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ABSTRACT

POPULATION ANNEALING: ANALYSIS,
OPTIMIZATION AND APPLICATION

TO GLASSY SYSTEMS

MAY 2021

CHRISTOPHER AMEY

B.A., CARLETON COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS BOSTON

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jonathan Machta

Glasses are physical systems that lack structural order and exhibit extremely

slow dynamics, which makes them challenging to study. In this thesis we apply

Monte Carlo methods to two distinct glassy systems: the 3D Edwards-Anderson spin

glass and a binary hard sphere fluid. While significant progress has been made on

theoretical and experimental fronts, much of our current understanding of glasses has

come from numerical simulations. Standard Monte Carlo techniques cannot be used

to perform equilibrium simulations due to slow dynamics in the glassy regime. As a

result, several specialized techniques have been developed in order to simulate such

systems, including the main topic of this thesis, population annealing Monte Carlo.

Population annealing is a sequential Monte Carlo algorithm used to perform equi-

librium simulations of systems with rough free energy landscapes, such as glasses.
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Unlike standard Monte Carlo algorithms, which are unable to overcome large free

energy barriers, population annealing is able to sample disparate regions of config-

uration space in parallel. In this thesis, we discuss the optimization, analysis, and

application of population annealing to model glassy systems.

The 3D Edwards-Anderson spin glass has a long history of research, however, the

nature of its low-temperature phase remains unclear. We use a carefully optimized

canonical ensemble version of population annealing in order to obtain new benchmark

values of observables that are important to understanding its low-temperature phase.

We also derive and numerically test several useful metrics that provide accurate esti-

mates of the systematic and statistical errors of a simulation.

The binary hard sphere fluid is an example of a system that undergoes a dynamic

transition from a fluid to a disordered glassy solid. Whether this system also under-

goes a thermodynamic glass transition remains an open question. We use an NVT

ensemble version of population annealing in order to simulate the binary fluid at high

density and we present two new methods to measure the configurational entropy deep

in the glass regime. Using our new numerical techniques, we are able to predict the

location and existence of the thermodynamic glass transition.
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INTRODUCTION

The modern idea of a phase transition has existed since the nineteenth century,

however, in the past several decades, our understanding of the underlying mechanisms

has grown enormously. The ideas of symmetry and ordering have been particularly

important in describing how changing a single parameter, such as temperature, can

result in abrupt changes on a macroscopic scale. Two particularly well-studied sys-

tems are the liquid to crystal transitions and the paramagnet to magnet transition.

These correspond, respectively, to a change from a state of random particle positions

to particles ordered on a lattice, and a change from a state of randomly oriented

magnetic moments to uniformly aligned magnetic moments. The basic idea of a tran-

sition from disorder to order, or from one ordering to a different ordering, has been

successful in describing a large number of systems and phenomena. In this thesis, we

will focus on one class of systems that cannot be described by the tools that treat

transitions from order to disorder: glasses.

Many systems are described as “glassy”, however, there is no clear cut definition

of what constitutes a glass. Generally speaking, a glass is a system that undergoes

a transition that is characterized by a slowing of dynamics with the simultaneous

retention of a disordered state. From the view of phase space, a glass transition is

often associated with the formation of an exponentially large (in system size) number

of metastable states, and the partitioning of phase space into separate regions that

are not dynamically linked, as is the case for mean field spin glasses. This phase space

partitioning is also known as ergodicity breaking and is thought to be a signature of

glassy behavior in a wide range of physical systems. Here we will focus on two very
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different types of glasses that are still not well understood: the 3D Edwards-Anderson

spin glass and the binary hard sphere configurational glass.

Unfortunately, dynamic slowing and ergodicity breaking are not simply interesting

phenomena, they also make glasses difficult to study numerically and experimentally.

In addition, because glassy systems do not undergo phase transitions in the typical

sense, the standard tools of statistical mechanics are unsuited for their analysis. One

method of study that has been particularly fruitful is numerical simulation and, in

particular, the use of annealing and tempering algorithms. In this work, we make use

of population annealing Monte Carlo, which is a sequential Monte Carlo algorithm

[37] that was first introduced by Hukushima and Iba [54] in the context of spin

glasses. Population annealing shares features with two other common algorithms,

parallel tempering and simulated annealing, but has the advantage that it can be

easily parallelized on a massive scale [14, 15, 34]. In addition to spin glass systems

[4,109–112], there have been several works that have utilized PA for the Ising model,

the Potts models [14,15], and recently, configurational glasses [5, 29].

We begin by briefly reviewing the history and theoretical background of spin

glasses in Ch. 1 and configurational glasses in Ch. 2. We then move on to describe

Markov chain Monte carlo in Ch. 3 and population annealing in Ch. 4. Our spin glass

research results are presented in Ch. 5 and configurational glass results in Ch. 6 and,

lastly, we suggest future work in Ch. 7.
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CHAPTER 1

SPIN GLASSES

Spin glasses are disordered magnetic systems that, when cooled, undergo an un-

usual phase transition. They were first discovered experimentally in thin metal films

that contained magnetic impurities [30, 80]. While these systems exhibit a cusp in

a.c. susceptibility at a certain temperature, there is no corresponding cusp, jump, or

singularity in the specific heat commonly found in phase transitions. Furthermore,

magnetic neutron scattering shows no sign of long range order in the low temperature

phase, and low-temperature samples exhibit aging and memory effects with proper-

ties that vary depending on the presence and strength of an external magnetic field

during cooling. These characteristics are fundamentally different from most phase

transitions that were typically studied at the time. To the physicists of the 1970s,

the cusp in susceptibility suggested a transition, yet the specific heat was smooth and

there was no apparent symmetry breaking or emergent order. The low-temperature

phase appeared to be the same as a paramagnet with one exception – the individual

spins remained stuck for long periods of time instead of frequently flipping. Further-

more, aging and memory effects should not exist in an equilibrium system where,

according to equilibrium statistical mechanics, the current state of the system should

not have a long-lasting memory of past states. These phenomena were absent when

the density of magnetic impurities was decreased and so it was clear that the root

cause was due to RKKY interactions between the randomly located impurities, as

shown diagrammatically in Fig. 1.1. Due to the sign oscillating behavior of RKKY

interactions [58,97,114],
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Figure 1.1. The red arrows represent randomly located magnetic impurities in a
metallic crystal.

J3D
RKKY = V0

cos(2kF ri,j + φ)

r3
i,j

, (1.1)

and the random locations of the impurities, the magnetic interactions were effectively

random in magnitude and sign resulting in frustration. Random positive and negative

couplings make it impossible to choose a configuration of spins that simultaneously

satisfies all interactions and, as a result, finding the ground state energy of the sys-

tem inherently involves finding the optimal trade-off for N different spins. Knowing

the mechanisms behind the interactions helps give some qualitative understanding of

the underlying physics, but it was still not known whether spin glasses simply corre-

sponded to out-of-equilibrium systems that relaxed with extremely slow dynamics or

if they underwent a new sort of true thermodynamic phase transition. To better an-

swer this question, we must turn to spin glass models and the theoretical framework

which was developed to study them.
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1.1 Spin glass models

The first successful model of spin glasses was invented by Edwards and Anderson

in 1975 [38], with a Hamiltonian of the form

H =
∑
<i,j>

Ji,jsisj + h
∑
i

si, (1.2)

where the summation is over nearest neighbors on a square lattice, Ji,j is drawn from

a Gaussian distribution with mean zero and standard deviation unity, and h is an

external magnetic field which will be set to zero in this work. Along with the model,

Edwards and Anderson suggested an order parameter,

qEA =
1

N

N∑
i=1

〈si〉2, (1.3)

where 〈si〉 is the thermal average of spin i. This order parameter is, essentially,

an infinite time autocorrelation function of the spins and can effectively distinguish

between the paramagnet and spin glass phase despite the fact that neither have long

range order. The EA order parameter is related to the probability of each local spin

being up or down and, in the paramagnet phase the spins randomly flip with qEA = 0,

whereas in the glass phase the spins stay fixed for long periods of time and qEA > 0.

The EA model has one noticeable difference from experimental spin glasses. The

disorder of the EA model takes the form of random bonds on a regular lattice while

experimental systems have randomly located magnetic impurities. Despite this rather

obvious discrepancy, the EA model captures most of the salient features of experi-

mental spin glasses. As it turns out, spin glass models are not particularly difficult

to create and only really need two main ingredients: frustration and disorder1. It is

1There is a lower critical dimension.
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interesting to note that frustration alone does not create a spin glass model2, and that

disorder is necessary. Although disorder is necessary, the specific distribution of bonds

is not particularly important, although bond distributions that are not centered at

zero can result in more complex phase diagrams with ferromagnetic or antiferromag-

netic regions. What is vitally important is that the random bonds are “quenched”,

meaning that they do not change with time. In a spin glass model, every random

set of bonds corresponds to a different glass sample, sometimes referred to as a bond

or disorder “realization”. Each glass sample has a partition function defined in the

usual way,

ZJ =
∑
{σ}

e−βHJ({σ}), (1.4)

where the subscript J indicates a specific glass sample. The thermal expectation value

of an observable is also defined in the standard way,

〈OJ〉 =
∑
{σ}

e−βHJ({σ})

ZJ

OJ({σ}), (1.5)

as is the free energy,

−βFJ = logZJ. (1.6)

Since the bonds stay fixed in time, the average over different bond configurations,

also known as a disorder average, must come after the thermal average, and

[O] =
∑
J

P (J)〈OJ〉, (1.7)

2Geometrically frustrated spin systems lacking disorder had been studied since the 1950s in the
context of spin ices [7]. While low-temperature spin ice phases lack long range order and have
massively degenerate sets of ground states, they do not have the rough free energy landscape or
metastable states of spin glasses.
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where [O] corresponds to the full thermal and disorder average of observable O and

P (J) corresponds to the probability of bond realization J. This is problematic because

in order to understand the true thermodynamic behavior of spin glasses, we need to

calculate the average free energy,

[FJ] = [log (ZJ)] , (1.8)

which is not analytically tractable with normal tools.

In contrast, if the disorder was not quenched, then we would get “annealed dis-

order”, where the bonds are in thermal equilibrium and can fluctuate with time. In

this case, the bonds simply become another degree of freedom of the Hamiltonian

and can be easily integrated out,

F ann = log

∑
J

P (J)
∑
{σ}

e−βHJ({σ})

 (1.9)

= log (Zann) , (1.10)

where Zann is the annealed partition function after integrating over disorder and F ann

is the annealed free energy. There is a way to transform Eq. 1.8 into a form more

similar to Eq. 1.9. This technique is called the “replica trick” and follows from the

identity [38]

logZ = lim
n→0

1

n
(Zn − 1) . (1.11)

The reason why this is named the replica trick is because taking the product of n

partition functions, is similar to analytically creating several independent replicas of

the original system. Using the replica trick, the quenched free energy simplifies to

[log (Z)] = lim
n→0

1

n
([Zn]− 1) . (1.12)
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Edwards and Anderson constructed a mean field theory approximation of the EA

model and used the replica trick to calculate an approximate free energy. Although

their approximation successfully reproduced the qualitative behavior of the suscep-

tibility, it failed to properly predict the behavior of the specific heat [33]. Another

approach that proved to be more successful was to design a mean field model directly,

which was first done by Sherrington and Kirkpatrick. The Sherrington-Kirkpatrick

model [99] is described by the Hamiltonian

H =
1√
N

∑
i<j

Ji,jsisj + h
∑
i

si, (1.13)

which is infinite range EA model with the addition of a 1/
√
N term, which is nec-

essary to keep the energy extensive in the thermodynamic limit. The Sherrington-

Kirkpatrick (SK) model was not created to mimic a real physical system, but rather

as a system that was amenable to theoretical calculations and, in this sense, it has

been quite successful. Sherrington and Kirkpatrick’s original paper purported to solve

the system using the replica trick [99], although the solution was found to be unstable

in the low temperature phase due to having a negative entropy. In the years that

followed, there were several papers on the topic [35, 107] and, ultimately, the model

was solved by Giorgio Parisi in a series of papers that fully characterized the mean

field transition [89–92]. Although the full solution of the SK model is beyond the

scope of this thesis, the implications of the solution are important.

1.2 Mean field solution and its implications

One of the major mysteries of spin glasses when they were first discovered was how

they could undergo a phase transition without any apparent breaking of symmetry.

Parisi’s solution of the SK model directly addresses this mystery – the SK model does

not break physical symmetries but it does break replica symmetry [78]. What this
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means is not immediately obvious from the name, but is not too difficult to explain.

At high temperature, the free energy landscape of a mean field spin glass has only

one minimum, which corresponds to a paramagnet. In the low temperature phase,

the free energy landscape becomes rough and has many local minima separated by

free energy barriers. In the thermodynamic limit these barriers become infinitely high

and, as a result, phase space becomes non-ergodic. Each distinct region of phase space

is referred to as a thermodynamic pure state and has a weight that is proportional

to the phase space region’s net Gibbs weight. Although the notion of pure states

was invented to describe spin glasses, they also exist in more common models. For

instance, the low temperature Ising model has two pure states corresponding to up and

down magnetizations and their associated excitations, each of which is separated by an

infinitely large free energy barrier in the thermodynamic limit. The low temperature

phase of the SK model also breaks ergodicity due to diverging free energy barriers,

however, unlike the Ising model, it has an infinite number of pure states. The SK

pure states correspond to spin-flip symmetric pairs of spin configurations. Aside from

the global spin-flip symmetry, SK pure states are distinct from each other, with no

symmetry relations between different pairs. At the same time, the SK pure states are

indistinguishable from each other in every way, thermodynamically and statistically.

Since there are more than a single pair of spin-flip symmetric pure states, the EA order

parameter is inadequate for the SK model since, for pure states α and β, qαEA = qβEA.

Instead, define the overlap between pure states α and β as

qαβ =
N∑
i=1

〈si〉α〈si〉β, (1.14)

where 〈si〉α corresponds to the thermal average of spin i restricted to pure state

α. The overlap function is a measure of the distance between two pure states. For

example, qαα = qEA and, if −α is the spin flip symmetric state, q−αα = −qEA and,

more generally, qαβ ∈ [−qEA, qEA]. Since there are infinitely many pure states, the
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order parameter that characterizes the SK transition for a glass sample is the full

distribution of overlaps [102],

PJ(q) =
∑
αβ

WαWβδ(q − qαβ), (1.15)

where Wα is the Gibbs weight of pure state α and PJ(q) is the overlap distribution for

an individual sample. In the high-temperature paramagnet phase, different replicas

are completely random and the overlap distribution is approximately a Gaussian cen-

tered at zero. In the low-temperature glass phase, replicas become stuck in different

pure states. The corresponding overlap distribution has peaks at ±qEA(T ) and has

a support composed of peaks symmetrically distributed around zero from −qEA to

qEA. The two peaks at ±qEA correspond to spin flip symmetric pairs of states and the

overlap peaks between the ±qEA correspond to overlaps between pairs of pure states

that are not spin flip symmetric, where the value of qEA(T ) is related to thermal

excitations within the pure state. As T → 0, the spins become increasingly unlikely

to flip and, at T = 0, the spins simply stay fixed in the ground state configuration

resulting in qEA = 1. Taking the disorder average of the overlap,

P (q) =

[∑
αβ

WαWβδ(q − qαβ)

]
, (1.16)

gives the probability of a generic glass sample having overlap P (q) between two ran-

domly chosen pure states. A picture of overlap functions for individual glass samples

and the disorder average overlap function is shown in Fig. 1.2. The peaks correspond

to different delta functions and the height of each peak is proportional to the overlap

weight WαWβ.

While the full replica symmetry breaking (RSB) solution proposed by Parisi is

beyond the scope of this thesis, we will give a few highlights that are particularly im-
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portant3. Parisi was able to show that in the low temperature phase of the SK model,

P (q) has a countably infinite number of peaks that correspond to overlaps between

different pure states and that its corresponding structure is non-trivial. Parisi showed

that replicas could be divided into different groups, each of which had different over-

lap characteristics. This initial grouping corresponds to a one-step replica symmetry

breaking, however, Parisi further showed that the SK model was special and that

this process could be infinitely repeated. A set of n replicas could be broken into

m distinct groups and, likewise, each group of m replicas could be broken into l sub

groups, and so on. The algebraic structure that Parisi found is called infinite-step

replica symmetry breaking and implies a very rigid structure to the space of pure

states4. Physically this means that at the glass transition, the free energy landscape

forms a large number, say m, of minima. Each minimum is associated with a group

of pure states and, in focusing on a single minimum, it becomes apparent that the

basin of a single minimum actually corresponds to a large basin containing many

local minima. The pure states associated with the larger basin can be further divided

into l sub groups each of which correspond to states that have fall within one of the

basin’s local minima. When looked at closely, there are even more minima within

the local minima, which further divide each of the l sub groups. The Parisi solution

to the SK model suggests that this process repeats itself infinitely many times and

that the relative location of the minima has a specific, rigid form which leads to a

prediction of the shape of P (q) that can be tested numerically.

Numerical simulations of the SK model are largely consistent with Parisi’s solution

and, furthermore, there has been recent mathematical work that has partially justified

the mathematical tricks used by Parisi [104–106]. Despite the successes in treating

3See Ref. [78] for a more complete derivation.

4The space of pure states with the overlap q form a metric space that satisfies the strong triangle
inequality, otherwise known as an ultrametric space.
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Figure 1.2. The overlap distributions for two spin glass samples at T < Tc (left,
middle), and the disorder average overlap function (right).

the SK model, results relating to finite-range spin glass models such as the EA model

are still contentious. Proponents of the replica symmetry breaking (RSB) picture

claim that finite-range spin glass models also undergo some sort of replica symmetry

breaking during a glass transition and have many pure states in the low-temperature

phase. There are many competing theories, the most prominent of which is probably

the droplet picture. One detail that arises out of the RSB picture is that low energy

excitations are extensive in size and correspond to disparate collections of spins across

the whole glass sample. The droplet picture, on the other hand, is a phenomenological

picture centered on the idea that there exists only a single pair of spin flip symmetric

pure states, with excitations that occur in a compact region of size L with excitation

energies that scale as Lθ, where θ is a scaling exponent. This picture was proposed

by McMillan [76], Bray and Moore [28], and Fisher and Huse [40–42] and predicts

a two-peaked P (q) distribution. In addition to the RSB and droplet pictures, there

are many other proposed scenarios. Newman and Stein, in particular, have argued

against the RSB picture and have proposed the chaotic pairs picture [81–83], where

a single pair of pure states exists for any finite-size sample and that these pure states

change chaotically as the system size is changed. Therefore, while there is only a

single pair of states for any given sample and a correspond two-peak P (q), there are

an infinite number of pairs of states when considering all sample sizes.
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The primary way to differentiate between the different spin glass theories is by

performing numerical measurements of P (q) for large system sizes and analyzing the

overlap near q = 0. The RSB picture would suggest that the distribution has weight

near q = 0 for T < Tc and the droplet and chaotic pairs pictures suggest that P (q)

is a two-peaked distribution. Since computer simulations are limited to finite-sized

systems, no free energy barriers diverge and the concept of a pure state is nebulous.

In order to overcome these limitations, many simulations are performed for differ-

ent system sizes in order to measure the trend of P (q) near q = 0. Unfortunately,

the computational complexity of spin glasses has made it impossible to simulate sys-

tems that are large enough to conclusively settle the debate and whether the overlap

distribution approaches a Parisi-like solution or a two-peak solution in the thermo-

dynamic limit is still an open question. We report state-of-the-art, high precision

measurements of P (q) for the 3D EA model in Ch. 5.
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CHAPTER 2

CONFIGURATIONAL GLASSES

The configurational glass transition corresponds to a dynamical phenomenon where,

upon cooling, a fluid suddenly exhibits extremely slow dynamics and effectively be-

haves as an amorphous solid. The glass transition is, by convention, defined as the

temperature where the viscosity reaches 1012 Poise [19]. This temperature does not

correspond to a thermodynamic transition and was chosen from a practical stand-

point: fluids with viscosities much larger than 1012 Poise cannot be equilibrated

within reasonable lab timescales. While the conventionally defined glass transition

is somewhat arbitrarily chosen, there are reasons to believe that the onset of slow

dynamics may be a precursor to a true thermodynamic glass transition at some lower

temperature. As a matter of notation, in this thesis we will use Tg to denote the

conventional glass transition temperature and Td to denote a dynamical transition

temperature in a broader sense. For instance, while a Monte Carlo simulation is

guaranteed to sample from equilibrium distributions, the dynamics of the simula-

tion are not necessarily related to the actual physical dynamics of a glassy fluid. In

this case, the Monte Carlo simulation would have a different dynamical transition at

Td 6= Tg. In a population annealing simulation, the combination of the equilibration

process and sweep schedule will result in a specific value of Td.

Configurational glasses have many interesting and unique features in addition to

their inability to equilibrate. One particularly important characteristic of configu-

rational glasses is “fragility”, which describes a glassy system’s relaxation dynamics

upon approaching the dynamical transition. Fragility can be determined by plotting
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Figure 2.1. The Angell plot showing the logarithm of viscosity vs temperature
for several examples of strong and fragile glasses. Here Tg corresponds to our Td.
Reproduced from Ref. [9].
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relaxation times or viscosities as a function of temperature for T / Td, which can be

most clearly seen in a plot that was first devised by Angell [9] and is reproduced in

Fig. 2.1. A system that approaches the dynamical transition with relaxation times

that increase log-linearly is called “strong” and, correspondingly, its relaxation times

will obey an Arrhenius law,

τ ∼ eEb/kBT , (2.1)

where Eb is a constant with dimensions of energy, kB is Boltzmann’s constant, and

T is the temperature. In strong glass formers, configurations become stuck in local

free energy minima with barrier heights that scale with a characteristic energy, Eb,

which is typically associated with a chemical bond. Examples of strong glasses are

silica and ordinary window glass. In strong glasses, the free energy barriers do not

grow as the temperature is decreased. Instead, the system becomes stuck in a local

minimum due to a lack of thermal energy. The implication of these characteristics

is that strong glasses do not undergo a true thermodynamic transition and, instead,

simply become stuck in local minima that do not persist in the thermodynamic limit.

In contrast, the relaxation times of fragile glass formers do not scale log-linearly

with temperature and as the temperature approaches Td, the slope of τ increases.

This implies that as fragile glasses approach Td, free energy barriers between different

minima grow and relaxation times grow super-exponentially. The exact behavior of

the relaxation time near and after the fragile glass transition has not been solved

for finite-dimensional models, but one widely used fit is the Vogel-Fulcher-Tammann

(VFT) law,

τ ∼ eDT0/(T−T0), (2.2)
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where T0 < Td is a fitted temperature that has a non-zero, positive value. Unlike

the transition at Td, which is a dynamical phenomenon, the presence of diverging

correlation times at T0 suggests that a true finite temperature phase transition may

exist for fragile glass formers [19]. Although the VFT fit is intriguing, it alone is not

enough to stipulate that a thermodynamic transition exists. Several other functions

with equivalent goodness of fits have been proposed, see Ref. [25], including a modified

VFT law,

τ ∼ e[DT0/(T−Tγ)]γ , (2.3)

where γ is an additional fit parameter. For many systems, γ = 2 and Tγ = 0 work par-

ticularly well, which would imply that there is no finite-temperature thermodynamic

glass transition. The VFT fit is particularly intriguing because the experimental

value of T0 coincides closely with another temperature that has theoretical impor-

tance, known as the Kauzmann temperature, TK. Typically when a liquid is cooled,

it will undergo an entropically driven, first order phase transition into a crystalline

state. Glasses are examples of supercooled liquids that have not crystallized and, as a

result, have excess entropy when compared to the thermodynamically preferred crys-

talline phase. Walter Kauzmann [61] experimentally measured the excess entropies

of several different glasses as a function of temperature and noticed a curious trend.

Some compounds appeared to have excess entropy curves that, when extrapolated,

vanished at approximately the same non-zero temperature, TK. If this was the case

then it would correspond to a true thermodynamic glass transition at TK. With this

in mind, the VFT fit with T0 ≈ TK takes on additional weight.

There are many different theories that attempt to describe the physics behind

glassy fluids at low temperature. One explanation, originally proposed by Gibbs and

DiMarzio [45,46], is that there exists a dynamic ergodicity breaking transition where

phase space separates into many dynamically distinct regions at some temperature,
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Figure 2.2. Abstract representation of an ergodic fluid phase space (left) and non-
ergodic glass phase space (right).

Figure 2.3. Entropies of a fluid undergoing a fragile glass transition.
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Td. In this picture, when T > Td, the system behaves as a fluid that will ergodically

sample all of phase space. After the dynamic transition, the mixing is no longer

sufficient to equilibrate the system and phase space breaks into different regions, as

seen in Fig. 2.2, each of which corresponds to a different glass state. In terms of

actual degrees of freedom, particles are unable to diffuse on large length-scales and,

instead, remain trapped locally in cages composed of their neighbors in which they

vibrate. In this scenario, the phase space volume of each glass state corresponds to

the local vibrational degrees of freedom of the particles and, furthermore, each glass

state has a corresponding “glass” or “vibrational” entropy resulting from these local

particle vibrations. In this thesis we use the term “glass state” to refer to a localized

region in phase space and “particle configuration” or “configuration” to refer to a

specific set of particle positions within a thermodynamic state. In this terminology,

a glass state is made up of many different configurations which are accessible to one

another on relatively short time scales. The physics of such a system is dictated by a

“configurational entropy per particle”, defined as

Sc =
1

N
logNg, (2.4)

where Ng is the number of glass states. Understanding how Sc decreases as the

temperature is decreased and, ultimately, when Sc goes to zero is paramount to

understanding whether or not a thermodynamic glass transition exists. In the liquid

regime, Sc = 0 since there is only one free energy minimum and Sc only becomes

positive at Td, when the free energy landscape divides into an exponentially large (in

system size) number of local minima, as shown in Fig. 2.3. Despite this jump in

configurational entropy, Td does not correspond to a thermodynamic transition and

there are no thermodynamic signatures of a transition, such as a jump in specific

heat. There are, however, dynamic signatures associated with the transition at Td,

such as a change in the behavior of the mean square displacement (MSD), defined as
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Figure 2.4. Mean square displacement of Lennard-Jones particles as a function of
time for several different temperatures. At high temperatures (left), an initial ballistic
regime is followed by a diffusive regime. At low temperatures (right), a plateau forms
between the two regimes where the particles remain stuck. Figure reproduced from
Ref. [19].

∆(t) =

〈
1

N

N∑
i

|rrri(t)− rrri(0)|
〉
, (2.5)

where rrri is the position of the i’th particle and the brackets correspond to a thermal

average. In a simple fluid, particles initially move ballistically with a MSD that scales

as t2. At long times scales after many collisions occur, the particle motion becomes

diffusive with a MSD that scales as t. This is true for both the fluid (T > Td) and

the glassy (T ≈ Td) phases, however, in the glassy phase there is an intermediate

plateau between the ballistic and diffusive regimes, as seen in Fig. 2.4. This plateau

corresponds to slow dynamics and is related to the emergence of a complex energy

landscape that has many high-dimensional saddle points with shallow slopes [108].

Because of the complex structure of the energy landscape, particles are initially only

able to probe local cages. After a sufficient amount of time, the system is able to find

paths required to relax on longer length scales, resulting in the second increase in

MSD. As the temperature is decreased, the relaxation times grow and the configura-

tional entropy continually decreases. If Sc goes to zero at a “Kauzmann” temperature,
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TK > 0, then this would signal that a thermodynamic transition exists. Therefore,

measuring Sc and extrapolating it to zero is a fundamental way to determine the high-

density equilibrium behavior of supercooled fluids. In the Adam-Gibbs picture [1],

the Kauzmann transition results in the structural relaxation time increasing expo-

nentially with 1/(TSc). As such, another tactic to estimating the value of TK is to

make fits to dynamical quantities, such as structural relaxation times or viscosities,

as a function of temperature in order to estimate the location of a dynamic diver-

gence corresponding to the thermodynamic transition. Another possible outcome is

that the configurational entropy goes to zero at TK = 0, which would imply that a

finite-temperature thermodynamic transition does not occur.

2.1 Configurational glass models

Experimentally, there are many different materials that exhibit a fragile glass tran-

sition, including a wide range of molecular fluids, as seen in Fig. 2.1, and colloidal

mixtures. A few examples of interactions that are frequently used in numerical simu-

lations are soft spheres, hard spheres, and Lennard-Jones potentials. One interaction

parameter that is universal to configurational fluids is the size of the particles. In

short range hard or soft sphere systems, the size directly corresponds to the radius of

the particle, while in systems with long-range interactions, such as the Kob-Anderson

or Lennard-Jones potentials, there is an underlying characteristic length scale that

plays the role of particle size. The most basic simple fluid is a system consisting of a

single species of particles, which is commonly referred to as a monodisperse fluid. In

principle, simple fluids can be composed of all sorts of exotic shapes, but in this thesis

we will focus entirely on spherically symmetric particles. Spherical monodisperse par-

ticles can exhibit glassy behavior when cooled quickly enough, however, these glass

states are metastable, supercooled fluid states, and the true thermodynamic phase

is an fcc crystal. As a result, they tend to form either crystalline or polycrystalline
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structures. In order to avoid crystallization it is common to introduce frustration in

the form of polydispersity, that is, to introduce several species of spheres of different

sizes. A frequently studied system is the “bidisperse” or “binary” fluid that contains

two species of particles. For some combinations of species radii, it is possible to form

uniform crystalline structures [52,53], but when the radius-ratio of the two species is

chosen carefully, the system becomes frustrated and is unable to form a single crystal.

The thermodynamic state of such a frustrated binary fluid instead has a first-order

transition from a disordered fluid to a phase-separated system of two fcc crystals, each

composed of a single species. This phase is extremely difficult to find when starting

from a homogeneous mixture and frustrated binary fluids overwhelmingly tend to

freeze into disordered states, which makes them ideal systems for studying glasses. It

is possible to include more sphere species in the fluid and, in the extreme limit, to have

a continuous spectrum of sphere sizes. Recent work with continuously polydisperse

hard sphere systems have been able to probe unprecedentedly high densities while

remaining in statistical equilibrium [13, 20–22, 87, 88]. These studies suggest that a

thermodynamic transition does exist in three dimensions. However, it is not clear that

the physics of continuously polydisperse systems is the same as that of binary mix-

tures and, additionally, there are non-trivial issues with taking the thermodynamic

limit of continuously polydisperse systems that need careful consideration.

The goal of this thesis is to study the glass transition using population annealing

Monte Carlo. To this end, we focus on relatively well-studied binary hard sphere

fluids. At low densities, hard sphere fluids behave as an ideal gas and, as φ is increased,

the dynamics slow and the fluid eventually crystallizes or becomes glassy, as shown in

Fig. 2.5. A hard sphere system can be thought of as a short-range soft sphere system

in the zero-temperature limit and, as a result, temperature plays no role because

there are no finite energy scales. In soft systems with T > 0, both temperature

and packing fraction are important in non-trivial ways, and the interplay between
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Figure 2.5. Entropy of a fluid undergoing a fragile glass transition with packing
fraction as the transition parameter.

the two is an active area of research [71, 86]. Binary hard sphere fluids have been

studied numerically [8, 23, 26, 32, 85, 101] and experimentally [26, 75] in the past but,

despite the relatively large body of research, a detailed understanding of the physics

beyond the dynamic glass transition remains elusive. The hard sphere potential is

well-suited to theoretical and numerical studies due to its simple functional form

and a binary mixture can be designed to prevent homogeneous crystallization so

that it displays a robust glassy regime. In hard sphere systems, temperature is not

an independent control parameter and instead the inverse dimensionless pressure,

1/Z = NkBT/PV , is the relevant thermodynamic variable [22]. In most simulations,

the dimensionless pressure is an observable and the density or packing fraction, φ, is

the control parameter. Therefore, the picture one should have in mind for hard sphere

glasses is that as the density is increased, the dimensionless pressure increases and

eventually diverges once the configuration of particles can no longer be compressed

at the random close packing density, φrcp [57]. The question of whether or not a

thermodynamic glass transition exists in a hard sphere fluid is the same as the question
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of whether or not Sc goes to zero at finite pressure or, equivalently, whether φK <

φrcp [22, 85].

2.2 Statistical mechanics of fluids

Pairwise interacting simple fluids are described by a generic Hamiltonian,

H =
∑
i

p2
i

2mi

+
∑
i 6=j

U(xi, xj), (2.6)

where pi and mi are the momentum and mass of the i’th particle, xi is the center of the

i’th particle, and U(xi, xj) is the pairwise interaction energy between the i’th and j’th

particle. Here we will set all masses to be equal for simplicity because the physics is not

significantly altered. After setting the masses to be equal and assuming monodisperse

particles, the resulting canonical (NVT) partition function is calculated by integrating

the Boltzmann factor over all possible particle and momentum configurations,

ZNVT =
1

N !

1

h3N

∫
dx1...dxN

∫
dp1..dpN e

−β
[∑

i

p2i
2m

+
∑
i 6=j U(xi,xj)

]
, (2.7)

where N is the total number of particles. The momentum degrees of freedom are

separable and can be directly integrated, which gives

ZNVT =
1

N !

1

λ3N
th

∫
dx1...dxNe

−β∑i 6=j U(xi,xj) (2.8)

where λth = h/
√

2πmkBT is the thermal deBroglie wavelength and the remaining in-

tegral is the portion of the partition function that contains all of the position degrees

of freedom. For polydisperse mixtures with different masses, there will be a different

λth for each particle species. The 1/N ! multiplicative factor applies to a monodis-

perse mixture that has N indistinguishable particles. In the case of a 50:50 binary

mixture, the prefactor will be [1/(N/2)!]2 because there are two species that can be
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distinguished from each other. In the glassy limit, the question of whether caged

particles are distinguishable will be important when calculating Svib but, for the fluid

case, we treat them as indistinguishable. Integrating over the position variables of Eq.

2.8 is generally analytically intractable but the integrand, which corresponds to the

weight of each particle configuration, can be slightly simplified in the case of a hard

sphere potential where it becomes equal to either 0 or 1 corresponding to whether or

not there is a particle overlap. In the hard sphere case, the position integral can be

rewritten as

ZNVT =
1

N !

1

λ3N
th

Ω(φ), (2.9)

where Ω(φ) is the volume of configuration space corresponding to non-overlapping

particle configurations at packing fraction φ. Because each configuration of particles

has either weight zero or one, the hard sphere NVT ensemble behaves very similarly

to the microcanonical ensemble with packing fraction as a variable instead of energy.

An important difference between the NVT and microcanonical ensembles is that in

the NVT ensemble, a configuration that is legal at any given packing fraction φ0 is

also legal for all φ < φ0. This is in contrast to an actual microcanonical ensemble

where each configuration corresponds to a unique energy window. Regardless of this

difference, as we will see in Ch. 4, the fact that all configurations have weight unity or

zero makes this an ideal system to study using microcanonical population annealing.

2.3 Observables

Configurational glasses have many of the same observables as simple fluids, in-

cluding the equation of state

Z =
PV

NkBT
, (2.10)
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where Z is the dimensionless pressure, P is the system pressure, V is the volume of

the system, N is the total number of particles, kB is the Boltzmann constant, and T

is the temperature. In our numerical simulations, Z can be easily measured directly,

and N and V are parameters; note that Z = 1 for an ideal gas. In a hard sphere

system, there are no energy scales and kBT is simply a constant that only changes λth

and can be set arbitrarily, here we set it to unity. In a typical experiment, particle

sizes are fixed and the system volume can fluctuate. Therefore, the packing fraction

varies directly with volume and, for a 50:50 binary mixture,

φ = N
4πr3

3V
, (2.11)

where r3 = (r3
0 + r3

1)/2 is the average of the cubed radii of the two species. The

corresponding differential relation between dφ and dV is

dφ = −N 4πr3

3V 2
dV, (2.12)

which makes it possible to change variables between V and φ for any equation or

differential relation. The standard thermodynamic relation between the entropy, S,

and pressure holds,

P

T
=

(
∂S

∂V

)
N,T

. (2.13)

Changing variables to entropy per particle, S, and packing fraction yields

Z =
PV

NkBT
= −φ∂S

∂φ
. (2.14)

In the low density fluid limit a binary system is well-estimated by the phenomenolog-

ical Boubĺık-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state [24,73]
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ZBMCSL =
(1 + φ+ φ2)− 3φ(y1 + y2φ)− y3φ

3

(1− φ)3
, (2.15)

where yi are constants that depend on the ratio of polydispersity. For a 50:50 mixture

of 1.4:1 size particles, y1 = 0.0513, y2 = 0.0237, and y3 = 0.9251. This equation of

state is very accurate when compared to numerically derived data [29].

A primary goal of configurational glass research is to measure Sc in the glassy

regime, therefore, measuring entropies is of particular importance. The total entropy

per particle can be obtained by integrating Eq. 2.13 from the ideal gas limit at φ = 0

to the packing fraction of interest,

S(φ) = −
∫ φ

0

Z

φ̃
dφ̃+K, (2.16)

where K is a constant of integration. This integral requires some care in order to

avoid a logarithmic divergence at φ = 0, where Z → 1, and to ensure proper normal-

ization, see appendix B.1 for details. The vibrational and configurational entropies

are significantly more difficult to obtain numerically and are unattainable analytically

in finite-dimensional systems. Typically, one measures S and Svib numerically in or-

der to obtain Sc. The total entropy can be measured directly using thermodynamic

integration and relatively standard numerical techniques. On the other hand, the

vibrational entropy is actually the average entropy of the different glass states,

Svib = [Sν ] , (2.17)

where Sν is the entropy of glass state ν, which is the log of the glass’s local phase

space volume as depicted in Fig. 2.2. The average must be taken carefully, either

as a weighted average of entropies of all glass configurations or as an unweighted

average taken over all particle configurations, where different particle configurations

can correspond to the same glass state and high-entropy glass samples will naturally
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have higher weight, as will be discussed in Ch. 6. Measuring the individual glass

entropies is non-trivial because of the presence of the dynamic transition and the

theory and numerical methods that we have developed will be presented in Ch. 6.

2.4 Mean field connection with spin glasses

Configurational glasses have a rich history of theoretical research that is too large

to cover in detail in a thesis, so here we stick to a brief overview of one of the most

important frameworks called mode coupling theory (MCT) [17, 49, 70] and its con-

nection to spin glasses. There are some clear surface-level connections between spin

and configurational glasses. Both of these systems exhibit a transition from an easy-

to-equilibrate regime to a disordered regime with extremely slow dynamics. Further-

more, both systems have a large number of metastable states in their respective glassy

regimes and appear to break ergodicity in their glassy phases. However, there are also

some clear distinctions. Neither the 3D Edwards-Anderson (EA) nor the mean field

Sherrington-Kirkpatrick (SK) models undergo a dynamic phase transition. Instead,

they each undergo a continuous phase transition at a well-defined transition temper-

ature. On the other hand, configurational glasses undergo a dynamic transition at

some Td > TK and then, eventually, undergo a discontinuous transition at TK. In the

case of a supercooled fluid, this corresponds to a dynamic transition from a fluid state

with one global free energy minimum, to a supercooled state with an exponentially

large number of minima to a high density disordered state with a sub-exponential

number of minima. Perhaps it was because of these obvious and substantial differ-

ences that spin glasses and configurational glasses were researched independently for

much of their history. Despite their differences the gap between the two fields was

bridged when an unforeseen connection between certain mean field spin glasses and

the mode coupling theory of configurational glasses was found in the mid 1980s [67].

The characteristics of a configurational glass transition and, as we shall see, some
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mean field spin glass transitions broadly describe the random first order transition

(RFOT) which was described in a series of papers by Kikrpatrick, Thirumalai, and

Wolynes [64–66].

Mode coupling theory was developed to quantitatively predict the collective dy-

namics of supercooled liquids at moderately low temperatures. The general idea is

that at low temperatures, the behavior of the density field of a fluid is dominated

by a few modes that are slow to relax. Therefore, in order to understand the slow

dynamics of glass samples as they relax, it is paramount to determine the proper-

ties of the slow modes. Since a glass is an out-of-equilibrium system, the relevant

observables are dynamic scattering functions, F (k, t) = 1
N
〈ρk(0)ρ−k(t)〉, which give

information about both spatial and temporal correlations. Mode coupling theory is a

framework in which the dominant slow modes can be found, and a set of approximate

self-consistent equations used to solve for F (k, t). A detailed treatment of MCT is

beyond the scope of this thesis1, but it is sufficient to state that MCT gives a way

to approximate the dynamic structure factor near Td and amounts to a mean field

approximation.

At approximately the same time as the creation of MCT, spin glass physicists

devised the p-spin model [36, 48], which is a family of mean field spin glass models

defined by the Hamiltonian

H = −
∑
i1,...,ip

Ji1,...,ipSi1 · · ·Sip , (2.18)

where the sum goes over all p-tuples of spins and Ji1,...,ip are quenched random bonds

drawn from a Gaussian distribution with zero mean and variance equal to p!/(2Np−1).

When p = 2, this Hamiltonian is identical to the SK Hamiltonian but for p ≥ 3,

the behavior of the p-spin model fundamentally changes. For p ≥ 3, this model

1For a more thorough introduction, see Refs. [50, 94]
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Figure 2.6. The correlation as a function of time of the p-spin model, with p = 3,
for several temperatures approaching the dynamical transition temperature, TMCT.
Reproduced from Ref. [19].

undergoes a one-step replica symmetry breaking and the RSB apparatus can be used

to solve for the correlation functions. Surprisingly, the resulting equations for the

p-spin model correlation functions are identical to the MCT equations [31]. The

solution to these equations yields familiar results including the onset of two-stage

relaxation dynamics and a dynamical transition at TMCT with diverging correlation

times, as seen in Fig. 2.6. Furthermore, the p-spin model exhibits a roughening of

the free energy landscape and the formation of an exponentially large (in system size)

number of metastable states. Within the p-spin model, it is possible to calculate the

configurational entropy directly and show that a thermodynamic transition occurs

when when Sc → 0 at 0 < TK < TMCT. Whether the mean field treatment accurately

predicts the qualitative behavior of configurational glasses is a matter of debate, and

it is still not known whether configurational glasses undergo a non-zero RFOT.
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CHAPTER 3

MONTE CARLO METHODS

Most statistical physics observables are measured in the form of an expectation

value with respect to a statistical ensemble. For instance, in the case of a spin system,

the expectation value of an observable O is given by

〈O〉 =

∑
{σ}O(σ)W (σ)∑
{σ}W (σ)

, (3.1)

where the sum is over all possible configurations {σ}, W (σ) is the weight of config-

uration σ, that depends on the statistical ensemble used, and where the normaliza-

tion/partition function, is given by

Z =
∑
{σ}

W (σ). (3.2)

For non-interacting models like the ideal gas and for some mean field models, these

calculations can be done analytically, however, for more complicated models, they

tend to be impossible to carry out directly. For discrete systems, it is natural to

consider direct summation, however, for even a modest sized 3D Ising model with

dimensions 10 × 10 × 10, there are 2100 ≈ 1.2 × 1030 different configurations. For

a system with continuous degrees of freedom, the notion of directly calculating the

corresponding integral is even more far-fetched.

Instead of attempting to calculate expectation values directly, we can estimate

the expectation values from a finite subset of states. As long as the states are chosen
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so that they represent the proper statistics of the ensemble, the approximation will

be unbiased and, with an increasing sample size, will converge to the exact result by

the law of large numbers. The basic scheme to do this is simple: randomly choose a

state σi ∈ {σ} with probability P (σi) ∝ W (σi) and then add O(σi) to a running sum,

Õ =
1

M

M∑
i=1

O(σi), (3.3)

where M is the number of states sampled and Õ is the estimator of 〈O〉. By repeating

this process, the running sum will become increasingly closer to 〈O〉 and, in the limit

of infinite samples, will converge to the exact theoretical value. Conceptually, this is

similar to using a finite number of samples in a histogram to estimate a continuous

probability distribution.

Although the general scheme outlined so far is fairly clear, there is still one major

piece that is missing: the method by which states are generated with the proper

probabilities. In this thesis we will broadly talk about two different approaches:

Markov chain Monte Carlo methods (MCMC) and sequential Monte Carlo methods.

Generically, a Markov chain Monte Carlo simulation will randomly create a sequence

of states whereas a sequential Monte Carlo simulation will create a large ensemble of

independent states in parallel.

3.1 Markov chain Monte Carlo

A Markov chain is a sequence of probabilistically chosen states where the prob-

ability of choosing a state only depends on the preceding state. In a Markov chain

Monte Carlo process, a sequence of states is produced such that, in the long sequence

limit, the distribution of states converges to a desired statistical ensemble. Although

Markov chains are abstract mathematical constructs, here we will be discussing them

in the context of physics simulations, therefore “state” is equivalent to a specific
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particle configuration or point in phase space and a Markov chain is a list of dif-

ferent configurations. Likewise, the statistical ensemble to which the Markov chain

converges is a statistical mechanics ensemble such as the canonical or microcanonical.

Here we will discuss the principles of Monte Carlo simulations in terms of discrete

regions of phase space and for systems with discrete degrees of freedom, such as spin

glasses, the proofs made here will be rigorous. Rigorous proofs can also be made for

systems with continuous degrees of freedom, however, they do not substantively differ

from the proofs for discrete systems and, for the sake of simplicity, have been omitted.

In general, if the reader wants to picture a Monte Carlo “state” for a continuous

phase space, they should imagine a local phase space density that, in the continuum

limit, approaches a delta function. Similarly, ergodic dynamics for a continuous

system means that the phase space trajectory of a state will come arbitrarily close to

every other state in phase space. With these two rules, a continuous system can be

effectively thought of as a discrete system.

The generic outline of a MCMC process is quite simple:

1. Initialize the simulation in random state σ

2. Transition to new state, σ′ chosen with probability P (σ → σ′)

(σ can be equal to σ′)

3. Measure observables O(σ), add to running sum

4. Repeat steps 2, 3

The details of how new states are proposed and then accepted or rejected are strongly

related to the resulting distribution of the Markov chain. Put simply, when run for

infinite time, the simulation should sample all different states and each state should

be visited a number of times that is proportional to that state’s statistical weight.

The two critical details of a MCMC scheme are the means by which a new state is
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proposed and the way that proposed states are accepted or rejected. For the method

that proposes a new state, also known as the update, it is only necessary that the

dynamics are ergodic given enough time, however, the details of the updating scheme

can drastically change the efficiency of a simulation and designing update schemes is

often more art than science. In contrast, the way that updated states are accepted

or rejected is entirely determined by a single equation known as the balance relation.

Before discussing balance relations, it is helpful to discuss equilibrium simulations.

Consider a long Markov chain of states produced from a simulation. If the simulation

is in equilibrium, then this chain will approximate the statistical ensemble of states

and, if the chain length goes to infinity, will exactly converge to the ensemble of states.

More precisely, in a finite length Markov chain, each different state, σ, will be visited

a number of times, N(σ) such that

N(σ)∑
{σ′}

N(σ′) ≈ pσ, (3.4)

where pσ = W (σ)/Z is the ensemble probability of σ and where the approximation

becomes exact as the chain becomes infinitely long. In a more physical sense, the

Markov chain will sample states in phase space with a density that is proportional

to the ensemble weight of each state. Since a statistical ensemble is, by its very

nature, an equilibrium object, it does not dynamically evolve. Therefore, a Markov

chain Monte Carlo simulation that is in equilibrium must also be static. If we take

the entire Markov chain and apply the probabilistic evolution to each state then, in

the infinitely large chain limit, the resulting distribution must be identical to the

original. Although the distribution will remain constant, the states in the chain will

have changed due to the Markovian process. Looking at an individual state of an

equilibrium Markov process more closely, we know that Nσ must remain constant

and, therefore, the total probability of state σ updating into another state via the
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Markov process must be exactly compensated with other states updating into σ.

Mathematically, a Markov process being in equilibrium means that [84]

∑
σ

pσP (σ → σ′) =
∑
σ

pσ′P (σ′ → σ), (3.5)

where the probabilities pσ are given by the ensemble weight and

∑
σ′

P (σ → σ′) = 1, (3.6)

meaning that all states must flow somewhere. In order to ensure that pσ are equal

to the ensemble probability pσ = W (σ)/Z, the values of the transition probabilities

must be chosen such that these two relations are upheld. These equations can be

combined into a more compact form known as the global balance equation,

pσ =
∑
σ′

pσ′P (σ′ → σ), (3.7)

although for our immediate purposes, the previous form is more convenient to use.

The intuition behind an equilibrium Markov process is identical to that behind a

static fluid. A fluid being static does not mean that the fluid molecules are stationary.

Instead, it means that while molecules can flow into and out of different regions, they

must do so at exactly the same rate. If they did not do so at the same rate, then

there would be bulk movement within the fluid. Likewise, if a Markov chain is not

in equilibrium, then the probability distribution of different states will not be static

because the simulation will gradually converge to the limiting distribution.

There are many ways to choose transition probabilities such that Eq. 3.7 is sat-

isfied, the simplest of which is called detailed balance. A system satisfies detailed

balance if

pσP (σ → σ′) = pσ′P (σ′ → σ), (3.8)
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for all states σ. At first glance this may appear to be a repeat of what was stated

before, but there is a subtle difference between Eq. 3.5 and Eq. 3.8. Detailed balance

specifies that the net flow between any two states must be zero while the more general

statement of global balance specifies that the net flow in and out of any specific state

must be zero. With detailed balance, the flow from state σ to σ′ must be exactly equal

to the flow from state σ′ to σ. One could imagine another flow that does not satisfy

detailed balance but is still in equilibrium according to global balance. For instance,

states could flow from σ to σ′, from σ′ to σ′′ and so on, as long as the flow eventually

closes back to σ. These kinds of situations are known as loops and, although there are

cases where loops can be utilized to efficiently sample phase space, they tend to be

difficult to design while ensuring that global balance is satisfied. On the other hand,

designing an algorithm that satisfies detailed balance is usually significantly easier.

Although there are many different MCMC algorithms that are used every day, we will

focus on two of the most common, the Metropolis algorithm and event chain Monte

Carlo.

3.1.1 Metropolis-Hastings algorithm

One of the simplest MCMC techniques to implement is the Metropolis-Hastings

algorithm which was first stated and used by Nicholas Metropolis in 1953 [77] and

later extended by Wilfred Hastings in 1970 [51]. This algorithm gives a generic way

to create a sample from a desired target probability distribution, Q(σ), provided we

have a function f(σ) that is proportional to P . For instance, in the case of the

canonical ensemble, f(σ) = e−βE(σ) would be a valid choice since Q(σ) = e−βE(σ)/Z.

The general steps of the Metropolis-Hastings algorithm are

1. Initialize the simulation to an arbitrary state

2. Given current state σ, propose a new state σ′ with probability Pprop(σ′|σ)

3. Accept new state with probability Pacc(σ
′|σ) = min

(
1, Pprop(σ|σ′)

Pprop(σ′|σ)
f(σ′)
f(σ)

)
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4. If new state was accepted, set σ to σ′

5. Measure observables

6. Repeat steps 2–5,

where Pprop(σ′|σ) must satisfy the ergodicity criterion. This scheme is very similar to

the generic MCMC algorithm, however, there is one important difference. Before, we

discussed generic probability flows between different states, whereas the Metropolis-

Hastings algorithm gives a specific prescription which satisfies detailed balance. The

proof can be easily seen by noting that the probability of transitioning from state

σ to σ′ is simply the probability of proposing an update from σ to σ′, Pprop(σ′|σ),

multiplied by the probability of accepting the update, Pacc(σ
′|σ). Plugging this into

the detailed balance equation gives

Pprop(σ′|σ)Pacc(σ
′|σ) pσ = Pprop(σ|σ′)Pacc(σ|σ′) pσ′ . (3.9)

rearranging yields

Pacc(σ
′|σ)

Pacc(σ|σ′)
=
Pprop(σ|σ′) pσ′
Pprop(σ′|σ) pσ

. (3.10)

Because pσ = Q(σ) ∝ f(σ), this ratio can be further simplified to

Pacc(σ
′|σ)

Pacc(σ|σ′)
=
Pprop(σ|σ′)
Pprop(σ′|σ)

f(σ′)

f(σ)
. (3.11)

By defining Pacc as

Pacc(σ
′|σ) = min

(
1,
Pprop(σ|σ′)
Pprop(σ′|σ)

f(σ′)

f(σ)

)
, (3.12)

this equality is always upheld and, therefore, detailed balance is ensured.
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The Metropolis-Hastings algorithm can be used to sample generic probability

distributions, but in this thesis, we are primarily interested in its use to sample

ensembles related to physical systems such as the Ising model or hard sphere fluids.

A simple version of the Metropolis algorithm applied to the Ising model with N spins

goes as:

1. Initialize the spins randomly

2. Randomly choose one spin from σ and propose to flip it to get σ′

3. Accept the spin flip with probability min
(
1, e−β[E(σ′)−E(σ)]

)
4. If proposed flip was accepted then update σ

5. Repeat steps 2–4

Since Pprop(σ′|σ) = Pprop(σ|σ′) = 1/N , the acceptance probability becomes the ratio

of Boltzmann weights of the two configurations. For high temperatures, this algorithm

works quite efficiently at sampling spin configurations. This is simply because in the

high temperature limit, thermal energy dominates and the configurational energy is

mostly irrelevant. Therefore, all configurations have nearly the same probability and

ensuring an equilibrium sampling is nearly trivial. At lower temperature there are

possible issues. For one, the existence of a phase transition is typically accompanied

by a critical slowing of dynamics and a diverging of length scales. Another problem

is that at temperatures below Tc, local energy barriers dominate the free energy

landscape and algorithms that perform “local” updates, such as individual spin flips,

become inefficient. The underlying issue is easy to see in the Ising model. The low

temperature phase consists of two thermodynamic states that are separated by a

diverging free energy barrier. To move across the barrier, many spins have to flip,

however, individual spin flips are energetically unfavorable and are usually rejected.
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3.1.2 Event chain

Event chain Monte Carlo (ECMC) is an algorithm that was developed by Krauth

et al. [18] to study hard disc fluids and was later extended to general pairwise-

interacting fluids [79]. Unlike the Metropolis algorithm, each ECMC move corre-

sponds to a sequence of particle movements called “events”. There are many differ-

ent versions of ECMC, but we will focus on a version that uses straight event chains

which, when used with hard spheres is rejection free. The outline of a single event

chain is that a particle is chosen randomly and is moved in a random direction until

it strikes another particle. The original particle then stops and the new particle is

moved in the same direction until it strikes a third particle. This sequence is contin-

ued until the total displacement of the particles reaches an arbitrary, preset length,

`, as shown in Fig. 3.1. Since this algorithm moves a chain of particles instead of

looking for non-overlapping displacements, it is rejection free. ECMC also satisfies

detailed balance because each “forward” event chain can be reversed by selecting the

lasts particle and moving it in exactly the opposite direction. This “reverse” chain

exactly undoes the forward chain particle moves and brings the configuration back to

its initial state. Since the initial particle and direction of the chain are chosen from

uniform distributions, the probability of proposing a forward and reverse chain are

exactly the same.

By virtue of being rejection free, ECMC has obvious advantages over the Metropo-

lis algorithm, however, the full power of ECMC only comes when detailed balance is

broken. The balanced version of ECMC, can still fail to sample phase space efficiently

in some circumstances. Even if a forward chain is not exactly reversed, if any of the

particles in the forward chain are chosen in the next step and moved backwards, then

they will be moved back to their initial positions, effectively moving the configuration

back near its original point in configuration space and resulting in a high autocorrela-

tion. This may seem unlikely, but in a high-density case, where a chain may contain
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Figure 3.1. Diagram of a single event chain, reproduced from Ref. [79].

many particles, it can become an issue where after doing a long chain, another chain

reverses many of the original particle moves. One remedy to this is simple: break de-

tailed balance. In a system with periodic boundary conditions, only allowing moves in

the forward direction will still result in a fully sampled configuration space and will

not allow configurations to diffuse back towards their initial positions. The global

balance version of ECMC has been thoroughly probed by Krauth, et al, and has

been found to be extremely efficient at sampling hard particle configurations at high

densities when compared to other algorithms that satisfy detailed balance.

3.1.3 Autocorrelation times

So far we have discussed the way to design a MCMC simulation that converges

to the correct stationary distribution and have completely neglected the dynamics

related to convergence and, more generally, how to accurately estimate the statistical

and systematic errors associated with the measurement of an observable. In a MCMC

simulation, the principle source of systematic errors comes from a lack of equilibration.

In the infinitely long Markov chain limit, as long as Eq. 3.5 is upheld, the sample

will have the correct statistics and the associated errors will go to zero. However,

simulations never have infinite resources and, as a result, we need to ensure that
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each simulation takes an equilibrium sample of states to make measurements. The

primary challenge in doing this is that MCMC sequences nearly always have non-

zero correlations. Therefore, after each measurement, it is necessary to iterate the

Monte Carlo process many times in order to get a new, uncorrelated measurement. A

simulation that is well-equilibrated will have made many uncorrelated measurements

so that no major regions of phase space have been unsampled. It is possible to

quantify the level of equilibration in a simulation and the number of Monte Carlo

steps necessary to decorrelate measurements by using autocorrelation times. It is

important to emphasize that we have, to some extent, abused the word “time” since

we are not measuring time in seconds or minutes, but in units of Monte Carlo steps. In

a Monte Carlo simulation, time is usually parameterized in “sweeps”. In a system with

N particles, one sweep corresponds to proposing Monte Carlo updates to N particles.

It is not necessary that the updates are accepted or that each particle is offered an

update, just that the Monte Carlo dynamics has worked on N different particles.

This is a particularly useful parameterization because it is intrinsically intensive. In

general, autocorrelation times are derived from the two-time autocorrelation function,

which is defined as the correlation function of an observable with itself at a later time

in the simulation,

CO(t) = 〈Ot1Ot2〉 − 〈Ot1〉〈Ot2〉 (3.13)

= 〈Ot1Ot2〉 − 〈O〉2, (3.14)

where CO(t) is the autocorrelation function of observable O for time t = t2 − t1,

and t1,2 correspond to different sampling points in our Markov sequence. Note that

the zero-time autocorrelation function is simply the variance, CO(0) = var(O). For

t→∞, the asymptotic behavior of the autocorrelation function is expected to be

C(t) ∼ e−t/τexp , (3.15)
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where τexp is the exponential autocorrelation time and the O has been omitted. The

number of independent measurements that can be made in a MCMC simulation scales

as tsim/τexp, where tsim is the total simulation time. Put otherwise, if optimally sam-

pled, the systematic errors of a MCMC simulation scale as
√
τexp/t. A simple way of

estimating τexp involves taking many measurements over the course of a simulation

and performing an exponential fit to the data, however, more advanced Fourier meth-

ods are typically more efficient. One major complication can arise if the dynamics of

a MCMC simulation has many competing time scales. When several of the longest

time scales are close to each other, many Monte Carlo steps will be required to resolve

the true asymptotic behavior of C(t).

While τexp gives information about systematic errors, a corresponding autocorre-

lation time related to statistical errors, τint, can also be measured. This is done by

estimating the standard deviation of the mean of the relevant observable [56],

σ2
O

= 〈O2〉 − 〈O〉2 (3.16)

=
1

t2sim

M∑
i=1

(
〈O2

ti
〉 − 〈Oti〉2

)
+

1

t2sim

M∑
i 6=j

(
〈OtiOtj〉 − 〈Oti〉〈Otj〉

)
, (3.17)

where M is the number of measurements made, tsim is the total number of sweeps

performed, and ti,j are the times of the i’th and j’th measurements. If the measure-

ments are completely uncorrelated, then 〈OtiOtj〉 = 〈Oti〉〈Otj〉, and the second term

of Eq. 3.17 cancels, yielding

σ2
O

=
1

t2sim

tsim∑
ti=1

(
〈O2

ti
〉 − 〈Oti〉2

)
(3.18)

=
1

tsim

(
〈O2

t1
〉 − 〈Ot1〉2

)
(3.19)

=
CO(0)

tsim
(3.20)

=
var(O)

tsim
, (3.21)
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which is simply the standard definition of the standard deviation of the mean for

uncorrelated samples. However, unless many Monte Carlo sweeps are made between

each measurement, say 100×τexp, the assumption that simulation data is uncorrelated

is unrealistic. Furthermore, uncorrelated data is neither efficient nor necessary to

properly estimate observables or statistical errors, provided that the full form of Eq.

3.17 is used. Expanding and reordering Eq. 3.17 gives

σ2
O

=
CO(0)

tsim

[
1 + 2

M∑
i=1

(〈Ot1Oti+1
〉 − 〈Ot1〉〈Oti+1

〉
CO(0)

)(
1− ti

tsim

)]
, (3.22)

where the first term in the sum can be identified as the two-time autocorrelation

function. Simplified, this becomes

σ2
O

=
2CO(0)

N
τint, (3.23)

where τint is the integrated autocorrelation time defined as

τint =
1

2
+ 1

M∑
i=1

CO(ti)

CO(0)

(
1− ti

tsim

)
. (3.24)

The sum in this equation is equivalent to integrating the autocorrelation function,

which is what gives τint its name. The standard error of the mean of O is directly

related to τint by

σO =

√
2CO(0)

tsim
τint. (3.25)

With these two time scales, it is possible to determine whether a simulation has

sampled enough of phase space to reduce systematic errors and to make an accurate

measurement of an observable (τexp) and whether enough data has been collected to

make an precise measurement of the observable (τint). Although these tools allow

43



make it possible to determine whether or not a simulation is in equilibrium, they

do not help to speed the equilibration. For a standard statistical mechanics system,

such as the Ising model or a simple fluid, the Monte Carlo algorithms presented so

far, in combination with the methods to estimate errors, will be enough to properly

equilibrate a simulation and measure observables. However, as discussed in the first

chapter, glassy systems have a number of interesting properties that also make them

particularly difficult to simulate. Extremely slow dynamics resulting from frustration,

and an exponentially large number of metastable states are particularly troublesome

for a Monte Carlo simulation. The methods discussed so far will not work to properly

sample the phase spaces of such systems and more advanced Monte Carlo algorithms

become necessary.

3.2 Tempering and annealing algorithms

3.2.1 Parallel tempering

In cases where there are multiple different thermodynamic minima, using a simple

form of MCMC like the Metropolis algorithm may not be good enough, and more

complex tools become necessary. For instance, the Ising model in the low temperature

phase has two thermodynamic minima, however, the Metropolis algorithm discussed

in the previous section is unable to move between them and the simulation will

become trapped in either the up or down state. For an Ising model without a field

this is not actually a problem; the two minima are equivalent in all ways and it is

sufficient to only probe one minimum at a time. However, if a small field were added

to the Ising model, then a simulation running a simple Metropolis algorithm runs

the risk of becoming stuck in the wrong state that does not correspond to the true

thermodynamic minimum. For glasses, this problem is exacerbated further because

there is typically an exponentially large number of local minima, each of which is

surrounded by large, or even diverging, free energy barriers. In these cases, there
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is little hope of finding the true thermodynamic behavior from a simple Metropolis

simulation and special techniques need to be used.

Parallel tempering (PT) is a MCMC algorithm that was designed to probe systems

that have rough free energy landscapes, such as glasses. The general idea behind a

PT simulation is relatively straightforward and is shown diagrammatically in Fig.

3.2 for the case of the canonical ensemble and where a transition occurs after some

temperature Tc. Instead of running a single simulation at a single temperature, several

independent simulations are run in parallel at different temperatures, β0 < β1 <

... < βN . These simulations can take the form of a fixed-temperature Monte Carlo

scheme such as the Metropolis algorithm, or even a molecular dynamics simulation.

At periodic intervals, configurations at neighboring temperatures, βj < βi, will be

prompted to swap positions with probability

p = min
(
1, e∆E∆β

)
, (3.26)

where ∆β = βi − βj and ∆E = Ei − Ej. The swap probability used for parallel

tempering satisfies detailed balance and ensures that the simulations at different

temperatures remain in thermal equilibrium. Between swaps, the single-temperature

simulations are used to further equilibrate the configurations and to accrue data

for the local temperatures. Eventually, as the simulation time increases, more local

minima are probed in the low temperatures and equilibrium measurements are made

at all different temperatures. Like any MCMC process, the errors associated with

measured observables decrease as the simulation time increases and autocorrelation

times are used to estimate the equilibration of data obtained at each temperature

step. Of course there are many details required to make an efficient simulation, such

as optimal placement of the temperature steps and choice of equilibrating scheme,

however, those are beyond the scope of this thesis. It is important to note that

this technique is not specific to the canonical ensemble or with using temperature
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β0

β1

β2

...

βN

Figure 3.2. Diagram of a parallel tempering simulation. The blue curve corresponds
to the free energy landscape of the system, the red dashed line corresponds to the
Monte Carlo dynamics at a specific temperature, and the temperature schedule is
given by β0 < β1 < β2 < ... < βN .
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Figure 3.3. Diagram of a simulated annealing simulation. The simulation is initial-
ized in an easy-to-equilibrate region of parameter space, for instance a high tempera-
ture, and is gradually annealed towards a difficult-to-equilibrate region of parameter
space such as a low temperature phase. Eventually, each simulation gets stuck in a
localized region of phase space associated with a local free energy minimum.

as the tempering parameter. The algorithm is easily generalizable and, for instance,

one could temper in density or chemical potential or any number of thermodynamic

parameters.

3.2.2 Simulated annealing

There are times when only the ground state of a system is needed and, in these

cases, simulated annealing (SA) [63] is the simplest Monte Carlo method that can be

used. In the context of the canonical ensemble, a simulated annealing algorithm is

quite straightforward: initialize a simulation at high temperature and, while running

MCMC or some other ergodic dynamics, gradually anneal towards the low tempera-

ture regime. Eventually each simulation will become trapped in a local minimum of

the free energy which, as T → 0, corresponds to a local minimum of the energy. This

scheme is shown diagrammatically in Fig. 3.3.

Simulated annealing must be repeated many times and, as the number of runs

goes to infinity, the probability that the true ground state and energy minimum

will be found goes to unity. This process works because, by gradually changing the

thermodynamic parameter while running MCMC, the simulation is able to better
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probe the free energy landscape and is able to avoid getting stuck in unfavorable

local minima. Throughout the annealing process, MCMC is constantly being run

and, therefore, the simulation tends to sample regions with higher statistical weight

more often. While simulated annealing can efficiently find ground states, because

the temperature is constantly changing, the simulation is never in thermodynamic

equilibrium and finite-temperature observables cannot be measured, although there

are ways to take equilibrium measurements if the proper weighted average is used,

see Ref. [95]. If one were to run a large number, or “population”, of simulated

annealing simulations in parallel and, after each annealing step, weight and resample

the population so that it was approximately in thermal equilibrium, then one would

be able to make equilibrium measurements of observables while retaining the benefits

of annealing. An algorithm that fits this description is population annealing Monte

Carlo.

48



CHAPTER 4

POPULATION ANNEALING

Population annealing Monte Carlo (PA) is a sequential Monte Carlo algorithm

that can efficiently measure equilibrium properties and find ground states of systems

with rough free energy landscapes. Population annealing was originally devised by

Hukushima and Iba [54] and falls into the class of particle filters and evolutionary

genetic algorithms, where an ensemble of simulations is carried out simultaneously in

order to estimate a probability distribution. One noteworthy feature of population

annealing is that it naturally lends itself to massive parallelization.

Population annealing is a generic technique that can be applied to any statistical

ensemble, but in this chapter we will mainly focus on the canonical form of the

algorithm with temperature as the annealing parameter, as described in Refs. [72,110].

Glassy systems that are particularly well-suited to the canonical ensemble are spin

glasses or soft configurational glasses, where the free energy landscape undergoes a

sudden increase in complexity as the temperature is decreased. An example of PA

being used with another ensemble will be shown in Ch. 6, where we look at a hard

sphere fluid in the NVT ensemble with density as the annealing parameter. As seen

in Ch. 2.4, the hard sphere NVT ensemble is similar to the microcanonical ensemble,

but there are some subtle and important differences. A true microcanonical ensemble

implementation of PA that was applied to the Potts model can be found in Ref. [95]

and is similar, in many respects, to another sequential Monte Carlo algorithm named

nested sampling [10, 11, 74, 93, 100]. Further examples of the canonical ensemble

version of PA can be found in Refs. [4, 14, 15,34,69,109–112].
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4.1 Algorithm outline

Population annealing is similar to a parallel version of simulated annealing in many

respects: a population of R configurations, henceforth called “replicas” or “population

members”, is initialized in an easy-to-equilibrate region of parameter space, and the

population is slowly annealed towards a more difficult target region. In addition,

there is a resampling step after each annealing step where individual replicas may be

copied or eliminated according to their ensemble weights. Resampling ensures that

the ensemble of replicas is kept near statistical equilibrium, however, the resampled

ensemble has degeneracies due to copied replicas, and does not fully sample the

low-energy spectrum at the lower temperature. In order to address these issues, an

equilibrating procedure such as Markov Chain Monte Carlo or molecular dynamics is

used to decorrelate and additionally equilibrate the population. The generic outline

of the algorithms can be summarized as

1. Initialize R independent simulations in an easy-to-equilibrate region of param-

eter space

2. Equilibrate and decorrelate population, typically with MCMC or MD

3. Change annealing parameter

(Population is now out of equilibrium)

4. Weight and resample the population to better approximate ensemble

(Population is now approximately in equilibrium)

5. repeat steps 2-4.

This process is illustrated in Fig. 4.1. Although a PA simulation can traverse through

a multi-dimensional parameter space, it is more common to anneal in a single param-

eter. In the canonical ensemble, the annealing schedule is composed of NT inverse
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Figure 4.1. Diagram of a population annealing simulation. The simulation is ini-
tialized in an easy-to-equilibrate region of parameter space, for instance a high tem-
perature (top), and is gradually annealed towards a difficult-to-equilibrate region of
parameter space such as a low temperature phase (bottom). After each annealing
step, the population is resampled according to the weight of each configuration so
as to stay, approximately, in thermal equilibrium. After resampling, the population
is then further equilibrated, locally in phase space, using MCMC. With this scheme,
a population annealing simulation can sample many local minima even in the low-
temperature, glassy phase.
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temperatures {βNT−1, ..., β0}, where βj+1 < βj, where the initial temperature is typi-

cally infinite, βNT−1 = 0, and the final β0 is chosen as desired.

Consider the resampling step from inverse temperature β to β′. Each replica,

denoted by a subscript i, is given a resampling factor τi that is proportional to the

ratio of the Boltzmann weights of that replica at the two temperatures,

τi =
R

R̃β

e−(β′−β)Ei

Q(β, β′)
, (4.1)

where Ei is the energy of replica i, Q is a normalization factor used to control the

population size,

Q(β, β′) =
1

R̃β

R̃β∑
i=1

e−(β′−β)Ei , (4.2)

and R̃β is the population size at step β. The actual population size R̃β may fluctuate

around the target population size R. The resampling factor is the expected number

of copies of a replica, that is, τi = 〈ni〉, where ni is the stochastically chosen integer

number of copies of a replica i. There are several ways to implement resampling in PA.

In this work, when dealing with the canonical ensemble, we follow the method used

in Ref. [110], which minimizes the variance of ni by choosing ni(β, β
′) = bτi(β, β′)c

with probability dτi(β, β′)e − τi(β, β
′) and ni(β, β

′) = dτi(β, β′)e otherwise. This

method results in an average population equal to R, with fluctuations of order
√
R.

The resampling step ensures that, for large R, if the population is an equilibrium

ensemble at β, it will also be an equilibrium ensemble at β′. One important aspect of

the resampling step is the fraction of the population that is eliminated and replaced

via resampling, which is dubbed the “culling fraction”. This fraction will depend on

the size of each annealing step, with a larger step resulting in a larger fraction being

eliminated.
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The normalization factor Q(β, β′) is actually an estimator of Z(β′)/Z(β) [72],

Q(β, β′) =
1

R̃β

R̃β∑
i=1

e−(β′−β)Ei (4.3)

≈ 〈e−(β′−β)Eσ〉 (4.4)

=
∑
σ

e−(β′−β)Eσ

(
e−βEσ

Z(β)

)
(4.5)

=

∑
σ e
−β′Eσ

Z(β)
(4.6)

= Z(β′)/Z(β), (4.7)

where Eq. 4.4 is the exact thermal average and the summation over σ is over all

configurations. The weight factor at each step can be thermodynamically integrated

to give a free energy estimator,

−βkF̃ (βk) + βNT−1F̃ (βNT−1) = logZ(βk)− logZ(βNT−1) (4.8)

= log

(
Z(βk)

Z(βk+1)

Z(βk+1)

Z(βk+2)
· · · Z(βNT−2)

Z(βNT−1)

)
(4.9)

=

NT−1∑
l=k+1

log

(
Z(βl−1)

Z(βl)

)
(4.10)

≈
NT−1∑
l=k+1

logQ(βl, βl−1). (4.11)

In a typical PA simulation, we initialize the population in a regime where the parti-

tion function has a trivial analytic form. For an Ising spin glass, where we will use

this algorithm, annealing begins at βNT−1 = 0 where all configurations are equally

weighted and the value of the partition function is Ω = 2N . The resulting free energy

estimator is

−βkF̃ (βk) =

NT−1∑
l=k+1

logQ(βl, βl−1) + log Ω, (4.12)
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where F̃ is the estimator of the free energy.

Observables from different independent simulations can be combined with a weighted

average defined as

O =

∑M
m=1 ÕmRm exp[−βF̃m]∑M
m=1Rm exp[−βF̃m]

, (4.13)

where the index m iterates over different simulations. This method of averaging

is particularly useful because as the number of runs increases, both statistical and

systematic errors decrease. The intuition behind the weighted average formula is

relatively simple. If one had unlimited computing resources, there would be no culling

of the population and, instead, the population would grow after each annealing step.

The population is kept from growing in an unbounded manner purely for the sake of

computational limitations. If we were to allow a simulation’s population to increase

without bound then it would grow as R exp[−βF̃ ], and a large population would

imply that the corresponding simulation found a particularly high-weight area of

phase space. The formula for the weighted average assigns a weight to each simulation

according to its projected population size. In the limit of a population of size one, this

becomes identical to a weighted average of different simulated annealing simulations1.

4.2 Error analysis

Because it is a sequential Monte Carlo algorithm, the error analysis in popula-

tion annealing is fundamentally different than that in a Markov chain Monte Carlo

algorithm. The equilibration of a MCMC simulation is determined by comparing run

time to equilibriation simulation times, see Ch. 3.1.3, and as the simulation time goes

to infinity, the measurements converge to the exact result. Population annealing, on

1For a more complete discussion on the comparison between weighted simulated annealing and
population annealing, see Ref. [95].
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the other hand, samples phase space with a population all in parallel and, therefore,

converges to the exact result as R→∞. Instead of equilibration simulation times τ ,

the comparable quantity in a PA simulation is equilibrium population sizes ρ, and a

simulation is well-equilibrated when ρ/R � 1, with the exact equilibration criteria

depending on the specific application. Just as there are many different equilibration

autocorrelation times in an MCMC simulation, there are also many different equilib-

rium population sizes in a PA simulation. Here we define the errors of a PA simulation

and three associated equilibrium population sizes, ρf , ρt, and ρs, that were originally

derived and defined in Ref. [110].

The systematic errors of a population annealing simulation arise from not having

a large enough population to properly sample the phase space. In a system with

several local minima, a PA simulation with too small of a population will not sample

statistically important regions of phase space and the resulting observable measure-

ments will be biased. A well-equilibrated PA simulation will sample all statistically

important regions of state space and, as a result, will give consistent measurements

of the free energy observable. In the large R limit, phase space is well-sampled so

generic observables, O, and the free energy estimator can be assumed to be a bivari-

ate Gaussian. Using this assumption, the systematic error associated with measuring

observable O is given by [110]

∆O = β cov(Õ, F̃ ). (4.14)

Furthermore, we can define an equilibrium population size ρf as

ρf = lim
R→∞

R var(βF̃ ). (4.15)

This limit is generally believed to be well-defined because of a central limit theorem

type argument. Equation 4.2 can be approximated as a sum of approximately R
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Figure 4.2. Diagram of a population annealing simulation over several annealing
steps. Each family is color coded and corresponds to a statistically correlated subset
of the population. As annealing and resampling take place, the families sizes fluctuate
according to the internal correlations of the population.

random variables and the free energy is simply the sum of logQ for subsequent an-

nealing steps. Altogether, the free energy estimator behaves as a sum of R random

numbers, and the variance of such a quantity, by the central limit theorem, scales

as 1/R as long as the simulation is well-equilibrated and all of the variables are

independent. In general, if a region of parameter space is easy to equilibrate using

MCMC, then ρf / 1 and a simulation that cannot be equilibrated using MCMC will

result in ρf > 1. With this last point it is important to emphasize that although ρf

will converge to a constant, its specific value for a PA simulation will depend on the

precise annealing protocol. A PA simulation with many MCMC sweeps will tend to

equilibrate more effectively and, as a result, will have a smaller value of ρf .

The statistical errors in a population annealing simulation originate from a pop-

ulation that is finite in size, which is further exacerbated by correlations within the

population that appear after resampling. In easy-to-equilibrate regions of parameter
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space, copies of configurations can be easily decorrelated using few MCMC sweeps,

however, in difficult-to-equilibrate regimes, where MCMC fails to fully equilibrate,

the copies remain correlated to varying degrees. In order to keep track of these corre-

lations, we introduce the notion of “families” within the population, where members

of the population that originated from the same initial state are said to be in the same

family, and each family, i has size ηi, as seen in Fig. 4.2. At the beginning of a PA

simulation, there are R families, each of size unity. As the simulation progresses, the

number of families remains R but many of the families die off entirely and have zero

members. A bound on the statistical errors can be found by assuming that replicas

within a family are 100% correlated,

var(Õ) ≤ var(O)
R∑
i=1

η2
i , (4.16)

where the index runs over all of the families and var(O) refers to the variance of the

observable in the Gibbs distribution. Note that at the beginning of the simulation,

when all families have a single member, this becomes an equality. An equilibrium

population size can be defined from the family distribution as

ρt = lim
R→∞

1

R

R∑
i=1

η2
i (4.17)

or, equivalently [4], as

ρt − 1 = lim
R→∞

var(η). (4.18)

Note that in a population that is entirely uncorrelated, all families are size 1 and

ρt = 1, while a correlated population will result in a several larger families and

ρt > 1. The statistical errors associated with observable O are bounded by

δÕ ≤
√

var(O)ρt
R

. (4.19)
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The correlations within a population and the systematic errors of a simulation are

related in a non-trivial manner, and a relation between ρt and ρf will be discussed in

Ch. 5. In addition to ρt, the distribution of family sizes can be used to define another

equilibrium population size. The entropy of the family size distribution is defined as

Sf = −
R∑
i=1

ηi
R

log
ηi
R
, (4.20)

where eSf is a measure of the effective number of independent families in a simulation.

The corresponding equilibrium population size ρs is defined as

ρs = lim
R→∞

R

eSf
. (4.21)

These metrics of error are generic to all population annealing simulations, however,

as we will see in Ch. 6, there may be additional measures of equilibration that are

system-specific. Additionally, the specific form of ρf can change depending on the

ensemble used; in the canonical ensemble, ρf ∝ varβF̃ , while in the microcanonical

ensemble, ρf ∝ varS.
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CHAPTER 5

SPIN GLASS SIMULATIONS

5.1 Introduction

In this chapter we discuss the results of the project on the application and opti-

mization of population annealing to spin glass systems. The work presented here is

a combination of algorithmic improvements on the canonical version of PA and new

computational results on the 3D Edwards-Anderson spin glass model. We begin by

giving a brief recap of the EA model and its related observables that can be measured

using population annealing. We then derive a fundamental relation between ρf and

ρt that intrinsically relate the statistical and systematic errors in a PA simulation,

following which we present a scheme to optimally simulate a large set of disorder

samples. Finally, we present new numerical results for the 3D EA spin glass model

and results that support our optimizations. This contents of this chapter is based on

work published in Ref. [4].

5.1.1 Model and Observables

We study and apply PA in the context of the 3D Edwards-Anderson (EA) spin

glass, defined by the Hamiltonian

H = −
∑
〈n,m〉

Jnmsnsm, (5.1)

where the summation is over nearest neighbors on a cubic lattice with periodic bound-

ary conditions, sn = ±1 are Ising spins, and Jnm are bonds drawn from a Gaussian
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distribution with zero mean and unit standard deviation. In order to understand the

thermodynamic properties of the EA model, it is necessary to do many simulations

with different bond configurations and to then take an average afterwards. PA gives

access to the ensemble average of observables for a fixed set of bonds, therefore many

PA simulations must be conducted to take a bond average. An average of an observ-

able O over bond configurations will be denoted as [O]J, whereas a thermal average

will be denoted as 〈O〉.

There are several types of observables that are theoretically interesting in spin

glasses. Observables that can be measured directly in a single spin configuration are

the easiest to measure since PA effectively simulates the canonical ensemble at each

temperature step. Thermodynamic quantities for a single bond configuration, such

as the average energy E = 〈H〉 or average magnetization, are all straightforward to

measure as a simple population average at each temperature step.

The order parameter for the EA model is obtained from the overlap between

two spin configurations chosen independently from the canonical ensemble at a given

temperature in the same bond configuration. The spin overlap q is defined as

q =
1

N

N∑
n=1

s1
ns

2
n, (5.2)

where s1
n is the nth spin of replica 1, and N is the total number of spins in the

system. The thermal distribution of overlaps P (q) for a given temperature and bond

configuration has support on [−1, 1]. The Edwards-Anderson order parameter, qEA,

is the thermal average of the absolute value of q in (any) single pure thermodynamic

state. In order to measure P (q), it is necessary to measure q many times from

spin configurations 1 and 2 drawn independently from the equilibrium ensemble of

replicas. This process is straightforward in PA as long as the family of each replica is

recorded: PA gives access to the equilibrium ensemble, and replicas are guaranteed

to be independent if they are from different families.
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An important observable in spin glass theory is the disorder-averaged integrated

overlap weight around the origin,

I(q0) =

[∫ q0

−q0
P (q)dq

]
J

, (5.3)

where the value of q0 is somewhat arbitrary. Following previous studies [60, 110], we

use q0 = 0.2. The quantity I(q0) was introduced to distinguish between competing

theories of the low temperature spin glass phase. Replica symmetry breaking theory

[89, 91, 92] predicts that I(q0) goes to a nonzero constant as N → ∞ for any q0 > 0

while the droplet [27,40,41,76] and chaotic pairs pictures [81] predict that I(q0)→ 0

as N →∞ for any q0 < qEA.

The link overlap ql is another quantity that is defined from two independent spin

configurations,

ql =
1

Nb

∑
〈n,m〉

s1
ns

1
ms

2
ns

2
m, (5.4)

where Nb = 3N is the number of bonds. Like the spin overlap, the link overlap is

useful for distinguishing theories of the spin glass phase [60]. It is also useful as a

measure of equilibration using a relation found by Katzgraber and Young [60]. They

define

∆KY = [el − e]J, (5.5)

where e is the thermally averaged energy per spin and el is an energy-like quantity

defined from the link overlap,

el = − 1

T

Nb

N
(1− 〈ql〉). (5.6)
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For an individual bond configuration, it is not the case that el = e, however, for a

disorder average over Gaussian bonds, ∆KY = 0. The requirement that ∆KY ≈ 0 is a

useful indicator of equilibration.

If PA is run to a sufficiently low temperature we can obtain an estimator of the

ground state energy Ẽ0 from the lowest energy encountered during the simulation.

Population annealing also gives direct access to the estimated probability of being

in the ground state at each temperature, g̃0, which is simply the fraction of the

population at the lowest energy found during the entire simulation. Alternatively,

with the aid of the free energy estimator, it is possible to obtain an indirect estimate

of the probability of being in the ground state, ḡ0, by calculating the Boltzmann

weight of the ground state,

ḡ0 = 2 e−βE0+βF̃ . (5.7)

By comparing these two estimators of the probability of being in the ground state,

we can asses systematic errors within our simulation.

5.2 Population Annealing Theory

5.2.1 Error Estimation

As shown in [110], the systematic error of an observable O is given by

∆O = var(βF̃ )

[
cov(Õ, βF̃ )

var(βF̃ )

]
, (5.8)

where Õ is the PA estimator of O and the (co)variances are taken with respect to

independent runs of PA. The bracketed quantity is expected to converge to a finite

limit as R → ∞, meaning that for large R, the systematic error for any observable
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is proportional var(βF̃ ). Furthermore, the quantity var(βF̃ ) is expected to scale as

1/R, and so it is natural to define an equilibration population size, ρf , as

ρf = lim
R→∞

R var(βF̃ ). (5.9)

The equilibration population size sets a population scale for a given bond configu-

ration, and by choosing the population such that R � ρf , systematic errors behave

as ρf/R. One complication is that in order to measure ρf , many simulations of the

same bond configuration must be made.

An analogous quantity for statistical errors, ρt, can be defined that corresponds to

the population size required to minimize statistical errors. In PA, if no decorrelating

Markov chain Monte Carlo were done, the statistical errors would directly scale with

the second moment of the family distribution, see [110]. Therefore we define ρt as

ρt = lim
R→∞

1

R

R∑
i=1

η2
i , (5.10)

where the summation is over families and ηi is the size of family i. Note that we

can also express ρt in terms of the variance of the family size distribution. Since the

average family size is one,

ρt − 1 = lim
R→∞

var(η). (5.11)

Because we do perform MCMC at each annealing step, the actual statistical errors will

be lower and ρt can be used as a conservative estimate for the population size necessary

to minimize statistical errors. Specifically, the statistical error δO in measuring an

observable O in a PA run with population size R is bounded by

δO ≤
√

var(O)ρt
R

(5.12)
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where var(O) here refers to the underlying variance of the observable in the Gibbs

distribution.

Unlike ρf , ρt can be easily estimated from a single run and, as will be shown in

the next section, there is a close relationship between ρf and ρt that can be used to

our advantage.

5.2.2 Relation between ρt and ρf

In this section we provide an argument justifying the inequality

ρt − 1 > ρf . (5.13)

The argument uses a modified version of PA where the exact free energy is known and

is used for normalizing the weight of each spin configuration. This modified version of

PA is similar to the idea of using blocks of a much larger total population to calculate

ρf and ρt. In this version of PA, the weight of spin configuration i is given by

τi = e−(β′−β)Ei+β
′F ′−βF , (5.14)

where F and F ′ are the exact free energies at β and β′, respectively. The actual

number of copies ni of configuration i is a random non-negative integer, n(τi), whose

mean is τi. Our implementation of n(τ) is given in Ch. 4 but the details are not

important to the argument. Here we divide ni into τi and a random remainder z(τi),

whose mean is zero,

ni = τi + z(τi). (5.15)

The total population R̃β′ at temperature step β′ is given by

R̃β′ =

R̃β∑
i=1

ni, (5.16)
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which can also be expressed in terms of the family size distribution,

R̃β′ =
R∑
j=1

ηj, (5.17)

where ηj is the size of family j at temperature step β′. In the exact free energy version

of PA, families are independent of each other, so the variance of the sum is the sum

of variances and var(R̃β′) = R var(η). From the definition of ρt, Eq. 5.11,

ρt(β)− 1 = lim
R→∞

1

R
var(R̃β) (5.18)

Thus, in the exact free energy version of PA, there are relatively large fluctuations

in the population size that scale as
√
ρtR in contrast to the version we implement

in the simulations, where the population size is nudged toward R at every step and

population fluctuations scale as
√
aR with a . 1.

We can also derive an expression for ρf that is related to population size fluctu-

ations within the exact free energy version of PA. Starting from the factor Q(β, β′)

[see Eq. 4.2] we have,

Q(β, β′) =
1

R̃β

R̃β∑
i=1

e−(β′−β)Ei

=
1

R̃β

 R̃β∑
i=1

τi

 e−β
′F ′+βF . (5.19)

We also know that Q(β, β′) is an estimator of the ratio of the partition functions of

two subsequent temperatures so that,

Q(β, β′) = e−β
′F̃ ′+βF̃ , (5.20)
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where F̃ and F̃ ′ are the free energy estimators at β and β′, respectively. Combining

the above two relations gives

e−β
′∆F̃ ′+β∆F̃ =

1

R̃β

R̃β∑
i=1

τi

=
1

R̃β

R̃β∑
i=1

[ni − z(τi)], (5.21)

where ∆F̃ = F̃ − F is the deviation of the free energy estimator from the exact

free energy. If the population is large, this deviation is small so we can expand the

exponential of the free energy, and using Eq. 5.16, we obtain

1− (β′∆F̃ ′ − β∆F̃ ) =
R̃β′

R̃β

−
∑R̃β

i=1 z(τi)

R̃β

. (5.22)

The population size at temperature β can be decomposed as R̃β = R + δR̃β, where

R is the mean population and δR̃β is the deviation from the mean at temperature β.

Expanding in δR/R yields,

1− (β′∆F̃ ′ − β∆F̃ ) =

(
1 +

δR̃β′

R

)(
1− δR̃β

R

)

− 1

R

R̃β∑
i=1

z(τi)

(
1− δR̃β

R

)
.

(5.23)

From this point onwards, R̃j will denote the population at annealing step j with

inverse temperature βj, and τ ji will denote the weight of configuration i during the

resampling step from βj+1 to βj. Disregarding all (δR/R)2 terms, summing Eq. 5.23

over all steps in the annealing schedule, and taking the variance of the result yields,

var
(
βk∆F̃k

)
= var

δR̃k

R
− 1

R

k+1∑
j=NT−1

R̃j+1∑
i=1

z(τ ji )

 . (5.24)
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From the definition of ρf , Eq. 5.9, we have,

ρf (βk) = lim
R→∞

1

R
var

δR̃k −
k+1∑

j=NT−1

R̃j+1∑
i=1

z(τ ji )

 . (5.25)

Expanding the variance and using Eq. 5.18 yields a relation between ρf and ρt,

ρf (βk) = ρt(βk)− 1

− lim
R→∞

1

R

2 cov

δR̃k,
k+1∑

j=NT−1

R̃j+1∑
i=1

z(τ ji )


− var

 k+1∑
j=NT−1

R̃j+1∑
i=1

z(τ ji )

 .
(5.26)

In Appendix A.1 we argue that the quantity in square brackets is greater than zero

yielding the desired inequality, ρt − 1 > ρf .

There are two caveats concerning this inequality. First, the argument in Appendix

A.1 establishing the positivity of the term in square brackets is not rigorous. More

importantly, the result applies to a version of PA that is normalized by the exact

free energy and has large fluctuations in population size. We conjecture that an

“equivalence of ensembles” result holds for the implemented and exact free energy

version of PA so that both ρf and ρt are the same for both algorithms but this question

deserves further study.

We will see in the next two sections and in Appendix A.2 that the inequality

between ρf and ρt− 1 can be extended to an approximate equality, provided that the

culling fraction is small at each step. This approximate equality and, by extension,

the inequality are supported by numerical results shown in Sec. 5.4.1.

5.2.3 Temperature step size, culling fraction and energy variance

As we shall see in Sec. 5.3.2, a natural way to choose the β–schedule for population

annealing is to cull a fixed fraction of the population at each resampling step. In this
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section we derive a relation between the culling fraction, the variance of the energy

distribution, and the size of the temperature step. To derive this relation, note that

the expected number of copies of each configuration is τi and the actual number of

copies is bτic with probability dτie − τi or dτie otherwise. Thus a configuration can

be eliminated only if τ < 1, and the expected number of eliminated configurations in

a resampling step is

εR =
∑
τi<1

(1− τi), (5.27)

where ε is the (expected) culling fraction. Let 〈E〉 and σ2
E, respectively, be the thermal

average energy and variance of the energy. Consider a resampling step from β to β′

with ∆β = (β′−β). In the regime ∆βσE � 1 we can expand the definition of τi, Eq.

4.1, to leading order in ∆β to obtain,

τi = 1−∆β(Ei − 〈E〉), (5.28)

meaning that τ is approximately a Gaussian random variable with mean one and

standard deviation ∆βσE. Within this Gaussian approximation and for large R, the

sum defining ε in Eq. 5.27 can be replaced by an integral,

ε ≈
∫ 1

−∞
(1− τ)N(τ ; 1,∆βσE) dτ

=
∆βσE√

2π
, (5.29)

where N(x;µ, σ) is the pdf of the normal distribution with mean µ and standard

deviation σ. If we want to eliminate a fixed fraction of the population ε, then the

β–schedule must be chosen such that

∆β ≈ ε
√

2π

σE
. (5.30)
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5.2.4 Growth of ρf in the MCMC-equilibrated regime

In the spin glass phase where the MCMC procedure alone is unable to equilibrate

the system, the growth of ρf depends, in a complicated way, on the structure and

temperature-dependence of the free energy landscape. However, at high temperatures

where the MCMC procedure is able to fully decorrelate replicas, which we refer to as

the MCMC-equilibrated regime, we can show that ρf is simply proportional to the

number of annealing steps times the culling fraction. To understand the behavior of

ρf in the MCMC-equilibrated regime, note that ρf is defined in terms of the variance

of βF , [see Eq. 5.9], and take the variance of both sides of Eq. 4.8,

var[βkF̃ (βk)] = var

[
NT−1∑
l=k+1

lnQ(βl, βl−1)

]

≈
NT−1∑
l=k+1

var [lnQ(βl, βl−1)] . (5.31)

The second approximate equality becomes exact when the population is equilibrated

by the MCMC procedure during each annealing step. Using the definition of Q, Eq.

4.2, and assuming the variation of R̃ is negligible, we expand var(lnQ(βl, βl−1)) to

leading order in (∆βl)σE(βl),

var [lnQ(βl, βl−1)] ≈ 1

R
(∆βl)

2σE(βl)
2, (5.32)

where σ2
E is the variance of the energy distribution. Plugging Eq. 5.32 into Eq. 5.31

yields,

var[βkF̃ (βk)] =

NT−1∑
l=k+1

1

R
(∆βl)

2σE(βl)
2. (5.33)

From the relation between the size of the temperature step and the culling fraction,

Eq. 5.29, we find,
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R var[βkF̃ (βk)] =

NT−1∑
l=k+1

2πε(l)2, (5.34)

where ε(l) is the culling fraction at the lth annealing step. Thus, for fixed culling

fraction, ε, we find that ρf grows linearly in the number k of annealing steps,

ρf = 2πε2k. (5.35)

This relation is valid if the culling fraction is small and enough MCMC sweeps are

carried out in each annealing step that the replicas remain independent.

More generally, ρf ≥ 2πε2k and the inequality holds if the MCMC procedure is

not able to keep the replicas fully decorrelated.

5.2.5 Growth of ρt in the MCMC-equilibrated regime

Similarly to the case of ρf , at high temperatures where the MCMC procedure

is able to fully decorrelate the energy of the replicas at every annealing step, the

growth of ρt − 1 is proportional to the number of annealing steps times the culling

fraction. To derive this relation we note that ρt is equal to the variance of the family

size distribution. In the MCMC-equilibrated regime, the size of a given family is

described by a birth and death process. In an approximation where the annealing

step k is taken to be a continuous “time” variable, the family size distribution, Pη(k),

is described by the Master Equation,

Ṗη(k) = ε [(η − 1)Pη−1(k) + (η + 1)Pη+1(k)− 2ηPη(k)] , (5.36)

where η is the family size and ε is the culling fraction. This is the classic birth–death

process (see, for example,Ref. [68]) whose solution is

Pη(k) =

(
1

1 + εk

)2(
εk

1 + εk

)η−1

for η ≥ 1, (5.37)
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and

P0(k) =

(
εk

1 + εk

)
. (5.38)

From this distribution it is easily seen that

ρt − 1 = var(η) = 2εk. (5.39)

This equation holds in the MCMC-equilibrated regime where the number sweeps in

each annealing step is greater than or comparable to the integrated autocorrelation

time of the energy, so that the energy of every replica is independent of its family

designation.

Comparing Eqs. 5.39 and 5.35, we see that in the MCMC-equilibrated regime and

for small culling fraction,

ρf = ρt − 1− (2ε− 2πε2)k. (5.40)

To a high level of accuracy, this relation also holds outside of the MCMC-equilibrated

regime. This is shown numerically in Sec. 5.4.1, and supported analytically in Ap-

pendix A.2.

5.3 Optimization of Population Annealing

In this work we focus on three general improvements to the population annealing

algorithm: a method to choose the population size for each individual bond config-

uration, a way to choose the β–schedule to reduce statistical and systematic errors,

and an ad hoc sweep schedule that improves equilibration.
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5.3.1 Hardness-dependent population size

Previous authors have shown that the computational work required to equilibrate

a specific bond configuration is approximately lognormally distributed for both pop-

ulation annealing and parallel tempering [12, 59, 110, 115]. In population annealing,

the work required to equilibrate a bond configuration is proportional to ρf , and so

our first optimization takes advantage of the relation between ρf and ρt in order to

tailor the population size necessary for each bond configuration, so we do not use

too large a population on an easy system and spend resources inefficiently. In order

to optimize the population for each bond configuration, it is usually necessary to do

several simulations. An initial simulation is done with a small population, R0. From

this simulation, we obtain an estimate of ρt, called ρt(R0). If R0 > 100ρt(R0) then we

assume that ρt(R0) ≈ ρt and the simulation was well-equilibrated. Otherwise we do

another simulation with population size, R1 = 150ρt(R0), which yields ρt(R1). This

procedure is continued until the bond configuration is equilibrated according to the

criterion of R > 100ρt. If R0 is chosen wisely, this method converges quickly and uses

far fewer resources than choosing a single R adequate for all bond configurations.

The values of R0 used in our simulations are given in Table 5.1.

5.3.2 Optimal annealing schedule

In the MCMC-equilibrated regime it is possible to derive an optimal annealing

schedule, which is composed of both the β–schedule and sweep schedule. This is done

by minimizing ρf while keeping the total amount of computational work, W , fixed.

We define the total work as

W =

NT−1∑
l=k+1

S(βl) (5.41)

≈
∫ β

0

S(β)

∆β
dβ, (5.42)
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where S(β) is the sweep schedule, defined as the number of MCMC sweeps carried

out per annealing step at inverse temperature β. In the MCMC-equilibrated regime

we have an analytic expression for ρf from Eq. 5.33, which can also be approximated

as an integral,

ρf =

NT−1∑
l=k+1

(∆βl)
2σE(βl)

2 (5.43)

≈
∫ β

0

∆βσE(β)dβ. (5.44)

We can use the method of Lagrange multipliers to minimize ρf while holding W

constant by solving,

0 =
δ

δ∆β
(ρf + λW ), (5.45)

which yields,

σ2
E − λ

S(β)

∆β2
= 0. (5.46)

Equivalently,

∆βσE(β) ∝
√
S(β), (5.47)

and using Eq. 5.30,

ε ∝
√
S(β), (5.48)

we see that in the MCMC-equilibrated regime, the optimal number of sweeps depends

on the culling fraction at each step. In the case of a fixed culling fraction, a fixed

sweep schedule is optimal.
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Based on these ideas, in our simulations we employed a β–schedule that holds the

culling fraction roughly constant. We observed that the resulting schedule does not

depend strongly on disorder realization so we chose a schedule based on a single run

and tested that the culling fraction was similar for several disorder configurations of

varying difficulty. This schedule was then employed without modification for pro-

duction runs. Since, according to Eq. (5.30), ∆β = ε
√

2π/σE, the resulting schedule

has many annealing steps at high temperature, where the standard deviation of the

energy is large, and few annealing steps at low temperature. A similar uniform ε

scheme was used in PA simulations of hard spheres [29]. Since the variance of the

energy scales linearly with the system size (except near the critical point), the same

β–schedule can be used for many system sizes, though for larger sizes the uniform

culling fraction will increase. If the range of sizes studied is too large, interpolating

temperatures can be added to the schedule to reduce the culling fraction. Although

it is not theoretically well-justified in the critical or the low temperature regimes,

we continued to use a uniform culling fraction to determine the β–schedule over the

entire temperature range of our simulations.

In accordance with Eq. 5.48, we chose a sweep schedule that was fixed in the high

temperature regime. We found that focusing most of the computational work in the

glass transition regime minimized ρt, and that in the glassy phase it was favorable to

rely on PA resampling and do very little MCMC work. Our ad hoc sweep schedule

had three Monte Carlo sweeps performed for β < 0.5, 22 for 0.5 ≤ β ≤ 2.5, and a

single sweep for β > 2.5. Our annealing schedule is not directly comparable with

the annealing schedules studied in Ref. [16]. While our β-schedules is the same as

their “std(E)” schedule, the computationally meaningful density of sweeps per unit

β is not the same as for any of their annealing schedules because of our non-uniform

sweep schedule. A deeper understanding of the optimal annealing schedule over the

whole range of temperatures remains an open problem.
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L=6 L=8 L=10
Culling fraction, ε 0.103 0.168 0.272
Sweeps per replica 1005 1005 1009
Temperature steps, NT 95 95 99
Initial population, R0 2× 103 2× 103 2× 104

Maximum population 2.64× 105 1.5× 107 1.5× 107

Disorder samples 2× 104 2× 104 5× 103

Unequilibrated samples 0 4 145

Table 5.1. Parameters of the simulations for each of the three system sizes.

5.4 Results

This section contains two types of numerical results. Sections 5.4.1-5.4.3 address

the behavior of PA, validating theoretical predictions and testing the optimization

ideas described in previous sections. Section 5.4.4 reports measurements from large-

scale simulations of several observables for the 3D Edwards-Anderson spin glass in

order to compare with previous work and improve the state-of-the-art. The parame-

ters used in this work are shown in Table 5.1.

5.4.1 Relationship of ρf and ρt

In Sec. 5.2.2 we showed that ρt − 1 ≥ ρf and, in Eq. 5.40, gave an approximate

relation between these two quantities. Here we test these relationships. Our proposal

to optimize population size for each disorder realization relies on the easily measured

ρt as a proxy for the more difficult to measure ρf , so it is important to determine the

relationship between these two quantities.

In order to accurately measure ρf = R var(βF̃ ), we ran population annealing

48 times for each configuration, with population sizes chosen such that R ≥ 100ρt.

This ensured that each simulation was well-equilibrated and that we could measure

var(βF̃ ) with reasonable accuracy. We calculated ρf for 2000 L = 6 samples and

for 300 L = 8 samples. Calculating the error of ρf is equivalent to calculating the

error of a sample variance. As shown in previous work [110], βF̃ taken from a well-
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Figure 5.1. Scatter plot of ρt − 1− (2ε− 2πε2)k vs ρf at β = 5 (k = 95) for L = 6
and L = 8; each data point corresponds to a single bond configuration. The solid line
corresponds to ρt − 1 + (2πε2 − 2ε)k = ρf , see Eq. 5.40.

equilibrated bond configuration is normally distributed, which makes estimation of

the error of var(βF̃ ) particularly easy [113],

var
[
var(βF̃ )

]
=

2

M − 1
var(βF̃ )2, (5.49)

where M is the number of trials. The corresponding error in ρf is

δρf =

√
2

M − 1
ρf , (5.50)

which for 48 trials gives a relative error, δρf/ρf , of about 21%. Since ρt is calculated

from a single disorder realization, it is expected that δρt � δρf . We find this to be

true empirically, with δρf ≈ 20δρt for L = 6, and δρf ≈ 16δρt for L = 8 simulations.

Figure 5.1 is a scatter plot of ρt − 1 − (2ε − 2πε2)k vs ρf at β = 5, where each

point corresponds to one disorder realization and the solid line corresponds to ρf =

ρt − 1 − (2ε − 2πε2)k. The results are consistent with ρf ≈ ρt − 1 − (2ε − 2πε2)k

holding for all disorder realizations.

76



0 20 40 60 80
0

10

20

30

k

[ρ
] J

[ρt]J

[ρf ]J

[ρt]J − 1− (2ε− 2πε2) k

0 0.25 0.5 1 3

β

Figure 5.2. [ρf ]J and [ρt]J of L = 6 as a function of annealing step k, with the nonlin-
ear β scale on the upper x-axis. Dashed lines correspond to the theoretically predicted
MCMC-equilibrated estimates, Eqs. 5.35 and 5.39. The solid line corresponds to the
difference [ρt]J − 1− (2ε− 2πε2) k, see Eq. 5.40.

In the MCMC-equilibrated regime, ρf = 2πε2k and ρt = 1 + 2εk as shown in

Secs. 5.2.4 and 5.2.5, respectively. Figure 5.2 shows [ρf ]J and [ρt]J for L = 6 with the

dashed lines representing the theoretical linear dependence on number of annealing

steps k. The solid line represents the estimated value of ρf calculated using [ρt]J −

1 − (2ε − 2πε2) k. The estimated value was found to be within 5% of the true value

of ρf for all annealing steps for both L = 6 and L = 8 (not shown). Note that the

sharp rise in both ρf and ρt occurs near the critical temperature, βc = 1.05.

Figure 5.3 shows the disorder-averaged family size distribution for several tem-

peratures in the MCMC-equilibrated regime for L = 8 and confirms the prediction of

Sec. 5.2.5 of an exponential family size distribution. The straight lines in the figure

are obtained from Eq. 5.37 and show that there is good quantitative agreement except

for tail of the distribution. The higher values of η are underrepresented, especially

for low values of β, due to the finite size of the population.

77



0 20 40 60 80 100 120 140
10−11

10−9

10−7

10−5

10−3

10−1

η
[P

(η
)]
J

β = 0.10

β = 0.21

β = 0.32

β = 0.44

Figure 5.3. The disordered-averaged family size distribution [P (η)]J as a function
of family size η, at several temperatures all in the high temperature regime (the β of
each distribution increases from left to right). The distributions are exponential and
have shape parameters that match the predictions of Eq. 5.37. The value at η = 0 is
not shown in this plot.

5.4.2 Distribution of ρt

It is known that the computational hardness of simulating Ising spin glasses has

a broad distribution with respect to disorder realizations [2, 3, 59, 110, 115]. In the

context of a MCMC algorithm such as parallel tempering the computational hardness

is typically measured by the exponential or integrated autocorrelation times. These

quantities have been found to be approximately lognormally distributed. For pop-

ulation annealing, we may use ρf or ρt for the purpose of measuring computational

hardness. Figure 5.4 shows histograms of log10 ρt for the three system sizes simulated.

We found that a log inverse Gaussian distribution is an excellent fit to the ρt distri-

butions. The fits are shown as solid lines in the figure. The three-parameter inverse

Gaussian distribution is defined by,

P (x;µ, λ, l) =

√
λ

2π(x− l)3
exp

[−λ(x− µ− l)2

2µ2(x− l)

]
(5.51)

with x = ln ρt. The parameters of the fits are given in Table 5.2. The shift parameter

l, which shifts the support of the distribution from (0,∞) to (l,∞), is necessary
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since ρt is bounded away from zero. A rough estimate of shift parameter can be

obtained by assuming that the easiest bond realizations are MCMC-equilibrated for

all temperatures, resulting in l = log(ρmin
t ) ≈ log(1+2εkmax). The values for l obtained

from this formula are 2.97, 3.50 and 4.00 for sizes L = 6, 8 and 10, respectively. These

values are in reasonable agreement with the fitted values shown in Table 5.2. The

log inverse Gaussian also works well to fit the ρf distribution with a shift parameter

predicted by ρmin
f = 2πε2k.

We can also compare the disorder averaged value of ρt with the predictions from

the fit. The mean of ρt = ex is given by,

[ρt]J = exp

[
l +

λ

µ

(
1−

√
1− 2µ2/λ

)]
, (5.52)

for λ/2µ2 > 1. The tail of the inverse Gaussian is exponential, so if λ/2µ2 ≤ 1,

the mean of ex is infinite. The fitted values of [ρt]J obtained from this equation are

shown in Table 5.2. The values computed directly from the data are [ρt]J = 46, 385

and 12700 for L = 6, 8 and 10, respectively. The large discrepancy between the

L = 10 fitted and measured values may be due to several factors. First, the number

of samples for L = 10 is smaller than for L = 6 and 8, so the tail of the ρt distribution

may not be fully sampled. Second, a significant fraction of L = 10 samples were not

equilibrated and, for these samples, we have most likely underestimated ρt. If the

tail of the distribution is properly described by the log inverse Gaussian, the value of

[ρt]J obtained from the fit may be more accurate than the average of the ρt data from

a finite sample size. On the other hand, for L = 10, the ratio λ/2µ2 = 1.04, which

is quite near the divergence at λ/2µ2 = 1 so results for [ρt]J may be highly sensitive

to errors in the fit. The near divergence of [ρt]J for L = 10 also suggests that the

annealing schedule for this size should have either more temperature steps or more

sweeps per step.

79



1 2 3 4 5
log10(ρt)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
(l

og
10

(ρ
t)

)

Figure 5.4. The distribution of log10 ρt for system sizes L = 6 (left), 8 (middle)
and 10 (right). The solid lines are inverse Gaussian fits with the parameters given in
Table 5.2.

L=6 L=8 L=10
µ 0.83(1) 1.97(2) 4.53(13)
λ 3.25(16) 9.28(35) 42.7(40)
l 2.88(1) 3.39(2) 3.50(13)
[ρt]J 46.4 491 66500

Table 5.2. Fits of the ρt distribution to a log inverse Gaussian distribution defined
in Eq. 5.51.

80



As seen in Table 5.2, the computational effort required to reach equilibrium scales

up rapidly with system size and is broadly distributed. How does this effort translate

into wall clock time on a modern CPU? For L = 10 the algorithm’s run time on a

single CPU is approximately 0.03 sec/replica. The typical value of ρt for L = 10,

defined by exp([log ρt]J), is approximately 3000 and the equilibration criterion is that

R ≥ 100ρt thus the typical running time is approximately 2.5 hours. This relatively

benign number is, however, misleading because of the exponential tail of the log ρt

distribution. If one instead takes the average hardness, [ρt]J ≈ 66500, predicted from

the inverse Gaussian fit (see Table 5.2), then the average running time to equilibrate

every disorder realization in a very large L = 10 sample would be approximately 55

hours per disorder realization. This number exceeds the computing time expended

on our L = 10 simulations since we did not equilibrate all disorder realizations. Of

course, the algorithm can be efficiently parallelized so the wall clock time per replica

can be made much smaller than these numbers.

5.4.3 Optimized vs. unoptimized annealing schedule

In this section we compare the performance of an optimized and unoptimized an-

nealing schedule used in PA. Our optimized annealing schedule has a β–schedule that

keeps the culling fraction ε nearly constant, and an ad hoc sweep schedule that con-

centrates sweeps over a range of temperatures around the critical point, as described

in Sec. 5.3.2. The unoptimized annealing schedule has constant β steps, ∆β = 0.05,

with 10 sweeps per step, and is similar to the annealing schedule used in Ref. [110].

The figure of merit that we wish to minimize is size of the systematic errors,

which scale as var(βF ), times the total computational work, W = RS, where R is

the population size and S is the total number of Monte Carlo sweeps per replica.

Using the result ρf ≈ ρt we have that
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Figure 5.5. Values of ρt at β = 5 for the optimized and unoptimized annealing
schedules. Each point corresponds to one of 300 L = 8 bond configurations. The hor-
izontal coordinate of each point is the unoptimized value and the vertical coordinate
the optimized value of ρt. The central (black) line corresponds to an improvement of
the optimized relative to the unoptimized annealing schedule by a factor of 7.6, and
the upper and lower (red) lines correspond to factors of 7.6/3 and 7.6×3, respectively.

W var(βF ) ≈ Sρt. (5.53)

We have used the same number of sweeps in both the optimized and unoptimized

algorithms so the comparison of the performance of the algorithms reduces to the

comparison of ρt.

Figure 5.5 is a scatter plot of the values of ρt, the vertical position of each point is

the optimized ρopt
t , and the horizontal position, ρunopt

t , the unoptimized value. Each

point represents one of 300 disorder realizations for system size N = 83 at β = 5. The

plot shows that the unoptimized algorithm is, on average, less efficient by a factor of

7.6. This means that, on average, the unoptimized algorithm requires a population

7.6 times larger to achieve the same quality of results as the optimized algorithm.
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Figure 5.6. ∆KY as a function of inverse temperature β for L = 6 (a), L = 8 (b),
and L = 10 (c).

L=6 L=8 L=10
I(0.2) 0.0188(5) 0.0185(5) 0.0185(10)
∆KY −0.0075(85) 0.010(7) −0.009(13)
[E0/N ]J −1.6891(4) −1.6951(2) −1.6976(3)

Table 5.3. The integrated overlap I(0.2), Katzgraber-Young equilibration measure
∆KY, and the bond-averaged ground state energy per spin [E0/N ]J, all measured at
β = 5.

L [log10 g̃0]J log10 2− β[(Ẽ0 − F̃ )]J/ln(10)
6 −0.7577(23) −0.7549(23)
8 −1.6957(34) −1.6900(34)
10 −3.2251(93) −3.2104(92)

Table 5.4. Comparison of the disorder average of the logarithm of the fraction in
the ground state, [log10(g̃0)]J at β = 5 to the indirect measure, [log10(ḡ0)]J based on
the Boltzmann factor, see Eq. 5.7.
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5.4.4 L = 6, 8, 10 results

To test the optimized algorithm and obtain state-of-the-art results for observables

described in Sec. 5.1.1, we ran large-scale simulations of the 3D EA spin glass for

three system sizes, with parameters provided in Table 5.1. As seen in this table,

the equilibration standard, R ≥ 100 ρt, was met by nearly all configurations for

L = 6 and L = 8, but approximately 3% of the configurations for L = 10 remained

unequilibrated when the maximum population was restricted to R = 1.5× 107. The

equilibration standard used was higher than previous papers employing PA to study

spin glasses, and some systems that we rejected as unequilibrated would have been

accepted previously.

It is worth emphasizing that the adaptive population scheme allowed us to sample

more bond configurations than most previous studies, while ensuring that nearly all

configurations were well-equilibrated. As a result, errors associated with a finite

number of bond configurations are especially low for L = 6 and 8, where we used

2 × 104 samples. The statistical errors reported in Table 5.3 and 5.4 are obtained

from the standard deviation of the observable with respect to disorder realization

and do not include errors associated with individual disorder realizations. Despite

the large number of disorder realizations, the error due to the finite sample size is

substantially larger than the contribution from systematic and statistical errors of

each disorder realization, as shown in Ref. [110].

Overall, the results in Table 5.3 are consistent with those found in previous works

[110, 111]. The average ground state energy, [E0]J, is within error bars of previous

measurements and, as shown in Fig. 5.6, ∆KY is close to zero for all β, which is

consistent with a well-equilibrated set of samples. Our values of I(0.2) are all within

two standard deviations of those found in Ref. [110], however, it is noteworthy that

our values are consistently lower. Despite the slight difference in value, the trend that

I(0.2) remains constant over several system sizes is evident.
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Table 5.4 shows the disorder average of the logarithm of the directly measured

fraction in the ground state g̃0 and the indirectly measured quantity ḡ0 calculated

using the Gibbs distribution, Eq. 5.7. Although the two methods yield values that

are within error bars, the computed ḡ0 appears to be consistently larger than the

measured g0. To leading order, the free energy estimator is systematically larger than

the actual free energy by F = F̃ + ρf/2βR [110], so it is expected that ḡ0 would be

systematically larger than g0. It should be noted that by definition g0 cannot be zero

because the ground state energy is here defined as the lowest energy replica found,

even if this is not the true ground state.

5.5 Conclusions

The work presented in this chapter makes several contributions to understand-

ing and improving the population annealing algorithm, especially as applied to spin

glasses: we have studied the behavior of two important measures of equilibration for

population annealing, optimized the algorithm in several ways, and obtained state-

of-the-art results for several important spin glass observables. Our results help put

population annealing on a firmer footing as an effective tool for highly parallelized

simulations of disordered systems such as spin glasses that have rough free energy

landscapes. While this work focuses on the three-dimensional Edwards-Anderson

model, many of the theoretical results and optimization methods are applicable to

population annealing simulations of a much broader class of systems.

The two equilibration measures, ρt and ρf , set the population size needed to

control statistical and systematic errors, respectively. The equilibrium population size

ρf is based on the variance of the free energy and is the more fundamental measure

of systematic errors but more difficult to accurately measure in a single simulation.

We have demonstrated that ρf ≤ ρt − 1, and confirmed that these two quantities are

close to being equal when both are large. We have also shown that in the MCMC-

85



equilibrated regime, ρf and ρt each grow linearly in the number of annealing steps, a

fact that can be used to design optimal annealing schedules. Finally, we have shown

that for the 3D EA spin glass, the distribution of log ρt values is accurately described

by an inverse Gaussian distribution.

We have shown that there are a number of simple modifications which improve

the efficiency of population annealing. We have also shown that a β–schedule that

is chosen by fixing the culling fraction is optimal in the MCMC-equilibrated regime.

Lastly, we have shown that the sweep schedule can be improved by increasing the

number sweeps in the critical region. Annealing schedule optimizations alone have

accounted for nearly an order of magnitude improvement over previous versions of

the algorithm. In the context of spin glasses, where there is a broad distribution of

computational hardness, tailoring the population size to the difficulty of the disorder

realization yields the single largest improvement in efficiency. In addition, the sample-

dependent population size results in simulations with both less work and higher overall

accuracy.

We still lack a theoretical understanding of the best sweep schedule. Intuitively,

we would like the Markov chain Monte Carlo subroutine to fully equilibrate each

replica in the high temperature regime. However, in the low temperature regime,

this is not feasible and the goal is to equilibrate replicas only within their free energy

minima, leaving re-sampling to properly redistribute replicas between distinct free

energy minima. We have not yet found a principled way to achieve this goal.
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CHAPTER 6

CONFIGURATIONAL GLASS SIMULATIONS

6.1 Introduction

In this chapter, we apply microcanonical (NVT) population annealing Monte

Carlo and thermodynamic integration to a binary hard sphere fluid in the glassy

regime. We present a new hybrid version of population annealing that is similar in

many respects to that first shown in Ref. [95], and a two new ways to measure the

configurational entropy of a glass. The first is a type of Frenkel-Ladd thermodynamic

integration and is called the constraining shell integration method. The second is an

entirely new way of integrating the configurational entropy with population anneal-

ing and is called replica thermodynamic integration. We use these methods to probe

beyond the dynamic glass transition in order to make estimates of the values of φK

and φrcp and to determine whether or not a thermodynamic transition occurs.

The chapter is organized as follows. We begin by briefly reviewing the binary

hard sphere model and observables of interest in Sec. 6.2. We then describe the NVT

version of the population annealing algorithm and introduce two new thermodynamic

integration techniques to calculate the vibrational entropy of a glass state in Sec. 6.3.

We present the results from large-scale simulations in Sec. 6.4 and the chapter closes

with a discussion in Sec. 6.5. The work presented in this chapter has been submitted

to Physical Review E and is available on arXiv, see Ref. [5].
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6.2 Model and observables

The system we study is a binary hard sphere fluid with a 50:50 mixture of particles

with radius ratio 1.4:1 [29, 53, 85]. This system is known to be a good glass former

because although its high density equilibrium state in the thermodynamic limit is

two monodisperse crystals separated by a domain wall, this state is inaccessible in

simulations starting from a random mixture. One of the primary observables of

interest in a simple fluid is the dimensionless pressure, Z, defined as

Z =
PV

NkBT
, (6.1)

where P is the pressure, V is the volume, N is the total number of particles, kB is

Boltzmann’s constant, and T is the temperature. It is common to use the packing

fraction, φ, as a control parameter where

φ = N
4πr3

3V
, (6.2)

and r3 = (r3
0 +r3

1)/2 is the average of the cubed radii of the two species. Because there

is no potential energy in this system, the temperature only sets the average kinetic

energy of the particles and the remaining physics depends on the dimensionless ratio

Z. Thus, without loss of generality, we set kB = T = 1. We work in the NVT

ensemble where N and φ are set and Z(φ) is measured. Although free energy is

the thermodynamic potential for NVT, due to the triviality of the energy, all of the

equilibrium physics is contained in the entropy as a function of N and φ.

The binary fluid equation of state is well-approximated throughout the fluid

phase by the phenomenological Boubĺık-Mansoori-Carnahan-Starling-Leland (BM-

CSL) equation of state [24,73]

ZBMCSL =
(1 + φ+ φ2)− 3φ(y1 + y2φ)− y3φ

3

(1− φ)3
, (6.3)
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where yi are constants that depend on the polydispersity. For a 50:50 mixture of 1.4:1

size particles, y1 = 0.0513, y2 = 0.0237, and y3 = 0.9251. This equation of state is

very accurate when compared to numerical data [29], but it must break down at high

density, as is clear since it remains finite until φ = 1.

For glassy systems, we are ultimately interested in the configurational entropy,

Sc. There are several ways of estimating Sc directly, including counting inherent

structures [47] and using the Franz-Parisi potential [43]. However, the most common

procedure, used here, is to measure the total entropy and vibrational entropy and

then use the relation,

S = Svib + Sc, (6.4)

where S and Svib are the total and vibrational entropies, respectively.

To better understand the definitions and relationships of these entropies, we start

with the assumption that in the glassy regime configuration space is broken into

ergodically disconnected regions, each of which corresponds to a different glass state.

In the NVT ensemble each glass state ν appears with probability,

wν(φ) =
Ων∑

ν̃∈c(φ) Ων̃

, (6.5)

where the sum is over the set of all glass states, c(φ), at packing fraction φ, and Ων is

the configuration space volume of glass state ν. The entropy of glass state ν is given

by the standard definition [19],

Sν(φ) =
1

N
log Ων . (6.6)

Throughout this chapter all entropies are defined per particle. We define Svib as the

average over the entropies of the glass states,
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Svib(φ) =
∑
ν∈c(φ)

wν(φ)Sν(φ). (6.7)

The total entropy is given by the standard definition,

Ω(φ) =
∑
ν∈c(φ)

Ων(φ), (6.8)

S(φ) =
1

N
log Ω(φ). (6.9)

Using these definitions and Eq. 6.4 yields an equation for the configurational entropy,

Sc = − 1

N

∑
ν∈c(φ)

wν(φ) logwν(φ), (6.10)

which is similar in form to the Shannon entropy. If we assume that there is a finite

number of glass states, Ng, each of which has the same statistical weight, wν = 1/Ng,

then Sc reduces to the standard definition given in Eq. 2.4,

Sc =
1

N
logNg. (6.11)

The pressure and the total entropy obey the standard thermodynamic relation

which, in terms of packing fraction, is given by

Z = −φ ∂S
∂φ

. (6.12)

Using this relation, the dimensionless pressure can be integrated with respect to the

packing fraction in order to obtain the entropy, see App. B.1 for details. Numerically

measuring the vibrational entropy can also be done using thermodynamic integration

but is non-trivial and is discussed below in Sec. 6.3.3.
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6.3 Computational methods

6.3.1 Microcanonical population annealing

We simulate the binary hard sphere mixture at high density using an NVT en-

semble version of population annealing Monte Carlo, first described in Ref. [29]. Pop-

ulation annealing (PA) is a sequential Monte Carlo method [4, 72, 95, 110] similar to

nested sampling [74, 93, 100] that is used to simulate systems with rough free energy

landscapes. The general idea of population annealing is to initialize a large ensem-

ble of independent simulations in an easy-to-equilibrate region of parameter space

and to anneal towards a difficult-to-equilibrate region. After each annealing step,

the population is resampled so as to keep the distribution in equilibrium. Initially

the population can be kept in equilibrium via conventional Monte Carlo schemes,

however, eventually the simulation enters a regime where the system is unable to

equilibrate dynamically and resampling becomes necessary to keep the population in

equilibrium.

In this work, we deal with hard spheres in the NVT ensemble. All allowed config-

urations of hard spheres have the same energy and the roughness of the free energy

landscape in the glassy regime is entirely due to a rough entropy landscape. In the

NVT version of PA, each replica in the population is independently initialized as a

gas of particles at low packing fraction. An equilibrating procedure such as molec-

ular dynamics or Markov chain Monte Carlo is then applied to each member of the

population. Here we use event chain Monte Carlo (ECMC) [18,79]. This step is per-

formed to equilibrate and decorrelate the population, however, in the glass regime,

it only manages to move particles within local cages. After running Monte Carlo,

the population is annealed by increasing the packing fraction, φ, following an anneal-

ing schedule, {φ0, φ1, . . . , φf}, where φ0 is in the low density fluid phase and φf is

the highest packing fraction simulated in the glassy regime. The physical process of

annealing corresponds to decreasing the box volume but, in simulations, it is compu-
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tationally simpler to increase the sphere radii while keeping the volume fixed. As we

will see below, these two annealing processes result in different changes in entropy so

a correction must be made when performing thermodynamic integration.

After increasing the sphere radii, a fraction of the population’s configurations

have overlaps and are illegal at the new density. Replicas with illegal configurations

are erased or “culled” and are replaced by randomly resampling the remaining legal

replicas with equal weight. The fraction of the population that is culled, ε, is called the

“culling fraction” and is an important quantity for setting the annealing schedule and

integrating the entropy. After culling and resampling, this process is then repeated

at the new packing fraction and annealing continues until φf is reached.

In this work we use a “hybrid” resampling method that is similar to that in

Ref. [95] in order to reduce the statistical errors associated with the resampling pro-

cess. In the PA scheme of Ref. [29], described above, the new population is resampled

from the final population at the end of the annealing step. The hybrid method de-

creases the statistical errors associated with resampling by increasing the frequency

of sampling during a single annealing step. Instead of resampling the population once

at the end of the equilibration process, the population is sampled several times and

additional sweeps are performed before each sampling step. As a result, the entropy

of each member of the population is taken into account several different times. This

procedure is shown in Fig. 6.1. The scheme used in this work is to perform a total

of ck sweeps of ECMC on each member of the population at annealing step k, where

we define the number of sweeps as the number of particle movements divided by the

number of particles. The sweeps are broken into an initial burn in of ck/2 sweeps.

After each subsequent sweep, a fraction of the population is subsampled and config-

urations that are legal at the next packing fraction are saved into a reservoir. In this

work, the subsampled population consists of R/(ck/2)∗1.5 randomly chosen replicas.
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Figure 6.1. Diagram representing one hybrid microcanonical population annealing
step. The packing fraction is fixed at φt and the population is equilibrated using
ECMC for several intervals. After each interval, a fraction of the population is sub-
sampled and configurations that are legal at the next packing fraction in the annealing
schedule, φt+1, are saved in a reservoir. Illegal configurations (marked black) are not
saved. After equilibration is completed, the reservoir is randomly sampled to produce
a new population at packing fraction φt+1.
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Figure 6.2. The outer circle corresponds to configuration space at the initial packing
fraction φt and the inner circle corresponds to configuration space after annealing to
the new packing fraction φt+1. The fraction of configurations that are eliminated after
annealing is an estimator for the fraction of configuration space volume that has been
eliminated.

Finally, at the end of the annealing schedule, R replicas are chosen at random from

the reservoir to represent the population at the beginning of the next annealing step.

The subsample size was chosen with consideration of the culling fraction in order

to ensure that the total number of legal configurations placed in the reservoir at the

end of the annealing step would be larger than the population size, R. The factor

of 1.5 in the subsampling step was added as an additional safety to ensure that the

reservoir is always larger than the total population. This factor acts as a tunable

parameter that determines the sampling rate of the entire population. If we choose

our factor so that the reservoir is nearly exactly R, then the weight of each member of

the population is effectively measured once and there will be no benefit in comparison

with standard PA. If we choose a large reservoir, many times the size of R, then the

weight of each replica will effectively be measured many times resulting in reduced

statistical errors, but at the expense of using more computer memory.

Both the hybrid and the standard versions of microcanonical PA give access to

the culling fraction, εi, at annealing step i, which is an estimator of how much con-
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figuration space volume contracts after an annealing step. In particular, the volume

of configuration space decreases by a factor of 1− εi each annealing step, as shown in

Fig. 6.2, and the corresponding change in entropy is given by

∆Si =
1

N
log(1− εi)− log(φi/φi−1), (6.13)

where the ratio of packing fractions corrects for the fact that we keep the system

volume fixed during annealing. By summing the changes in entropy over the entire

simulation, it is possible to numerically integrate the total entropy,

S(φk) = S(φ0) +
1

N

k−1∑
i=0

[log(1− εi)− log(φi/φi−1)] , (6.14)

where S(φ0) is the entropy at the initial packing fraction, see App. B.1 for details.

Due to limitations in computational resources, it was necessary to carry out multi-

ple independent runs of PA rather than one run with a very large population. Results

from independent simulations can be combined using weighted averaging [29,110] to

reduce both statistical and systematic errors and also to estimate the magnitude of

these errors. Given M independent runs of PA, each with population size R(m), the

weighted average O of an observable O, such as the pressure, is given by,

O =

∑M
m=1 Õ

(m)R(m) exp[NS(m)]∑M
m=1R

(m) exp[NS(m)]
, (6.15)

where Õ(m) and S(m) are the estimators of the observable and the entropy, respectively,

in run m. The weighted average of the entropy itself depends on a summation over

the annealing schedule and is given by a different formula,

S =
1

N
log

∑M
m=1 R

(m) exp[NS(m)]∑M
m=1R

(m)
. (6.16)
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For fixed population size, R(m) = R, the weighted average of an observable becomes

exact in the limit of infinitely many runs, M →∞.

6.3.2 Event chain Monte Carlo

The population annealing equilibrating procedure that we use in this work is

event chain Monte Carlo (ECMC), which is particularly efficient at sampling 2D and

3D hard sphere configurations [18, 39, 55, 79]. In the version of ECMC used here, a

particle is randomly chosen and is translated in a random direction until it collides

with another particle. When a collision occurs, the moving particle is stopped and the

struck particle is moved in the same direction until it collides with another particle.

This process is repeated until the total distance travelled by the particles, called the

chain length, is equal to a predetermined length, `. When this distance is reached,

the current moving particle is immediately stopped. This process is then repeated by

randomly choosing a new starting particle to move in a new direction. We simulate a

system with periodic boundary conditions, so it is sufficient to move particles in only

the positive x, y, or z directions, which violates detailed balance but preserves global

balance [18].

Event chain Monte Carlo provides a way of measuring the dimensionless pressure,

as shown in Ref. [79]. Consider a single chain in the x direction. When two particles,

j and k, collide, the distance between their centers projected in the x-direction is

xk − xj. The “lifted” distance of an event chain, xfinal − xinitial is defined as

xfinal − xinitial = `+
∑
k,j

(xk − xj) , (6.17)

where the sum takes place over all collisions in a single chain. If this process is

repeated, then the dimensionless pressure is given by an average of the lifted distance

over all of the chains,
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Z =

〈
xfinal − xinitial

`

〉
chains

. (6.18)

The total entropy of the fluid is then given by the thermodynamic integral of the

population-averaged dimensionless pressure,

S(φ) = S(φ0)−
∫ φ

φ0

1

R

R∑
r=1

Zr
φ′
dφ′, (6.19)

where Zr is the dimensionless pressure of replica r at packing fraction φ′.

6.3.3 Vibrational entropy

There are many ways to measure configurational and vibrational entropy, see

Ref. [22] for a review. In this section, we focus on measuring the vibrational entropies

of glass states directly using two new techniques. We call the first technique the

“shell” method, which is similar to Frenkel-Ladd thermodynamic integration [44]

that has been previously used to measure vibrational entropies of glassy systems [20].

We call the second method replica thermodynamic integration (RTI), which is a new

technique that integrates the entropy of individual replicas from the fluid state into

the glass state.

6.3.3.1 Constraining shell integration method

For the shell method, we measure the vibrational entropy of a glass state by taking

the initial position of each particle as a reference. A spherical hard shell centered at

each particle’s reference position constrains that particle to remain within the shell.

Particles are unable to penetrate their own shells, but are able to freely penetrate the

shells of other particles. Initially the shells are much larger than the system size and,

as the simulation progresses, they are gradually shrunk. Throughout this process,

the entropy lost during each decrement in shell size is summed. Eventually all of the

shells become sufficiently small that they no longer overlap with each other and only
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Figure 6.3. Diagram representing the shell integration method. For clarity, the
shells are shown only for the three green spheres. Each sphere is contained within
a hard shell that it cannot penetrate. Spheres only interact with their own shells
or with other spheres that enter their shell. The shells begin very large (left) and,
as the spheres are dynamically evolved the Metropolis algorithm (middle), the shells
are decreased in size. Each decrement in size results in a culling in the population
which corresponds to a loss of vibrational entropy. The shells are contracted and the
vibrational entropy is numerically integrated via population annealing until shells no
longer overlap (right). When the shells no longer overlap, the remaining entropy can
be calculated analytically as an ideal gas.

contain their own particles. At this point, the particles can no longer interact with

each other and the remaining entropy is simply that of each particle within its own

shell, as seen in Fig. 6.3. A single particle constrained within a hard shell is simply

a particle in a box or, equivalently, an ideal gas.

The shell vibrational entropy for a given configuration of particles, Sshell(~xxx), where

~xxx is the list of initial particle position vectors, is given by

Sshell(~xxx) =

∫ ηf

0

dS[rrr(η)]

dη
dη +K[rrr(ηf )], (6.20)

where η is a parameter that controls the shell sizes, ηf is the parameter value where

no shells overlap, rrr(η) is a list of the radii of all of the shells, and K[rrr(ηf )] is the sum

of the ideal gas entropies of each particle in its shell. During the integration, all shells

shrink at the same rate. When a shell no longer overlaps with other shells, then its

integration stops, its shell radius no longer shrinks, and the sphere contained within

the shell no longer contributes to the numerical integral. The remaining vibrational
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entropy for the sphere/shell pair is calculated analytically and contributes to the

constant K. The integration continues with the remaining shells that have overlaps.

When no more shells overlap, the integration is complete and

K[rrr(ηf )] =
1

N

∑
i

log

[
4π

3
(rishell − risphere)

3

]
+

3

2
, (6.21)

where i enumerates the particles and rishell is the final radius of the ith shell. This

formula is straightforward to understand, 4π
3

(rishell−risphere)
3 is simply the free volume

of each shell and 3/2 is the kinetic contribution to the entropy of the ideal gas.

In general, an additional factor of −3 log(λth) is present, where λth is the thermal

deBroglie wavelength, but, as before, we set λth = 1.

This method of calculating Svib constrains the system so that particles are unable

to switch places and, therefore, are distinguishable. This approximation becomes

more accurate as structural relaxation times become very large deep within the glassy

regime. This method may also be used to measure the total entropy in the fluid

regime, however, since particles are no longer localized in cages, an additional term

of 1 − log(N/2) must be included in order to account for indistinguishability of the

particles.

The numerical integration of Sshell(φ) is performed using population annealing as

follows:

1. Choose a random glass sample from an equilibrium distribution at fixed φ

2. Make Rshell identical copies of the glass sample

3. Initialize shells so they are infinitely large

4. Evolve population using MD or MC

5. Anneal in shell size and integrate entropy.
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The value of Sshell will depend on the number of sweeps per annealing step (see Fig.

6.9) leading to some ambiguity in the definition of Svib and Sc. The details of the

parameters used for the Sshell integration will be described in detail in Sec. 6.3.5.

6.3.3.2 Replica thermodynamic integration method

The second method of measuring the vibrational entropy is called replica thermo-

dynamic integration (RTI). In abstract terms, the RTI method can be described by

recasting Eq. 6.7 into a thermodynamic integral,

Svib(φ) = S(φ0)−
∑
ν∈c(φ)

wν(φ)

∫ φ

φ0

Zν(φ
′)

φ′
dφ′ + C. (6.22)

where Zν(φ
′) is an equilibrium trajectory of pressures of increasing density that ends

in glass state ν at packing fraction φ, wν(φ) the weight of ν at packing fraction φ,

and C is a normalizing constant. This expression is different from the thermodynamic

integral for the total entropy which is given by

S(φ) = S(φ0)−
∫ φ

φ0

∑
ν∈c(φ′)

wν(φ
′)
Zν(φ

′)

φ′
dφ′. (6.23)

In the fluid phase, for φ < φd, there is only one thermodynamic state and the two

expressions are identical, however, in the glassy phase, the two become distinct due

to the formation of ergodically separate glass states.

The RTI method can be realized in a PA simulation by integrating the entropy

along the history of replica r at packing fraction φ, denoted as Sr(φ). Using the

ECMC dimensionless pressure along the history,

Sr(φ) = S(φ0)−
∫ φ

φ0

Zκ(φ′|r,φ)

φ′
dφ′, (6.24)

where κ(φ′|r, φ) is the replica index of the ancestor at packing fraction φ′ of replica r

at packing fraction φ and S(φ0) is the initial entropy at the low packing fraction φ0.
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In PA, the population is an equilibrium sample of the glass states that automatically

takes into account weights during resampling. This means that we can simply average

Sr over the population to get the average glass entropy SRTI(φ), albeit with an incorrect

constant of integration set in the low density limit,

SRTI(φ) =
1

R

R∑
r=1

Sr(φ). (6.25)

In the fluid regime, where replicas are individually in equilibrium, the two quantities

are equal. In the glassy regime, SRTI > S (see Fig. 6.6) because SRTI only averages

over the surviving, high-entropy replicas whereas S averages over all replicas.

To identify the correct constant of integration requires us to use the shell method

or an equivalent approach. We define S
(φ′)
RTI (φ) with an additive constant so that it is

equal to Sshell(φ
′) at packing fraction φ′,

S
(φ′)
RTI (φ) = SRTI(φ) + [Sshell(φ

′)− SRTI(φ
′)] . (6.26)

S
(φ′)
RTI (φ) provides quasi-continuous estimate of Svib(φ) if the constant of integration is

set at an appropriate point φ′ > φd where Sshell can be reliably measured. It is worth

mentioning that SRTI measures entropy in a way where particle swaps are allowed and

therefore naturally includes mixing entropy.

6.3.4 Equilibration

The equilibration of our simulations can be estimated in several ways. The first

and perhaps most obvious is to use one of the intrinsic equilibration metric associated

with population annealing [110]. A second method, discussed at the end of this

section, is specific to glasses and depends on the configurational entropy.
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It can be shown [29, 110] that systematic errors in PA scale as 1/R and that a

prefactor of this scaling is an “equilibration population size”, ρf ,

ρf = lim
R→∞

R var(NS), (6.27)

where R is the population size of the simulation and S is the total entropy estimator,

and the variance is measured with respect to independent runs of PA. In practice,

ρf must be estimated from multiple runs with finite but sufficiently large population

size. The intuition behind relating the variance of S to systematic errors is that when

the entropy estimator has large fluctuations then independent simulations sample

distinct regions of configuration space and produce different results. Furthermore,

these results are, on average, biased since the correct value of an observable would be

obtained from an entropically weighted average over a very large number of runs.

Although results from several independent simulations can be combined using

weighted averaging, ρf is not a suitable measure of equilibration of the weighted av-

erage of many simulations. The extension to multiple runs was introduced in Ref. [29],

using the quantity ρ∗f ,

ρ∗f = lim
M→∞

Rtot var(NS), (6.28)

where M is the number of simulations, S is defined in Eq. 6.16 and

Rtot =
M∑
m=1

R(m), (6.29)

is the total population size of all the simulations, with R(m) the population size of

the mth simulation. It can be shown that ρ∗f/Rtot is proportional to the systematic

errors in observables obtained from the weighted average of multiple runs, all carried

out with the same annealing schedule but with, perhaps, different population sizes.
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Although ρ∗f was originally calculated using bootstrap resampling [29], we found that

it is preferable to estimate var(S) using a weighted variance of the entropies of the

runs,

var(NS) ≈ N2
∑M

m=1R
(m)eNS

(m) (
S(m) − S

)2∑M
m=1R

(m)eNS(m)
. (6.30)

This method gives nearly identical results to the bootstraps method used in Ref. [29],

but is easier to calculate.

We can also use the configurational entropy to estimate whether the population

size of the simulations is sufficient. The change in configurational entropy determines

how the number of glass states decreases as the density is increased and can be

used to estimate the rate of die-off of independent population members in PA. If

the glass transition is suitably sharp, then it is safe to assume that the population

is in equilibrium before the dynamic transition and therefore, at φd, the number of

independent glass states is approximately equal to the population size, R. Since the

transition is relatively sharp, it is also safe to assume that no new glass states will be

discovered after the dynamic transition and that population members remain stuck

in the same glass state as their ancestor at φd. With this in mind, the number of

independent glass states in our population for φ > φd, Ng, is

Ng(φ) = ReN [Sc(φ)−Sc(φd)]. (6.31)

This means that in order to have multiple independent glass states at packing fraction

φ, the population size must satisfy

R� e−N∆Sc , (6.32)
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N R Sweeps M ε φf

30
106 2.3× 105 60

0.074
0.63

105 2.2× 106 10 0.625

60
3× 106

1.4× 105 8
0.15 0.625

5× 106 14
100 106 1.0× 105 10 0.12 0.625

Table 6.1. Parameters for equilibrium population annealing runs: N is the number
of particles, R is the population size of each run, Sweeps is the total number of
ECMC sweeps per replica per run, M is the number of independent simulations, ε is
the average culling fraction, and φf is the highest packing fraction in the runs. For
N = 60, there were two population sizes, 3× 106 and 5× 106, whose simulations were
combined using weighted averaging. For N = 30, the two sets of simulations were
analyzed separately.

where ∆Sc = Sc(φ)− Sc(φd). The implication of this is that PA can only go a short

way beyond the dynamic transition specific to the MCMC used to equilibrate the

population.

6.3.5 Simulation details

We ran two different sets of large-scale simulations. The main set of simulations

produced ensembles of glass states and measured values of S, SRTI, and Z for a qua-

sicontinuous set of packing fractions up to packing fraction φf in the glassy regime.

The second set of simulations measured Sshell for many glass samples in order to ob-

tain an equilibrium measure of the vibrational entropy at different packing fractions

and to normalize SRTI.

The parameters used in the first simulation are shown in Table 6.1. The main

simulations began at φ0 = 0.3, where it is still possible to efficiently sample configu-

rations by randomly placing spheres in a box using a rejection method. The entropy

is normalized relative to the ideal gas at φ = 0 with T = 1 and λth = 1, see App. B.1.

To get equilibrium samples at higher densities, we ran population annealing Monte

Carlo (PA) with Event Chain Monte Carlo (ECMC) as the equilibrating dynamics.

Our ECMC simuluations had chain length equal to a fixed fraction, 0.618, of the
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box size. This choice of chain length is significantly longer than that of Ref. [29].

In retrospect, the choice in Ref. [29] would have been preferable. For most of the

simulations, the chain schedule is given by,

# event chains =


20 φ ≤ 0.54

60 0.54 < φ ≤ 0.59

10 φ > 0.59.

(6.33)

The idea is to do enough chains to equilibrate in the fluid regime and partially equi-

librate near the dynamic transition. At φ > 0.59, when the simulation is beyond the

dynamic transition, we no longer depend on using ECMC to equilibrate the entire

population. Instead, we only perform a few ECMC sweeps in an attempt to equili-

brate each population member locally within its own glass state. For N = 100, the

number of event chains at each annealing step was halved, but the number of anneal-

ing steps was doubled so that the number of chains per change in packing fraction

was kept constant. This was done so that the N = 100 culling fraction remained

moderate. We also performed 10 simulations with N = 30, R = 105 and ×10 the

number of chains as in Eq. 6.33, see Table 6.1 for details.

The parameters used in the shell vibrational entropy simulations are presented in

Table 6.2. We are able to measure the vibrational entropy of individual glass states

with relatively small population sizes, Rshell, because the motion in configuration space

is confined within a single glass state. Larger population sizes were tried as well and

were found to produce numerically identical results which are not presented here. In

order to equilibrate after each annealing step, we use the Metropolis algorithm with a

fixed step size proposal chosen at each annealing step such that the acceptance ratio

is always between 40% and 45%. The constraining shells are chosen such that their

initial size is larger than the box containing the particles and are shrunk so that 10%
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N Rshell Steps Sweeps/step Samples
30 104 3018 1600 300
60 3× 104 6056 800 110

Table 6.2. Simulation parameters for vibrational entropy measurements using the
shell method. The number of steps was different for N = 30 and N = 60 in order to
keep the rate of shell contraction constant.

of the population is culled at each annealing step. Error bars for the shell method

are obtained by bootstrapping over all of the shell integrated vibrational entropies.

6.4 Results

In this section we present results from a large-scale computational study of the

binary hard sphere system using population annealing Monte Carlo to sample equilib-

rium glass states at high density. We begin by presenting equilibrium measurements

of the dimensionless pressure and the entropy as a function of packing fraction in Sec.

6.4.1. Following this, we present our measurements of the configurational entropy and

a detailed comparison between the two methods used to estimate the vibrational en-

tropy in Sec. 6.4.2. We then compare the locations of the estimated jamming density,

φj, and Kauzmann transition location, φK, in Sec. 6.4.3. Finally, we present several

metrics to assess the equilibration of the simulations in Sec. 6.4.4.

6.4.1 Pressure and total entropy

The dimensionless pressure, Z, is shown in Fig. 6.4, where the solid lines corre-

spond to simulations and the dashed black line corresponds to the BMCSL equation

of state. Our simulation results deviate from the phenomenological equation of state

at high packing fractions after the dynamic glass transition. Given that our simula-

tions for sizes N = 30 and N = 60 are believed to be in statistical equilibrium for

values of φ past φd and that the BMCSL equation of state is not correct for high

density, as is clear by its divergence at φ = 1, the deviation is at least partially due
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0.52 0.54 0.56 0.58 0.60 0.62
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20
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35

Z

Figure 6.4. The dimensionless pressure, Z, as a function of packing fraction, φ for
system sizes 30 (blue, bottom), 60 (green, middle), and 100 (purple, top). The dashed
line is the phenomenological BMCSL equation of state (Eq. 6.3).

to the proximity to the true divergence of the pressure at random close packing, see

Sec. 6.4.3.

In addition to the pressure, we have also measured the total entropy per particle,

S, using ECMC, Eq. 6.19. For N = 60, these results can be seen in comparison to

measurements from previous works in Table. 6.3.

Z S
φ this work Ref. [29] BMCSL this work Ref. [29] BMCSL

0.58 22.01(1) 22.04(3) 21.90 -1.230 -1.210 -1.240
0.59 23.90(6) 23.99(14) 23.69 -1.621 -1.603 -1.629
0.60 26.4(1) 26.5 25.66 -2.044 -2.026 -2.043

Table 6.3. The dimensionless pressure and total entropy for N = 60 at several
values of φ from this work compared to values obtained from Ref. [29] and to the
phenomenological BMCSL equation of state (Eq. 6.3). Reference [29] entropies were
modified so as to be consistent with the normalization used in the present work and
to correct for the log volume term in Eq. 6.14, missing from that reference.
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N = 30 (shell)

N = 60 (RTI)
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Figure 6.5. The configurational entropy measured via the replica thermodynamic
integration method (lines) and the shell integration method (dots) for N = 30 (blue,
lower) and N = 60 (green, upper lines). The dashed line corresponds to values of φ
that are below the dynamic transition where the system behaves as a fluid. The RTI
method produces a value of Sc at every annealing step, while the shell method was
performed at φ = 0.58, 0.59, 0.60, 0.61, and 0.62.

6.4.2 Vibrational and configurational entropies

We measured the configurational entropy using two different methods to obtain the

vibrational entropy: replica thermodynamic integration (RTI) and shell integration.

The results for these two methods are shown in Fig. 6.5, where the continuous curves

correspond to the RTI method and the points correspond to the shell method. The

constant of integration for RTI is obtained from the shell method at φ = 0.59, that

is, we use S
(0.59)
RTI .

For the N = 30 system, the two methods are consistent with each other for the

entire range of the simulation while for N = 60, the two methods agree for φ . 0.595.

The difference between the two methods for N = 60 and φ > 0.595 may be due to an

inadequate number of sweeps for the RTI method to estimate Svib.

Although equilibrium quantities such as Z and S are largely independent of the

annealing schedule provided sufficiently large population sizes are used, the values of
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Figure 6.6. S − SRTI as a function of φ for N = 30 (blue, bottom), N = 60 (green,
second from bottom), and N = 100 (purple, second from top) with the simulation
parameters of Table 6.1. The red curve (top) corresponds to an N = 30 simulation
with ten times the number of Monte Carlo sweeps and exhibits a sharper and slightly
later dynamic transition than the other simulations.

SRTI and φd, defined roughly as the location of the shoulder of the S − SRTI curve,

depend on the annealing schedule. This can be seen explicitly in Fig. 6.6, where

the blue, green, and purple curves correspond to S − SRTI measurements using the

parameters of Table 6.1 for simulations of N = 30, 60, and 100 particles, respectively.

The blue, green and purple curves come from simulations with the same number of

ECMC chains per unit change in packing fraction. The outlying red curve uppermost

in the plot corresponds to an N = 30 simulation with ×10 the number of ECMC

chains as that of the standard N = 30 simulation (see Eq. 6.33). Here φd is signif-

icantly increased due to the increased ECMC equilibration. For φ > φd the curve

is nearly parallel to the other curves and, after setting the constant of integration

using the shell method, the configurational entropy obtained from this high sweep

number simulation is nearly the same as obtained in the main, lower sweep number

simulations.
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Figure 6.7. Probability density function (PDF) for Svib calculated with the shell
method (histogram) and RTI method (curve) for N = 30, φ = 0.60.

Svib µ σ skewness kurtosis
shell -2.65 0.11 -0.90 1.29
RTI -2.65 0.09 -0.25 2.76

Table 6.4. Statistics of the probability distribution functions of the vibrational
entropy measured by the shell and RTI methods for N = 30, φ = 0.60.

Finally, Fig. 6.6 illustrates an important feature of population annealing. For

φ < φd, we see that S−SRTI is nearly zero. This is because each replica is equilibrated

by ECMC and has the same properties as the ensemble of replicas. On the other hand,

for φ > φd ergodicity is broken and each replica is confined to a single glass state so

that the ensemble average no longer equals an average obtained from a single replica

using ECMC. Nonetheless, the resampling step in PA ensures that ensemble averages

represent equilibrium properties well beyond φd, as discussed in more detail in Sec.

6.4.4.

Figure 6.5 shows that values of Svib obtained from RTI and the shell method give

consistent results when averaged over many glass states. However, looking at the

distribution of values from the two methods we can see some interesting and, as yet,
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Figure 6.8. Scatter plot of S
(0.59)
RTI versus Sshell for 300 N = 30 glass samples at

φ = 0.58, 0.59, 0.60, and 0.61 (from right to left). The line of best fit for φ = 0.59, 0.60,
and 0.61 has a slope of 0.99 and intercept -0.02, showing excellent correspondence.
The vertical sets of high-entropy values that can be seen at φ = 0.59 through 0.61
correspond to the high-entropy plateaus in the vibrational entropy histograms.

not fully explained differences. Figure 6.7 shows the measured probability distribution

functions of Sshell and SRTI for N = 30 at φ = 0.60. The histogram corresponds to

Sshell values from 300 samples chosen randomly from the PA simulations and the curve

corresponds to SRTI values from 6×107 samples. The data was normalized so that the

averages of SRTI and Sshell are equal at φ = 0.59, which is the same as the normalization

used for Sc. As seen in the plot and Table 6.4, both distributions exhibit the same

general features, but there is a significant discrepancy between the two in the low

entropy tail where Sshell has significantly more weight than SRTI. Another interesting

characteristic of the distributions is the presence of flat steps in the RTI distribution

and a second maximum in the shell histogram at high entropies.

A different perspective on the relationship between Sshell and SRTI is seen in their

joint probability distribution, shown in Fig. 6.8. The different sets of colored points

correspond to glass states at different packing fractions, the large black points corre-
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spond to the average entropies at each packing fraction, and the red line is a line of

best fit for the φ = 0.59, 0.60, and 0.61 data. At high packing fractions, Sshell and

SRTI are strongly correlated and the resulting best fit line has slope 0.99 and intercept

-0.02. At these densities, the joint distributions are approximately symmetric about

the linear fit, but there are two distinct features of the joint distribution that require

explanation. The first is that there are clusters of points at high entropy that have

a narrow distribution of Sshell values and a wide distribution of SRTI values. These

clusters are most pronounced for high packing fraction. The second feature is that

the low entropy tail of the distribution is skewed toward higher values of SRTI. This

feature is most pronounced for low packing fraction. The high entropy clusters cor-

respond to the rightmost plateau in the histogram shown in Fig. 6.7. These high

entropy clusters require more investigation.

The points in the low entropy skewed part of the joint distribution that are ap-

parent for lower packing fractions in Fig. 6.8 may represent configurations of particles

that are at least partially fluid-like having diffusive rather than caged particle mo-

tions. While the RTI method should capture the full entropy of these configurations,

the limited number of Metropolis sweeps used in the shell method may fail to fully

explore the configuration space of these fluid-like configurations. On the other hand,

for high packing fraction, the shell method finds high entropy glass states for which

the RTI method finds substantially lower entropies. This may be due to the small

number of ECMC chains per annealing step used in the RTI method.

One possible issue with Sshell is that it is numerically poorly behaved at high

density. When initializing the shells for a glass state, there is a possibility that two

spheres will be nearly touching. The resulting shells will be only slightly larger than

the sphere sizes and, accordingly, the ideal gas entropies associated with those shells

will be large due to the logarithm of the volume present in Eq. 6.21. The numerical

integration of Sshell will compensate for the logarithmic term by having many more
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Figure 6.9. Shell vibrational entropy, Sshell(φ), as function of sweeps per annealing
step at packing fractions 0.59 (circles, left axis) and 0.61 (squares, right axis) for
N = 30. Both curves show logarithmic growth with the number of sweeps.

annealing steps, however, this amounts to subtracting one large number from another

and is, therefore, error-prone. This numerical instability is inherent to Frenkel-Ladd

techniques and becomes more problematic as the density approaches jamming.

Vibrational entropy, and thus also configurational entropy, is not uniquely defined

because glass states are metastable and vibrational entropy slowly increases as the

time allowed to explore configuration space increases. Figure 6.9 is a plot of the shell

vibrational entropy as a function of sweeps for glass samples at φ = 0.59 and φ = 0.60,

where each data point corresponds to an average over twenty different samples. The

plot exhibits a linear-log behavior, which is consistent with the known logarithmic

relaxation dynamics of configurational glasses.

6.4.3 Transition locations

The jamming density, φj, can be estimated by making a free volume fit [98] to the

dimensionless pressure at densities beyond equilibrium,
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Figure 6.10. (left panel) The derivative of the configurational entropy with respect
to packing fraction for N = 30, (simulations with 2 × 105 sweeps, blue; simulations
with 2× 106 sweeps, red) and N = 60 (green). We use the dSc/dφ plot to determine
the fitting range for our data. (right panel) Solid lines are Sc curves from the RTI data
and dashed lines are best fit quadratic extrapolation of these curves. For N = 30 with
2× 105 and 2× 106 sweeps, the fit is over the range φ = 0.58 to 0.595 and φ = 0.585
to 0.595, respectively, and for N = 60 the fit is over the range φ = 0.58 to 0.59. The
vertical solid line is the jamming point as determined by the free volume fit.

Z =
d′φj
φj − φ

. (6.34)

We make this fit for φ > 0.61 and obtain values of d′ equal to 2.83 and 2.85 and φj

equal to 0.676 and 0.673 for N = 30 and N = 60, respectively. We also performed

this for N = 30 with ten times the number of sweeps and obtained an estimated φj

of 0.677 with d′ = 2.91. Because our simulations have fallen out of equilibrium over

most of the range of the fits, the measured dimensionless pressures are higher than

their equilibrium values and the estimated values of φj act as lower bounds to the

random close packed density, φrcp. Our measured values of φj = 0.673 and 0.676 are

slightly larger than those found in Ref. [85] and within error bars of those found in

Ref. [29].

We can estimate the location of the Kauzmann transition by extrapolating Sc → 0

with our curves obtained with the RTI method. As shown in the left panel of Fig.

6.10, the dSc/dφ curves are linear for φ > φd as long as the simulation remains in
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Figure 6.11. Plot of ρ∗f (solid) and e−N∆Sc (dashed) vs φ for N = 30 (blue, lower)
and N = 60 (green, upper). Extrapolated values of Sc were used for φ > 0.59. The
red dots on the ρ∗f curves correspond to the point where the simulation falls out of
equilibrium according to ρ∗f/Rtot = 0.01, where Rtot is the population summed over
all simulations.

equilibrium. We make a quadratic fit to Sc for N = 30 with 0.58 < φ < 0.595 and

N = 60 with 0.58 < φ < 0.59 and obtain φK estimates of 0.653 and 0.649, respectively.

We also performed this for N = 30 with ten times the number of event chains over

the range of 0.585 < φ < 0.595 and obtained an estimated φK of 0.663. These fits are

shown as dotted lines in the right panel of Fig. 6.10. The fit ranges were chosen to be

after the dynamic glass transition but within the equilibrated regime. The resulting

extrapolations are generally consistent and support the inequality φK < φj ≤ φrcp.

Note that if the RTI data is normalized using a shell simulation with more sweeps,

see Fig. 6.9, then φK will shift to a yet lower value. Thus the simulations suggest

that a thermodynamic glass transition occurs at finite pressure. This is the central

physics result of this work.
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6.4.4 Equilibration

As discussed in Sec. 6.3.4, one can estimate the systematic errors of a weighted

average of many PA simulations using the quantity ρ∗f (see Eq. 6.28). Following Ref.

[29], we set ρ∗f < 0.01Rtot as the threshold for equilibration of the weighted average of

the simulations. Here Rtot is the total population of the combined simulations. The

solid lines in Fig. 6.11 show ρ∗f as a function of packing fraction for N = 30 (blue,

lower) and N = 60 (green, upper). The equilibration threshold is ρ∗f = 6× 105, 9.4×

105 for N = 30, 60 , respectively. These thresholds are shown by red dots in the

figure and suggest that the N = 30 simulations are equilibrated over the entire range

up to φ = 0.63 while the N = 60 results fall out of equilibrium at φ = 0.60.

Figure 6.11 shows a scatterplot of the joint distribution of the dimensionless pres-

sure, Z, and total entropy, S, at φ = 0.60 for the three system sizes. Each point

represents a single simulation included in the weighted average of observables and in

the computation of ρ∗f . The negative slope of the joint distribution shows that runs

with higher values of S have lower values of Z, as expected. In weighted averaging,

these high entropy runs are more heavily weighted so that the high entropy tail of the

distribution must be well-sampled to accurately estimate Z, ρ∗f and S. Furthermore,

for insufficient sampling, ρ∗f and S will tend to be underestimated and Z overesti-

mated. It is clear that the high entropy tail is poorly sampled for the N = 60 and

N = 100 runs but perhaps adequately sampled for N = 30. Thus, it seems likely that

the range of equilibration suggested by the red dots in Fig. 6.11 is overly optimistic

due to insufficiently many runs used in estimating ρ∗f . A more conservative approach

would be to extrapolate ρ∗f using its nearly pure exponential behavior before the knee

of the curve. An exponential fit in the range before the knee of curve is insensitive

to the precise fitting range. Setting the fitted function to the equilibration threshold

yields more conservative estimates that equilibration is achieved for φ . 0.618 for

N = 30 and φ . 0.598 for N = 60.
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Figure 6.12. Scatter plot of dimensionless pressure Z vs the total entropy per
particle S at φ = 0.60 for N = 30 (bottom, circle), N = 60 (middle, square), and
N = 100 (top, triangle). Small symbols correspond to independent runs and large
black symbols correspond to the weighted average of all runs.

In Fig. 6.11, we also plot e−N∆Sc vs φ, where ∆Sc(φ) = Sc(φ) − Sc(φ
∗). In this

expression we used the fitted value of Sc for φ > 0.59, described in the previous

section instead of the measured value since we believe the extrapolation of Sc is more

accurate than the measured values deep in the glassy regime and leads to a more

conservative criterion for equilibration. The initial packing fraction φ∗ = 0.58 is

chosen to be close to the dynamic transition, φ∗ ≈ φd, where each replica in the

population is assumed to become trapped in a distinct glass state. For values of φ

such that e−N∆Sc < 0.01Rtot (shown in the plot by the height of the red dot), the

combined simulations have sampled more than 100 equilibrium glass states. We see

that this occurs over the whole range for which the ρ∗f < 0.01Rtot criteria is satisfied.

6.5 Discussion

In this work we have introduced a new method to compute the configurational

entropy of structural glasses and presented several new results relating to the glassy

regime of binary hard sphere mixtures. Most importantly, we found new estimates of
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the Kauzmann density, φK, and bounds to the random close packing density, φrcp. The

jamming density was obtained by fitting the pressure divergence and provides a lower

bound on φrcp that is slightly larger than previous estimates. The Kauzmann density

was extrapolated from the configurational entropy measured in the equilibrium fluid

regime beyond the dynamic glass transition, φ > φd. Our results suggest that the

Kauzmann transition occurs prior to random close packing, φK < φrcp, so that a

thermodynamic glass transition does indeed exist in this system.

To obtain these results we introduced two new computational methods for calcu-

lating the vibrational entropy of a configurational glass: the shell method, which is a

variant of the Frenkel-Ladd method, and replica thermodynamic integration, which

relies on integrating the entropy of individual replicas in population annealing starting

from low density. Replica thermodynamic integration produces a continuous curve of

vibrational entropy but requires an alternative method to set an additive constant.

Population annealing has been shown to be capable of equilibrating configura-

tional glasses beyond the dynamic glass transition [29]. Here the dynamic transition

is associated with the computational method, either Markov chain Monte Carlo or

molecular dynamics, that drives equilibration in the algorithm at each packing frac-

tion. The limitation in probing equilibrium properties with population annealing

is related to the precipitous decline in configurational entropy as the density is in-

creased. In population annealing, each member of the population is frozen in a glass

state at φd so that upon entering the glass regime there are R glass states, where R

is the population size. As the packing fraction increases, the number or distinct glass

states in the population decreases exponentially as ReN [Sc(φ)−Sc(φd)] and collapses into

a single glass state when this number reaches one. The exponential dependence on

N explains why the method is restricted either to small systems or packing fractions

only slightly above φd. On the other hand, population annealing and closely related

techniques such as parallel tempering are the only methods known to us for going
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beyond the dynamic transition of a Monte Carlo or molecular dynamics scheme acting

at a fixed packing fraction. It should be noted that the decrease in glass configura-

tions with density imposes the same limitations on parallel tempering in going beyond

the dynamic transition. However, in continuously polydisperse systems for which the

swap algorithm is effective, population annealing (or parallel tempering) combined

with the swap algorithm would permit direct measurements of equilibrium properties

somewhat beyond the dynamic transition for the swap algorithm, which is already

deep within the glassy regime.
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CHAPTER 7

OUTLOOK

The work presented in this thesis falls into three categories: improvements to

the population annealing algorithm, numerical approaches to glassy systems, and the

application of population annealing to glassy systems. Going forward, there are many

different possible avenues of research in each of these directions. Here we discuss a

few ideas that follow directly from the work presented so far, and a few ideas that

are entirely new.

Perhaps most obvious would be to extend the configurational glass work that

was discussed in Ch. 6. There are still several open questions pertaining to the

replica thermodynamic integration method and the distinct features present in the

SRTI histogram. A first step would be to collect SRTI data for larger system sizes such

as N = 60 and N = 100. This would help to determine if the features are a result of

finite-size effects specific to the N = 30 system. Another possible, numerically cheap

direction would be to simulate systems with 31 or 32 particles. If the histogram

features are a result of finite-size effects, then it is quite possible that simply adding

one or two particles will result in a measurable difference in P (SRTI).

The replica thermodynamic integration method is not limited to configurational

glasses. Configurational entropy is also a quantity of interest in the field of spin

glasses, where it is referred to as “complexity”. Applying the RTI method to a

spin glass may reveal new strengths, or weaknesses, to the RTI approach. Systems

where the behavior of the configurational entropy is understood, such as the p-spin

model, would be ideal test candidates. Finite-dimensional spin glasses, while not as
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well understood, would provide a more interesting environment in which RTI could

be tested. Apart from glasses, any system that has a rough free energy landscape

could, in principle, be a candidate for measuring SRTI. A non-zero value of SRTI is a

direct measure of a lack of dynamic equilibration which, in and of itself, is a possible

use-case. In order to measure SRTI, one would either have to measure entropies or,

similarly, free energies of individual population members. Integrating the entropy of

individual population members has been performed in the microcanonical ensemble,

e.g. Ref. [95], and could easily be performed in the canonical ensemble using the

thermodynamic relation

T =

(
∂E

∂S

)
N,V

. (7.1)

This equation can be rearranged and numerically integrated to obtain the entropy

of each replica. Normalization of SRTI is specific to the model and would have to be

considered carefully.

While running large-scale simulations of hard sphere configurational glasses, we

have occasionally found partially ordered states. These are collections of particles that

have some clear spatial symmetries but do not form a normal ordered state. While

the thermodynamically preferred state of our binary mixture is a phase separated fcc

crystal, this is only true in the thermodynamic limit and it is possible that our small

systems prefer more exotic particle configurations. It is worth mentioning that we

did not find any evidence that partially ordered states were the cause of the plateaus

found in the SRTI histograms.

Another direction would be to focus on the development of PA. Population an-

nealing Monte Carlo falls into a large family of genetic algorithms and particle filters

that overlap to varying degrees. For instance, both the microcanonical version of PA

and nested sampling [10,11,74,93,100], while developed independently, are essentially

the same algorithm. Despite their overwhelming similarities, there are substantial dif-
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ferences in the way the two algorithms resample the population and estimate errors.

In addition, there is a substantial difference in the backgrounds of the people working

on the two algorithms. One obvious direction for future PA research would be to con-

solidate the ideas from both algorithms and, potentially, reach out for collaboration

with Skilling, et al. It would also be prudent to better understand the place that

population annealing has in the broader family of sequential Monte Carlo algorithms.

A second research topic specific to the development of population annealing is

the implementation and optimization of multi-parameter simulations. Systems which

contain several control parameters are common in physics and in many cases, reaching

a target phase while in equilibrium is most efficiently done via an annealing path that

includes several parameters. The notions of multiparameter annealing and optimal

paths to equilibrium are not new [96], however, they have not been implemented in

a population annealing simulation. Since population annealing is a fundamentally

different scheme than parallel tempering or simulated annealing, it is worth perform-

ing exploratory research. A topic that is related to multi-parameter annealing is

the use of auxiliary fields that are eventually annealed to zero. Physical fields that

are annealed to zero are common, for instance annealing a magnetic field towards a

zero-field target, however, auxiliary fields do not have to be physical and can poten-

tially speed equilibration. The goal of such research would be to identify an optimal

annealing path, possibly including non-physical fields, that results in a shortcut to

equilibration at the target.

Stable high-density glass samples have been produced in a lab setting using vapor

deposition techniques [62, 103] that reach regimes of the glass transition that had

not been previously accessible experimentally. It is believed that vapor deposited

glass samples are able to relax to equilibrium configurations because of additional

mobility at the surface of the deposition. A numerical scheme to emulate a vapor

deposition would be easy to design using population annealing, parallel tempering,

122



or even simulated annealing. An example layout of a simulation would be to have a

rectangular box that is square in two dimensions but with an lengthened height. The

square directions would have periodic boundary conditions while the long direction

would have walls. In addition to the standard pairwise interactions, there would be

a potential that pulls the spheres towards the bottom of the box. There are many

possible potentials to choose from but, in general, a potential would be chosen to result

in a relatively tight packing near the bottom of the box and a nearly unconstrained

gas at the top. As the simulation progressed, either the range of the potential or the

strength of the potential would be gradually increased via annealing so as to pull more

particles into a growing dense region. The end goal would be to build up a 3D glass

sample at the bottom of the box. Equilibration between annealing steps would take

the form of Monte Carlo or molecular dynamics moves. The Metropolis algorithm

would be trivial to implement but tends to be inefficient in configurational glass

simulations. Event chain Monte Carlo has a general form that works with long range

interactions and likely can be modified to work within an external field. Molecular

dynamics simulations can definitely describe the motion of interacting particles in

fields with the downside of being numerically expensive. The general outline of a

simulated annealing simulation would be:

1. Randomly initialize particles in an elongated box with zero field

2. Increase the strength of the field

3. Equilibrate using MC or MD

4. Repeat steps 2,3.

A population annealing or parallel tempering scheme could also be performed in the

canonical ensemble or even in the grand canonical ensemble if a chemical potential

was included. A proof of principle simulated annealing simulation would be partic-

ularly easy to implement using HOOMD-blue [6] with molecular dynamics as the
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equilibrating method. There are a few places where such a simulation may run into

trouble. The bottom of the box being a flat wall may result in the formation of non-

trivial structures – a possible way around this would be to implement a disordered

hard wall so as to minimize any tendency to crystallize or form 2D glassy layers.

A related simulation direction would be to anneal in dimension. The conceptually

simplest implementation would be to start with a periodic 4D cube and to then

gradually decrease the length of one side of the cube until the aspect ratio becomes

large enough to approximate a 3D system. Another implementation would be to

anneal from 4D to 3D using a potential in one dimension that would be gradually

increased until the particles formed a near-3D shape. Both of these methods would

introduce additional degrees of freedom through which the system could relax, but

they also introduce the complication of analyzing a near-3D glass instead of an actual

3D glass. It would be necessary and interesting to compare the physical properties of

such a system to the equilibrium properties of a truly 3D system.
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APPENDIX A

SPIN GLASS APPENDIX

A.1 Covariance inequality

In Sec. 5.2.2 we showed that ρt− 1 > ρf , at least for the exact free energy version

of PA, if the following inequality holds,

2 cov

δR̃k,
k+1∑

j=NT−1

R̃j+1∑
i=1

z(τ ji )

− var

 k+1∑
j=NT−1

R̃j+1∑
i=1

z(τ ji )

 > 0. (A.1)

To establish this inequality, we begin by noting that δR̃k is the sum of deviations from

the initial population size R that have accumulated during each resampling step,

δR̃k =
k+1∑

j=NT−1

R̃j+1∑
i=1

(
n(τ ji )− 1

)

=
k+1∑

j=NT−1

R̃j+1∑
i=1

(
τ ji + z(τ ji )− 1

)
. (A.2)

Using this result to expand the covariance term shows that the desired inequality, Eq.

A.1 can be re-written as

2 cov

 k+1∑
j=NT−1

R̃j+1∑
i=1

τ ji ,

k+1∑
j=NT−1

R̃j+1∑
i=1

z(τ ji )

+ var

 k+1∑
j=NT−1

R̃j+1∑
i=1

z(τ ji )

 > 0. (A.3)

The variance is obviously non-negative but we do not have a proof that the covariance

term is also non-negative. However, we can motivate this assertion by noting that
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if the population at an earlier resampling step is stochastically increased (z > 0)

then later population sizes will tend to be increased, i.e. cov[R̃j′ , z(τ
j
i )] ≥ 0 for all i

and all j′ < j. Furthermore, if the population is stochastically increased at an early

resampling step, since it is now larger, it will better explore the low energy tail of the

Gibbs distribution so that cov[τ j
′

i′ , z(τ
j
i )] ≥ 0 for all i and i′, and all k < j. These

two mechanisms both cause the covariance term in Eq. A.3 to be positive. It is worth

noting that cov[τ j
′

i′ , z(τ
j
i )] = 0 for all i and i′, and all j′ < j.

A.2 Variance expansion

The variance term from Eq. A.3 can be further expanded to get to a form similar

to that of Eq. (5.40). To do this, we make the approximation

var

 k+1∑
j=NT−1

R̃j+1∑
i=1

z(τ ji )

 ≈ k+1∑
j=NT−1

R̃j+1∑
i=1

var[z(τ ji )]. (A.4)

It is possible to do this step exactly by noting that only zi from the same family can

be correlated and by including covariance terms between intra-family z(τi), however,

these terms have been found to be numerically insignificant.

The sum of the variances of z(τi) during an annealing step can be calculated

using a method similar to that in Sec. 5.2.3. We begin by writing the values and

probabilities of z(τ),

z(τ) =

τ − bτc w/ prob. dτe − τ

τ − dτe w/ prob. τ − bτc,
(A.5)

which means that we can write the variance explicitly,

var[z(τ)] = (τ − bτc)2(dτe − τ) + (τ − dτe)2(τ − bτc). (A.6)

126



For culling fraction small, we can make the approximation that within a single an-

nealing step, τ is a Gaussian random variable. This allows us to replace the sum of

variances with an integral that can be calculated explicitly. Using Eq. A.6,

R̃j+1∑
i=1

var[z(τ ji )] ≈
∫ ∞
−∞

var(z(τ))N(τ ; 1,∆βσE) dτ. (A.7)

= 2ε− 2πε2. (A.8)

Summing over all annealing steps and simplifying the expression assuming a constant

culling fraction gives the desired result

k+1∑
j=NT−1

R̃j+1∑
i=1

var[z(τ ji )] ≈
k+1∑

j=NT−1

[
2ε(l)− 2πε(l)2

]
(A.9)

= (2ε− 2πε2) k. (A.10)
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APPENDIX B

CONFIGURATIONAL GLASS APPENDIX

B.1 Entropy normalization

To find the normalization of the entropy per particle, we start with the thermo-

dynamic definition,

∂S

∂V =
P

T
, (B.1)

where the Boltzmann constant has been set to unity and V is the volume per particle.

This equation can be integrated in volume to get

S(V) =

∫ V
VI

P

T
dV ′ + S(VI), (B.2)

where VI is the ideal gas limit of V with the property that VI � 1. In this limit, we

can make the approximation that the system begins as a binary mixture of two ideal

gasses with entropy

S(VI) = log

( VI

λ3
th/2

)
+

5

2
, (B.3)

where λth is the thermal deBroglie wavelength. By setting λth = 1, the resulting

entropy at V becomes

S(V) = lim
VI→∞

[∫ V
VI

P

T
dV ′ + log(VI)

]
+

5

2
+ log(2). (B.4)
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We can rewrite this in terms of packing fraction by using the relationship between φ

and V ,

φ =
4π

3V
r3

0 + r3
1

2
, (B.5)

where r0 and r1 are the radii of the small and large particles which, in our system,

have values r0 = 1 and r1 = 1.4. Changing variables from V to φ gives

S(φ) = lim
φI→0
−
∫ φ

φI

Z(φ′)

φ′
dφ′ − log(φI) + log

(
4π

3

r3
0 + r3

1

2

)
+

5

2
+ log 2, (B.6)

where the log(φI) term cancels with the logarithmically diverging pressure in the

integral. By rearranging, we get a form without explicit divergences,

S(φ) = lim
φI→0

∫ φ

φI

1− Z(φ′)

φ′
dφ′ − log(φ) + log

(
4π

3

r3
0 + r3

1

2

)
+

5

2
+ log 2. (B.7)

Typically we do not integrate from φ = 0 and instead start at a non-zero initial pack-

ing fraction. Starting at φ0, the total entropy in a population annealing simulation is

given by

S(φ) = S(φ0)−
∫ φ

φ0

Z̃(φ′)

φ′
dφ′, (B.8)

where Z̃ is the equilibrium pressure obtained during the population annealing simu-

lation. The normalization entropy is given by Eq. B.7,

S(φ0) =

∫ φ0

0

1− ZBMCSL(φ′)

φ′
dφ′ − log(φ0) + log

(
4π

3

r3
0 + r3

1

2

)
+

5

2
+ log 2, (B.9)

where we have set φI to zero because the BMCSL equation of state, defined in Eq.

6.3, can be explicitly integrated at φ = 0.
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and Csányi, Gábor. Constant-pressure nested sampling with atomistic dynam-

ics. Phys. Rev. E 96 (Oct 2017), 043311.
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