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Abstract: Some cytokines can reengineer anti-tumor immunity to modify the tumor micro-environment.
Interleukin-27 (IL-27) can partially reduce tumor growth in several animal models, including prostate
cancer. We hypothesized that addition of IL-18, which can induce the proliferation of several immune
effector cells through inducing IFNγ could synergize with IL-27 to enhance tumor growth control.
We describe our findings on the effects of IL-27 gene delivery on prostate cancer cells and how
sequential therapy with IL-18 enhanced the efficacy of IL-27. The combination of IL-27 followed by
IL-18 (27→18) successfully reduced cancer cell viability, with significant effects in cell culture and in
an immunocompetent mouse model. We also examined a novel chimeric cytokine, comprising an
IL-27 targeted at the C-terminus with a short peptide, LSLITRL (27pepL). This novel cytokine targets
a receptor upregulated in tumor cells (IL-6Rα) via the pepL ligand. Interestingly, when we compared
the 27→18 combination with the single 27pepL therapy, we observed a similar efficacy for both. This
efficacy was further enhanced when 27pepL was sequenced with IL-18 (27pepL→18). The observed
reduction in tumor growth and significantly enriched canonical pathways and upstream regulators,
as well as specific immune effector signatures (as determined by bioinformatics analyses in the tumor
microenvironment) supported the therapeutic design, whereby IL-27 or 27pepL can be more effective
when delivered with IL-18. This cytokine sequencing approach allows flexible incorporation of both
gene delivery and recombinant cytokines as tools to augment IL-27’s bioactivity and reengineer
efficacy against prostate tumors and may prove applicable in other therapeutic settings.

Keywords: Interleukin-27; targeted IL-27pepL; Interleukin-18; prostate cancer; immune effector
signatures; sonoporation; sequential delivery

1. Introduction

Some cytokines can reengineer anti-tumor immunity to modify the tumor microenvi-
ronment. Interleukin (IL)-27 can serve as a therapeutic agent for malignant tumors based
on its important role in immunomodulation [1] and its low toxicity profile [2]. IL-27, a
member of the IL-12 cytokine family, is composed of subunits IL-27p28 and Epstein-Barr
virus-induced gene 3 (EBI3), and signals through the IL27RA (WSX1) and IL6ST (gp130)
receptor pair. IL-27 signaling induces T-box transcription factor 21 (Tbx21) and Inter-
feron gamma (IFNγ), promoting initiation of T helper (Th)1 differentiation [3]. IL-27 also
has direct transcriptional effects on several cell types, including tumor cells [4], and is
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able to induce natural killer (NK) and cytotoxic T lymphocyte responses, while reducing
angiogenesis through CXCL9-10 upregulation [5].

In the present report, we have examined the impact of exogenous IL-27 as an immune-
modulating therapy for prostate tumors in cell culture and in vivo. We administered
IL-27, either as a recombinant cytokine in vitro or via skeletal muscle (plasmid DNA
delivery through sonoporation or sonodelivery), an in vivo administration approach we
have utilized in previous studies [6]. Although our previous work indicated that IL-27
could inhibit prostate tumor growth, one limitation was that tumors only showed ~50%
growth reduction compared to controls [7]. We hypothesized that addition of IL-18, which
can induce the proliferation of several immune effector cells through inducing IFNγ, major
histocompatibility complex (MHC) class I expression, and also by inhibiting angiogenesis,
could synergize with IL-27 to enhance tumor growth control. IL-18 belongs to the IL-
1 family of cytokines [8] and has shown promise for inhibiting the growth of prostate
adenocarcinoma by ~70% through immune potentiation (enhancing CD4, CD8, and NK
cells) [9]. To the best of our knowledge, IL-27 and IL-18 had not yet been combined or
sequenced in any in vivo tumor model prior to the present report. Limited in vitro data
showed enhanced immune effector activity when NK cells were ‘primed’ with IL-27 [10],
and had enhanced cytotoxic effect against tumor cells in culture, but the potential for
in vivo tumor reduction remained untested. IL-27 was shown to enhance IFNγ production
in a synergistic manner with IL-18 through enhancing Tbx21 expression but without
upregulating IL4, IL10, IL17, IL6, or TNF [10]. Our approach of sequentially delivering
cytokines can incorporate both gene delivery and recombinant cytokines as tools to help
augment their bioactivity and antitumor efficacy. We tested single or sequential IL-27 and
IL-18 therapies both in cells and in vivo, finding significant promise for the sequential
27→18 method for prostate tumors.

In another recent report, we discovered the promise of a new IL-27 cytokine, targeted
at the C-terminus with a short ‘peptide L’ (pepL, LSLITRL), which binds the interleukin 6
receptor α (IL-6Rα) upregulated in tumor cells [11] for reducing prostate tumor growth
(IL27pepL or 27pepL) [4,12]. We thus compared the 27→18 cytokine sequence with 27pepL
monotherapy and also with a 27pepL→18 sequence in this study. We utilized RNA
sequencing (RNAseq) to examine pathways and potential modes of action in tumors,
finding many common yet some unique pathways and immune effectors that 27pepL
might utilize alone, or in combination with IL-18, to halt tumor growth. Overall, we found
that the sequential approach (IL-27 or 27pepL-targeted) allows one to flexibly incorporate
both gene delivery and recombinant cytokines as tools to augment a cytokine’s bioactivity
and efficacy against prostate tumors.

2. Materials and Methods
2.1. Cell Culture and In Vitro Assays

Mouse TRAMP-C2-Ras cells (TC2R), are modified from the parental TRAMP-C2
prostate adenocarcinoma cells by lentiviral addition of an activated H-ras gene, and was de-
veloped and described in [13]. TC2R were maintained in DMEM:F12 (Mediatech, Manassas,
VA, USA) with 10% FBS and 1× Antibiotic-Antimycotic (1xAA, Gibco). A Cell Counting
Kit 8 (CCK8) (Dojindo) was used to assess the viability of tumor cells in 96-wells. Mouse
cytokines were used at 10 ng/mL (IL-18; Medical & Biological Laboratories) and 50 ng/mL
(IL-27; R&D Systems). For CCK8 assays, a baseline reading was performed according to
the manufacturer’s specifications at day 1 post-seeding (3 × 103 TC2R) in 96-wells, and
then at days 3 or 6 with a media switch at day 3. For Luc assays, 104 TC2R cells were
seeded in white 96-wells (Corning), and transfection performed with Lipofectamine 2000
(Invitrogen) 24 h later with constructs, all of which contained the firefly luciferase (Luc)
reporter gene, under the control of different regulatory elements, as follows: STAT1- and
STAT3- (Panomics, Fremont, CA), IFNγ-, TNF-, IL4-, GATA2- (Addgene, Cambridge, MA),
ARE(KLK3)-, TRAF6-, IL17α-, and NFATc1- (SwitchGear Genomics, Carlsbad, CA), NFKB-
and AP1- (Clontech, Mountain View, CA), with 4% CMV-Bgal (Clontech) as a transfection
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control [14]. Prior to transfection, the media was changed to 0.5%FBS for 6–8 h, then the 1st
cytokine was added with FBS to reach a 2% FBS final concentration. Twenty-four hours
later, the second cytokine was added, and ~16 h later, media was aspirated and 50 mL
1xPassive Lysis Buffer (Promega, Madison, WI, USA) added to each well. Five microliters of
lysate were used with a Luminescent Beta-galactosidase Detection Kit II (Takara Bio, Moun-
tain View, CA, USA) and 45 uL used in a Luciferase Assay with a Glomax luminometer
(Promega, Madison, WI, USA), with results expressed as RLU/sec (10 s integration).

2.2. Real Time PCR, Ingenuity Pathway Analyses (IPA), and CamcAPP

For qPCR, we treated TC2R cancer cells with mouse recombinant cytokines IL-27
and/or IL-18, and collected RNA at 24 h post-transfection (RNeasy kit, Qiagen). The cDNA
synthesis and qPCR followed published procedures [4,15], with mouse-specific primers.
Real time qPCR data were input into Ingenuity Pathway Analysis (IPA, Qiagen), as has
been described [4]. For RNAseq data, putative regulator Gene Set Enrichment Analysis
(GSEA) was done using Qiagen’s Ingenuity® Pathway Analysis software (IPA version
01-09-02, Qiagen Redwood City, CA, USA, www.qiagen.com/ingenuity (accessed on 2
June 2021)) on genes that passed nominal p < 0.05 in comparison to pMCS control treated
TC2R tumors vs. other vector treatments using the “Canonical Pathways”, “Upstream
Regulators” analyses with qPCR or RNAseq data, and “Graphical Summaries” to integrate
data. Upstream regulators with significantly predicted activation or inhibition state (z-score
of >2.0 or <−2.0) that also met the Benjamini-Hochberg (B-H) multiple testing correction
p-value of <0.05 were reported. The B-H corrected p-value enables control of the error rate
in analysis results to focus in on the most significant biological functions associated with
the genes of interest. We utilized CamcAPP (the Cambridge carcinoma of the prostate app) to
validate differentially expressed genes (p < 0.05; up- or down-regulated) from each therapy
relative to the human prostate cancer Cambridge dataset (https://bioinformatics.cruk.cam.
ac.uk/apps/camcAPP/ (accessed on 22 May 2021)) [16]. The dataset provided information
relevant to clinical covariates such as Gene Profile or Survival, using analysis of variance
with z-score transformed data.

2.3. RNAseq Analysis

Total RNA was isolated from tumors (n = 4–6/group) that had been preserved in
RNAlater, and kept at −80 ◦C. Total RNA was isolated using buffer RLT containing 20 mL
of 2 M DTT per mL of buffer, and homogenized with a PRO200 homogenizer (MidSci, Valley
Park, MO, USA), in three brief pulses at a mid-power of 10–15 s each, keeping the tissue
cold by submerging tubes in ice for 30–60 s in between pulses. The lysate was processed
using Qiagen RNAeasy (Qiagen, Germantown, MD, USA). Poly(A) RNA sequencing library
was prepared following Illumina’s TruSeq-stranded-mRNA protocol and conducted by
LC Sciences (Houston, TX, USA). Poly(A) tail-containing mRNAs were purified using
oligo-dT magnetic beads with two rounds of purification, and fragmented using divalent
cation buffer at elevated temperature. Quality control analysis and quantification of the
sequencing library were performed using an Agilent Technologies 2100 Bioanalyzer High
Sensitivity DNA Chip. Paired-ended sequencing was performed on Illumina’s NovaSeq
6000. For transcript assembly, Cutadapt [17] and perl scripts in house were used to remove
the reads that contained adaptor contamination and low quality bases. Sequence quality
was verified using HISAT2 [18] and FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/ (accessed on 1 August 2020)), and to map reads to the mouse genome,
reads were assembled using StringTie [19], and transcriptomes merged using perl scripts
and gffcompare. StringTie and edgeR [20] were used to estimate transcript expression
levels. For differential expression analysis of mRNAs, StringTie was used by calculating
fragments per kilobase million (FPKM). The differentially expressed mRNAs were selected
with log2 (fold change) > 1 or log2 (fold change) < −1 and with statistical significance
(p < 0.05) by edgeR. The datasets generated in this study have been submitted to Gene
Expression Omnibus (GEO) in GSE178142.

www.qiagen.com/ingenuity
https://bioinformatics.cruk.cam.ac.uk/apps/camcAPP/
https://bioinformatics.cruk.cam.ac.uk/apps/camcAPP/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.4. Immune Cell Profiling Analyses Using RNAseq Data

For a general analysis of the immune landscape, we utilized XCell [21] and ImmuCel-
lAI (Immune cell abundance identifier, ICAI) [22] to obtain microenvironment, immune,
stromal, or infiltration scores. For a more detailed analysis of the immune cell profil-
ing (>100 cell types), we utilized several recently characterized algorithms, including
TIMER2.0 [23] (choosing PRAD-prostate adenocarcinoma), a comprehensive resource for
analysis of immune cell infiltration among diverse cancers (http://timer.cistrome.org/
(accessed on 26 February 2021)). TIMER combines multiple algorithms [21,24–28], and we
added analyses from the TIP [29] and ImmuCellAI [22] algorithms using TPM input, with
prebuilt reference gene signatures. In addition, we utilized the Estimating the Proportion
of Immune and Cancer cells (EPIC) algorithm (https://gfellerlab.shinyapps.io/EPIC_1-1/
(accessed on 26 February 2021)) [28] with bulk expression files using FPKM or counts
input and reference expression files or signatures from gsea msigdb C7 (https://www.gsea-
msigdb.org/gsea/msigdb/ (accessed on 26 February 2021)). (Supplementary Table S1) with
https://biit.cs.ut.ee/gprofiler/convert (accessed on 26 February 2021) for formatting gene
IDs. We normalized results within each algorithm and used clustvis [30] to represent data
trends across algorithms.

2.5. In Vivo Studies

Animal care and all experimental protocols were approved by the Purdue University
Animal Care and Use Committee (PACUC), and all experiments conform to all relevant
regulatory standards (PACUC #1508001279). ARRIVE guidelines and recommendations
from an NIH-sponsored workshop have been followed regarding experimental design and
reporting standards. Tumor cells (TC2R [13], 5 × 105) were implanted subcutaneously in
C57BL6 males (8–10 weeks old) and sonoporation of 12.5 µg of pIL27ns (non-specific pep-
tide at C-term), pIL27pepL (LSLITRL at C-term), or pMCS empty vector control (pcDNA3.1)
with polymer rNLSd+ultrasound+MB was carried out (plasmids and sonoporation de-
scribed in detail in [4]). We administered plasmids intramuscularly on day 4 (average tumor
volume of ~30mm3), based on a report of sequential IL-12 and IL-27 therapy [5] and the
recombinant IL-18 cytokine intratumorally on day 10, based on a prostate tumor model where
localized IL-18 was promising therapeutically [9]. Mice (n = 4–6/group) were randomized by
tumor size relative to treatment tested (pMCS, pIL27ns, plus or minus rIL-18).

2.6. Statistical Analyses

Assays were performed in triplicate and values provided as mean ± SEM or 95%
confidence interval. Comparisons were performed using unpaired t-tests for in vitro data
or one-way analysis of variance analysis (ANOVA) for in vivo data (https://acetabulum.
dk/anova.html (accessed on 2 February 2021)) using the Bonferroni t-test, and p < 0.05 was
considered to indicate a significant difference.

3. Results
3.1. Sequential Administrion of IL-27 and IL-18 Impacted Prostate Tumor Cell Viability and
Gene Expression

We examined the impact of using both cytokines first in recombinant form for initial
activity screening. In this in vitro setting, we detected significant reduction in TC2R prostate
cancer cell viability when IL-27 was used alone or co-administered with IL-18 relative
to untreated control (Figure 1A; *, p < 0.05) and each single cytokine alone (#, p < 0.05).
However, the only combination that reduced cell viability significantly relative to either
single cytokine was the sequential administration of IL-27 and IL-18 (27→18). Next, we
examined the effect of the 27→18 combination relative to single cytokines on differential
gene expression in TC2R cells, selecting genes that our lab and others have shown to be
modulated by IL-27 or IL-12. The 27→18 combination significantly upregulated key genes
predicted to mediate a greater therapeutic impact such as IL12p40, Tbx21, STAT1, and
IFNγ (Figure 1B, *, p < 0.05 compared to control). Interestingly, IL-18 can synergize with

http://timer.cistrome.org/
https://gfellerlab.shinyapps.io/EPIC_1-1/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://biit.cs.ut.ee/gprofiler/convert
https://biit.cs.ut.ee/gprofiler/convert
https://acetabulum.dk/anova.html
https://acetabulum.dk/anova.html
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IL-12, and its IFNγ upregulation can act as a feedforward loop by inducing transcriptional
activation at the IL-18 promoter [31]. Upregulation of STAT1/Tbx1 indicates induction
of genes specific to the IL-27 pathway, whereas a cooperation between IL-27 and IL-18
may promote upregulation of IL12p40. In a reported IL-12→27 sequence, the growth of
immunogenic colon and breast tumors was suppressed through a CD4 and CD8 T cell
and IFNγ-based anti-tumor response [5]. This would suggest similar immune effector
mechanisms for the 27→18 sequence in vivo.

Figure 1. Impact of IL-27 and IL-18 administration sequence on prostate tumor cell viability. (A) The effect of treating
prostate cancer cell line TC2R with cytokines was assessed at day 3 or 6, relative to day 1, using CCK8 cell viability assay
with triplicate wells and expressed as a % relative to untreated control. Groups are untreated (control), IL-18, or IL-27 single
cytokines, or combinations of cytokines. For the sequential administration, the baseline CCK8 is read at day 1, post seeding
of cells. Then, on day 1, the first cytokine is given for 48 h, then media switched on day 3 to include both cytokines for
another 48h, media switched again on day 5, and CCK read at day 6 (at 120 h). *, p < 0.05 relative to the ‘no treatment’
group. #, p < 0.05 relative to the IL-27 and IL-18 groups. ‡, p < 0.05 for the IL18 group relative to IL27; (B) Gene expression in
TC2R cells (qPCR), mean value ± SD from triplicates; color bar, fold change over control untreated and corrected to β-actin
housekeeping gene; All are significant (p < 0.05, two-tailed t-test) relative to control, except those marked with the symbol §,
p > 0.05; (C) Diseases and Organismal Functions using Ingenuity Pathway Analyses. Color bar, activation z-score.

The qPCR results were input into the Ingenuity Pathway Analysis (IPA) software
to examine diseases and organismal functions associated with these gene expression
differences. IPA predicted general increases in cancer cell related functions of increased
cytotoxicity of cells and reductions in growth of tumors with double cytokine treatments.
Although limited to being a tumor cell culture, the gene expression patterns suggested
that cytokines might modulate changes in the tumor cells, which could ultimately have an
impact on immune cells when translated to an in vivo setting. Tumor microenvironment-
related gene expression patterns suggested pathways relating to chemotaxis of phagocytes
and recruitment of T lymphocytes (Figure 1C). Based on these functions, predicted to
mediate the effects of the 27→18 sequence, we next sought to determine the impact of
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single or combination cytokines in vivo on the tumor-immune cell microenvironment with
a broader study using RNA-seq.

3.2. The 27→18 Interleukin Sequence Enhanced Antitumor Activity In Vivo

In vivo, our design was modified due to previous success with delivery of IL-27 using
gene therapy methods. We examined the effects of delivering plasmids, encoding either
for an untargeted IL-27 (non-specific peptide at the C-term) or a IL27 targeting IL6Rα
(IL27pepL), using intramuscular (I.M.) sonoporation relative to control vector (pMCS). The
IL-18 was given as a recombinant cytokine (rIL-18) intratumorally, based on a previous
study where it could yield partial antitumor responses when administered directly to
prostate tumors [9].

When testing IL-27 vectors and IL-18 together for potential synergy, we observed a
significant reduction in tumor growth rate by day 15 relative to the control vector alone
(Figure 2A). The sonodelivery of IL-27 has been previously described by our group [6,7] and
utilized a polymer containing nuclear localization signals (rNLSd) complexed with plasmid
DNA, delivered I.M. in the presence of microbubbles, and stimulated with ultrasound. By
day 21, the 27→18 combination reduced tumor volume by ~21–52% relative to IL-27, IL-18,
or vector control. By day 26, the 27→18 combination reduced tumor volume by ~76%
relative to the control and by ~50–60% relative to single cytokine groups. Tumor growth
rate was inhibited by ~40% for IL-18, ~49% for IL-27, and ~72% for 27→18-treated tumors,
relative to control, between days 15 and 26. We next studied the impact of delivering
a targeted form of the IL-27 vector, which we have recently described as more potent
than wild-type untargeted IL-27 [4,12], because it has IL-27 functions enhanced by IL-6Rα
inhibition. Interestingly, the IL-27 targeted to the IL6Rα (27pepL) was as effective as
the dual therapy 27→18 (Figure 2B). Most notably, the addition of rIL18 to the 27pepL
further magnified its effectiveness (Figure 2B), and produced an impressively efficacious
therapeutic and the only group in which tumor volume was reduced over the initial
tumor size.

Figure 2. In vivo data shows tumor growth and gene expression impacted differently by the sequential 27→18 therapy.
(A) Tumor volume (mm3) over time for the control (empty plasmid pMCS) and therapeutic groups (plasmids expressing
untargeted IL27 (pIL27), targeted IL27 (pIL27pepL), or rIL18) for TC2Ras s.c. tumors (mean ± SEM); (B) Tumor volume
(mm3) corrected to the initial tumor volume for examining the growth rate over time using ANOVA for comparing group
differences (mean ± SEM). *, p < 0.05 compared to pMCS-treated control tumors; #, p < 0.05 compared to mice treated with
single rIL18 or pIL27 (untargeted) therapies.

We next examined the mechanisms of therapy on prostate tumors via RNAseq anal-
yses, as described in Materials and Methods. We determined the number of significant
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(p < 0.05) differentially expressed genes (DEG) per treatment group. The IL-18 treatment
group had 305 up- and 479 downregulated, IL-27 had 510 up- and 59 downregulated, and
IL27pepL had 123 up- and 260 downregulated DEG. The 27→18 treatment group had 189
up- and 231 downregulated, and the 27pepL→18 had 166 up- and 253 downregulated
DEG. From these totals, a list of the top 50 upregulated and bottom 50 downregulated DEG
per treatment was input into camcAPP [32] for comparison with human prostate cancer
datasets. The summary of correlations found with human prostate cancer DEG and with
potential therapeutic impact are presented in Figure S1. Next, we will present the findings
on therapy impact on global signaling pathways in prostate tumors by utilizing canonical
pathway and upstream regulator analyses.

3.3. Overview of Canonical Pathways Modulated by Single and Double Therapies

We examined the effect of therapies on tumors via the Ingenuity Pathway Analysis
(IPA) software using the canonical pathways analysis, noting several trends among the
therapy groups (Figure 3). For example, relative to control vector, most of the therapies
(except for IL-27) showed a z-score predicting inhibition of the liver X receptor-retinoid X
receptor (LXR-RXR) pathway. Additionally, there was a predicted inhibition in the oxidative
phosphorylation pathway, except for those groups that contained IL-27. Common to the
IL-18 and IL-27, single therapies were predicted activations of IL7, Th2, NK cell, GM-CSF,
inositol phosphate-related pathways, and FLT3 signaling in hematopoietic progenitors.
Common to the 27pepL groups were predicted reductions in retinol and triacylglycerol-
related pathways.

Figure 3. Canonical pathways comparison analysis across therapies (each lane represents a core analysis of a therapy
group relative to control vector) for insights into general mechanisms of action. Color bar, activation z-score range, with
p value < 0.05 as a cutoff. Hierarchical clustering was utilized in Ingenuity Pathway Analysis (IPA) to group pathways with
similar patterns of z-score activation or inhibition across samples.
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In IL-27-containing groups, several inflammation or infection-related pathways were
predicted to be activated, including TREM1 signaling, pattern recognition receptors, neu-
roinflammation, and acute phase response, whereas inhibition of the PD1/PD-L1 cancer
immunotherapy pathway was predicted. Dendritic cell maturation was predicted at higher
activation scores in IL-27-containing groups, whereas CD28 signaling in Th cells was pre-
dicted as activated only for the single therapies. Several T-cell related pathways were
predicted as activated in IL18- and/or IL-27-containing groups, including Th1 and TCR
signaling. Common to the 27→18 and 27pepL→18 groups were activations of TREM1, IL17,
Leukocyte extravasation, ILK, actin-based motility by Rho, Fγδ receptor-mediated phago-
cytosis in macrophages, and estrogen receptor signaling, among others. Finally, common to
27pepL and the double therapies, were a predicted increase in LPS/IL1-mediated inhibition
of RXR function, and inhibitions of stearate- and retinoate-related biosynthesis pathways.

3.4. Integrating Findings from the Canonical and Upstream Regulators Analyses for the
Single Therapies

We assessed the upstream regulators predicted in the different groups using the differ-
entially expressed genes per each therapy (Figure S2). For the IL-18-treated tumors, the
top 30 regulators included RICTOR, LARP1, TNF, PGR, TGFβ1, CSF1, SIRT3, CPT1B, IL6,
and WNT3a. The bottom 18 regulators included MLXIPL, MYC, MYCN, DDX5, DAP3, Lh
(complex), TWNK, ADAM12, MRPL12, and FASN (Figure S2A).

For IL-27-treated tumors, among the top 30 activated regulators were IFNγ, IFNα/IFNαR,
STAT1, IL33, CSF2, NFkB, IRF7, TGM2, IL5, and SMARCA4 (Figure S2B). Among the
bottom 30 inhibited regulators were mir-21, Irgm1, SOCS1, INSIG1, TRIM24, HOXA10,
ETV6-RUNX1, SIRT1, IL-10RA, and PNPT1. For the 27pepL treatment, among the top 26
activated regulators were TNF, CSF1, CD40, SIRT3, IFNα, Ig (complex), IL18, TNF, IL3,
and mir-33 (Figure S2C). Among the bottom 30 inhibited regulators were HNF1A, HNF4A,
SMARCB1, ADIPOQ, PPARγ, NR3C1, FASN, PEPB1, FST, and LONP1.

To integrate the findings from the canonical pathways and upstream regulators analy-
ses, we utilized the IPA graphical summary feature with a hierarchical representation of
the key effects of each of the single therapies on prostate tumors (Figure 4).

For IL-18, the major activated regulators were TNF and IL6, and the inhibited network
centered on PPARγ. Other key regulators included TGFB1, SIRT3, CSF1, EPAS1, and
RICTOR. Several of these changes appeared to reduce functions associated with cell or
organismal death or enhance development of endothelial cells.

For IL-27, the major regulator was IL2, with links to several immune-signaling
molecules including TSLP, IL3, JAK3, STAT1, CD28, IL15, IFNγ, IL1β, and TNF. Mir-21 and
CTLA4 were downregulated. Several pathways were connected to the key regulators, in-
cluding hematopoiesis, differentiation and binding of mononuclear leukocytes, stimulation
of lymphocytes, lymphopoiesis, and Th1 and Th2 pathway activation.

For the 27pepL group, the major regulator was TNF, with connections to IFNα1/13,
CSF2-CSF1, IL15, CD28, and RELA. Also observed were inhibition of FGF21-PPARγC, oxi-
dation of fatty acid, metabolism of terpenoids and steroids, and LXR/RXR activity. Other in-
hibited regulators were ADIPOQ and HNF1A/4A. Additional inhibited processes included
insulin-related pathways and the acute phase response (inflammatory/infection) signaling.

3.5. Integrating Findings from the Canonical and Upstream Regulators Analyses for the
Combination Therapies

For the combination therapies, we also assessed the upstream regulators predicted using
the differentially expressed genes for each therapy. For the 27→18-treated tumors, the top
30 regulators included IFNγ, CSF1, IL21, LDL, MYD88, P38-MAPK, TLR3/4, CSF2, and IL2
(Figure S3a). Among the 30 bottom regulators were HNF1A/4A, ADIPOQ, IL10RA, and
ACOX1, (Figure S3b). To integrate the findings from the canonical pathways and upstream
regulators analyses, the IPA graphical summary feature was used to represent the key
effects of each of the combination therapies on prostate tumors (Figure 5).
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Figure 4. Graphical Summary for (A) IL-18, (B) IL-27, and (C) 27pepL single therapies.

Figure 5. Graphical Summary for (A) 27→18 and (B) 27pepL→18 combination therapies.

For the 27→18 therapeutic sequence, the major activated regulators were IFNγ,
IL1α/β, and TNF, and the major inhibited pathway was LXR/RXR, with additional inhib-
ited regulators including ADIPOQ and HNF1A/4A. Several activated regulators (IFNγ,
NOD2) connected to the enhanced recruitment of leukocytes, leukopoiesis, differentiation
of mononuclear leukocytes, whereas other regulators (TNF, TNFSF11) connected to the re-
cruitment of myeloid cells. For 27pepL→18, the major activated regulators were IFNγ and
TNF, whereas inhibited regulators included PPARγ, BCL6, FGF21, HNF1A/4A, NR1H2,
and ADIPOQ, impacting functions such as transport/quantity of steroid, oxidation of fatty
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acids, or flux of lipid. Most of the activated regulators connected to activate processes
such as binding of leukocytes or blood cells and transmigration of cells, with predicted
activation of TLR3/7/9, IL1α/β, RELA, and NFkB1.

3.6. Immune Profiling Estimated Patterns for Several Effector Cells in Tumors
Following Treatments

Based on the IPA analyses identifying many regulators and pathways relating to
leucocyte recruitment and differentiation, we estimated that immune effectors would be
differentially recruited to tumors and could underlie the therapeutic efficacy differences
observed in this study. Utilizing bioinformatics tools for immune cell profiling with the
RNAseq data, we performed an initial analysis focusing only on the broad infiltration
or microenvironment scores using XCell and ImmucellAI, as described in Materials and
Methods. The XCell analysis showed the highest Immune Scores (composite score of immune
cell types) for 27→18, followed by 27pepL and 27pepL→18 (Figure 6A).

Figure 6. Tumor microenvironment and cellular profiling. (A) Immune, Stroma, Microenvironment, or Infiltration Scores.
Color bar, range of relative values normalized to the highest score within each platform. (B) Immune cell profiling from
utilizing bioinformatic tools with RNAseq tumor data, normalized within each platform, and clustered using Clustvis.
Green boxes show the clusters enriched in each treatment group. (C) Venn diagram summarizing the main cell profile
signatures detected in tumors with each therapy.
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The Stroma Score was the highest for 27pepL→18. The XCell Microenvironment Score
(composite scores of immune cell types and stromal cell types) followed a similar trend as
the ICAI infiltration score, with the highest being 27pepL→18, followed by lower scores
for 27→18 and 27pepL. The only positive score for the IL18-treated tumors was the ICAI
Infiltration Score, which estimates degree of tumor infiltration by immune cells.

A more detailed analysis was carried out next using various algorithms, as described
in more detail in Materials and Methods. Clustering analysis of the results showed a
cell type enrichment signature in the IL-18 treated tumors for several immune cell types
consistent with the IPA and Reactome pathways implicated in therapy effectiveness, in-
cluding monocytes, eosinophils, CD4 naïve, regulatory T (Treg), neutrophil, T helper 1
(Th1), macrophages including M1- or M2-polarized, natural killer T cells (NKT), plasma
cells, plasmacytoid dendritic cells (pDC), and multipotent progenitor (MPP). For the IL-
27-treated tumors, we detected signature enrichment for several cell types, including
conventional DC (cDC), mast cells, monocytes, B cells, Lymphoid, myeloid DC (mDC)
activated, fibroblasts, follicular T helper (Tfh), CD8a DC (DC8a), pDC, NK1.1 natural killer
cells CD11b (NK11) and CD27 CD11b (NK27.11), granulocyte-monocyte progenitor (GMP),
M2 macrophages, gamma delta T (Tγδ), and monocytic myeloid-derived suppressive cells
(mMDSC) (Figure 6B).

For the 27→18-treated tumors, we detected a cell type enrichment signature of B cells,
monocytes, plasma cells, neutrophils, CD8 T effectors, and Tfh. For the 27pepL-treated
tumors, we detected enrichment signatures of CD4 T, progenitors GMP and LMPP, B
cell class-switching memory cells, three DC signatures including mDC activated, two
CD8 T signatures, and three NK signatures including NK.27. For the 27pepL→18 treated
tumors, we detected enrichment in endothelial, HSC, mDC resting, neutrophil, Treg,
mMDSC, Th2, CD4 memory activated, progenitor lymphoid, CD8, two macrophage or
macrophage/monocyte, two HSC, and two NK signatures.

Thus, overall, the therapies impacted multiple mechanisms relating to antitumor
immunity; however, several pathways and immune cells might hinder therapeutic effec-
tiveness, thus opening up avenues for future interventions that could be paired with the
cytokine sequences presented here for achieving therapeutic synergy.

4. Discussion

In this manuscript, we describe the therapeutic administration of IL-27 in a sequential
manner with IL-18 for treating prostate cancer. IL-27 has shown promise in halting tumor
growth and mediating tumor regression in several cancer models, including prostate cancer.
Previous work by Ziblat et al. [10] showed that IL-27 delivery could prime NK to IL-18’s
effects of high-level IFN-γ and cytotoxic action towards Raji, T47D, and HCT116 tumor
cells. We therefore hypothesized that the efficacy of our IL-27 gene delivery protocol for
prostate tumors could be augmented if combined with IL-18 administration, especially if
administered sequentially. For delivery of IL-27, we used intramuscular (I.M.) sonoporation
in vivo (sonodelivery) of plasmids encoding either untargeted IL-27 (27) or targeted to
the IL6Rα (IL27pepL or 27pepL), relative to control vector (pMCS) and in the absence
or presence of rIL-18 (IL-18 or 18) intratumoral administration. We chose sonodelivery
because we have recently utilized this strategy to achieve partial antitumoral responses
for IL-27 [1,7], whereas intratumoral rIL-18 has yielded partial antitumor responses when
administered directly to prostate tumors [9]. Initial studies in vitro used a qPCR screen
with IPA analysis, which presents several limitations, including few directional effects
(e.g., downstream functions and upstream regulators). However, this initial data served to
choose the initial sequencing of 27→18 as the most promising for in vivo validation, as well
as validating the priming concept from Ziblat et al [10], but for the first time in prostate
tumor cells. Indeed, we observed a significant reduction in tumor growth rate, with the
27→18 combination most substantially reducing tumor volume relative to single cytokine
groups. We also explored the impact of the targeted form of IL-27, which we have recently
described as more potent than wild-type or untargeted IL-27 [4,12]. Supporting the recent
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data, the 27pepL was as effective as 27→18. Adding IL18 to the 27pepL (27pepL→18)
further magnified its effectiveness, and in this treatment group the average tumor volume
was stably controlled.

We next examined the mechanisms of therapy on tumors via RNAseq analyses and
determined a comparison canonical pathways analysis across all therapies. Common to
most therapies was a downregulation in the LXR/RXR pathway, except for IL-27 alone.
The liver X receptors (LXR) are nuclear receptors that integrate metabolic (transcriptional
control of lipid metabolism) and inflammatory responses in tumor and immune cells [33].
Their downregulation points to a residual inflammatory tumor microenvironment, which
could be therapeutically manipulated to aid in rebalancing the tumor with activated M1
macrophages, for example. In IL-27-containing groups, although the LXR/RXR pathway
was upregulated, several other inflammation or infection-related pathways were predicted
to be activated, which could impact treatment positively or negatively depending on the
cell types present. For example, the TREM1 pathway could be beneficially associated
with M1 tumoricidal macrophages, and the predicted inhibition of the PD1/PD-L1 cancer
immunotherapy pathway in IL27-containing groups could act to enhance T cell activation,
proliferation, and survival [34].

Common to IL-18 and IL-27 single therapies were predicted activations of IL7, Th2, NK
cell, GM-CSF, inositol phosphate-related pathways, and FLT3 signaling in hematopoietic
progenitors. These suggest a potential impact on hematopoietic cell recruitment of both
lymphocytic and mononuclear cells, aligning with the immune cell signature analyses.
Common to the 27pepL groups were predicted reductions in retinol and triacylglycerol-
related pathways, and these could potentially promote or reduce tumor cell growth (via
Treg inhibition), depending on the context [35]. Anti-tumor T-cell related pathways were
predicted as activated in IL-18- and/or IL-27-containing groups, including Th1 and TCR
signaling. Dendritic cell maturation activation was predicted at higher levels in IL27-
containing groups. Detrimental (Th2-promoting) pathways included CD28 signaling for
both single therapies, and activation of TSLP, a hematopoietic cytokine, for the IL27 therapy
group. Common to the 27→18 and 27pepL→18 groups were pathways of enhanced
macrophage activity and leukocyte infiltration, and these may be pro- or anti-tumorigenic,
depending on the context. IL1 and other proinflammatory mediators identified as activated
in the 27pepL, and the double therapies could potentially be detrimental for controlling
tumor growth.

The integration of the canonical pathways and upstream regulators datasets led to
graphical summaries that aided in interpretation of therapeutic effects. For IL-18, the
major activated regulators were TNF and IL6, with key contributions from TGFB1 and
CSF1, and an inhibited PPARγ network. These changes appeared to reduce functions
associated with cell or organismal death or enhance development of endothelial cells,
which could be detrimental for treating tumors. For IL-27, the major regulator was IL2,
with links to many other immune related molecules. Upregulation of JAK-STAT molecules
and IFNγ likely underlie the antitumor effect of this therapy and correlate with immune
cell signatures detected in tumors. A pro-inflammatory environment (IL1β and TNF)
could stimulate tumor growth but also promote tumoricidal M1 macrophage activity.
Predicted upregulation of JAK3 and CD28 could inhibit the PD1/PDL1 pathway via
CTLA4 inhibition, whereas miR-21 inhibition augments FLT3LG activation. FLT3LG
promotes hematopoiesis of lymphocytes and mononuclear cells, and this is enhanced by
TNF activation. NFATC1, TSLP, and IFNγ also connected towards predicted enhancement
of mononuclear cell differentiation, stimulation of lymphocytes, lymphopoiesis, and Th1
and Th2 pathways. For 27pepL, the major regulator was TNF, with other effectors such as
activated IFNα1/13 and CSF1/2, which can help enhance the antitumor effects of IL-27 in
the tumor microenvironment, either by impacting lymphocytes (when connecting to IL15-
CD28) or myeloid cells (when connecting to RELA activation). Inhibition of FGF21-PPARγ
was central to a network of reduced fatty acid oxidation, metabolism of steroids, and
LXR/RXR regulation. Interestingly, PPARγ plays a role in controlling inflammation, and its
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expression increases in advanced prostate cancer; thus, its inhibition has been proposed for
prostate cancer prevention and treatment [36]. Other alterations with a tumor-inhibitory
impact would be inhibition of ADIPOQ, associated with prostate cancer progression
risk [37], and HNF1A/4A, recently proposed as oncogenic in pancreatic cancer [38]. Also
inhibited were CEBPB and insulin-related processes, likely contributing to the reduced
acute phase response (inflammatory/infection) signaling.

For the 27→18 sequential delivery technique, the major activated regulators were
IFNγ, IL1α/β, and TNF, all predicted to inhibit the LXR-RXR pathway. Another central
inhibited regulator was ADIPOQ, and this was predicted to underlie the increases in
TNF, IL17A, and IFNγ. Several regulators (e.g., IFNγ, NOD2) connected to enhanced
recruitment of leukocytes, leukopoiesis, or differentiation of mononuclear leukocytes.
TNF and TNFSF11 activation connected to the recruitment of myeloid cells, potentially
relating to the detection of mDC cell signatures by the immune cell profiling analyses. For
27pepL→18, the major activated regulators were IFNγ and TNF, both impacting several
molecules (HNF1A/4A, PPARγ, BCL6, FGF21, and NR1H2), which inhibited lipid or
steroid transport/quantity, oxidation of fatty acids, and flux of lipid, functions which
were connected through a network of reduced LXR-RXR activity. Most of the regulators
activated processes such as the binding of leukocytes or blood cells, and transmigration of
cells. Also connected through TNF-TNFSF11 were activated TLR3 and RELA, culminating
in IL1α/β, NFkB1, and CSF1 activation. This network indicates a potential hub of myeloid
cell signaling that could be manipulated therapeutically.

Based on the many immune-related functions and regulating molecules by IPA anal-
ysis, we hypothesized that immune effectors would be differentially recruited to tumors
and could underlie the therapeutic efficacy differences. Utilizing bioinformatics strategies
for immune cell profiling with the RNAseq data, we observed high immune scores for
the dual therapies and targeted IL27 that usually correlate with increases in effectors in
tumors. Several immune signature scoring algorithms were used, and these methods have
been found to yield results consistent with those derived from immunohistochemistry
and related methods examining lymphocyte-specific expression patterns within cancer vs.
non-cancer cellular compartments [23,28]. The multiple algorithms included TIMER2.0
(containing XCell, MCP-Counter, QuantiSeq, and others), EPIC, ICAI, and TIP, as described
in Materials and Methods. These algorithms have been systematically benchmarked on a
variety of tumor types along with characterization of gene signatures of sorted immune cell
populations as controls [23,24]. However, the limitations are that these remain bulk tumor
transcriptome profiling methods, utilizing gene signature enrichment analyses or deconvo-
lution methods. With the increasing accessibility of single-cell technologies, there will be
likely continued improvements in defining immune cell signatures and in computational
estimation methods for tumor profiling.

Clustering analysis of the results showed an enrichment in the IL-18 treated tumors
for monocytes, macrophages including M1, M2, eosinophils, neutrophil, CD4 naïve, Treg,
Th1, NKT, plasma, pDC, and progenitor MPP, some of which align with the functions
of phagocytosis and leucocyte migration detected by other analyses. The effector cells
Th1 and NKT would likely underlie some of the therapeutic efficacy seen in IL-18 treated
tumors; however, the other immune-suppressive cell signatures detected (Treg, M2, pDC,
macrophages) may hinder therapeutic efficacy. The detection of MPP progenitors, which
very recent data links to later stages of tumor progression, could implicate a subpopulation
able to generate pro- or anti-tumorigenic macrophages depending on the context [39].
Inflammatory signals in tumors might promote progenitor accumulation [40].

For the IL-27-treated tumors, we detected enrichment of signatures for DC (conven-
tional or cDC (IFN-producing), myeloid DC or mDC (activated), DC8a (CD8a), and plasma-
cytoid DC or pDC), mast cell, monocyte, B cell, Lymphoid, fibroblast, Tfh, NK.11 (CD11b)
and NK.27.11 (CD27/CD11b), granulocyte-monocyte progenitor (GMP), M2 macrophages,
Tγδ, and monocytic MDSC (mMDSC). The effector cells (NK, Th1, other T cells, c/mDC)
likely underlie the therapeutic efficacy observed in IL-27-treated tumors; however, there
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were other residual immune-suppressive cells (M2, mMDSC, pDC), which could hinder
therapeutic efficacy. Tfh is a CD4 T helper subset (T follicular helper) was recently found to
correlate with improved survival when increased in tumors and, along with B cells, can
mediate the response to checkpoint inhibitors in mouse models of augmented mutation
burden in breast cancer [41]. The GMP can partially underlie the increases in monocytic
cells, although these also are able to induce Treg, and are often biased toward myeloid
differentiation in tumors, worsening prognosis [42]. In future iterations of IL27 therapies,
targeting the GMP stage for depletion may enhance efficacy by controlling myeloid cell
burden [43]. The NK signatures detected have important implications, with NK.27 and
NK.27.11 being more cytotoxic than NK.11 [44].

For the 27pepL-treated tumors, we detected enrichment of signatures for CD4, NK/NK.27,
CD8 T, mDC activated/DC, GMP and lymphoid-myeloid progenitors (LMPP), and B cell
class-switching memory. These e-signatures were different than for untargeted IL-27, sug-
gesting that the higher therapeutic efficacy of 27pepL might relate to certain combinations
of effectors, such as NK.27 combined with CD8T, which can act in synergy [23], activated
DCs, and/or progenitors including the LMPP, which may act as pro- or anti-tumorigenic,
providing both lymphoid (antitumor) and myeloid (antitumor M1 or immune suppressive
M2, MDSC) cells.

For the dual therapies, we detected, for 27→18-treated tumors, enrichment of B cell,
monocyte, plasma cell, Neutrophil, Tfh, CD8T effector/CD8, mDC activated, fibroblast,
and Tfh signatures. CD8 signatures were more prominent for this treatment, and CD8
infiltrations correlate with better prognosis and are an important predictor of response to
immune therapy [45]. For the 27pepL→18 treated tumors, we detected enrichment of en-
dothelial cells, macrophage/monocytes, NK, HSC, mDC resting, neutrophil, Treg, mMDSC,
Th2, CD4 memory activated, progenitor Lymphoid, and CD8. These results suggest that
several effectors could underlie the highest efficacy for this therapy combination, including
NK, mDC, and CD8, although several immune suppressive cells may be residual following
therapy, including Treg and mMDSC, as well as endothelial cells, which could be detrimen-
tal to therapy. Interestingly, HSC and progenitor cells retain a certain degree of mobility,
with a small fraction of progenitors constantly recirculating between BM and peripheral
blood, surveilling extramedullary sites and participating in local immune responses [46].
They are recruited to sites of injury [47] and react to inflammatory stimuli with proliferation
differentiation into myeloid cells, as well as with secretion of chemokines and cytokines.

In conclusion, although some inflammatory regulators remain in the 27pepL and
combination therapies, the signaling context of reduced PPARγ and LXR-RXR activation
and the presence of certain immune cell effectors may help explain the higher therapeutic
success of these modalities relative to the untargeted cytokine controls. There seems also
to be a role suggested by detection of a CD8 T signature in the most effective therapies.
Overall, the analyses utilized and their integration gave different insights into the therapies,
suggesting some future directions to enhance the present IL27-based therapeutics, including
the combination of 27pepL with inhibition of PD1/PD-L1, CSF1/2, or LXR-RXR ligands,
which may target tumor and immune cells such as macrophages. Other potentially useful
parameters to promote the efficacy of 27pepL-based therapeutics may involve inhibition
of TSLP, TNF, and IL1α/β signaling that direct the immune balance towards CD8 T
lymphocytes in tumors.

Furthermore, the present work may impact treatment of other disease types and
cancer types, but with careful consideration of the application and the inflammatory status
of the tissue(s) to be treated. For example, because IL-18 has recently been shown to have
an unfavorable predictive role in some inflammatory contexts (non-alcoholic fatty liver
disease (NAFLD) [48]), for certain therapeutic settings it might be best to utilize 27 or
27pepL single therapies. IL-27 has been reported to augment the anti-tumor effects of
sorafenib on bladder cancer cells [49]; thus, there could be promise for utilizing 27-related
therapies for this cancer type. One interesting approach could be to engineer IL-27 with a
C-terminal peptide mimic of sorafenib as a novel therapy. Future preclinical studies might
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examine the potential for evolving IL-27-based therapies and combinations with other
cytokines for the treatment of bladder cancer.
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combination therapies, and Table S1: Gene expression signatures utilized in the EPIC RNAseq cell
profiling analyses.
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