
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

June 2021

SAFE AND PRACTICAL MACHINE LEARNING SAFE AND PRACTICAL MACHINE LEARNING

Stephen J. Giguere
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Giguere, Stephen J., "SAFE AND PRACTICAL MACHINE LEARNING" (2021). Doctoral Dissertations. 2181.
https://doi.org/10.7275/22516009.0 https://scholarworks.umass.edu/dissertations_2/2181

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/22516009.0
https://scholarworks.umass.edu/dissertations_2/2181?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2181&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

SAFE AND PRACTICAL MACHINE LEARNING SAFE AND PRACTICAL MACHINE LEARNING

Stephen J. Giguere

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

SAFE AND PRACTICAL MACHINE LEARNING

A Dissertation Presented

by

STEPHEN GIGUERE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2021

College of Information and Computer Sciences

c© Copyright by Stephen Giguere 2021

All Rights Reserved

SAFE AND PRACTICAL MACHINE LEARNING

A Dissertation Presented

by

STEPHEN GIGUERE

Approved as to style and content by:

Philip Thomas, Co-chair

Yuriy Brun, Co-chair

Daniel Sheldon, Member

Melinda D. Dyar, Member

James Allan, Department Chair
College of Information and Computer Sciences

ABSTRACT

SAFE AND PRACTICAL MACHINE LEARNING

MAY 2021

STEPHEN GIGUERE

B.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Philip Thomas and Professor Yuriy Brun

As increasingly sensitive decision making problems become automated using models trained

by machine learning algorithms, it is important for machine learning researchers to design train-

ing algorithms that provide assurance that the models they produce will be well behaved. While

significant progress has been made toward designing safe machine learning algorithms, there are

several obstacles that prevent these strategies from being useful in practice. In this defense, I will

highlight two of these challenges, and provide methods and results demonstrating that they can be

overcome.

First, for many applications, the user must be able to easily specify general and potentially

complex definitions of unsafe behavior. While most existing safe machine learning algorithms

make strong assumptions about how unsafe behavior is defined, I will describe a flexible interface

that allows the user to specify their definitions in a straightforward way at training time, and that

is general enough to enforce a wide range of commonly used definitions.

iv

Second, users often require guarantees to hold even when a trained model is deployed into an

environment that differs from the training environment. In these settings, the safety guarantees

provided by existing methods are no longer valid when the environment changes, presenting sig-

nificant risk. I will consider two instances of this problem. In the first instance, I will provide

algorithms with safety guarantees that hold when the differences between the training and deploy-

ment environments are caused by a change in the probability of encountering certain classes of

observations. These algorithms are particularly useful in social applications, where the distribution

of protected attributes, such as race or sex, may change over time. Next, I will provide algorithms

with safety guarantees that hold in more general settings, in which the differences between the

training and deployment environments are more challenging to describe. In both settings, I will

present experiments showing that the guarantees provided by these algorithms are valid in practice,

even when these changes are made antagonistically.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Background: Seldonian Machine Learning . 4

1.1.1 Advantages and Disadvantages of Seldonian Machine Learning 9

1.2 Related Work . 11

1.2.1 Perspectives on Safety in Machine Learning . 12
1.2.2 Potential Strategies for Achieving Safety . 16
1.2.3 Machine Learning with General Safety Definitions . 19
1.2.4 Robust Safety Guarantees . 21

1.3 Problem Statement and Outline . 26
1.4 Outline . 28

2. CONTRIBUTION: A FLEXIBLE INTERFACE FOR DEFINING SAFETY 29

2.1 Overview of our Proposed Interface . 33

2.1.1 A Mathematical Formulation for g . 33

2.2 An Algorithm for Parsing Safety Definitions . 35
2.3 Bounding g(θ) Using the Parsed Computation Tree . 38
2.4 Seldonian Machine Learning Algorithms using the New Interface 40

vi

2.5 Results and Evaluation . 41

2.5.1 Experimental Design . 43
2.5.2 Reporting . 47
2.5.3 Results and Discussion . 49

2.6 Limitations and Future Work . 50

3. CONTRIBUTION: SELDONIAN ALGORITHMS FOR DEMOGRAPHIC
SHIFT . 53

3.1 Background . 55

3.1.1 Safety-Augmented Classification . 55
3.1.2 Demographic Shift in Safety-Augmented Classification 57

3.2 Seldonian Algorithms for Demographic Shift . 59

3.2.1 Robustness to Demographic Shift: Hoeffding-based Bounds 60

3.2.1.1 Exactly Known Demographic Shift . 60
3.2.1.2 Bounded Demographic Shift . 63

3.2.2 Robustness to Demographic Shift: Bounds based on the Student’s
t-Test . 65

3.2.2.1 Exactly Known Demographic Shift . 66
3.2.2.2 Bounded Demographic Shift . 67

3.3 Integrating Robust Bounds into Seldonian algorithms . 68
3.4 Evaluation and Results . 69

3.4.1 Hypotheses . 70
3.4.2 Experimental Design . 70
3.4.3 Problem Statement and Notation . 73
3.4.4 Specifying User Inputs . 74
3.4.5 Simulating and Evaluating the Impact of Demographic Shift 77

3.5 Results . 80

3.5.1 Evaluation and Reporting . 80
3.5.2 Results . 83

3.6 Limitations and Future Work . 91

vii

4. CONTRIBUTION: SELDONIAN ALGORITHMS FOR GENERAL
DISTRIBUTION SHIFT . 92

4.1 Background . 94
4.2 Bounds on Mean Shift due to General Distribution Shift . 99

4.2.1 Simplification by Assuming Discrete Observables . 99
4.2.2 Extending Theorem 4.1.1 for Uncertain Training Distributions 102
4.2.3 Seldonian Algorithms for Distribution Shift . 104

4.2.3.1 Optimization of Over c > 0 Given Fixed p 105
4.2.3.2 Optimization of Over p ∈ P Given Fixed c 107

4.3 Robustness Bounds for Alternative Divergence Measures . 109

4.3.1 Robustness to Variation in the Relative Frequency of Any Event 109

4.4 Evaluation and Results . 112

4.4.1 Hypotheses . 112
4.4.2 Experimental Design . 113

4.4.2.1 Problem Statement . 114
4.4.2.2 Specifying User Inputs . 115
4.4.2.3 Simulating and Evaluating the Impact of General Distribution

Shift . 117

4.5 Results . 118

4.5.1 Evaluation and Reporting . 118
4.5.2 Results . 120

4.6 Limitations and Future Work . 125

5. CONCLUSION . 127

APPENDIX: APPENDIX: OPTIMIZATION OF GENERAL DISTRIBUTION
SHIFT BOUNDS . 131

A.0.1 Optimization of Bounds Over p ∈ P Given Fixed c . 131

BIBLIOGRAPHY . 143

viii

LIST OF FIGURES

Figure Page

1.1 An illustration of a prototype for designing algorithms that satisfy the
requirements of the Seldonian machine learning framework. Given a
definition of unsafe behavior, g, and a tolerance for how often the algorithm
can return a solution that is unsafe, δ, these algorithms satisfy the behavioral
constraints in (1.1) by applying a safety test that determines whether a
candidate solution, θc, is safe with high confidence. If the safety test is passed,
the model is returned, whereas if the test is failed, the algorithm returns
NO SOLUTION FOUND as a safe default. The safety test itself is based on
computing a high-confidence upper bound on the value of g(θc), and to ensure
it is statistically independent from the process used to train the candidate,
separate partitions of the input data, D, are used for each component of the
algorithm. 6

2.1 Production rules for the expression grammar used to parse input strings into a
tree-structured representation with leaf nodes representing either numerical
values or strings that will eventually be interpreted as parameters. 35

2.2 Production rules for the parameter grammar used to parse input strings
representing parameters into tree-structured data structures that support
evaluation and computation of confidence intervals. Note that when defining
expected values of logical expressions (bool expr), logical values are
interpreted as floating point values according to true→ 1.0 and
false→ 0.0 for syntactic convenience. In addition, if A and B are two
logical expressions, the text “A, B” is interpreted as the logical conjunction of
A and B to make the grammar’s syntax more similar to the standard notation
for defining expected values, such as “E[X|A,B]”. 37

ix

2.3 Rules for combining sets of samples when generating unbiased estimates of
parameters. All variables in calligraphic notation are assumed to be sets of m
samples, and c denotes any constant value. Rules in the leftmost column
accept real-valued sample sets and output real-valued sample sets, while rules
in the rightmost column accept either real-valued or Boolean-valued rules,
depending on the operation, and produce Boolean-valued sample sets. The
production rules of the parameter grammar ensure that the condition term
defining any conditional expectations is Boolean-valued. 40

2.4 Rules for combining intervals on values. In these rules, we assume that each value
vj is bounded within some interval, [aj, bj]. In addition, we assume that
range{...} returns an interval with endpoints given by the minimum and
maximum values of its operands—that is,
range v1, ..., vk := [min{v1, ..., vk},max{v1, ..., vk}]. 41

2.5 Results evaluating the validity of our algorithms for computing high-confidence
upper bounds on g(θ) when g is defined according to the principles of
predictive equality and equal opportunity. 48

2.6 Results evaluating the validity of our algorithms for computing high-confidence
upper bounds on g(θ) when g is defined according to the principles of
equalized odds and disparate impact. 48

2.7 Results evaluating the validity of our algorithms for computing high-confidence
upper bounds on g(θ) when g is defined according to the principle of
demographic parity. 49

3.1 Exact definitions of fairness used our experiments on evaluating safety guarantees
under demographic shift. Details motivating these definitions can be found in
Section 3.4.4. These definitions were selected to evaluate whether the
algorithms proposed in this chapter were able to provide safety guarantees
under demographic shift for a variety of practical definitions. In our
experiments, these definitions were specified as text input, and were parsed
and bounded using the interface proposed in Chapter 2. 76

x

3.2 Results for experiments enforcing safety constraints based on the principle of
disparate impact to preclude discrimination based on student sex when the
marginal distribution of student race might change after model deployment.
The rightmost column of plots displays the frequency with which each
algorithm returns a solution that is unsafe before and after deployment, and
demonstrates that the algorithms proposed in this chapter (shown in green)
provide safety guarantees that hold after demographic shift, whereas standard
Seldonian algorithms (blue) do not. However, empirically, these added safety
benefits come at the cost of accuracy (shown in the middle column of plots)
and data efficiency (shown in the leftmost plot). Nonetheless, these results
show that for safety-critical applications for which ensuring safety after
deployment is the primary requirement, our algorithms are effective. 83

3.3 Results for experiments enforcing safety constraints based on the principle of
demographic parity to preclude discrimination based on student sex when the
marginal distribution of student race might change after model deployment.
These results demonstrate a similar pattern as shown in Figure 3.2: The
algorithms proposed in this chapter (shown in green) provide safety
guarantees that hold after deployment, while prior Seldonian algorithms
(blue) do not. Interestingly, for this definition, the data efficiency of our
quasi-Seldonian algorithm (displayed in the leftmost plot) was comparable to
that of standard Seldonian algorithms. These results demonstrate that our
proposed algorithms are effective solutions in safety-critical applications that
are subject to demographic shift, and demonstrate that these benefits are
consistent for a variety of practical safety definitions. 84

3.4 Results for experiments enforcing safety constraints based on equal opportunity to
preclude discrimination based on student sex when the marginal distribution
of student race might change after model deployment. These results
demonstrate a similar pattern as shown in Figure 3.2: The algorithms
proposed in this chapter (shown in green) provide safety guarantees that hold
after deployment, while prior Seldonian algorithms (blue) do not. These
results demonstrate that our proposed algorithms are effective solutions in
safety-critical applications that are subject to demographic shift, and
demonstrate that these benefits are consistent for a variety of practical safety
definitions. 85

xi

3.5 Results for experiments enforcing safety constraints based on the principle of
equalized odds to preclude discrimination based on student sex when the
marginal distribution of student race might change after model deployment.
These results demonstrate a similar pattern as shown in Figure 3.2: The
algorithms proposed in this chapter (shown in green) provide safety
guarantees that hold after deployment, while prior Seldonian algorithms
(blue) do not. These results demonstrate that our proposed algorithms are
effective solutions in safety-critical applications that are subject to
demographic shift, and demonstrate that these benefits are consistent for a
variety of practical safety definitions. 86

3.6 Results for experiments enforcing safety constraints based on the principle of
predictive equality to preclude discrimination based on student sex when the
marginal distribution of student race might change after model deployment.
These results demonstrate a similar pattern as shown in Figure 3.2: The
algorithms proposed in this chapter (shown in green) provide safety
guarantees that hold after deployment, while prior Seldonian algorithms
(blue) do not. These results demonstrate that our proposed algorithms are
effective solutions in safety-critical applications that are subject to
demographic shift, and demonstrate that these benefits are consistent for a
variety of practical safety definitions. 87

4.1 Definitions of fairness used for our experiments on evaluating safety guarantees
under general distribution shift. Details motivating these definitions can be
found in Section 3.4.4. These definitions were selected to evaluate whether
the algorithms proposed in this chapter were able to provide safety guarantees
under general distribution shift for a variety of practical definitions. In our
experiments, these definitions were specified as text input, and were parsed
and bounded using the interface proposed in Chapter 2. 116

4.2 Results for experiments enforcing safety constraints based on the principle of
disparate impact to preclude discrimination based on student sex when general
distribution shift occurs after deployment. The rightmost column of plots
displays the frequency with which each algorithm returns a solution that is
unsafe before and after deployment, and demonstrates that the algorithms
proposed in this chapter (shown in green) provide safety guarantees that hold
after demographic shift, whereas prior Seldonian algorithms (blue) do not.
However, empirically, these added safety benefits come at the cost of accuracy
(shown in the middle column of plots) and data efficiency (shown in the
leftmost plot). Nonetheless, these results shown that for safety-critical
applications for which ensuring safety after deployment is the primary
requirement, our algorithms are effective. 120

xii

4.3 Results for experiments enforcing safety constraints based on the principle of
demographic parity to preclude discrimination based on student sex when
general distribution shift occurs after deployment. These results demonstrate a
similar pattern as shown in Figure 4.2: the algorithms proposed in this chapter
(shown in green) provide safety guarantees that hold after deployment, while
prior Seldonian algorithms (blue) do not. These results demonstrate that our
proposed algorithms are effective solutions in safety-critical applications that
are subject to general distribution shift, and demonstrate that these benefits are
consistent for a variety of practical safety definitions. 121

4.4 Results for experiments enforcing safety constraints based on equal opportunity to
preclude discrimination based on student sex when general distribution shift
occurs after deployment. These results demonstrate a similar pattern as shown
in Figure 4.2: the algorithms proposed in this chapter (shown in green)
provide safety guarantees that hold after deployment, while prior Seldonian
algorithms (blue) do not. These results demonstrate that our proposed
algorithms are effective solutions in safety-critical applications that are
subject to general distribution shift, and demonstrate that these benefits are
consistent for a variety of practical safety definitions. 122

xiii

CHAPTER 1

INTRODUCTION

As increasingly sensitive real-world decision making problems become automated using pre-

dictive models trained by machine learning algorithms, the need for techniques that assess the

safety of these models is similarly growing. Consider, for example, self-driving cars, machines that

guide medical policy and practice, and general purpose robotic workers, all of which have the po-

tential to revolutionize our lives for the better. [36, 51, 28]. However, the positive impacts of these

applications come with an increased need for safety measures. For example, in the applications

mentioned above, failure of a machine learning model might cause physical injury or significant

damages. In other applications, such as predicting or assessing criminal activity [2, 8], using facial

recognition software for travel authorization [22], or automating job recruiting strategies [11], de-

ploying poorly-behaved models carries significant risk of causing social injustice. Because of the

variety of ways in which adverse effects can manifest, it is important to consider the behavior of

the models trained by machine learning algorithms based on definitions that encompass physical

safety, fairness, and more.

Unfortunately, the task of designing algorithms that consistently produce well-behaved or safe

models is nontrivial due to several challenges that must be considered. First, as the previous

examples illustrate, the manner in which unsafe behavior is defined tends to be application specific,

introducing a tradeoff between how flexible a given algorithm can be with regard to supporting

various safety definitions, and how difficult it is to design algorithms that enforce them. In addition,

many real-world safety applications require high confidence that a model will be safe, meaning

that these algorithms must provide some form of guarantee on safe behavior for them to be useful.

1

Finally, the rapid adoption of machine learning techniques across many industries and disciplines

means that it is often unrealistic to assume that a practitioner seeking to automate a particular

task will have significant expertise in machine learning. Consequently, safe machine learning

algorithms that require significant amounts of data analysis in order to properly tune parameters,

specify inputs, or define constraints, are of limited use to many practitioners.

Recent work has produced many safe machine learning algorithms that address these chal-

lenges to varying degrees. For example, algorithms based on chance constraints are able to offer

some assurance that learned models will behave safety, but often require extensive knowledge

of the task to use effectively [4]. On the other hand, algorithms based on soft constrained pro-

gramming can produce models that are empirically safe, but they do not offer guarantees of safe

behavior and may require detailed data analysis in order to properly set certain parameters [4].

These approaches and others will be described in more detail in Section 1.2.2. In this dissertation,

we propose algorithms designed according to the Seldonian framework for machine learning [54],

which provides a formulation for reasoning about these considerations, as well as principles for

designing machine learning algorithms that provide high-confidence safety guarantees.

Despite recent progress, existing safe machine learning algorithms remain limited by several

practical challenges that have not yet been fully addressed. First, we claim that while some al-

gorithms provide reasonable flexibility in defining safety, they do not yet provide the flexibility

needed for users to easily enforce the types of safety constraints that arise in many problem set-

tings. Secondly, we claim that existing safe algorithms tend to ignore the possibility that the

environment used to train a model might differ from the environment it is eventually deployed in.

We will discuss this problem in detail in Chapter 3 and Chapter 4, but in summary, differences

between the training and deployment environments cause many safety guarantees provided by safe

algorithms to be unreliable. As a result of these challenges, we propose that while existing safe

machine learning algorithms provide significant progress towards the goal of providing practical

2

tools for preventing undesirable behavior, further developments are necessary for these tools to be

useful in many settings.

In this dissertation, we present strategies for overcoming these practical challenges. First, we

provide background on how safety constraints can be modeled in the machine learning setting,

and discuss the Seldonian machine learning framework and related principles that guide the de-

velopment of safe machine learning algorithms. Given this background, we identify two central

problems that must be overcome in order to enforce general, user-defined safety constraints in

practical settings. The first challenge is that the algorithm designer must provide an interface that

allows safety to be defined in a general way. To address this, we identify a general class of safety

specifications and provide algorithms for parsing and enforcing them. The second challenge is that

in many practical applications, it is important to ensure that a model will behave safely once it is

deployed, even when the data that is encountered in the future is drawn from a different distribu-

tion than was encountered during training. We refer to this setting by stating that distribution shift

has occurred between training and deploying the model. In particular, this uncertainty in the dis-

tribution of data after deployment means that safety guarantees provided by Seldonian algorithms

and others may not apply once the model is deployed. To address this, we present two solutions,

based on distinct assumptions about what is known about the distribution shift when the model is

trained. First, we address the case in which little is known about how the distribution will change

besides the fact that the size of the change will be bounded with respect to some distance measure.

In particular, we will provide algorithms that satisfy high-probability safety guarantees provided

that the Kullback-Liebler divergence (KLD) between the training and deployed data distributions

are bounded. These bounds are extremely general, and can therefore be applied in many prac-

tical applications. Nonetheless, in other applications, the user might know that the training and

deployment distributions differ in particular, well-understood ways. For example, if a classifier is

trained on data for students, it may be known that the future distribution may be the same as in

training, except that the relative proportion of male and female students might differ. In such cases,

3

the fact that the differences between the training and deployed data distributions can be explained

by changes in a single variable—in this case, sex—can be exploited to enforce safety guarantees

based on information about how the distribution of that variable will change after deployment. We

present safe machine learning algorithms based on this approach in Chapter 3, and demonstrate

that the safety guarantees they provide hold with high probability.

1.1 Background: Seldonian Machine Learning

In light of the potentially adverse consequences to deploying machine learning-trained models,

it is reasonable to consider how to define safety formally. This entails specifying the object that we

should consider the safety of, how safety should be quantified for that object, and what assurances

of safety are needed. For example, given a machine learning algorithm that outputs some trained

model, one might require the model to not discriminate based on a sensitive feature such as race,

and might require assurance that the model behaves safely on some held-out validation set. How-

ever, this formulation fails when the safety constraints are impossible to satisfy, and provides no

guarantees on how safe the trained model will be when applied to new, unseen data. The Seldo-

nian machine learning framework [54] provides a formulation for reasoning about these choices

in a consistent manner.

Importantly, the Seldonian machine learning framework formulates safety as a property of

the machine learning algorithm itself, rather than a property of any particular trained model. It

assumes that safety can be quantified using a scalar function, called a constraint objective, such

that positive values indicate unsafe behavior. Furthermore, according to this framework, a safe

algorithm should allow its user to specify what constitutes unsafe behavior; this definition should

not be hard-coded into the algorithm. This requirement is largely at odds with existing approaches

to creating algorithms with safety guarantees, which typically have a definition of safety ingrained

in the algorithm’s design, with some exceptions [1]. To be considered safe under this framework,

4

a learning algorithm must satisfy a set of behavioral constraints, which limit the frequency with

which the algorithm returns models that produce unsafe behavior.

To make to make these concepts formal, let θ be some predictive model. For example, in

classification, θ might map feature vectors X to labels Y , or it might map states S to actions A

in the reinforcement learning setting. Regardless of the problem setting, we generally evaluate

θ according to some loss function, `. Conventional machine learning algorithms are typically

designed to return a model that (approximately) minimizes `. Specifically, an algorithm, a, uses

input data, D, to output a model, a(D), that satisfies,

`(a(D)) ≈ min
θ∈Θ

`(θ).

To reason about safety within this general setting, the Seldonian machine learning framework

assumes one or more functions g are provided by the user, which are used to assess whether or not a

model behaves safely according to the user’s application-specific requirements. In this dissertation,

we assume a single definition for notational convenience, but our results generalize readily to the

case where multiple definitions have been provided. Concretely, the Seldonian machine learning

framework assumes that g measures the prevalence of unsafe outcomes when using a given model

. Specifically, the framework assumes that g(θ) = 0 represents a threshold for safe behavior, so

that θ is considered safe enough to deploy as long as g(θ) ≤ 0.

Given g, one might seek to design an algorithm that is guaranteed to return safe models. While

it may be possible to design algorithms that achieve this goal for specific applications and spe-

cific definitions of safety, it is most helpful to have algorithms that do not assume that g is known

until the algorithm is run. Unfortunately, it is generally impossible to ensure safety with absolute

certainty without making strong assumptions about how g will be defined. Furthermore, g often de-

pends on quantities such as expected values that, in practice, can only be estimated. Consequently,

it is usually impractical to determine with absolute certainty whether or not g(θ) ≤ 0 for any θ.

5

Candidate Selection Safety Test

HCUB

Figure 1.1. An illustration of a prototype for designing algorithms that satisfy the requirements
of the Seldonian machine learning framework. Given a definition of unsafe behavior, g, and a
tolerance for how often the algorithm can return a solution that is unsafe, δ, these algorithms satisfy
the behavioral constraints in (1.1) by applying a safety test that determines whether a candidate
solution, θc, is safe with high confidence. If the safety test is passed, the model is returned, whereas
if the test is failed, the algorithm returns NO SOLUTION FOUND as a safe default. The safety test
itself is based on computing a high-confidence upper bound on the value of g(θc), and to ensure it
is statistically independent from the process used to train the candidate, separate partitions of the
input data, D, are used for each component of the algorithm.

Therefore, the Seldonian framework proposes that safety constraints should be probabilistic, with

the user being able to specify an upper bound on the probability that the algorithm produces a

model that is unsafe. Concretely, the Seldonian framework defines safe algorithms to be those that

satisfy a behavioral constraint for each definition g, defined by,

Pr
(
g
(
a(D)

)
≤ 0
)
≥ 1−δ, (1.1)

where g and δ are provided by the user when the algorithm, a, is executed. In particular, we

highlight that the random quantity used to define the probability in (1.1) is the input data D, which

will generally be defined as a set of i.i.d. observations from from some distribution that is relevant

to the user’s application.

Importantly, the Seldonian framework defines a set of requirements for algorithms to be con-

sidered safe, but does not specify how they should be constructed, or how g should be defined.

However, recent works thus far have identified one successful strategy [54, 44], which is illus-

trated in Figure 1.1. At a high level, a set of data is held out during training and used to perform

6

Algorithm 1 SeldonianPrototype(D, g, δ)
1: Dc, Ds ← Partition(D)
{Select a candidate}

2: θc ← TrainCandidate(Dc, g, δ)
{Perform the safety test using θc}

3: u← HighConfidenceUpperBound(g,Ds, δ)
4: if u ≤ 0 then
5: return θc
6: else
7: return NO SOLUTION FOUND
8: end if

a safety test to determine if the resulting model is safe to deploy. The first split of data is used to

train a candidate solution, θc, in a step referred to as candidate selection. Once a candidate solution

is found, the safety test is applied. To perform the safety test, the held out data is used to compute

a high-confidence upper bound the constraint objective, g(θc); if the value of the high-confidence

upper bound is positive, then θc is possibly unsafe and NO SOLUTION FOUND is returned, where

g(NO SOLUTION FOUND) := 0 by definition. If the safety test is passed, then the candidate

model, θc, is returned by the algorithm. In this way, the above strategy can be seen as a method

of censoring the output of the learning algorithm—returning NO SOLUTION FOUND instead—to

ensure that the models it produces are unsafe with tolerable frequencies.

To simplify the steps involved with upper bounding g(θc), initial Seldonian algorithms made

the simplifying assumption that g was defined as an expected value that can be estimated without

bias using the held out data. We explain this assumption and illustrate it’s limitations in Chapter 2,

where we propose a new formulation that is much more flexible.

Algorithm 1 provides pseudocode for a prototypical Seldonian algorithm. In that algorithm,

Partition splits the input data, D, into a set to be used for training, Dc, and a set to be used for

performing the safety test, Ds. Then, a candidate model, θc, is trained using TrainCandidate.

While the details of this step can have a significant impact on both the quality of the solution re-

turned and the likelihood of the algorithm returning NO SOLUTION FOUND, they do not affect

7

Algorithm 2 SeldonianRegression(D := {(Xi, Yi)}ni=1, g, δ)
1: Assume: g(θ) := E[h(X, θ)]− τ , where h(x, θ) ∈ [0, 1]
{Partition D}

2: Dc ← {(Xi, Yi)}n/2i=1

3: Ds ← {(Xi, Yi)}ni=n/2+1

{Select a candidate that minimizes MSE}
4: θc ← arg minθ∈Θ

1
|Dc|
∑

(X,Y)∈Dc

(
θ(X)− Y

)2

{Perform the safety test using θc using Hoeffding’s inequality}
5: u← 1

|Ds|
∑

(X,Y)∈Ds h(X, θc) +
√

log(1/δ)
2|Ds| − τ

6: if u ≤ 0 then
7: return θc
8: else
9: return NO SOLUTION FOUND

10: end if

whether or not the algorithm satisfies the conditions to be a Seldonian algorithm, and are therefore

not elaborated on in this dissertation [54]. Finally, a safety test is performed on θc, which involves

computing a (1−δ)-probability upper bound on g(θc) using HighConfidenceUpperBound,

and using the result to determine whether the algorithm should return θc or NO SOLUTION FOUND.

To make this process concrete, consider a regression task in which the goal is to train a linear

model, θ, that accurately predicts a real-valued response, Y ∈ R, associated with a set of real

valued features, X ∈ Rd, given a set of n identically and independently distributed (i.i.d.) labeled

observations,D := {(Xi, Yi)}ni=1. Next, assume the user would like to ensure that, with confidence

at least 1−δ, the model will not cause some negative event to occur for more than 100τ% of the ob-

servations. For example, to be risk-sensitive, they may want to ensure that the model will not over-

or under-estimate the true response by more than some amount. As a result, we assume the user

defines g(θ) = E[h(X, θ)] − τ , where h(X, θ) returns one if the model causes the negative event

to occur for input X , and zero if not. To design a Seldonian algorithm for this setting using the

prototype described in Algorithm 1, we might first decide to partition the training data evenly into

Dc and Ds. Next, if Θ denotes the set of all linear models, we might define TrainCandidate

to minimize the mean squared error (MSE) of the model’s predictions on Dc:

8

θc = arg min
θ∈Θ

1

|Dc|
∑

(X,Y)∈Dc

(
θ(X)− Y

)2
.

Finally, to construct a safety test, we might leverage the fact that h(X, θ) ∈ {0, 1} and use Ds

to compute a high-confidence upper bound on g(θc) based on Hoeffding’s inequality [32], which

satisfies,

Pr
(
g(θc) ≤ UHoeff(θc, Ds)

)
≥ 1−δ,

where

UHoeff(θc, Ds) :=
1

|Ds|
∑

(X,Y)∈Ds

h(X, θc) +

√
log(1/δ)

2|Ds|
− τ.

Combining these steps, Algorithm 2 defines a Seldonian regression algorithm for minimizing

MSE that provides high-confidence guarantees based on the safety definitions described above.

1.1.1 Advantages and Disadvantages of Seldonian Machine Learning

Algorithms designed according to the Seldonian framework offer users several advantages for

ensuring safety compared to prior approaches. In particular, they provide the user with high-

confidence safety guarantees without requiring that they perform significant data analysis. For

example, algorithms based on hard constraints require the user to encode their definition of unde-

sirable behavior as a constraint on the set of model parameters. If, for example, the user would

like to train a neural network that depends on many weights, then they must perform extensive

data analysis to determine which weights produce models that are safe. Similarly, approaches

based on soft constraints require the user to set a tradeoff parameter that balances safety and model

performance, which might require significant effort to set properly. In contrast, Seldonian algo-

rithms provide high-confidence safety guarantees given the user’s safety definition directly. In

addition, these algorithms allow the user to control the maximum probability with which the al-

gorithm produces an unsafe output, and are therefore useful for a wide range of problem settings,

ranging from those where safety considerations are relaxed, to those where ensuring safety is crit-

9

ical. Finally, these algorithms provide high-confidence guarantees, which make them desirable for

safety-critical applications compared to approaches that are safe empirically, but do not provide

formal assurances.

On the other hand, Seldonian algorithms have some drawbacks. First, since the Seldonian

machine learning framework places the burden of establishing high-confidence guarantees of safety

on the algorithm designer, these algorithms can be challenging to design. In particular, the high-

confidence safety guarantees specified by (1.1) can be difficult to establish in general settings.

The prototypical Seldonian algorithm presented in Algorithm 1 achieves this by using a held-

out portion of the training data to apply a safety test, but this strategy results in less data being

used for training a candidate model. As a result, these algorithms have lower data efficiency than

safety-agnostic alternatives. A related consideration when designing Seldonian algorithms is that,

to ensure the validity of the high-confidence safety guarantees, it can be challenging to evaluate

the safety of multiple models without access to significant amounts of data. In Algorithm 1, the

safety test is applied to a single candidate model for this reason. However, since the safety test

is only applied to a single model, the candidate selection step must be carefully designed so that

the model that is selected is likely to pass the safety test [54]. In addition to these considerations,

the designer of a Seldonian algorithm must provide a strategy to allow the user to specify their

definition of undesirable behavior, g. For Seldonian algorithms that assume simple definitions of

safety, this interface might be straightforward, but for Seldonian algorithms designed to enforce

more complex definitions, the interface may require significant effort to implement. Finally, for

Seldonian algorithms that offer users significant flexibility when specifying g, the algorithm must

account for the possibility that the user’s definition is unsatisfiable. In Algorithm 1, this is resolved

by allowing the algorithm to return NO SOLUTION FOUND. However, for some applications, it

may not be acceptable for the algorithm to return NO SOLUTION FOUND. Therefore, in these

applications, it may be advantageous to use algorithms specifically designed to enforce specific,

application-specific safety definitions instead of using general-purpose Seldonian algorithms.

10

Despite the considerations listed above, we use the Seldonian framework, and in particular

algorithms designed according to Algorithm 1, as the foundation of our contributions for several

reasons. First, since we seek to present safe machine learning algorithms for use in practical appli-

cations, we find that the advantages that Seldonian algorithms offer users outweigh the additional

burden place on the algorithm developer. Specifically, while these algorithms are in many ways

more challenging to design than safety-agnostic machine learning algorithms or those designed to

avoid specific definitions of undesirable behavior, we find that they are considerably more practi-

cal for safety-critical applications, especially for users that are not experts in machine learning. In

addition, Seldonian algorithms designed according to Algorithm 1 can be easily extended, which

make them a desirable starting point for the contributions we propose in this dissertation. For

example, to design Seldonian algorithms that provide high-confidence safety guarantees for gen-

eral definitions of undesirable behavior, one can simply modify the strategy for computing high-

confidence upper bounds on g(θ) without modifying other steps of the algorithm. Consequently, by

modifying specific components of the Seldonian prototype in Algorithm 1, we are able to propose

Seldonian algorithms that offer various benefits such as robustness to distribution shift, without

having to redesign other components of the algorithm.

1.2 Related Work

To provide context for our proposed contributions, we briefly discuss related work.

First, we discuss alternative formulations that have been proposed to ensure that machine learn-

ing algorithms produce models that are safe. In particular, we discuss various ways that safety has

been defined in prior literature, ranging from formulations designed to ensure the physical safety

of automated systems, as well as formulations based on avoiding undesirable behavior in more

general settings such as social applications. Throughout this section, we will highlight the ways

11

in which these formulations differ from the framework used by Seldonian machine learning algo-

rithms.

Next, we will describe potential strategies that might be used to design algorithms that achieve

the safety guarantees provided by Seldonian algorithms. Here, we will focus our discussion on

general algorithmic approaches instead of specific implementations. For example, we will describe

approaches based on enforcing hard constraints, chance constraints, multi-objective optimization,

and others, and discuss whether or not these designs are suitable for establishing the guarantees

provided by Seldonian machine learning algorithms.

After describing existing work on safety in automated systems, we will then discuss existing

work that relates to the contributions we propose in this dissertation. Specifically, we will consider

existing work on enforcing general definitions of safety and fairness, and comment on how these

approaches relate to or inspire the strategies we propose. In addition, we will discuss existing work

on ensuring that machine learning models are robust to changes in distribution, both in the setting

of general machine learning and in the setting of ensuring that safety guarantees remain valid after

deployment.

1.2.1 Perspectives on Safety in Machine Learning

The goal of avoiding undesirable behavior on the part of automated decision makers has been

considered for many years, even preceding the widespread adoption of machine learning as a tool

to produce them. Historically, the notion of safety has been associated with the ability of an

automated decision maker to avoid behaviors that cause damage or harm in a physical sense. These

approaches might consider an automated controller that is interacting with some environment, in

which the controller is considered safe if it can be shown to avoid dangerous environment states

during its operation. For example, throughout early work on designing ship navigation systems,

a major priority was to ensure that ship collisions did not occur during transit [34]. To achieve

this goal, these systems were based on manually-designed heuristics [35] or expert systems [34]

12

that could be easily evaluated and verified by domain experts. As the complexity of these systems

increased, techniques for verifying the safety of these controllers advanced, often leveraging formal

verification to ensure that safety requirements were met [55]. While the widespread adoption

of machine learning algorithms and the use of models with large numbers of parameters have

presented many challenges when applying existing safety verification techniques to ensure safety,

this early work on safety in automated systems laid the groundwork for several qualitative safety

principles that remain relevant [46]. Mohseni et al., [45] outlines three general principles that

guide how failure cases might be dealt with for automated systems, based on existing work on

autonomous vehicle control [56]:

Inherently Safe Design: Autonomous systems should be designed to be guaranteed to be safe—that

is, it is inherently impossible for the system to cause an unsafe outcome to occur.

Safe Fail: Autonomous systems should detect instances in which they are failing or likely to fail,

and revert to a safe default behavior. For example, if a self-driving car is close to driving off

a road, it should notify the driver and revert control of the vehicle to them.

Safety Margins: The performance of an autonomous system during training or development should

be larger than the minimum required to carry out the task by some margin, so that if perfor-

mance degrades after the system is deployed, minimum performance requirements are likely

to still be met.

The Seldonian framework we leverage in this dissertation is general enough to support most of

these principles. While inherently safe design is impractical to enforce in most applications of ma-

chine learning [45], the Seldonian framework allows the user to place arbitrarily strict requirements

on the probability of safe behavior by setting the δ parameter in (1.1) to be close to 0. In addi-

tion, the property that existing Seldonian algorithms are allowed to return NO SOLUTION FOUND

allows failure cases to be delegated to safe default procedures, satisfying the principle of safe

13

fail during training. Finally, existing Seldonian algorithms support safety definitions based on

minimum performance requirements, allowing the user to precisely control the margin by which

performance can degrade without causing the system to fail.

While these principles can be used to develop safe machine learning algorithms for particular

applications, the rapid adoption of machine learning across many different application areas has

expanded the range of potential safety requirements and introduced a larger emphasis on quanti-

tative definitions of safety. Instead of considering automated decision makers interacting in some

physical environment, models trained using machine learning are commonly deployed to solve

classification problems, regression problems, unsupervised learning problems, and more. Conse-

quently, the decision of whether or not it is safe to deploy a model trained using machine learning

is often based on criteria besides the occurrence of dangerous states. For example, safety might be

based on whether or not a model’s predictions are correct for some subset of observations, whether

or not the model’s performance is expected to meet some minimum requirement once deployed.

An important class of applications that illustrate this are social applications, in which safety

refers to whether or not a decision maker is fair. For example, consider the task of predicting

whether or not to approve a person’s application for a loan. To ensure that a predictive model

does not unfairly discriminate based on the identified gender of the applicant, the user might want

to ensure that the accuracy of the model is similar on average for different genders. While this

safety constraint is not as complex as others that might be defined, it presents an important change

from safety requirements considered previously, which are based on a single expected value. In-

stead of a single unknown quantity that must be estimated, definitions such as these might contain

many unknown terms, which are combined in general, nonlinear ways. This pattern is particularly

evident in existing work on ensuring that models trained using machine learning are fair when

making predictions for applications with risk of adverse societal impact. Verma and Rubin [57],

for example, provide an overview of twenty definitions of undesirable behavior that have been

proposed for fairness-related classification problems. Many of these definitions, such as group

14

fairness [20, 49, 65], conditional statistical parity [12], predictive parity [49, 9], predictive equal-

ity [9, 12], and several others [30, 62, 39, 37], are based on ensuring that various statistics such

as model accuracy, false-positive rate, or probability of predicting a positive label, are similar for

observations of different subgroups of the population. Consequently, these definitions, like the ex-

ample cited above, require computing the absolute value of the difference between two conditional

expected values. However, many fairness definitions are more complex. The principle of treatment

equality, for example, states that the probability that the model makes a false positive prediction

divided by the probability it makes a false negative prediction should be similar between subgroups

of the population [3]. As a result, this definition depends nonlinearly on four conditional expected

values. Similarly, the principle of disparate impact, particularly the 80% Rule assembled by the

California Fair Employment Practice Commission in 1971 for enforcing fairness in hiring deci-

sions made by employers, states that the probability of the model predicting a positive label for

any subgroup should never be less than 80% as large as the probability of predicting a positive label

for any other subgroup [27, 9, 63]. Finally, principles such as fairness through awareness require

that, given some metric that measures a distance between two individuals and a second metric that

measures differences in the model’s predictions for those individuals, similar individuals should

result in similar distributions over labels given the model [20].

Motivated by such applications, we consider safety in the general sense defined in (1.1), which

is flexible enough to capture all of the aforementioned safety requirements, and is able to be incor-

porated into larger systems in a way that supports the safety principles laid out by early work in

safety.

Finally, the adoption of machine learning as a strategy for training models has exposed an

important distinction when considering safety. As opposed to the process of manually designing

a controller, the process of training a model is usually based on a set of training observations,

which are typically considered to be random samples from some underlying distribution. As a

result, the output of a machine learning algorithm is itself random, so that it becomes reasonable to

15

assess the safety of a training algorithm, instead of the safety of a particular model it outputs. For

example, while traditionally a controller might be considered unsafe if it causes dangerous states to

occur, an algorithm for training a controller might be considered unsafe if it has a high likelihood

of producing a model that visits unsafe states, given random training data. The perspective of

measuring the safety of an algorithm is more general than ensuring the safety of a particular model,

since constraints can be defined on the algorithm that cannot be computed given a single output

model. Importantly, we note that the constraints that characterize a Seldonian algorithm—that is,

the behavioral constraints expressed in (1.1)—are constraints on the machine learning algorithm,

and are therefore more general than many of the safety constraints that have been considered in

prior work.

1.2.2 Potential Strategies for Achieving Safety

Having outlined existing work on defining safety in the context of machine learning, we now

consider potential methods for enforcing these goals. At a high level, the task of designing an

algorithm that meets safety requirements with high-confidence can be seen as a particular type

of constrained optimization problem. Consequently, the variety of potential strategies reflects the

breadth of existing work on constrained optimization.

First, we might consider approaches that are based on enforcing hard constraints. At a high

level, if it is possible to specify the set of predictive models that satisfy the user’s safety re-

quirements, then any algorithm that searches exclusively over this set of models will, with high-

confidence, return a safe model. Depending on the choice of model, this search can be performed

using various optimization algorithms, such as the simplex algorithm [13]. Unfortunately, since

machine learning algorithms are generally trained on finite amounts of data, it is typically infeasible

to construct a feasible set of models to search over without requiring significant domain knowl-

edge on the part of the user. In addition, since the feasible sets are defined as constraints on the

16

parameter space of the model, it can be challenging for users to encode general safety constraints

in this form.

A reasonable alternative to enforcing hard constraints is to introduce soft constraints on the

objective function used to guide the search for a model. For example, if the user seeks an accurate

classifier that is safe according to function g that quantifies unsafe behavior, they might select a

model by maximizing

Accuracy(θ)− λg(θ),

where λ ≥ 0 is a weight that determines the importance of the safety requirement. This approach

has the advantage of being straightforward to implement and flexible enough to handle general

definitions of safety, but has several drawbacks that make it ineffective when designing algorithms.

First, the parameter λ can have a dramatic effect on the safety of the model that is selected. In

particular, λ determines the tradeoff between the original objective and the function g, so that the

choice of suitable value varies based on the application, and can be difficult to find in practice [54].

Furthermore, while algorithms based on soft constraints are capable of producing models that are

empirically safe, they do not provide the high-confidence guarantees of safety required by many

applications. In contrast, algorithms designed according to the Seldonian framework, including

those proposed in this dissertation, do not require the user to specify a tradeoff parameter such as

λ, and are able to ensure that with high confidence, the model produced by the algorithm will be

safe.

A somewhat similar class of algorithms that might be used to design machine learning al-

gorithms with high-confidence safety guarantees are based on multi-objective methods. These

methods are designed to produce solutions that are in some sense optimal when there are multiple,

potentially conflicting, objectives that should be optimized. This makes such methods appropriate

for considering safety in machine learning where the user’s primary objective, such as achieving

an accurate predictive model, is often at odds with the safety constraints imposed by the applica-

17

tion. Unfortunately, these methods are not able to provide high-confidence guarantees of safety. In

particular, instead of producing a single model, these methods are usually based on computing the

Pareto frontier of the various objectives, which is the set of candidate solutions with the property

that any changes to the solution will cause one or more of the objectives to decrease. As a result,

these methods find a set of solutions that represent reasonable tradeoffs between the objectives, but

do not guide the user on which one to select. In addition, a solution that lies on the Pareto frontier

is not guaranteed with high confidence to be safe. Therefore, to select a solution and establish

high-confidence safety guarantees, the user must perform significant additional data analysis. In

contrast, existing Seldonian algorithms and those proposed in this dissertation produce a single

model (or NO SOLUTION FOUND) that is safe with high confidence.

While methods based on hard constraints are challenging to use without significant expert

knowledge, and multi-objective methods and those based on soft constraints do directly provide a

trained model that is safe with high-confidence, algorithms based on chance-constrained program-

ming are more promising. Chance-constrained programs are a class of optimization problems in

which an objective function is optimized subject to a set of constraints on the probability that a set

of real-valued random variables are below zero. Formally, if ` : Θ → R is some loss function to

be minimized, then a chance-constrained program is expressed by,

arg minθ∈Θ `(θ)

s.t. ∀i ∈ {1, ..., n}, Pr(gi(θ,Wi) ≤ 0) ≥ 1−δi,

where each gi is a deterministic real-valued function, each Wi is a random variable, and each

δi ∈ (0, 1). While this formulation is close to that of (1.1), standard chance-constrained programs

make several assumptions that distinguish them from the methods used in Seldonian algorithms.

Most notably, standard chance-constrained programs assume that the distribution of each Wi is

known, while Seldonian algorithms do not make this assumption. Due to this assumption, chance-

constrained programs can require significant expert knowledge on the part of the user. For example,

18

if Wi represents a vector of features describing a person, and gi assesses whether a model θ is fair

on average, then the user of an algorithm based on chance-constrained programming must know

the exact joint distribution of all user features, which is impractical in many settings. While stan-

dard chance-constrained programs are therefore not identical to the problem solved by Seldonian

algorithms, there are several variants that are more similar. In particular, scenario approximation

methods can be applied to solve chance-constrained programs when the distribution of each Wi is

unknown, but can be approximated using a finite set of independent samples. Existing Seldonian

algorithms can be seen as a particular instance of this problem setting.

1.2.3 Machine Learning with General Safety Definitions

As described in Section 1.2.1, the growing adoption of machine learning algorithms in di-

verse applications has greatly expanded the range of safety considerations that must be considered.

Whereas early approaches for ensuring safety focused on ensuring that automated decision mak-

ers did not interact with the environment in unsafe ways, later applications produced an increase

in safety requirements based on the performance of predictive models, and eventually led to the

need to enforce general, application-specific safety constraints. While these safety requirements

are not necessarily mutually exclusive, this development has led to increased interest in producing

algorithms capable of enforcing general safety constraints. In this section, we discuss work on en-

forcing such constraints, and describe how they relate to the methods proposed in this dissertation,

and in particular those proposed in Chapter 2.

First, we consider safety definitions based on ensuring that a trained model does not enter into a

dangerous or unsafe state when interacting with an environment. A straightforward way to quantify

this notion is to define a binary function, h, that acts as an indicator function for whether or not θ

produced an unsafe outcome for a given observation, and base the safety definition on the expected

value of h. For example, in [54], we considered a problem in which the goal was to train an agent,

θ, for controlling an autonomous insulin pump for diabetic patients. While the goal of training the

19

agent was to optimally moderate the patient’s blood sugar levels, there was considerable risk of

adverse health effects if the agent caused the patient to become hypoglycemic. Consequently, we

applied a Seldonian machine learning algorithm to train the agent, with the safety constraint that

the trained agent would not, with high-confidence, cause the patient to become hypoglycemic more

frequently than some minimum tolerance, τ . To quantify this safety constraint, we let X denote

a random variable representing a vector of features describing a patient, and defined h(θ,X) to

be equal to 1 if θ caused the patient to become hypoglycemic, and 0 otherwise. Then, we defined

g(θ) = E[h(θ,X)]− τ , so that g(θ) ≤ 0 as long as the probability of θ causing hypoglycemia is no

more than the tolerance, τ . The approach illustrated by this example is general, and can be used to

express constraints based on avoiding dangerous outcomes in many safety-critical applications.

In contrast to detecting the occurrence of unsafe states, many machine learning applications re-

quire assurance that the trained model’s performance during training will be representative of what

will be encountered once the model is deployed. Because these constraints are often designed to

ensure that the trained model generalizes from the training data to the deployment environment,

there is considerable overlap between these approaches and the techniques for ensuring model ro-

bustness, which we address in the next section. Nonetheless, safety constraints based on model

performance have been extensively studied in prior work. For example, techniques such as aug-

menting the dataset with synthetic variations of existing samples, injecting noise, and applying

multi-task learning, have been proposed as standard methods for ensuring that performance during

training will be consistent with what can be expected after the model is deployed [25]. Other ap-

proaches seek to detect when the model is being evaluated on a sample that was not typical based

on the training data, and alert the user. For example, methods have been proposed to directly es-

timate the model’s certainty in a prediction during classification [16, 31]. In addition, algorithms

have been proposed that leverage an ensemble of predictors to ensure that deployment performance

does not degrade due to overfitting during training [58]. While these approaches seek to ensure

that the model’s observed performance can be trusted, other methods have proposed strategies to

20

directly quantify the extent to which performance might drop after deployment. Thomas et al.

proposed a batch reinforcement learning algorithm that provides high-confidence guarantees that

the performance of the trained agent will be at least equal to come user-defined baseline [53]. Con-

sequently, their algorithm is able to produce new reinforcement learning policies that, with high

confidence, will achieve improved performance compared to an existing policy. A growing body of

work on establishing generalization bounds has been successful in quantifying the degree to which

performance of a trained model might differ from its performance after deployment [7]. While

these results do not typically include explicit algorithms that provide guarantees on performance,

it is straightforward to incorporate them into algorithms that can provide such results. Finally, risk-

sensitive methods have been proposed that mitigate potential losses in performance by optimizing

quantities besides expected performance. For example, algorithms based on conditional value-at-

risk (CVaR) seek to optimize the mean of a lower quantile of the performance distribution, and

therefore capture the notion of optimizing the worst-case performance of the model.

To handle potentially complex definitions such as those for fairness applications, existing work

has focused on avoiding undesirable behavior based on either particular definitions of safety, or

specific classes of definitions. For example, Zafar et al., [63] propose a classifier that simultane-

ously satisfies the principles of disparate impact and disparate treatment. Agarwal et al. propose a

classification algorithm that achieves fairness with respect to safety constraints that are defined as

linear functions of expected values or conditional expected values [1], such as demographic parity

[19, 6] or equalized odds [30]. While these contributions are effective in many settings, they are

not Seldonian and therefore do not provide high-confidence guarantees of safety, and they are not

general enough to support many complex definitions such as disparate impact or treatment equality.

1.2.4 Robust Safety Guarantees

A central objective of this dissertation is to design algorithms that provide high-confidence

safety guarantees that continue to hold once the trained model is deployed, even if the deploy-

21

ment environment is different from the training environment. In particular, we consider the setting

in which the probability distribution over observations might change after the model is trained.

The problem of performing machine learning using data from one distribution with the goal of

achieving high performance on observations drawn from a different distribution has been studied

in existing work. There, it is often referred to as the problem of distribution shift or domain adap-

tation [47, 38], and categorized as a sub-problem in the area of transfer learning [60]. Nonetheless,

the goals and contributions proposed in existing work are somewhat different from those presented

in this dissertation, as described below.

Existing work on distribution shift is usually further categorized based on certain assumptions

that describe specific details about how the training and deployment distributions differ. To illus-

trate, let X ∈ X be a random variable representing a vector of features, let Y ∈ Y be a random

variable representing some response that the user would like to predict, and assume that X and

Y are drawn from the training distribution. Now, let X ′ ∈ X and Y ′ ∈ Y represent the features

and response variables when drawn from the deployment distribution. The most general form of

distribution shift simply assumes that there exists some pair, (x, y) ∈ X × Y , such that the joint

probability of (x, y) is different before and after deployment:

∃(x, y) ∈ X × Y s.t. Pr(X=x, Y=y) 6= Pr(X ′=x, Y ′=y).

However, in many problem settings, it is reasonable for the user to assume that the distribution may

change in particular, known ways after deployment. For example, in an image recognition system,

the distribution of pixel data might shift if different hardware is used to capture a scene before and

after the model is deployed, but the correct label associated with the image remains unchanged.

This setting, which is variously called covariate shift or frequency feature bias [60, 42], is defined

by the following pair of assumptions:

22

∃x ∈ X s.t. Pr(X=x) 6= Pr(X ′=x), and

∀(x, y) ∈ X × Y , Pr(Y=y|X=x) = Pr(Y ′=y|X ′=x).

Similarly, in some applications it is reasonable to assume that the probability of encountering

any set of features will not change after deployment, but associated responses might differ. For

example, when classifying text, the frequency of particular words might be the same before and

after deployment, but the intended meaning of those words might change [60]. This type of shift

is often called label shift or context feature bias [60, 42], and is formalized by the following

assumptions:

∃y ∈ Y s.t. Pr(Y=y) 6= Pr(Y ′=y), and

∀(x, y) ∈ X × Y , Pr(X=x|Y=y) = Pr(X ′=x|Y ′=y).

While existing work on distribution shift, covariate shift and label shift are helpful for provid-

ing strategies to account for differences between training and deployment environments, they are

typically not applicable in the context of ensuring that a learned model will be safe after deploy-

ment. In particular, we seek robust safety guarantees based on general definitions of safety, which

often depend on random variables besides X and Y . For example, let S ∈ S be a random variable

representing some quantity that is required to define safety, such as an indicator for some danger-

ous event or some protected attribute such as an individual’s race, and let S ′ ∈ S represent that

quantity when observed after deployment. In Chapter 4, we consider the problem of establishing

robust safety guarantees under the general distribution shift assumptions given by,

∃(x, y, s) ∈ X × Y × S s.t. Pr(X=x, Y=y, S=s) 6= Pr(X ′=x, Y ′=y, S ′=s).

In addition, in Chapter3 we consider a setting that is similar to covariate shift and label shift, with

the modification that the variable that causes the distribution shift is not constrained to be X or Y .

In particular, let T ∈ T be a random variable representing the quantity that might have a different

23

distribution after deployment, and let T ′ ∈ T represent the same quantity after deployment. Draw-

ing on terminology from many social applications, we refer to t ∈ T as a demographic attribute

and propose methods to establish safety guarantees that hold under demographic shift, which is

formalized by the following assumptions:

∃t ∈ T s.t. Pr(T=t) 6= Pr(T ′=t), and

∀(x, y, t) ∈ X × Y × T , Pr(X=x, Y=y|T=t) = Pr(X ′=x, Y ′=y|T ′=t).

While many methods proposed in existing work cannot be directly applied to the general dis-

tribution shift and demographic shift problems we address in this dissertation, they are helpful

for providing strategies that could be extended to these settings. In the remainder of this section,

we discuss some of these approaches and describe how they might be adapted to provide safety

guarantees for general safety definitions in the settings described above.

First, many algorithms proposed in existing work are based on the idea of learning a represen-

tation of predictive features that allow them to generalize well from the training to the deployment

environment. For example, strategies have been proposed for either explicitly or implicitly regular-

izing the optimization used to train models to ensure that they are robust to variations in the distri-

bution of data. Methods such as augmenting training data with synthetically-generated variations

or antagonistic examples have been shown to improve the generalization of trained models [25].

Techniques based on explicitly regularizing the training objective using unlabeled data from the

deployment distribution have also been applied effectively [64]. Unfortunately, these approaches

are difficult to adapt to the setting addressed in this dissertation because proving high-confidence

bounds on the safety of a regularized model is challenging.

A third class of methods we consider leverages various amounts of information about the de-

ployment environment during training to improve performance after training. One approach in

this class assumes that the change in distribution before and after deployment can be addressed

by finding an appropriate transformation of either the features or response variables. For example,

24

under the assumption of covariate shift, these methods seek a transformation, t : X → X such

that Pr(X=x) ≈ Pr(X ′=t(x)). Consequently, performance in the deployment environment can

be improved by training on samples from the pre-deployment environment after transforming them

using t. Such methods often learn this transformation using limited access to data from the deploy-

ment distribution and some assumptions on the form of the transformation, such as assuming that

it is linear [23, 24, 26]. Other approaches avoid assuming that the transformation has a particular

form by iteratively assigning predicted labels to unlabeled data from the deployment environment

[5]. While approaches such as these can be shown to empirically improve performance on the

deployment distribution, they are difficult to apply to our problem setting for two reasons. First,

they are based on improving performance of the trained model after deployment, and it is not clear

how to translate these methods to apply to general, potentially nonlinear definitions of safety. Sec-

ondly, the effects of the transformations used by these methods are often challenging to analyze

theoretically and rely on assumptions that are difficult to validate, so that it is difficult to produce

high-confidence bounds on quantities that depend on the transformed observations.

Nonetheless, some strategies for transforming input samples to account for distribution shift,

particularly those based on reweighting observations when estimating expected values, are closely

related to our proposed strategies. Intuitively, these approaches account for the impact of distri-

bution shift by reweighting the contribution of each training observation according to the relative

probability of encountering that observation before and after deployment. Under general distribu-

tion shift, methods based on this strategy have been shown to be effective at improving performance

after deployment in many problems, such as classification [61, 33], density estimation [17], and

regression [33]. Although these approaches are similar to those mentioned above in that they seek

to improve performance on the deployed distribution, in Chapter 3 we show that the same strat-

egy of reweighting training samples can be used to compute high-confidence intervals describing

possible values of various safety-related quantities. For example, Lipton et al. proposed a strategy

for adjusting classifiers to correct for covariate shift which is in many ways similar to the robust

25

Seldonian algorithms we propose in Chapter 3 [42]. In particular, they use a reweighting scheme

to compute intervals on the confusion rates of a classifier, and use these intervals to determine

when to apply a correction step to account for distribution shift. In contrast, we apply a reweight-

ing scheme to compute high-confidence intervals describing general definitions of safety, and use

these intervals to decide whether or not to return a trained model.

1.3 Problem Statement and Outline

The overall goal of designing safe machine learning algorithms is to solve the same tasks

as those that are solvable with conventional ML approaches while avoiding adverse consequences,

with as few qualitative and quantitative differences as possible from those conventional approaches.

Thus, the initial Seldonian algorithms that were proposed were not wholly sufficient, and there are

many open questions that remain regarding how to design Seldonian algorithms that can achieve

the goal of ensuring the safety of models used in real world, potentially high-risk applications. In

this dissertation, we will identify two avenues for improving Seldonian algorithm design to make

the resulting algorithms more useful in practical settings.

First, we address the limiting assumption that g is defined as an expected value. We will

demonstrate that, even after employing several computational tricks, this assumption is simply too

limiting to allow the growing collection of real-world fairness and safety requirements to be en-

forced in existing Seldonian algorithms. To address this limitation, we will propose a mathematical

formulation for g that is significantly more expressive, as well as an algorithm for computing valid,

high-probability upper bounds on g(θ). Ultimately, the formulation and algorithm we propose will

allow users to provide safety definitions as text, with few limitations, and will support all of the

computational steps required to enforce those definitions in Seldonian algorithms.

Next, we will address a major limitation of existing Seldonian algorithms, which is that they

assume that the data used for training and for enforcing safety comes from the exact data distri-

26

bution that will be encountered once the trained model is deployed. This assumption is not new

to the design of machine learning algorithms: it is well understood that the observed performance

of a trained model may not match its deployed performance due to various factors, such as over-

fitting and differences in the distribution of data between these settings. Qualitatively, it is often

assumed that the training-time and deployment-time performance will differ, with larger differ-

ences being observed the more different the training and deployment environments are. However,

while it might be permissible to have performance change due to train-deployment differences,

this presents a particular problem for Seldonian algorithms. In short, any safety guarantees proven

to hold on the training distribution do not necessarily apply to the model after deployment if the

training and deployment distributions are not identical. Thus, while a small shift between train-

ing and deployment might cause a small change in performance, the safety guarantees provided

by existing Seldonian algorithms are extremely brittle: any change in data distribution causes the

guarantees provided during training to be useless for ensuring the safety of the model once it is

deployed. Because of the severity of this issue, we will propose two strategies for achieving safety

guarantees that are robust to shift between the training and deployment settings, which differ based

on assumptions about how the user is able to describe the possible shift that might be observed.

To summarize, we will propose the following contributions:

• A mathematical formulation, set of algorithms, and implementation that allow a user to

define safety using text input representing an equation for g, and that accomplish all compu-

tational requirements to be used in Seldonian algorithms.

• An extension of this mathematical formulation for g, as well as algorithms that allow the user

to define safety constraints that are robust to changes between the training and deployment

environments, provided that change can be described by a change in the marginal probability

distribution of some demographic variable, T .

27

• Algorithms that allow the user to define safety constraints that are robust to changes be-

tween the training and deployment environments, provided that change can be described by

constraints on the Kullback-Leibler divergence between the probability distributions during

training and deployment.

1.4 Outline

In the following three chapters, we will discuss our contributions in detail. Within each chapter,

we will begin with a high-level introduction and motivation for our contribution, followed by a

discussion of any relevant background material. Then, we will propose concrete steps to implement

our contributions. Finally, we will evaluate our contributions by describing several hypotheses for

each solution, proposing experiments to test them, and including results and discussion.

28

CHAPTER 2

CONTRIBUTION: A FLEXIBLE INTERFACE FOR DEFINING SAFETY

In this chapter, we will propose a solution that overcomes the limitation that existing Seldonian

algorithms are not adaptable enough to enforce many real-world definitions of safety. Note that

while there are many strategies that might be used to design machine learning algorithms that are

safe, we use the Seldonian framework as the basis of our contributions in this chapter for several

reasons. First, as described in Chapter 1, algorithms designed according to the Seldonian machine

learning framework offer several desirable advantages for practical applications. In particular,

they do not require extensive data analysis to define safety constraints, and they provide the user

with high-confidence safety guarantees, which make these algorithms suitable for safety-critical

applications. In addition, prior Seldonian algorithms, such as those designed according to the pro-

totype described in Algorithm 1, serve as a useful starting point for the contributions in this chap-

ter. Specifically, these algorithms are modular, in the sense that the component of the algorithms

responsible for training models is separate from the component that is used to establish high-

confidence safety guarantees. Consequently, to extend these methods to provide high-confidence

safety guarantees based on complex definitions of safety, we simply modify the component of the

algorithm that computes high-confidence upper bounds on the prevalence of unsafe behavior when

using a particular model

As described in Chapter 1, under the Seldonian framework for machine learning, and algorithm,

a, is considered safe if it satisfies the following behavioral constraint,

Pr
(
g
(
a(D)

)
≤ 0
)
≥ 1−δ,

29

where g quantifies the prevalence of unsafe outcomes when using the model’s output for the user’s

application, and δ ∈ [0, 1] is a user-specified tolerance. However, prior Seldonian algorithms

that were proposed made the simplifying assumption that g is defined by the user based on a single

expected value that could be estimated without bias using the data available to the algorithm during

training. This assumption, although limiting, was made to simplify the process of computing the

upper bound on g(θ) required by the safety test that formed the basis of those initial algorithms..

To make this assumption concrete, letZ be a random variable representing a single observation.

For example, in the standard classification environment, each Z might be a feature vector and label

pair, whereas in the offline contextual bandit setting each Z might be a tuple containing a context,

action, and an observed reward. By using Z instead of application specific variables, we ensure

that the formulation we provide in this chapter is general enough to apply to most machine learning

problem settings. With Z defined above, we can now formally state the assumption that initial

Seldonian algorithms were based on, namely that g is of the form,

g(θ) := E [H |C]− τ, (2.1)

where H = h(Z, θ) defines some observable based on the data and model, C = c(Z, θ) is a

Boolean-valued condition, and τ is an optional tolerance parameter used to calibrate g.

We will explain several limitations of this assumption below, but first, we briefly illustrate

some of the types of safety definitions that can be expressed as an instance of (2.1). To provide a

concrete setting for these examples, consider the binary classification task of predicting whether

or not to approve a loan application, Y , given a feature vector describing the applicant, X , and

additional information about the applicant’s sex, S. In particular, S might be used during training

to assess whether the model is fair, but is often not used for prediction. For example, S could

represent a protected attribute such as race or sex which is not used for prediction in applications

such as resume filtering. In this setting, Z consists of a single (X, Y, S) tuple, and (2.1) is suitable

30

for ensuring that, for example, certain confusion rates of the model are small. For example, to

ensure that the false-positive rate of θ for applicants that identify as female is below a tolerance, τ ,

one might set h(Z, θ) = θ(X) and c(Z, θ) to be the indicator event for Y = 1 and S=female.

Similar constructions can be used to enforce that other confusion rates, such as positive rates, false

negative rates, and others, are bounded.

Furthermore, by relying on certain computational tricks, other, more complex definitions can

be enforced as well. For example, if the user wishes to enforce that the false-positive rates for

individuals identifying as males is similar to the false-positive rate for individuals who identify as

female, one can specify a pair of safety constraints, each of the form given in (2.1), that together

capture this definition. However, this is only possible because the difference between two false-

positive rates is a linear operation on the individual positive-rate terms. Furthermore, strategies for

computing a high-confidence upper bound for this definition of g have drawbacks. For example, a

suitable bound can be obtained by pairing up random male samples with random female samples,

but this process severely reduces the data efficiency of the algorithm. Thus, in this augmented

classification problem, we see that (2.1) can be used to enforce tolerances on certain error or

confusion rates, and with suitable tricks, can be used to enforce more complex constraints provided

they are linear functions of these rates.

Unfortunately, it is straightforward to find a large variety of safety definitions that practition-

ers would like to use in practice, which cannot be represented by (2.1). Returning to the above

classification problem, consider, for example, safety constraints based on disparate impact, a prin-

ciple for assessing unfair behavior that is codified in United States labor laws [27, 9, 63]. In the

context of classification, the principle of disparate impact states that a model is unfair with respect

to a protected attribute—sex, for example—if the model’s false-positive rate for one value of the

attribute is less than 80% of that for any other value of the attribute. Assuming binary sex, this can

be represented as a safety definition of the Seldonian framework by defining,

31

gDI(θ) = 0.8−min

{
E[θ(X)|Y=0, S=female]

E[θ(X)|Y=0, S=male]
,

E[θ(X)|Y=0, S=male]

E[θ(X)|Y=0, S=female]

}
.

Because this definition includes ratios, it is clear from inspection that it cannot be represented by

any choice of H and C that is consistent with (2.1) and can be sampled without bias. Furthermore,

there are many other definitions of safety that similarly cannot be represented by (2.1), and this

collection continues to grow as research on quantifying safety—particularly in the realm of fairness

for social applications—progresses [57]. Thus, if Seldonian algorithms are to be effective tools

for enforcing these notions of safety, we propose that they must support these types of general,

nonlinear definitions, and do so without requiring significant machine learning knowledge on the

part of the user, and without significantly degrading the data efficiency of the training process.

To this end, in this chapter, we propose a new formulation for g to replace (2.1), which has

the desirable properties that it is significantly more expressive but supports the computational re-

quirements to be used in Seldonian algorithms. To ensure that this formulation is straightforward

to use, we propose a method that uses parsing algorithms to allow safety constraints to be specified

using text inputs to the algorithm, which closely resemble the mathematical notation defining g. In

this dissertation, we refer to the collection of a mathematical formulation for g, a procedure that

allows the user to specify their desired definition, and an algorithm for computing upper bounds,

as an interface for defining safety. In our experiments, we show that the interface proposed in this

chapter makes significant advances towards the goal of providing Seldonian algorithms that are

useful in practical settings, and which enhance the state of the art by allowing a wide range of

safety constraints to be enforced.

In the rest of this chapter, we will first discuss existing work that relates to our proposed inter-

face. Then, we will describe our interface in detail. This discussion will consist of three parts: 1)

a discussion of our proposed mathematical formulation and an illustration of how it supports more

sophisticated definitions than (2.1), 2) a proposal for how to parse text input into a computationally

convenient representation for g, and 3) an algorithm for using this representation to compute the

32

high-confidence upper bounds required to perform the safety test used by existing Seldonian algo-

rithms. Finally, we include an evaluation that demonstrates the ability of our interface to produce

valid, high-confidence upper bounds on g(θ) for several definitions.

2.1 Overview of our Proposed Interface

In this section, we discuss the details of the interface for defining safety, which supports en-

forcing complex, practical definitions of safety within the context of existing Seldonian algorithm

design, as exemplified by Algorithm 1. As stated in Chapter 1, an algorithm a is Seldonian if it

satisfies the following constraints on the probability that it returns an unsafe solution:

Pr
(
g
(
a(D)

)
≤ 0
)
≥ 1−δ,

where g quantifies the user’s definition of undesirable behavior and δ is their tolerance for how

often a can return solutions that are unsafe. Consequently, our interface consists of three parts,

namely a mathematical formulation for defining g, an algorithm for parsing this definition from

text input, and an algorithm for using the parsed representation to compute high-confidence upper

bounds that can be incorporated into Seldonian algorithms designed according to Algorithm 1. We

discuss each of these components below.

2.1.1 A Mathematical Formulation for g

To support general, nonlinear definitions of safety, our interface assumes that g can be written

in the following form:

g(θ) := f(φ1(θ), ..., φk(θ)), (2.2)

where f : Rk → R is a potentially nonlinear and non-smooth function defined by the user, and

each φj(θ) denotes a parameter of the data given the model, θ. In particular, we assume each

33

parameter is defined by φj(θ) := E[hj(Z, θ)|cj(Z, θ)], where each hj is a functional that describes

an observable of Z given the model and each cj : Z ×Θ→ {True,False} is some event.

It is straightforward to show that (2.2) is at least as general as (2.1), since the formulation

in (2.1) can be recovered by setting f(v1) = v1 − τ and φ1(θ) = E[H|C]. However, since

the expression defined by f is allowed to be nonlinear, it follows that (2.2) can support complex

definitions of safety that cannot easily be written in the form of (2.1), such as disparate impact.

Concretely, if one defines,

f(v1, v2) = 0.8−min

{
v1

v2

,
v2

v1

}
,

and defines two parameters, φ1 and φ2 by,

φ1(θ) = E
[
h1(Z, θ)

∣∣ c1(Z, θ)
]
, with

h1(Z, θ) = θ(X), and

c1(Z, θ) = I[Y=0 ∧ S=female],

and

φ2(θ) = E
[
h2(Z, θ)

∣∣ c2(Z, θ)
]
, with

h2(Z, θ) = θ(X),

c2(Z, θ) = I[Y=0 ∧ S=male],

where I[c] is 1 if c = True and 0 otherwise, then simple substitution into (2.2) reproduces the

definition of disparate impact.

34

expr := term
| expr + term
| expr − term

term := unary
| term ∗ unary
| term / unary

primary := exp value
| number
| (expr)

unary := primary
| | expr |
| +unary
| −unary
| max(exprs)
| min(exprs)

exprs := expr
| expr , exprs

exp value := string

Figure 2.1. Production rules for the expression grammar used to parse input strings into a tree-
structured representation with leaf nodes representing either numerical values or strings that will
eventually be interpreted as parameters.

2.2 An Algorithm for Parsing Safety Definitions

To allow safety definitions to be provided by the user as text input, we define a pair of grammars

appropriate for writing mathematical expressions of expected values, which will be interpreted as

the expression defining g using existing implementations for LR parsers.

In particular, our expression grammar supports the composition of the unary operations of

negation and absolute value, the binary operations of addition, subtraction, multiplication, divi-

sion, and the variadic operations of taking the maximum or minimum of a set of terms. The

terminal symbols of this grammar are constant numerical values, and strings representing condi-

tional expected values corresponding to the various parameters, φj(θ). The production rules of the

expression grammar are used to construct a tree structure representing the mathematical expres-

sion, f , that combines them. The full list of production rules for the expression grammar used to

parse the representation for f are given in Figure 2.1. Given this grammar, we use a standard LR

parser to construct a parse tree representing f , with leaf nodes given by either numerical constants

or strings representing each parameter, φj(θ).

While the expression grammar allows the definition of f to be parsed into a tree-structured

representation, it does not parse the individual conditional expected values representing the various

35

Algorithm 3 ParseDefinition(safety str)
1: expression tree← LRParse(safety str, expression grammar) {Fig. 2.1}
2: for each leaf node, n, in expression tree do
3: if n represents an expected value then
4: n.subtree← LRParse(n.text, parameter grammar) {Fig. 2.2}
5: else
6: Set n.operation and n.operands based on the text for n.
7: end if
8: end for
9: return expression tree

parameters. To parse the parameters, we define a separate parameter grammar that is used to parse

the text representing each parameter into a suitable representation. In the parameter grammar, the

terminal symbols are either numerical constants or strings that are constrained to correspond to

named variables that are appropriate to the problem setting. For example, in classification, the

named variables might be set to include Y to denote labels during classification, X to represent the

features, and Yp to represent the model’s predicted labels. The production rules for the parameter

grammar are similar to those in the expression grammar, with the addition of logical operations

that are necessary to define the Boolean event for any conditional expectation. The full list of

production rules for the parameter grammar are shown in Figure 2.2. As with the expression

grammar, we propose to parse the parameters into appropriate data structures using a standard LR

parser.

Given the expression and parameter grammars, as well as the user’s text input defining g,

our algorithm for parsing the user’s input begins by parsing f using an LR parser based on the

expression grammar, producing a tree structure with nodes that capture operations, and leaf nodes

that are either numerical constants or strings representing parameters. Next, we separately parse

each leaf node that represents a parameter using an LR parser based on the parameter grammar.

If parsing errors occur in either of these operations, or if any parameter references variables that

are not in the list of pre-defined named variables, these errors are reported to the user. Pseudocode

for our parsing algorithm is given in Algorithm 3. In the next section, we present an algorithm

36

exp value := E[expr]
| E[expr | log expr]
| E[log expr]
| E[log expr | log expr]

expr := term
| expr + term
| expr − term

term := unary
| term ∗ unary
| term / unary

unary := primary
| | expr |
| +unary
| −unary

primary := string
| number
| (expr)

log expr := log term
| log expr || log term

log term := log unary
| log unary , log term

log unary := comp
| ∼ log unary
| (log expr)

comp := expr ≤ expr
| expr = expr
| expr ≥ expr

Figure 2.2. Production rules for the parameter grammar used to parse input strings representing
parameters into tree-structured data structures that support evaluation and computation of con-
fidence intervals. Note that when defining expected values of logical expressions (bool expr),
logical values are interpreted as floating point values according to true→ 1.0 and false→ 0.0
for syntactic convenience. In addition, if A and B are two logical expressions, the text “A, B” is
interpreted as the logical conjunction of A and B to make the grammar’s syntax more similar to
the standard notation for defining expected values, such as “E[X|A,B]”.

37

that leverages the tree structures for f and for each parameter to construct high-confidence upper

bounds on g(θ) using available data.

2.3 Bounding g(θ) Using the Parsed Computation Tree

In order to use the available data to compute high-confidence upper bounds on the parsed

definition for g, we introduce an algorithm with two parts. First, the available data and the objects

representing the parameters are used to construct high-probability confidence intervals for the value

of each parameter, φj(θ). In particular, this step uses the parsed representation of each parameter

to generate a set of independent and identically distributed samples of the conditional expected

values, and then applies standard concentration inequalities. The confidence intervals describing

the set of parameters are constructed so that they hold jointly with probability at least 1−δ, where

δ is defined by the user. Then, using interval arithmetic [14], the intervals on each parameter

are recursively propagated through the parse tree representing f , to compute a 1−δ-probability

confidence interval for g(θ).

To make this process concrete, we first assume a set of n, i.i.d. samples of Z are available,

denotedD = {Zi}ni=1, which forms the input data for the algorithm. To compute a high-confidence

upper bound on g(θ), we first produce a set of samples that can be used to provide unbiased

estimates of each parameter. For parameters j, given by φj(θ) := E[hj(Z, θ)|cj(Z, θ)], we compute

a set of samples H(j)
i := hj(Zi, θ) and corresponding values of the condition, C(j)

i := cj(Zi, θ).

These samples are computed using D and the object representing φj , which is built using the

parameter parser described in the previous section. Specifically, since eachH(j)
i and corresponding

condition C(j)
i might be defined as expressions, the parse trees for each term are used to recursively

compute them. For example, if D = {(Xi, Yi)}ni=1 and φj(θ) = E[Y − θ(X)|Y > 0], then the set

of predictions, {θ(Xi)}ni=1, are subtracted from the corresponding set of true responses, {Yi}ni=1,

to produce the set {H(j)
i := Yi − θ(Xi)}ni=1. Similarly, the set of true responses, {Yi}ni=1 are each

38

compared to the constant 0 to compute the set of conditions, {C(j)
i }ni=1. The full set of rules used

to combine sets of samples is given in Figure 2.3. Finally, we note that if at any point, a node of the

parse trees representing the parameter attempt to combine sets of samples that have incompatible

sizes, the user is alerted.

Once the sets {H(j)
i }ni=1 and {C(j)

i }ni=1 have been constructed, we define the set of samples

used to bound φj(θ) to be the subset of {H(j)
i }ni=1 for which the condition evaluates to true:

Sj(D) :=
{
H

(j)
i : C

(j)
i = true, for i = 1, ..., n

}
.

This process results in a set of unbiased estimates of φj(θ). Using these samples, we bound φj(θ)

using any appropriate confidence interval, such as Hoeffding’s inequality or inversion of the Stu-

dent’s t-test as done in prior Seldonian algorithms [54, 44].

Once confidence intervals have been computed for each parameter, they are recursively propa-

gated through the nodes of the parse tree representing f . In particular, for any node representing a

mathematical operation, an interval on the value of that node’s subtree is be computed using inter-

val arithmetic. Specifically, interval arithmetic provides a set of rules for computing intervals on

the output of a mathematical operation, given intervals for the operands [14]. As a simple example,

if x ∈ [a, b] and y ∈ [c, d], it follows that x+ y ∈ [a+ c, b+ d]. The rules for other operations can

become more complex, but are straightforward to derive. The full set of interval arithmetic rules

uses in our interface is provided in Figure 2.4. By applying these rules recursively at each node of

the computation tree for f , our proposed algorithm outputs a confidence interval that contains the

value of g(θ) with high probability. Psuedocode for our procedures for bounding each parameter

and recursively combining them to produce a high-confidence upper bound on g(θ) is provided in

Algorithms 4 and 5.

Importantly, the interval on g(θ) is valid as long as the each parameter is actually within its

corresponding confidence interval. Therefore, the high-confidence upper bound on g(θ) holds with

39

−X → {−xj}mj=1

|X | → {|xj|}mj=1

X + Y → {xj + yj}mj=1

X − Y → {xj − yj}mj=1

X ∗ Y → {xj ∗ yj}mj=1

X/Y → {xj/yj}mj=1

∼ X → {∼ xj}mj=1

X ∧ Y → {xj ∧ yj}mj=1

X ∨ Y → {xj ∨ yj}mj=1

X ≤ c → {xj ≤ c}mj=1

X ≤ Y → {xj ≤ yj}mj=1

X = c → {xj = c}mj=1

X = Y → {xj = yj}mj=1

X ≥ c → {xj ≥ c}mj=1

X ≥ Y → {xj ≥ yi}mj=1

Figure 2.3. Rules for combining sets of samples when generating unbiased estimates of parame-
ters. All variables in calligraphic notation are assumed to be sets of m samples, and c denotes any
constant value. Rules in the leftmost column accept real-valued sample sets and output real-valued
sample sets, while rules in the rightmost column accept either real-valued or Boolean-valued rules,
depending on the operation, and produce Boolean-valued sample sets. The production rules of
the parameter grammar ensure that the condition term defining any conditional expectations is
Boolean-valued.

at least the probability that all of the confidence intervals on the parameters are simultaneously

valid. If the confidence interval for each φj(θ) is computed to hold with probability 1−δj , the

union bound states that the confidence intervals on the set of parameters holds with probability at

least 1−δ1−...−δk. Therefore, the bound on g(θ) can be made to hold with probability at least 1−δ

as long as the confidence interval on each parameter is computed to hold with probability at least

1−δ/k.

2.4 Seldonian Machine Learning Algorithms using the New Interface

As shown in Algorithm 1, given a definition g defined according to (2.1), existing Seldonian

algorithms proceed by first training a candidate model, θc. Next, they construct a high-confidence

upper bound on g(θc). If the value of the high-confidence upper bound on g(θc) is below zero with

the required probability, then it follows that θc is likely to be safe, and the candidate is returned.

40

−v1 → [−b1,−a1]

|v1| →


[a1, b1] if a1 ≥ 0[
0,max{−a1, b1}

]
if 0 ∈ [a1, b1]

[−b1,−a1] if b1 ≥ 0
v1 + v2 → [a1+a2, b1+b2]

v1 − v2 → [a1−b2, b1−a2]

v1 ∗ v2 → range{a1b1, a1b2, b1a2, b1b2}

v1/v2 →
{

[−∞,∞] if 0 ∈ [a2, b2]
range{a1/b1, a1/b2, b1/a2, b1/b2} else

min{v1, ..., vk} →
[

min{a1, ..., ak},min{b1, ..., bk}
]

max{v1, ..., vk} →
[

max{a1, ..., ak},max{b1, ..., bk}
]

Figure 2.4. Rules for combining intervals on values. In these rules, we assume that each value
vj is bounded within some interval, [aj, bj]. In addition, we assume that range{...} returns an
interval with endpoints given by the minimum and maximum values of its operands—that is,
range v1, ..., vk := [min{v1, ..., vk},max{v1, ..., vk}].

However, if the value of the high-confidence upper bound is above zero, then θc may not be safe

with the required confidence, and the algorithm instead returns NO SOLUTION FOUND.

To produce Seldonian algorithms that leverage the interface proposed in this chapter, we sim-

ply replace the procedure used to compute a high-confidence upper bound on g(θc) using the algo-

rithms provided above. In particular, pseudocode for Seldonian algorithms that use our interface is

given in Algorithm 6.

2.5 Results and Evaluation

In this section, we seek to assess whether or not the proposed interface is effective at producing

high-confidence upper bounds on the prevalence of unsafe behavior.

First, we might consider whether or not the interface is able to produce high-confidence bounds

on g(θ) that are tighter or otherwise preferable to those produced by existing methods. However,

direct comparison to existing methods is difficult, because those strategies, including those used in

41

Algorithm 4 BoundParameter(n, data, bound type, δ)
1: H ← apply sample set rules to n.expression given variable sample sets in data. {Fig. 2.3.}
2: if n.condition exists then
3: C ← apply sample set rules to n.condition given variable sample sets in data. {Fig. 2.3.}
4: H ←

{
Hj ∈ H : Cj=true ∀j ∈ 1, ...,m

}
.

5: end if
6: m← |H|
7: if bound type is Hoeffding then
8: Assume each h ∈ H is in [a, b]
9: µ̃← 1

m

∑m
j=1Hj

10: return
[
µ̃− (b−a)

√
log 2/δ

2m
, µ̃+ (b−a)

√
log 2/δ

2m

]
11: else if bound type is t-test then
12: µ̃← 1

m

∑m
j=1Hj

13: σ̃ ←

√
(
∑m
j=1Hj−µ̃)

2

m−1

14: return
[
µ̃− t1−δ/2,m−1σ̃√

m−1
, µ̃+

t1−δ/2,m−1σ̃√
m−1

]
15: end if

Algorithm 5 FlexibleHighConfidenceUpperBound(expression tree, δ, data)
1: k ← number of parameters in expression tree.
2: for Each node n in expression tree that represents a parameter do
3: parameter intervals[n]← Boundparameter(n, data, bound type, δ/k)
4: end for
5: [a, b] ← Apply interval arithmetic rules to expression tree given parameter intervals
{Fig. 2.4.}

6: return b

prior Seldonian algorithms, are not flexible enough to produce bounds for the more complex defi-

nitions of g that the proposed interface supports. Furthermore, when g is defined to be compatible

with the assumptions made by previous methods, the proposed interface is identical to existing

methods. Therefore, it is not informative to compare the results of our interface to those of existing

methods for those definitions.

However, it is informative to ask whether or not the high-confidence upper bounds produced

by our interface are empirically valid—that is, do they return values that, with the required prob-

ability, are larger than the true value of g(θ). To answer this, we designed a set of experiments to

42

Algorithm 6 FlexibleSeldonian(D, safety str, δ)
1: Dc, Ds ← Partition(D)
2: expression tree→ ParseDefinition(safety str)
{Select a candidate}

3: θc ← TrainCandidate(Dc, expression tree, δ)
{Perform the safety test using θc}

4: u← FlexibleHighConfidenceUpperBound(expression tree, δ,Ds)
5: if u ≤ 0 then
6: return θc
7: else
8: return NO SOLUTION FOUND
9: end if

determine, for various definitions of safety, whether our proposed algorithms successfully return

high-confidence upper bounds on the true value of g(θ), for a model θ. In the following sections,

we first explain the details of our experimental design, and then describe our procedure for report-

ing results. Finally we provide the results of our experiments and discuss them.

2.5.1 Experimental Design

To assess whether or not our proposed interface produces valid high-confidence upper bounds

on the prevalence of unsafe behavior, it is necessary to design an experiment where 1) we are able

to generate many datasets sampled from the same underlying distribution in order to assess the

probability that the bounds fail, and 2) the true value of g(θ) can be computed exactly. If, for

example, a single input dataset is used to evaluate the high-confidence upper bounds, such results

would not provide enough information to assess the distribution of values that the high-confidence

upper bounds take, or to compute g(θ) and determine whether or not the high-confidence upper

bounds are valid with the required probability. Therefore, we instead designed a series of experi-

ments based on uniformly sampling datasets from a fixed underlying population with replacement.

Using this design, it is possible to generate any number of randomly sampled datasets, allowing the

distribution of the values of the high-confidence upper bound to be evaluated. In addition, because

43

the population and the sampling distributions are known exactly, it is possible to use this oracle

knowledge to compute g(θ) exactly.

First, we defined the population, denoted Dpop, based on a dataset provided by ProPublica

[2], which contains various features describing 5,278 individuals who were convicted of crimes,

including their sex and race. This dataset was originally used to provide evidence that Correc-

tional Offender Management Profiling for Alternative Sanctions (COMPAS), a system developed

by Northpointe to assess risk of criminal recidivism, exhibited unfair bias against offenders from

racial minority groups when classifying offenders into high- or low-risk groups [2]. Consequently,

while the datasets used to evaluate our bounds are synthetic due to being randomly sampled from

this population, the underlying population is representative of real-world data. Given this data,

we defined Dpop := {(Xi, Yi, Ri)}ni=1, where n = 5,278, each Xi ∈ X is a vector of features

describing an offender, each Yi ∈ {0, 1} is a binary indicator for whether or not they eventually

reoffended, and each Ri ∈ {white,non-white} indicated whether or not the offender’s race

was Caucasian.

Next, to assess the validity of our bounds, we trained a model, θ : X → {0, 1}, to predict

whether or not each individual would reoffend. Since the choice of θ does not impact whether

or not the high-confidence upper bounds produced by our interface are valid, we trained θ using

logistic regression on all samples in the population, Dpop.

Finally, since the central goal of our experiments is to assess whether or not the proposed

interface produces high-confidence upper bounds on g(θ) that are valid for real-world definitions

of fairness, we selected five definitions of g that could not be easily supported by existing work,

and conducted separate experiments for each. In particular, we performed separate experiments

using the following definitions of unfair behavior:

Demographic Parity: The principle of demographic parity states that the rate that a model pre-

dicts a positive outcome should not vary significantly between different subgroups of a pop-

44

ulation [20, 6]. In our experiments, we defined these subgroups based on the self-identified

sex of each student, and specified the maximum tolerable difference between positive rates

to be 0.1. This leads to the following definition of g(θ):

gDP(θ) :=
∣∣∣ E[θ(X)|R=white]− E[θ(X)|R=non-white]

∣∣∣− 0.1.

Disparate Impact: The principle of disparate impact also measures discrepancy between the pos-

itive rates of a model across different subgroups, but does so by examining their relative size

[27, 9, 63]. Specifically, the principle states that a model is unfair if its positive rate for one

subgroup is less than a certain percentage of the positive rate for any other subgroup. In our

experiments, we set the minimum tolerable ratio to be 0.8, corresponding to the widely-used

80%-rule:

gDI(θ) := 0.8−min

{
E[θ(X)|R=white]

E[θ(X)|R=non-white]
,

E[θ(X)|R=non-white]

E[θ(X)|R=white]

}
.

Equal Opportunity: Instead of measuring discrepancy based on positive rates, the principle of

equal opportunity states that different subgroups should have similar false-negative rates

[30, 9]. This definition is be appropriate when the frequency of a negative true label is

expected to be different between subgroups, but the user would like to ensure that the model

does not make certain errors more often for one subgroup compared to another. We set

the maximum tolerable discrepancy between false-negative rates to be 0.1, leading to the

following definition:

gEOp(θ) :=
∣∣∣ E[θ(X)|Y=0, R=white]− E[θ(X)|Y=0, R=non-white]

∣∣∣− 0.1.

Predictive Equality: Like equal opportunity, predictive equality states that a model should not

make certain errors more often for one subgroup than another. However, predictive equality

45

states that discrepancy should be measured using false-positive rates [9, 12]. We set the

maximum tolerable difference between false-positive rates to be 0.1, leading to the following

definition:

gPE(θ) :=
∣∣∣ E[1−θ(X)|Y=1, R=white]− E[1−θ(X)|Y=1, R=non-white]

∣∣∣− 0.1.

Equalized Odds: The principle of equalized odds can be seen as combining the principles of

equal opportunity and predictive equality, and states that discrepancy should be measured

using both false-positive and false-negative rates [30]. We set the maximum tolerable dis-

crepancy according to equalized odds to be 0.1, leading to the following definition:

gEOd(θ) :=
∣∣∣ E[θ(X)|Y=0, R=white]− E[θ(X)|Y=0, R=non-white]

∣∣∣ +∣∣∣ E[1−θ(X)|Y=1, R=white]− E[1−θ(X)|Y=1, R=non-white]
∣∣∣− 0.1.

Given the population, Dpop, a trained model, θ, we conducted an experiment based on the

following procedure, for each definition of g defined above. First, to estimate the distribution

of values returned by our interface when evaluated using datasets randomly sampled from the

population, we repeatedly generated datasets by uniformly sampling 1,000 observations from Dpop

with replacement. For each dataset, we used Algorithm 5 to parse a string representation of g and

compute a high-confidence upper bound on g(θ) given that dataset. In each case, we set δ = 0.05,

so that the high-confidence upper bounds would be computed to be valid for at least 95% of all

randomly sampled datasets.

After recording the value of the high-confidence upper bound produced by Algorithm 5 for

all 1,000 randomly sampled datasets, we then computed the true value of g(θ) using Dpop and the

oracle knowledge that the randomly sampled datasets were generated by uniformly sampling from

Dpop with replacement.

46

Then, given our oracle knowledge of the underlying population, and our oracle knowledge

that the datasets were generated using random uniform sampling with replacement, we computed

the exact, true value of g(θ) for each definition of g. To determine whether our computed high-

confidence upper bounds hold with the required probability, we then compared the value of each

bound with the true value of g(θ) to estimate the frequency with which they were valid.

For each definition of g, this procedure produced 1,000 independent evaluations of the high-

confidence upper bounds produced by our interface, as well as the true value of g(θ). Consequently,

to assess whether or not the high-confidence upper bounds held with the required probability, it

sufficed to determine whether or not at least 950 of the evaluated high-confidence upper bounds

were larger than the value of g(θ).

2.5.2 Reporting

Results for each experiment are presented using violin plots showing the distribution of the

computed high-confidence upper bounds, for each definition of g. For each definition, we show

results obtained when the parameters are bounded using Hoeffding’s inequality, as well as concen-

tration inequalities based on inversion of the Student’s t-test. Each violin plot is separated into two

regions: the red region shows the distribution of the upper 95% of values of the high-confidence up-

per bound, while the green region shows the distribution of the lower 5%. In addition, a horizontal,

dashed black line is included within each figure, showing the exact value of g(θ). Consequently,

if the dashed black line crosses any violin plot at or below the green region of that plot, it indi-

cates that the high-confidence upper bound is empirically valid, as computed upper bounds were

larger than the true value of g(θ) for at least 95% of the randomly sampled datasets. However,

if the dashed black line crosses through the red region of the violin plots, it indicates that the

high-confidence upper bounds did not hold with the required probability.

47

Hoeffding t-Test
0.00

0.05

0.10

0.15

0.20

g(
)

Predictive Equality

Hoeffding t-Test

0.2

0.3

0.4

g(
)

Equal Opportunity

Figure 2.5. Results evaluating the validity of our algorithms for computing high-confidence upper
bounds on g(θ) when g is defined according to the principles of predictive equality and equal
opportunity.

Hoeffding t-Test

0.4

0.6

g(
)

Equalized Odds

Hoeffding t-Test
0.4

0.5

0.6

0.7

0.8

g(
)

Disparate Impact

Figure 2.6. Results evaluating the validity of our algorithms for computing high-confidence upper
bounds on g(θ) when g is defined according to the principles of equalized odds and disparate
impact.

48

Hoeffding t-Test
0.10

0.15

0.20

0.25

0.30

g(
)

Demographic Parity

Figure 2.7. Results evaluating the validity of our algorithms for computing high-confidence upper
bounds on g(θ) when g is defined according to the principle of demographic parity.

2.5.3 Results and Discussion

The outcome of our experiments verify our theoretical results, and show that for practical def-

initions of undesirable behavior, the proposed interface produces high-confidence upper bounds

that are valid. In every experiment, at least 95% of the computed values for the high-confidence

upper bounds are larger than the true values of g(θ). Importantly, these high-confidence upper

bounds were specified using text input, making them easy to use, and were based on definitions of

undesirable behavior that could not be easily represented—or in some cases, could not be repre-

sented at all—using existing methods. Nonetheless, there are several patterns in these results that

are illustrative to discuss.

First, we note that for every definition of g, the high-confidence upper bounds produced using

concentration inequalities obtained by inversion of the Student’s t-test are tighter—that is, return

values closer to the true value of g(θ)—than those returned using Hoeffding’s inequality. This is

due to the fact that Hoeffding’s inequality, which is based on the worst-case analysis of the variance

of a bounded random variable, is generally looser than bounds that use empirical estimates of

variance. Secondly, we note that in some cases, such as when g is defined according to the principle

49

of equalized odds, both high-confidence upper bounds are shown to be loose. There are at least two

sources of this looseness. First, in some cases, looseness can be introduced due to looseness in the

concentration inequalities used. For example, confidence intervals constructed using Hoeffding’s

inequality are based on worst-case assumptions on the variance of the distribution of a given set of

samples, and can therefore be loose when the true variance of the distribution is small. However,

a second form of looseness is introduced in the use of interval arithmetic. In particular, when

applying interval arithmetic, our algorithms consider the possibility that value of each parameter

is independent of the other parameters. When this is not the case, the value of the high-confidence

upper bounds become larger than necessary. For example, suppose that with high probability,

φ1(X, θ) ∈ [0, 1] and φ2(X, θ) ∈ [0, 1], and g(θ) = f(v1, v2) = v1−v2. If φ1 and φ2 are dependent

and happen to satisfy φ1(X) = −φ2(X), then it is clear that g(θ) = 0. Without knowledge

of this dependence, the high-confidence upper bounds produced by our interface would reason

that g(θ) ≤ 2 with high probability, which is considerably larger than the true value, g(θ) = 0.

Consequently, we note that it may be possible to improve the tightness of the high-confidence upper

bounds produced by our interface given additional assumptions on the dependence between each

parameter. However, since bounds on the dependence between each parameter can be difficult to

determine in practice, we find that despite being conservative, the strategy proposed in this section

allows the interface to be useful in general problem settings.

2.6 Limitations and Future Work

The interface proposed in this chapter allows many safety constraints to be enforced that could

not be represented by prior safe machine learning algorithms. Nonetheless, it can be improved in

several ways. In particular, two directions for future progress on enforcing complex definitions of

safety are to expand our proposed interface to enforce definitions that it currently cannot represent,

50

and to improve the tightness of the bounds produced when the parameters defining safety might be

correlated.

First, we note that while our proposed interface is sufficient for representing many definitions of

safety that have been proposed, it can be made significantly more general. In some cases, this can

be achieved by allowing the user to specify parameters that are not single expected values, provided

appropriate strategies for computing confidence intervals can be derived. For example, consider

a safety definition that involves the conditional value at risk (CVaR) of a real-valued function of

an observation, Z. While this parameter can technically be represented in our interface, it might

be preferable to treat this parameter as an explicit special case, and apply confidence intervals that

are specifically designed to be tight for CVaR [52]. Similarly, the interface could be extended

to depend on the entropy of the probability distribution of some function of Z, using confidence

intervals on entropy [15]. In addition to extensions based on recognizing specific parameters and

applying appropriate confidence intervals, our interface can also be extended by allowing the user

to recursively nest certain parameters. For example, if the user would like to define safety based

on the variance of a function f of the observation Z, they might define a parameter,

φ(Z, θ) = E
[
(f(Z)− E[f(Z)])2

]
.

However, because this parameter is defined as an expected value that itself depends on another

expected value, it cannot be represented using the interface proposed in this chapter. Therefore,

another direction for improving the proposals of this chapter is to extend the interface to allow

parameters, such as expected values, to depend on the value of other parameters.

Finally, the interface we propose in this chapter may produce confidence intervals on g(θ) that

are loose if any of the parameters that define safety are correlated. For example, consider the

following definition of safety, where f : Z → R:

51

g(θ) = φ1(θ) + φ2(θ), where

φ1(θ) = E[f(Z)] and φ2(θ) = E[−f(Z)].

Our proposed interface assumes that φ1(θ) and φ2(θ) are independent, and will therefore produce

a non-empty confidence interval on g(θ). However, it is clear from inspection that g(θ) = 0, since

φ2(θ) = −φ1(θ). As shown by this example, if the parameters that define safety are correlated,

then the proposed interface is prone to producing confidence intervals on g(θ) that are looser than

necessary. As a result, it would be helpful to detect cases when parameters are correlated, and

account for this when computing confidence intervals on g(θ).

52

CHAPTER 3

CONTRIBUTION: SELDONIAN ALGORITHMS FOR DEMOGRAPHIC
SHIFT

As stated in Chapter 1, existing safe machine learning algorithms make several assumptions

that, while reasonable in some cases, are often not satisfied in practice. A notable example is the

assumption that once deployed, the model will be evaluated on data that has the same distribution

as the data that was collected to train the model in the first place. While this assumption is useful

because it allows estimates of the model’s performance or safety to be informative about how the

model will behave once it is deployed, it is often violated in practice. For example, if a model

must decide whether or not to accept a student’s college application, it is likely that the distribution

of applicants will change between training and deployment, as various trends cause demographics

such as race or gender to shift over time. As a result of such shift, safety guarantees that are

established during training may no longer apply once the model is deployed.

The example above illustrates a common form of distribution shift that is worth addressing

directly. In particular, this type of shift occurs when the difference between the training and de-

ployment distributions can be explained entirely by a shift in the marginal distribution of a single

random variable, such as race or gender. Drawing on the terminology from social applications, we

refer to this variable as a demographic attribute, and refer to this specific type of shift between the

training and deployment environments as demographic shift.

In this chapter, we propose Seldonian algorithms that use information about the distribution

of the demographic attribute before and after deployment to provide high-probability safety guar-

antees that hold after the model is deployed. First, we propose algorithms that achieve this goal

53

provided the exact frequencies of each demographic before and after deployment are known ex-

actly. Building on these, we propose additional algorithms that provide robust safety guarantees

when the frequency of the demographic after deployment is unknown, but is known to be in some

interval or region.

To illustrate our contributions, we consider an augmented classification problem, in which the

task is to predict the label associated with a given feature vector, with additional features provided

during training that are used to evaluate safety but are not used for prediction. In particular, in this

chapter, we use a concrete problem setting instead of simply referring to data instances abstractly

using Z, as in Chapters 2 and 4, to emphasize the difference between random variables that are

used for prediction, those used to define safety, and those used to characterize demographic shift.

We describe this setting in detail in the following section, but note that our proposed algorithms

generalize to other problem settings with only minor modifications.

In the following sections, we present these Seldonian algorithms and provide results showing

that the safety guarantees that they provide are useful in practice. While there are many strategies

for achieving safe machine learning, we base our contributions on prior Seldonian algorithms for

several reasons. First, as described in Chapter 1, Seldonian algorithms provide several advantages

over alternative approaches for users that are not experts in machine learning. Since the goal

of our dissertation is to provide machine learning algorithms that provide safety assurances in

practical settings, we base our contributions on prior Seldonian algorithms in order to leverage

these advantages. In addition, prior strategies for designing Seldonian algorithms, such as the

strategy described in Algorithm 1, are modular. In particular, to extend these approaches to design

algorithms that provide high-confidence guarantees of safety under various forms of distribution

shift, we can simply modify the strategy used to compute high-confidence upper bounds on the

prevalence of unsafe behavior when using a chosen model, without changing the strategy used to

train a candidate model.

54

In the rest of this chapter, we first provide background needed to define distribution shift for-

mally in the context of classification. Next, we propose Seldonian algorithms that leverage dif-

ferent assumptions about what is known during training about the demographic shift that will be

encountered. Finally, we evaluate our algorithms and provide results verifying that the safety guar-

antees they provide are valid in practice, while prior safe algorithms do not.

3.1 Background

3.1.1 Safety-Augmented Classification

To define a concrete problem setting to illustrate our contributions, we begin with the standard

classification problem setting, in which each data instance consists of a set of features and an asso-

ciated label. However, when considering the safety or fairness of a classifier, it is useful to extend

this setting to augment each instance with an additional safety attribute that contains information

needed to assess the classifier’s behavior. This information is often not used for prediction, but

is assumed to be available during training to determine whether or not the classifier is safe. For

example, depending on applicable laws, information describing the sex or race of a job applicant

might be protected, preventing it from being used to make hiring decisions. Nonetheless, this at-

tribute might be required to assess whether or not a predictive model for filtering resumes is biased

against applicants of certain races or sexes. We refer to this problem setting as safety-augmented

classification.

To describe this setting formally, we denote features byX ∈ X , labels by Y ∈ Y , and the safety

attribute by S ∈ S , and assume that (X, Y, S) is sampled from some joint probability distribution

defined over X × Y × S.

In the naı̈ve classification setting, the safety attribute is typically ignored, and the user’s goal

is simply to accurately predict the label associated with X when its true label is unknown. These

predictions are generated using a model, θ : X → Y . The quality of θ is then measured using

55

a loss function, such as expected classification error. To obtain an accurate classifier, one typi-

cally selects a training algorithm, a, designed to minimize the chosen loss, and supplies it with

a dataset consisting of n observations sampled independently from the joint distribution—that is,

D = {(Xi, Yi, Si)}ni=1, where Pr(Xi, Yi, Si) := Pr(X, Y, S) for all i ∈ {1, ..., n}. To assess the

safety of an algorithm, we follow the Seldonian framework described in Section 1.1 and assume

an auxiliary function, g, that accepts a model and is calibrated so that g(θ) > 0 if θ exhibits unsafe

behavior. In contrast to the model’s predictions, g typically depends in some way on the safety

attribute, S. For example, to assess whether or not a classifier used for resume filtering is biased

based on the race of the applicant, g might measure the difference in the model’s expected accuracy

for individuals of one race compared to another, even if the model’s predictions do not explicitly

depend on race.

To simplify the discussion of our results in this chapter, we assume that g has the same form

as assumed by prior Seldonian algorithms [54]. Specifically, if H = h(X, Y, S, θ) defines some

choice of real-valued observable, C = c(X, Y, S, θ) defines some Boolean condition, and τ repre-

sents a tolerance for unsafe behavior, then in this chapter, we assume that g is defined by,

g(θ) := E
[
H
∣∣C]− τ. (3.1)

While this simplifying assumption ignores the contributions proposed in Chapter 2, the results we

propose here are easily generalized to take advantage of the flexible interface proposed in that chap-

ter. Specifically, in this chapter, we demonstrate how to compute high-confidence upper bounds on

g(θ) that hold when the probability of encountering certain subgroups of the population changes

after the model is deployed. To leverage the new interface, we compute these high-confidence

upper bounds, as well as analogous high-confidence lower bounds, for each statistic—that is, each

φj(θ) as defined in Chapter 2—and use the resulting confidence intervals in place of those de-

scribed in Chapter 2, which do not account for demographic shift. We describe this process more

56

thoroughly in Section 3.3. Finally, while we frame our results in the context of safety-augmented

classification problems, our results generalize immediately to other contexts, such as regression

problems [54] or and offline bandit problems [44].

3.1.2 Demographic Shift in Safety-Augmented Classification

Given a definition for g, the Seldonian framework states that a training algorithm, a, is safe

with respect to g if

Pr
(
g(a(D)) ≤ 0

)
≥ 1−δ, (3.2)

for some confidence threshold, δ ∈ [0, 1]. Training algorithms designed with safety considerations

in mind offer significant advantages for many applications. Nonetheless, even the safety-aware

algorithms described in Chapter 1.1 can be of limited practical use because of the problem of de-

mographic shift. In short, the apparent performance and safety guarantees associated with these

algorithms are only valid after deployment if the trained models are evaluated using data sampled

from the same distribution that was sampled for training. However, in many social applications cer-

tain subgroups of the population might be over- or under-represented in the training data compared

to what will be encountered once the model is deployed. For example, individuals identifying as

male or female might be equally represented in the dataset used to train a model, but once the

model is deployed, it might be considerably more likely to encounter females compared to males.

Consequently, any safety guarantees that were provided by the algorithm may fail when the prob-

ability of encountering these subgroups changes between training and deployment.

In order to reason about such differences between the training and deployment data distribu-

tions, we associate each observation with a demographic attribute, drawing on terminology rel-

evant to many social applications. Specifically, we augment each data instance with a random

variable representing the demographic attribute, denoted T ∈ T . The demographic attribute is

often distinct from the other variables defining each observation, but it does not need to be. For ex-

ample, if the fairness of a classifier is based on the race of each individual, but the distribution over

57

races might change after the model is deployed, then the safety attribute, S, and the demographic

attribute, T , may be the same.

Given the demographic attribute, we let (X, Y, S, T) represent an instance observed during

training, and let (X ′, Y ′, S ′, T ′) represent an instance encountered once the model is deployed. To

formalize the effect of demographic shift, we assume that the marginal distribution of the demo-

graphic attribute may change between training and deployment, but that the pre- and post-shift

joint distributions over instances are otherwise identical. Concretely, this can be summarized by

the following two conditions, which we refer to as the demographic shift assumptions:

∃ t ∈ T s.t. Pr(T = t) 6= Pr(T ′ = t), and, (3.3)

∀ (x, y, s, t), Pr(X=x, Y=y, S=s |T=t) = Pr(X ′=x, Y ′=y, S ′=s |T ′=t). (3.4)

Because the terms that define safety in (3.1) depend on X , Y , and S, it follows that any guar-

antees of safety based on g may fail to hold after the model is deployed, which corresponds to

replacing these random variables with X ′, Y ′ and S ′. Formally, if H ′ = h(X ′, Y ′, S ′, θ) and

C ′ = c(X ′, Y ′, S ′, θ), so that

g′(θ) = E
[
H ′
∣∣C ′]− τ (3.5)

measures the prevalence of unsafe behavior when θ is used after deployment, then the challenge

presented by demographic shift is summarized by the observation that, for any training algorithm

a,

Pr
(
g(a(D)) ≤ 0

)
≥ 1−δ 6=⇒ Pr

(
g′(a(D)) ≤ 0

)
≥ 1−δ.

The goal of this chapter is to propose training algorithms that satisfy the rightmost inequality—that

is, algorithms that offer safety guarantees that are valid after demographic shift—and to provide

results that demonstrate that these algorithms are effective in practice.

58

3.2 Seldonian Algorithms for Demographic Shift

To produce Seldonian algorithms with constraints that hold under demographic shift, we pro-

pose modifying the prototypical Seldonian algorithm shown in Algorithm 1 by updating the defi-

nition of HighConfidenceUpperBound to return the worst-case value of the high-confidence

upper bound on g′(θc) that might be encountered, given assumptions describing the demographic

shift that might be observed. Intuitively, standard Seldonian algorithms compute a high-confidence

upper bound on g(θc) that accounts for uncertainty due to the fact that g(θc) must be estimated us-

ing finite data, and uses this high-confidence upper bound to perform a safety test. As stated earlier,

this formulation assumes that the training data is representative of what will be encountered after

the model is deployed. However, if the user is able to provide specific details characterizing the

demographic shift that will be observed after deployment, then it is possible to modify the high-

confidence upper bound used in the safety test in order to account for this additional uncertainty.

In particular, if the change in the demographic marginal distribution, Pr(T), is known ex-

actly, then we propose algorithms that reweight observations during training to compute a high-

probability upper bound on the value of g′(θc) if θc were deployed. Unfortunately, it is often

impractical to assume that, during training, the user is able to exactly specify the demographic

shift that will be observed after deployment. If the demographic shift is not known then these

high-confidence upper bounds described above cannot be computed exactly. To address this, we

also propose algorithms based on performing a worst-case optimization of these high-confidence

upper bounds to determine the largest value that might be encountered while satisfying the user’s

assumptions. By using the resulting value in the safety test described in Algorithm 1, we obtain

Seldonian algorithms that provide high-confidence guarantees of safety under demographic shift,

even when the future distribution over demographics is not known exactly.

In the following sections, we provide extensions to HighConfidenceUpperBound from

Algorithm 1 that apply when the safety test is based on Hoeffding’s inequality [32] or inversion

of the Student’s t-test [50]. Then, we describe how these techniques can be combined with the

59

proposals in Chapter 2 to handle more general safety definitions. Finally, we introduce a series

of experiments to evaluate the effectiveness of our proposed algorithms, and provide results and

discussion.

3.2.1 Robustness to Demographic Shift: Hoeffding-based Bounds

To begin, we consider the case in which there is no demographic shift, which forms the basis for

our algorithms. Given n i.i.d. samples {(Hi, Ci)}ni=1 that each satisfy Pr(Hi) = Pr(h(X, Y, S, θ))

and Pr(Hi) = Pr(c(X, Y, S, θ)), and assuming that H ∈ [a, b], Hoeffding’s inequality produces

the following [48]:

Pr

E[H|C] ≤ 1

nC

∑
i∈IC

Hi + (b−a)

√
log(1/δ)

2nC

 ≥ 1−δ,

where IC are the indices of the samples for which Ci = True, and nC = |IC |. Since g(θ) =

E[H|C]− τ , it follows that (3.2) holds if an algorithm a only returns models that satisfy,

1

nC

∑
i∈IC

Hi + (b−a)

√
log(1/δ)

2nC
− τ ≤ 0.

In the next sections, we consider how to leverage this result to provide similar high-confidence

upper bounds that hold under demographic shift.

3.2.1.1 Exactly Known Demographic Shift

To provide safety guarantees that hold under demographic shift, we require g′(θ) ≤ 0 with

high probability, where g′(θ) = E[H ′|C ′]− τ . However, in this setting, H ′ and C ′ are defined with

respect to the demographic-shifted distribution, for which no samples are available. Therefore, we

seek a new random variable, Ĥ , which can be computed from the pre-shift variables, X , Y and

S, but that satisfies E[Ĥ|C] = E[H ′|C ′]. Using similar techniques to those used in importance

60

sampling, one can show that under the demographic shift assumptions, the following Ĥ satisfies

these requirements:

Ĥ := φ(T)H,

where φ computes the importance weight associated with T defined by,

φ(t) :=
Pr(C|T=t) Pr(T ′=t)

Pr(T=t|C)
∑

t′∈T Pr(C|T=t′) Pr(T ′=t′)
∀t ∈ T . (3.6)

This result is provided in Theorem 3.2.1.

Theorem 3.2.1. Assume that Pr(T=t) ≥ 0 for all t ∈ T . If the demographic shift properties hold,

then the random variable Ĥ := φ(T)H satisfies E[H ′|C ′] = E[Ĥ|C], where φ is defined in (3.6).

Proof. First, we write E[H ′|C ′] as a sum over expected values conditioned on the value of the

demographic attribute by applying the law of total probability [66]:

E[H ′|C ′] =
∑
t∈T

E[H ′|C ′, T ′=t] Pr(T ′=t|C ′)

=
∑
t∈T

E[H|C, T=t] Pr(T ′=t|C ′). (Using (3.4))

Here, the second line follows from the second demographic shift assumption, which states that for

all t ∈ T and x, y, s ∈ X × Y × S, Pr(X ′=x, Y ′=y, S ′=s|T ′=t) = Pr(X=x, Y=y, S=s|T=t).

Next, we multiply each term by Pr(T=t|C)/Pr(T=t|C) = 1, reorganize terms, and write the sum

over t ∈ T as a single expected value:

E[H ′|C ′] =
∑
t∈T

E[H|C, T=t]

(
Pr(T=t|C)

Pr(T=t|C)

)
Pr(T ′=t|C ′)

=
∑
t∈T

E[H|C, T=t]

(
Pr(T ′=t|C ′)
Pr(T=t|C)

)
Pr(T=t|C)

= E [φ(T)H|C] ,

61

where,

φ(t) =
Pr(T ′=t|C ′)
Pr(T=t|C)

.

Finally, we rewrite φ(t) to only depend on the post-shift marginal distribution, Pr(T ′=t), and the

pre-shift conditional distributions, Pr(T=t|C) and Pr(C|T=t), for each t ∈ T :

φ(t) =
Pr(T ′=t|C ′)
Pr(T=t|C)

=
Pr(C ′|T ′=t) Pr(T ′=t)

Pr(T=t|C) Pr(C ′)
(Using Bayes Theorem)

=
Pr(C|T=t) Pr(T ′=t)

Pr(T=t|C) Pr(C ′)
(Using (3.4))

=
Pr(C|T=t) Pr(T ′=t)

Pr(T=t|C)
∑

t′∈T Pr(C ′|T ′=t′) Pr(T ′=t′)

=
Pr(C|T=t) Pr(T ′=t)

Pr(T=t|C)
∑

t′∈T Pr(C|T=t′) Pr(T ′=t′).
(Using (3.4))

The variable Ĥ := φ(T)H has the advantage that, because it is defined solely with respect

to pre-shift random variables, it is possible to generate i.i.d. samples of Ĥ using data avail-

able during training. In particular, let D = {(Xi, Yi, Si, Ti)}ni=1 be a set of i.i.d. input observa-

tions. A set of i.i.d. observations for Ĥ is obtained by computing {Ĥi}i∈IC , where each Ĥi =

φ(Ti)h(Xi, Yi, Si, θ).

Using the set of observations, {Ĥi}i∈IC , we can apply Hoeffding’s inequality to derive a high-

confidence upper bound on E[Ĥ|C]:

Pr

E[Ĥ|C] ≤ 1

nC

∑
i∈IC

Ĥi + (b′−a′)

√
log(1/δ)

2nC

 ≥ 1−δ.

62

However, since E[Ĥ|C] = E[H ′|C ′] by Theorem 3.4.1, this expression also provides a high-

confidence upper bound suitable for assessing safety after demographic shift:

Pr

E[H ′|C ′] ≤ 1

nC

∑
i∈IC

Ĥi + (b′−a′)

√
log(1/δ)

2nC

 ≥ 1−δ. (3.7)

One caveat in the above is that while H ∈ [a, b], the range of Ĥ must take into account the possible

values of φ(T). Specifically, we have

a′ := inf
t∈T

a φ(t) and b′ := sup
t∈T

b φ(t),

which follows from the observation that φ(t) ≥ 0 for all t ∈ T . Using these results, and recalling

that g′(θ) := E[H ′|C ′]− τ , it follows g′(θ) ≤ 0 with high probability if,

1

nC

∑
i∈IC

Ĥi +

(
sup
t∈T

b φ(t)′− inf
t∈T

a φ(t)

)√
log(1/δ)

2nC
− τ ≤ 0, (3.8)

where each Ĥi depends on θ by the definition, Ĥi := φ(Ti)h(Xi, Yi, Si, θ). From (3.8), it is clear

that if the pre-shift conditionals, Pr(C|T=t) and Pr(T=t|C), can be accurately computed for

all t ∈ T , and if the post-shift demographic marginals, Pr(T ′=t), are known during training,

then g′(θ) can be upper-bounded even when data from the post-shift distribution is unavailable.

Consequently, these quantities can be used to construct a Seldonian algorithm that ensures that its

output is safe under the specified demographic shift.

3.2.1.2 Bounded Demographic Shift

Unfortunately, it is often impractical to assume that the post-shift marginal distribution is

known exactly during training. To address this, we consider the setting in which the user is able

to provide a set of probability distributions over T that contains the unknown future marginal

63

distribution. For notational convenience, let q∗ represent the true (unknown) post-shift marginal

distribution over demographics, so that q∗t := Pr(T ′=t). If the user provides a set of probability

distributions over the elements of T , denoted by Q, that satisfies q∗ ∈ Q, then a high-confidence

upper bound on g′(θ) can be found by computing the worst case value of the high-confidence upper

bound attained for any q ∈ Q.

To begin, we parameterize the high-confidence upper bound in (3.8) to explicitly depend on a

possible post-shift demographic distribution, q:

Pr
(
g′(θ) ≤ Uhoeff(g,D, θ; q∗)

)
≥ 1−δ,

where

Uhoeff(g,D, θ; q) =
1

nC

∑
i∈IC

φ(Ti; q)h(Xi, Yi, Si, θ)

+

(
sup
t∈T

b φ(t; q)− inf
t∈T

a φ(t; q)

)√
log(1/δ)

2nC
− τ,

and

φ(t; q) :=
Pr(C|T=t)qt

Pr(T=t|C)
∑

t′∈T Pr(C|T=t′)qt′
.

While the true post-shift marginal distribution, q∗, is assumed to be unknown, it is clear that if

q∗ ∈ Q, then

Uhoeff(g,D, θ; q∗) ≤ sup
q∈Q

Uhoeff(g,D, θ; q).

Computing the supremum of Uhoeff for q ∈ Q is complicated by the fact that the value of the high-

confidence upper bound depends on the infimum and supremum values of q. Consequently, Uhoeff

might not be a smooth function of q, and its supremum cannot be found in closed form. Therefore,

we propose to use a numerical optimizer to approximate the supremum of Uhoeff over q ∈ Q. In our

implementations, for example, we applied simplicial homology optimization [21], which is proven

64

to converge to global optima of non-smooth functions subject to equality and inequality constraints

such as those defined by the condition, q ∈ Q.

3.2.2 Robustness to Demographic Shift: Bounds based on the Student’s t-Test

The strategy proposed above can be summarized as first parameterizing a function that com-

putes the high-confidence upper bound to explicitly depend on the demographic distribution after

deployment, and then performing a worst case analysis over the deployment distributions that

might be encountered. While the high-confidence upper bounds proposed above are based on Ho-

effding’s inequality, the same strategy can also be applied to design high-confidence upper bounds

under demographic shift that use other inequalities.

For example, given n i.i.d. samples {(Hi, Ci)}ni=1, let IC be the indices of the samples for

which Ci = True, and let nC = |IC |. By inverting the commonly-used Student’s t-Test [50] and

applying Bessel’s correction for sample standard deviations, one can derive the following high-

confidence upper bound on the expected value, E[H|C]:

Pr

(
E[H|C] ≤ 1

nC

∑
i∈IC

Hi +
σ̃
√
nC

t1−δ,nC−1

)
≥ 1−δ, (3.9)

where σ̃ is the sample standard deviation of the samples of Hi for which Ci = True including

Bessel’s correction,

σ̃ :=

√√√√ 1

nC−1

∑
i∈IC

(
Hi −

1

nC

∑
j∈IC

Hj

)2

,

and t1−δ,nC−1 is the 1−δ quantile of the Student’s t distribution with nC−1 degrees of freedom.

Note that while (3.9) only holds exactly if 1
nC

∑
i∈IC Hi is a normally distributed random variable,

the central limit theorem states that the distribution of this quantity converges to a normal distribu-

tion as nC → ∞ regardless of the distribution of each Hi, making this approximation reasonable

for large nC [59].

65

In the following sections, we show how this high-confidence upper bound can be modified to

derive a high-confidence upper bound on the demographic-shifted expected value, E[H ′|C ′], when

the distribution of the demographic variable is known exactly, and when it is known to be in some

set.

3.2.2.1 Exactly Known Demographic Shift

In order to derive a high-confidence upper bound on E[H ′|C ′], where H ′ and C ′ represent

the observable and condition after demographic shift has occurred, we again use Theorem 3.2.1.

In particular, Theorem 3.2.1 states that the expected value using the demographic-shifted vari-

ables, H ′ and C ′—that is, E[H ′|C ′]—is equivalent to the importance-weighted expected value

E[φ(T)H|C], which can be estimated using data available during training. Recall that the weight-

ing function, φ, depends on the distribution of the demographic after demographic shift occurs, as

well as several quantities that can be estimated during training:

φ(t) :=
Pr(C ′|T ′=t)
Pr(C|T=t)

=
Pr(C|T=t) Pr(T ′=t)

Pr(T=t|C)
∑

t′∈T Pr(C|T=t′) Pr(T ′=t′)
∀t ∈ T .

To obtain a high-confidence upper bound on E[H ′|C ′], we leverage Theorem 3.2.1 and apply

(3.9) to the reweighted observations, {φ(Ti)Hi}i∈IC . This results in the following:

Pr

(
E[H ′|C ′] ≤ 1

nC

∑
i∈IC

φ(Ti)Hi +
σ̃′
√
nC

t1−δ,nC−1

)
≥ 1−δ, (3.10)

where σ̃′ is the sample standard deviation of the reweighted samples for which Ci = True:

σ̃′ :=

√√√√ 1

nC−1

∑
i∈IC

(
φ(Ti)Hi −

1

nC

∑
j∈IC

φ(Ti)Hj

)2

. (3.11)

Using this result, it is straightforward to design a quasi-Seldonian algorithm that provides

safety guarantees that hold under demographic shift. If we assume that the user would like to

66

ensure that with high probability, an algorithm produces a safe result using g(θ) := E[H|C] − τ

and subject to demographic shift, it suffices to define the high-confidence upper bound used in the

safety test—that is, HighConfidenceUpperBound in Algorithm 1—to compute the value of,

Ut-test(g,Ds, δ) :=
1

nC

∑
i∈IC

φ(Ti)Hi +
σ̃
√
nC

t1−δ,nC−1 − τ, (3.12)

where σ̃′ is the sample standard deviation of the samples of Ĥi = φ(Ti)Hi defined in (3.11). The

resulting quasi-Seldonian algorithm can be used as long as the post-shift marginal probabilities,

Pr(T ′=t), are known for each t ∈ T . Note that we refer to this as a quasi-Seldonian algorithm

because the high-confidence upper bound in (3.10) is only valid approximately as nC →∞.

3.2.2.2 Bounded Demographic Shift

Next, we consider how to extend the high-confidence upper bound in (3.12) to apply when

the demographic-shifted marginal distribution, Pr(T ′=t), is not known exactly, but is known to

lie in some set of distributions, Q. Specifically, if q∗ denotes the true post-shift demographic

distribution, defined by q∗t := Pr(T ′=t) for each t ∈ T , then we assume that q∗ ∈ Q. Similar to

our strategy in Section 3.2.1.2, we accomplish this by parameterizing Ut-test to explicitly depend on

the post-shift demographic distribution, and calculate the worst-case value of the upper bound for

all demographic distributions in Q.

First, we write the high-confidence upper bound function in (3.12) to explicitly depend on the

choice of post-shift demographic distribution, q:

Ut-test(g,D, δ; q) :=
1

nC

∑
i∈IC

φ(Ti; q)Hi +
σ̃′q√
nC

t1−δ,nC−1 − τ,

where

σ̃′q =

√√√√ 1

nC−1

∑
i∈IC

(
φ(Ti; q)Hi −

1

nC

∑
i∈IC

φ(Ti; q)Hi

)2

,

67

and

φ(t; q) :=
Pr(C|T=t)qt

Pr(T=t|C)
∑

t′∈T Pr(C|T=t′)qt′
.

Note that if the post-shift demographic distribution is known, then Ut-test(g,D, δ; q
∗) is identical

to (3.12) for any input dataset, D. However, if q∗ is not known, but is contained in Q, then we

compute the largest value of Ut-test(g,D, δ; q) for all q ∈ Q, which is necessarily at least as large

as Ut-test(g,D, δ; q
∗):

Ut-test(g,D, δ; q
∗) ≤ sup

q∈Q
Ut-test(g,D, δ; q).

As with the comparable high-confidence bounds based on Hoeffding’s inequality, we numerically

compute this supremum using simplical homology optimization [21].

3.3 Integrating Robust Bounds into Seldonian algorithms

Having described methods for computing high-confidence upper bounds on g′(θ), which mea-

sures the prevalence of unsafe behavior when θ is deployed under demographic shift, we now

discuss how these results can be used for the design of Seldonian machine learning algorithms.

Revisiting the pseudocode that describes a prototypical Seldonian algorithm, we propose that Sel-

donian algorithms that account for demographic shift can be obtained by modifying the function

HighConfidenceUpperBound to be based on the bounds presented in this chapter.

Furthermore, these can be extended in a straightforward way to leverage the general interface

proposed in Chapter 2. Specifically, Chapter 2 proposes an interface that supports computing

upper bounds on g(θ) that are based on multiple conditional expected values. To integrate the

strategies proposed in this section, we compute the upper bounds presented here, as well as the

corresponding lower bounds, for each statistic. For example, for bounds based on Hoeffding’s

inequality, it is straightforward to apply the union bound to show that,

Pr
(

inf
q∈Q

Lhoeff(g,D, θ; q) ≤ g′(θ) ≤ sup
q∈Q

Uhoeff(g,D, θ; q)
)
≥ 1−2δ,

68

where,

Lhoeff(g,D, θ; q) =
1

nC

∑
i∈IC

φ(Ti; q)h(Xi, Yi, Si, θ)

−
(

sup
t∈T

b φ(t; q)− inf
t∈T

a φ(t; q)

)√
log(1/δ)

2nC
− τ.

Intervals such as these are computed for each statistic that appears in the definition of g. Then,

these intervals are used in place of the intervals described in Chapter 2, which do not account for

the impact of demographic shift.

3.4 Evaluation and Results

In Section 3.2, we presented high-confidence upper bounds that can be used to design Sel-

donian algorithms that provide safety guarantees that hold after demographic shift. However, it

is reasonable to ask whether or not the resulting algorithms are truly effective. For example, do

the guarantees provided by these algorithms hold empirically, and do they require unreasonable

amounts of data? In this section, we describe experiments designed to answer these questions.

First, we outline three specific hypotheses we seek to test in order to evaluate whether or not

Seldonian algorithms based on the results of this chapter are effective. Next, we describe a set of

experiments designed to test these hypotheses. This includes a discussion of the safety definitions

we evaluated, our strategy for selecting assumptions on how the demographic distribution might

change for each experiment, and a strategy for simulating the effect of demographic shift and

evaluating relevant statistics such as accuracy and the value of g′(θ) for any model, θ. Finally, we

provide results and discussion comparing our proposed robust Seldonian algorithms to comparable

standard Seldonian algorithms.

69

3.4.1 Hypotheses

In our experiments, we seek to answer three questions regarding the behavior of our proposed

algorithms for overcoming demographic shift compared to existing approaches.

Robustness of safety guarantees The central question we wish to examine in these experiments

is whether or not various algorithms, including our proposed methods, are able to pro-

vide high-probability guarantees of safe behavior that continue to hold under demographic

shift in practice. We expect existing Seldonian algorithms to behave safely when evaluated

on the training distribution, but to violate their safety constraints when evaluated on the

demographic-shifted distributions. In contrast, we hypothesize that the robust algorithms we

propose in this chapter will behave safely after demographic shift.

Model accuracy We also seek to determine whether or not our robust algorithms will achieve

comparable accuracy compared standard Seldonian algorithms. Assessing this condition is

complicated by the fact that, since the robust algorithms are solving a more constrained

problem than the baselines, it is possible that the models trained using these methods will

be unable to simultaneously achieve high accuracy and satisfy safety constraints after demo-

graphic shift. However, we use our experiments to produce qualitative evidence demonstrat-

ing how large the loss in accuracy might be in practice.

Data efficiency Finally, we seek to determine whether or not our robust algorithms will be capable

of producing models—that is, to avoid returning NO SOLUTION FOUND—with reasonable

amounts of training data compared to baselines.

3.4.2 Experimental Design

Evaluating the hypotheses listed above is complicated by the fact that, in order to assess the

validity of safety guarantees and to assess the data efficiency of our proposed algorithms, we re-

quire multiple pairs of datasets sampled from the same underlying distribution, and which exhibit

70

a known amount of demographic shift. If, for example, a single pair of datasets exhibiting demo-

graphic shift were used, it could provide evidence about the accuracy of models produced using

these algorithms, but would not allow us to assess whether the safety guarantees hold with the

required probability, nor to properly assess the amount of data required for such algorithms to

reliably return solutions instead of NO SOLUTION FOUND. To overcome this difficulty, we de-

veloped an experimental design based on simulating training datasets by resampling from a fixed

population. Randomly sampling training datasets from the population using a known distribution

and precisely controlling the deployment distribution offers several advantages for evaluating the

hypotheses listed above. For example, this design ensures that any failures—that is, instances in

which the model produced by our algorithms returns unsafe solutions with a larger frequency than

specified—can be properly attributed to a failure of the high-confidence upper bounds we propose,

instead of being due to violation of the user’s assumptions on demographic shift. In addition, be-

cause the underlying population, as well as the training and deployment distributions, are known,

it is straightforward to compute exact values for g(θ) and g′(θ). Therefore, we decided to base our

experiments on uniformly sampling training datasets from the population, training a model using

either our proposed algorithms or other baselines, and finally evaluating the safety of that model

after demographic shift by antagonistically searching for a new distribution over the population

that satisfies the user’s assumptions, but otherwise maximizes the prevalence of unsafe behavior.

Following this design, there are three components that are required. First, our experiments

require a dataset to be used as the population, and a concrete classification problem statement. In

Section 3.4.3, we present the problem statement used in our experiments and provide details on the

data we used. Next, we require a set of example inputs that a user might provide to our algorithms.

These inputs consist of a safety definition, g, as well as a set of marginal demographic distributions,

Q, that the user assumes contains the true demographic distribution that will be observed after

deployment. Details for how we generated the example user input for each experiment are provided

in Section 3.4.4. Finally, our experiments require a strategy for antagonistically selecting a new

71

Algorithm 7 DemographicShiftTrial(Dpop)
1: Specify example user inputs, g, δ, and Q {Sec. 3.4.4}
2: Uniformly sample D from Dpop

3: for each training algorithm, a do
4: Train θ∗ using D, g, δ, and Q
5: Record values for accuracy and g(θ∗a) during training
6: Find a distribution Q∗ to maximize g′(θ∗a) subject to q∗ ∈ Q {Sec. 3.4.5}
7: Record values for accuracy and g′(θ∗a) under Q∗

8: end for

distribution over the population that has a marginal demographic distribution q∗ that satisfies q∗ ∈

Q and otherwise maximizes the prevalence of unsafe behavior for a given model. This component

of our experiments is described in Section 3.4.5.

Given these components, our experiments were conducted as follows. First, for each experi-

ment, we specify a safety constraint and an assumption on how much the demographic distribution

might change after model deployment. Then, we repeat several trails, where for each trial, we first

generate a training dataset by resampling uniformly from the population with replacement. Then,

we apply each algorithm being evaluated to produce a set of trained models. We evaluate our pro-

posed algorithms and compare to standard Seldonian algorithms. After the models are trained, we

antagonistically select a new sampling distribution over the population for each model, denoted

Q∗, which is chosen to maximize the prevalence of unsafe behavior—that is, to maximize g′(θ)—

while satisfying the assumptions on demographic shift. In particular, note thatQ∗ denotes a chosen

distribution over the population after deployment, whereas q∗ is a corresponding distribution over

the demographic attribute. Finally, we use oracle knowledge of the antagonistic distributions and

the population to compute exact values for post-shift accuracy and safety for each model. Psue-

docode for a single trial of our experiments is given in Algorithm 7. In the following sections, we

describe our methodology in more detail, and provide specific experimental details.

72

3.4.3 Problem Statement and Notation

In our experiments, we consider the binary classification task of predicting whether or not a

student’s grade point average (GPA) is above a certain threshold, while avoiding discriminatory

behavior based on sex. Furthermore, we consider the setting in which the marginal distribution of

the race of the students might change after deployment. If, for example, a model tends to make

discriminatory decisions based on sex more often for a minority race compared to a majority race,

then the model might make such decisions much more frequently on average if the distribution of

races were to change after deployment.

Formally, we assume a training data observation consists of a tuple, (X, Y, S, T), where X

is a vector of predictive features, Y ∈ {0, 1} is a binary label representing whether or not the

student’s GPA was above 3.0, the demographic attribute, T , represents the race of the student, and

S describes the sex of the student. Importantly, T and S are not directly used for prediction, and

are not assumed to be available once the model is deployed.

Given this formulation, the central goal of each classification algorithm is to learn a model that

achieves small classification error,

`(θ) = E [I[θ(X) 6= Y]] ,

where I[c] is 1 if c is true and 0 otherwise. We evaluate the fairness of each model based on

whether or not its predictions are discriminatory with respect to the sex of the student. Finally,

we consider the setting in which, after the model is deployed, the demographic distribution—

that is, the marginal distribution over student race—might change. In summary, our experiments

are designed to determine whether or not various algorithms are able to provide high-confidence

guarantees that their output models will not discriminate based on sex, even when the distribution

of student races might change after deployment.

73

For our experiments, we used data describing 43,303 students applying to universities. Each

feature vector representing a student consisted of their scores on nine entrance exams, and the goal

of each classification algorithm was to predict whether or not the student’s GPA was above 3.0. In

addition, the dataset included information about the race and sex of each student, which we used

as the demographic attribute and safety attribute, respectively. Consequently, this data allowed us

to assess our hypothesis about whether or not safety constraints based on the sex of each student

would continue to hold if the distribution over race were to change after each model is deployed.

In the following sections, we describe our methodology for specifying these safety constraints, as

well as our assumptions on how the distribution over student races could change.

3.4.4 Specifying User Inputs

In this section we describe the example user inputs that we applied to generate our experiments.

During real-world application of our methods, these inputs would be provided by the user, and the

methods are not limited by the choices made below.

First, we discuss how we defined undesirable behavior for each experiment. In practice, the

choice of safety definition, g, and failure tolerance, δ, is given by the user, so the definitions used

in our experiments were chosen to illustrate that our methods work for a variety of problems, and

do not influence whether or not the results of our experiments are valid. Therefore, we selected

five definitions of fairness that have been studied in existing work, and which leverage the inter-

face proposed in Chapter 2. Specifically, we performed separate experiments for five definitions

of fairness, which are similar to those used in our experiments in Chapter 2. While the princi-

ples for each definition are the same as those in Chapter 2, in these experiments, we based the

protected subgroups for each definition on the sex of each individual, instead of their race. When

conducting these experiments, we combined the results described in this chapter with the interface

proposed in Chapter 2, in order to show that our methods are able to provide safety guarantees un-

der demographic shift for practical definitions of safety. Details and motivation for selecting these

74

definitions are provided in Section 2.5.1, but the specific definitions are shown in Figure 3.4.4 for

completeness.

To complete the problem specification for each experiment, we provided example assumptions

that the user might place on the possible demographic distributions that could be encountered in

the deployment environment. Specifically, this step requires defining a setQ that the user assumes

will contain the future distribution over the demographic attribute. Because the choice of Q is

considered an input from the user, our strategy for selecting Q does not impact the validity of

our results. As a result, while the algorithms that we propose work well for any demographic

assumptions of the form,

Q :=

{
q s.t ∀t ∈ T , qt ∈ [at, bt], qt ≥ 0, and

∑
t∈T

qt = 1

}
,

we generated Q in our experiments by inflating a region around the true demographic marginal

probabilities when sampling uniformly from the population. Intuitively, this strategy can be seen

as interpolating between assuming no demographic shift and assuming completely unknown de-

mographic shift, using an interpolation factor, α.

Formally, if pt := Pr(T=t) is the true probability of encountering demographic t when sam-

pling uniformly from the population, then we set at and bt by computing,

at = (1−α)pt and bt = (1−α)pt + α,

where α ∈ [0, 1]. We then defined Q in each experiment based on (3.4.4). Using this scheme,

setting α = 1 causes the interval for Pr(T ′=t) to become [0, 1], while setting α = 0 produces the

point interval [pt, pt]. In our experiments, we set α=0.3 to simulate the case in which the user has

some, but not complete, knowledge about the demographic distribution.

75

Demographic Parity [20, 6]:

gDP(θ) :=
∣∣∣ E[θ(X)|S=female]− E[θ(X)|S=male]

∣∣∣− 0.1

Disparate Impact [27, 9, 63]:

gDI(θ) := 0.8−min

{
E[θ(X)|S=female]

E[θ(X)|S=male]
,

E[θ(X)|S=male]

E[θ(X)|S=female]

}

Equal Opportunity [30, 9]:

gEOp(θ) :=
∣∣∣ E[θ(X)|Y=0, S=female]− E[θ(X)|Y=0, S=male]

∣∣∣− 0.1

Predictive Equality [9, 12]:

gPE(θ) :=
∣∣∣ E[1−θ(X)|Y=1, S=female]− E[1−θ(X)|Y=1, S=male]

∣∣∣− 0.1

Equalized Odds [30]:

gEOd(θ) :=
∣∣∣ E[θ(X)|Y=0, S=female]− E[θ(X)|Y=0, S=male]

∣∣∣ +∣∣∣ E[1−θ(X)|Y=1, S=female]− E[1−θ(X)|Y=1, S=male]
∣∣∣− 0.1.

Figure 3.1. Exact definitions of fairness used our experiments on evaluating safety guarantees
under demographic shift. Details motivating these definitions can be found in Section 3.4.4. These
definitions were selected to evaluate whether the algorithms proposed in this chapter were able
to provide safety guarantees under demographic shift for a variety of practical definitions. In our
experiments, these definitions were specified as text input, and were parsed and bounded using the
interface proposed in Chapter 2.

76

3.4.5 Simulating and Evaluating the Impact of Demographic Shift

Here, we describe our procedure for simulating the impact of demographic shift given the

population described above. Intuitively, after generating a training dataset, we antagonistically

select a new, non-uniform distribution over the population, which satisfies the user’s assumptions

on demographic shift—that is, that the marginal distribution over demographics is contained in

Q—but otherwise maximizes the prevalence of unsafe behavior. Since the population and sampling

distributions are known during evaluation, this oracle knowledge can be used to compute exact

values for various statistics, such as expected classification accuracy and the value of g′(θ) for any

model θ.

To make this procedure formal, let the input dataset—that is, the population—be denoted by

Dpop:

Dpop := {(xi, yi, si, ti)}ni=1.

Note that we do not refer to this set using the standard notation for random variables because in the

context of our experiments, the population is treated as a fixed, non-random underlying popula-

tion. To generate a random training dataset, D, consisting of n0 samples, we sample observations

uniformly fromDpop with replacement. Specifically, if P denotes the uniform distribution over the

observations in Dpop, then training datasets are defined by D := {(Xj, Yj, Sj, Tj)}n0
j=1, where each

(Xj, Yj, Sj, Tj) ∼ P .

Next, we generate a new distribution over the population that satisfies the user’s assumptions

but otherwise maximizes the prevalence of unsafe behavior for a given model, which we denote

by Q. However, to comply with the user’s assumptions on demographic shift, Q must be selected

carefully. The following theorem provides the conditions that Q must satisfy to achieve this.

Theorem 3.4.1. Let P denote a uniform distribution overDpop, a population consisting of n obser-

vations, Dpop := {(xi, yi, si, ti)}ni=1. Assume that the demographic attribute takes values in some

set T , and that each demographic t ∈ T occurs at least once in the population. Next, assume that

77

q denotes some distribution over T , so that qt denotes the probability of encountering the demo-

graphic t ∈ T , and that q ∈ Q. Finally, let NDpop [x, y, s, t] denote the number of observations

in Dpop that are equal to (x, y, s, t) and let NDpop [t] denote the number of observations that have

demographic attribute equal to t. It follows that the definition of Q shown below satisfies both

of the demographic shift assumptions, and has a marginal distribution over demographics that is

contained in Q:

Q(X=x, Y=y, S=s, T=t) =
NDpop [x, y, s, t]

NDpop [t]
qt.

.

Proof. To show this result, we derive an expression forQ that has these properties by construction.

First, we expand the post-shift joint distribution using the laws of conditional probability:

Q(X=x, Y=y, S=s, T=t) = Q(X=x, Y=y, S=s|T=t)Q(T=t).

Next, we apply the second demographic shift assumption:

Q(X=x, Y=y, S=s, T=t) = P (X=x, Y=y, S=s|T=t)Q(T=t).

Then, we represent the conditional P (X, Y, S|T=t) as a ratio using laws of conditional probability:

Q(X=x, Y=y, S=s, T=t) =
P (X=x, Y=y, S=s, T=t)

P (T=t)
Q(T=t).

Because P is a uniform distribution over the observations in Dpop, it follows that the value of

P (X=x, Y=y, S=s, T=t) is simply the number of occurrences of (x, y, s, t) in P divided by the

total number of samples in the population, n. Similarly, P (T=t) is simply the number of observa-

tions that have demographic attribute equal to t, divided by n. Since we assume that each demo-

graphic is observed in the population, it follows that P (T=t) > 0 for all t ∈ T . Let NDpop [x, y, s, t]

78

denote the number of observations in Dpop that are equal to (x, y, s, t) and let NDpop [t] denote the

number of observations that have demographic attribute equal to t. It follows that for any observa-

tion, (x, y, s, t) ∈ Dpop we have

Q(X=x, Y=y, S=s, T=t) =
NDpop [x, y, s, t]/n

NDpop [t]/n
Q(T=t) =

NDpop [x, y, s, t]
NDpop [t]

Q(T=t).

Finally, we define the marginal distribution of Q over demographics to be given by q:

Q(X=x, Y=y, S=s, T=t) =
NDpop [x, y, s, t]

NDpop [t]
qt.

Since Q has the same conditional distribution given the demographic as P by construction, it

satisfies the demographic shift assumptions. Furthermore, since the marginal distribution of Q

over demographics is defined to be given by q, which satisfies q ∈ Q, it also satisfies the user’s

assumptions on demographic shift.

Theorem 3.4.1 shows that, given any q ∈ Q, we can construct a distribution over the popula-

tion which satisfies the demographic shift assumptions. Therefore, to select antagonistically select

a distribution to maximize the prevalence of unsafe behavior for a given model, θ, we numerically

optimize g′(θ) over q ∈ Q using simplical homology optimization [21] to determine the maximiz-

ing marginal distribution, q∗, and then define the distribution over Dpop using Theorem 3.4.1.

Theorem 3.4.1 can also be used to compute exact values for various statistics of interest dur-

ing evaluation, such as expected classification accuracy or the value of g′(θ) for any model, θ.

For example, consider estimating the post-shift classification accuracy of a model, θ, given by

EQ[I[θ(X)=Y]]. If D̄pop denotes the set of unique observations in Dpop, then we have

EQ[I[θ(X)=Y]] =
∑

(x,y,s,t)∈D̄pop

I[θ(x)=y]Q(X=x, Y=y, S=s, T=t)

=
∑

(x,y,s,t)∈D̄pop

I[θ(x)=y]
NDpop [x, y, s, t]

NDpop [t]
Q(T=t).

79

Analogous expressions can be used to compute exact values for post-shift model accuracy, as well

as the value of g′(θ) for any model θ.

3.5 Results

In the previous section, we described a set of experiments designed to evaluate several hypothe-

ses about the effectiveness of our proposed Seldonian algorithms. In this section, we describe the

results of these experiments, which verify our claims that the algorithms proposed in this chap-

ter are effective at providing safety guarantees that hold under demographic shift, while existing

algorithms are not effective.

In our experiments, we evaluated four training algorithms to test our hypotheses. All four al-

gorithms were configured to produce linear models on the features, X , to ensure that no algorithm

had an advantage over the others due to using more complex, nonlinear models to generate predic-

tions. First, we include results for the algorithms proposed in this chapter based on Hoeffding’s

inequality and based on inversion of the Student’s t-test. These are denoted by SeldonianDS and

quasi-SeldonianDS, and shown in green in our figures. Finally, to assess whether or not our al-

gorithms would be more effective under demographic shift than prior Seldonian algorithms, we

include results for two comparable standard Seldonian algorithms. In particular, we selected Sel-

donian algorithms based on Hoeffding’s inequality and based on inversion of the Student’s t-test,

which are referred to as Seldonian and quasi-Seldonian in our figures and shown in blue [54].

3.5.1 Evaluation and Reporting

In order to test the hypotheses in Section 3.4.1, we record several values produced for each trial

of our experiments.

First, to assess whether or not the safety guarantees provided by our algorithms are empirically

valid, we recorded, for each trial, whether or not each algorithm resulted in a safety failure during

training or after deployment. Specifically, a safety failure occurs when any algorithm produces a

80

model—as opposed to NO SOLUTION FOUND—that is unsafe. To detect safety violations during

training, we computed the true value of g(θ), where θ is the model returned by the algorithm, and

tested whether or not it was above zero. Then, to detect a safety violation after deployment, we

computed g′(θ) for each model, using oracle knowledge of the population and the antagonistic

resampling distribution.

Next, to assess our hypothesis regarding the accuracy of models produced by our algorithms,

we computed the true accuracy of each trained model before and after deployment. To compute

these values, we used oracle knowledge of the population, as well as the sampling distributions

that generated each training and deployment dataset. However, the assessment of whether or not

our algorithms are effective at producing accurate models under demographic shift constraints

is complicated by the fact that our proposed algorithms may return models that achieve lower

accuracy than standard Seldonian algorithms for multiple reasons. First, our algorithms might

return models with lower performance because they must account for uncertainty in the deployment

distribution, which standard methods ignore. Because this performance loss is due to constraints

placed by the user—namely that with high confidence the algorithms should return models that are

safe after demographic shift—this performance loss does not reflect a shortcoming of our proposed

algorithms. However, it is also possible that accurate models exist that are safe under demographic

shift, but our algorithms are unable to identify them.

To determine which forms of performance loss are responsible for any decrease in accuracy

exhibited by our proposed algorithms, we also estimate the best possible classification accuracy

that can be achieved by a linear model 1) without safety constraints, 2) while satisfying safety

constraints defined on the training distribution, and 3) while satisfying safety constraints that must

hold under demographic shift. Thus, if the accuracy of our models approach these best-case values,

it implies that any loss in accuracy when considering the possibility of demographic shift is due to

the strictness of the user’s constraints, and not the algorithms we propose. Initially, we performed

the search for linear models that achieve best-case accuracy using a brute force search over the set

81

of all linear classifiers. However, we found that, even when randomly sampling a large number of

linear models, the highest observed accuracy was significantly lower than the average accuracy of

standard Seldonian algorithms, indicating that these algorithms were identifying a very small set

of high-performing models that were extremely unlikely to be encountered using random search.

Consequently, we approximated our best-case values by initializing a search using a model found

using standard Seldonian algorithms, and fine-tuning the model to improve accuracy using covari-

ance matrix adaptation evolution strategy (CMA-ES) [29]. As a result, the values we report are

only approximations to the best-case values for accuracy, but provide a reasonable lower bound on

the performance that might be expected under safety constraints, and under safety constraints that

are required to hold under demographic shift.

Finally, we recorded statistics to assess the data efficiency of each algorithm. In particular, we

sought to determine whether our algorithms would require prohibitive amounts of data to return

safe models instead of NO SOLUTION FOUND, compared to standard Seldonian algorithms. For

this, we recorded whether or not each algorithm returned a solution or NO SOLUTION FOUND for

each trial. In addition, we conducted trials using various amounts of training data in order to assess

how the probability of returning a model changes as a function of the amount of data provided.

These quantities were recorded for each trial, producing empirical estimates that could be used

to assess the validity of the guarantees provided by our algorithms, as well as the average accu-

racy and data efficiency of the models they produced for each experiment. However, since these

estimates are based on a finite number of trials (25 in our experiments) and therefore do not rep-

resent the true values, we also computed standard error for each quantity in order to assess this

uncertainty.

Concretely, for each experiment, we report five plots. First, we show the acceptance rate of

each algorithm as a function of the size of the training dataset. Then, we provide two rows of

plots, featuring the results on the training and deployment distributions, respectively. In each row,

we first show the average accuracy of the models produced by each algorithm for various training

82

105
Training Samples

0%

20%

40%

60%

80%

100%
So

lu
tio

n
Ra

te

105
Training Samples

40%

50%

60%

Or
ig

in
al

 A
cc

ur
ac

y

105
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

105
Training Samples

40%

50%

60%

De
pl

oy
ed

 A
cc

ur
ac

y

105
Training Samples

0%

25%

50%

75%

100%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e

SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian
BestUC BestSafe BestSafe(DS)

SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian
BestUC BestSafe BestSafe(DS)

Figure 3.2. Results for experiments enforcing safety constraints based on the principle of dis-
parate impact to preclude discrimination based on student sex when the marginal distribution of
student race might change after model deployment. The rightmost column of plots displays the
frequency with which each algorithm returns a solution that is unsafe before and after deployment,
and demonstrates that the algorithms proposed in this chapter (shown in green) provide safety
guarantees that hold after demographic shift, whereas standard Seldonian algorithms (blue) do not.
However, empirically, these added safety benefits come at the cost of accuracy (shown in the mid-
dle column of plots) and data efficiency (shown in the leftmost plot). Nonetheless, these results
show that for safety-critical applications for which ensuring safety after deployment is the primary
requirement, our algorithms are effective.

dataset sizes. Next, we show the failure rate for each algorithm as the size of the training dataset

increases. In all figures, we show standard error for each statistic using a shaded region around the

curve that delineates the average values.

3.5.2 Results

The results of our experiments using each definition of fairness are shown in Figures 3.2 to 3.6.

First, we evaluate our first hypothesis, which stated that when subjected to demographic shift,

any safety guarantees provided by baselines would become invalid, while the safety guarantees

provided by our proposed algorithms would not. The results of our experiments support this hy-

pothesis. Specifically, when examining the subplots showing the frequency of safety violations—

83

105
Training Samples

0%

20%

40%

60%

80%

100%

So
lu

tio
n

Ra
te

105
Training Samples

40%

50%

60%

Or
ig

in
al

 A
cc

ur
ac

y

105
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

105
Training Samples

40%

50%

60%

De
pl

oy
ed

 A
cc

ur
ac

y

105
Training Samples

0%

20%

40%

60%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e

SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian
BestUC BestSafe BestSafe(DS)

SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian
BestUC BestSafe BestSafe(DS)

Figure 3.3. Results for experiments enforcing safety constraints based on the principle of demo-
graphic parity to preclude discrimination based on student sex when the marginal distribution of
student race might change after model deployment. These results demonstrate a similar pattern
as shown in Figure 3.2: The algorithms proposed in this chapter (shown in green) provide safety
guarantees that hold after deployment, while prior Seldonian algorithms (blue) do not. Interest-
ingly, for this definition, the data efficiency of our quasi-Seldonian algorithm (displayed in the
leftmost plot) was comparable to that of standard Seldonian algorithms. These results demonstrate
that our proposed algorithms are effective solutions in safety-critical applications that are subject
to demographic shift, and demonstrate that these benefits are consistent for a variety of practical
safety definitions.

84

105
Training Samples

0%

20%

40%

60%

80%

100%

So
lu

tio
n

Ra
te

105
Training Samples

40%

50%

60%
Or

ig
in

al
 A

cc
ur

ac
y

105
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

105
Training Samples

40%

50%

60%

De
pl

oy
ed

 A
cc

ur
ac

y

105
Training Samples

0%

25%

50%

75%

100%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)

Figure 3.4. Results for experiments enforcing safety constraints based on equal opportunity to
preclude discrimination based on student sex when the marginal distribution of student race might
change after model deployment. These results demonstrate a similar pattern as shown in Fig-
ure 3.2: The algorithms proposed in this chapter (shown in green) provide safety guarantees that
hold after deployment, while prior Seldonian algorithms (blue) do not. These results demonstrate
that our proposed algorithms are effective solutions in safety-critical applications that are subject
to demographic shift, and demonstrate that these benefits are consistent for a variety of practical
safety definitions.

85

105
Training Samples

0%

20%

40%

60%

80%

100%

So
lu

tio
n

Ra
te

105
Training Samples

40%

50%

60%
Or

ig
in

al
 A

cc
ur

ac
y

105
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

105
Training Samples

40%

50%

60%

De
pl

oy
ed

 A
cc

ur
ac

y

105
Training Samples

0%

20%

40%

60%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)

Figure 3.5. Results for experiments enforcing safety constraints based on the principle of equalized
odds to preclude discrimination based on student sex when the marginal distribution of student race
might change after model deployment. These results demonstrate a similar pattern as shown in
Figure 3.2: The algorithms proposed in this chapter (shown in green) provide safety guarantees that
hold after deployment, while prior Seldonian algorithms (blue) do not. These results demonstrate
that our proposed algorithms are effective solutions in safety-critical applications that are subject
to demographic shift, and demonstrate that these benefits are consistent for a variety of practical
safety definitions.

86

105
Training Samples

0%

20%

40%

60%

80%

100%

So
lu

tio
n

Ra
te

105
Training Samples

40%

50%

60%
Or

ig
in

al
 A

cc
ur

ac
y

105
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

105
Training Samples

40%

50%

60%

De
pl

oy
ed

 A
cc

ur
ac

y

105
Training Samples

0%

25%

50%

75%

100%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)

Figure 3.6. Results for experiments enforcing safety constraints based on the principle of pre-
dictive equality to preclude discrimination based on student sex when the marginal distribution of
student race might change after model deployment. These results demonstrate a similar pattern as
shown in Figure 3.2: The algorithms proposed in this chapter (shown in green) provide safety guar-
antees that hold after deployment, while prior Seldonian algorithms (blue) do not. These results
demonstrate that our proposed algorithms are effective solutions in safety-critical applications that
are subject to demographic shift, and demonstrate that these benefits are consistent for a variety of
practical safety definitions.

87

that is, the rightmost column of plots in each figure—the models produced by previous training

algorithms were unsafe more than 5% of the time, even if they consistently appeared to be safe

for the training data distribution. First, we note that standard Seldonian algorithms did not result

in safety violations when evaluated on the training distribution. This observation validates that the

safety guarantees provided by these algorithms—namely that with high probability they will not

produce unsafe models on data drawn from the distribution used for—are valid. However, when

evaluated on data from a deployed distribution that is impacted by demographic shift, the mod-

els produced by prior Seldonian algorithms are frequently unsafe. On the other hand, the models

trained using the algorithms proposed in this chapter were consistently safe for the deployment

distribution, verifying our hypothesis.

Next, we consider the accuracy of the models trained by our algorithms. In Section 3.4.1, we

hypothesize that the models trained by our proposed algorithms will tend to have lower accuracy

than those trained using standard Seldonian algorithms. This hypothesis is supported by our results.

Examining the middle column of plots in each figure, we find that standard Seldonian algorithms

achieve higher accuracy on average than the models trained using the algorithms proposed in this

chapter. This pattern is reasonable, since our proposed algorithms must account for uncertainty

about the deployment distribution, which prior Seldonian algorithms ignore. Thus, while prior

Seldonian algorithms are able to identify models with higher performance, these models cannot be

shown to be safe with high probability under demographic shift.

At first, the loss in accuracy demonstrated by our algorithms suggests that in many problems,

there might be a tradeoff between performance and safety under demographic shift. To investigate

this in more detail, we compare the accuracy when using each algorithm to our estimated best-

case accuracy that can be achieved in various settings. First, we compare the accuracy of standard

Seldonian algorithms, which provide high-confidence safety guarantees when evaluated on the

training distribution, to the best-case accuracy of linear models that were found to be safe during

training using oracle knowledge, which is shown as a dashed blue horizontal line. In each exper-

88

iment, we find that standard Seldonian algorithms were able to identify models that come close

to the best-case accuracy, showing that they not only are effective at providing high-confidence

safety guarantees, but that they are also effective at finding accurate models subject to the safety

constraints. On the other hand, we find that our proposed algorithms are less effective at achieving

the best-case accuracy that can be attained for linear models that are safe under demographic shift,

which is shown by a green dashed horizontal line. In most experiments, we observe that there is

some cost in accuracy that is incurred when considering safety under demographic shift compared

to safety during training, which is evidenced by the fact that the best-case accuracy obtained under

demographic shift is generally close to five percentage points lower than the best case accuracy

that can be achieved when enforcing safety during training. Nonetheless, our proposed algorithms

tend to return models that achieve significantly lower accuracy than the estimated best-case value

under demographic shift.

The inability of our proposed algorithms to produce models that achieve the best-case accuracy

under safety constraints that depend on demographic shift may be due to uncertainty that results

from using finite training data to evaluate our algorithms. Specifically, the best-case accuracy

under these safety constraints is computed using oracle knowledge of the data distribution during

training and deployment, while our proposed algorithms are evaluated using finite data. As a result,

our proposed algorithms cannot perfectly evaluate g(θ), and must rely on high-confidence upper

bounds. However, the fact that g(θ) cannot be evaluated exactly by our algorithms implies that

there will be some models that are safe, but cannot be shown to be safe with high confidence,

and therefore cannot be returned. This is particularly problematic for models that achieve g(θ)

that is negative, but is very close to zero. We hypothesize that this effect is the central cause

for the decreased accuracy observed for our proposed algorithms compared to standard Seldonian

algorithms. For example, in our experiments on enforcing safety guarantees based on predictive

equality, we found that the model that achieved best-case accuracy under safety constraints during

training resulted in g(θ) ≈ −0.0126. Since standard Seldonian algorithms were able to return

89

solutions that closely matched this best-case accuracy, it follows that the high-confidence upper

bounds on g(θ) used by those algorithms typically overestimated the true value of g(θ) by less

than 0.0126. However, the model that achieved best-case accuracy under safety constraints that

involve demographic shift resulted in g(θ) ≈ −0.0021. Thus, for a robust Seldonian algorithm

to return this model, the high-confidence upper bound on g(θ) would need to be no more than

0.0021 larger than the true value, which is a significantly stricter requirement than was encountered

when enforcing constraints that must only hold during training. Therefore, in that experiment, we

hypothesize that the models that achieve best-case accuracy are much closer to the boundary of the

feasible set of safe models, and that consequently, our proposed algorithms were not able to ensure

that they were safe with the required confidence. Consequently, we hypothesize that the inability

of our proposed algorithms to return models that achieve best-case accuracy is due to uncertainty

that arises when using finite data for training, and that the accuracy of models produced by these

algorithms would improve given more training data.

Finally, we evaluate our hypothesis that our proposed algorithms would be less data-efficient

than baseline algorithms, in the sense that they require significant amounts of training data to return

a solution other than NO SOLUTION FOUND. Our experiments support this hypothesis. Specifi-

cally, the leftmost plot in each figure displays the frequency with which each algorithm returns a

solution besides NO SOLUTION FOUND, for varying amounts of training data. Prior Seldonian al-

gorithms were consistently more data-efficient than the algorithms proposed in this chapter, which

can be explained by the observation that the use of importance sampling by our algorithms to ac-

count for demographic shift often increases the variance and range of the random variables used to

define safety compared to standard Seldonian algorithms. Notably, the algorithms proposed in this

chapter that were based on Hoeffding’s inequality were unable to return solutions. However, in

each experiment, the version of our proposed Seldonian algorithms that were based on inversion of

the Student’s t-test was eventually able to consistently produce solutions, demonstrating that they

are viable tools for ensuring safety in problem settings where the demographic shift might occur.

90

3.6 Limitations and Future Work

While the algorithms proposed in this chapter are effective at providing safety guarantees that

hold under demographic shift, there are several limitations of these methods, as well as directions

for improving on these results.

First, the algorithms proposed in this chapter account for the fact that the user may not know

the deployed distribution of the demographic variable, but they assume that certain quantities that

depend on the training distribution are known. In many cases, these quantities may be easy to

estimate accurately using training data, but the generality of our proposed algorithms could be

improved by extending them to also account for uncertainty in the demographic distribution during

training. Intuitively, this extension might assume that the demographic distribution during training

is in some set, P , and assume that the demographic distribution after deployment is in another set,

Q. Then, the value of the high-confidence upper and lower bounds on g(θ) could be optimized over

all possible pairs of distributions, (p,q), where p ∈ P and q ∈ Q, where P and Q are provided

by the user.

Second, it is possible that the algorithms proposed in this chapter can be improved by mod-

ifying the strategy used to select candidate solutions. Since the strategy used to select candidate

models does not impact the validity of our safety guarantees, we did not emphasize the design of

effective candidate selection procedures for demographic shift. However, as demonstrated by our

experimental results, the algorithms proposed in this chapter were unable to return solutions that

achieved comparable accuracy to those returned by standard Seldonian approaches. It is possible

that the candidate selection process can be further tuned to produce algorithms that produce high-

confidence safety guarantees that hold under demographic shift, but are more data efficient and are

able to better identify solutions that achieve high accuracy.

91

CHAPTER 4

CONTRIBUTION: SELDONIAN ALGORITHMS FOR GENERAL
DISTRIBUTION SHIFT

As described in Chapter 3, existing safety-aware training algorithms, including previous Sel-

donian algorithms, make the limiting assumption that the data used for training is representative

of the data that will be encountered once the trained model is deployed. The central problem with

this assumption is that if it is not satisfied, then any safety guarantees provided by these algorithms

may fail to hold once the model is deployed, since the distribution of any random variables that

are used to define safety may have changed after deployment. Furthermore, there are many real-

world problem settings for which this assumption does not hold. Therefore, we propose that for

the safety guarantees provided by safe machine learning algorithms to be useful in practice, they

must be extended to be robust to the various differences that might exist between the training and

testing environments.

The solutions we propose in Chapter 3 address this problem when the differences between the

training and deployment environments can be explained by a change in the probability distribution

of a specific variable, which we refer to as a demographic. Under demographic shift, we show

that safety guarantees can still be established as long as the user is able to provide some informa-

tion about how the demographic marginal distribution changes. While this strategy is appropriate

in many settings, it may be the case that the user is unable to identify a single demographic that

causes the differences between the training and deployment distributions. Specifically, in a setting

where the deployment data distribution may differ from the training distribution in nearly arbitrary

ways, the solutions proposed in Chapter 3 become impractical. For example, in image recognition

92

tasks, the distribution of input data might shift in ways that are difficult to describe due to differ-

ences in the hardware of cameras used in the training and deployment settings [23]. In this case,

it is unreasonable to assume that the user will be able to identify a demographic attribute and pro-

vide information needed to describe the observed differences between the training and deployment

environments.

To address this problem, in this chapter we propose strategies for establishing robust safety

guarantees that are based on assumptions on how much the training and deployment distributions

will differ when measured using an appropriate divergence measure. Our algorithms account for

the possibility that the deployment distribution might change over time, and output models with

safety guarantees that continue to hold as long as the user’s assumptions are satisfied. In particular,

the solutions we propose are based on the goal-oriented divergence [18], which relates the amount

that an expected value can change due to distribution shift, to the Kullback-Leibler divergence

(KLD) between the training and deployment distributions. However, applying the goal oriented

divergence directly is challenging because it assumes that the training distribution is known exactly,

and because it depends on quantities that can be challenging to compute.

To compensate for these drawbacks, we first show that the uncertainty in the training distribu-

tion can be accounted for by performing a worst-case analysis of the bounds when the true training

distribution is within some set with high probability. By defining this set based on quantities that

are already computed in standard Seldonian algorithms, we show that our worst-case bounds can

be used to derive Seldonian algorithms that are robust to general distribution shift. However, while

the bounds we propose are theoretically useful, they are challenging to compute. To remedy this,

we further show that if the observables that appear in each expected value are discrete, then the

computational cost of using these algorithms can be reduced significantly. While this assumption

appears limiting, it describes many important cases, such as when the variable defining safety of a

model is a binary indicator for some unsafe event, such as an unfair or unsafe decision occurring.

93

In the remainder of this chapter, we first describe the bounds introduced by the goal-oriented

divergence, and explain their benefits and limitations. Next, we present our strategies for extending

these results to produce robust Seldonian algorithms that can be computed efficiently. After this,

we briefly discuss how assumptions on the KLD between the training and deployment distributions

can be related to other measures of difference between the two environments, which may be more

appropriate in some problem settings. Finally, we present experiments demonstrating that the

algorithms we propose are effective for enforcing safety guarantees for general definitions under

distribution shift, while prior methods are not.

4.1 Background

In this chapter, we adopt the notation that Z ∈ Z is a random variable representing a single

instance of data, such as a labeled feature vector in classification, or a tuple containing a context,

an action, and a reward for contextual bandit problems. Defining training data D to represent a

set of n i.i.d. samples of Z, the goal of our work is to construct algorithms that provide the same

guarantees as existing Seldonian methods, even when the distribution of D has changed between

training and deployment. Our algorithms are based on the Seldonian machine learning framework,

which states that an algorithm, a, is safe with respect to a user-specified safety definition, g, and

failure tolerance, δ, if it satisfies,

Pr
(
g
(
a(D)

)
≤ 0
)
≥ 1−δ. (4.1)

Whereas existing Seldonian algorithms enforce behavioral constraints based on Z, here we con-

sider the case in which these constraints are instead based on Z ′, which represents the data in-

stances observed after the model is deployed. For example, consider the safety definition,

g(θ) := E[h(Z, θ)]− τ,

94

where h is some real-valued observable that depends on the the model, θ, and τ is some toler-

ance. If P (z) := Pr(Z=z) is the probability distribution of data instances during training and

Q(z) := Pr(Z ′=z) is the corresponding distribution after the model is deployed, then prior Sel-

donian algorithms ignore the possibility of distribution shift, and would proceed by computing a

high-confidence upper bound on E[h(Z, θ)] using available data. However, because observations

are distributed according to Q after deployment, the safety of θ is more appropriately assessed by

measuring,

g′(θ) := E[h(Z ′, θ)]− τ.

As a result, to design Seldonian algorithms that provide high-confidence safety guarantees un-

der distribution shift, we are therefore interested in bounds on how E[h(Z, θ)] might differ from

E[h(Z, θ)], given some assumptions on how much Q differs from P .

To this end, we describe the goal-oriented divergence [18], which provides bounds on the

quantity E[h(Z ′, θ)] − E[h(Z, θ)] that depend on the KLD between Q and P , which is defined as

the following quantity [43]:

KLD (Q||P) :=

∫
Z

log

(
dQ

dP

)
dQ.

However, before introducing the result that we extend in this chapter, we first introduce some

notation. First, for notational convenience, and because θ will be fixed when evaluating these

bounds, we do not explicitly show the dependence of h on θ, and write h(Z) instead of h(Z, θ)

in the results below. Next, we introduce a quantity that appears in the goal-oriented divergence

bounds, which is the cumulant generating function (CGF) of a random variable. Specifically, the

cumulant generating function of a random variable with distribution P with respect to a functional

h is denoted ΛP,h, and is a real-valued function defined by,

ΛP,h(c) := logE
[
ech(Z)

]
,

95

where c ∈ R is any real value. In particular, the goal oriented divergence depends on the centered

CGF of P given h, denoted Λ̃P,h, which is simply the CGF of h(Z)−E[h(Z)]. While intuition

for the form of these functions can be difficult to express, cumulant generating functions have

been extensively studied by statisticians and used to derive several important results. Finally, the

notation Q << P indicates that Q is absolutely continuous with respect to P which, for discrete

random variables, is satisfied if P (z)=0 implies Q(z)=0 for all z ∈ Z .

Given this notation, we now derive the goal-oriented divergence [18], which provides bounds

on E[h(Z ′, θ)] − E[h(Z, θ)] that depend on the KLD between Q and P , which will prove useful

for deriving machine learning algorithms that provide high-confidence safety guarantees under

distribution shift. Note that while the upper bound in this result was proven by Chowdhary and

Dupuis [10] and the lower bound was proven by Li and Xiu [41], we include a proof showing how

these bounds are derived in Theorem 4.1.1 for completeness.

Theorem 4.1.1. Let Z and Z ′ be two random variables defined on the set Z , and let P and Q

denote the probability distribution functions of Z and Z ′, respectively. Let h denote a real-valued

observable defined on Z . If Z and Z ′ have well-defined CGFs and if Q is absolutely continuous

with respect to P , then

− inf
c>0

{
KLD (Q||P) + Λ̃P,h(−c)

c

}
≤ E[h(Z ′)]−E[h(Z)] ≤ inf

c>0

{
KLD (Q||P) + Λ̃P,h(c)

c

}
.

Proof. To begin, we start with the Donsker–Varadhan variational formula, which states that for all

c ∈ R and functional f : Z → R, the following holds:

ΛP,h(c) = sup
Q<<P

{
cE[f(Z ′)]− KLD (Q||P)

}
.

Applying this result using the functional, f(z) = h(z)−E[h(Z)], yields the following:

Λ̃P,h(c) = sup
Q<<P

{
c
(
E[h(Z ′)]− E[h(Z)]

)
− KLD (Q||P)

}
, (4.2)

96

where Λ̃P,h is the centered CGF of P given h.

This implies that for all Z and Z ′ with distributions P and Q that satisfy Q << P ,

Λ̃P,h(c) ≥ c
(
E[h(Z ′)]− E[h(Z)]

)
− KLD (Q||P) ,

for all c ∈ R. Defining c+ ∈ [0,∞) to be any non-negative real value, it follows that

Λ̃P,h(c+) ≥ c+

(
E[h(Z ′)]− E[h(Z)]

)
− KLD (Q||P) . (4.3)

Rearranging terms, we have,

E[h(Z ′)]−E[h(Z)] ≤ Λ̃P,h(c+) + KLD (Q||P)

c+

= inf
c+>0

{
Λ̃P,h(c+) + KLD (Q||P)

c+

}
.

Thus, the first half of the theorem is proven.

To prove the lower bound, we note that (4.3) must hold for Λ̃P,h(−c+) as well. Thus for all

Q << P , we have:

Λ̃P,h(−c+) ≥ −c+

(
E[h(Z ′)]− E[h(Z)]

)
− KLD (Q||P) .

Rearranging terms once more produces,

E[h(Z ′)]−E[h(Z)] ≥ −Λ̃P,h(−c+) + KLD (Q||P)

c+

= − inf
c+>0

{
Λ̃P,h(−c+) + KLD (Q||P)

c+

}
,

completing the proof.

97

As a consequence of Theorem 4.1.1, if the user of a safe machine learning algorithm is able

to assume that the KLD between the deployment and training environments is bounded by some

value, ε, and P and h are known during training, it is possible to compute bounds on E[h(Z ′)] that

can be used to provide high-confidence safety guarantees under distribution shift. For example, by

rearranging terms, an upper bound on E[h(Z ′)] given KLD (Q||P) ≤ ε is given by

E[h(Z ′)] ≤ E[h(Z)] + inf
c>0

{
ε+ Λ̃P,h(c)

c

}
. (4.4)

Unfortunately, the results of Theorem 4.1.1 cannot be directly applied to develop safe machine

learning algorithms because of two limitations.

First, this result can only be applied when the distribution over training observations is known

exactly, since it is required to compute the CGF. Unlike the methods proposed in Chapter 3, which

require that the user knows the marginal distribution over demographics during training, this as-

sumption implies that the user must know the entire distribution over observations, which is unre-

alistic in many applications.

Second, the centered CGF appearing in these bounds is generally intractable to compute. Con-

sider, for example, the expression for the upper bound on E[h(Z ′)] given KLD (Q||P) ≤ ε, which

is given by

inf
c>0

{
ε+ Λ̃P,h(c)

c

}
= inf

c>0

{
ε+ logE

[
ec(h(Z)−E[h(z)])

]
c

}
. (4.5)

Computing this upper bound requires evaluating two expected values defined with respect to the

distribution of the random variable, Z. Since there are no constraints on how Z is defined, these

expected values can be intractable to compute, especially when Z is high-dimensional or when

it contains a mixture of discrete and continuous features. For example, consider the task of per-

forming binary classification using gray scale images that are 100 × 100 pixels in dimension. If

each pixel takes values in [0, 1], then the training distribution P is defined over the set of set of

98

all observations, Z := [0, 1]10,000 × {0, 1}. Consequently, evaluating the expected values defining

Λ̃P,h(c) will often be computationally expensive, even if P is known.

4.2 Bounds on Mean Shift due to General Distribution Shift

Theorem 4.1.1 provides bounds needed to produce safe machine learning methods that are

robust to general distribution shift. However, whether or not these bounds can be successfully

applied depends on the existence of strategies for estimating them using limited data, as well as

whether or not KLD is a natural way to define distribution shift for a given application. Importantly,

as described in the previous section, the centered CGF, in its most general form, is either often

intractable to compute or requires unrealistic knowledge about the distribution of observations

during training. Furthermore, ignoring these computational issues, computing the upper bound

in this form requires the user to have complete knowledge of Pr(Z=z) for all z ∈ Z , which is

often an unreasonable assumption. Therefore, while Theorem 4.1.1 provides a theoretical result

that can be used to ensure that safety guarantees are robust to general distribution shift, this initial

formulation does not easily lead to practical algorithms.

To overcome these issues, we present two modifications to these results, which allow them to

be used to design practical algorithms that provide safety guarantees under distribution shift.

4.2.1 Simplification by Assuming Discrete Observables

Our first proposed modification consists of assuming that functional, h, takes values in a dis-

crete set. Concretely, we assume that h(Z) ∈ V for some finite set of values, V . For example, this

occurs when h is a binary-valued indicator function that detects that some undesirable event has

occurred.

To formalize this setting, let v be the vector of values that h can take, and let p := [p1, ...,pk]

represent the corresponding probability mass function of h(Z) during training, so that pi :=

Pr(h(Z)=vi). In this setting, the computation of the upper and lower bounds can be simpli-

99

fied significantly by noting that many distinct Z produce h(Z) with the same value. Consequently,

when computing Λ̂P,h(c) within each bound, the expected values involved can be represented by a

simpler form than an integration over Z . This result is significant because it implies that bounds

that account for variation of the potentially complicated random variableZ, can be computed based

on observations of h(Z), which are much simpler.

For example, consider a self-driving car navigating a route. In this case, Z might represent

the collection of all data available from the car’s sensors—including image data, current speed,

and many other features—while h(Z) might be a simple binary indicator for whether or not the

car is currently near the edge of the road. While the full distribution over Z might be complex

and high-dimensional, the distribution of h(Z) is much simpler. While Theorem 4.1.1 provide

bounds on how much the expected value of h(Z) can change if the distribution of Z changes,

the following lemma shows that if h(Z) is discrete, then these bounds can be computed without

explicitly integrating over the distribution of Z.

Lemma 4.2.1. Let Z be a random variable taking values in some set Z , and let h : Z → V be a

functional that takes values in some finite set of real values, V . Let P be the probability distribution

of Z, and let p be a vector representing the corresponding probability mass function of h(Z):

pi := Pr
(
h(Z) = vi

)
,

where v is a vector of the values in V . It follows that

Λ̃P,h(c) = logpᵀ exp
(
c(v − pᵀv)

)
.

Proof. Let Zv denote the set of z ∈ Z for which h(z) = v. First, we note that for any function

ξ : V → R, we have that E[ξ(h(Z))] =
∑

i piξ(vi):

100

E[ξ(h(Z))] =

∫
z∈Z

ξ(h(z))dP

=
∑
i

∫
z∈Zvi

Pr
(
h(Z)=vi

)
ξ(vi)

=
∑
i

pi ξ(vi).

Expanding the definition of Λ̂P,h, we have:

Λ̂P,h(c) = E [exp (c (h(Z)− E[h(Z)]))] .

By applying the above substitution to the outermost expected value and defining ξ so that ξ(h(Z)) =

exp (c (h(Z)− E[h(Z)])), we have:

Λ̂P,h(c) =
∑
i

pi exp (c (vi − E[h(Z)])] .

Applying the previous substitution once more with ξ(h(Z)) = f(Z), we have,

Λ̂P,h(c) =
∑
i

pi exp

(
c

(
vi −

∑
i

pivi

))
.

Noting that for any pair of vectors p and x,
∑

i pixi = pᵀx, this substitution completes the proof.

Lemma 4.2.1 shows that, if p is known and KLD (Q||P) ≤ ε, then the centered CGF of P

given h, and thus the bounds on E[h(Z ′)] − E[h(Z)], can be computed exactly without explicitly

integrating over the distribution of Z. Thus, if g(θ) := E[h(Z)] and the distribution of h(Z)

is known, then an upper bound on the value of g(θ) after distribution shift is straightforward to

compute. However, in the context of designing Seldonian machine learning algorithms, knowledge

of the values that h(Z) can take, and its distribution during training, amounts to the assumption that

101

g(θ) = E[h(Z)]− τ can be computed exactly. Therefore, while the modification proposed in this

section overcomes many of the computational challenges associated with computing the bounds

in Theorem 4.1.1, it remains difficult to apply them to provide algorithms with high-confidence

safety guarantees under distribution shift.

4.2.2 Extending Theorem 4.1.1 for Uncertain Training Distributions

As stated in the previous sections, the bounds in Theorem 4.1.1 assume that the distribution of

Z is known. While the modification presented in Section 4.2.1 reduces the cost of computing these

bounds and loosens this assumption by instead requiring that the distribution of h(Z) is known, it

is still challenging to use these bounds to construct safe machine learning algorithms.

To make our previous results more practical, we therefore consider cases in which the distri-

bution of h(Z) can be shown to be in some confidence region with high probability. In particular,

consider a Seldonian algorithm designed according to Algorithm 1 for definitions of the form,

g(θ) := E[h(Z, θ)] − τ . During the safety test, such algorithms proceed by computing a high-

confidence upper bound on g(θ). Consequently, while E[h(Z)] is not known exactly, standard

Seldonian algorithms construct an interval, (−∞, U(D) + τ), that contains E[h(Z)] with high

probability. In this section, we leverage this information to define a set of distributions over V

that contains the true distribution of h(Z) with high probability. Then, by maximizing the up-

per bounds described in the previous section over all p in this set, we obtain a high-confidence

worst-case upper bound on E[h(Z ′)].

To define such a set, we first let U(D) denote a high-confidence upper bound on E[h(Z)]

that is computed by a standard Seldonian algorithm during the safety test, using the procedure

HighConfidenceUpperBound shown in Algorithm 1. By assuming that h takes values in

a discrete set, it follows that E[h(Z)] = pᵀv. Therefore, we define P(D) to a subset of the

k-dimensional probability simplex containing distributions that produce expected values that are

smaller than U(D), as follows,

102

P(D) :=
{
p s.t. pᵀv ≤ U(D), ∀i,pi ≥ 0, and

∑
i

pi = 1
}
. (4.6)

If p∗ denotes the true distribution of h(Z) during training, then by construction, p∗ 6∈ P(D)

implies E[h(Z)] > U(D), meaning the upper bound has failed. However, since the upper bound

is computed to hold with probability 1−δ, it follows that,

Pr(p ∈ P) ≥ 1−δ. (4.7)

Given P(D), we present a high-confidence upper bound on E[h(Z ′)] by maximizing the bound

provided in Section 4.2.1 over all p̂ ∈ P(D). Concretely, we have the following theorem.

Theorem 4.2.2. Let Z and Z ′ be random variables taking values in some set Z with probability

distributions P andQ, respectively, and let P andQ satisfyQ << P . Let h be some functional that

takes values in a finite set of k real numbers, V , and let p be a vector representing the probability

mass function of h(Z)—that is, pi := Pr(h(Z)=vi), where v is a vector of the values in V . Finally,

let D represent a set of i.i.d. observations used to evaluate a (1−δ)-confidence upper bound on

E[h(Z)],

Pr
(
E[h(Z)] ≤ U(D)

)
≥ 1−δ,

for some δ ∈ [0, 1]. It follows that if KLD (Q||P) ≤ ε, then with probability at least 1−δ, the

following inequalities hold jointly:

E
[
h(Z ′)

]
≤ max

p̂∈P(D)

{
p̂ᵀv + inf

c>0

{
ε+ log p̂ᵀ exp

(
c(v − p̂ᵀv)

)
c

}}
, and

E
[
h(Z ′)

]
≥ min

p̂∈P̂(D)

{
p̂ᵀv − inf

c>0

{
ε+ log p̂ᵀ exp

(
−c(v − p̂ᵀv)

)
c

}}
,

where

P(D) :=
{
p s.t. pᵀv ≤ U(D), ∀i,pi ≥ 0, and

∑
i

pi = 1
}
.

103

Proof. Let p∗ represent the true, unknown distribution of h(Z) during training. If p∗ ∈ P(D),

then it follows that,

p∗ᵀv + infc>0

{
ε+logp∗ᵀ exp

(
c(v−p∗ᵀv)

)
c

}
≤ max

p̂∈P(D)

{
p̂ᵀv + infc>0

{
ε+log p̂ᵀ exp

(
c(v−p̂ᵀv)

)
c

}}
.

Applying Theorem 4.1.1, Theorem 4.2.1, and the substitution, E[h(Z)] = p∗ᵀv, we also have that

E[h(Z ′)] ≤ p∗ᵀv + infc>0

{
ε+logp∗ᵀ exp

(
c(v−p∗ᵀv)

)
c

}
,

since KLD (Q||P) ≤ ε. Combining these, it follows that if p∗ ∈ P(Sn), then,

E
[
h(Z ′)

]
≤ max

p̂∈P(D)

{
p̂ᵀv + inf

c>0

{
ε+ log p̂ᵀ exp

(
c(v − p̂ᵀv)

)
c

}}
.

A similar derivation shows that if p∗ ∈ P(Sn), then,

E
[
h(Z ′)

]
≥ min

p̂∈P̂(D)

{
p̂ᵀv − inf

c>0

{
ε+ log p̂ᵀ exp

(
−c(v − p̂ᵀv)

)
c

}}
.

Because Pr
(
p ∈ P(D)

)
≥ 1−δ, it follows that the probability that E[h(Z ′)] is between these two

values is at least 1−δ, completing the proof.

4.2.3 Seldonian Algorithms for Distribution Shift

Given Theorem 4.2.2, we propose an algorithm that efficiently computes those bounds given a

finite number of i.i.d. samples of h(Z), which hold provided the training and deployment distribu-

tions differ by at most ε according to the KL divergence. While optimization of p is complicated

by the fact that the feasible set of the optimization is a subset of a simplex, in Appendix A we

104

Algorithm 8 HighConfidenceUpperBoundGDS(θ, g, D, δ, ε, v, c0, p0)
1: u← HighConfidenceUpperBound(θ, g,D, δ)
2: P ← {p s.t. pᵀv ≤ u, ∀i,pi ≥ 0, and

∑
i pi = 1}

3: p← p0

4: c← c0

5: while p and c have not converged do
6: p← MaximizeOverP (c, ε,v,p,P)
7: c← MinimizeOverC (c, ε,v,p)
8: end while
9: return pᵀv + ε+log p̂ᵀ exp(−c(v−p̂ᵀv))

c

prove several properties that allow this optimization to be computed accurately, and efficiently.

Pseudocode for computing the robust upper bound on g(θ) is provided in Algorithm 8. In this

pseudocode, the optimization steps involved with computing the upper bound is abstracted into

MinimizeOverC and MaximizeOverP, which we describe in detail in the following subsec-

tions. Pseudocode for computing the robust lower bound on g(θ) is analogous to Algorithm 8 and

is not included here.

Note that in Algorithm 8, we assume that g(θ) = E[h(Z)]. To consider conditional expected

values, the user may define their assumptions on the KLD between the conditional distributions

overZ . Furthermore, to incorporate a tolerance, τ , the set P can be defined to contain distributions

that satisfy pᵀv ≤ U(D) − τ . Finally, to leverage the general interface proposed in Chapter 2,

one can compute the high-confidence upper bounds presented here, as well as corresponding lower

bounds, for each statistic that defines g(θ) in (2.2). The resulting intervals for each statistic can

then be used in place of the intervals described in Chapter 2.

4.2.3.1 Optimization of Over c > 0 Given Fixed p

Optimization of the bounds over c > 0 is simplified by the fact that cumulant generating func-

tions are, by definition, convex. Consequently, standard gradient-based optimization procedures

are efficient. In Lemma 4.2.3, we derive expressions for the derivatives of the upper and lower

105

bounds with respect to c > 0, for a fixed choice of p ∈ P . Then, we provide pseudocode for

optimizing the bounds, which are based on standard gradient descent.

Lemma 4.2.3. Let v be a vector of real values, and let p be a vector of probabilities satisfying

Pr(f(Z)=vi) = pi, where f(Z) is a discrete random variable. Let U and L be defined by,

Uε(p, c) = pᵀv +
ε+ Λ̃p,f (c)

c
, and Lε(p, c) = pᵀv − ε+ Λ̃p,f (−c)

c
.

The derivatives of U and L with respect to c > 0 are given by,

dUε(p, c)
dc

= −ε+ Λ̃p,f (c)

c2
+

v − pᵀv

c
and

dLε(p, c)
dc

=
ε+ Λ̃p,f (−c)

c2
− pᵀv − v

c
.

Proof. For notational convenience, let M̃p,f denote the centered moment-generating function of p

given f , which is simply the natural exponential of the centered CGF, Λ̃p,f (c) = log M̃p,f (c).

To derive dUε(p,c)
dc , we have,

dUε(p, c)
dc

= −ε+ Λ̃p,f (c)

c2
+

1

c

d
dc

Λ̃p,f (c)

= −ε+ Λ̃p,f (c)

c2
+

1

cM̃p,f (c)
pᵀ d

dc
exp(cv−cpᵀv)

= −ε+ Λ̃p,f (c)

c2
+

M̃p,f (c)

cM̃p,f (c)

d
dc

(cv−cpᵀv)

= −ε+ Λ̃p,f (c)

c2
+

1

c

d
dc

(cv−cpᵀv)

= −ε+ Λ̃p,f (c)

c2
+

v − pᵀv

c
.

A similar derivation shows that

dLε(p, c)
dc

=
ε+ Λ̃p,f (−c)

c2
− pᵀv − v

c
.

106

Algorithm 9 MinimizeOverC(c0,p, ε,v, α)
1: for t = 1, 2, ... do
2: gt ← pᵀv +

ε+Λ̃p,f (ct−1)

ct−1

3: ct ← ct−1 + αgt
4: if ct ≈ ct−1 then
5: return ct
6: end if
7: end for

4.2.3.2 Optimization of Over p ∈ P Given Fixed c

Unfortunately, optimizing the bounds over p ∈ P is more complicated than optimizing them

over c > 0 for several reasons. First, p is constrained to lie within a particular subset of a k-

dimensional probability simplex, P ⊆ ∆k. As a result, the raw gradients of the upper and lower

bounds must first be modified to ensure that they produce iterates that lie in P . Second, while

the upper and lower bounds are smooth functions of p, it can be shown that the upper bound is

not concave, and similarly the lower bound is not convex. Consequently, although gradient-based

approaches to optimizing these bounds are reasonable, it can be challenging to derive schemes for

computing step sizes that lead to efficient convergence.

Fortunately, we found that both of these challenges could be dealt with effectively. Below, we

describe these results at a high level, and provide more thorough details in Appendix A

First, we show that the gradients of each bound with respect to p can be modified to enforce

the constraint, p ∈ P . In particular, we describe a projection operator that can be used to modify

the gradient vectors so that they preserve the property that the sum of the entries in p must be equal

to one. In addition, we show that the projected gradients can then be further modified to ensure,

for sufficiently small step sizes, that they result in a sequence of iterates that is guaranteed to be in

P . Finally, we prove two properties of the upper and lower bound functions that justify the use of

gradient-based approaches, and show that the problem of determining the correct sequence of step

sizes for efficient convergence can be dealt with by always choosing the largest possible step size

that ensures the next iterate lies in P .

107

Algorithm 10 MaximizeOverP(c, ε,v,p,P)
1: for t = 1, ... do
2: g← exp(cv)

cpt
ᵀexp(cv)

3: ḡ← g −
(∑k

j=1 gj

)
1k

4: if pt lies on a boundary of P then
5: for each tangent hyperplane, i, of the boundary of P at pt do
6: ni ← the normal vector to hyperplane i
7: end for
8: ĝ← arg ming′∈Rk ‖ḡ − g′‖2 s.t. ∀i ∈ {1, ..., d}, g′Tni ≤ 0.
9: else

10: ĝ← ḡ
11: end if
12: α∗ ← max{α > 0 : pt + αĝ ∈ P}
13: if ĝ ≈ 0k then
14: return pt
15: else
16: pt+1 ← pt + αĝ
17: end if
18: end for

Next, while these modified gradients form the basis for optimizing the upper and lower bounds,

we show that the upper and lower bound functions are only quasiconcave and quasiconcave and p,

respectively, which implies that standard schemes for setting the per-iteration step size in gradient-

based algorithms will not be efficient. By further examining the expressions for the upper and lower

bounds, we show that the direction of the gradient vector is independent of the choice of p, and

show that this allows the step size to be chosen to be as large as possible subject to the constraint

that each iterate lies in P . By combining our procedure for modifying the gradient vectors to

ensure that all iterates remain in P and our strategy for selecting step sizes, we produce an efficient

algorithm for computing optimizing the upper and lower bounds over p ∈ P . Pseudocode for this

algorithm is presented in Algorithm 10, and additional details and proofs justifying the algorithm

are provided in Appendix A.

108

4.3 Robustness Bounds for Alternative Divergence Measures

One concern with the robustness bounds presented in Theorem 4.1.1 are that they depend on a

bound on the KLD betweenQ and P , which in many practical cases may be unknown or difficult to

quantify. In some cases, it may be more natural to use other distances (or divergences) to describe

the types of variations for which robustness is desired.

As a practical example, consider the task of deciding whether or not to approve a loan ap-

plication, with the goal of being robust to differences between the training distribution and the

distribution when the model is deployed. Compared to the statement, “the model will be safe on

all distributions that have at most ε KLD with respect to the training distribution”, it might be more

helpful to provide guarantees such as “the model will be safe as long as, compared to the training

data, real-world applicants are no more than twice as likely to default on their loan.” In this sec-

tion, we show that alternative definitions of variation can be converted into corresponding bounds

on KLD for use in Algorithm 8.

4.3.1 Robustness to Variation in the Relative Frequency of Any Event

Having provided algorithms that provide safety guarantees that are robust to general distribu-

tion shift, we finally address the concern that, for many practitioners that are not well-versed in

machine learning or statistics, it might be challenging to specify reasonable bounds on the KLD

between the training and testing distributions. If the user is unable to easily derive reasonable as-

sumptions on this term, then the algorithms presented above are of limited practical use. Therefore,

in this section we show that it is possible to relate the KLD to other divergence measures that are

potentially more intuitive for particular applications.

For example, suppose a user seeks to train a policy for guiding a robot that must interact in

a factory environment. In this environment, the robot might be tasked with completing several

different objectives, and the user might seek high-confidence guarantees that the policy will not

cause damage to itself or its environment. If some objectives carry a higher risk of damage than

109

others, these guarantees might be highly sensitive to changes in the frequency with which each

objective is requested in the future. In this setting, it might be difficult for the user to specify

a reasonable assumption on the KL divergence between the training environment and the future

environment. However, the user may be able to easily make statements such as, “in the future,

objective A will be requested no more than 20% as often as it was during training.”

Motivated by this example, we consider distances based on relative frequency of events oc-

curring during training versus deployment. In particular, let E : Z → {True,False} be any

Boolean-valued event. We consider a divergence that measures the maximum factor by which any

event might become more probable after deployment:

d(Q||P) := max
E

PrQ(E(Z))

PrP (E(Z))
.

Lemma 4.3.1 shows that if the user assumes that d(Q||P) ≤ ε′, then robustness bounds for this

type of variation can be readily obtained using theorem 4.1.1 with ε = log ε′.

Lemma 4.3.1. Let Z be a real-valued random variable, and let P and Q be two probability dis-

tributions defined on Z. Let d(Q||P) be defined as follows, where any E : Z → {True,False}

defines an event based on Z:

d(Q||P) := max
E

PrQ(E(Z))

PrP (E(Z))
.

Then, it follows that:

d(Q||P) ≤ λ =⇒ KLD (Q||P) ≤ log λ.

110

Proof. First, we note that because any E can be associated with a subset ZE ⊆ Z such that E(z) =

I(z ∈ ZE), it follows that d(Q||P) is equivalent to

d(Q||P) := max
ZE⊆Z

PrQ(Z ∈ ZE)
PrP (Z ∈ ZE)

. (4.8)

Next, because ZE can be any subset of Z , including singleton subsets (if Z is discrete) or in-

finitesimally small subsets (if Z is continuous), it follows that d(Q||P) ≤ λ holds if and only if

Q(z) ≤ λP (z) for all z ∈ Z .

Because log x is increasing in x and d(Q||P) ≤ λ implies that Q(z) ≤ ε′P (z) for all z, it

follows from the definition of KLD (Q||P) that:

KLD (Q||P) =

∫
z∈Z

Q(z) log
Q(z)

P (z)
dz

≤
∫
z∈Z

Q(z) log
λP (z)

P (z)
dz

=

∫
z∈Z

Q(z) log λdz

=

(∫
z∈Z

Q(z)dz
)

log λ

= log λ.

This result illustrates that the algorithms we propose in this chapter can often be extended to

use alternative divergence measures that might be more intuitive for particular applications. As a

consequence, our proposed algorithms can be extended to these settings without modification to

the algorithm itself.

111

4.4 Evaluation and Results

To illustrate the effectiveness of our proposed robust safety guarantees, we designed exper-

iments to evaluate the ability of our proposed algorithms to provide safety guarantees that are

robust to general distribution shift. In particular, we seek to test the following hypotheses.

4.4.1 Hypotheses

In our experiments, we seek to answer three questions regarding the behavior of our proposed

algorithms for overcoming general distribution shift compared to existing approaches.

Robustness of safety guarantees The primary hypothesis we test in our experiments is the claim

that the safety guarantees provided by the robust algorithms we propose above will continue

to hold under general distribution shift, even when the shift is selected antagonistically. In

contrast, we hypothesize that existing algorithms, such as standard Seldonian algorithms,

would be unsafe after deployment.

Model accuracy Next, we hypothesize that existing baseline algorithms will tend to achieve higher

accuracy on average than our robust methods. This is expected because our robust algorithms

are more constrained than alternative methods when selecting a model to return. However,

as in our experiments presented in Chapter 3, we also seek to determine if any observed

accuracy loss is due to additional constraints posed by the problem—namely the user’s re-

quirement that the algorithm behave safely even if general distribution shift occurs, or if the

performance loss is due to properties of the algorithms we propose.

Data efficiency Finally, we consider the data efficiency of the algorithms we test. Specifically,

we expect that our robust algorithms will be less data efficient than standard Seldonian algo-

rithms because, for any candidate model θ, the confidence intervals on each statistic defining

g are strictly larger for our robust algorithms compared to standard Seldonian algorithms due

to the fact that they additionally account for general distribution shift. As a result, we expect

112

our methods to require more data than baselines to begin returning solutions consistently,

and use these experiments to assess this difference empirically.

4.4.2 Experimental Design

Similar to our experiments for evaluating safety after demographic shift in Chapter 3, we con-

sider a classification problem in which a classifier must predict whether or not a student’s grade

point average (GPA) will be above a certain threshold, given features describing the students per-

formance on nine exams. In addition to the student’s exam grades and true GPA scores, the train-

ing algorithms are provided with the sex of each student, in order to assess whether the classifier’s

predictions show bias according to several standard definitions. In these experiments, we have

integrated the bounds proposed in this section with the interface proposed in Chapter 2, allowing

us to perform separate trials evaluating the fairness of the classifier according several commonly

used definitions.

The experimental design we use in this chapter is similar to the design described in Chapter 3,

with several modifications. As in our the demographic shift experiments, we simulate the impact

of general distribution shift by reasmpling observations from a single, fixed population. However,

since these experiments do not assume that the distribution shift is captured by a well-defined

demographic, we do not use information about the race of each student in these experiments.

Using this methodology, we are able to control the exact nature of the distribution shift, which is

generally unknown in real-world applications, and able to compute exact values for accuracy and

safety.

At a high level, each experiment is based on a distinct definition of fairness, and a fixed con-

straint on demographic shift. On each trial of a given experiment, we randomly sample a set

of observations uniformly from a fixed population, which is then used as input to each training

algorithm that we evaluate. Once each training algorithm has produced a trained model given

the training dataset, we then antagonistically compute a new distribution over the population for

113

Algorithm 11 GeneralDistributionShiftTrial(P)
1: Specify safety constraints {Sec. 2.5.1}
2: Specify distribution shift {Sec. 2.5.1}
3: Uniformly sample D0 from P
4: for each training algorithm, a do
5: θ∗a ← a(D0)
6: Find a distribution Q to maximize g′(θ∗a) subject to D.S. assumptions {Sec. 3.4.5}
7: Record values for accuracy and g′(θ∗a) under Q
8: end for

each model, which is carefully selected to maximize the prevalence of unfair behavior for that

model while not violating the initial constraint on distribution shift. Finally, we leverage the oracle

knowledge of the population and the distribution-shifted distribution to compute exact values for

accuracy and safety for each model. This process is then repeated multiple times using a new ran-

domly sampled training set, producing multiple independent samples describing the effectiveness

of each algorithms for that configuration.

To provide a thorough evaluation, we evaluate our proposed algorithms, standard Seldonian

algorithms, and safety-agnostic baselines. Pseudocode for a single trial of our experiments is

given in Algorithm 11. In the following sections, we describe our methodology in more detail, and

provide specific experimental details.

4.4.2.1 Problem Statement

In our experiments, we consider the binary classification task of predicting whether or not a

student’s GPA is above a certain threshold, while avoiding discriminatory behavior based on sex.

Furthermore, we allow the distribution of the data observations to shift after training, subject to an

initial constraint on the KLD. In contrast to our demographic shift experiments in Chapter 3, this

form of distribution shift can potentially amplify the effects of discriminatory behaviors for any

subgroup of the population.

Formally, we assume a training data observation consists of a tuple, (X, Y, S), where X is a

vector of predictive features, Y ∈ {0, 1} is a binary label representing whether or not the student’s

114

GPA was above 3.0, the demographic attribute, and S describes the sex of the student. We note

that S is not directly used for prediction, and is not assumed to be available once the model is

deployed.

The objective of each classification algorithm is to learn a model that achieves low classification

error, which is measured using the following loss function,

`(θ) = E [I[θ(X) 6= Y]] ,

where I[c] is 1 if c is true and 0 otherwise. We evaluate the fairness of each model based on

whether or not its predictions are discriminatory with respect to the sex of the student.

4.4.2.2 Specifying User Inputs

In this section, we describe the example user inputs we used in our experiments. The precise

choices made in this section do not impact the validity of our results, but were made to illustrate

inputs that might be provided to our algorithms in practical settings.

First, we quantify discriminatory behavior of models based on three definitions of fairness,

which were also used in the experiments to evaluate safety guarantees under demographic shift in

Chapter 3. Full details for these definitions are provided in Section 2.5.1, but the specific definitions

are shown in Figure 4.4.2.2 for completeness.

To specify the constraints on how much distribution shift will be applied after training, we use

the results of Section 4.3 and base our constraints on the condition that the relative probability of

any event before and after distribution shift should be bounded by come constant. In particular,

if P is the training data distribution—that is, a uniform distribution over the observations in the

population—then we constrain the deployment distribution Q, to satisfy,

P (Z=z) ≤ λQ(Z=z) ∀ z ∈ Z,

115

Demographic Parity [20, 6]:

gDP(θ) :=
∣∣∣ E[θ(X)|S=female]− E[θ(X)|S=male]

∣∣∣− 0.1

Disparate Impact [27, 9, 63]:

gDI(θ) := 0.8−min

{
E[θ(X)|S=female]

E[θ(X)|S=male]
,

E[θ(X)|S=male]

E[θ(X)|S=female]

}

Equal Opportunity [30, 9]:

gEOp(θ) :=
∣∣∣ E[θ(X)|Y=0, S=female]− E[θ(X)|Y=0, S=male]

∣∣∣− 0.1

Figure 4.1. Definitions of fairness used for our experiments on evaluating safety guarantees under
general distribution shift. Details motivating these definitions can be found in Section 3.4.4. These
definitions were selected to evaluate whether the algorithms proposed in this chapter were able to
provide safety guarantees under general distribution shift for a variety of practical definitions. In
our experiments, these definitions were specified as text input, and were parsed and bounded using
the interface proposed in Chapter 2.

116

which corresponds to the constraint that KLD (Q||P) ≤ log λ. In particular, we set λ = 1.2 for

each experiment, which corresponds to the requirement that

KLD (Q||P) ≤ 0.182.

4.4.2.3 Simulating and Evaluating the Impact of General Distribution Shift

To simulate the impact of general distribution shift, we require a procedure for generating Q

that satisfies KLD (Q||P) ≤ ε, where P is the uniform distribution over the observations in the

population, Dpop. Fortunately, this process is simplified by the fact that, in our experiments, we

apply the alternative divergence measure provided in Section 4.3, which states that Q must instead

satisfy Q(z) ≤ λP (z) for all observations z ∈ Z . Consequently, Q can be optimized to maxi-

mize g′(θ) for a model θ using standard constrained optimization methods, where the constraints

on Q are linear. This simplifies the optimization of Q compared to optimizing g′(θ) under the

combination of the linear constraints defining the simplex and the nonlinear constraint defined by

KLD (Q||P) ≤ ε.

Once Q has been computed, it it used to compute exact values for various statistics of interest

during evaluation, such as the expected classification accuracy or the value of g′(θ) for any model,

θ, in a manner similar to the procedure outlined in Section 3.4.5. For example, consider estimating

the post-shift classification accuracy of a model, θ, given by EQ[I[θ(X)=Y]]. If D̄pop denotes the

set of unique observations in Dpop, then we have

EQ[I[θ(X)=Y]] =
∑

(x,y,s)∈D̄pop

I[θ(x)=y]Q(X=x, Y=y, S=s).

Analogous expressions can be used to compute exact values for post-shift model accuracy, as well

as the value of g′(θ) for any model θ.

117

4.5 Results

In our experiments, we evaluated four training algorithms to assess our test our hypotheses.

As in our experiments in Chapter 3, these algorithms were configured to produce linear models

on the features, X , to ensure that no algorithm had an advantage over the others due to using

more complex, nonlinear models to generate predictions. First, we include results for the algo-

rithms proposed in this chapter. We evaluated two versions of this algorithm, which were based on

Hoeffding’s inequality and based on inversion of the Student’s t-test, respectively. These are de-

noted by SeldonianGDS and quasi-SeldonianGDS, and shown in green in our figures. Then, to assess

whether or not our algorithms would be more effective under distribution shift than prior Seldonian

algorithms, we include results for two comparable standard Seldonian algorithms. In particular,

we selected Seldonian algorithms based on Hoeffding’s inequality and based on inversion of the

Student’s t-test, which are referred to as Seldonian and quasi-Seldonian in our figures and shown in

blue [54]. Finally, to assess whether our algorithms were effective at finding models that performed

well while satisfying safety constraints that must hold after general distribution shift occurs, we

also compared the accuracy of models trained using our algorithms to the best-case accuracy that

could be found under these constraints. More details describing our procedure for estimating these

bast-case values are provided in the next section.

4.5.1 Evaluation and Reporting

In order to assess the hypotheses mentioned above, we recorded several values produced for

each trial of our experiments, using the same procedure outlined in Chapter 3. In particular, we

recorded whether or not each algorithm returned a solution or NO SOLUTION FOUND. Next, we

recorded whether or not that each trial produced a safety failure during training and after deploy-

ment. In our experiments, a safety failure during training occurs when an algorithm returns a

model θ where g(θ) > 0, and a safety failure during deployment occurs when g′(θ) > 0. Finally,

we record the classification accuracy of the trained models and the occurrence of safety failures

118

when evaluated on the demographic-shifted data distribution. However, to determine if the cause of

any accuracy loss when using our proposed algorithms was due to constraints posed by the user’s

requirements or shortcomings of our algorithms, we used a similar procedure as described in Chap-

ter 3 and estimated the best-case accuracy of linear models under various constraints. Specifically,

we computed best-case values of accuracy when no safety constraints were applied, when the mod-

els were constrained to be safe on the training distribution, and when the models were constrained

to be safe after general distribution shift occurs. While we originally computed these values using

a brute force random search over the set of all linear classifiers using oracle knowledge, we found

that this search procedure was unable to find models with accuracy that matched those returned

by standard Seldonian algorithms. This suggests that among the set of all linear models, there is a

small set of linear models that perform significantly better than most other models, and are highly

improbable to find using random search. As a consequence, we estimated the best-case accuracy

values by starting with a model returned by a standard Seldonian algorithm, and fine-tuning the

accuracy using covariance matrix adaptation evolution strategy (CMA-ES) [29]. These values

therefore may not represent the true best-case accuracy under each set of constraints, but serves as

a reasonable lower bound to assess our hypothesis.

We evaluate trials using various amounts of training data to assess the data efficiency of each

algorithm. For each configuration, we conduct several randomized trials. Using this data, we report

average values for acceptance rate, the rate with which each algorithm outputs a model, as well as

average values for accuracy and failure probability for both the pre- and post-shift distributions. In

addition, we show standard error for these quantities.

Concretely, for each experiment, we report five plots. First, we show the acceptance rate of

each algorithm as a function of the size of the training dataset. Then, we provide two rows of

plots, featuring the results on the training and deployment distributions, respectively. In each row,

we first show the average accuracy of the models produced by each algorithm for various training

dataset sizes. In our accuracy plots, the best-case accuracy we computed without safety constraints

119

103
Training Samples

0%

20%

40%

60%

80%

100%
So

lu
tio

n
Ra

te

103
Training Samples

40%

50%

60%

70%

Or
ig

in
al

 A
cc

ur
ac

y

103
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

103
Training Samples

40%

50%

60%

70%

De
pl

oy
ed

 A
cc

ur
ac

y

103
Training Samples

0%

25%

50%

75%

100%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e

SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian
BestUC BestSafe BestSafe(DS)

SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian
BestUC BestSafe BestSafe(DS)

Figure 4.2. Results for experiments enforcing safety constraints based on the principle of disparate
impact to preclude discrimination based on student sex when general distribution shift occurs after
deployment. The rightmost column of plots displays the frequency with which each algorithm
returns a solution that is unsafe before and after deployment, and demonstrates that the algorithms
proposed in this chapter (shown in green) provide safety guarantees that hold after demographic
shift, whereas prior Seldonian algorithms (blue) do not. However, empirically, these added safety
benefits come at the cost of accuracy (shown in the middle column of plots) and data efficiency
(shown in the leftmost plot). Nonetheless, these results shown that for safety-critical applications
for which ensuring safety after deployment is the primary requirement, our algorithms are effective.

is shown using a red, dashed horizontal line, while the best-case accuracy obtained under safety

constraints on the training distribution and safety constraints with demographic shift are shown

by blue and green horizontal dashed lines, respectively. Next, we show the failure rate for each

algorithm as the size of the training dataset increases. In all figures, we show standard error for

each statistic using a shaded region around the curve that delineates the average values.

4.5.2 Results

The results of our experiments using each definition of fairness are shown in Figures 4.2, 4.3,

and 4.4.

120

103
Training Samples

0%

20%

40%

60%

80%

100%

So
lu

tio
n

Ra
te

103
Training Samples

40%

50%

60%

70%

Or
ig

in
al

 A
cc

ur
ac

y

103
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

103
Training Samples

40%

50%

60%

70%

De
pl

oy
ed

 A
cc

ur
ac

y

103
Training Samples

0%

25%

50%

75%

100%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)

Figure 4.3. Results for experiments enforcing safety constraints based on the principle of de-
mographic parity to preclude discrimination based on student sex when general distribution shift
occurs after deployment. These results demonstrate a similar pattern as shown in Figure 4.2: the
algorithms proposed in this chapter (shown in green) provide safety guarantees that hold after
deployment, while prior Seldonian algorithms (blue) do not. These results demonstrate that our
proposed algorithms are effective solutions in safety-critical applications that are subject to general
distribution shift, and demonstrate that these benefits are consistent for a variety of practical safety
definitions.

121

103
Training Samples

0%

20%

40%

60%

80%

100%

So
lu

tio
n

Ra
te

103
Training Samples

40%

50%

60%

70%
Or

ig
in

al
 A

cc
ur

ac
y

103
Training Samples

0%

10%

20%

30%

Or
ig

in
al

 F
ai

lu
re

 R
at

e

103
Training Samples

40%

50%

60%

70%

De
pl

oy
ed

 A
cc

ur
ac

y

103
Training Samples

0%

10%

20%

30%

De
pl

oy
ed

 F
ai

lu
re

 R
at

e
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)
SeldonianGDS Quasi-SeldonianGDS Seldonian Quasi-Seldonian

BestUC BestSafe BestSafe(DS)

Figure 4.4. Results for experiments enforcing safety constraints based on equal opportunity to
preclude discrimination based on student sex when general distribution shift occurs after deploy-
ment. These results demonstrate a similar pattern as shown in Figure 4.2: the algorithms proposed
in this chapter (shown in green) provide safety guarantees that hold after deployment, while prior
Seldonian algorithms (blue) do not. These results demonstrate that our proposed algorithms are
effective solutions in safety-critical applications that are subject to general distribution shift, and
demonstrate that these benefits are consistent for a variety of practical safety definitions.

122

First, we consider our hypothesis that our robust Seldonian algorithms would provide safety

guarantees that hold with the required confidence even after the distribution of observations shifts,

and that existing baselines would not. Examining the rightmost column of plots in each figure, we

first note that as expected, both our robust methods and the standard Seldonian algorithms provided

safety guarantees that are valid under the training distribution. However, the models produced by

standard Seldonian algorithms exhibit intolerable unsafe behavior after general distribution shift

is encountered. In contrast, the robust algorithms we propose in this chapter mitigate this effect

and consistently produce models that are safe even after the distribution of observations changes.

This pattern is consistent across all of our experiments, providing evidence that the methods we

propose are effective at accounting overcoming the effects of distribution shift for a variety of

safety definitions.

Next, we consider our hypothesis regarding the classification accuracy of our proposed meth-

ods. Examining the middle column of plots, we find that standard Seldonian algorithms produce

the highest classification accuracy on average in our experiments, both before and after model

deployment. In addition, the classification accuracy of these methods increases as more data is

supplied, and flatten out as they approach the best-case accuracy of linear models under safety

constraints. This can be explained by noting that Seldonian algorithms can be viewed as being

based on constrained optimization, where the constraint set is defined by some true constraint set

defined by g(θ) ≤ 0 that is further shrunk due to uncertainty that arises when estimating g(θ)

using finite data. As a result, the optimization problems for smaller training dataset sizes are con-

siderably more constrained than those that have access to more training data, and are therefore less

capable of returning performant models.

On the other hand, we find that our robust Seldonian algorithms produce models with lower

classification accuracy on average than those produced by standard Seldonian algorithms. Fur-

thermore, our proposed algorithms consistently fail to produce models that achieve accuracy close

to the best-case accuracy of models that satisfy safety constraints that must hold under distribu-

123

tion shift. In particular, is is fascinating to note that, despite the intuition that the set of models

that satify safety constraints under distribution shift would be smaller than the set of models that

satisfy safety constraints on the training distribution alone, we find that in all but one of our experi-

ments, the difference in best-case accuracy of models under these constraints was extremely small.

However, while models exist that are safe under distribution shift and achieve high accuracy, our

algorithms were unable to return these models. We hypothesize that this shortcoming is due to the

fact that the best-case accuracy values are computed using oracle knowledge of the data distribu-

tion during training and after distribution shift, while our proposed algorithms are evaluated using

finite amounts of training data. Consequently, if high-accuracy models result in g(θ) close to zero,

it may be impossible for our algorithms to establish the required confidence that these models are

safe without extremely large amounts of training data. When applied to larger amounts of training

data, we hypothesize that the confidence intervals used by our robust algorithms would shrink to

be sufficiently small to return these models.

Lastly, we consider the data efficiency of the algorithms we evaluated, particularly with regard

to the frequency with which each algorithm is able to return a solution given various amounts of

training data. We find that standard Seldonian algorithms are more data efficient than our robust

methods. This is indicated by the observation that, in the leftmost plot of each figure, the standard

Seldonian algorithms begin consistently returning solutions for smaller input dataset sizes than the

robust algorithms.

Summarizing these results, we find that the robust Seldonian algorithms we proposed in this

chapter successfully provide guarantees that continue to hold under general distribution shift, al-

though they exhibit certain drawbacks, as expected. In order to ensure that the safety guarantees

provided are robust to distribution shift, these algorithms require more data to achieve the same

level of accuracy and solution rate that are observed for standard Seldonian algorithms. However,

these drawbacks are a natural consequence of the fact that the robust algorithms must solve more

heavily constrained optimization problems than baselines. In addition, we find that the increase in

124

the amount of data required by our methods is not prohibitive in these experiments, indicating that

such methods can be effective tools for ensuring that deployed models will continue to be safe as

the environment they are deployed into changes over time.

4.6 Limitations and Future Work

While the algorithms proposed in this chapter are effective at providing safety guarantees that

hold under general distribution shift, there are several ways that these algorithms can be improved.

First, the assumption that the user is able to specify an upper bound on the KLD between the

training distribution and the deployment distribution is limiting. First, the KLD itself may not be

an intuitive divergence measure for many users, especially those that are non-experts in machine

learning. Therefore, one direction of future research might investigate strategies for computing

high-confidence upper bounds on g(θ) that hold under distribution shift and are based on other di-

vergence measures. In some cases, this can be accomplished by showing a relation between a more

intuitive divergence measure and the KLD, as demonstrated in Section 4.3. However, in other cases

this relationship might introduce significant looseness in the resulting bounds on post-deployment

safety. For example, suppose the user would like to predict a binary label associated with a vector

of real-valued predictive features, X ∈ Rd. If the user knows that the shape of the probability dis-

tribution ofX will not change after deployment, but the mean of the distribution might shift, then a

more intuitive divergence measure between the training and deployment distributions might be the

earth mover’s distance (EMD) [40]. However, it is not straightforward to convert an upper bound

on EMD into an upper bound on KLD without introducing significant looseness in the bounds pro-

posed in this chapter. Therefore, it is desirable to devise bounds similar to those presented in this

chapter for divergences such as EMD, which might be more intuitive in many problem settings.

Next, it is possible that the high-confidence upper bounds presented in this chapter can be

computed more efficiently. In particular, when optimizing the upper and lower bounds on post-

125

deployment safety described in Section 4.2.3.2, we showed that gradient of the upper and lower

bounds with respect to the choice of training distribution, p, points in the same direction regard-

less of the choice of p. This implies that this optimization might be solvable using constrained

linear programming approaches, which may be more efficient than the gradient-based approach

we propose.

Finally, we note that it may be possible to improve the accuracy of models returned by our

proposed algorithms. As shown in our experimental results, our algorithms were unable to return

models that achieved accuracy close to the best-case accuracy that could be found using oracle

knowledge. While this is likely due to uncertainty that arises when evaluating our algorithms using

finite data, we hypothesize that there are ways to improve these results. First, while the strategy

used for candidate selection does not impact the validity of safety guarantees under distribution

shift and were therefore not emphasized in this chapter, it is possible that enhancements to this

component of our safe algorithms could improve the accuracy of the models produced. Second, it is

likely that using tighter confidence intervals than those based on Hoeffding’s inequality or inversion

of the Student’s t-test would improve result in tighter upper bounds on g(θ), and consequently

allow our algorithms to return models that achieve higher accuracy.

126

CHAPTER 5

CONCLUSION

In this dissertation, we addressed several challenges that have prevented existing safe machine

learning algorithms from being effective in many practical, but safety-critical, applications. In

particular, we proposed algorithms that simultaneously 1) provide high-confidence guarantees that

the models they produce will be safe, 2) do not require extensive data analysis or experience in

machine learning to use, 3) are capable of enforcing a wide range of practical safety definitions,

and 4) provide safety guarantees that hold even when the data used for training is not representa-

tive of what will be encountered once a model is deployed. Compared to recent work proposing

algorithms that are empirically safe in some settings, algorithms that provide safety guarantees

for select definitions of undesirable behavior, and even algorithms that are designed as practical

options for ensuring safety [54], the algorithms proposed in this dissertation present significant

advancements towards the goal of ensuring that models trained using machine learning are reliably

safe in these practical settings. Specifically, we identified several shortcomings of existing safe

machine learning algorithms that prevent them from being used in practical settings, and presented

algorithms that overcome these problems.

First, we presented algorithms designed according to the Seldonian machine learning frame-

work that are able to enforce complex, real-world definitions of safety. To do so, we proposed a

new mathematical formulation for how safety is defined by the user, as well as algorithms that en-

force these definitions using only text input from the user. This presents a significant advancement

over existing safe machine learning algorithms, which are often either designed to enforce particu-

lar definitions of safety, particular classes of definitions [1], or otherwise make strong assumptions

127

that limit their ability to enforce definitions that are encountered in real-world applications [57, 54].

Our algorithms are based on two steps. First, the user’s input text is parsed into a representation

that captures the functional structure of their definition, using a pair of grammars we introduce in

Chapter 2. Next, this representation is used to recursively propagate confidence intervals on each

uncertain term in the safety definition, eventually producing a high-confidence upper bound that

can be used to design Seldonian algorithms that are safe with high-probability. Based on the re-

sults of our experiments, this approach is effective in practice, and produces high-confidence upper

bounds that hold with their required probability for several real-world definitions of safety that are

unable to be estimated using existing methods.

Next, we considered the challenge presented when safety guarantees are required to hold when

the environment a model is trained in does not match the environment it is deployed into. De-

spite recent successes in designing algorithms that provide high-confidence safety guarantees, we

demonstrated that these guarantees fail to hold in this setting, both theoretically and empirically.

Due to the many ways that differences between the training and deployment environments can

manifest, we addressed two instances of this problem, which are distinguished by the assumptions

the user is able to make about these differences when the training algorithm is applied.

In the first, we showed that if these differences can be described by a change in the distribution

of a single variable that the user can describe, then strategies from importance sampling can be

used to produce safety guarantees that are robust to this change. In particular, if the user is able to

describe how the distribution of this variable might change after deployment, then we demonstrated

how observations available during training can be reweighted to produce high-confidence safety

guarantees that hold after deployment. These algorithms are particularly useful in social appli-

cations, where the probability of encountering certain demographics of individuals might change

over time. In such cases, our algorithms provide safety guarantees that account for this shift, while

existing safe machine learning algorithms may behave unsafely. These theoretical results were

128

verified empirically in our experiments, which demonstrated that our algorithms are effective in

this setting, while existing algorithms are not.

In the second instance, we considered the more general setting in which the user cannot identify

a single variable responsible for the differences between the training and deployment distributions,

and provided alternative strategies for achieving robust safety guarantees. Instead of assuming

that these differences exhibit structure—such as being caused by an underlying change in a single

variable—the approaches we propose in this general setting assume that the user is able to place

assumptions on the “size” of the difference between the training and testing environments. In

particular, if P denotes the distribution that generates observations during training, and Q denotes

the distribution that will generate observations after deployment, then these approaches are based

on assumptions on how much Q will differ from P when measured using the Kullback-Leibler

divergence. Using this assumption, we proposed Seldonian algorithms that account for the shift

between the training and deployment distributions, and provide high-confidence safety guarantees

that are robust to such changes. Then, we provided experimental results that validate the theoretical

guarantees of our algorithms. Specifically, we showed that previous safe algorithms are unable to

provide safety guarantees that hold after deployment, whereas our proposed algorithms are able to

provide such guarantees for several real-world safety definitions.

In summary, this dissertation proposed novel safe machine learning algorithms designed ac-

cording to the Seldonian machine learning framework, which provide high-confidence safety guar-

antees in practical settings. Whereas prior approaches often require extensive data analysis to use

effectively or place restrictive limitations on how safety is defined, we showed that our algorithms

can enforce a wide range of practical safety definitions based on simple text input from the user.

In addition, in the realistic setting in which a model is trained using data that is not representative

of what will be encountered once the model is deployed, the algorithms we presented are able

to provide safety guarantees that hold after deployment, while existing approaches fail to do so.

Consequently, the contributions presented in this dissertation represent a significant advancement

129

towards the goal of providing safe alternatives to existing machine learning approaches that can be

used for practical practical yet safety-critical applications.

130

APPENDIX

APPENDIX: OPTIMIZATION OF GENERAL DISTRIBUTION SHIFT
BOUNDS

A.0.1 Optimization of Bounds Over p ∈ P Given Fixed c

In this section, we provide results describing how the optimization of the bounds presented in

Theorem 4.2.2 over p can be computed efficiently. First, we show that the raw gradients can be

projected to produce gradient vectors that preserve the property that the sum of the entries in p

must sum to one. In addition, we show that the projected gradients can then be further modified to

ensure, for sufficiently small step sizes, they result in a sequence of iterates that is guaranteed to be

in P . Finally, we prove two properties of the upper and lower bound functions that justify the use

of gradient-based approaches, and show that the problem of determining the correct sequence of

step sizes for efficient convergence can be dealt with by always choosing the largest possible step

size that ensures the next iterate lies in P .

In the rest of this section, we first provide expressions for the gradients of the upper and lower

bounds as a function of p. Because these gradients are raw gradients that do not account for the

constraint that the sum of the elements in p must sum to one, we additionally provide expressions

for the projected gradients that preserve this constraint. In addition, we show that the projected

gradients can be further modified efficiently to ensure that they do not produce iterates that lie

outside of P . While these modified gradients form the basis for iteratively optimizing the upper

and lower bounds, we show that the upper and lower bound functions are only quasiconcave and

quasiconcave in p, respectively, which implies that standard schemes for setting the per-iteration

step size in gradient-based algorithms will not be efficient. By further examining the expressions

131

for the upper and lower bounds, we show that the direction of the gradient vector is independent of

the choice of p, and show that this allows the step size to be chosen to be as large as possible subject

to the constraint that each iterate lies in P . Finally, we present pseudocode for our optimization

procedure.

First, we provide expressions for the raw gradients gradients of the upper and lower bounds

with respect to p in Lemma A.0.1.

Lemma A.0.1. Let v be a vector of real values, and let p be a vector of probabilities satisfying

Pr(h(Z)=vi) = pi, where h(Z) is a discrete random variable. Let U and L be defined by,

Uε(p, c) = pᵀv +
ε+ Λ̃p,h(c)

c
, and Lε(p, c) = pᵀv − ε+ Λ̃p,h(−c)

c
.

The partial derivatives of U and L with respect to p are given by,

∂

∂p
Uε(p, c) =

exp (cv)

cpᵀexp (cv)
, and

∂

∂p
Lε(p, c) = − exp (−cv)

cpᵀexp (−cv)
.

Proof. For notational convenience, let M̃p,h denote the centered moment-generating function of p

given h, which is simply the natural exponential of the centered CGF, Λ̃p,h(c) = log M̃p,h(c).

To derive ∂Uε(p,c)
∂p

, we have,

132

∂Uε(p, c)

∂p
= v +

1

c

∂

∂p
Λ̃p,h(c)

= v +
1

c

∂

∂p
log M̃p,h(c)

= v +
1

cM̃p,h(c)

∂

∂p
{pᵀ exp (cv−cpᵀv)}

= v +
1

cM̃p,h(c)

{
exp (cv−cpᵀv) + pᵀ ∂

∂p
exp (cv−cpᵀv)

}
= v +

1

cM̃p,h(c)

{
exp (cv−cpᵀv) + pᵀ exp (cv−cpᵀv) (−cv)

}
= v +

1

cM̃p,h(c)

{
exp (cv−cpᵀv)− cM̃p,h(c)v

}
= v +

exp (cv−cpᵀv)

cM̃p,h(c)
− v

=
exp (cv−cpᵀv)

cpᵀexp (cv−cpᵀv)

=
exp (cv)

cpᵀexp (cv)
.

A similar derivation shows that

∂Lε(p, c)

∂p
= − exp (−cv)

cpᵀexp (−cv)
.

The gradients presented in Lemma A.0.1 are raw gradients, indicating that they do not neces-

sarily point along the hyperplane defined by the constraint that the sum of the entries in p must

equal one. Fortunately, it is straightforward to project these gradients onto the tangent space of

this hyperplane. In particular, the set of p that satisfy 1Tkp = 1 forms a hyperplane with a normal

vector given by n = 1√
k
1k. Consequently, the gradient vectors in Lemma A.0.1 can be projected to

lie along this hyperplane by pre-multiplying it by the projection matrix, Ik×k−nnT . Conveniently,

nnT is simply the k × k matrix with each entry equal to 1/k, so that this pre-multiplication corre-

133

sponds exactly to subtracting from each entry of the gradient vector the average value of all entries

in the gradient vector:

ḡi = gi −
1

k

k∑
j=1

gj.

Using this observation, it follows that the constraint that 1Tkp = 1 can be enforced during opti-

mization by initializing the process at some feasible p0 ∈ P , and following the projected gradients

given below in Lemma A.0.2.

Lemma A.0.2. Let p ∈ Rk be constrained to satisfy
∑k

j=1 pj = 1. Then the projected gradients

of the upper and lower bounds provided in Lemma A.0.1 with respect to p are given by:

ḡU(p) =
exp (cv)−

(
1
k

∑k
j=1 exp (cvj)

)
1k

cpᵀexp (cv)
, and

ḡL(p) = −
exp (−cv) +

(
1
k

∑k
j=1 exp (−cvj)

)
1k

cpᵀexp (−cv)
.

Using the projected gradients in Lemma A.0.2 ensures that the sequence of iterates produced

during optimization have components that sum to one, but does not ensure that they remain within

the convex subset of the k-dimensional probability simplex defined by P . In particular, if any

iterate pt lies within the interior of P , then the projected gradients in Lemma A.0.2 are acceptable,

since for a sufficiently small step size α, the next iterate, pt+1 = pt + αḡ(pt), can be made to

also satisfy pt+t ∈ P . However, if pt lies on the boundary of P , then it is possible that pt+1 /∈ P

for any choice positive step size. Furthermore, it is important to consider this possibility since, as

shown in the following lemma, the p that optimizes the upper or lower bound functions lies on the

boundary of P in all but trivial cases.

Lemma A.0.3. Let v be a vector of real values, and let p be a vector of probabilities satisfying

Pr(h(Z)=vi) = pi, where h(Z) is a discrete random variable. Let U and L be defined by,

Uε(p, c) = pᵀv +
ε+ Λ̃p,h(c)

c
, and Lε(p, c) = pᵀv − ε+ Λ̃p,h(−c)

c
.

134

Finally, let P denote some convex subset of the k-dimensional probability simplex, denoted ∆k.

If v has more than one unique value, then if either p∗ ∈ arg maxp∈P Uε(p, c) or p∗ ∈

arg minp∈P Lε(p, c), then it follows that p∗ lies on the boundary of P .

Proof. We prove this result by showing that the first-order KKT conditions for optimality cannot

be satisfied within the interior of P if v contains two or more unique values.

To show this for Uε(p, c), we first write the expression for the projected gradient of Uε with

respect to p as given in Lemma A.0.2:

ḡU(p) =
exp (cv)−

(
1
k

∑k
j=1 exp (cvj)

)
1k

cpᵀexp (cv)
.

The first-order KKT conditions for optimality imply that if p∗ lies on the interior of P and max-

imizes Uε, then each entry of ḡ(p∗) must be equal to zero. Setting ḡ(p∗) = 0k and rearranging

terms, we have,

exp (cv)−
(

1
k

∑k
j=1 exp (cvj)

)
1k

cpᵀexp (cv)
= 0k

=⇒ exp (cv)−

(
1

k

k∑
j=1

exp (cvj)

)
1k = 0k

=⇒ exp (cv) =

(
1

k

k∑
j=1

exp (cvj)

)
1k.

As a consequence, we see that p∗ cannot be a maximizer of Uε and lie within the interior of P

unless each entry in v is identical.

The proof for Lε follows analogously.

To allow optimization when an iterate pt lies on the boundary ofP , we propose to first compute

a set of normal vectors describing the tangent hyperplanes to P at pt. If the boundary of P is

135

locally flat at p, then there is only a single tangent hyperplane, n, and the gradient can be modified

by projecting away this dimension by pre-multiplying the gradient by Ik×k − nnT . However, for

many P , such as those proposed in Chapter 4, P forms a polytope within ∆k, and pt might lie

on edges where two or more supporting hyperplanes meet. Because simultaneously projecting out

the component of the gradient that lies orthogonal to a set of hyperplanes is difficult when the

hyperplanes themselves are not orthogonal, we instead propose to modify the gradient by solving

a linear-constrained quadratic program. In particular, if pt lies at the intersection of d locally flat

surfaces forming the boundary of P , then we first compute the set of normal vectors to this surface

at pt, and denote them by ni for i = 1, ..., d. Then, we compute the modified gradient, denoted

ĝ(pt) as the solution to the following linear constrained quadratic programming problem:

ĝ(pt) = arg ming∈Rk ‖ḡ(pt)− g‖2

s.t. ∀i ∈ {1, ..., d}, gTni ≤ 0.

This quadratic programming problem can be solved efficiently with standard solvers, and produces

a ĝ(pt) that can be viewed as the closest vector to ḡ(pt) that does not point out of the set P at pt.

Furthermore, since ḡ(pt) lies in the tangent space of P, it follows that ĝ(pt) will as well. Finally,

if ḡ(pt) points directly out of the set P , the ĝ(pt) returned will be uniformly zero, indicating that

the optimal p has been found.

Given expressions for the gradients of Uε and Lε with respect to p, and procedures for modi-

fying these gradients to ensure that the sequence of iterates produced during gradient-based opti-

mization remain in P , it is reasonable to construct such an optimization algorithm and assume that

it should find the optimal values for p efficiently. Unfortunately, there is one last step to complete,

which is necessary due to the property that the upper and lower bound functions are not concave

and convex, respectively. Therefore, standard techniques for selecting step sizes at each iteration,

which assume convexity or concavity, are not suitable. Fortunately, the upper and lower bound

functions can be shown to be quasiconcave and quasiconvex, respectively, which implies that any

136

local optima of these functions over p ∈ P are global optimizers. Furthermore, we show that the

direction of the gradient of these functions does not depend on the specific choice of P, which im-

plies that the problem of selecting the step size on each iteration can be avoided by always setting

the step size to be the largest value that ensures that the next iterate lies in P . Below, we prove

these two results, and provide pseudocode for our procedure for optimizing the upper and lower

bounds over P .

First, we prove that the upper and lower bound functions are quasiconcave and quasiconvex in

p.

Theorem A.0.4. Let P be a probability distribution defined on a discrete set of real values, X :=

{xi}ki=1, so that the centered MGF of P is defined by

MP (c) =
k∑
i=1

Pi exp
(
c(xi − EP [X])

)
. (A.1)

For a fixed choice of c > 0, the centered MGF above is quasi-concave in P .

Proof. Let P and Q be a pair of probability distributions defined on a discrete set of real values,

X := {xi}ki=1. Let MP (1) =
∑k

i=1 Pi exp
(
X − EP [X]

)
and MP (1) =

∑k
i=1 Pi exp

(
X −

EP [X]
)

be the centered MGFs of P and Q evaluated at c = 1. Now, define R such that Ri =

(1−α)Pi + αQi, for α ∈ [0, 1]. We have,

MR(1) = (1−α)
k∑
i=1

Pi exp
(
X − ER[X]

)
+α

k∑
i=1

Qi exp
(
X − ER[X]

)
.

By linearity of expectation, ER[X] = (1−α)EP [X] +αEQ[X]. Rearranging terms and defining

d := EP [X]− EQ[X], it follows that ER[X] can also be written as:

137

ER[X] = EP [X]− αd

ER[X] = EQ[X] + (1−α)d.

Substituting these into the previous expression for MR(1), we have:

MR(1) = (1−α)
k∑
i=1

Pi exp
(
X − EP [X] + αd

)
+α

k∑
i=1

Qi exp
(
X − EQ[X] + (α−1)d

)
= (1−α) exp

(
αd
)
MP (1)

+ α exp
(
(α−1)d

)
MQ(1).

≥
[
(1−α) exp

(
αd
)

+ α exp
(
(α−1)d

)]
M−(1),

where M−(1) := min {MP (1),MQ(1)}. Noting that exp(x) ≥ 1 + x for all x ∈ R, we have

MR(1) ≥
[
(1−α)

(
1 + αd

)
+ α

(
1 + (α−1)d

)]
M−(1)

=
[(

1+αd−α−α2d
)

+
(
α+α2d−αd

)]
M−(1)

= M−(1).

Thus, for c = 1 and R = (1−α)P + αQ, we have shown that MR(c) ≥ min {MP (c),MQ(c)}—

that is, MP (c) is quasi-concave in P for c = 1. To extend this result for c 6= 1, we note that for any

c > 0, we can define a new variable, X ′, to take values in the set X ′ = {cxi}ki=1. Consequently,

we have x′i = cxi and EP [X ′] = cEP [X]. If M ′
P (1) is the centered MGF using X ′ instead of X ,

we have MP (c) = M ′
P (1). Applying the above result, it follows that M ′

P (1) is quasi-concave in

P , and therefore MP (c) is quasi-concave in P for all c > 0.

A defining property of quasiconcave functions is that they have convex upper contour sets. As

a result, if p achieves a particular value of the upper bound, it implies that p lies within some

138

convex subset of P with equal or greater values. Since this applies for all p ∈ P , it follows that

the maximizer of Uε in P is either unique, or it lies within a convex subset of P that achieve

identically large values. A similar argument shows that, as a quasiconvex function, the minimizer

of Lε is either unique, or part of a convex subset of P that achieves the same minimum.

Finally, since the upper and lower bound functions are not concave and convex respectively,

standard approaches for selecting step sizes will not ensure efficient convergence to the global

optima. In the following corollary, we show that fortunately, the precise expressions for the upper

and lower bounds allow the step size at each iteration to be arbitrarily large, so that they can be

selected to be as large as possible provided they do not cause the next iterate to lie outside P .

Corollary A.0.4.1. Let v be a vector of real values, and let p be a vector of probabilities satisfying

Pr(h(Z)=vi) = pi, where h(Z) is a discrete random variable. Let U and L be defined by,

Uε(p, c) = pᵀv +
ε+ Λ̃p,h(c)

c
, and Lε(p, c) = pᵀv − ε+ Λ̃p,h(−c)

c
.

It follows that, at any point p ∈ ∆, the projected gradients of U and L can be written as,

ḡU(p) = βU(p)nU and ḡL(p) = βL(p)nL,

where βU(p) and βL(p) are non-negative scaling factors, and nU and nL are unit-norm vectors

that do not depend on p.

Proof. First, we examine the projected gradient of the upper bound with respect to p, provided in

Lemma A.0.2:

ḡU(p) =
exp (cv)−

(
1
k

∑k
j=1 exp (cvj)

)
1k

cpᵀexp (cv)
.

First, let dU := exp (cv)−
(

1
k

∑k
j=1 exp (cvj)

)
1k. Substituting dU and multiplying by ‖dU‖/‖dU‖,

we have,

ḡU(p) =

(
‖dU‖

cpᵀexp (cv)

)
d

‖dU‖
.

139

Importantly, dU is defined by the specific value of c > 0 and v, and does not depend on p. It

follows that gU(p) can be written as,

ḡU(p) = βU(p)nU ,

where the scaling factor βU(p) is given by,

βU(p) =
‖dU‖

cpᵀexp (cv)
,

and n = dU/‖dU‖ is a unit-norm vector that does not depend on p.

Finally, we show that the scaling factor is non-negative. First, since the numerator of the scaling

factor defines the length of a vector, it is non-negative by definition. Second, since the entries of

p are constrained to be non-negative and sum to one, c > 0, and the exponential function is

strictly positive, it follows that the denominator of the scaling factor is also positive. Consequently,

βU(p) ≥ 0.

The proof for the projected gradient of the lower bound is analogous. Lemma A.0.2 states that

the projected gradient of the lower bound with respect to p is given by,

ḡL = −
exp (−cv) +

(
1
k

∑k
j=1 exp (−cvj)

)
1k

cpᵀexp (−cv)
.

Defining dL := − exp (cv)−
(

1
k

∑k
j=1 exp (cvj)

)
1k, it follows that ḡL can be written as,

ḡL(p) =

(
‖dL‖

cpᵀexp (−cv)

)
dL
‖dL‖

= βL(p)nL,

where βL(p) := ‖dL‖/ (cpᵀexp (−cv)) is a non-negative scaling factor and nL := dL/‖dL‖ is a

unit-norm vector that does not depend on p.

140

Corollary A.0.4.1 is significant because it implies that, when optimizing the bounds over p ∈

∆, the step size at each iteration can be chosen to be arbitrarily large. For example, let pt be an

iterate at iteration t when maximizing the upper bound, and let pt+1 = pt + αḡ(pt) be a potential

next iterate produced by following the projected gradient at pt with any positive step size α that

satisfies pt+1 ∈ ∆. Typically, the projected gradient would be recomputed at p1+1, and this process

would be repeated until convergence. However, we can instead consider the impact of continuing

from pt+1 using the old gradient, ḡ(pt). The directional derivative of the upper bound at pt+1

along the direction ḡ(pt) is given by,

ḡ(pt)
T ḡ(pt+1) = βU(pt)βU(pt+1)nTUnU = βU(pt)βU(pt+1) ≥ 0.

Intuitively, this implies that if, instead of generating pt+1 using step size α, we had used a larger

step size, α′, the value of the upper bound at pt+1 would become larger. A similar argument shows

that the decrease in the lower bound between iterates becomes larger when using larger step sizes.

Consequently, it is possible to optimize the upper and lower bounds using the largest possible step

size that satisfies pt+1 ∈ ∆ for each iteration, t. Because P is a convex set, the upper and lower

bound functions have convex upper and lower contour sets, respectively, and because the values

of the upper and lower bounds are guaranteed to increase and decrease, respectively, on each

iteration, the sequence of iterates converges to the optima in each case. This scheme for selecting

step sizes overcomes many of the difficulties that arise when optimizing general quasiconvex and

quasiconcave functions, and in practice we have found that the resulting optimization algorithms

require only a small number of iterations to reach convergence.

Having provided gradients, procedures for updating them to ensure that the sequence of it-

erates lie in P , proofs that the local optima of the upper and lower bound functions are global

optima within P , and having derived a scheme for setting step sizes that rapidly converges to the

141

Algorithm 12 MaximizeOverP(c, ε,v,p,P)
1: for t = 1, ... do
2: g← exp(cv)

cpt
ᵀexp(cv)

3: ḡ← g −
(∑k

j=1 gj

)
1k

4: if pt lies on a boundary of P then
5: for each tangent hyperplane, i, of the boundary of P at pt do
6: ni ← the normal vector to hyperplane i
7: end for
8: ĝ← arg ming′∈Rk ‖ḡ − g′‖2 s.t. ∀i ∈ {1, ..., d}, g′Tni ≤ 0.
9: else

10: ĝ← ḡ
11: end if
12: α∗ ← max{α > 0 : pt + αĝ ∈ P}
13: if ĝ ≈ 0k then
14: return pt
15: else
16: pt+1 ← pt + αĝ
17: end if
18: end for

optima, we now provide pseudocode for optimizing the upper and lower bounds over p ∈ P in

Algorithm 12.

142

BIBLIOGRAPHY

[1] Agarwal, Alekh, Beygelzimer, Alina, Dudı́k, Miroslav, Langford, John, and Wallach, Hanna.
A reductions approach to fair classification. In International Conference on Machine Learn-
ing (ICML) (Stockholm, Sweden, July 2018), vol. PMLR 80, pp. 60–69.

[2] Angwin, Julia, Larson, Jeff, Mattu, Surya, and Kirchner, Lauren. Machine bias. ProPublica
(May 2016).

[3] Berk, Richard, Heidari, Hoda, Jabbari, Shahin, Kearns, Michael, and Roth, Aaron. Fairness
in criminal justice risk assessments: The state of the art. Sociological Methods & Research
(2018).

[4] Boyd, Stephen, and Vandenberghe, Lieven. Convex Optimization. Cambridge University
Press, 2004.

[5] Bruzzone, Lorenzo, and Marconcini, Mattia. Domain adaptation problems: A dasvm classi-
fication technique and a circular validation strategy. IEEE Transactions on Pattern Analysis
and Machine Intelligence 32, 5 (2009), 770–787.

[6] Calders, Toon, and Verwer, Sicco. Three naive Bayes approaches for discrimination-free
classification. Data Mining and Knowledge Discovery 21, 2 (2010), 277–292.

[7] Cao, Yuan, and Gu, Quanquan. Generalization error bounds of gradient descent for learning
over-parameterized deep relu networks. In Association for the Advancement of Artificial
Intelligence (AAAI) (2020), pp. 3349–3356.

[8] Chammah, Maurice. Policing the future. The Marshall Project (Febuary 2016).

[9] Chouldechova, Alexandra. Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments. Big Data 5, 2 (2017), 153–163.

[10] Chowdhary, Kamaljit, and Dupuis, Paul. Distinguishing and integrating aleatoric and epis-
temic variation in uncertainty quantification. ESAIM: Mathematical Modelling and Numeri-
cal Analysis-Modélisation Mathématique et Analyse Numérique 47, 3 (2013), 635–662.

[11] Cook, James. Amazon scraps ‘sexist ai’ recruiting tool that showed bias against women. The
Telegraph (October 2018).

143

[12] Corbett-Davies, Sam, Pierson, Emma, Feller, Avi, Goel, Sharad, and Huq, Aziz. Algorithmic
decision making and the cost of fairness. In ACM Conference on Knowledge Discovery and
Data Mining (KDD) (2017), pp. 797–806.

[13] Dantzig, George B, Orden, Alex, Wolfe, Philip, et al. The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics
5, 2 (1955), 183–195.

[14] Dawood, Hend. Theories of interval arithmetic: Mathematical foundations and applications.
LAP Lambert Academic Publishing, 2011.

[15] DeStefano, Joseph, and Learned-Miller, Erik. A probabilistic upper bound on differential
entropy. arXiv preprint cs/0504091 (2005).

[16] DeVries, Terrance, and Taylor, Graham W. Learning confidence for out-of-distribution de-
tection in neural networks. arXiv preprint arXiv:1802.04865 (2018).

[17] Dudı́k, Miroslav, Phillips, Steven J, and Schapire, Robert E. Correcting sample selection
bias in maximum entropy density estimation. In Advances in Neural Information Processing
Systems (2006), pp. 323–330.

[18] Dupuis, Paul, Katsoulakis, Markos A, Pantazis, Yannis, and Plechác, Petr. Path-space infor-
mation bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics.
SIAM/ASA Journal on Uncertainty Quantification 4, 1 (2016), 80–111.

[19] Dwork, Cynthia, Feldman, Vitaly, Hardt, Moritz, Pitassi, Toniann, Reingold, Omer, and Roth,
Aaron. The reusable holdout: Preserving validity in adaptive data analysis. Science 349, 6248
(2015), 636–638.

[20] Dwork, Cynthia, Hardt, Moritz, Pitassi, Toniann, Reingold, Omer, and Zemel, Richard. Fair-
ness through awareness. In Innovations in Theoretical Computer Science Conference (2012),
ACM, pp. 214–226.

[21] Endres, Stefan C, Sandrock, Carl, and Focke, Walter W. A simplicial homology algorithm
for lipschitz optimisation. Journal of Global Optimization 72, 2 (2018), 181–217.

[22] Estrin, Daniel. Face recognition lets palestinians cross israeli checkposts fast, but raises
concerns. NPR (August 2019).

[23] Fernando, Basura, Habrard, Amaury, Sebban, Marc, and Tuytelaars, Tinne. Subspace align-
ment for domain adaptation. arXiv preprint arXiv:1409.5241 (2014).

[24] Gong, Boqing, Shi, Yuan, Sha, Fei, and Grauman, Kristen. Geodesic flow kernel for un-
supervised domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition (2012), IEEE, pp. 2066–2073.

[25] Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT Press, 2016.

144

[26] Gopalan, Raghuraman, Li, Ruonan, and Chellappa, Rama. Domain adaptation for object
recognition: An unsupervised approach. In International Conference on Computer Vision
(2011), IEEE, pp. 999–1006.

[27] Griggs v. Duke Power Co. 401 U.S. 424. https://supreme.justia.com/cases/
federal/us/401/424/, 1971.

[28] Haddadin, S., Suppa, M., Fuchs, S., Bodenmüller, T., Albu-Schäffer, A., and Hirzinger, G.
Towards the robotic co-worker. Robotics Research 70 (2011), 261–282.

[29] Hansen, N. The CMA evolution strategy: a comparing review. In Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, J.A. Lozano, P. Larranaga,
I. Inza, and E. Bengoetxea, Eds. Springer, 2006, pp. 75–102.

[30] Hardt, M., Price, E., and Srebro, N. Equality of opportunity in supervised learning. In Confer-
ence on Neural Information Processing Systems (NIPS) (Barcelona, Spain, 2016), pp. 3323–
3331.

[31] Hendrycks, Dan, and Gimpel, Kevin. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016).

[32] Hoeffding, W. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association 58, 301 (1963), 13–30.

[33] Huang, Jiayuan, Gretton, Arthur, Borgwardt, Karsten, Schölkopf, Bernhard, and Smola,
Alex. Correcting sample selection bias by unlabeled data. Advances in Neural Information
Processing Systems 19 (2006), 601–608.

[34] Hwang, Cheng-Neng, Yang, Joe-Ming, and Chiang, Chung-Yen. The design of fuzzy
collision-avoidance expert system implemented by h-autopilot. Journal of Marine Science
and Technology 9, 1 (2001), 25–37.

[35] Kearon, J. Computer program for collision avoidance and track keeping. In Proceedings
of the International Conference on Mathematics Aspects of Marine Traffic. London (1977),
pp. 229–242.

[36] Kim, J., Kim, H., Lakshmanan, K., and Rajkumar, R. Parallel scheduling for cyber-physical
systems: Analysis and case study on a self-driving car. In International Conference on Cyber-
Physical Systems (April 2013), pp. 31–40.

[37] Kleinberg, Jon M., Mullainathan, Sendhil, and Raghavan, Manish. Inherent trade-offs in the
fair determination of risk scores. In Innovations in Theoretical Computer Science Conference
(ITCS) (Berkeley, CA, USA, September 2017), vol. 67, pp. 43:1–43:23.

[38] Kouw, Wouter M, and Loog, Marco. An introduction to domain adaptation and transfer
learning. arXiv preprint arXiv:1812.11806 (2018).

145

[39] Kusner, Matt J., Loftus, Joshua R., Russell, Chris, and Silva, Ricardo. Counterfactual fair-
ness. In Conference on Neural Information Processing Systems (NIPS) (Long Beach, CA,
USA, Dec. 2017).

[40] Levina, Elizaveta, and Bickel, Peter. The earth mover’s distance is the mallows distance:
Some insights from statistics. In Proceedings Eighth IEEE International Conference on Com-
puter Vision. ICCV 2001 (2001), vol. 2, IEEE, pp. 251–256.

[41] Li, Jing, and Xiu, Dongbin. Computation of failure probability subject to epistemic uncer-
tainty. SIAM Journal on Scientific Computing 34, 6 (2012), A2946–A2964.

[42] Lipton, Zachary C, Wang, Yu-Xiang, and Smola, Alex. Detecting and correcting for label
shift with black box predictors. arXiv preprint arXiv:1802.03916 (2018).

[43] MacKay, David JC, and Mac Kay, David JC. Information theory, inference and learning
algorithms. Cambridge University Press, 2003.

[44] Metevier, Blossom, Giguere, Stephen, Brockman, Sarah, Kobren, Ari, Brun, Yuriy, Brunskill,
Emma, and Thomas, Philip S. Offline contextual bandits with high probability fairness guar-
antees. In Advances in Neural Information Processing Systems (2019), pp. 14922–14933.

[45] Mohseni, Sina, Pitale, Mandar, Singh, Vasu, and Wang, Zhangyang. Practical solutions for
machine learning safety in autonomous vehicles. arXiv preprint arXiv:1912.09630 (2019).

[46] Ortega, Pedro A, Maini, Vishal, and Team, DeepMind Safety. Building safe artificial intelli-
gence: specification, robustness, and assurance. DeepMind Safety Research Blog (2018).

[47] Pan, Sinno Jialin, and Yang, Qiang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering 22, 10 (2009), 1345–1359.

[48] Pinelis, Iosif. Hoeffding’s inequality for sums of pairs of random variables. MathOverflow,
2016. URL: http://mathoverflow.net/q/245604 (version: 2016-08-01).

[49] Simoiu, Camelia, Corbett-Davies, Sam, and Goel, Sharad. The problem of infra-marginality
in outcome tests for discrimination. The Annals of Applied Statistics 11, 3 (2017), 1193–1216.

[50] Student. The probable error of a mean. Biometrika (1908), 1–25.

[51] Thapa, D., Jung, I., and Wang, G. Agent based decision support system using reinforcement
learning under emergency circumstances. Advances in Natural Computation 3610 (2005),
888–892.

[52] Thomas, Philip, and Learned-Miller, Erik. Concentration inequalities for conditional value
at risk. In International Conference on Machine Learning (2019), PMLR, pp. 6225–6233.

[53] Thomas, Philip, Theocharous, Georgios, and Ghavamzadeh, Mohammad. High confidence
policy improvement. In International Conference on Machine Learning (2015), pp. 2380–
2388.

146

[54] Thomas, Philip S, da Silva, Bruno Castro, Barto, Andrew G, Giguere, Stephen, Brun, Yuriy,
and Brunskill, Emma. Preventing undesirable behavior of intelligent machines. Science 366,
6468 (2019), 999–1004.

[55] Valkonen, Janne, Koskimies, Matti, Björkman, Kim, Heljanko, Keijo, Niemelä, Ilkka, and
Hämäläinen, Jari J. Formal verification of safety automation logic designs. Automaatio
XVIII (2009), 139.

[56] Varshney, Kush R. Engineering safety in machine learning. In 2016 Information Theory and
Applications Workshop (ITA) (2016), IEEE, pp. 1–5.

[57] Verma, Sahil, and Rubin, Julia. Fairness definitions explained. In 2018 IEEE/ACM Interna-
tional Workshop on Software Fairness (FairWare) (2018), IEEE, pp. 1–7.

[58] Vyas, Apoorv, Jammalamadaka, Nataraj, Zhu, Xia, Das, Dipankar, Kaul, Bharat, and Willke,
Theodore L. Out-of-distribution detection using an ensemble of self supervised leave-out
classifiers. In Proceedings of the European Conference on Computer Vision (ECCV) (2018),
pp. 550–564.

[59] Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. Probability & Statistics for Engineers
& Scientists, eighth ed. Prentice Hall, 2007.

[60] Weiss, Karl, Khoshgoftaar, Taghi M, and Wang, DingDing. A survey of transfer learning.
Journal of Big Data 3, 1 (2016), 9.

[61] Zadrozny, Bianca. Learning and evaluating classifiers under sample selection bias. In Pro-
ceedings of the Twenty-First International Conference on Machine learning (2004), p. 114.

[62] Zafar, Muhammad Bilal, Valera, Isabel, Gomez Rodriguez, Manuel, and Gummadi, Kr-
ishna P. Fairness beyond disparate treatment & disparate impact: Learning classification
without disparate mistreatment. In Proceedings of the 26th International Conference on
World Wide Web (2017), pp. 1171–1180.

[63] Zafar, Muhammad Bilal, Valera, Isabel, Rodriguez, Manuel Gomez, and Gummadi, Kr-
ishna P. Fairness constraints: Mechanisms for fair classification. In International Conference
on Artificial Intelligence and Statistics (AISTATS) (2017), pp. 797–806.

[64] Zhang, Xiang, and LeCun, Yann. Universum prescription: Regularization using unlabeled
data. In Thirty-First AAAI Conference on Artificial Intelligence (2017).

[65] Zliobaite, Indre. On the relation between accuracy and fairness in binary classification. arXiv
preprint arXiv:1505.05723 (2015).

[66] Zwillinger, Daniel, and Kokoska, Stephen. CRC standard probability and statistics tables
and formulae. CRC Press, 1999.

147

	SAFE AND PRACTICAL MACHINE LEARNING
	Recommended Citation

	SAFE AND PRACTICAL MACHINE LEARNING
	tmp.1618596353.pdf.QUA0m

