpoints are uncov-
ered after the first t steps is at most (�t�∕t) ⋅ t�∕2 . The lemma follows because Ft,t′ is
exactly the number of edges in H whose both endpoints are uncovered after the first
t steps.

To show that after t steps, either v is covered or it has at most �t�∕t uncovered
neighbors we proceed as follows. Let Bi be the event that after the ith iteration, v is
not covered and it has at least �t�∕t uncovered neighbors. Then, since Bi+1 ⊂ Bi for
each i,

where pi = Pr
(
Bi ∣ B1 ∩ B2 ∩⋯ ∩ Bi−1

)
 . Note that

and hence,

as required. ◻

Semi-Streaming Algorithm. As a warm-up, first consider the following two-
pass streaming algorithm that emulates Ailon et al.’s algorithm using O(n1.5 log2 n)
space:

1. First pass: Collect all edges in E+ incident on {vi}i∈[√n] . This allows us to simulate
the first

√
n iterations of the algorithm.

2. Second pass: Collect all edges in F√
n,n

 . This allows us to simulate the remaining
n −

√
n iterations.

The space bound follows since each pass requires storing only O(n1.5 log n) edges
with high probability. requires storing at most n1.5 edges and, with high probability,
the second pass requires storing �F√

n,n
� = O(n1.5 log n) edges.

Our semi-streaming algorithm proceeds as follows.

• For j ≥ 1 , let tj = (2n)1−1∕2
j : during the (2j − 1)-th pass, we store all edges in

Ftj−1,tj
 where t0 = 0 , and during the (2j)-th pass we determine Utj

.

Pr
(
v is covered or it has at most �t�∕t uncovered neighbors

)
=1 − Pr

(
Br

)

=1

− Pr
(
Br ∩ Br−1 ∩⋯ ∩ B1

)

=1 − prpr−1 … p1

pi ≤ 1 − Pr
(
v gets covered at step i ∣ B1 ∩ B2 ∩⋯ ∩ Bi−1

)
≤1 −

𝛼t�∕t + 1

t� − (i − 1)

<1 − 𝛼∕t ,

Pr
(
v is covered or it has at most �t�∕t uncovered neighbors

)
≥1 − (1 − �∕t)t

≥1 − exp(−�)

=1 − 1∕n10 ,

 Algorithmica

1 3

• After the (2j)-th pass we have simulated the first tj iterations of the algorithm of
Ailon et al.[6]’s algorithm. Since tj ≥ n for j = 1 + log log n , our algorithm ter-
minates after O(log log n) passes.

Theorem 12 On a unit-weight graph, there exists a O(log log n)-pass semi-
streaming algorithm that, within space O(n log n) , returns with high probability a
3-approximation to ���−��������.

Proof In the first pass, we need to store at most t2
1
= ((2n)1−1∕2)2 = 2n edges. For the

odd-numbered passes after the first pass, by Lemma 15, the space is at most

with high probability. The additional space used in the even-numbered passes is triv-
ially bounded by O(n log n) . The approximation factor follows from the analysis of
Ailon et al. [6]. ◻

5.2 ���−��������
k
 with Unit Weights

Our result in this section is based the following algorithm of Giotis and Guruswami
[30] that returns a (1 + �)-approximation for ���−��������k on unit-weight graphs.
Their algorithm is as follows:

1. Sample r = poly (1∕�, k) ⋅ log n nodes S and for every possible k-partition {Si}i∈[k]
of S:
(a) Compute the cost of the clustering where v ∈ V ⧵ S is assigned to the ith

cluster where

2. Let C′ be the best clustering found. If all clusters in C′ have at least n/(2k) nodes,
return C′ . Otherwise, fix all the clusters of size at least n/(2k) and recurse (with
the appropriate number of centers still to be determined) on the set of nodes in
clusters that are smaller than n/(2k).

We first observe the above algorithm can be emulated in min(k − 1, log n) passes in
the data stream model. To emulate each recursive step in one pass we simply choose
S at the start of the stream and then collect all incident edges on S. We then use the
�������� oracle developed in Sect. 2.1 to find the best possible partitions during post-
processing. It is not hard to argue that this algorithm terminates in O(log n) rounds,
independent of k: Call clusters with fewer than n/2k nodes “small”, and those with at
least n/2k nodes “large”. Observe that the number of nodes in small clusters halves

5 ⋅ ln n ⋅ t2
j
∕tj−1 = 5 ⋅ ln n ⋅ (2n)2−2∕2

j

∕(2n)1−1∕2
j−1

= 5 ⋅ ln n ⋅ 2n = O(n log n) ,

i = argmax
j

⎛⎜⎜⎝
�

s∈Sj∶sv∈E
+

wsv +
�

s∉Sj∶sv∈E
−

�wsv�
⎞⎟⎟⎠
.

1 3

Algorithmica

in each round since there are at most k − 1 small clusters and each has at most n/(2k)
nodes. This would suggest a min(k − 1, log n) pass data stream algorithm, one pass
to emulate each round of the offline algorithm. However, the next theorem shows
that the algorithm can actually be emulated in min(k − 1, log log n) passes.

Theorem 13 There exists a min(k − 1, log log n)-pass O(poly (k, log n, 1∕�)n)-
space algorithm that (1 + �) approximates ���−��������k(G).

Proof To design an O(log log n) pass algorithm, we proceed as follows. At the start
of the i-th pass, suppose we have k′ clusters still to determine and that Vi is the set
of remaining nodes that have not yet been included in large clusters. We will pick k′
random sets of samples S1,… , Sk� in parallel from Vi each of size

For each sampled node, we extract all edges to unclustered nodes. We will use this
information to emulate one or more rounds of the algorithm. Note that since Ni ≥ n
for i ≥ 1 + log log n , the algorithm must terminate in O(log log n) passes since in
pass 1 + log log n we are storing all edges in the unclustered graph. What remains is
to establish a bound on the space required in each of the passes. To do this we will
first argue that in each pass, the number of unclustered nodes drops significantly,
perhaps to zero.

Since there are only k′ clusters still to determine, and every round of the algorithm
fixes at least one cluster, it is conceivable that the sets S1,… , Sk� could each be used
to emulate one of the remaining ≤ k′ rounds of the algorithm; this would suggest it is
possible to completely emulate the algorithm in a single pass. However, this will not
be possible if at some point there are fewer than r unclustered nodes remaining in all
the sets S1,… , Sk� . At this point, we terminate the current set of samples, and take
a new pass. Observe that in this case we have likely made progress, as the number
of unclustered nodes over which we are working has likely dropped significantly.
Specifically, suppose the number of unclustered nodes is greater than |Vi|n2i−1∕ log n
before we attempt to use Sk′ . By the principle of deferred decisions, the expected
number of unclustered nodes in Sk′ is at least

Therefore, by an application of the Chernoff bound, we can deduce that the number
of unclustered nodes when we terminate the current pass is less than |Vi|n2i−1∕ log n ,
i.e., the number of unclustered nodes has decreased by a factor of at least n2i−1∕ log n
since the start of the pass.

Applying this analysis to all passes and using the fact that |V1| = n , we conclude
that

Ni = 2rn2
i−1∕ log n .

|Vi|n2i−1∕ log n
|Vi| Ni = 2r .

|Vi+1| ≤
|Vi|

n2
i−1∕ log n

≤
|V1|

n2
1−1∕ log n

⋅ n2
2−1∕ log n

⋅… ⋅ n2
i−1∕ log n

=
n

n(2
i−1)∕ log n

.

 Algorithmica

1 3

The space needed by our algorithm for round i is therefore
O(|Vi|Nik

�) = O(krn1+1∕ log n) = Õ(krn) . ◻

6 Lower Bounds

Finally, we consider the extent to which our results can (not) be improved, by
showing lower bounds for variants of problems that we can solve. All our proofs
will use the standard technique of reducing from two-party communication
complexity problems, i.e., Alice has input x and Bob has input y and they wish
to compute some function f(x, y) such that the number of bits communicated
between Alice and Bob is small. A lower bound on the number of bits communi-
cated can be used to lower bound the space complexity of a data stream algorithm
as follows. Suppose Alice can transform x into the first part S1 of a data stream
and Bob can transform y into the second part S2 such that the result of the data
stream computation on S1◦S2 implies the value of f(x, y). Then if the data stream
algorithm takes p passes and uses s space, this algorithm can be emulated by
Alice and Bob using 2p − 1 messages each of size s bits; Alice starts running the
data stream algorithm on S1 and each time a player no longer has the necessary
information to emulate the data stream algorithm they send the current memory
state of the algorithm to the other player. Hence, a lower bound for the communi-
cation complexity problem yields a lower bound for the data stream problem.

Theorem 14 A one-pass stream algorithm that tests whether ���−��������(G) = 0 ,
with probability at least 9/10, requires �(n2) bits if permitted weights are {−1, 0, 1}.

Proof The theorem follows from a reduction from the communication problem
index. Alice has a string x ∈ {0, 1}(

n

2
) , indexed as [n] × [n] and unknown to Bob,

and Bob wants to learn xi,j for some i, j ∈ [n] that is unknown to Alice. Any one-way
protocol from Alice to Bob that allows Bob to learn xi,j requires �(n2) bits of com-
munication [1].

Consider the protocol for index where Alice creates a graph G over nodes
V = {v1,… , vn} and adds edges {{vi, vj} ∶ xi,j = 1} each with weight −1 . Suppose
there were a data stream algorithm with properties as claimed in the statement of
the Theorem. Alice could run such a data stream algorithm on G and send the state
of the algorithm to Bob who would add positive edges {u, vi} and {u, vj} where u
is a new node. All edges without a specified weight are treated as not present, or
equivalently as having weight zero. Hence the set of weights used in this graph is
{−1, 0,+1} . Now, if xij = 0 , then ��������(G) = 0 : consider the partition containing
{u, vi, vj} , with each other item comprising a singleton cluster. Alternatively, xij = 1
implies ��������(G) ≥ 1 since a clustering must disagree with one of the three edges
on {u, vi, vj} . It follows that any data stream algorithm returning a multiplicative esti-
mate of ���−��������(G) requires �(n2) space. ◻

1 3

Algorithmica

When permitted weights are restricted to {−1, 1} , the following multi-pass lower
bounds holds:

Theorem 15 A p-pass stream algorithm that tests whether ���−��������(G) = 0 ,
with probability at least 9/10, requires �(n∕p) bits when permitted weights are
{−1, 1}.

Proof The proof uses a reduction from the communication problem of disj where
Alice and Bob have strings x, y ∈ {0, 1}n and wish to determine where there exists an
i such that xi = yi = 1 . Any p round protocol between Alice and Bob requires �(n)
bits of communication [39] and hence there must be a message of �(n∕p) bits.

Consider the protocol for disj on a graph G with nodes V = {a1,… , an, b1,… , bn,
c1,… , cn} . For each i ∈ [n] , Alice adds an edge {ai, bi} with weight (−1)xi+1 . She
runs a data stream algorithm with properties as stated in the theorem statement on
G and sends the state of the algorithm to Bob. For each i ∈ [n] , Bob adds an edge
{bi, ci} of weight (−1)yi+1 along with negative edges

Note that ���−��������(G) > 0 iff there exists i with xi = yi = 1 . Were there no
such i, the positive edges would all be isolated, whereas if xi = yi = 1 then every par-
tition violates one of the edges on {ai, bi, ci} . It follows that every p-pass data stream
algorithm returning a multiplicative estimate of ���−��������(G) requires �(n∕p)
space. ◻

Next we show a lower bound that applies when the number of negative weight
edges in bounded. This shows that our upper bound in Theorem 9 is essentially tight.

Theorem 16 A one-pass stream algorithm that tests whether ���−��������(G) = 0 ,
with probability at least 9/10, requires �(n + |E−|) bits if permitted weights are
{−1, 0, 1}.

Proof A lower bound of �(|E−|) follows by considering the construction in Theo-
rem 14 on

√�E−� nodes. A lower bound of �(n) when n ≥ |E−| follows by con-
sidering the construction in Theorem 15 without adding the negative edges
{uv ∶ u ∈ {ai, bi, ci}, v ∈ {aj, bj, cj}, i ≠ j} . ◻

Finally, we show that the data structure for evaluating 2-clusterings of arbitrarily
weighted graphs (Sect. 2.3) cannot be extended to clusterings with more clusters.

Theorem 17 When |C| = 3 , a data structure that returns a multiplicative estimate
of ��������(G, C) (i.e., answers ��������3 queries) with probability at least 9/10,
requires �(n2) space.

Proof We show a reduction from the communication problem of index where Alice
has a string x ∈ {0, 1}n

2 indexed as [n] × [n] and Bob wants to learn xi,j for some

{{ai, ci} ∶ i ∈ [n]} ∪ {{u, v} ∶ u ∈ {ai, bi, ci}, v ∈ {aj, bj, cj}, i ≠ j} .

 Algorithmica

1 3

i, j ∈ [n] that is unknown to Alice. A one-way protocol from Alice to Bob that allows
Bob to learn xi,j requires �(n2) bits of communication [1]. Consider the protocol
for index where Alice creates a graph G over nodes V = {a1,… , an, b1,… , bn}
and adds edges {aubv ∶ xu,v = 1} each with weight −1 . She encodes the graph
G into a data structure with properties as described in the theorem state-
ment, and sends the state of the structure to Bob who then queries the partition
C = {aibj, {a� ∶ � ≠ i}, {b

�
∶ � ≠ j}} . Since ��������(G, C) = xij it follows that

every data structure allowing a multiplicative estimate of ��������(G, C) requires
�(n2) space. ◻

Appendix: Extension to Bounded Weights

In this section, we detail the simple changes that are required in the paper by Gionis
and Guruswami [30] such that their result extends to the case where there are no
zero weights and the magnitude of all non-zero weights is bounded between 1 and
w∗ where we will treat w∗ as constant.

Max-Agreement. See Sect. 2.2 for a description of the max-agreement algorithm.
The proof in the unweighted case first shows a lower bound for ���−�����k(G) of

In the bounded-weights case, the magnitude of every edge only increases and so
the same bound holds. Hence, for the purpose of returning a (1 + O(�)) multiplica-
tive approximation, it still suffices to find an �n2 additive approximation. Indeed, the
argument of Giotis and Guruswami [30] still applies, with small changes by decreas-
ing � by a factor w∗ and increasing r by a factor of w2

∗
 . Rather than retread the full

analysis of Giotis and Guruswami [30], we just identify the places where their argu-
ment is altered.

The central result needed is that estimating the cost associated with placing each
node in a given cluster can be done accurately from a sample of the clustered nodes.
This is proved via a standard additive Chernoff bound [30, Lemma 3.3]. It is natural
to define the weighted generalization of this estimate based on the weights of edges
in the sample and to rescale accordingly. One can then apply the additive Cher-
noff bound over random variables which are constrained to have magnitude in the
range {1, 2,… ,w∗} , rather than {0, 1} as in the unit-weights case. The number of
nodes whose estimated relative contribution deviates by more than (�∕32w∗) from
its (actual) contribution to the optimal clustering is then bounded by applying the
Markov inequality. Provided we increase the sample size r by a factor of w2

∗
 , these

bounds all hold with the necessary probability.
The other steps in the argument are modified in a similar way: we analyze the

total weight of edges in agreement, rather than their number. Specifically, applying
this modification to [30, Lemma 3.4], we bound the impact of misplacing one node
in the constructed clustering compared to the optimal clustering. With the inequality
from the above Chernoff bound argument, the impact of this can, as in the orignal
argument, be bounded in the weighted case by (�∕8)n . The number of nodes for

max(|E+|, |E−|(1 − 1∕k)) ≥ n2∕16 .

1 3

Algorithmica

which this does not hold is at most a fraction (�∕8w∗) of each partition, and so con-
tribute to a loss of at most (�2∕8)n2 (weighted) agreements in each step of the argu-
ment, as in the original analysis.

Min-Agreement. See Sect. 5.2 for a description of the min-agreement algorithm.
Again, the central step is the use of a Chernoff bound on edges incident on sampled
nodes. Modifying this to allow for bounded-weight edges again incurs a factor of w2

∗
 ,

but is otherwise straightforward. It then remains to follow through the steps of the
original argument, switching from cardinalities of edgesets to their weights.

Acknowledgements K. J. Ahn: The author is currently at Google, kookjin@google.com. G. Cor-
mode: Supported in part by European Research Council grant ERC-2014-CoG 647557, a Royal Society
Wolfson Research Merit Award and the Yahoo Faculty Research Engagement Program. S. Guha: sup-
ported by NSF Award CCF-1546141. A. McGregor: Supported by NSF Award CCF-1637536, CCF-
1908849, and CCF-1934846. A. Wirth: Supported in part by ARC Future Fellowship FT120100307.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Ablayev, F.M.: Lower bounds for one-way probabilistic communication complexity and their appli-
cation to space complexity. Theor. Comput. Sci. 157(2), 139–159 (1996). https:// doi. org/ 10. 1016/
0304- 3975(95) 00157-3

 2. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with application to the maxi-
mum matching problem. Inf. Comput. (ICALP 2011 Special Issue) 222, 59–79 (2013). https:// doi.
org/ 10. 1016/j. ic. 2012. 10. 006

 3. Ahn, K.J., Guha, S.: Access to data and number of iterations: Dual primal algorithms for maximum
matching under resource constraints. In: Transactions in Parallel Computing (TOPC), special issue
for Symposium on Parallelism in Algorithms and Architectures (SPAA), 2015, vol. 4 (2018). https://
doi. org/ 10. 1145/ 27555 73. 31548 55

 4. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Sympo-
sium on Discrete Algorithms: SODA, pp. 459–467 (2012). https:// doi. org/ 10. 1137/1. 97816 11973
099. 40

 5. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In:
Principles of Database Systems: PODS, pp. 5–14 (2012). https:// doi. org/ 10. 1145/ 22135 56. 22135 60

 6. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering.
J. ACM 55(5) (2008). https:// doi. org/ 10. 1145/ 14115 09. 14115 13

 7. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: Conference on Neural
Information Processing Systems: NIPS, pp. 10–18 (2009). http:// books. nips. cc/ papers/ files/ nips22/
NIPS2 009_ 1085. pdf

 8. Ailon, N., Karnin, Z.S.: A note on: No need to choose: How to get both a PTAS and sublinear query
complexity. CoRR abs/1204.6588 (2012)

 9. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta algorithm and
applications. Theory Comput. 8(6), 121–164 (2012)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0304-3975(95)00157-3
https://doi.org/10.1016/0304-3975(95)00157-3
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1145/2755573.3154855
https://doi.org/10.1145/2755573.3154855
https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.1145/1411509.1411513
http://books.nips.cc/papers/files/nips22/NIPS2009_1085.pdf
http://books.nips.cc/papers/files/nips22/NIPS2009_1085.pdf

 Algorithmica

1 3

 10. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs. In: ACM Sym-
posium on Theory of Computing: STOC, pp. 227–236 (2007). https:// doi. org/ 10. 1145/ 12507 90.
12508 23

 11. Bagon, S., Galun, M.: Large scale correlation clustering optimization. arXiv: 1112. 2903v1 (2011)
 12. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004).

https:// doi. org/ 10. 1023/B: MACH. 00000 33116. 57574. 95
 13. Benczúr, A.A., Karger, D.R.: Approximating s − t minimum cuts in Õ(n2) time. In: Symposium on

Theory of Computing: STOC, pp. 47–55 (1996)
 14. Bonchi, F., Garcia-Soriano, D., Liberty, E.: Correlation clustering: From theory to practice. In:

International Conference on Knowledge Discovery and Data Mining: KDD, pp. 1972. ACM, New
York, NY, USA (2014). https:// doi. org/ 10. 1145/ 26233 30. 26308 08

 15. Braverman, V., Chung, K., Liu, Z., Mitzenmacher, M., Ostrovsky, R.: AMS without 4-wise inde-
pendence on product domains. In: International Symposium on Theoretical Aspects of Computer
Science: STACS, pp. 119–130 (2010). https:// doi. org/ 10. 4230/ LIPIcs. STACS. 2010. 2449

 16. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information
retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004). https:// doi. org/ 10. 1137/ S0097 53970 24184 98

 17. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst.
Sci. 71(3), 360–383 (2005). https:// doi. org/ 10. 1016/j. jcss. 2004. 10. 012

 18. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clustering problems.
In: Symposium on Theory of Computing: STOC, pp. 30–39 (2003). https:// doi. org/ 10. 1145/ 780542.
780548

 19. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm
for correlation clustering on complete and complete k-partite graphs. In: Symposium on Theory of
Computing: STOC (2015)

 20. Chierichetti, F., Dalvi, N.N., Kumar, R.: Correlation clustering in mapreduce. In: International Con-
ference on Knowledge Discovery and Data Mining: KDD, pp. 641–650 (2014). https:// doi. org/ 10.
1145/ 26233 30. 26237 43

 21. Coleman, T., Saunderson, J., Wirth, A.: A local-search 2-approximation for 2-correlation-clustering.
In: European Symposium on Algorithms: ESA, pp. 308–319 (2008). https:// doi. org/ 10. 1007/ 978-3-
540- 87744-8_ 26

 22. Cormode, G., Yi, K.: Small Summaries for Big Data. CUP (2020)
 23. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted

graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006). https:// doi. org/ 10. 1016/j. tcs. 2006. 05. 008
 24. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a survey. IEEE Trans.

Knowl. Data Eng. 19(1), 1–16 (2006)
 25. Elsner, M., Schudy, W.: Bounding and comparing methods for correlation clustering beyond ILP. In:

Workshop on Integer Linear Programming for Natural Langauge Processing: ILP, pp. 19–27. Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA (2009). http:// www. antho logy. aclweb.
org/W/ W09/ W09- 1803. pdf

 26. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-stream-
ing model. Theor. Comput. Sci. 348(2–3), 207–216 (2005). https:// doi. org/ 10. 1016/j. tcs. 2005. 09.
013

 27. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-cut and MAX BISECTION.
Algorithmica 18, 67 (1997)

 28. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their
applications. In: ACM Symposium on Theory of Computing: STOC, pp. 698–707 (1993). https://
doi. org/ 10. 1145/ 167088. 167266

 29. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Disc. Data
(TKDD) 1(1), 4 (2007)

 30. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory Comput.
2(1), 249–266 (2006). https:// doi. org/ 10. 4086/ toc. 2006. v002a 013

 31. Goel, A., Kapralov, M., Post, I.: Single pass sparsification in the streaming model with edge dele-
tions. CoRR abs/1203.4900 (2012). http:// arxiv. org/ abs/ 1203. 4900

 32. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algo-
rithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005). https:// doi. org/ 10. 1007/
s00224- 004- 1178-y

 33. Gruenheid, A., Dong, X.L., Srivastava, D.: Incremental record linkage. Proc. VLDB Endow. 7(9),
697–708 (2014)

https://doi.org/10.1145/1250790.1250823
https://doi.org/10.1145/1250790.1250823
http://arxiv.org/abs/1112.2903v1
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1145/2623330.2630808
https://doi.org/10.4230/LIPIcs.STACS.2010.2449
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1145/780542.780548
https://doi.org/10.1145/780542.780548
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.1007/978-3-540-87744-8_26
https://doi.org/10.1007/978-3-540-87744-8_26
https://doi.org/10.1016/j.tcs.2006.05.008
http://www.anthology.aclweb.org/W/W09/W09-1803.pdf
http://www.anthology.aclweb.org/W/W09/W09-1803.pdf
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1145/167088.167266
https://doi.org/10.1145/167088.167266
https://doi.org/10.4086/toc.2006.v002a013
http://arxiv.org/abs/1203.4900
https://doi.org/10.1007/s00224-004-1178-y
https://doi.org/10.1007/s00224-004-1178-y

1 3

Algorithmica

 34. Guha, S.: Tight results for clustering and summarizing data streams. In: International Conference on
Database Theory: ICDT, pp. 268–275 (2009). https:// doi. org/ 10. 1145/ 15148 94. 15149 26

 35. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic graph streams.
In: Proceedings of the 34th ACM Symposium on Principles of Database Systems (PODS), pp. 241–
247 (2015)

 36. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: IEEE Founda-
tions of Computer Science: FOCS, pp. 359–366 (2000). http:// doi. ieeec omput ersoc iety. org/ 10. 1109/
SFCS. 2000. 892124

 37. Hassanzadeh, O., Chiang, F., Lee, H.C., Miller, R.J.: Framework for evaluating clustering algo-
rithms in duplicate detection. Proc. VLDB Endow. 2(1), 1282–1293 (2009)

 38. Indyk, P., McGregor, A.: Declaring independence via the sketching of sketches. In: Symposium
on Discrete Algorithms: SODA, pp. 737–745 (2008). http:// dl. acm. org/ citat ion. cfm? id= 13470 82.
13471 63

 39. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersec-
tion. SIAM J. Discrete Math. 5(4), 545–557 (1992). https:// doi. org/ 10. 1137/ 04050 44

 40. Kane, D.M., Nelson, J., Woodruff, D.P.: On the exact space complexity of sketching and streaming
small norms. In: ACM-SIAM Symposium on Discrete Algorithms: SODA, pp. 1161–1178 (2010).
https:// doi. org/ 10. 1137/1. 97816 11973 075. 93

 41. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral sparsification in
dynamic streams. CoRR abs/1407.1289 (2014). http:// arxiv. org/ abs/ 1407. 1289

 42. McCutchen, R.M., Khuller, S.: Streaming algorithms for k-center clustering with outliers and with
anonymity. International Workshop on Approximation Algorithms for Combinatorial Optimization:
APPROX pp. 165–178 (2008). https:// doi. org/ 10. 1007/ 978-3- 540- 85363-3_ 14

 43. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Record 43(1), 9–20 (2014). https:// doi.
org/ 10. 1145/ 26276 92. 26276 94

 44. Pan, X., Papailiopoulos, D.S., Oymak, S., Recht, B., Ramchandran, K., Jordan, M.I.: Parallel cor-
relation clustering on big graphs. In: Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pp. 82–90 (2015). http:// papers. nips. cc/ paper/ 5814- paral lel- corre lation- clust
ering- on- big- graphs

 45. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1),
173–182 (2004)

 46. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., Carvalho, A.C.P.L.F.d., Gama, J.a.: Data
stream clustering: A survey. ACM Comput. Surv 46(1), 13:1-13:31 (2013). https:// doi. org/ 10. 1145/
25229 68. 25229 81

 47. Steurer, D.: Fast SDP algorithms for constraint satisfaction problems. In: Symposium on Discrete
Algorithms: SODA, pp. 684–697 (2010)

 48. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In:
Symposium on Discrete Algorithms: SODA, pp. 526–527 (2004). https:// doi. org/ 10. 1145/ 982792.
982866

 49. Verroios, V., Garcia-Molina, H.: Entity resolution with crowd errors. In: 2015 IEEE 31st Interna-
tional Conference on Data Engineering, pp. 219–230. IEEE (2015)

 50. Vesdapunt, N., Bellare, K., Dalvi, N.: Crowdsourcing algorithms for entity resolution. Proc. VLDB
Endow. 7(12), 1071–1082 (2014)

 51. Wirth, A.I.: Approximation algorithms for clustering. Ph.D. thesis, Princeton University (2004).
ftp:// ftp. cs. princ eton. edu/ repor ts/ 2004/ 716. pdf

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1145/1514894.1514926
http://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892124
http://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892124
http://dl.acm.org/citation.cfm?id=1347082.1347163
http://dl.acm.org/citation.cfm?id=1347082.1347163
https://doi.org/10.1137/0405044
https://doi.org/10.1137/1.9781611973075.93
http://arxiv.org/abs/1407.1289
https://doi.org/10.1007/978-3-540-85363-3_14
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2627692.2627694
http://papers.nips.cc/paper/5814-parallel-correlation-clustering-on-big-graphs
http://papers.nips.cc/paper/5814-parallel-correlation-clustering-on-big-graphs
https://doi.org/10.1145/2522968.2522981
https://doi.org/10.1145/2522968.2522981
https://doi.org/10.1145/982792.982866
https://doi.org/10.1145/982792.982866
ftp://ftp.cs.princeton.edu/reports/2004/716.pdf

 Algorithmica

1 3

Authors and Affiliations

Kook Jin Ahn1 · Graham Cormode2 · Sudipto Guha1 · Andrew McGregor3 ·
Anthony Wirth4

 Kook Jin Ahn
 kookjin@cis.upenn.edu; kookjin@google.com

 Sudipto Guha
 sudipto@cis.upenn.edu

 Andrew McGregor
 mcgregor@cs.umass.edu

 Anthony Wirth
 awirth@unimelb.edu.au

1 University of Pennsylvania, Philadelphia, USA
2 University of Warwick, Coventry, UK
3 University of Massachusetts Amherst, Amherst, USA
4 School of Computing and Information Systems, The University of Melbourne,

Parkville, Victoria, Australia

http://orcid.org/0000-0002-0698-0922
http://orcid.org/0000-0003-3746-6704

	Correlation Clustering in Data Streams
	Correlation Clustering in Data Streams
	Abstract
	1 Introduction
	1.1 Computational Model
	1.2 Techniques and Results

	2 Basic Data Structures and Applications
	2.1 First Data Structure: Bilinear Sketch
	2.2 Second Data Structure: Sparsification
	2.3 Third Data Structure: Node-Based Sketch

	3 Convex Programming in Small Space:
	3.1 A Dual Primal Approach
	3.2 From Rounding Algorithms to Oracles
	3.3 Streaming Multicut Problem
	3.4 with Arbitrary Weights

	4 Convex Programming in Small Space:
	5 Multipass Algorithms
	5.1 with Unit Weights
	5.2 with Unit Weights

	6 Lower Bounds
	Acknowledgements
	References

