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Abstract: Emerging evidence indicates that the dysregulation of cellular redox homeostasis and
chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders.
In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S)
exert cytoprotective actions through the modulation of redox-dependent resilience pathways
during oxidative stress and inflammation. Several recent studies have elucidated a functional
crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is
represented by oxidative stress and inflammatory processes which contribute to the high prevalence of
neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic
kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related
to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α
(TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk.
The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative
stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated,
at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock
protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions
at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory
damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal
and brain injuries in humans.

Keywords: carnosine; hydrogen sulfide; inflammation; oxidative stress; vitagenes; kidney–brain axis

1. Introduction

The dysregulation of cellular redox homeostasis and chronic inflammatory processes represent
interdependent factors implicated in the pathogenesis of multiple diseases, including atherosclerosis
and cardiovascular diseases, neurodegenerative diseases, chronic kidney disease, diabetes, cancer,
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and aging [1,2]. Both inflammation and oxidative stress are orchestrated to accentuate each other and to
induce progressive damage. Thus, their complex interrelations should be considered when evaluating
novel therapies [2]. In this regard, many small molecules able to modulate endogenous cellular
defense mechanisms and biochemical pathways of cytoprotection have demonstrated a major role
for cellular protection in neurodegenerative disorders such as Alzheimer’s Disease (AD), Parkinson’s
Disease (PD), Multiple Sclerosis (MS), and chronic inflammatory diseases such as Type 2 Diabetes
mellitus (T2DM) [1]. The biological relevance of carnosine and its derivates and their metabolism
is only partially understood but there is evidence that a group of histidine-containing dipeptides
(HDPs) have a protective function in disease progression. Carnosine inhibits glycation [3], functions as
a carbonyl scavenger [4–6], acts as an ion-chelating agent, especially for copper(II) and zinc(II) [7],
and as an ACE inhibitor [8,9]. Several studies demonstrated a multifunctional antioxidant activity
of carnosine [10–13], anserine, and homocarnosine [14,15]. Moreover, it is suggested that these
activities are likely mediated, at least in part, via hormetic processes, involving Nrf2, Hsp70, Sirt-1,
Trx, and the glutathione system [16]. The evidence to support this general perspective is strongly
suggestive but limited in specificity. For example, Nrf2 activation can follow a hormetic biphasic dose
response in various cell types [17,18]. There is also a substantial number of papers demonstrating the
occurrence of H2S-induced hormetic dose responses in a broad variety of cell types such as cardiac [19],
bone marrow stem cells [20], mammary epithelia cells [21], endothelial cells [22], lymphocytes [23],
hepatocytes [24] as well as the brain [25] and neuro-stem cells [26]. However, research is needed to
further explore whether and to what extent kidney–brain crosstalk occurs, its underlying mechanisms,
whether effective treatment could be formulated, and how these factors may be related to hormetic
processes. Despite these limitations, there is substantial documentation in the experimental literature
that low doses of X-rays prevent the occurrence of diabetes-induced renal toxicity via the activation of
the Nrf2 pathway. On the other hand, when blocking this activation, the protection disappears [27]. In a
parallel manner, low dose X-ray treatment induces the development of a generalized anti-inflammatory
phenotype that reduces arthritic inflammation in humans for prolonged periods [28,29]. Calabrese et al.
(2019) [30] report that low dose X-ray treatments reduced inflammatory processes in numerous organs
including the brain. Since Nrf2 activation is commonly induced via X-rays to affect these protective
processes, it is likely that physical and/or chemical activators of Nrf2, such as H2S, may have clinical
application within the context of the kidney–brain axis, as therapeutic modulation of these protective
pathways can be mutually beneficial. The brain and the kidney interact strongly, and patients with
neuropsychiatric disorders have a higher frequency of renal diseases. The crosstalk between the two
organs may be caused by inflammatory processes via cytokine/chemokine release, oxidative stress via
production of ROS, and factors related to the renin–angiotensin system [31].

Inflammation and oxidative stress are tightly linked and are emerging as key factors in several
chronic diseases. Understanding the interrelation between oxidative stress and inflammation and
the antioxidative and anti-inflammatory protective effects of carnosine and H2S in kidney and brain
pathophysiology may lead to new therapeutic interventions and are now discussed.

2. Carnosine Signaling in Kidney and Brain

Carnosine (ß-alanyl-L-histidine), anserine (ß-alanyl-Nπ-methyl-histidine), homocarnosine
(γ-aminobutyryl acid-L-histidine), and ophidine/balenine (ß-alanyl-Nτ-methyl-histidine) belong to
the HDPs. These dipeptides are found in humans, mammals, fish, and amphibia and their ratio and
concentrations vary widely. In mammals and humans, carnosine seems to be the most important
dipeptide, with the highest concentrations in the muscle (up to 20 mM), mostly together with either
anserine or ophidine in different ratios [32]. Their abundant presence in muscles has been linked to
their ability to counteract the massive production of lactic acid occurring during intense muscle activity,
thus preventing a decrease in cytosolic pH [33]. Carnosine is also present in the kidney of mice [34,35],
retina [36], liver [37], and spleen [38]. The highest carnosine concentrations in the brain were found in
the olfactory system and carnosine levels are comparable to those usually found in skeletal muscle.
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However, homocarnosine is the most prevalent dipeptide in the mammalian brain [39] and this has
been attributed to the bioavailability of GABA (γ-aminobutyric acid), the non-proteinogenic precursor
of homocarnosine, exclusively present in the brain areas [40].

2.1. Carnosine in Cell Lines

Evidence from studies on cerebral cell cultures showed that carnosine is produced by glial cells [39].
The extensive distribution of glial cells in the brain and spinal cord suggest a broad spectrum of function
and a diffuse presence of carnosine and its related dipeptides in the central nervous systems [40].
Carnosine is metabolized by two carnosinases, members of the M20 family of metalloproteases. The two
isoforms carnosinase 1 (CN1) and carnosinase 2 (CN2) are structurally similar, but have enough varying
properties. CN1 has a narrow substrate spectrum for histidine-containing dipeptides, such as carnosine,
anserine, and homocarnosine. Conversely, the cytosolic isoform CN2 degrades a great number
of dipeptides, but not homocarnosine [41]. The human kidney possesses an intrinsic carnosine
metabolism. Distribution of carnosinase varies within the nephron regulating renal physiology. In the
distal tubules, where a continuous low pH is required, the high levels of CN1 assure the removal of
carnosine, which has high pH buffering capacity. Furthermore, the high levels of CN1 mRNA, proteins,
and enzyme activities measured in podocytes, and the consistently low levels found in endothelial cells,
suggest a cell-specific role of carnosine metabolism [42]. Carnosine prevented protein oxidation induced
by glucose oxidase. In addition, carnosine proved to reduce both poly(ADP-ribose) polymerase-1
(PARP-1) and poly(ADP-ribose) polymerase-2 (PARP-2) activation induced by oxidative stress [43].
In contrast, carnosine is only transported slowly into renal cells [34], it can penetrate neurons [44],
and several neuroprotective effects have been reported for carnosine [45]. Carnosine has the ability to
protect neuronal cells against ischemic injury and oxidative stress [46]. In astrocytes, pre-treatment
with carnosine reduced the overexpression of inducible isoform nitric oxide synthases (iNOS) caused by
nitrosative stress. The direct link with nitric oxide is one of the possible mechanisms by which carnosine
is able to neutralize the pathological effects of nitrosative stress [47]. Preston et al. [48] first reported
a protective effect of carnosine on the cellular damage induced by amyloid-beta (Aβ) toxicity in the
rat brain.

2.2. Carnosine in Animal Models

In rodents, the effects of carnosine supplementation have been extensively studied, especially in
diabetes [49] and in neurological functions [40]. In diabetic mice and rats, renal carnosine metabolism
is altered and exogenous carnosine intake exerts a range of nephroprotective effects such as a reduction
in proteinuria, renal vasculopathy, and podocyte loss [34,35]. Carnosine can mitigate nitrite-induced
metabolic alterations and oxidative damage in Wistar rats by increasing plasma GSH levels and
major antioxidant defense enzymes, such as superoxide dismutase (SOD), glutathione reductase,
or glutathione peroxidase [50] and decreasing inflammatory molecules, such as TNF-α and CRP
(C-reactive protein) levels [51]. Recently, a carnosinase-resistant carnosine derivate was shown to
prevent the onset of diabetic nephropathy in diabetic (db/db) mice by promoting renal inflammation
and injury [52]. In stimulated murine macrophages, carnosine decreased apparent NO formation and
enabled the modulation of macrophage-mediated inflammation processes [53]. In mice with chronic
methylglyoxal administration, the generated hepatic and plasma oxidative stress was suppressed by
carnosine treatment [54]. In Zucker obese rats, the beneficial effects of carnosine seem to be mediated
by disruption of the advanced lipoxidation/glycation end products–receptor for advanced glycation
end products (ALEs/AGEs-RAGE)–pro-inflammatory axis [55]. Intraperitoneal injection of carnosine
protected against white matter damage caused by chronic cerebral ischemia in mice, likely by reducing
oligodendroglial cell loss [56]. Carnosine inhibited microglia activation and cortical neuron apoptosis
in a rat model of experimental subarachnoid hemorrhage [57]. In salsolinol-induced neurotoxicity
in rats, cytotoxicity was reverted by treatment with carnosine. The latter has normalized the levels
of malonaldehyde, glutathione, superoxide dismutase, and catalase [58]. In STZ-induced diabetic
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rats, carnosine treatment ameliorated learning and memory disturbances through modulation of the
NF-κB/Nrf2/HO-1 (nuclear factor kappa-light-chain-enhancer of activated B cells/Nuclear factor-like
2/heme oxygenase-1) signaling cascade, with suppression of oxidative stress, neuroinflammation,
astrogliosis, and enhancement of cholinergic function [59].

2.3. Carnosine in Clinical Settings

Increased concentrations of carnosine or homocarnosine due to carnosinemia caused by serum
carnosinase deficiency seem to be clinically irrelevant under physiological conditions, but it has been
reported that increased levels may be of therapeutic relevance, particularly in conditions exacerbated by
oxidative stress. In humans, the half-life of carnosine in the human circulation is minutes only, even in
subjects with low CN1 activity and protein content [60], but surprisingly, carnosine supplementation
in humans showed beneficial effects. Besides treatment options in cancer, cataracts, and cachexia,
several studies showed the beneficial effect of carnosine on glucose metabolism and neurological
functions. Carnosine normalized glucose intolerance and reduced 2-h insulin levels after an oral glucose
tolerance test (OGTT) in a subgroup of individuals with impaired glucose tolerance [61]. Recently,
it was shown that carnosine lowered fasting glucose, serum levels of triglycerides, AGEs, and TNF-α
without changing sRAGE, IL-6, and IL-1β levels in type 2 diabetes patients [62]. In pediatric patients
with diabetic nephropathy, oral supplementation with L-Carnosine reduced oxidative stress, increased
antioxidant levels and low malondialdehyde levels, and improved glycemic control (decreased HbA1c,
insulin resistance, increased insulin secretion, and β-cell mass). It also improved renal function [63].
CN1 inhibitors or medications increasing internal synthesis are currently being developed [64].
In human plasma, all HDPs are present at very low concentrations, with the highest levels of
homocarnosine, while the mean concentration of carnosine and ophidine/balenine was below the
detection limit [65].

HDP can also improve neurological diseases. Topiramate has been described to increase brain
GABA and homocarnosine levels that could contribute to enhance its potent antiepileptic action in
patients with complex partial seizures. A randomized double-blind placebo-controlled study on
75 patients with schizophrenia has demonstrated that carnosine (2 g/day) adjunctive to basic therapy
improves cognitive functions [66]. Carnosine plays a protective role in neurodegenerative disorders
through several mechanisms. Many other studies confirmed these effects, suggesting that carnosine
reverses the neurotoxicity induced by Aβ (1–42) by inhibiting glutamatergic activity [12]. In spite of its
function as a molecular chaperone, carnosine has recently been proposed to inhibit Aβ aggregation by
interfering with the propensity of the peptide to form backbone hydrogen bonds near residues with
key roles in fibrillogenesis [67]. A pilot study with 52 patients diagnosed with moderate Alzheimer’s
disease and treated with the acetylcholinesterase inhibitor donepezil reported that the group that
received carnosine (along with an antioxidant cocktail) showed improvements in their Mini-Mental
Status Exam II scores, while the group that continued to receive only donepezil treatment maintained
similar scores [68]. Moreover, a recent double-blind, randomized clinical trial of 43 autistic patients
has demonstrated that 500 mg of carnosine improved sleep duration and parasomnia subscales [69].
In addition, another recent randomized, double-blind, placebo-controlled trial has suggested that 250
mg of oral carnosine supplementation exerts protective effects against cognitive decline in APOE4 (+)
mild cognitive impairment (MCI) patients [70]. In addition, a double-blind randomized controlled trial
of 60 AD patients preserve verbal episodic memory, probably owing to inflammatory chemokine CCL24
suppression in the blood [71]. Carnosine has been also proposed as a potential drug for the treatment
of Parkinson’s disease. It has been described to enhance the efficacy of the levodopa (L-DOPA)-based
treatment of Parkinson’s disease and to inhibit the a-synuclein oligomerization induced by the Cu,
Zn-SOD, and hydrogen peroxide system [72]. The oxidative and nitrosative stresses represent other
characteristic aspects of neurodegeneration which could be regulated by carnosine. Interestingly,
carnosine treatment induced a prominent reduction in intraneuronal Aβ in the hippocampus of
transgenic mice, but failed to decrease phospho-tau immunoreactive levels and to restore long-term
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memory deficits. Thus, the reduction in Aβ by carnosine appears to be not sufficient to produce an
appreciable cognitive improvement. Furthermore, lower plasma levels of carnosine have also been
revealed in Alzheimer disease patients with respect to age-matched controls [73].

3. Hydrogen Sulfide Signaling

Hydrogen sulfide (H2S) is a small gaseous molecule with profound biological effects within living
organisms. It exerts key roles in cytoprotection, inflammation, vascular function, neurological systems,
mitochondrial function, energy metabolism, and ageing [74,75]. However, H2S was originally known
for its deleterious effects on health and the environment. First, in 1700, Italian physician Bernardino
Ramazzini [76] described a severe ocular irritation and inflammation in sewer workers, caused by an
unspecified volatile acid. Later, the chemical composition of H2S was elucidated and its association
with ocular adverse effects and intoxication in sewer workers was recognized. For over a century,
studies focused on its major toxic effects—e.g., inhibition of cytochrome c oxidase, carbonic anhydrase,
monoamine oxidase, and sodium/potassium-ATPase (NaC/KC ATPase) [77]. The image of H2S
was revolutionized when Kimura, in 1996, revealed its role as an endogenous neuromodulator [78].
Recently, H2S was classified as the third gasotransmitter along with NO and carbon monoxide (CO).
H2S is enzymatically released in our body and it has a highly regulated metabolism. It is freely
permeable to membranes and exerts specific physiological functions in several systems that can be
mimicked by H2S donors applied exogenously [79]. In mammals, hydrogen sulfide (H2S) is primarily
produced by two cytosolic pyridoxal-5′-phosphate-dependent enzymes, cystathionine β-synthase
(CBS) and cystathionine γ-lyase (CSE), which use the substrates homocysteine and L-cysteine (Figure 1).
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Figure 1. Nutraceutical support of intracellular H2S synthesis via cysteine metabolism. S-adenosyl
homocysteine hydrolase (SAH), Cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase
(3-MST), Cystathionine gamma lyase (CSE), Cysteine sulfinate (CSA), Hypotaurine dehydrogenase
(HTD), Glutamate cysteine ligase (GCL), Glutathione synthetase (GS), Glycine (Gly).
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A third enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST), catalyzes H2S production mainly
in mitochondria by the conversion of 3-mercaptopyruvate to pyruvate and H2S [80]. Recently,
an additional biosynthetic pathway has been described for the production of hydrogen sulfide from
D-cysteine involving 3-mercaptopyruvate sulfurtransferase and D-amino acid oxidase that operates
predominantly in the cerebellum and the kidney, i.e., within the KB axis [81]. D-cysteine is mainly
adsorbed with food and derives from L-cysteine racemization during food processing. This novel
pathway is of particular interest since supplementation with D-cysteine showed to protect renal
cortex cells and cerebellum cells (i.e., KB axis) more efficiently than L-cysteine [81]. Furthermore,
it was reported that gut microbiota would be another source of H2S that might influence health and
function [81]. The contribution of each of these enzymes to net H2S production is dictated by its
presence and relative tissue concentration, which varies in a cell-specific manner [81–83]. CBS is the
major H2S-producing enzyme in the brain, while CSE is significantly expressed in the mammalian
cardiovascular system and respiratory system and it seems to be the main H2S-forming enzyme in the
liver, kidney, and pancreas [84].

Oxidative stress seems to influence CSE and CBS in a different manner. Reactive oxygen
species appear to induce CSE expression, whereas they clearly suppress the transcription of the
human CBS gene [85]. Eventually, H2S is metabolized to sulfite in the mitochondria by thiosulfate
reductase, and then, is oxidized to thiosulfate and sulfate by sulfite oxidase. The sulfates are
excreted in the urine [80]. Interestingly, urinary sulfates have been used as markers of H2S plasma
levels and increased urinary sulfate concentrations have been correlated with a decreased risk
of renal events in type 2 diabetic patients with nephropathy [86]. However, urinary sulfate and
thiosulfate are not specific markers for endogenous H2S formation, and can also be the products of
exogenous H2S production by sulfate-reducing bacteria in the gut [86]. H2S acts independently of any
specific transporters by mechanisms not fully understood. S-sulfhydration, a novel posttranslational
modification, is emerging as a mechanism responsible for many biological effects mediated by
H2S [75,87]. H2S sulfhydrates protein thiol groups by transferring its sulfhydryl group to the cysteine
residue of targeted proteins. Furthermore, H2S is oxidized in biological systems to polysulfides, which
are now increasingly recognized as effectors of the H2S signaling mechanism [88]. H2S S-sulfhydration
of enzymes, transcription factors, and ion channels has been described accounting for several
protective effects of H2S, ranging from response to inflammation to cytoprotection [82,89]. For instance,
H2S attenuates inflammation through the S-sulfhydration of Nuclear Factor-kappa B (NF-κB) [90].
H2S increases the antioxidative properties of cells by sulfhydration of Kelch-like ECH-associated
protein 1 (Keap1), leading to its dissociation from Nrf2, which translocates in the nucleus and
binds to the antioxidant response element (ARE) promoting antioxidant gene transcription, such as
GCLM, GCLC, and glutathione reductase [91]. S-sulfhydration may be involved in the augment of
the life span of Caenorhabditis elegans induced by H2S through sirtuins [92]. H2S may also inhibit
mitochondria ROS production through sulfhydration of p66Shc [91]. In this regard, gut microbiota
has attracted considerable interest for its role in microbial-mediated ROS generation, which might
influence many signaling and homeostatic processes. Notably, lactobacilli ROS-mediated signaling
has been described to induce Nrf2, opening the prospect that probiotic bacteria may elicit beneficial
effects on disease states that involve Nrf2, including diabetes and neurodegenerative diseases [93].
In particular, in the (nod-like receptor) NLR family, the nod-like receptor pyrin domain-containing 3
(NLRP3) inflammasome has been reported to play a pathogenic role in the initiation and progression
of metabolic and neurodegenerative diseases [94,95]. Recently, in vitro and in vivo studies showed
that H2S mitigated lipopolysaccharide (LPS)-induced sepsis against oxidative stress and inflammation
damage mediated by the NADPH oxidase 4 (Nox4) pathway [96], inhibiting the vicious cycle of
NLRP3 inflammasome and oxidative stress in human retinal pigment epithelial cells [97] and in
hypertensive rats [98]. In addition, H2S mediated effects on neuroinflammation and Aβ1-42 production
by suppressing the activation of STAT3 and cathepsin S [99]. H2S suppresses oxidative stress-induced
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mtROS production and NLRP3 inflammasome activation via S-sulfhydrating c-Jun at cysteine 269 in
macrophages [100].

4. H2S as a Signaling Mediator in the Kidney–Brain Axis

Over the past few years, a crosstalk between kidney and brain emerged, as elucidated through
the modulation of H2S for neuroprotection, particularly to unveil the pathophysiological mechanisms
of oxidative and inflammatory stress. Consistent with this notion H2S, as a biological signaling
mediator, is involved in various functions, including antioxidant, neuromodulatory, regulation of
vascular tone, cytoprotective, anti-inflammatory, modulator of immune response, oxygen sensing,
angiogenesis, mitochondrial bioenergetics, and blood–brain barrier permeability [101]. The kidney
and brain are vital organs exposed to high-volume blood flow and thus, are highly susceptible to
vascular damage [102]. Normal renal function regulates whole-body homeostasis, including neuronal
homeostasis [103]. Therefore, it was well recognized that oxidative stress and inflammation are common
outcomes strongly associated with both kidney and brain dysfunctions, leading to the development and
progression of several diseases, including acute kidney disease (AKD), chronic kidney disease (CKD),
neuropsychiatric disorders, and cognitive dementia [104,105]. Recent data have demonstrated that
patients with CKD, especially at advanced stages, are highly susceptible to developing neuropsychiatric
disorders (i.e., depression and anxiety) and cognitive impairment (i.e., Alzheimer and Parkinson
diseases) [31]. In the kidney, H2S induces important diuretic, natriuretic, and kaliuretic effects by
raising glomerular filtration rate and inhibiting tubular sodium re-absorption [106,107]. Notably,
under hypoxic conditions, H2S functions as an oxygen sensor in the renal medulla that restores oxygen
balance by enhancing medullary blood flow, decreasing energy requirements for tubular transport
and directly suppressing mitochondrial respiration [107]. Since medullary hypoxia is a common
feature of CKD, H2S deficiency can lead to progression of CKD by limiting this significant adaptive
mechanism [108].

4.1. Anti-Inflammatory Role of H2S

Inflammation is a common feature in brain and kidney injuries, and it is quite reasonable
to assume that inflammatory mediators may amplify the kidney–brain crosstalk. Particularly,
the nucleotide-binding oligomerization domain NLRP3 inflammasome, a multiprotein complex,
is involved in the pathogenesis of inflammation in chronic kidney and brain diseases [109,110].
NLRP3 induces the production of many proinflammatory cytokines and chemokines such as IL-1β,
IL-6, TNF-α, transforming growth factor-β (TGF-β), and NF-κB, which are frequently associated
with the pathogenesis of CKD [111]. These cytokines then initiate or amplify different downstream
signaling pathways and drive proinflammatory factors [112], leading to cellular damage, such as
autophagy dysfunction and ROS production [113]. In the kidney, generation and activation of the
NLRP3 inflammasome have been reported to occur not only in immune cells like dendritic cells [114]
and infiltrating macrophages [115], but also in other renal cells such as tubular epithelial cells [116]
and podocytes [117]. Several human studies reported that the inflammatory response triggered by CKD
may contribute toward increasing proinflammatory cytokines that can cross the blood–brain barrier
(BBB) to reach the CNS and lead to neuroinflammation such as reported with neuropsychiatric and
neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,
major depressive disorder, and schizophrenia. This reinforces the concept of kidney–brain inflammatory
crosstalk [118–120]. Accordingly, these pro-inflammatory molecules operate in the brain to induce
common symptoms of sickness, including loss of appetite, sleepiness, withdrawal from normal
social activities, fever, aching joints, fatigue, embezzlement of cognition, malaise, inattention,
and depression [121]. In this context, H2S possess powerful anti-inflammatory, antioxidant,
and anti-apoptotic effects [122]. On the other hand, H2S depletion may contribute to the progression of
CKD and cognitive disorders [123,124]. Moreover, accumulating evidence reported that H2S appears
to play a crucial role in the modulation of the immune response by regulating posttranslational
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modification of the NF-kB pathway in vitro and in vivo [125,126]. In the brain, H2S protects
neurons from apoptosis and degeneration by inducing anti-inflammatory effects and upregulating
antioxidant enzymes [127]. Additionally, treatment of H2S in the APP/PS1 (human amyloid
precursor protein and presenilin 1) mouse model of AD reduced cognitive impairment and mitigated
oxidative stress [128]. Moreover, H2S mediated the process of altered blood pressure in response to
changes in serum homocysteine levels by blocking the activation of extracellular signal-regulated
kinase 1/2 (ERK1/2)-STAT3 signaling pathway [129], exerted antidepressant effects by the induction
of the mTORC1-TrkB-AMPA receptor pathway [130,131] as well as prevented cisplatin-induced
nephrotoxicity [132]. Furthermore, NaHS, an exogenous H2S donor, also inhibits macrophage
pro-inflammatory cytokine production, as well as cyclooxygenase-2 and nitric oxide production,
and decreases macrophage motility. In addition, recent in vivo studies reported that NaHS ameliorates
CKD-mediated brain dysfunctions through interaction with NO signaling in the hippocampus [133],
as well as improves apoptosis, inflammation, and autophagy, exerting nephroprotective effects against
CKD in rats [134,135].

4.2. Antioxidant Role of H2S

During pathological conditions, there is a mutual upregulation between factors promoting
inflammation and oxidative stress, which sustains CDK progression and neurological disorders [136].
Under physiological conditions, ROS provides beneficial effects, regulating cellular stress responses by
redox-sensitive signaling pathways. Indeed, ROS control cellular growth, differentiation, and migration;
regulate vascular tone and cellular adhesion, leading to the production of iNOS at the transcriptional
and posttranscriptional level by redox-dependent NF-κB or mitogen-activated protein kinases (MAPKs);
modulate immune response; and control angiogenesis and apoptosis [137]. When ROS generation is
prolonged or excessive, harmful consequences are observed with peculiar changes in cellular proteins,
lipids, and ribonucleic acids, leading to cell dysfunction or death. Numerous enzymes with antioxidant
activity are involved in neutralizing ROS, including superoxide dismutase (SOD),γ-glutamyltransferase
(GGT), glutathione (GSH), glutathione reductase (GSSG-Rd), glutathione peroxidase (GSH-Px),
glutathione S-transferase (GST), catalase (CAT), and nuclear factor erythroid 2-related factor 2
(Nrf2) [138]. All these antioxidant pathways are differently expressed in various cells and organs
including kidney and brain tissues [139,140]. Intriguingly, recent evidence highlighted the complex
role of H2S as a direct antioxidant scavenger to inhibit ROS generation and the inflammatory process
in the pathogenesis of kidney and brain injuries [141,142]. Additionally, the formation of free radicals
(i.e., ROS and RNS) as signaling molecules to promote inflammation induces the activation of the
transcription of NF-κB by upregulating the production of pro-inflammatory cytokines and chemokines,
leading to the recruitment and activation of leukocytes and resident cells [143]. The “oxidative”
linkage between CKD and its complications is achieved through several pathophysiological mechanisms,
including mitochondrial dysfunction [144], uremic neurotoxin-induced endothelial nitric oxide synthase
(eNOS) uncoupling [145], and increased nicotinamide adenine dinucleotide phosphate-oxidases
(NADPH oxidases (NOX)) activity [146], myeloperoxidase (MPO) [147], but also antioxidant enzymes
depletion due to dietary restriction, and/or decreased intestinal absorption [148]. In particular,
preclinical and clinical studies confirmed beneficial effects by upregulation of the Nrf2-HO1 antioxidant
pathway during acute and chronic kidney diseases [149,150]. In addition, activation of the glutathione
peroxidase pathway reduced not only the oxidative stress but also the inflammatory process induced
by the uremic neurotoxins on the endothelium during CKD [151]. On the other hand, glutathione
peroxidase deficiency in kidney diseases contributed to the development of cardiac diseases risk due
to an increase in ROS generation and inflammatory pathways [152]. Furthermore, CKD patients also
display hypovitaminosis D [153] as well as hypoalbuminemia [154] and zinc deficiency [155].

Fascinatingly evidence demonstrated that NaHS suppresses the expression of the ROS-generating
enzyme, NADPH oxidase (NOX) and its essential subunit, Rac-1, in cultured vascular smooth
muscle cells [156]. Likewise, NaHS has been shown to lower NOX-4 expression and potentiates the
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antioxidant effects of apocyanin, N-acetyl-L-cysteine, catalase, superoxide dismutase, and GSH, in the
brain endothelial cells [157]. In addition, H2S can scavenge and/or degrade lipid peroxides [158]
and increases the production of GSH [148]. Moreover, intraperitoneal application of NaHS to pregnant
rats protects fetal brains from ischemia-reperfusion injury by restoring the glutathione levels reduced
by ischemia-reperfusion [156]. However, experimental evidence demonstrated the scavenging effect
of H2S in the presence of intracellular glutathione concentration between 1 and 10 mM, and 1 and
100 µM of cysteine in neurons [159]. Thus, the suppression of oxidative stress by increased levels of
glutathione should be more effective than ROS scavenging by H2S itself.

GSH is a ubiquitous thiol tripeptide composed of cysteine, glycine, and glutamate, existing often as a
reduced form, and it is synthesized from cysteine. Moreover, H2S also facilitates the transport of cysteine
into cells. Glutathione is produced by two enzymes, glutamate cysteine ligase (GCL) (γ-glutamylcysteine
synthase (γ-GCS)), which is a rate-limiting enzyme in the production of γ-glutamyl cysteine from
glutamate and cysteine, and glutathione synthetase (GS), which produces glutathione by adding glycine
to γ-glutamyl cysteine. GSH reduces disulfide bonds formed within cytoplasmic proteins to cysteines
by serving as an electron donor. In this process, GSH is converted to its oxidized form, glutathione
disulfide (GSSG). Intracellular cysteine plays an important role in cellular homeostasis as a precursor for
protein synthesis, and for the production of GSH, hydrogen sulfide (H2S), and taurine. Cysteine exists
as two unstable redox forms in the body: the oxidized form cystine and the reduced form cysteine.
The extracellular cystine form is carried into cells through the cystine/glutamate antiporter system,
after which cysteine is reduced and ready for GSH synthesis. The release of H2S into the extracellular
space promotes the reduction of cystine to cysteine, increasing the amount of cysteine available as
a substrate for GSH synthesis, and improving cystine transport [156,160,161]. Another significant
mechanism for the effect of H2S on GSH may be by enhancing glutamate uptake [162]. Interestingly,
kidney and brain tissues contain significant amounts of γ-glutamyl transpeptidase and γ-glutamyl
cyclotransferase and nevertheless, maintain an appreciable concentration of glutathione. This suggested
to us that these organs might also possess the enzymatic equipment needed for the synthesis of
glutathione. Many in vivo studies have demonstrated that the kidney–brain axis contains a high
concentration of both γ-glutamylcysteine synthetase and glutathione synthetase [163,164]. The presence
of these enzymes in kidney and brain enables a series of catalytic events involving the synthesis and
degradation of glutathione, and the coupled uptake and release of free amino acids from γ-glutamyl
linkage. These reactions are steps in a cyclical process referred to as the “γ-glutamylcycle” (Figure 2).
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(3), γ-glutamyl cyclotransferase (4), dipeptidase (5), oxoprolinase (6), γ-glutamyl-cysteine synthase (1),
and glutathione synthetase (2) operate in the Meister cycle to generate glutathione (GSH) and internalize
amino acids (AA).
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A great number of accumulated data indicate that oxidative stress and inflammation are major
contributing factors of renin–angiotensin system (RAS) imbalance both in peripheral and brain
tissues [165,166]. The potential homeostatic role between kidney–brain crosstalk by RAS to regulate
sodium/water balance and maintain normal blood pressure has been purported [167]. The first
end-product of this system related to a biological activity is the octapeptide angiotensin (ANG) II,
synthesized by the angiotensin converting enzyme (ACE). This pathway may also be involved in
neurocognitive performance decline [168]. The role of RAS peptides in the interaction between
the kidney and brain is supported by studies showing that treatment with ACE inhibitors and
type I receptor (AT1) blockers, besides exerting renoprotection, also have beneficial actions in
neurodegenerative disorders [169]. Dysfunctional RAS activation induces angiotensin II release,
increasing systemic vascular resistance [170]. It has been established that treatment with captopril
reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of
Parkinson’s disease [171]. Analogue results were obtained with the administration of AT1 receptor
antagonists in patients and in experimental models of Alzheimer’s disease, Parkinson’s disease, stroke,
traumatic brain injury, and spinal cord injury [172]. Surprisingly, exogeneous H2S administration
regulates renin release by downregulating the intracellular cAMP level in several cell types [173]
and decreases protein expression of AT1R [174], resulting in renoprotection from kidney diseases.
Moreover, H2S treatment inhibits the upregulation of renin level in renovascular hypertensive rats and
reduces the intracellular cAMP level in primary cultures of renin-rich kidney cells [175]. In addition,
H2S blocks forskolin-induced renin degranulation in mast cells by lowering the intracellular cAMP
level, thus protecting against isoproterenol (ISO)-induced heart failure [176]. Likewise, H2S therapy
protects multiple organs including the heart, kidney, and blood vessels and improves exercise
capacity, coupled with inactivation of RAS in a murine model of transverse aortic constriction-induced
heart failure [177]. Recent in vivo studies suggested that treatment with NaHS, increases renal H2S
concentrations, restores NO bioavailability, and blocks RAS in the kidney, thus promoting vasodilatation
to prevent the development of hypertension in rats [178]. In addition, H2S mitigates the development
of diabetic nephropathy through suppressing RAS activity in diabetic rats [179].

As a rationale for neuropsychiatric disorders secondary to kidney damage, known as the
“vascular theory”, kidney and brain hemodynamic analogies occur, both being low resistance end organs
exposed to high-volume blood flow and, consequently, more vulnerable to vascular damage [180].
Accordingly, magnetic resonance imaging (MRI) studies have shown high occurrence of silent
brain infarction in patients with CKD, supporting the vascular theory [181]. Consistent with this,
approximately 50% of CKD patients present ischemic white matter lesions in the MRI compared
with 10% of the general population [182]. The loss of a direct correlation between known vascular
risk factors, like diabetes and hypertension with CKD-related cognitive decline [183], the onset of
neuropsychiatric comorbidities in pediatric patients with CKD preceding the vascular damage [184],
as well as inconsistent findings regarding antihypertensive drugs’ beneficial effects in cognition [185],
may indicate that other mechanisms underlie CKD-associated brain dysfunctions. Cerebrovascular
injuries in CKD have also been associated with the retention of uremic toxins along with electrolyte
imbalance, which ultimately leads to neuropsychiatric diseases, especially cognitive impairment and
dementia [186]. Importantly, high neurotoxin levels (up to 10-fold higher in CKD patients than in
controls) of guanidino compounds were present in brain regions that play a determinant role in
cognition, such as the thalamus, the mammillary bodies, and the cerebral cortex [187]. A recent study
reported several uremic toxins that potentially mediate the interactions between kidney and brain,
which in turn, may influence brain homeostasis. Convincingly, uric acid, indoxyl sulfate, p-cresyl sulfate,
IL-1β, IL-6, TNF, and parathyroid hormone have a strong impact on cognition in uremic conditions [188].
Interestingly, uremic neurotoxic effects seem to be also mediated by guanidino compounds, including
creatinine, guanidine, guanidinosuccinic acid, and methylguanidine. Indeed, some studies reported
that guanidine compounds affect the CNS by inhibition of GABA(A) receptors and concomitant
activation of N-methyl-d-aspartate (NMDA) receptors [189,190]. Moreover, other studies showed that
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uremic mice decrease central dopamine turnover in the striatum, mesencephalon, and hypothalamus,
which was correlated with the impairment of motor activity [191].

In this scenario, H2S plays a beneficial role by inhibiting uremic toxins release in vitro and in vivo.
During uremia, CSE activity and also H2S are significantly decreased in blood mononuclear cells
from uremic patients on hemodialysis [192]. On the contrary, its metabolic-related compounds such
as cystathionine, homolanthionine, and lanthionine are significantly raised [193]. CSE inhibition
could be due to a uremic toxin, lanthionine, which is able to decrease H2S production in hepatoma
cells. Recent in vitro studies suggested that slow-releasing H2S donors, such as diallyl disulfide
(DADS) and diallyl trisulfide (DATS) enhance levels of alkaline phosphatase, osteopontin, osteocalcin,
and collagen type I that are downregulated in human mesenchymal stem cells derived from serum
of uremic patients in hemodialysis [194]. Although the potential role of uremic toxins in mediating
the kidney–brain crosstalk has become clearer over the past years, the role exerted by H2S on these
neurotoxic compounds and how it may directly or indirectly influence these compounds and restore
the CNS function remain still elusive.

Moreover, hyperhomocysteinemia is a clinical hallmark in patients with CKD or AKI, in the
latter setting often caused by ischemia-reperfusion. It causes arteriolar constriction, arterial stiffness,
and endothelial damage [195]. H2S treatment in rodents attenuates renovascular damage by reducing
hyperhomocysteinemia [196]. The pathophysiology of chronic kidney disease and neuropsychiatric
disorders has been commonly associated with mechanisms related to the decreased availability of
brain-derived neurotropic factor (BDNF) for renal and neuronal failure [197]. BDNF exerts traditional
antidepressant actions, and its deletion in the hippocampus weakens antidepressant behavioral
responses [198]. Interestingly, epidemiological and experimental studies point to a potential role of
the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) and BDNF in neuropsychiatric
disorders, in particularly in depression [199]. BDNF regulates the growth and maintenance of the
neuronal system as well as neuronal plasticity, like long-term potentiation of learning [200], which has
been shown to be reduced in major depressive disorders [201]. Several preclinical and clinical data
reported that an increase in ADMA infusion alone causes a marked reduction in serum BDNF levels
leading to behavioral changes and depression of CKD in 11 hemodialyzed patients as well as in
nephrectomized rats. Thus, ADMA is considered a uremic toxin that acts as an endogenous inhibitor
of NO [197]. Recently, it has been reported that BDNF and tropomyosin receptor kinase B (TrkB)
are expressed in podocytes and in the zebrafish model, being essential for actin polymerization and
cell survival [202]. Moreover, a recent study demonstrated that BDNF is required for glomerular
development, morphology, and function, and the expression of BDNF and KIM-1 is highly correlated
in urine cells of CKD patients. Therefore, BDNF mRNA in urine cells could serve as a potential
prognostic biomarker for CKD [203]. Some studies demonstrated that H2S reversed the decrease in
TrKB receptors against chronic unpredictable mild stress (CUMS)-induced hippocampal oxidative
stress, demonstrating the critical role of neurotrophic signaling in the antidepressant effects mediated
by H2S [204]. These outcomes are consistent with premises that H2S exerted neuroprotective effects
against formaldehyde-induced toxicity in PC12 cells [205] as well as against homocysteine-induced
ER stress and neuronal apoptosis in the hippocampus of rat via the BDNF–TrKB pathway [206].
Taken together, the data indicate that the interactions between kidney and brain are complex and
multifaceted, thus justifying the significant neuropsychiatric comorbidity observed in patients with
CKD. Despite much research efforts, to date, kidney–brain crosstalk is still an area with excitingly few
publications, especially as regards the molecular mechanisms underlying CDK and brain damage.
Consistent with this, H2S signaling could represent a novel direct link between kidney and brain
diseases, conferring protection, and limiting neuropsychiatric disorder occurrence in CKD patients.

5. H2S and Diabetes

H2S is abundant in kidney and is generated mainly by CBS and CSE. In the glomeruli, CSE is
the main H2S-producing enzyme expressed by endothelial cells, mesangial cells, and podocytes [207],
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while both CBS and CSE have been reported to be expressed on renal proximal tubules [78]. H2S is
important in kidney for its role in homocysteine metabolism, regulation of GFR and of urinary
sodium and potassium excretion [76]. In a murine model of renovascular hypertension, NaHS,
a donor of H2S, suppressed the upregulation of renin mRNA by downregulating cAMP levels [208].
Emerging evidence indicates an active role of H2S in diabetes and in diabetic nephropathy (DN).
CSE expression is upregulated in liver and pancreas in streptozotocin-induced diabetic rats, a model
for type-1 diabetes. Insulin treatment reduced CSE expression [81]. CSE is also overexpressed in
pancreatic β-cells in Zucker diabetic fatty rats, a model for type-2 diabetes [209]. On the other hand,
renal expression of CBS and CSE enzymes which synthetize H2S, has been reported downregulated
both in patients and in animal models of diabetes [76]. Hyperglycemia impairs cell redox homeostasis
increasing ROS generation, reducing the activities of endogenous antioxidants such as GSH and SOD
and downregulating Nrf-2, which control the expression of protective enzymes [207]. In addition,
hyperglycemia-induced oxidative stress reduced CBS and CSE expression by upregulating MMP-9.
These effects have been reported in cultured mesangial cells [210] and in diabetic rats [211] treated with
high glucose and were reversed by treatment with NaHS [78]. H2S have been also reported to attenuate
renovascular remodeling in DN through its regulatory action on MPP-9 and NADPH oxidase 4
(NOX4) [212,213]. In renal epithelial cells, NaHS reversed the inactivation of AMPK, responsible for the
cascade that leads to hyperactivation of mTOR and subsequent matrix deposition [214]. Later, it was
demonstrated that H2S inhibits NOX4 expression and matrix deposition by activation of iNOS and
NO production [94]. Interestingly NO in turn is able to induce CSE and H2S production, suggesting a
crosstalk interaction between the two gasotransmitters [215]. H2S have demonstrated an antifibrotic
effect in renal tubular epithelial cells by attenuating the TGF-beta1-induced epithelial-to-mesenchymal
transition (EMT) through both ERK-dependent and β-catenin-dependent pathways [216]. In addition,
H2S accelerates wound healing in diabetic rats [217]. H2S levels and H2S-producing enzymes were
found decreased in plasma, urine, and kidney of aging mice. Chronic H2S donor (NaHS) treatment could
attenuate oxidative stress levels and renal tubular interstitial collagen deposition and restores H2S
production in aging kidney. These protective effects may refer to Nrf2 activation and transcription of
antioxidant proteins, including HO-1, SIRT1, SOD1, and SOD2, which are upregulated in the ageing
kidney after NaHS treatment [218].

6. H2S and Brain

In the brain, CBS is the main H2S-producing enzyme, present in both neurons and astrocytes [219],
and it was expressed mainly in the hippocampus and cerebellum when compared with the cerebral
cortex and brain stem [220]. Furthermore, H2S production in astrocytes is approximately 10-fold
higher than in cultured microglial and neuronal cells, suggesting that astrocytes are the main brain
cells producing H2S [1]. H2S and sulfhydration play significant roles in the optimal functioning of the
nervous system. For instance, H2S takes part in the regulation of intracellular Ca2+ in neurons and
microglia, maintains pH homeostasis [76], and induces hippocampal long-term potentiation in active
synapsis by activating N-methyl-D-aspartate (NMDA) receptors [221]. By regulating the NR2B subunit
of NMDA receptors, NaHS treatment improved the cognitive dysfunction associated with hepatic
ischemia/reperfusion in hippocampus of rats [222]. Various studies demonstrated the protective effects
of H2S on neurons against oxidative stress [223]. H2S is unlikely to scavenge oxidants by itself due to
its low endogenous concentration [83], whereas it seems to exert potent antioxidant effects indirectly
regulating GSH production through the upregulation of the Keap1/Nrf2/ARE pathway. In addition,
in vitro and in vivo models demonstrated that activation of Nrf2 in astrocytes provides protection also in
neurons, prompting the hypothesis that this effect is the primary factor leading to neuroprotection of both
cortical and motor neurons [1]. Notably, both D-Cys and L-Cys, substrates for H2S synthesis showed
to protect the neurons of the cerebellum from hydrogen peroxide (H2O2)-induced oxidative stress [81].
In human cultured neuron cells, H2S inhibits peroxynitrite, acting as an endogenous peroxynitrite
scavenger [1]. Dysregulation of H2S metabolism has been described in different neurological diseases.
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Hu et al. showed reduced levels of H2S in striatum and substantia nigra in two different murine models
of Parkinson’s disease [224]. NaHS treatment attenuated neuronal loss, lipid oxidation, accumulation of
inflammatory markers, and improved movement dysfunction [224]. In addition, H2S sulfhydration
plays a relevant role in Parkinson’s disease by activating the neuroprotective ubiquitin E3 ligase, parkin,
responsible for clearance of toxic, misfolded proteins [82]. Parkin sulfhydration was found markedly
depleted in the brains of patients with Parkinson’s disease, suggesting that this loss may be pathologic
and hydrogen sulfide donors may be therapeutic [225]. Likewise, H2S levels were found reduced in
the plasma of patients with Alzheimer disease (AD) compared to controls, and H2S levels correlated
negatively with the severity of the disease [226]. Depletion of H2S and concomitant increase in
homocysteine levels in AD have been attributed to a lack of S-adenosylmethionine (SAM), an allosteric
activator of CBS. Moreover, NaHS treatments in murine models of AD reduced oxidative stress
through Nrf-2 and provided protection against homocysteine-induced cognitive dysfunction [227].
In addition, recent studies have shown that inhalation of H2S protected against PD-induced movement
dysfunction and prevented neuronal apoptosis and microglia activation in the nigrostriatal region.
CBS overexpression has also been reported to protect against the 6-hydroxydopamine-induced model
of PD [228]. On the other hand, H2S production by CBS has been found elevated in amyotrophic
lateral sclerosis (ALS) both in mice tissues and cerebrospinal fluid of ALS patients. Similarly, high H2S
levels have been observed in trisomy of chromosome 21 trisomy (Down syndrome), on which the
CBS gene is located [82]. It is well documented in the literature that H2S exerts either antioxidant
and anti-inflammatory effects or prooxidant and pro-inflammatory effects depending on its local
concentration. Following a bell-shaped dose–response curve, H2S produces protective effects at a
lower concentration and a variety of deleterious/cytotoxic effects at higher concentrations [83,91].
The varying effects of H2S reported in several lines of evidence could be due to the dual effects of
H2S [82]. This has been widely suggested in investigations concerning various types of inflammatory
processes, vasorelaxation/tension in aortic tissue, cell proliferation/apoptosis, as well as in the case of
tumor promotion and inhibition. Since the concentration of H2S can vary considerably both within
and between tissues and under differing conditions, it is likely that H2S could affect a complex array
of biological responses that may challenge the capacity to make definitive biomedical and/or clinical
interpretations or predictions. Li and Moore [229] closed their recent insightful review of the role of
H2S in health and disease with a statement probing their articulated biological conundrum of how does
one molecule display such widely differing effects and could it be due to different effects at differing
concentrations. The answer to this seminal question is found within the framework of a hormetic
dose–response interaction that is independent of biological model, tissue, and endpoint [1].

7. H2S Redox Signaling and Resilience

Emerging evidence has highlighted the crucial role of H2S in maintaining redox homeostasis,
which occurs by modulating levels of cellular antioxidant enzymes and increasing the expression of
the transcription factor nuclear erythroid-related factor 2 (Nrf2) during oxidative stress. The latter is
an intracellular excess of reactive oxygen species (ROS) relative to depletion of antioxidant capacity
of the cell [230]. Interestingly, Nrf2 is a master regulator of redox cellular stress response in various
pathological states [1,231]. Under physiological conditions, Nrf2 is localized in the cytosol and
regulated by its inhibitor Kelch-like ECH-associated protein 1 (Keap1). Recently, much evidence
has demonstrated that H2S induces cytoprotection against oxidative stress by the stimulation of
Nrf2, which accumulates and translocates into the nucleus where it binds to the antioxidant
response element (ARE) inducing the transcription of multiple target genes, including phase II
detoxification enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO1), heme oxygenase 1
(HO-1), thioredoxin, γ-glutamylcysteine synthetase, and glutathione S-transferase (GST) [232]. In line
with this observation, Nrf2 encodes the vitagene antioxidant pathway which exists to counteract
different forms of stress (e.g., oxidative, environmental, and mitochondrial stress). Vitagenes include
heat shock protein 70 (Hsp70), heme oxygenase 1 (HO-1), γ-glutamylcysteine synthetase (γ-GCs),
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thioredoxin (Trx), and sirtuins (SIRTs) (Figure 3) [1,233–235] as biomarkers for stress adaptation,
cross-tolerance, and resilience underlying hormesis or preconditioning [236] (Figure 3).Antioxidants 2020, 9, x FOR PEER REVIEW 14 of 35 
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bound to its inhibitor Keap1 and is restricted to the cytosol where it undergoes ubiquitination and
proteasomal degradation via association with the Cul3-Rbx1-based E3/ubiquitin ligase complex.
Under stress conditions, Nrf2 is released from Keap1 and is translocated into the nucleus where it
binds to the phase 2 of ARE in heterodimeric combination with the Maf transcription factor in the DNA
promoter region. The H2S antioxidant molecule blocks oxidative stress and NLRP3 inflammasome
cascade by activating Nrf2 nuclear translocation and the transcription of cytoprotective (phase 2)
vitagenes. The upregulation of the vitagene pathway such as HO-1, Hsp70, Trx, sirtuin Sirt1, NQO1,
and γ-GCS improves brain health in neurological disorders. Nuclear factor-erythroid 2 p45-related
factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), antioxidant response element (ARE),
heme-oxygenase 1 (HO-1), heat shock protein 70 (Hsp70), thioredoxin (Trx), sirtuin 1 (Sirt1), NAD(P)H:
quinone oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase (γ-GCS).

For instance, the benefits of hormetic stimuli are well documented, such as preconditioning,
dietary restriction as well as intermittent fasting in regulating endogenous H2S production by the
conserved trans-sulfuration pathway (TSP) in a dose–response manner during ischemia reperfusion
(I/R) injury [237–239]. Moreover, H2S can also act as a mimetic of dietary restriction and extend lifespan
in yeast and worms [240]. Intriguingly, a growing number of studies have demonstrated that H2S
decreases the ROS level in cardiomyocytes under ischemia/reperfusion injury in the setting of diabetes
by relieving oxidative stress, and the ability of H2S to upregulate cellular antioxidants in the heart in a
Nrf2-dependent manner [241,242]. Especially H2S-mediated cardioprotection increases in antioxidant
(i.e., HO-1, Trx, Hsp70, and Hsp90) and anti-apoptotic (i.e., Bcl-2, Bcl-xL, and COX-2) signaling in
a mouse model of pharmacological preconditioning [241]. These findings are consistent with the
integrated view that cellular resilience is mediated by many distinct pathways that converge upon
mitochondria to supply the extra energy for building resilience. Accordingly, several research groups
have characterized the effect of H2S on mitochondrial activity and cellular bioenergetics [242–244].
These studies mentioned above demonstrated that H2S induces a U-shaped biological dose–response
concentration typical of hormetic compounds in in vitro and in vivo models, with activation at lower
concentrations and inhibition at higher concentrations [245]. Thus, the toxic and therapeutic effects of
H2S depend on its endogenous concentration. Specifically, H2S is synthesized endogenously and mainly
metabolized by a mitochondrial sulfide-oxidizing pathway including sulfide quinone oxidoreductase
(SQR) and utilizes GSH as a thiophilic acceptor to produce GSSH [246]. Therefore, H2S produced in the
mitochondria scavenges ROS [156]. In principle, H2S is a potent inhibitor of oxidative phosphorylation
(OXPHOS) by its well-known ability to inhibit cytochrome c oxidase (COX) [247]. On the other hand,
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H2S therapy has been observed to preserve mitochondrial function in the heart muscle of rodents
after I/R injury [238,248]. It has been well established that a low level of H2S administration increases
the phosphorylation of protein serine/threonine kinase B (Akt) and enhances the nuclear localization
of two transcription factors, nuclear respiratory factors-1 and -2, which are involved in increasing
the levels of endogenous antioxidants, attenuating apoptosis, increasing mitochondrial biogenesis,
and confer resilience against cellular stress [249]. Recently, the modulation of vitagenes elicited through
H2S antioxidant molecule has taken on a considerable importance in preserving redox homeostasis,
mitochondrial stress, protein quality control, and enhancing resilience in a hormetic dose–response
manner during metabolic diseases such as diabetes and its complications. In this context, H2S provides
antioxidant function by enhancing γ-glutamyl synthetase activity and upregulation of cysteine
transport, restoring the levels of GSH in glutamate-mediated oxidative stress [148]. Some experimental
studies suggested that administration of H2S attenuates high glucose-induced elevation in ROS
production in renal mesangial cells and diabetic rat kidneys [250]. In addition, H2S treatment exerts
protective effects in the kidney of type 1 diabetic rats, related to the suppression of oxidative stress
through upregulation of superoxide dismutase (SOD) activity [251]. Interestingly, H2S mitigates
diabetic renal damage by blocking mitochondrial Ca2+ permeability through the N-methyl-d-aspartate
receptor-R1 (NMDA-R1) pathway [252]. Based on the concept of hormesis [253], in which low levels of
H2S confer cytoprotective actions against oxidative stress, it can also cause toxicity when present in
high concentrations [1,254]. Under oxidative stress, reactive sulfur species (RSS) are generated that
can act as aggressive oxidizing agents. This phenomenon is mainly due to the high concentration
of the H2S signaling molecule [255]. Thus, efforts have been made to identify suitable exogenous
H2S donors. Indeed, some in vitro studies indicate that a high concentration of 0.1 and 1 mM
NaHS induces pro-oxidant effects such as lipid peroxidation and protein carbonylation in human
plasma [256]. In addition, in vivo studies demonstrate that NaHS improves diabetic state-induced
muscle atrophy by increasing Akt/mTOR signaling and decreasing the expression of myostatin and
the FoxO1/MuRF1/atrogin-dependent pathway [257]. Recent studies revealed a novel H2S-induced
posttranslational modification, termed protein S-sulfhydration (also known as S-persulfidation) [87,258].
During this process, the –SH group of cysteine residues becomes covalently converted to a –SSH group,
which can result in changes in the activity of the protein. This process importantly contributes to
physiological and pathophysiological H2S-signaling. In this context, the S-sulfhydration reaction with
H2S or hydrogen polysulfide (H2Sn) participation plays a crucial regulatory role in the biogenesis of
RSS from endogenous and exogenous precursors and on regulatory properties of this reaction. On the
other hand, these reversibly oxidized –SH groups are under the control of intracellular antioxidant
pathways such as glutathione (GSH), cysteine (Cys), and thioredoxin (Trx) that actively participate to
restore redox H2S homeostasis [259]. It is noteworthy that excessive levels of H2S can be countered by
activation of the sulfide oxidation pathway, which involves the enzyme sulfide quinone oxidoreductase
that oxidizes H2S and reduces coenzyme Q [260]. Several studies have reported that S-sulfhydration is
one mechanism where H2S interacts directly with the Nrf2 pathway. In this respect, H2S has been shown
to S-sulfhydrate Keap1 at the cysteine-151 residue, leading to Nrf2 dissociation and increased nuclear
translocation and expression of antioxidant genes through binding to promoters’ ARE sites [232].
Furthermore, H2S can S-sulfhydrate Keap1 at the cysteine-226 and cysteine-613 residues, leading to
Keap1 inactivation, Nrf2 release, and activation of Nrf2-dependent gene expression [261]. Additionally,
NaHS upregulated Nrf2 nuclear translocation, and the transcription of the two key downstream
antioxidant genes peroxiredoxin-1 and NAD(P)H dehydrogenase quinone 1 [262]. Most studies indicate
that insufficient endogenous H2S concentration is implicated to increase oxidative stress leading to type
2 diabetes in mice and in humans [263,264]. Conversely, exogenous H2S promoted antioxidant effects
by increasing Keap-1 and suppressing its ubiquitination, facilitating ubiquitin aggregate clearance via
autophagy in the hearts of db/db mice [265]. In addition, recent studies demonstrated that H2S, in the
form of a NaHS donor, may reduce high glucose-induced oxidative stress, inflammation, and apoptosis
by activating the Nrf2/ARE pathway and may exert anti-apoptotic effects in diabetic myocardium
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by inhibiting c-Jun N-terminal kinase (JNK) and p38 MAPK pathways and activating PI3K/Akt
signaling in vitro and in vivo [266]. Nevertheless, other recent studies showed that slow-releasing
H2S donor, GYY4137, induces cardioprotection against myocardial ischemia and reperfusion injury
by attenuating oxidative stress and apoptosis via activation of the PHLPP-1/Akt/Nrf2 pathway in
mice [267], inhibition of the STAT3/HIF-1α signaling pathway [268], and activation of the AMPK
(5′AMP-activated protein kinase)/mTOR signal pathway in high glucose-induced H9c2 cardiomyocyte
damage [269]. Moreover, the GYY4137 donor exerts anti-inflammatory effects by suppression of
the NF-kB and MAPK signaling pathway in Coxsackie virus B3-infected rat cardiomyocytes [270]
as well as attenuating the development of diabetic cardiomyopathy via FoxO1 signaling pathway
in vitro and in vivo [271]. Recent findings reported that the H2S–Nrf2–antioxidant proteins axis
protects renal tubular epithelial cells and rescues cells from the native hibernator and from lipid
peroxidation-mediated cell death under reoxygenation conditions [272]. Recently, Kimura et al.
provided novel insights into generated potential redox regulators cysteine- and glutathione-persulfide
species (Cys-SSH, GSSH) as well as signaling molecules such as H2S2 and H2S3 produced by 3MST
in the presence of physiological concentrations of cysteine and glutathione, to maintain neuronal
transmission, vascular tone, cytoprotection, inflammation, and oxygen-sensing [273]. In this scenario,
it has been shown that H2S2 along with H2S3 shields neuronal cells from oxidative as well as carbonyl
stress through exerting reduced synthesis of glutathione [101]. Additional studies suggested that
H2Sn rather that H2S regulates the activity of the tumor suppressor phosphatase and tensin homolog
(PTEN) and reduces blood pressure by dilating vascular smooth muscle [274] through the modulation
of the Nrf2 pathway [275]. Interestingly, H2Sn activates transient receptor potential ankyrin 1 (TRPA1)
channels by sulfhydrating two cysteine residues at the amino terminus of the channels [276] and the
species also facilitates the translocation of Nrf2 to the nucleus to upregulate antioxidant genes by
sulfhydrating its binding partner Keap1 to release Nrf2 [275]. It is well known that decreased
endogenous H2S levels, redox imbalance, and oxidative damage are closely correlated with disease
severity and progression in cardiac, neurological, pulmonary, gastric, nephrological, hepatic diseases,
as well as in aging. Notably, Xie and coworkers detect significantly lower levels of plasma H2S in
diabetic mice that is corrected by administration of exogenous H2S donor GYY4137 [277]. Intriguingly,
GYY4137 exerts anti-atherogenic [277] and inflammatory effects [278] via the Nrf2/HO-1 pathway in
mice. In addition, H2S induced NRF2 activity, the upregulation of antioxidant genes HO-1, Trx-1,
and GSH, and the reduction in inflammation response by suppressing the NF-κB pathway [279]
as well as apoptosis in rat models [280]. In these conditions of inflammation, activation of the
cellular stress response represents an essential system that requires upregulation of the antioxidant
vitagene pathway to preserve resilience and redox homeostasis of the cell in various pathological
conditions [1,281–283]. Within this context, silent mating type information regulator 2 homolog 1
(SIRT1) is a NAD+-dependent deacetylase of lysine residue of the target protein. Mammals have
seven different sirtuins, SIRT1–SIRT7 [284]. SIRT1 extends lifespan [285] and improves cell tolerance to
inhibit environmental stress [286]. Recently, it has been shown that H2S is a novel SIRT1 activator by
direct sulfhydration. Numerous experimental studies in vitro and in vivo indicate protective effects of
H2S signaling through activation of Sirtuin’s family in different pathologies and, in particular, in type 2
diabetes and related complications. In this regard, NaHS increased SIRT1 and reversed biochemical,
apoptotic, oxidant, and pathologic parameters characteristic of diabetic nephropathy, at a dose of
100 µmol/kg/day [287]. In vivo studies reported that hydrogen sulfide ameliorated reperfusion-induced
oxidative stress and mitochondrial dysfunction via activation of Sirtuin3 signaling, thereby decreasing
lung ischemia-reperfusion damage in rats with a model of type II diabetes [288]. Endogenous CSE/H2S
directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation
activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation [289]. In vitro
studies suggested that H2S attenuates CSE-induced cellular senescence and apoptosis by improving
mitochondrial function and reducing oxidative stress in alveolar epithelial cells [290] as well as protects
against hyperglycemia-induced neuronal senescence and neurotoxicity in the mouse hippocampal
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cell line [291] via upregulation of the SIRT1 pathway. Compelling evidence reported that H2S plays
a peculiar role in protecting the ageing kidney from antifibrosis and anti-apoptosis through the
regulation of redox homeostasis. Consistent with this, SIRT1, which emerges as a major lifespan
regulator, has been widely investigated in the cardiovascular system and nervous system, but it is
rare in the urinary system. Recent studies have demonstrated that a low concentration of NaHS
(25 µmol/L) could directly induce SIRT1 activation in a cell-free system, whereas chronic treatment
of NaHS (50 µmol/kg/day) selectively improves the expression but not the activity of SIRT1 in the
ageing kidney. SIRT1 also regulates lipid metabolism by modulating a great variety of signaling
pathways such as PPAR-α, LXR, FXR, and SREBP signals [292]. It is noteworthy that SIRT3 is a
crucial regulator of mitochondrial function. SIRT3 catalyzes the deacetylation of mitochondrial
proteins, which in turn affects mitochondrial energy metabolism. SIRT3 is regulated by nutritional
status and metabolic stress. In this context, a recent in vivo study has demonstrated that exogenous
H2S supplement attenuated isoproterenol-(ISO-)-induced myocardial hypertrophy through SIRT3
protein in mice [293]. It is well observed that chronic NaHS treatment modulates Nrf2 downstream
genes such as HO-1, SOD1, and SOD2, consequently enhancing resistance to oxidative stress in
the ageing kidney. Chronic exogenous H2S treatment could protect the ageing kidney by reducing
oxidative stress, decreasing collagen deposition, and enhancing Nrf2 nuclear translocation, as well
as increasing endogenous H2S production. Reactive oxygen species are constantly generated during
metabolic diseases such diabetes. Among various signals activated by ROS, the thioredoxin pathway
is among the extensively investigated signaling cascades that mediate oxidative cell proliferation,
inflammation, senescence, and survival [294,295]. Trx represent the primary defense mechanism against
oxidative stress. It contains two redox-active cysteine residues that protect protein against unwarranted
oxidant-mediated inter- or intra-molecular disulfide bond formation. Some studies have demonstrated
that H2S exerts antioxidative effects on the cells through the regulation of the redox state of Trx and
interference with the ASK1/P38 signaling pathway [296]. Importantly, H2S modulates cellular redox
signaling via direct S-sulfhydration of the Nrf2-Trx pathway. Consistent with this notion, Trx is the
major regulator enzyme of intracellular persulfidation that cleaves disulfides in proteins and acts as
an S-denitrosylase [297]. Especially, cysteine-32 within Trx is responsible for the direct interaction of
Trx and S-sulfhydrated proteins following the breakage of the hydropersulfide group [298]. Likewise,
Trx can desulfhydrate the protein tyrosine phosphatases 1B (PTP1B), restoring endoplasmic reticulum
(ER) stress response in an in vitro setting [299]. Several studies revealed that H2S preconditioning could
protect mice against cerebral I/R injury by the induction of HSP70 and the PI3K/Akt/Nrf2 pathway [300].
The heme oxygenase 1 (HO-1), also referred to as Hsp32, is induced by various oxidative stimuli,
including ROS, RNS, and RSS. Accordingly, HO-1 has been recognized also as dynamic sensors of
cellular oxidative stress and modulators of redox homeostasis throughout the phylogenetic spectrum.
In this light, H2S exerts a protective role by upregulating the antioxidant enzyme HO-1 expression in
human kidney cells [301] (Figure 4).

In addition, recent in vivo studies reveal the nephroprotective effects of H2S on renal tissue through
upregulation of antioxidant proteins and anti-inflammatory cytokines, as well as the expression of
eNOS and iNOS via induction of the Nrf2/HO-1 pathway in renal injury [302] and in the spinal
cord of rats [303]. Moreover, H2S could attenuate high glucose-induced myocardial injury in rat
cardiomyocytes by suppressing the Wnt/β-catenin pathway and upregulating the expression of HO-1
and NQO1 [304]. In addition, H2S protected renal tissue against ischemia-reperfusion injury-induced
lipid peroxidation, inflammation, and apoptosis, which may be attributed to the upregulation of HSP
70, HO-1, and HSP 27 [305]. H2S reduces myocardial fibrosis in diabetic rats, which is related to the
inhibition of protein kinase Cα (PKCα), upregulation of HSP70 expression [306], and downregulation
of the JAK/STAT signaling pathway [307]. Finally, H2S protects cells from oxidative stress [308]
and delays programmed cell death by increasing the levels of antioxidant glutathione and HO1
expression [309]. Taken together, the data above convincingly indicate the crucial role of H2S as a
potent antioxidant molecule that, at low concentrations, induces protective actions exploited through
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the redox modulation of the Nrf2 vitagene signaling pathway which may provide a novel potential
therapeutic approach to confer resilience against oxidative stress, inflammation as well as apoptosis
during pathological conditions such as diabetes and related complications.
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Figure 4. Schematic representation of the carnosine, glutathione, and hydrogen sulfide (H2S) pathways
in the kidney-brain axis. γ-glutamyl transpeptidase (GGT) (3), γ-glutamyl cyclotransferase (4),
dipeptidase (5), oxoprolinase (6), γ-glutamyl-cysteine synthase (1), and glutathione synthetase
(2) operate in the Meister cycle to generate glutathione (GSH) and internalize amino acids (AA).
GSH interacts with Cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3MST)
to produce H2S.

8. Analytical Approaches to Quantify H2S in Biological Matrices

Hydrogen sulfide, present in mammalian tissues, plays a vital role in physiological and
pathophysiological processes. The long identified toxic gas, which has also been confirmed as the third
gaseous signaling molecule following NO and CO, plays important roles in various physiological and
pathological processes. However, striking differences with orders of magnitude were observed for the
detected hydrogen sulfide concentrations in biological matrices among different measurements in the
literature, which lead to the uncertainty for examination of the biological relevance of hydrogen sulfide.
The monitoring of the quality control of H2S donor drugs and the study on the pathophysiology and
pharmacology mechanism of H2S on experimental animals and even on humans require for detection
methods with high sensitivity, selectivity, precision, and accuracy. Various techniques for the analysis
of low concentrations of H2S have been developed over the past 50 years. Some of the older methods
are still used by health departments, but due to their very low sensitivity, they cannot be used in the
quantification of very low concentrations of this gas in mammalian tissues useful for scientific research.
Also, due to the variety of chemical species with multiple properties, make it difficult accurate and
reliable measurements of hydrogen sulfide in biological matrix [310]. Among the various methods
that have been established for the measurement of endogenous hydrogen sulfide, the most widely
used are: colorimetry [311], gas chromatography [312], electrochemical measurements by electrodes
selective for sulfide (ion-selective electrodes, ISEs) [313], polarographic sensors [314], estimation by
fluorescent probes [315], and high performance liquid chromatography (HPLC coupled with ultraviolet,
fluorescence or electrochemical detection) [316,317]. Currently, fluorescence derivatization is the
most used method. Hydrogen sulfide has two possibilities to perform nucleophilic substitution on
fluorescence probes to form a fluorescent derivative that can be detected using a fluorimeter coupled with
high performance liquid chromatography (HPLC) [318,319]. For example, monobromobimane (MBB) is
a common fluorescent reagent that reacts rapidly and completely with thiol groups [320,321]. However,
these methods have obvious limitations, such as complex preparation processes, low specificity and
sensitivity, and time-consuming procedures [310]. Another analytical technique considered most
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effective today for the analysis of substances at such low concentrations is MS/MS, the analysis with
triple quadrupole mass spectrometry in particular. Due to its low molecular weight and simple
chemical structure, hydrogen sulfide is not suitable for direct quantification by triple quadruple mass
spectrometry and thus, chemical derivatization was used before detection by LC-MS/MS [322–324].
Compared to all other methods, HPLC-MS/MS methods can determine concentrations in the order of
10−9–10−10 molar, the derivatization reactions allow high selectivity, and with the use of deuterated
standards, it can calculate the recovery very simply. Therefore, in particular as regards those studies
aimed to define the signaling role of H2S, HPLC-MS/MS methods, based on derivatization probes,
are the most promising methodology to address the need to detect very small amounts of H2S in
mammalian tissues and in other biological matrices.

9. Conclusions

This evaluation has demonstrated that both H2S and carnosine can modulate oxidative stress
and inflammation in the brain and the kidney, suppressing damage interactive synergies between
these two organs. Substantial evidence has emerged that these two agents independently activate
the Nrf2 transcription factor, which then leads to the formation of acquired resilience following the
quantitative features of the hormetic dose response. These processes also may involve the occurrence
of transcription factor crosstalk that is both dose- and biological context-sensitive. The process is a
general one, and is proposed to account for observations that hormetic effects are independent of
biological model, cell type, level of biological organization, inducing agent, and endpoint measured.
The emerging findings of H2S and carnosine are consistent with similar mechanistic and dose response
findings for a wide range of chemopreventive agents such as sulforaphane and EGCG that mediate
their protective effects via Nrf2 activation within the context of the hormetic dose response.
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