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ABSTRACT

EVALUATING PUBLIC MASKING MANDATES ON
COVID-19 GROWTH RATES IN U.S. STATES

MAY 2021

ANGUS K. WONG

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Laura B. Balzer

Background: U.S. state governments have implemented numerous policies to

help mitigate the spread of COVID-19. While there is strong biological evidence

supporting the wearing of face masks or coverings in public spaces, the impact of

public masking policies remains unclear.

Methods: We aimed to evaluate how early versus delayed implementation of

state-level public masking orders impacted subsequent COVID-19 growth rates. We

defined “early” implementation as having a state-level mandate in place before Septem-

ber 1, 2020, the approximate start of the school-year. We defined COVID-19 growth

rates as the relative increase in confirmed cases 7, 14, 21, 30, 45, 60-days after Septem-

ber 1. Primary analyses used targeted maximum likelihood estimation (TMLE) with

Super Learner and considered a wide range of potential confounders to account for

differences between states. In secondary analyses, we took an unadjusted approach

and calculated the average COVID-19 growth rate among early-implementing states

divided by the average COVID-19 growth rate among late-implementing states.
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Results: At a national level, the expected growth rate after 14-days was 4%

lower with early vs. delayed implementation (aRR: 0.96; 95%CI: 0.95-0.98). As-

sociations did not plateau over time, but instead grew linearly. After 60-days, the

expected growth rate was 16% lower with early vs. delayed implementation (aRR:

0.84; 95%CI: 0.78-0.91). Unadjusted estimates were exaggerated (e.g. 60-day RR:

0.72; 95%CI: 0.60-0.84). Sensitivity analyses varying the timing of the masking order

yielded similar results.

Conclusion: In both the short and long term, state-level public masking man-

dates were associated with lower COVID-19 growth rates. Given their low-cost and

minimal (if any) impact on the economy, masking policies are promising public health

strategies to mitigate further spread of COVID-19.
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CHAPTER 1

INTRODUCTION

By early November 2020, the coronavirus disease (COVID-19) pandemic had re-

sulted in over 9 million confirmed positive cases and 225,000 deaths in the United

States (US) [10]. Previously in the pandemic, both federal and state governments

had implemented numerous public health measures in an effort to “flatten the curve”

and minimize further transmission [47]. However, the timing and strictness of each

policy has differed and continues to differ between states. For example, a stay-at-

home (a.k.a. shelter-in-place) order was implemented as early as March 19, 2020 in

California, while some states have never implemented one as of December 2020 [39].

Other major non-pharmaceutical interventions (NPIs) include non-essential business

closures, school closures, large gathering bans, and public masking. However, as the

pandemic unfolds, the effectiveness of these NPIs remain unknown and difficult to

examine.

There has been an increasing amount of scientific evidence supporting the hypoth-

esis that NPIs can help mitigate the COVID-19 growth rate. For example, using an

event-study econometric regression model, Courtemanche et al. evaluated the impact

of strong social distancing policies, defined as large social gatherings ban, school clo-

sures, public facilities closures, and shelter-in-place orders, on the daily case growth

rate in 3,138 U.S. counties [15]. They defined daily growth rate as natural log of total

cases in a day minus the log of total cases in previous day, and assumed exponential

growth in the absence of the intervention. Using this approach, the researchers esti-

mated that from March 1 - April 27, 2020 the county-level daily growth rate would
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have been reduced by 5.4, 6.8, 8.2, and 9.1 percent after 1-5, 6-10, 11-15, 16-20 days

of the government-imposed policy, respectively. Courtemanche et al. also predicted

that confirmed case count would have been ten times higher without shelter-in-place

orders and thirty-five times higher without the other four strong policies. These NPIs,

however, are highly disruptive to both social and economic well-being.

Policies to encourage or enforce wearing face masks or coverings while in public

(hereafter called “public masking order”) are promising approaches that have been

hypothesized to help mitigate the spread of COVID-19 for the following reasons.

First, many densely populated Asian regions with high level of mask compliance such

as Hong Kong, Japan, and Singapore have demonstrated success in combating the

pandemic [19, 27, 55]. Second, in comparison to other more restrictive social dis-

tancing measures, a public mask order is relatively inexpensive to implement and

does not have as much of a negative impact on the US economy [54]. Third, as var-

ious re-opening plans are considered and implemented, public masking can be used

as a compliment, instead of an alternative, to other social distancing policies [17].

Nonetheless, public masking orders remain controversial, and official recommenda-

tions have been inconsistent [43].

At the beginning of the pandemic, the US Centers for Disease Control and Preven-

tion (CDC) did not recommend public masking due to concern of masks shortage for

health professionals [13]. Although the CDC updated the recommendation on April

3, 2020 to advise the use of cloth face cover in public places, many remain skeptical

of the policy’s necessity and effectiveness [18]. State-specific recommendations and

policies have also varied [39]. In Massachusetts, for example, the initial public mask-

ing order, issued on May 1, 2020, requires everyone aged 2+ years to wear a mask or

a face covering at both indoor and outdoor public places where social distancing of

six feet is not possible. It was subsequently revised on November 2, 2020 to require

2



face masks or cloth face coverings in all public places for all aged 5+ years even when

six feet social distance could be maintained [37, 41, 40].

Although the biological efficacy of masks use has been demonstrated by many

studies [3, 5, 25], there is limited scientific evidence to demonstrate the effectiveness

of mask policy at a population-level. In this dissertation, we aim to help fill this

knowledge gap by evaluating the impact of public masking on mitigating the COVID-

19 cases by using a formal framework for causal inference [6, 45]. Before doing so,

we briefly review other studies also aiming to understand the impact of public mask

orders on COVID-19 transmission at a population-level.

1.1 Evidence to date

Randomized controlled trials are the gold-standard for providing evidence of ef-

fectiveness. To date, however, there have not been any trials of mask wearing and

COVID-19 incidence. In words of Greenhalgh et al., to combat this pandemic, “it is

time to act without waiting for randomized controlled trial evidence”[23]. Specifically,

observational studies, when appropriately analyzed, can also provide strong evidence

of policy impact [7].

While differing in methodologic approach, several studies have provided evidence

to support public masking. For example, using a previously developed Susceptible-

Exposed-Infectious-Recovered (SEIR) model, Eikenberry et al. simulated the impact

of mask mandates on the effective transmission rate (the average number of people

each infectious individual can infect daily) under different levels of mask efficacy

and compliance in two states: New York and Washington [17]. Their simulations

suggested that 50% coverage of masks with 50% effectiveness could halve the effective

transmission rate, and 80% coverage of of masks with 20% effectiveness could reduce

effective transmission rate by one third. These modeling results suggest that while

high compliance in combination with highly effective masks (e.g., N95s) is ideal,
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universal adoption of less effective masks (e.g., homemade cloth masks) may still be

very impactful in mitigating COVID-19.

Using SEIR and agent-based models, Kai et al. conducted simulations from March

23 onward for 500 days, and found that compliance with both social distancing (50%)

and masking (80%-90%) must be quite high to markedly reduce COVID-19 transmis-

sion [29]. When validating their theoretical simulation results with empirical data

(obtained from 38 counties or provinces in Asia, Europe, and North America) on

universal masking and case incidence between January 23 to April 10, 2020, they

found that universal masking was nearly perfectly correlated with strong reductions

peak daily growth rate and successful suppression of daily growth rate (Defined as

below 12.5% daily growth). In their study, countries with universal masking by early

during the pandemic experienced lower peak daily growth rate than countries that

delayed universal masking. Countries with lockdown policies but without universal

masking experienced higher daily growth than groups with any universal masking.

They suggested delaying implementation past 50 days since the outbreak onset would

substantially reduce its impact on subsequent growth rates. In other words, not only

does the implementation of universal masking matter, the timing of such policy is

also critical.

Using a deterministic SEIR framework and adjusting for covariates such as sea-

sonal trend for pneumonia related deaths and mobility, the IHME COVID-19 Fore-

casting Team also examined the timing of interventions by projecting COVID-19 cases

and mortality across the US from September 2020 through the end February 2021

[26]. Under scenario where social distancing mandates were reinforced only after a

threshold of 8 deaths per million was surpassed and without any masking mandate,

they projected between 469,578 – 578,347 COVID-19 death could occur by the end

of February. However, under the same scenario but with 85% universal mask use,

between 60,731 – 170,867 lives could be saved. On a smaller scale, Babino and Mag-
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nasco conducted a similar study for Connecticut, Massachusetts, and New York using

regularized regression and susceptible-infectious-recovered (SIR) framework [4]. Their

model predicted that a public masking policy could potentially prevent 170,000 cases

from the time of implementation of stay-at-home orders until their lift.

In addition to simulation studies, a survey conducted by the Delphi group demon-

strated a strong state-level correlation between the mask wearing rate and the COVID-

19 case rate [16]. While these results are encouraging, correlation is not causation.

There are a plethora of reasons why two variables may be correlated, and for effective

decision-making we need to explicitly understand how and why a policy impacts the

outcome of interest. In particular, failing to appropriately control for common causes

of the policy and outcomes can lead to misleading results. For a COVID-19-related

demonstration with simulated data, we refer the reader to Balzer and Whitcomb [8].

Furthermore, in another working paper, we have shown that unadjusted estimates of

the association between state-level shelter-in-place orders and COVID-19 death rates

were substantially inflated, as compared to estimates controlling for the many ways

in which states differ from each other.

Formal frameworks for causal inference also require the assumptions needed to

interpret estimates as effects (versus associations) to be explicitly stated and critically

evaluated. This is in direct contrast with “standard” approaches that overlook these

assumptions and interpret results from correlation or modeling studies as providing

estimates of causal effects. For these reasons, causal inference frameworks can help

provide more meaningful results for decision making, while being transparent about

assumptions and limitations.

With respect to mask wearing policies, studies using causal inference methods have

produced conflicting results. For example, using the difference-in-difference method,

Lyu and Wehby examined the impact of different levels of public masking policies on

daily growth rate, defined again as the natural log of total cases in a day minus the
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log of total cases in previous day [36]. They compared 15 states and the District of

Columbia with a public masking mandate to the remaining 35 states without such

a mandate. Comparing to the reference level of daily case rate from 1-5 days prior

to masking mandate, they examined five post-intervention periods (corresponding to

1-5, 6-10, 11-15, 16-20, 21+ days after March 25, 2020) and found that the mandate

was associated with a decline of 0.9, 1.1, 1.4, 1.7, 2.0 percentage points in state-level

daily COVID-19 growth rates. However, their comparison of 20 states with a masking

order for only employees but not the general public to 15 states without any masking

mandate found no significant association.

On the other hand, using an econometric approach based on linear structural

equations, Chernozhukov et al. did find an association between employee only mask

mandates and COVID-19 cases and deaths at a national-level in the U.S [14]. Specif-

ically, their analysis suggested that if a national mandate for employee face masking

had been issued on March 14, 2020, then the cumulative numbers of cases and fatal-

ities by late April would have would been reduced by 21% and 34%, respectively.

Altogether prior studies consistently show the importance of public mask wearing

to help mitigate COVID-19 transmission. Nonetheless, nearly a year after the pan-

demic onset in the US, public opinion remains divided and policies-makers are still

hesitant to issue mandates. The continued variation in policy implementation across

states provides an opportunity for further evaluation. Now with more data and pos-

sibly a better understanding of COVID-19, our objective is to evaluate the impact of

mask mandate at a national-level. To do so, we follow the Causal Roadmap, a formal

framework for causal inference with the following steps: defining the scientific ques-

tion, specifying the causal model based on real-world knowledge, specifying the causal

parameters using counterfactuals, linking the observed data to causal model, iden-

tifying the statistical estimand, statistical estimation and inference, interpretation

and discussion [6]. Given its superior statistical performance and in line with recom-
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mendations by Friede for studying COVID-19, we used targeted maximum likelihood

estimation (TMLE) for estimation and inference [20, 53].
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CHAPTER 2

METHODS

We aim to evaluate the effect of state-level mandates for public masking on the

growth rate of COVID-19 cases in the US. To sharply frame this question, we need to

be more specific about the exposure and outcome definitions as well as their timing.

Indeed, there have been many variations of state-level mask policies, ranging from

simple recommendations to requirements for both public indoor and outdoor areas

[39]. Throughout, we focus on the strongest policy, assuming that the strongest

mandate would lead to the greatest impact, and reserve examination of other mask

policies for future work. Therefore, we define our primary exposure A as an indicator

that a given state had issued a mandate requiring masks or cloth face coverings in

public indoor and outdoor spaces when it was not possible to social distance (i.e.,

maintain at least 6-feet apart) by the target date (described next).

In the primary analysis, the target date is September 1, 2020, selected to cor-

respond roughly with the start of the school year for many universities and K-12

schools. Given the anticipated shift in behavior for many US residents (i.e., from

summertime activities to classroom activities) as well as the increased mobility for

college-aged students, we hypothesize that having a masking mandate in place before

September 1, 2020 would limit the spread of COVID-19. To further understand the

impact of state-level public mask mandates on the COVID-19 epidemic, we conduct

a sensitivity analysis with the exposure defined as having issued mandate requiring

masks or cloth face coverings in public indoor and outdoor spaces when it was not

possible to social distance (i.e., maintain at least 6-feet apart) before shelter-in-place

8



(a.k.a., stay-at-home) orders were terminated. In this secondary analysis, the “target

date” is thereby state-specific.

To account for variability in the arrival of COVID-19 to each state, we avoid raw

counts and instead focus our outcome definition on relative changes. Suppose, for

example, COVID-19 arrived in State-A one month prior to State-B; comparing their

daily or cumulative case counts would be potentially misleading, given that the states

were in different stages of the epidemic. Using relative change allows for each state to

serve as its own reference. Specifically, we define the outcome Y as the state-specific

COVID-19 growth rate, defined as the number of confirmed cases a set number of

days after the target date, divided by the number of confirmed cases on the target

date.

To capture the immediate impact of the policy, we focus on 14-day delay to account

for lags in behavior change and case detection (e.g., the median incubation period

of 5.1 days) [33]. To address the sensitivity to the timeframe as well as examine

longer term effects, we also consider 7-days, 21-days, 30-days, 45-days, and 60-days

after the target date. Thus, we altogether aim to evaluate the state-level effect of

having a masking mandate in place prior to September 1, 2020 on the growth rate of

COVID-19 cases over the following 7 to 60 days.

2.1 Causal model

To translate our scientific objective into a causal parameter, we specify a structural

causal model to express the relationships between key study variables [42, 53]. These

models consist of three main components: endogenous variables, exogenous variables,

and structural functions. Endogenous variables represent the set of variables that

are essential to answering our scientific question. In this cross-sectional study, the

endogenous variables consist of the measured confounders W , the exposure A, and

the outcome Y .
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When selecting the confounders W , we considered state-level variables that a gov-

ernor might consult when deciding whether to enact a masking mandate and that

might also influence COVID-19 case rates. We separated these covariates into broad

categories. First, the population demographics of a given state may influence pol-

icy and health outcomes. Older persons, racial/ethnic minorities, the economically

disadvantaged, and those with preexisting health conditions have been disproportion-

ately burdened by COVID-19 [1, 11]. Secondly, factors related to population density

and urbanicity, could influence policy and infectious outcomes. Thirdly, politics in-

evitably influence both public policy as well as the compliance with those public

health policies, with low compliance potentially leading to more transmission. Lastly,

prior public health policies and recently observed COVID-19 outcomes are likely to

impact both the state government’s urgency to act as well as their residents’ behavior.

As the pandemic progressed, both governments and the general public have become

reluctant to continue the more restrictive policies due to the negative social and eco-

nomic impact. Altogether, the set of potential confounders consisted of the following

state-level variables:

1. Population demographics:

• Age distribution: Over 65 years (%), median age

• Race/ethnicity: Black or African American (%), Hispanic (%), Asian (%),

Mixed Race (%), Caucasian (%)

• Economic: Median income, households in poverty (%), people in poverty

(%)

• Co-morbidities: Smoker (%), Diabetes(%)

2. Population density and commuting patterns:

• Population density (people per km2), urbanicity (%), average household

size
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• Drove to work (%), worked at home(%), public transportation usage(%),

biked to work (%), other commute mode (%), walked to work (%)

3. Political leading

• Republican (Indicate whether the Republican party won the majority of

the presidential vote in a state in 2016)

4. Prior COVID-19 policies and outcomes before the target date

• Confirmed cases {7, 14, 30}-days earlier

• Deaths {7, 14}-days earlier

• Total tests {7, 14}-days earlier

• Prior policy implementation (Binary): stay-at-home, gathering restric-

tions, restaurant restrictions, non-essential business closures; other busi-

ness closures, business masking, school masking

• Residential mobility change {7, 14}-days earlier (%)

(Data sources are described below.)

As previously discussed, the exposure A is an indicator of having a mandate re-

quiring the use of masks or cloth face coverings in both public indoor and outdoor

space when social distancing is not possible by the target date (September 1, 2020 in

the primary analysis). Thus, A = 1 for states with an “early” masking policy, and

A = 0 for states with a “delayed” masking policy. Also as previously discussed, the

outcome Y is the COVID-19 growth rate, representing the number of confirmed posi-

tive cases within the selected days of target date divided by the number of confirmed

positive cases on the target date. Formally, it is defined as follows:
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# Cumulative confirmed cases by n days after target date

# Cumulative confirmed cases by target date

, where n ∈ (7, 14, 21, 30, 45, 60)

(2.1)

As defined in Eq 2.1, Y can only take on value greater than 1 since the value of the

numerator is always greater or equal to the denominator. In words, the cumulative

confirmed cases by n days after the target date will always exceed the cumulative

confirmed cases by the target date.

The second component of the causal model is the exogenous variables, also known

as background variables and denoted U = (UW , UA, UY ) with some joint distribution

PU . These represent the set of unmeasured or unknown factors that determine the

values that the endogenous variables can take. For example, perceived or actual

compliance with previous public health policies may influence a governor’s decision

on masking mandates as well as previous and subsequent COVID-19 cases. Such a

variable represents an unmeasured common cause of the confounders W , the exposure

A, and the outcome Y . Another example could be the strength of the state’s public

health department, which could influence prior COVID-19 outcomes (included in W ),

whether the state has an early masking policy A, and the subsequent growth rate of

COVID-19 cases Y .

The third component of the causal model is the set of structural equations,

which define the relationships between endogenous variables and exogenous variables.

Specifically, they allow us to express the value of each of the endogenous variable,

as a deterministic function of other endogenous variables and the background fac-

tors. Since structural equations are not symmetric and have directionality, causality

is encoded in the model.

Altogether the structural causal model for our study is given by:
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W = fW (UW )

A = fA(W,UA)

Y = fY (W,A,UY )

(2.2)

This model encodes the following relationships: the confounders W are some

deterministic function fW of the unmeasured factors UW ; the exposure A is some

deterministic function fA of the confounders W and unmeasured factors UA, and the

outcome Y is some deterministic function fY of the confounders W , exposure A and

unmeasured factors UY . This structural causal model can also be expressed with the

following directed acyclic graph shown in Figure 2.1.

Figure 2.1. Directed acyclic graph representing the masking study.

In either representation, the causal model is specified at the state-level and encodes

there is no interference between states. In other words, the outcome for one state is

not impacted by the policy of another state. If this assumption is violated (e.g. due

to the infectious nature of COVID-19 and travel between states), then our impact

estimates are likely to be biased towards the null, while our confidence intervals will

be overly precise. In future work, we will relax this assumption by adjusting for the

pre-exposure COVID-19 outcomes of neighboring states.
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Importantly, we do not specify the functional form of these equations. Equally

importantly, we do not specify any independence assumptions on the distribution

of unmeasured factors PU ; thus, we allow for unmeasured common causes of the

covariates W , the exposure A, and the outcome Y . (When addressing identifiability

in Section 2.4, we will revisit these independence assumptions.)

2.2 Counterfactuals & the Causal Parameter

Recall our goal of evaluating the effect of early versus delayed masking mandates

on COVID-19 growth rates. To translate this goal into a well-defined causal pa-

rameter, we introduce counterfactual outcomes, Ya, representing the outcome for a

state if the exposure-level A = a,where a ∈ (0, 1). Here Y1 is the relative change in

COVID-19 case rate for a state if possibly contrary-to-fact they implemented a mask-

ing mandate prior to the target date, while Y0 is the relative change in COVID-19

case rate for a state if possibly contrary-to-fact they failed to implement a masking

mandate prior to the target date. Formally, we can obtain these counterfactual out-

comes by deterministically setting the exposure A equal to 1 and 0 in the structural

causal model:

W = fW (UW )

A = a

Y = fY (W,a, UY )

(2.3)

or equivalently on the causal graph shown in Figure 2.2.

With the distribution of counterfactual outcomes, denoted P∗, we can define the

target causal parameter. We focus on the causal rate ratio (CRR) in the primary

approach and consider the causal rate difference (CRD) in secondary analyses:

CRR =
E∗(Y1)
E∗(Y0)

(2.4)
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Figure 2.2. Directed acyclic graph under a static intervention to set A = a.

CRD = E∗(Y1)− E∗(Y0) (2.5)

These causal parameters correspond to the ratio and difference in the expected

COVID-19 growth rate if all states had an early masking policy and expected COVID-

19 growth rate if all states had a delayed masking policy.

In the real world, however, we do not get to observe both counterfactual outcomes,

since a state either did or did not implement the mask mandate by the target date.

Thus, in the next two sections, we define the observed data and their link to the causal

model as well as address how these causal parameters can be expressed in terms of

the observed data distribution.

2.3 Linking the Causal Model to the Observed Data

For the empirical analysis, we obtain state-level covariates from the Bureau of

Transportation Statistics [9], Iowa Community Indicators Program [28], Kaiser Fam-

ily Foundation [30], MIT Election Data and Science Lab [38], Google Mobility Report

[22], and the US Census [49, 50, 51]. Data on COVID-19 policies were collected from

the GitHub repository maintained by the COVID-19 State Policy Team at the Univer-

sity of Washington, with verification as needed from the Kaiser Family Foundation,
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CNN, and state government websites [21, 31, 32]. For each policy, the issued, enacted,

expired, and ended date were collected. From these, we created binary indicators to

represent whether a policy was in place by a given date. Given variability in the

strictness, masking mandates were categorized into 3 levels: limited to specific public

settings, more broadly required indoors and in enclosed spaces, and generally re-

quired for both indoor and outdoor public spaces where 6-feet distance cannot be

maintained. For this study, we define A = 1 for a state with a timely implementa-

tion (before September 1, 2020) of strictest policy (general requirement), and define

A = 0 for a state without timely implementation of the strictest policy or with timely

implementation of a weaker policy. Time series data on COVID-19 outcomes were

collected from the COVID Tracking Project [48].

From these data sources, we construct the empirical data set. For a given state,

the observed data O consist of the measured confounders W , the masking mandate

indicator A, and the growth rate outcome Y . We denote the distribution of the

observed data as O ∼ P. We assume these data arose by sampling repeatedly from

some data generating process compatible with the causal model, given in Section

2.1. In other words, we assume the causal model provides a description of the data

generating process under observed conditions as well as under specific interventions.

This provides a link between the counterfactual outcomes and observed outcomes and

in other causal frameworks is called the “consistency” assumption [6, 53].

As shown in Equation 2.3, the observed outcome Y will have the same value as

the counterfactual outcome Ya when the observed exposure A = a. For our study,

we assume that the observed COVID-19 case growth rate for a state with a delayed

mandate would equal to the COVID-19 case growth rate if possibly-contrary-to-fact

they had delayed. Similarly, we assume that the observed COVID-19 case growth

rate for a state with an early mandate would equal to the counterfactual COVID-19

case growth rate to if they had acted early. By explicitly considering and defining
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the level of the mask policy of interest, we helped to ensure the exposure variable is

well-defined and improved the plausibility of this assumption.

2.4 Identifiability of causal parameter

We now assess identification: what are the conditions needed to express the causal

parameter as some function of the observed data distribution O ∼ P? The commonly

cited assumptions of temporality and no interference (a.k.a. stability) have already

encoded our in the causal model [6, 53]. Likewise, we established consistency be-

tween the observed outcomes and the counterfactual outcomes in the previous step.

Nonetheless, to express the expected counterfactual outcome E∗(Ya) as function of

the observed data distribution Ψ(P), we additionally need there to be no unmeasured

common causes of the exposure A and the outcome Y . In other words, we need there

to be no unmeasured confounders of the relationship of interest. This assumption is

also called “conditional exchangeablity” and the “ignorability” [6, 53].

We can assess the plausibility of this assumption with our causal graph and the

Back-door Criterion of Pearl [42]. Back-door paths are a sequence of nodes from

the outcome Y into the exposure A. These paths are important as they represent

possible relationships that can confound or obscure the causal effect of interest. In

order to satisfy the criterion, there must exist a set of observed variables that can be

conditioned on (i.e. included in our adjustment set) so that all back-door path are

blocked.

As shown in Figure 2.3, in our study, there are four back-door paths to examine:

(1) Y → W → A; (2) Y → UY → UW → W → A; (3) Y → UY → UW → UA → A;

and (4) Y → UY → UA → A.

The first two paths can be blocked by adjusting for measured confounders W .

However, the third and fourth paths cannot be blocked, because U = (UW , UA, UY )

represents the set of unmeasured common causes, and we cannot statistically adjust
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Figure 2.3. Possible Back-door Paths from Y to A

(1) (2)

(3) (4)

for unmeasured variables. Therefore, we conclude that the causal effect of interest is

not identifiable in this observational study.

Nonetheless, we can still discuss the scenarios in which the causal effect would be

identifiable. To do so, recall PU represents the joint distribution of the unmeasured

factors influencing the covariates UW , exposure UA, and outcome UY , respectively. If

the following independence assumptions on the distribution PU held in our original

causal model (Section 2.1), the causal effect would be identifiable:

• UA ⊥⊥ UY AND

• UW ⊥⊥ UA OR UW ⊥⊥ UY

The first condition specifies that the background variables affecting exposure must

be independent from background variables affecting the outcome. This is equivalent

to stating there are no unmeasured common causes of the exposure and outcome. The
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second condition specifies that the background variables affecting the covariates must

be independent from either background variables affecting the exposure or affecting

the outcome. In trials where the exposure is completely randomized or randomized

within covariate strata, we have UA ⊥⊥ UY and UA ⊥⊥ UW by design and the observed

association between the exposure and outcome can be attributable to the causal effect

of interest.

However, in our observational study, we cannot rule out the possibility of un-

measured confounding, as reflected in the original causal model (Section 2.1). As

previously discussed, perceived or actual compliance with public health policies and

the strength of the state’s public health department are examples of unmeasured

sources of correlation between the exposure and outcome. Therefore, even after ad-

justing for the measured confounders W , we cannot be sure that observed association

between public masking mandate and COVID-19 cases growth rate are due solely to

our causal effect of interest.

Nevertheless, we can still specify a well-defined statistical estimand Ψ(P), which

would equal our wished-for causal effect if the above assumptions held. If the set

of covariates W were to capture all the common causes of the exposure A and the

outcome Y , then we could express the causal rate ratio (Eq 2.4) and the causal rate

difference (Eq. 2.5) via the G-computation formula [46]

RR =
E[E(Y |A = 1,W )]

E[E(Y |A = 0,W )]
(2.6)

RD = E[E(Y |A = 1,W )]− E[E(Y |A = 0,W )] (2.7)

where in all cases the outer expectation is over the covariate distribution. In words,

E[E(Y |A = 1,W )] is the expected COVID-19 growth rate, given early implementa-

tion and the confounders W , and then standardized with respect to the confounder

distribution in the population. E[E(Y |A = 0,W )] is the expected COVID-19 growth

rate, given delayed implementation and the confounders W , and then standardized
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with respect to the confounder distribution in the population. A rate ratio less than 1

represents that masking mandate is associated with reductions in COVID-19 growth

rate, whereas a rate ratio greater than 1 represents that the masking mandate is as-

sociated with increases in COVID-19 growth rates. Likewise, for the rate difference,

a point estimate less than 0 means that the mandate was associated with reductions

in the growth rate, whereas the opposite is true for an estimate greater than 0.

For the statistical estimands corresponding the rate ratio and rate difference

(Eq. 2.6 and Eq. 2.7) to be well-defined, we also need an additional condition on

data support, sometimes called the “positivity assumption”, “overlap”, and the “ex-

perimental treatment assignment assumption” [44]:

mina∈A P(A = a|W = w) > 0, for all possible w (2.8)

where A = {0, 1} represents the set of exposure of interest. This condition ensures

that there is a greater than zero probability of each level of exposure for all possible

values of adjustment variables.

In our study, the positivity assumption would be violated if the intervention is

impossible for states with specific covariate values. This could occur, for example, if

all Republican states delayed the masking mandate or if all states with the highest

COVID-19 case rates before September 1, 2020 implemented the policy. For the

confounders considered, we have no reason to believe the positivity assumption was

theoretically violated.

2.5 Statistical estimation & Inference

After reviewing the assumptions needed for identifiability, we recognize that the

assumption of no unmeasured confounding is not satisfied in this observational study

on masking. Nonetheless, we proceed with estimation and inference based on the
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G-computation formula (Eq. 2.6 and Eq. 2.7), which comes as close as possible to

the wished-for causal effect given the limitations in the data. To do so, we need

to define an estimator which is a function whose input is the observed data O ∼ P

and whose output is a real value in the parameter space. Two common estimators

are parametric G-computation (a.k.a. the simple substitution estimator) and inverse

probability of treatment weighting (IPTW) estimator [6, 53]. However, these single-

robust estimators have drawbacks. First, to obtain a consistent point estimate, the

simple substitution estimator relies on consistently estimating the conditional mean

outcome E(Y |A,W ), and IPTW relies on consistently estimating the propensity score

P(A = 1|W ). Additionally, implementation of these estimators has traditionally relied

on very strong parametric assumptions. Due to their limitations, we employ Targeted

Maximum Likelihood Estimation (TMLE), a doubly robust estimator which naturally

incorporates machine learning while maintaining the basis for valid statistical infer-

ence [6, 53]. In the following, we provide a brief overview of TMLE and then describe

our specific implementation for the masking study.

2.5.1 TMLE

Recall the observed data consist of the measured confounders, the exposure in-

dicator, and the outcome: O = (W,A, Y ). We can factor the observed data distri-

bution according to temporal ordering: P(Y |A,W ) ∗ P(A|W ) ∗ P(W ). Unlike the

single-robust estimators, TMLE requires estimation of all three parts of this distri-

bution. To achieve a consistent point estimate with TMLE, however, we only need

that the conditional mean outcome E(Y |A,W ) or the propensity score P(A = 1|W ) is

consistently estimated; hence TMLE is doubley-robust. Furthermore, if both are con-

sistently estimated at reasonable rates, then TMLE is considered efficient with lowest

asymptotic variance among other estimators. Finally, we can utilize machine learn-
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ing algorithm to avoid strong modeling assumptions, while obtaining valid statistical

inference (i.e. 95% confidence intervals with nominal coverage).

For simplicity, we focus the remainder of this section on using TMLE to estimate

the G-computation formula for a single level of the exposure ψ(a) = E[E(Y |A =

a,W )], while noting we can repeat this process for both levels of the exposure (a ∈

{0, 1}) and then take the relevant contrasts to estimate the rate ratio (Eq. 2.6) or

rate difference (Eq. 2.7). With a single intervention variable, such as considered in

the masking study, we can implement TMLE as follows: [52]

1. Estimate conditional expectation of the outcome, given the exposure and ad-

justment variables: E(Y |A,W )

2. Estimate the propensity score: P(A = 1|W )

3. Construct a “clever covariate”: Ĥ(A,W ) = I(A=a)

P̂(A=a|W )

4. Update the initial estimator

5. Obtain a point estimate by substituting the updated estimates into the pa-

rameter mapping and obtain a variance estimate with the estimated influence

curve

For our masking study, we first estimate the expected COVID-19 growth rate,

given the observed masking mandate and state-level confounders, denoted E(Y |A,W ).

To do so, we used Super Learner, an ensemble machine learning method [52]. Super

Learner utilizes cross-validation to determine the optimal combination of predictions

from a pre-specified collection of algorithms. In more detail, the predictions from

various algorithms are assigned different weights based on out-of-sample, performance

estimates (i.e. cross-validated risk estimates). By using ensemble machine learning,

we aim to avoid unnecessary parametric assumptions and thereby respect the non-

parametric statistical model. After fitting Super Learner for the expected outcome,
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we then generate estimations for all states, given the exposure-level of interest and

measured confounders: Ê(Y |A = a,Wi) for i = {1, . . . , 50}. Here, Ê(Y |A = a,Wi)

represents our estimate of the expected COVID-19 growth rate for state i, given a

masking mandate of interest A = a and its covariates W .

In the second step, we again utilize Super Learner to estimate the probability

of a state having the masking mandate of interest, given the measured confounders:

P̂(A = a|Wi) for i = {1, . . . , 50}. Next, we construct a clever covariate

Ĥ(Ai,Wi) =
I(Ai = a)

P̂(A = a|Wi)
(2.9)

which will be used to reduce bias within our initial estimator of the expected outcome

Ê(Y |A,W ). The clever covariate is, thus, an indicator of having the exposure of

interest (A = a), divided by the estimated probability of having that exposure given

the measured confounders.1 The clever covariate, thus, captures how likely each state

is to receive the exposure of interest. States with an unlikely exposure-confounder

combination have a small denominator and thus a large clever covariate.

With the clever covariate, we can define the updated estimator, denoted with

Ê∗(Y |A,W ), as follows for unbounded continuous outcomes and for bounded out-

comes, respectively:

Ê∗(Y |A,W ) = Ê(Y |A,W ) + ε̂× Ĥ(A,W ) (2.11)

1We note that if we were only interested in the contrasts on the absolute scale (i.e the risk
difference in Eq. 2.7), then we could use the following clever covariate:

Ĥ(Ai,Wi) =
I(Ai = 1)

P̂(A = 1|Wi)
− I(Ai = 0)

P̂(A = 0|Wi)
(2.10)

For early acting states (i.e. those with A = 1), the clever covariate is 1
P̂(A=1|Wi)

as the second term

evaluates to 0. Conversely, for all delayed states (i.e. those with A = 0), the first term disappears
and the clever covariate becomes −1

P̂(A=0)|Wi
.
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logit[Ê∗(Y |A,W )] = logit[Ê(Y |A,W )] + ε̂× Ĥ(A,W ) (2.12)

where logit[·] = log[·/(1 − ·)]. In both cases, ε̂ is the fluctuation parameter and

captures targeted deviations between our initial estimator Ê(Y |A,W ) and the true

conditional expectation E(Y |A,W ). Informally, ε̂ is small when there are minimal

deviations between the initial estimator and truth and is large when there is substan-

tial residual confounding. Deviations between the estimator and the truth for rare

exposure-confounder combinations, as captured by the clever covariate, are given

larger weights when updating. More formally, this updating is done to obtain the

optimal bias-variance trade-off for the statistical estimand (i.e., the G-computation

formula) and to solve the relevant component of the efficient influence function [53].

Updating on the logistic scale (i.e. using Eq. 2.12) is recommended in practice and

is applicable to nearly all outcomes in public health and medicine; for further discus-

sion, we refer the reader to [24]. We, therefore, focus the remainder of our presentation

on updating on the logistic scale. To estimate ε, we can run maximum likelihood lo-

gistic regression of the observed outcome Y on the clever covariate Ĥ(A,W ), fixing

the initial estimate Ê(Y |A,W ) as an offset and suppressing the intercept. Alterna-

tively, we can also estimate ε by running an intercept-only weighted logistic regression

of the outcome Y on the initial estimates (as offset) and with weights as the clever

covariate. The latter implementation can provide robustness with near or actual

positivity violations and is implemented in the ltmle package [34]. By substitut-

ing in the estimated ε̂, we now have the updated estimator of the expected outcome

and can generate targeted predictions under the exposure of interest (A = a) for all

observations i = {1, . . . , n}:

Ê∗(Y |a,Wi) = logit−1
{
logit[Ê(Y |a,Wi)] + ε̂× Ĥ(Ai,Wi)

}
(2.13)

In words, Ê∗(Y |a,Wi) is the targeted prediction of the COVID-19 growth rate for

state i, given the mandate implementation of interest and the confounders.
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Finally, we obtain an estimate ψ(a) by averaging our targeted predictions across

the sample:

ψ̂(a) =
1

n

n∑
i=1

Ê∗(Y |A = a,Wi)

Under certain regularity conditions [53], TMLE is asymptotically linear, meaning

that we can use the Central Limit Theorem for inference. We obtain a variance

estimate with the sample variance of the estimated influence curve divided by sample

size:

σ̂(a)2 =
V ar[ ˆIC(a)]

n

where the estimated influence curve for observation i is given by

ˆIC(a)i = Ĥ(Ai,Wi)×
[
Y − Ê∗(Y |A = a,Wi)

]
+ Ê∗(Y |A = a,Wi)− ψ̂(a) (2.14)

We can then conduct tests of the null hypothesis as well as construct Wald-Type 95%

confidence intervals as ψ̂(a) ± 1.96 ∗ σ̂(a). (For sample size <30 independent units,

we can use the Student’s t-distribution with n− 2 degrees of freedom in place of the

standard normal.)

If we repeat the above process for each level of the exposure of interest a ∈ {0, 1},

we can then obtain point estimates on the relative or absolute scale as follows and

inference via the Delta Method:

R̂R =
ψ̂(1)

ψ̂(0)
=

1
n

∑n
i=1 Ê∗(Y |A = 1,Wi)

1
n

∑n
i=1 Ê∗(Y |A = 0,Wi)

R̂D = ψ̂(1)− ψ̂(0) =
1

n

n∑
i=1

Ê∗(Y |A = 1,Wi)−
1

n

n∑
i=1

Ê∗(Y |A = 0,Wi)

(2.15)

We note there are a variety of additional implementations, and we can avoid repeating

the process by using a two-dimensional clever covariate. However, exposition of all

the possible implementations is beyond the scope of this project.
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2.5.2 Implementation to Examine the State-level Impact of Masking

Recall for the primary analysis, our exposure of interest is whether a state has

implemented public masking mandate prior to the target date of September 1, 2020,

and our outcome is the growth rate of COVID-19 cases over the following 7, 14,

21, 30, 45, and 60 days. By varying the follow-up period, we hope to account for

the incubation period and potential lags in behavior change as well as evaluate the

potential for long-term impact. For estimation of the rate ratio (Eq. 2.6) and rate

difference (Eq. 2.7), we implemente TMLE as described in the previous section.

Specifically, we use the ltmle package [34] with Super Learner for initial estima-

tion of the expected outcome E(Y |A,W ) and the propensity score P(A = 1|W ). For

both, we use 10-fold cross-validation and included the following candidate prediction

algorithms in our Super Learner library: the empirical mean, Generalized Additive

Model (GAM), Recursive Partitioning Model (Rpart), and Extreme Gradient Boost-

ing (XGBoost)[12]. In the primary analyses, we reduce the potential confounder set

to 21 variables based on univariate correlations with the outcome p < 0.05. Such

an approach helps minimize the risk of adjustment for instrumental variables and

practical violations of the positivity assumption.

In secondary analyses, we implement the unadjusted estimator as the simple ratio

or difference in exposure-specific mean outcomes:

R̂Runadj =
Ê(Y = 1|A = 1)

Ê(Y = 1|A = 0)

R̂Runadj = Ê(Y = 1|A = 1)–Ê(Y = 1|A = 0)

(2.16)

The unadjusted estimator can be considered a special case of TMLE where the ad-

justment set W = {}.
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2.6 Sensitivity Analyses

In addition to the primary and secondary analyses, we conduct sensitivity analyses

to examine the robustness of our findings. All sensitivity analyses are conducted

using the previously described procedures with alterations in variable definition and

covariate adjustment sets. First, we include the complete set of potential confounders

without screening and implement TMLE as in primary analyses. Second, we adjust

the target date from September 1st to when states lifted or eased their initial shelter-

in-place order. For states that never had a shelter-in-place order, their target date is

assigned to the earliest date shelter-in-place was lifted amongst the other states with

the order. This definition allows for flexibility in timing of implementation which

could be influenced by states’ differential epidemic curve.
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CHAPTER 3

RESULTS

In this study, 25 states are considered early implementors of statewide masking

mandate while the other 25 are considered delayed. Among the delayed, 7 states

never implemented any statewide masking mandate, 12 states had a less strict im-

plementation than our definition of masking mandate, and 6 states implemented the

desired mandate after the target date.

Summaries of the covariate sets overall and by exposure group are provided in

Table 3.1. There are some notable difference between the groups. In the early im-

plementation states, we observe a higher percentage of Black and Hispanic residents,

higher population density, fewer Republican voters, more COVID-19 tests, cases, and

deaths leading up September 1, 2020. Furthermore, states with early implementation

of the masking mandate were more likely to have implemented a shelter-in-place order

and school masking orders.

Figure 3.1 shows the estimated propensity score distribution P̂(A = 1|W ) in the

primary analyses, which screened out potential confounders not associated in univari-

ate analyses with outcome. We can see that for both states with early and delayed

implementation, the estimated propensity score is bounded away from zero. Assuming

Super Learner is providing a good estimate of the exposure mechanism, this suggests

that the positivity assumption is not violated in practice.
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Table 3.1. Summary of baseline characteristics overall and by exposure group. All metrics are given in mean (25% quantile,
75% quantile) unless noted. Number of states that had Republican majority votes, had Shelter-in-place, Gathering Restrictions,
or School Masking are given in counts (percentage).

All (N=50) Early (N=25) Delayed (N=25)
Population Demographics

Black or African American (%) 7 (3.2, 14.2) 9.9 (5.7, 14) 4.2 (2, 15.3)
Hispanic (%) 9.4 (5.1, 13.8) 11.8 (5.1, 17.1) 7 (4.3, 10.6)

Mixed Race (%) 2.2 (1.9, 2.5) 2.1 (1.9, 2.5) 2.2 (2, 2.5)
Caucasian (%) 71.8 (59.2, 79.7) 68.5 (55.6, 75.9) 78.3 (63.1, 82)

Smoker (%) 17.1 (15, 19.3) 17 (14.1, 19.3) 17.2 (15.6, 19.3)
Population Density and Urbanicity

Population Density (people per km2) 41.2 (17.7, 84.7) 67.9 (24.6, 160.7) 26.8 (9.6, 62.3)
Urbanicity in 2010 (%) 73.8 (65.1, 87) 81 (73.2, 88) 66.4 (64, 75.1)

Public Transportation Usage (%) 1.4 (0.8, 3.4) 1.8 (0.9, 5.8) 1.2 (0.8, 2)
Political leading

Republican 30 (60%) 10 (40%) 20 (80%)
COVID-19 related data

Confirmed Positive 30 days before 51022.5 (19576.8, 105478) 60658 (27812, 118458) 45492 (6854, 91782)
Confirmed Positive 14 days before 64350 (23603.2, 120281.2) 73207 (35167, 125579) 52951 (8765, 108282)
Confirmed Positive 7 days before 68560 (24749, 124125.5) 79206 (38401, 130035) 55800 (10211, 114635)

Deaths 14 days before 1414 (399, 4309.8) 3165 (723, 7499) 989 (164, 1936)
Deaths 7 days before 1534 (426.5, 4346.2) 3241 (750, 7605) 1052 (187, 2037)

Total Tests 14 days before 871097 (397771, 1682918.5) 1291302 (632652, 1946517) 775000 (310009, 1385832)
Total Tests 7 days before 913548 (430918.8, 1804195.2) 1380050 (673704, 2157864) 830831 (333831, 1495014)

Implemented Shelter-in-place 43 (86%) 24 (96%) 19 (76%)
Implemented Gathering Restrictions 49 (98%) 25 (100%) 24 (96%)

Implemented School Masking 20 (40%) 14 (56%) 6 (24%)
Mobility Change114 days before(%) 8.5 (7, 10) 9 (7, 11) 7 (6, 10)

Mobility Change 7 days before(%) 9 (7, 11) 9 (8, 11) 8 (6, 10)
1 Mobility Change is calculated based on mobility trends for residential places. Baseline value for specific days of the week were obtained

in a 5-week period between Jan 3 to Feb 6, 2020.[22]
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Figure 3.1. Estimated Propensity Score Distribution P̂(A = 1|W )

3.1 Main Results

As discussed in Chapter 2, our primary analysis relies on TMLE and Super Learner

with screening of the potential confounders based on univariate associations with the

outcome and our secondary analysis is unadjusted. Table 3.2 provides estimated

growth rate ratio estimated from the three approaches. Focusing on the primary

approach, which adjusts for key differences between states, we see that after one week,

the growth rates begin to diverge with early masking implementation versus delayed

implementations. Specifically, the expected growth rate is 1.05 (95% CI: 1.04-1.06)

with early implementation and 1.07 (95% CI: 1.05-1.08) with delayed implementation

for a rate ratio of 0.98 (95% CI: 0.97-0.99). Within two weeks of September 1, 2020,
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the rate ratio reduces to 0.96 (95% CI: 0.95-0.98) and continues to decline over time

(Figure 3.2). After 45 and 60 days, the estimated rate ratios are 0.89 (95% CI:

0.85-0.93) and 0.84 (95% CI: 0.78-0.91), respectively. The two-month outcome, thus

represents a 16% reduction in COVID-19 growth rates with state-level early masking

orders.

In unadjusted secondary analyses, the estimated associations were considerably

larger, especially at longer follow-up times (Table 3.2). At 7, 14, 45, and 60 days, the

rate ratios were 0.97 (95% CI: 0.95-0.99), 0.94 (95% CI: 0.91-0.97), 0.79 (95% CI: 0.7-

0.88), and 0.72 (95% CI: 0.60-0.85), respectively. The two-month association, thus,

corresponds to a 18% reduction in the COVID-19 case growth rate with state-level

masking mandates. Exaggerated associations are expected due to failure to adjust

for measured differences between states.

In all approaches, the upper bounds on the 95% confidence intervals exclude the

null value of one, suggesting both short term and longer term impacts of masking

mandates on COVID-19 case growth rates. From Figure 3.2, a clear trend of in-

creasing associations (i.e. decreasing rate ratios) can be observed with increasing

follow-up. For rate differences, we observe similar results (Table A.2 and Figure A.1).
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Figure 3.2. Estimated Growth Rate Ratios
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Table 3.2. Growth Rate Ratio

Adjustment Outcome at Txt(95% CI) Con(95% CI) RR(95% CI) RR p-value
Primary Analysis 7 days 1.05 (1.04, 1.06) 1.07 (1.05, 1.08) 0.98 (0.97, 0.99) 9.4e-04
Primary Analysis 14 days 1.1 (1.08, 1.11) 1.14 (1.11, 1.16) 0.96 (0.95, 0.98) 1.8e-05
Primary Analysis 21 days 1.15 (1.13, 1.17) 1.22 (1.19, 1.26) 0.94 (0.92, 0.96) 2.1e-09
Primary Analysis 30 days 1.24 (1.2, 1.28) 1.33 (1.27, 1.39) 0.93 (0.91, 0.96) 4.6e-06
Primary Analysis 45 days 1.42 (1.35, 1.49) 1.59 (1.48, 1.71) 0.89 (0.85, 0.93) 1.6e-06
Primary Analysis 60 days 1.67 (1.56, 1.77) 1.99 (1.77, 2.21) 0.84 (0.78, 0.91) 3.2e-05
Secondary Analysis 7 days 1.04 (1.03, 1.05) 1.07 (1.06, 1.09) 0.97 (0.95, 0.99) 1.3e-03
Secondary Analysis 14 days 1.08 (1.06, 1.1) 1.15 (1.12, 1.18) 0.94 (0.91, 0.97) 2.9e-04
Secondary Analysis 21 days 1.13 (1.1, 1.16) 1.25 (1.2, 1.29) 0.91 (0.86, 0.95) 6.7e-05
Secondary Analysis 30 days 1.19 (1.15, 1.23) 1.39 (1.3, 1.47) 0.86 (0.8, 0.92) 5.2e-05
Secondary Analysis 45 days 1.33 (1.27, 1.4) 1.7 (1.52, 1.87) 0.79 (0.7, 0.88) 1.0e-04
Secondary Analysis 60 days 1.54 (1.44, 1.65) 2.16 (1.83, 2.49) 0.72 (0.6, 0.85) 2.0e-0433



3.2 Additional Sensitivity Analyses

Our main sensitivity analysis uses TMLE with Super Learner without screening.

Adjusting for all potential confounders, this analysis yielded very similar results to

the primary analysis. From Table A.1, at 7, 14, 45, and 60 days, the rate ratios were

0.97 (95% CI: 0.96-0.99), 0.95 (95% CI: 0.92-0.97), 0.85 (95% 0.79-0.91), and 0.80

(95% CI: 0.71-0.9), respectively.

In sensitivity analyses where we change the target date to the date that the state-

level shelter-in-place order was first lifted, we observe similar patterns as the primary

analysis. However, the estimated associations are overall more conservative. From

Table A.4, with the primary approach, the estimated rate ratios are 0.98 (95% CI:

0.98-0.99), 0.98 (95% CI: 0.97-0.99), 0.91 (95% CI: 0.87-095), and 0.88 (95% CI:

0.84-0.93) for 7, 14, 45, and 60 days, respectively. Thus, after two months of lifting

shelter-in-place, early masking mandates were associated with 12% decrease in state-

level, COVID-19 case growth rates.

With no adjustment, we observe exaggerated estimates once again: 0.96 (95% CI:

0.94-0.98), 0.93 (95% CI: 0.90-0.97), 0.80 (95% CI: 0.73-0.89), and 0.76(95% CI: 0.65-

0.89) for 7, 14, 45, and 60 days, respectively. The unadjusted relative reduction in

COVID-19 case growth rates at two-month is estimated to be 24%. Figure A.2 shows

a decreasing trend line for all adjustment sets. Additional information is provided in

the Supplemental Materials.
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CHAPTER 4

DISCUSSION

In this study, our objective was to evaluate the effect of public masking mandate

on COVID-19 case growth rates in U.S. states. Throughout the pandemic, thus far,

the wide variation in COVID-19 related policies has provided us a natural experi-

ment to evaluate impact. Utilizing a causal inference framework [6], we estimated the

association of having a state-level, public masking mandate in place prior to Septem-

ber 1, 2020, the approximate start of the school year, on the subsequent growth of

COVID-19, defined as the total case count a set number of days after September 1,

divided by the total case count on September 1. We critically examined all assump-

tions needed justify a causal claim and avoided restrictive modeling assumptions by

using non-parametric estimators.

We found that early implementation of public masking mandate was significantly

associated with reductions in state-level COVID-19 case growth rates. We evaluated

the outcomes for 7 to 60 days after the target date and observed that association

increased meaningfully over time. After one week, the reduction in expected growth

rates with early versus delayed masking mandate was already observable. By the sec-

ond week, there is a 4% reduction (RR: 0.96; 95%CI: 0.95-0.98) and by 2 months, the

reduction increased to 16% (RR: 0.84; 95%CI: 0.78-0.91). Sensitivity analyses (e.g.:

varying the analytic approach, the scale of inference, or the target date) yielded simi-

lar results. The largest association was observed with unadjusted analyses, suggesting

that early implementation of a state-level masking mandate was associated with 28%

reduction in the expected growth rate (RR: 0.72; 95% CI: 0.60-0.85).
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Our results were consistent with prior studies, reviewed in the Introduction. When

compared with results generated from traditional modeling approaches, our associ-

ations were more muted. Larger associations from other approaches may be due

to differences in the outcome definition, the unit of analysis (counties versus state),

adjustment sets, or violations of the positivity assumption. While these alternative

approaches provide informative and meaningful results, they tend to presume the

assumptions needed for valid causal and statistical inference hold. Failure to criti-

cally evaluate the needed assumptions may yield misleading conclusions and thereby

misguidance to policy makers and public health officials.

Our estimates were similar to other studies using “causal” approaches, despite

varying definitions of the outcome or unit of analysis. Our results suggested a 4%

absolute reduction in expected state-level growth rates after 14 days, while Lyu and

Wehby estimated 1.4% absolute reduction in expected county-level growth rates for

over 11-15 days [36]. Although Chernozhukov et al. used cumulative scale for the

outcome, our estimates were once again similar. Furthermore, all studies suggested

that the association increased over time [14].

Altogether, our study builds on growing evidence that public masking mandates

are associated with reductions of COVID-19 spread. Prior “causal” studies have

largely focused on county-level analyses and employed difference-in-differences method,

which requires strong assumptions that might be difficult to hold in practice [2]. To

the best of our knowledge, this is the first work employing the Causal Roadmap and

TMLE to evaluate impact at the state-level. As a result, this paper fills in the gap

between modeling studies and other existing causal inference studies.

Nonetheless, there are several limitations to this work. First, as nature of an

observation study, our findings may be subject to bias due to unmeasured confound-

ing. Secondly, while deaths related to COVID-19 are commonly studied outcomes,

our analyses were restricted to growth rates of confirmed cases. There is more un-
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certainty associated with confirmed cases, including test accuracy, accessibility, and

time lag. However, our study focused on the period from September 1- November 1,

2020 when testing was widely available. We also note that recent evidence suggests

that starting September 1, 2020, every 100-cases would be expected to result in ap-

proximately 1.6 deaths 22-days later [35]. Therefore, we expect the state-level mask

mandate, studied here, also to impact growth in COVID-19 death rates. Along the

same lines, we focused on implementation of the strictest public masking mandate.

It would be interesting to see if and how the impact varies by type of masking man-

date. Lastly, issuing a public masking mandate does not guarantee perfect masking

compliance. As modeling studies have suggested, compliance can play an essential

role in determining the effect of the masking mandate. Our work evaluated the state-

level impact of the mandate, without formally accounting for compliance. These

limitations encourage us to extend this work to other directions. In the future, we

hope to examine the effect of less restrictive masking mandate as well as with con-

sideration of mask compliance (possibly through instrumental variable analysis). As

the pandemic continues, we must carefully consider the importance of masking man-

date and the downside of ignoring a relatively cost-effective intervention. From the

primary analysis, this study suggests that in both the short and longer term, state-

level public masking mandates were associated with lower COVID-19 growth rates.

The potential benefit of a masking mandate in long term must not be overlooked.

State-level governments should implement universal masking policies as soon as pos-

sible and encourage compliance through public health messaging and education. A

timely masking mandate may help prevent exponential growth, seen during outbreaks

and surges. Although promising vaccines have been developed and distribution has

started, there is still an extended period before herd immunity can be achieved. Be-

fore then, non-pharmaceutical interventions, such as public masking, are essential.

Given the minimal impact on the economy and ease of implementation as compli-
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ment to other strategies, masking policies are promising public health strategies to

mitigate further spread of COVID-19.
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APPENDIX

SUPPLEMENTAL MATERIALS
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Table A.1. Growth Rate Ratio (TMLE without screening) - Sensitivity Analysis

Sensitivity Analysis 7 days 1.04 (1.03, 1.05) 1.07 (1.06, 1.09) 0.97 (0.96, 0.99) 8.8e-04
Sensitivity Analysis 14 days 1.09 (1.07, 1.1) 1.15 (1.12, 1.17) 0.95 (0.92, 0.97) 8.3e-05
Sensitivity Analysis 21 days 1.14 (1.11, 1.16) 1.23 (1.19, 1.27) 0.92 (0.9, 0.95) 8.1e-06
Sensitivity Analysis 30 days 1.22 (1.18, 1.25) 1.35 (1.29, 1.42) 0.9 (0.86, 0.94) 9.0e-06
Sensitivity Analysis 45 days 1.38 (1.32, 1.44) 1.62 (1.48, 1.76) 0.85 (0.79, 0.91) 3.3e-05
Sensitivity Analysis 60 days 1.61 (1.51, 1.72) 2.03 (1.76, 2.29) 0.8 (0.71, 0.9) 3.0e-04
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Figure A.1. Growth Rate Difference

41



Table A.2. Growth Rate Difference

Adjustment Outcome at Txt(95% CI) Con(95% CI) RD(95% CI) RD p-value
Primary Analysis 7 days 1.05 (1.04, 1.06) 1.07 (1.05, 1.08) -0.02 (-0.03, -0.01) 9.9e-04
Primary Analysis 14 days 1.1 (1.08, 1.11) 1.14 (1.11, 1.16) -0.04 (-0.06, -0.02) 2.3e-05
Primary Analysis 21 days 1.15 (1.13, 1.17) 1.22 (1.19, 1.26) -0.07 (-0.1, -0.05) 4.6e-09
Primary Analysis 30 days 1.24 (1.2, 1.28) 1.33 (1.27, 1.39) -0.09 (-0.13, -0.05) 1.0e-05
Primary Analysis 45 days 1.42 (1.35, 1.49) 1.59 (1.48, 1.71) -0.17 (-0.24, -0.1) 8.5e-06
Primary Analysis 60 days 1.67 (1.56, 1.77) 1.99 (1.77, 2.21) -0.32 (-0.48, -0.16) 1.9e-04
Secondary Analysis 7 days 1.04 (1.03, 1.05) 1.07 (1.06, 1.09) -0.03 (-0.05, -0.01) 1.4e-03
Secondary Analysis 14 days 1.08 (1.06, 1.1) 1.15 (1.12, 1.18) -0.07 (-0.1, -0.03) 3.4e-04
Secondary Analysis 21 days 1.13 (1.1, 1.16) 1.25 (1.2, 1.29) -0.12 (-0.17, -0.06) 9.3e-05
Secondary Analysis 30 days 1.19 (1.15, 1.23) 1.39 (1.3, 1.47) -0.2 (-0.29, -0.1) 9.5e-05
Secondary Analysis 45 days 1.33 (1.27, 1.4) 1.7 (1.52, 1.87) -0.36 (-0.55, -0.18) 3.0e-04
Secondary Analysis 60 days 1.54 (1.44, 1.65) 2.16 (1.83, 2.49) -0.61 (-0.96, -0.27) 8.2e-04
Sensitivity Analysis 7 days 1.04 (1.03, 1.05) 1.07 (1.06, 1.09) -0.03 (-0.05, -0.01) 9.3e-04
Sensitivity Analysis 14 days 1.09 (1.07, 1.1) 1.15 (1.12, 1.17) -0.06 (-0.09, -0.03) 1.0e-04
Sensitivity Analysis 21 days 1.14 (1.11, 1.16) 1.23 (1.19, 1.27) -0.09 (-0.13, -0.05) 1.2e-05
Sensitivity Analysis 30 days 1.22 (1.18, 1.25) 1.35 (1.29, 1.42) -0.13 (-0.19, -0.08) 1.9e-05
Sensitivity Analysis 45 days 1.38 (1.32, 1.44) 1.62 (1.48, 1.76) -0.24 (-0.36, -0.13) 1.1e-04
Sensitivity Analysis 60 days 1.61 (1.51, 1.72) 2.03 (1.76, 2.29) -0.41 (-0.65, -0.18) 1.1e-03
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Table A.3. Background characteristics summary (Alternative Target Date) overall and by intervention. Number of states that
had Republican majority votes, had Shelter-in-place, Gathering Restrictions, or School Masking are given in counts (percentage).

All (N=50) Early (N=8) Delayed (N=42)
Population Demographics

Black or African American (%) 7 (3.2, 14.2) 8.4 (4.7, 14.1) 6.7 (3.2, 14.8)
Hispanic (%) 9.4 (5.1, 13.8) 15.8 (11.2, 17.6) 7.4 (4.5, 12.3)

Mixed Race (%) 2.2 (1.9, 2.5) 2 (2, 2.2) 2.2 (1.9, 2.7)
Caucasian (%) 71.8 (59.2, 79.7) 64.6 (59.9, 71.7) 74.4 (59.2, 80.9)

Smoker (%) 17.1 (15, 19.3) 15.2 (14, 17.1) 17.3 (15.6, 20.6)
Population Density and Urbanicity
Population Density (people per km2) 41.2 (17.7, 84.7) 174.5 (71.1, 298.7) 35.6 (17.5, 68.6)

Urbanicity in 2010 (%) 73.8 (65.1, 87) 88 (81.8, 89) 72.8 (64.2, 83.3)
Public Transportation Usage (%) 1.4 (0.8, 3.4) 3.3 (1.6, 9.6) 1.2 (0.8, 2.6)

Political leading
Republican (%) 30 (60%) 0 (0%) 30 (71.4%)

COVID-19 related data
Confirmed Positive 30 days before 51022.5 (19576.8, 105478) 35413 (18003.8, 134649.5) 53893.5 (22433.2, 92720.2)
Confirmed Positive 14 days before 64350 (23603.2, 120281.2) 37417 (19667.2, 145422.5) 67739 (28597.2, 110251.5)
Confirmed Positive 7 days before 68560 (24749, 124125.5) 38287.5 (20269.5, 151036.8) 71995.5 (30564.2, 117055.2)

Death 14 days before 1414 (399, 4309.8) 2740 (690.5, 8204.5) 1414 (376, 3528.8)
Death 7 days before 1534 (426.5, 4346.2) 2751 (713.2, 8334.5) 1534 (404.2, 3590.5)

Total Test 14 days before 871097 (397771, 1682918.5) 837892 (403138.8, 2320038.8) 871097 (397771, 1640971.2)
Total Test 7 days before 913548 (430918.8, 1804195.2) 905666.5 (440268.8, 2564014.8) 913548 (430918.8, 1764688.5)

Implemented SAH 43 (86%) 8 (100%) 35 (83.3%)
Implemented Gather Restriction 49 (98%) 8 (100%) 41 (97.6%)

Implemented School Masking 20 (40%) 5 (62.5%) 15 (35.7%)
Mobility change 14 days before(%) 8.5 (7, 10) 9.5 (9, 11) 8 (6.2, 10)
Mobility change 7 days before(%) 9 (7, 11) 10 (9, 11) 8 (7, 10.8)
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Figure A.2. Sensitivity Analysis (Alternative Target Date)- Growth Rate Ratio
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Table A.4. Sensitivity Analysis (Target Date of SAH Relaxation) - Growth Rate Ratio

Adjustment Outcome at Txt(95% CI) Con(95% CI) RR(95% CI) RR p-value
Semi-Adjusted 7 days 1.04 (1.03, 1.05) 1.06 (1.05, 1.07) 0.98 (0.98, 0.99) 6.7e-06
Semi-Adjusted 14 days 1.09 (1.08, 1.11) 1.12 (1.1, 1.14) 0.98 (0.97, 0.99) 2.1e-05
Semi-Adjusted 21 days 1.14 (1.12, 1.15) 1.19 (1.16, 1.22) 0.95 (0.94, 0.97) 1.2e-06
Semi-Adjusted 30 days 1.22 (1.19, 1.25) 1.3 (1.24, 1.35) 0.94 (0.92, 0.96) 3.2e-06
Semi-Adjusted 45 days 1.39 (1.34, 1.44) 1.53 (1.42, 1.64) 0.91 (0.87, 0.95) 4.1e-05
Semi-Adjusted 60 days 1.66 (1.56, 1.75) 1.87 (1.68, 2.07) 0.88 (0.84, 0.93) 4.9e-05
Unadjusted 7 days 1.02 (1, 1.05) 1.06 (1.05, 1.07) 0.96 (0.94, 0.98) 1.9e-03
Unadjusted 14 days 1.05 (1.02, 1.08) 1.13 (1.11, 1.15) 0.93 (0.9, 0.97) 2.2e-04
Unadjusted 21 days 1.09 (1.05, 1.13) 1.21 (1.17, 1.24) 0.9 (0.86, 0.94) 4.3e-05
Unadjusted 30 days 1.14 (1.09, 1.19) 1.32 (1.26, 1.38) 0.86 (0.81, 0.92) 2.2e-05
Unadjusted 45 days 1.26 (1.18, 1.34) 1.56 (1.44, 1.69) 0.8 (0.73, 0.89) 7.7e-05
Unadjusted 60 days 1.47 (1.31, 1.62) 1.92 (1.7, 2.15) 0.76 (0.65, 0.89) 1.0e-03
Fully-Adjusted 7 days 1.04 (1.03, 1.05) 1.06 (1.05, 1.07) 0.98 (0.96, 0.99) 1.6e-04
Fully-Adjusted 14 days 1.08 (1.07, 1.1) 1.13 (1.11, 1.15) 0.96 (0.94, 0.98) 8.5e-05
Fully-Adjusted 21 days 1.13 (1.11, 1.14) 1.2 (1.17, 1.23) 0.94 (0.91, 0.96) 2.2e-05
Fully-Adjusted 30 days 1.19 (1.17, 1.22) 1.31 (1.25, 1.36) 0.91 (0.88, 0.95) 2.5e-05
Fully-Adjusted 45 days 1.35 (1.31, 1.39) 1.55 (1.43, 1.66) 0.87 (0.82, 0.93) 5.9e-05
Fully-Adjusted 60 days 1.61 (1.53, 1.69) 1.89 (1.69, 2.1) 0.85 (0.78, 0.93) 7.1e-04
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Figure A.3. Sensitivity Analysis (Alternative Target Date) - Growth Rate Difference
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Table A.5. Sensitivity Analysis (Target Date of SAH Relaxation) - Relative Rate Difference

Adjustment Outcome at Txt(95% CI) Con(95% CI) RD(95% CI) RD p-value
Semi-Adjusted 7 days 1.04 (1.03, 1.05) 1.06 (1.05, 1.07) -0.02 (-0.03, -0.01) 7.9e-06
Semi-Adjusted 14 days 1.09 (1.08, 1.11) 1.12 (1.1, 1.14) -0.03 (-0.04, -0.02) 2.9e-05
Semi-Adjusted 21 days 1.14 (1.12, 1.15) 1.19 (1.16, 1.22) -0.06 (-0.08, -0.03) 2.6e-06
Semi-Adjusted 30 days 1.22 (1.19, 1.25) 1.3 (1.24, 1.35) -0.08 (-0.11, -0.05) 1.0e-05
Semi-Adjusted 45 days 1.39 (1.34, 1.44) 1.53 (1.42, 1.64) -0.14 (-0.21, -0.07) 1.6e-04
Semi-Adjusted 60 days 1.66 (1.56, 1.75) 1.87 (1.68, 2.07) -0.22 (-0.33, -0.1) 3.3e-04
Unadjusted 7 days 1.02 (1, 1.05) 1.06 (1.05, 1.07) -0.04 (-0.07, -0.02) 1.7e-03
Unadjusted 14 days 1.05 (1.02, 1.08) 1.13 (1.11, 1.15) -0.07 (-0.11, -0.04) 1.9e-04
Unadjusted 21 days 1.09 (1.05, 1.13) 1.21 (1.17, 1.24) -0.12 (-0.17, -0.07) 3.8e-05
Unadjusted 30 days 1.14 (1.09, 1.19) 1.32 (1.26, 1.38) -0.18 (-0.26, -0.1) 2.4e-05
Unadjusted 45 days 1.26 (1.18, 1.34) 1.56 (1.44, 1.69) -0.31 (-0.45, -0.16) 1.1e-04
Unadjusted 60 days 1.47 (1.31, 1.62) 1.92 (1.7, 2.15) -0.46 (-0.73, -0.19) 1.3e-03
Fully-Adjusted 7 days 1.04 (1.03, 1.05) 1.06 (1.05, 1.07) -0.03 (-0.04, -0.01) 1.7e-04
Fully-Adjusted 14 days 1.08 (1.07, 1.1) 1.13 (1.11, 1.15) -0.04 (-0.06, -0.02) 1.0e-04
Fully-Adjusted 21 days 1.13 (1.11, 1.14) 1.2 (1.17, 1.23) -0.07 (-0.11, -0.04) 3.2e-05
Fully-Adjusted 30 days 1.19 (1.17, 1.22) 1.31 (1.25, 1.36) -0.11 (-0.17, -0.06) 4.8e-05
Fully-Adjusted 45 days 1.35 (1.31, 1.39) 1.55 (1.43, 1.66) -0.2 (-0.3, -0.1) 1.7e-04
Fully-Adjusted 60 days 1.61 (1.53, 1.69) 1.89 (1.69, 2.1) -0.28 (-0.45, -0.11) 1.8e-03
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