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ABSTRACT

IMPROVING EVALUATION METHODS FOR
CAUSAL MODELING

MAY 2021

AMANDA GENTZEL

B.Sc., B.M., WESTMINSTER COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Jensen

Causal modeling is central to many areas of artificial intelligence, including com-

plex reasoning, planning, knowledge-base construction, robotics, explanation, and

fairness. Active communities of researchers in machine learning, statistics, social sci-

ence, and other fields develop and enhance algorithms that learn causal models from

data, and this work has produced a series of impressive technical advances. How-

ever, evaluation techniques for causal modeling algorithms have remained somewhat

primitive, limiting what we can learn from the experimental studies of algorithm

performance, constraining the types of algorithms and model representations that

researchers consider, and creating a gap between theory and practice. We argue for

expanding the standard techniques for evaluating algorithms that construct causal

models. Specifically, we argue for the addition of evaluation techniques that use

interventional measures rather than structural or observational measures, and that

vii



evaluate with those measures on empirical data rather than synthetic data. We sur-

vey the current practice in evaluation and show that, while the evaluation techniques

we advocate are rarely used in practice, they are feasible and produce substantially

different results than using structural measures and synthetic data. We also provide a

protocol for generating observational-style data sets from experimental data, allowing

the creation of a large number of data sets suitable for evaluation of causal modeling

algorithms. We then perform a large-scale evaluation of seven causal modeling meth-

ods over 37 data sets, drawn from randomized controlled trials, as well as simulators,

real-world computational systems, and observational data sets augmented with a syn-

thetic response variable. We find notable performance differences when comparing

across data from different sources. This difference demonstrates the importance of

using data from a variety of sources when evaluating any causal modeling methods.
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INTRODUCTION

Causal modeling is a rapidly growing field within computer science, relevant to

many areas including complex reasoning, planning, and robotics. It also has a long

history of use in other fields, including economics, social science, and epidemiology.

Causal reasoning is at the core of all experimental science. While causal modeling

has only recently become popular among computer science researchers, these other

fields have long recognized the value that causal modeling provides.

Causal models have several advantages over strictly associational models.

• Prescriptive: Knowledge of the effects of interventions can guide decision

making. For example, while it can be interesting to know that a public policy is

correlated with a change in economic outcome for a population, unless we know

that the policy is the cause of the change in outcome, we cannot recommend

the policy with any confidence.

• Predictive: A causal model allows us to query what the outcome will be if

a certain action is taken. By intervening in a causal model, we can estimate

what the outcome will be if we make the corresponding intervention in the real

world.

• Robust: A causal model is able to represent the mechanistic dependencies

between variables, rather than just the association. If the distribution of some

variables changes, but the mechanisms remain the same, then a causal model

should be robust to this change and still provide accurate estimates.

• Explanatory: With the increasing desire to understand the decisions made by

machine learning systems, causal modeling is uniquely qualified for this task.

1



A causal model facilitates counterfactual queries, questions of the form “What

would have happened if...”, allowing for reasoning about the underlying causal

mechanisms of a causal system.

Because of these advantages, interest in causal modeling within computer science

has grown significantly in recent years. Due to the large amount of observational data

available, and the difficulty and cost of performing experiments, many methods have

been created to learn causal models from observational data. These approaches use

a variety of techniques to disentangle causality from mere association and have had

some success. A clear understanding of how well these methods work, however, has

been hampered by the difficult question of how to evaluate them.

While ground truth is easily available for testing statements of association, testing

statements of causality is significantly harder. While there are plenty of real-world

data sets available for evaluating predictive performance, data for evaluating causal

models has much stricter requirements. Without data from intervening in a system,

or knowledge of ground truth causal dynamics, we cannot assess whether an algorithm

has learned the correct causal dependencies. In addition, most causal modeling algo-

rithms are designed to run on observational data, acquired from observing a system

rather than acting in it. Without data that is observational, but where the results of

interventions are known (to provide ground truth causal dependencies), traditional

causal modeling algorithms can not be effectively evaluated, and most data that is

available right now does not meet this requirement.

To assess the correctness of a causal model, the model should be evaluated on how

well it captures actual causal effects in real-world data. However, the difficulty in

acquiring such data for evaluation has lead to the widespread adoption of alternative

evaluation techniques that fall short of this. Synthetic data is used frequently, to get

around the need for ground truth causal knowledge. When real-world data is used,

researchers often use it as merely a proof of concept with no ground truth; in this
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situation, the only evaluation available consists of looking at the learned dependencies

and making sure they “seem reasonable.”

Sometimes, even when ground truth causal direction is known (because the ob-

servational data is from a system with known dynamics), the magnitude of that

dependence is not. This focus on structure alone has lead to the widespread adoption

of measures that only assess whether the correct structure has been learned, largely

ignoring whether the strength of the dependencies is correct as well. Even in those

cases where researchers evaluate their algorithm on real-world data with known causal

dependencies, they are generally only able to evaluate with one or two such data sets,

providing a limited assessment of the general effectiveness of proposed algorithms.

To address these problems and gaps, this work makes several contributions. Specif-

ically, we:

1. Identify the interconnected nature of the components of an evaluation and pro-

vide a useful decomposition;

2. Perform an extensive survey of current practice in evaluation for causal model-

ing;

3. Empirically demonstrate the limitations of current evaluation methods and the

value of evaluating causal modeling algorithms using empirical data and inter-

ventional measures;

4. Specify an algorithm for converting an ideal interventional data set into a

pseudo-observational data set, suitable for evaluating causal modeling algo-

rithms;

5. Prove that a similar algorithm can be applied to data from randomized con-

trolled trials, and show how data discarded during sampling can be used to

evaluate outcome estimation; and
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6. Perform a large-scale evaluation of current causal modeling algorithms with

greater diversity of data set types than any previous evaluation.

The remainder of the document proceeds as follows:

• Chapter 1 discusses background on causal modeling, describing methods that

focus on multivariate structure learning and bivariate effect estimation.

• Chapter 2 discusses related work, outlining the components of an evaluation

and popular current evaluation methods.

• Chapter 3 discusses work on evaluating causal modeling methods, surveying

current practice and making recommendations for how evaluation should be

performed.

• Chapter 4 describes how data from randomized controlled trials can be used

for evaluation.

• Chapter 5 reports the results of a large-scale evaluation of seven causal mod-

eling methods, using 37 data sets from a variety of sources.
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CHAPTER 1

BACKGROUND

While causality has been defined in many different ways, the definition we use

is focused on the concept of intervention or manipulation. Cook and Campbell [45]

state that: “The paradigmatic assertion in causal relationships is that manipulation

of a cause will result in the manipulation of an effect. . . . Causation implies that by

varying one factor, I can make another vary.”

The focus of this work is on algorithms for causal modeling. Many algorithms

have been developed to estimate causal model structure and the strength of causal

dependence. In this chapter, we describe common representations and approaches

for causal modeling. These techniques are actively used in practice, and we will later

assess how the results of these techniques can be evaluated. Note that in the literature,

the terms ’causal learning’, ’causal modeling’, ’causal inference’, and ’causal discovery’

are frequently used interchangeably or with subtle and inconsistently applied shades

of meaning. Here, we use the term ’causal modeling’ to refer to the group of models

and methods used to infer the structure and strength of causal dependence.

1.1 Causal Terminology

Causal dependencies are often discussed in terms of treatments and outcomes.

This terminology is borrowed from the medical community, with outcome represent-

ing the quantity of interest (e.g., some measure of patient health) and treatment

representing an action that can be taken to possibly affect outcome (e.g., taking a

drug). Other possibly relevant variables (e.g., age, health history) are called covari-
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ates or confounders. Depending on the situation, there may be many treatments,

outcomes, and covariates. A standard distinction, though, is that treatments are

the variables that can be manipulated, outcomes are the post-treatment variables of

interest, and covariates are additional measured variables that may affect treatment

and/or outcome.

As mentioned above, we define causality in terms of manipulation. A treatment

X is said to cause an outcome Y if manipulating the value of X results in a change

in the probability distribution of Y . This notion is formalized with the concept of an

intervention as described by Pearl’s do-calculus [150]. The do-calculus is a framework

that allows for reasoning about the effects of interventions in graphical models. The

operator do represents a manipulation of the network. Performing do(X = x) sets

the value of the variable X to a specific value x. This operation modifies the graph

structure, removing all incoming edges to node X and forcing X to take the value x.

1.2 Causal Graphical Models (CGMs)

Causal graphical models are a class of models used to encode causal information

about a set of variables. A few types of graphical models are commonly used for

causal modeling, including directed acyclic graphs [72] and chain graphs [148]. Our

focus will here will be on directed acyclic graphs, since they are the most prevalent

in the computer science community.

Directed acyclic graphs (or DAGs) are a class of graph that (as the name suggests)

is both directed and acyclic. For nodes A and B, if an edge A→ B exists, then A is

called a parent of B, and B is called a child of A. There is a directed path from A to

B if there exists a sequence of nodes, starting at A and ending at B, where the child

of each node is the same as the parent of the next one. A cycle occurs when there

exists a directed path from any node to itself. Acyclicity requires that there are no

directed cycles in the graph.
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A directed graphical model is a DAG with probabilistic semantics [29]. A network

with random variables A1, A2, A3, ..., An represents the joint probability distribution

P (A1, A2, A3, ..., An). However, this probability distribution can be factored, as rep-

resented by the DAG structure, into a form that is far simpler to compute. Directed

graphical models satisfy the local Markov property, which states that each variable is

conditionally independent of its non-descendants given its parents. This allows the

joint distribution to factor into the probabilities of each variable conditioned on its

parents:

P (A1, ..., An) =
∏
Ai∈A

P (Ai|Pa(Ai)) (1.1)

Directed graphical models are often used to represent causal dependence, though

they inherently do not require that edges represent causality. When a directed graph-

ical model is given a causal interpretation, we call it a causal graphical model (CGM).

In a causal graphical model, directed edges are interpreted as causal dependence,

rather than just probabilistic dependence. Hernan and Robins [86] offer this defini-

tion of a causal DAG:

Definition 1.2.1. A causal DAG is a DAG in which (1) the lack of an arrow from

node Vj to Vm can be interpreted as the absence of a direct causal effect of Vj on

Vm (relative to the other variables on the graph), (2) all common causes, even if

unmeasured, of any pair of variables on the graph are themselves on the graph, and

(3) any variable is a cause of its descendants.

1.3 Approaches to Causal Modeling

Many research communities, including computer science, economics, and statis-

tics, have developed techniques for inferring causal dependence from observational

data. Since the focus of these communities is different, the goal of causal modeling

techniques varies among them. We will divide these approaches primarily based on
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Figure 1.1. Example directed acyclic graph

two aspects: whether they aimed at learning structure or parameters, and whether

they operate on bivariate or multivariate data.

1.3.1 Multivariate Structure Learning

Much of the work in computer science on causal modeling focuses on learning

causal graphical models. Several classes of algorithms have been created to learn the

structure of these models from observational data. These algorithms are designed for

data sets consisting of independent and identically distributed (i.i.d.) samples, and

the goal is to learn the structure of causal dependence among the variables.

Constraint-based algorithms use conditional independence tests to infer which

edges exist in the model underlying the data. First, they use these tests to learn a

skeleton of undirected edges between the variables. They then apply a series of

orientation rules to determine the direction of edges. Using the results of conditional

independence tests alone, it is not always possible to fully orient all edges, so a set

of possible structures, referred to as a Markov equivalence class, is returned instead.

After the structure is learned, parameters can be fit to any member of the Markov

equivalence class. Popular constraint-based algorithms include PC [179], Grow-Shrink

[134], Incremental Association (IAMB) [190], and FCI [179].
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Most constraint-based learning algorithms make two standard assumptions: causal

sufficiency and faithfulness. Causal sufficiency states that all possible common causes

of measured variables are included in the analysis [179]. This assumption prevents,

for example, the existence of a latent variable that causes both A and B in Figure

1.1, but would allow for latent variables that cause either A or B.

Faithfulness states that all independencies that are present in the data match

those of the underlying causal graph [179]. For example, in Figure 1.1, C and D are

dependent because they share B as a parent. However, it is possible that, in data

generated from this structure, C and D happen, by chance, to be independent. This

would be a violation of faithfulness, because the distribution of the generated data

is not faithful to the model. In this example, current techniques are unable to infer,

from the data alone, that C and D are not independent, making it impossible to learn

the true causal structure.

The PC algorithm [179] is one of the most popular constraint-based methods.

It starts with a fully-connected graph and iteratively performs conditional indepen-

dence tests on pairs of variables, with an increasingly large separating set. If a pair

of variables is ever found to be conditionally independent, the edge between them

is removed. This results in an undirected skeleton. The algorithm then orients as

many edges as it can, using rules implied by d-separation (a set of graphical crite-

ria for determining independence facts from a graphical model) and the acyclicity

constraint. This results in a Markov equivalence class of DAGs, corresponding to all

legal orientations of the undirected edges. The FCI algorithm is similar to the PC

algorithm, but it does not assume causal sufficiency.

Score-based algorithms use heuristics to find the structure that optimizes some

score function. Popular score-based algorithms include Greedy Equivalence Search

(GES) [41] and greedy hill-climbing search [62].
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Hybrid algorithms combine aspects of both constraint-based and score-based

methods. For example, the max-min hillclimbing (MMHC) algorithm uses an initial

constraint-based pass to learn a skeleton and then uses a score-based approach to

orient the edges [191]. Other variants of structure learning algorithms may incorporate

different types of data or background knowledge, such as providing initial temporal

ordering information or allowing for a limited number of real-world experiments [50,

47, 205].

1.3.2 Bivariate Orientation

In some domains, rather than aiming to determine the causal structure of a large

set of variables, the focus is to determine the structure between two variables (i.e., the

existence and direction of a single edge). In many cases, the existence of dependence

between the two variables is assumed or already determined, so the goal is only to

determine the orientation of that edge.

In economics, Granger causality [77] is commonly applied to this problem.

Granger causality operates on time series data, making use of the intuition that a

cause should be useful in forecasting future values of its effect. A simple test for

whether X Granger causes Y involves running two regressions,

yt = a0 +
t−1∑
i=1

aiyi + et (1.2)

and

yt = a0 +
t−1∑
i=1

aiyi +
t−1∑
j=1

bjxj + et (1.3)

If the residuals of these two regressions are significantly different, then lagged

values of X are providing information about Yt that is not contained in lagged values

of Yt, so X is said to Granger cause Y . These tests are typically performed in both

directions (constructing pairs of regression models for both the effect of X on Y and
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the effect of Y on X), and whichever direction produces the strongest effect is said

to be the direction of Granger causality. For the conclusions drawn from a Granger

causality test to be correct, additional covariates should be included in the regression

to control for any possible confounders.

Additive noise models make assumptions about the distribution of the depen-

dence between the two variables (generally, that they follow a structural equation

model with additive noise) and exploit the asymmetry in the noise to determine the

likely direction of causal dependence [90]. In the basic formulation, the dependence

between x and y is represented by the generative model y := f(x) + n, where x and

n are Gaussian and statistically independent. Hoyer et al. show that, in most cases,

the shape of the conditional densities P (y|x) and P (x|y) are different. When this

is the case, assuming the variables are non-independent, we can test the fit of the

regressions,

y := f(x) + n (1.4)

and

x := g(y) + n (1.5)

If, for example, the fit of y := f(x) + n is rejected and x := g(y) + n is not, we

have evidence that the true direction is Y → X.

1.3.3 Bivariate Effect Estimation

Bivariate effect estimation methods are used when the direction of causality is

known in advance (for example, a drug trial, where the drug is assumed to have some

effect on patient outcome). The goal is to estimate the level of causal effect from

treatment to outcome, possibly controlling for a set of known confounders.

The potential outcomes framework [163] provide a framework for reasoning

about dependence that makes use of the concept of the counterfactual. Suppose there

is an observational study that aims to determine the effect of a binary treatment, T ,
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on outcome, Y . To determine the causal effect across the whole population, many

methods calculate the average treatment effect (ATE):

ATE = E[Y 1]− E[Y 0] (1.6)

where Y 1 and Y 0 are the individual outcomes for T = 1 and T = 0, respectively. In

practice, however, we can rarely observe outcomes for both T = 1 and T = 0 for the

whole population. For example, if an individual i was assigned to treatment 1, then

we never observe Y 0
i — referred to as the counterfactual outcome, the outcome we

would observe if, contrary to fact, i were assigned treatment 0. When a randomized

experiment is performed, the populations that receive each value of treatment are

assumed to be equivalent, so ATE can be calculated using only the groups that receive

each value of treatment. However, in many circumstances, randomized experiments

are not possible. Potential outcomes provides a framework for reasoning about both

potential outcomes of treatment. Techniques that are used by the potential outcomes

community to estimate causal effects include exact matching methods, propensity

score matching methods, and inverse probability of treatment weighting.

Propensity-score matching aims to form matched pairs of individuals in the

treatment and control groups that have the same probability of receiving treatment.

By matching pairs that were equally likely to have been treated (but in which one

received treatment and one did not), we can estimate the differences due to the

treatment alone rather than due to confounders. Propensity score methods estimate

a propensity score, P (T = 1|X1, ..., Xn), for covariates X1, ..., Xn. Individuals in

the treated population can then be matched to individuals in the control population

with similar conditional probability of treatment, and ATE can be calculated as

the difference in outcome between these two sub-populations. Because the typical

implementation of propensity-score matching matches the control population to the

treated population, the resulting estimate is actually the average treatment effect
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on the treated (ATT), which is equivalent to ATE when the treated and control

populations are the same [158].

Inverse probability of treatment weighting (IPTW) is similar to propensity

score matching, in that both estimate the probability of treatment and use that to

control for confounding. Rather than using the probability of treatment to match

individuals between the treatment and control populations, IPTW weights the out-

comes of every individual according to their probability of treatment and uses these

weighted outcomes to estimate ATE [158]. For treatment T ∈ {0, 1}, IPTW calculates

ATE as

ATE = E[
Y T

p(T |X)
]− E[

Y (1− T )

1− p(T |X)
] (1.7)

Outcome regression is one simple approach for effect estimation that mod-

els outcome given treatment and all measured covariates. Unlike the potential out-

comes approaches discussed above, outcome regression makes no attempt to model

the treatment mechanism, focusing solely on effectively modeling outcome. Recent

studies have suggested that effectively modeling outcome may be more important

than trying to account for differences in treatment assignment [53].

Bayesian Additive Regression Trees (BART) use a tree-based model to esti-

mate the response surface, allowing for estimation of both ATE and individual out-

comes [43]. Regression trees are a type of tree used when the outcome is continuous,

which partition the input data into subgroups with similar outcomes. BART creates

an ensemble of sequentially-learned regression trees, with a regularization prior to

keep the effects of individual trees small. Estimates for the ensemble are obtained

by summing the outputs of all the trees. When used for causal modeling, all ob-

served covariates and treatment are used as predictors of outcome, and estimates of

ATE can be obtained by estimating outcome for all individuals with both T = 1

and T = 0 and calculating the mean difference. This methods, similar to outcome

regression, focuses solely on modeling outcome. However, it is common to include an
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estimate of the propensity score as an additional covariate to account for treatment

effect heterogeneity [88].

The above methods focus on modeling either treatment or outcome. However,

if such models are misspecified, the effect estimate can be biased. Doubly-robust

methods are designed to avoid this issue, producing an unbiased estimate of ATE

as long as either the treatment or the outcome model is correctly specified. This is

commonly implemented as a combination of IPTW weighting and outcome regression

[60]. For treatment T , covariates X, outcome Y , propensity score π(X), and outcome

estimate Ŷ , we can define a doubly robust estimate of ATE as

ATE =
1

n

n∑
i=1

[
TiYi
π(Xi)

− (Ti − π(Xi))Ŷ
1
i

π(Xi)
]− 1

n

n∑
i=1

[
(1− Ti)Yi
π(Xi)

− (Ti − π(Xi))Ŷ
0
i

π(Xi)
]

(1.8)

where Ŷ 1
i and Ŷ 0

i represent the estimates of E[Y |T = 1, Xi] and E[Y |T = 0, Xi],

respectively.

The second half of each term of the difference can be thought of as an adjustment

to the IPTW-adjusted first term. If either π(Xi) or Ŷi is correctly specified, in the

sample limit, the second term zeroes out, leading to an unbiased estimate of E[Y 1]−

E[Y 0] [60].

Unlike traditional random forests which estimate the value of an outcome variable,

causal forests are random forests that specifically estimate ATE [193]. They make

use of causal trees [23], which estimate ATE at the leaf nodes by splitting such that

the the number of training points at the leaf node is small enough to be treated

as though they came from a randomized experiment. A causal forest then averages

the ATE estimates from the causal trees in the ensemble to get an overall estimate

of ATE. This approach has similarities to matching methods, where individuals are

partitioned into matched groups at leaf nodes.
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While causal graphical models are most frequently used to learn structure,

they can also be used for effect estimation. Pearl’s do-calculus defines manipulations

of the graph that can allow for estimation of the effect an intervention. Pearl also

defines a set of adjustment methods, the back-door and front-door formulas, that can

be used to estimate causal effects in graphical models [151].

Shi et al. [173] propose a neural-network-based method, using a new proposed

architecture called Dragonnet. This approach uses a deep neural network to produce

a representation layer of the covariates. This representation layer is then used to

predict both treatment and outcome. The prediction of treatment acts as a propensity

score, which is used to adjust for confounding when estimating treatment effect.

Dragonnet net is one example of a class of neural-network-based approaches for causal

modeling, which generally follow a similar approach [99, 170, 167, 128, 206].
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CHAPTER 2

RELATED WORK

As already mentioned, many different research communities have developed meth-

ods for constructing causal models from observational data. However, assessing the

absolute and relative performance of these methods requires some evaluation method.

For ease of discussion, we decompose evaluation methods into three key components:

• Data source — The data provided to the causal modeling algorithm

• Algorithm — The causal modeling algorithm under evaluation

• Evaluation measure — A descriptive or numerical measure that is used to

assess the causal inferences of the model produced by the algorithm

These dimensions are highly dependent; a choice of one can determine feasible

choices for the other two. For example, models learned from observational macro-

economic data often cannot be compared against a known structure because there

exists no ground truth, and models consisting only of non-parameterized structure

cannot be compared to interventional effects because the models cannot produce

such estimates. The data source determines what type and level of ground truth is

available, constraining choices for evaluation measure, and an algorithm can only be

evaluated using measures that reflect the model output. Different communities that

work on causal modeling tend to focus on narrow pieces of this space. We begin by

discussing some commonly used evaluation methods, then describe the components

of an evaluation in more detail.
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2.1 Data Sources

Data sources for evaluation can be be broadly divided into two categories: syn-

thetic or empirical. We categorized data as empirical when it was collected from a

“real world” system, whether that was a randomized clinical trial, a global financial

system, or user interaction with a website. The important distinction is that empiri-

cal data was collected from a process or a system that exists for some purpose beyond

scientific research.1 Synthetic data includes anything else, including data generated

from a randomly instantiated network structure or from a simulation intended to

reflect a real-world system.

2.1.1 Synthetic Data

Researchers have developed several approaches to generating synthetic data. The

most common is to use a directed graphical model or structural equation model

[196, 68, 130]. Data can be generated from these models, and ground truth structure

and effect estimates are readily available for evaluation. Other approaches involve

designing the structure of a graphical model to match the causal structure of a realistic

system. This can be done by manually specifying the structure based on domain

knowledge [210, 93] or by learning a model from empirical data that can generate

synthetic data [202]. Large-scale simulators designed for other reasons can also be

used [16, 192]. In some cases, simulators can be complex enough to generate data

that is effectively equivalent to empirical data, though such simulations vary widely

in quality.

1Note that clinical trials are empirical under this definition. While the trial itself is performed for
scientific research, the system under study was not constructed for the study (e.g., a human body
reacting to a certain medication).
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2.1.2 Empirical Data

Types of empirical data vary depending on the level of ground truth, and whether

the ground truth came from a randomized controlled trial or prior knowledge of the

domain. Purely observational data is the most readily available and is used most of-

ten. While this is rarely accompanied by full knowledge of the underlying structure,

there are generally some dependencies that are known, either from common sense

knowledge (such as temporal ordering) or from dependencies that have already been

established by prior work [196, 68, 93]. For a randomized controlled trial, the de-

pendence between the measured treatment and outcome is generally taken as ground

truth [176]. The same is true for data where all potential outcomes are observed,

where multiple different sets of interventions can be performed across the whole pop-

ulation or functionally identical individuals can be given different versions of treat-

ment. This includes gene knockout studies, [130] flow cytometry analysis, [129] twin

studies, [128] and computational systems [67].

There are a few data sets aimed at circumventing the typical limitations of real-

world data. The 2016 Atlantic Causal Inference Conference (ACIC) Competition

and subsequent competitions [53, 82] created semi-synthetic data sets. These data

sets were created by producing synthetic treatment and outcome functions using co-

variates from a real-world system. Because the treatment and outcome functions

are synthetic and known, true causal effects can be calculated. This approach is

also used by the IBM Causal Inference Benchmarking Framework [174]. Another

approach, described in more detail in Chapter 3, consists of collecting interventional

data from a system where counterfactual intervention is possible. One example of

this is large-scale computational systems; because they are run in a fully controlled

computational environment, it is possible to apply a single treatment, collect obser-

vations, and then reset to the system to the pre-treatment state, allowing for the

observation of all potential outcomes [64]. By doing this to all members of the pop-
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ulation, true causal effects from treatment to outcome can be calculated. In both

of these cases (ACIC competition data and the all-potential-outcomes data), it is

possible to create constructed observational data (data that contains confounding, as

is typical in observational data). This can be done by selecting treatment for each

unit in a biased way based on observed covariates. Evaluation can then performed

by running the algorithm on the observational data and comparing estimated causal

effects with the known interventional effects.

2.2 Causal Modeling Algorithms

The algorithm under evaluation is not part of the evaluation method per se, but

aspects of the algorithm strongly influence how evaluation can, and should, be per-

formed. Algorithms can be broadly divided into two categories, bivariate and multi-

variate, although there are many variants. This distinction refers to more than just

the number of variables the algorithm considers. Bivariate algorithms deal with a

single causal dependence, one cause and one effect. While other variables may be

considered, they are only included to improve estimation of the causal dependence

between the two main variables. Multivariate algorithms, on the other hand, are

focused on learning the dependence structure among a larger set of variables.

2.3 Evaluation Measures

At the heart of any evaluation technique is a measure of performance. Evaluation

measures are generally designed to provide a single value that measures the ‘correct-

ness’ of the learned causal dependencies. At a high level, evaluation measures fall into

two categories, structural and distributional, based on whether they evaluate whether

the structure or the parameters were learned correctly.

One other category, that can loosely be considered an evaluation, is what we refer

to as visual inspection. This consists of looking at the learned structure or causal
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effect estimates and, using domain knowledge, qualitatively describing if they look

reasonable.

2.3.1 Structural Measures

Structural measures are designed to assess whether the structure (including both

existence of edges and edge orientation) learned by the algorithm matches the ground

truth. The most popular such measure for multivariate algorithms is structural Ham-

ming distance (SHD) [191], which defines the distance between two graphs as the edit

distance — the number of edge changes needed to make the graphs equivalent. In

this setting, an edge change consists of adding, removing, or flipping the orientation

of an edge. This is equivalent to counting the number of edges that were incorrect

when compared to the ground truth. These measures are almost exclusively used

with methods that produce causal graphical models.

Other related measures are used as well, such as precision, recall, F1-score, true-

positive rate, and area under the ROC curve (AUROC) [36, 207, 15]. These are

all closely related to SHD, since they are defined with respect to edge correctness

(precision is defined as the fraction of learned edges that are correct, and recall is

the fraction of correct edges that are learned). A variant of structural measures —

structural intervention distance (SID) [153] — has been proposed though it is not

used frequently in practice. Rather than counting the number of incorrect edges

(which penalizes all edge errors equally), SID counts the number of interventional

distributions that would be affected by the edge orientation errors.

2.3.2 Distributional Measures

Distributional measures are designed to capture how well the algorithm can esti-

mate quantitative dependence. While structural measures can assess if the algorithm

learned the correct model structure, a distributional measure is required to assess if

the algorithm learned the correct parameters of that structure, and to assess the im-
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pact of specific errors in structure learning. Such measures can be further subdivided

into observational and interventional measures.

Observational measures compare the learned distribution with an observational

ground truth (i.e., probability queries that do not involve a do operator). This could

be classification error [182] or a measure of the error when predicting a given out-

come variable [13, 66, 201]. Interventional measures, on the other hand, compare the

learned distribution to ground truth obtained through intervention [176, 142, 195].

Measures of average and conditional average treatment effect (ATE and CATE, re-

spectively) are common interventional measures [144], and KL-divergence and total

variation distance [125] can be used for this purpose as well, when comparing esti-

mated and ground truth interventional distributions.

While the actual measures used in observational and interventional cases may be

similar or even identical, they are applied to different forms of ground truth. For

example, KL-divergence can be used as either an observational or an interventional

measure. The distinction is whether the estimated distribution is compared against

an observational distribution or an interventional distribution.

Computing an interventional measure requires an estimate of the actual inter-

ventional effect. When that is the case, we can estimate the actual interventional

distribution P = P (Y = y|do(T = t)) for any outcome y and treatment t. This

known distribution can be compared to the estimated interventional distribution P̂

from the causal model under evaluation. We then can use an interventional measure

to compare the true interventional distributions P to the estimated distribution P̂ .

One such measure is total variation distance [125].

Definition 2.3.1. Total Variation Distance

TVP,P̂ ,T=t(Y ) =
1

2

∑
y∈Ω(Y )

∣∣P (Y = y|do(T = t))− P̂ (Y = y|do(T = t))
∣∣,
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where Ω(Y ) is the domain of Y . For continuous distributions, TVD can be computed

through an integral of differences in probability densities.

To summarize, there are many options available for evaluating causal modeling

methods, ranging from simple structural comparisons in synthetic data to distribu-

tional comparisons in complex experimental data. However, the frequency with which

these methods are used, and situations in which these methods are useful, vary sig-

nificantly. The usage and utility of these methods is the focus of the next chapter.
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CHAPTER 3

ASSESSMENT AND SUGGESTIONS FOR
IMPROVEMENTS TO CURRENT PRACTICE

Evaluation is central to research in artificial intelligence and machine learning

[44, 117]. How we evaluate algorithms determines our perception of the relative

effectiveness and usefulness of different approaches, and this knowledge guides choices

about future research directions. As Cohen and Howe explained three decades ago:

“Ideally, evaluation should be a mechanism by which AI progresses both within and

across individual research projects. It should be something we do as individuals to

help our own research and, more importantly, on behalf of the field.”1

As fields of science and engineering develop, protocols for evaluating key hypothe-

ses in these fields should develop alongside them. In this chapter, we offer an empirical

analysis of the set of techniques typically used to evaluate the accuracy of algorithms

for learning causal models, and we show that this set could be substantially enhanced.

The ultimate goal of most algorithms for causal modeling is to learn models capa-

ble of accurately estimating the effects of interventions in real-world systems. With

this goal in mind, we would like to evaluate algorithms by comparing their estimates

to measurements of actual interventional effects in a real-world system. In practice,

though, many evaluations fall short of this ideal, most frequently using only struc-

tural or observational measures and synthetic data. Without the use of empirical data,

our evaluations produce little information about whether our algorithms generalize

1Portions of this chapter appeared at NeurIPS 2019.

23



to real-world systems, and this greatly reduces their likelihood of widespread adop-

tion by others outside of the field. Without the use of interventional measures, our

evaluations produce little information about whether learned models will accurately

estimate the effects of interventions, limiting their real-world utility.

Note that we do not argue for replacing the prevailing techniques for evaluation.

These techniques have substantial value, both in assessing overall performance and

in allowing fine-grained experiments to diagnose specific performance issues. Rather,

we argue for augmenting the current suite of evaluation techniques to gather experi-

mental evidence that the prevailing techniques cannot. We also do not contend that

interventional measures and empirical data are entirely absent from current studies. A

very small minority of recent studies use these techniques in combination. Rather, we

argue that interventional measures and empirical data should be used routinely, and

should be used in combination, for any serious study of algorithms for learning causal

models. Indeed, the conclusions of most studies that lack such evaluation techniques

should be considered exploratory and would benefit from additional evaluation.

3.1 Survey of Current Techniques

To assess how frequently different evaluation techniques are used in practice, we

surveyed recent publications on causal modeling in computer science conferences. We

collected papers from five recent UAI, NeurIPS, AAAI, ICML, and KDD confer-

ences, as well as causality workshops held at UAI. We examined papers whose titles

contained the terms ‘cause’, ‘causal’, or ‘causality’ and then narrowed this selection

of papers to those that describe, propose, or evaluate a causal modeling algorithm.

This resulted in a final set of 111 papers, of which 82% (91) reported any sort of

evaluation.2

2When reporting survey results, we follow each percentage with a parenthesized number repre-
senting the raw count. The denominator for percentages is 91, except where otherwise noted.
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The counts of papers included in the final survey are shown in Table 3.1. While

some relevant papers may fall outside of our search parameters, this approach captures

a reasonably representative sample of recent work in causal modeling, allowing us to

infer which techniques are used in practice and how frequently these techniques are

used.

Table 3.1. Recent causality papers included in survey

Venue 2014 2015 2016 2017 2018 Total

UAI 2 3 5 3 7 20

NeurIPS 3 5 4 6 13 31

AAAI 1 6 2 4 5 18

ICML 1 5 1 3 5 15

KDD 0 2 3 0 2 7

UAI-W 2 2 4 3 9 20

Total 9 23 19 19 41 111

The surveyed papers used a wide range of data sources, but we broadly categorize

them as empirical or synthetic. In our survey, we found many examples of both, and

while synthetic data is used more frequently, both are still common. 81% (74) of

papers surveyed used synthetic data, 67% (61) used empirical data, and 48% (44)

used both.

We also analyzed the categories of algorithms used by papers in the survey. Mul-

tivariate algorithms are significantly more prevalent in the data, accounting for 60%

(55/111) of papers surveyed. Bivariate algorithms account for 30% (34/111) of pa-

pers surveyed, split between those focused on orientation (10%), magnitude of effect

(15%), or both (5%). The remaining papers in the survey fall in between, including

those that aim to determine the joint effect of multiple treatment variables on a single

outcome.

We also analyzed the evaluation measures used. The main types we consider are

structural measures (such as structural hamming distance, precision/recall), obser-
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vational measures (such as RMSE and classification accuracy), and interventional

measures (such as total variation distance, average treatment effect).

Of the three types of evaluation measures, structural measures are the most com-

mon, being used in 55% (50) of papers surveyed. Distributional measures are slightly

less common, being used in 46% (42) of papers. The vast majority of the distributional

measures used, however, are observational rather than interventional; observational

measures are used in 33% (30) of papers, while interventional measures are used in

only 13% (12).

The choice of evaluation measure depends on both the data generation process

and type of algorithm, which is reflected in our survey. When synthetic data is

evaluated, structural measures are used 59% (44/74) of the time. However, when

empirical data is evaluated, structural measures are used only 38% (23/61) of the

time, since empirical data is less likely to have ground truth. This lack of ground

truth sometimes prevents any significant evaluation for techniques using empirical

data—26% (16/61) of empirical evaluations consisted exclusively of visual inspection

of the results, with no ground truth. Table 3.2 summarizes the interaction between

data source and evaluation measure in the survey.

Table 3.2. Summary of survey results: the number of papers using different evalua-
tion measures and data sources

Data Sources

Synthetic Empirical

E
v
a
lu
a
ti
o
n

M
e
a
su

re
s

Visual Inspection 0 19

Structural 44 23

Observational 22 15

Interventional 11 5

The survey makes clear that the vast majority of papers that perform evaluations

use either: (1) synthetic data; or (2) empirical data combined with non-interventional

measures (observational measures, structural measures, or visual inspection). Our
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proposed ideal evaluation (empirical data and interventional measures) is used in

only 5% (5) of papers. This raises an obvious question: Are the most commonly-

used evaluation techniques sufficient for determining whether algorithms for learning

causal models will work effectively in realistic scenarios? As we will argue below, they

are not.

3.2 The Case for Empirical Data

As already noted, nearly all causal modeling algorithms are ultimately designed

for use outside of a laboratory—on real systems to infer useful causal knowledge about

the world. Despite this, evaluation of such algorithms often uses synthetic rather than

empirical data.

3.2.1 Limitations of Synthetic Data

Researchers have developed several approaches to generating synthetic data. The

most common is to use a directed graphical model or structural equation model.

Other approaches involve designing the structure of a graphical model to match the

causal structure of a realistic system, either by manually specifying the structure or

by learning it from empirical data. Large-scale simulators designed for other reasons

can also be used. In some cases, simulators can be complex enough to generate data

that is effectively equivalent to empirical data, though such simulations vary widely

in quality.

Synthetic data is easy to collect, allows for straightforward comparison with

ground truth, and facilitates systematic testing across a variety of data parameters.

Its popularity is evident—84% (74) of surveyed papers used it in their evaluation,

and 41% (30/74) of those used only synthetic data. However, using synthetic data

for evaluation also has significant limitations. These include:
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Unquestioned assumptions—Synthetic data tends to match the assumptions of the

researcher running the study and any algorithms they have created. For example, a

researcher developing an algorithm that outputs a DAG will be inclined to generate

data from a DAG.

Untested influences—Even the best data generators can only include the influ-

ences already known to researchers. Almost by definition, synthetic data generators

cannot include any “unknown unknowns” that may influence the outputs of real-world

systems.

Lack of standardization—Synthetic data is typically generated differently by each

researcher, and this lack of standardization impedes comparison between studies.

Researcher degrees-of-freedom—Synthetic data is typically designed and param-

eterized by the researchers who created the algorithm being evaluated, giving them

an enormous range of choices. Such high “researcher degrees-of-freedom” [177] are a

basic challenge to the validity of any study.

These factors significantly limit the external validity and realism of most synthetic

data, making it insufficient as the sole source of data for evaluation. Synthetic data

is not without value—it can be a powerful way to assess features of an algorithm

and test its performance under different conditions. However, it typically falls short

in providing insights into how the algorithm will perform on data from a real-world

system.

3.2.2 Sources of Empirical Data

Types of empirical data vary depending on the level of ground truth, and whether

the ground truth came from a randomized controlled trial, an interventional experi-

ment, or prior knowledge of the domain. Purely observational data is the most readily

available and is used most often. While this is rarely accompanied by full knowledge

of the underlying structure, there are generally some dependencies that are known, ei-
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ther from common sense knowledge (such as temporal ordering) or from dependencies

that have already been established by prior work. For a randomized controlled trial,

the dependence between the measured treatment and outcome is generally taken as

ground truth. The same is true for interventional experiments, which we define to be

experiments performed on a system where multiple different sets of interventions can

be performed across the whole population. This includes gene regulatory networks,

flow cytometry analysis and computational systems, where the system can be rerun

with new parameter settings.

3.2.3 Benefits of Empirical Data

Empirical data is almost always more difficult to collect than simulated data, and

information on the effects of interventions is typically also more difficult to obtain.

However, using empirical data has multiple benefits:

Realistic complexity—Empirical data typically has a distribution that is more com-

plex than simulated data. That distribution is subject to realistic latent factors and

measurement error. This creates a learning task that is often significantly harder than

synthetic data, but also more closely matches the challenges of real-world settings.

Lower potential researcher bias—Empirical data is typically not generated by the

researcher who designed the algorithm being evaluated, and thus it is less subject

to unintentional biases. In addition, individual data sets are often shared across the

community, creating standardization and comparability across studies.

Real-world demonstration—The aim of research on algorithms for causal modeling

is to have these algorithms used by others to infer causal models and reason about

causal effects in real-world settings. Practitioners considering use of these meth-

ods may be legitimately skeptical about their effectiveness until they see successful

demonstrations of accurate causal modeling on real-world data.
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However, using empirical data poses challenges as well. Because it is generally not

collected by the person using it, there may be features of the data that are not fully

understood, hindering correct interpretation. Also, ground truth can be challenging

to obtain, limiting evaluation to visual inspection or observational measures. This is

unsatisfying at best and misleading at worst, since, when evaluating without ground

truth, it can be easy to see meaning where none exists or to imagine explanations

for many possible conflicting outputs. Despite these challenges, empirical data, while

less common than synthetic, is still used frequently in practice; 67% (61) of surveyed

papers use empirical data, and 28% (17/61) used only empirical data.

3.2.4 Are Empirical Data Sets Available?

Because interventional measures and empirical data are used so infrequently, one

may assume this is because such data sets are difficult to find. This is partially true—

there are significantly more observational data sets available than interventional data

sets. However, there is a growing community that is producing data sets that provide

interventional effects. We describe some of them here.

The cause-effect pairs challenge [143] provides a data set that is empirical and,

while interventional effects are not available, the direction of causality is known. The

2016 Atlantic Causal Inference Conference (ACIC) Competition and subsequent com-

petitions [53, 82], created semi-synthetic data sets, producing synthetic treatment and

outcome functions using covariates from a real-world system. A similar approach was

used for the IBM Causal Inference Benchmarking Framework [174]. Gene regulatory

networks, specifically the DREAM in silico data sets, are a popular choice, since mul-

tiple combinations of single-gene interventions can be performed on identical networks

[165]. The DREAM data sets are taken from a sophisticated simulation derived from

multiple known gene regulatory network structures, which, while non-empirical, is in-

tended to be complex enough to approximate empirical data. Flow cytometry data,
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measuring protein signaling pathways, is another common choice for interventional

data, specifically the data set provided by Sachs et al. [164]. Flow cytometry allows

for the simultaneous measurement of large signaling networks, and many independent

cells can be measured, allowing for the analysis of multiple interventions. Dixit et

al. [52] provide data on gene expression, collected using their proposed Perturb-Seq

technique to perform gene deletion interventions. Other sources of interventional and

empirical data include results of advertising campaigns [184] and clinical studies [136],

as well as multiple challenges organized for machine learning conferences [80, 81].

Garant and Jensen [64] introduced an additional source of empirical data where

interventions are possible: large-scale computational systems. They performed ex-

periments on three large computational systems: Postgres, the Java Development

Kit, and HTTP processing. These systems have many desirable properties for the

purposes of empirical evaluation: (1) They are pre-existing systems created by people

other than the researchers for a purpose other than evaluating algorithms for causal

modeling; (2) They produce non-deterministic experimental results due to latent

variables and natural stochasticity; (3) System parameters provide natural treatment

variables; and (4) Each experiment is recoverable, allowing the same experiment to

be performed multiple times with different combinations of interventions.

Within each computational system, three classes of variables are measured: out-

comes, treatments, and subject covariates. Here, outcomes are measurements of the

result of a computational process, treatments correspond to system configurations

and are selected such that they could plausibly induce changes in outcomes, and

subject covariates logically exist prior to treatment and are invariant with respect to

treatment. Using these variables, all combinations of treatments can be applied to all

subjects, and we can use these results to estimate actual interventional distributions

for the effects of each treatment variable on each outcome variable. We can also then

sub-sample these experimental data sets in a manner which simulates observational
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bias to produce observational-style data sets, allowing us to evaluate an algorithm’s

performance on pseudo-observational data and evaluate it using actual interventional

effects. Many additional details on the generation and use of these data sets are

presented in Appendix B.

3.2.5 How Different are the Results?

Readers may ask: In practice, what’s the difference between using empirical data

rather than synthetic data? If that difference is small, then the substantial extra

work involved in evaluation with empirical data may not be worth the effort.

To begin addressing this question, we conducted a series of experiments using the

interventional data from the computational systems described above. Specifically,

we used a common approach for generating somewhat realistic synthetic data. This

approach uses an empirical data set to learn a causal model and then uses that model

to generate synthetic data (and known ground truth) for model evaluation. While the

final data set is synthetic, its structure may better approximate the empirical system,

rather than being entirely defined by the researcher, lending it more credibility. We

used this approach to generate synthetic data in the style of the three empirical data

sets we generated from computational systems. Since we now have both empirical

and synthetic data, each with ground truth, we can use causal modeling algorithms to

construct a model for both of these data sets and compare the conclusions we would

draw from each.

The synthetic data used was created by first choosing an initial causal modeling

algorithm to create a ground truth network from the empirical data. After learning

a ground truth model with each of two algorithms that construct causal graphical

models (PC and GES), we generated synthetic data using the resulting models. We

then evaluated the same three algorithms on both the synthetic and empirical data.

Figure 3.1 shows how mean TVD varies for different causal modeling algorithms and
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Figure 3.1. Comparison of TVD on empirical data and synthetic data derived from
empirical data. top and bottom left : synthetic data, structure obtained from using
PC (top left), GES (top right), or MMHC (bottom left). bottom right : TVD on
empirical data.

33



different data sets. Because sample sizes for some of the computational system data

sets are small, results are reported as distributions over 30 trials for each algorithm

and data set. The results shown are the mean TVD when evaluating PC, GES, and

MMHC on two types of synthetic data sets (using the model as ground truth) and

on the empirical data (using the known interventional effects). There is significant

variability between the two methods of generating the synthetic ground truth network

from the empirical data (PC and GES), both in the mean TVD and in the relative

ordering of the algorithms. Comparing the synthetic and empirical results, some rel-

ative orderings of the algorithms are the same (e.g., network), but other orderings

are significantly different (e.g., Postgres). These results suggest that algorithm per-

formance cannot be expected to match between synthetic and empirical data, even

when the synthetic data is created in a way that would be most expected to match

aspects of the empirical data.

3.3 The Case for Interventional Measures

Many algorithms are currently evaluated based on their ability to learn causal

structure. However, the actual desired underlying task is almost never to model

structure alone. In practice, estimating the magnitude of interventional effects is

vitally important, and an algorithm that cannot distinguish between strong and weak

effects is severely limited in scope. Despite this, the majority of current evaluations

use observational or structural measures rather than measures of interventional effect.

3.3.1 Limitations of Observational Measures

Observational measures are generally used when the task of the algorithm is to

discern the statistical association between two or more variables. They are generally

applied in cases when the structure is not the primary focus or is already known, and

the primary concern is effectively modeling the magnitude and form of dependence,
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rather than the existence of dependence. However, observational data has a severe

and obvious limitation:

Non-causal—Observational measures are, by definition, not causal. They mea-

sure the error of estimates of the outcome variable, but they do not measure that

error under intervention. They provide a sense of how well an algorithm has learned

statistical dependence, but not how well it has learned causal dependence. Despite

this, observational measures are the only evaluation used in 24% (22/91) of papers

surveyed.

3.3.2 Limitations of Structural Measures

Structural measures are easy to calculate, and they have a clear intuition. If an

algorithm produces a causal structure and we know structural ground truth, it seems

sensible to determine if the two structures match. This has led to the widespread

adoption of structural measures: 55% (50) of surveyed papers used such measures, and

84% (42/50) of those used only structural measures. However, structural measures

have several serious limitations:

Requires known structure—Calculating structural measures requires a full ground

truth network structure, which is only rarely available for empirical data.

Constrains research directions—The prevalence of structural measures may con-

strain research to algorithms that can be evaluated with these measures. Algorithms

that do not produce DAGs are less likely to be developed or favorably reviewed.

Structural measures also implicitly assume that DAGs are capable of accurately rep-

resenting any causal process being modeled, an unlikely assumption.

Oblivious to magnitude of dependence—Structural measures, by design, do not

account for different magnitudes of dependence, so an error in an edge with a strong

effect is weighted the same as an error in an edge with a very weak effect.
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Oblivious to likely treatments and outcomes—In most cases, structural measures

do not consider where an edge is located in the overall structure of the network, so

an edge with many downstream effects is treated the same as a less central edge.

3.3.3 Benefits of Interventional Measures

In contrast to observational and structural measures, interventional measures have

multiple advantages:

Correspondence to actual use—Interventional measures evaluate how well the

model estimates interventional effects, which aligns more accurately with the even-

tual use of nearly all causal models. For example, a directed acyclic graph is not the

ultimate artifact of interest for most applications; DAGs are a representation that

facilitates estimation of interventional effects [151, 179]. Thus, it seems natural to

define an evaluation measure in terms of interventional effects rather than graphical

structure.

Weighting of different errors—While most structural measures weight each edge

misorientation equally, interventional measures penalize misorientation errors propor-

tionally to their effect on the estimation of interventional effect.

3.3.4 How Different are the Results?

Interventional measures are intended to capture something different than struc-

tural measures, but they are ultimately affected by the structure of the learned model,

and we would expect structural errors to lead to interventional errors. To assess the

extent to which interventional measures capture different information than structural

measures, we ran experiments using synthetic data. This allowed us to produce data

where we could calculate both structural measures and interventional measures, since

we have the full parameterized ground truth model to compare against.

For these experiments, we produced data from random DAG structures with con-

ditional probability models drawn from a Dirichlet distribution. We generated 5000
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Figure 3.2. Structural and interventional measures compared on synthetic data with
GES. Left : SHD And TVD, Right : SHD And SID

instances, applied a causal modeling algorithm, and calculated various evaluation

measures. Figures 3.2, 3.3, and 3.4 shows the results for GES, MMHC, and PC,

respectively. Interestingly, while the correlation between SID and SHD is relatively

consistent for all three structure learning algorithms, the correlation between TVD

and SHD varies substantially, from seemingly completely uncorrelated (GES) to very

clearly correlated (PC). The strong correlation between SHD and SID suggests that

both these structural measures ultimately produce similar quality measures of the

algorithm. When comparing SHD and TVD, for some cases, such as GES, they are

only very weakly correlated, with many models scoring highly with one measure and

poorly with the other. However, for other cases, such as PC, structural measures

appear to provide a decent proxy for interventional measures. However, it is unlikely

that the researcher knows this to be the case ahead of time, and the comparative

difference in TVD between the three algorithms suggests the value of using TVD

when comparing multiple causal learning algorithms.
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Figure 3.3. Structural and interven-
tional measures compared on synthetic
data with MMHC.

Figure 3.4. Structural and interven-
tional measures compared on synthetic
data with PC.

3.4 Example of an Evaluation

To further explain what we mean by empirical data and interventional measures,

we describe one example of this type of evaluation, shown schematically in Figure

3.5. This example demonstrates one way that an evaluation with empirical data and

interventional measures could be performed, though many other techniques are pos-

sible, depending on the algorithm, data source, evaluation measure, and the research

question under consideration. In our example, we evaluate the PC algorithm [179],

Greedy Equivalence Search (GES) [41], and MMHC [191] by measuring total vari-

ation distance (an interventional measure defined later) on a data set produced by

experimentation with a large-scale computational system.

An obvious way to evaluate how well an algorithm can learn causal models from

real-world data is to compare the model’s estimates to empirical data drawn from a

system in which we can perform multiple interventions on the same units, giving us

full interventional data in which we can assess every potential outcome for each unit.

Large-scale computational systems allow for this type of intervention because they let

us run the same experiments multiple times under different conditions (e.g., different

settings of key system parameters). An example of this is a Postgres database, where

we can run the same queries with different settings of key configuration parameters.

In this context, each query corresponds to a unit, a set of configuration parameters
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corresponds to a treatment, and variables such as runtime correspond to outcomes.

Details about these data sets can be found in Appendix B.

Many algorithms for causal modeling are designed to run on observational data, in

which only a single, non-randomized treatment assignment is observed for each unit.

In the absence of an observational data set that matches our interventional data,

we can create an observational-style data set by sub-sampling the full interventional

data in a non-random manner. To do this, we select a single treatment assignment for

each query. Selecting treatment at random is equivalent to a randomized controlled

trial. In most observational contexts, however, treatment assignment would be based

on covariates of the units. For example, a database administrator might choose

the configuration parameters based on features of each query. We use a similar

process to create observational data by using a measured covariate of the query to

probabilistically assign treatment.

Figure 3.5. A diagram of one approach to evaluating a causal modeling algorithm

Given such an observational data set, we can apply a causal modeling algorithm

and learn a causal model. A fully parameterized model can produce an estimated

interventional distribution P̂ by applying the do-calculus [61]. Under this framework,

causal quantities take the form of probability queries with do operators, for instance

P (O|do(T = 1)). We can also estimate the actual interventional distribution P =
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P (O = o|do(T = t)) for any outcome o and treatment t, because we can measure the

effects of both values of treatment for each query in our data set.

We then can use an interventional measure to compare the true interventional

distribution P to the estimated distribution P̂ . One example of an interventional

measure is total variation distance (TVD) [125], which measures the distance between

two probability distributions. For discrete outcomes O, the quality of an estimated

interventional distribution relative to a known distribution under TVD can be com-

puted as described in Equation 4.1. This gives us a numerical measure of how well

the estimated interventional estimates match the ground truth. A single TVD value

is computed for each causal effect, which can then be aggregated for comparison.

Results of this evaluation on the computational data is shown in Figure 3.1c. For

these data sets, we can conclude that GES has the best overall performance.

3.5 Conclusions

Evaluation is a key mechanism that determines how algorithms are viewed within

the community, what research directions are pursued next, and whether our research

has broader impacts outside the community. Our current evaluation techniques aim

too low, and they fail to evaluate the full range of questions that our research goals

imply.

We acknowledge that, while the evaluation techniques we advocate are applicable

to wide range of algorithms, data sets may not be available for every task. The diverse

tasks of causal modeling algorithms make it difficult to recommend a single data set

and evaluation measure to evaluate every algorithm. However, the data sets and

measures that are most commonly used are largely insufficient. We believe it would

benefit the community for more data sets with interventional effects to be created

and made available for public use, allowing for a breadth of evaluation options.
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We do not advocate abandoning synthetic data and structural measures. Both

have many uses for evaluating algorithm performance and can be indispensable sci-

entific tools. However, they are not sufficient on their own. Instead, they should be

viewed as a first step in evaluation. If novel algorithms for causal modeling are to be

widely adopted, prospective users will justifiably require credible demonstrations of

their utility outside of a laboratory setting. If we do not evaluate on empirical data,

we cannot be certain our algorithms will perform well on real data, and if we do not

evaluate with interventional measures, we cannot be certain that the causal effects

the algorithm infers will translate to actual, substantial causal effects. Expanding

our routine evaluations will substantially improve the credibility and comparability

of results, the external validity and trustworthiness of algorithms, and the efficiency

with which we conduct our research.
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CHAPTER 4

USING EXPERIMENTAL DATA
TO EVALUATE METHODS FOR

OBSERVATIONAL CAUSAL MODELING

4.1 Introduction

Most easily available data sets are either experimental (which can yield unbi-

ased estimates of treatment effect) or observational (for which treatment effect is

unknown). Since most causal modeling methods are designed to infer causal depen-

dence from observational data, accurate evaluation requires both observational data

and corresponding unbiased estimates of treatment effect. Several recent efforts have

attempted to address this problem [53, 67, 192, 174], most of which collect or modify

data specifically for the purpose of evaluation. Some approaches induce dependence

between variables in specially constructed or selected data, while others repurpose a

simulator to produce data for evaluation. These approaches are promising and bene-

ficial to the community, but creating individual, specialized new data sets is difficult

and time-consuming, limiting the number of data sets available and thus limiting

research progress.

We propose to exploit an additional source of data for evaluating causal modeling

methods: randomized controlled trials. Randomized controlled trials (RCTs) are

designed and conducted for the express purpose of providing unbiased estimates of

treatment effect. Many RCT data sets are publicly available, and more become

available every day. Previous work has described how to sub-sample a specialized

type of experimental data (one in which all potential outcomes are observed) to create
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constructed observational data.1 Surprisingly, this basic approach can be modified to

produce constructed observational data from RCTs as well. Specifically, we: (1)

Describe an algorithm to induce confounding bias in RCT data by sub-sampling,

and prove that this approach is equivalent, in expectation, to the data generating

process assumed by the potential-outcomes framework, a longstanding theoretical

framework for causal modeling; (2) Demonstrate the feasibility of this approach by

applying multiple causal modeling methods to observational data constructed from

RCTs;2 and (3) Present a method for using the data rejected by the sub-sampling for

evaluation, and show that it is equivalent to a held-out test set.

4.2 Creating Observational Data from Randomized Con-

trolled Trials

Consider a data generating process that produces a binary treatment T ∈ {0, 1},

outcome Y , and multiple covariates C = {C1, C2, ...Ck}, each of which may be causal

for outcome.3 We define Yi(t) to be the outcome for unit i under treatment t, re-

ferred to as a potential outcome. For each unit i, both treatment values Ti = 0

and Ti = 1 are set by intervention and both potential outcomes Yi(1) and Yi(0) are

measured. We refer to this type of data, where all potential outcomes are observed,

as all potential outcomes (APO) data, denoted DAPO. Note that, due to the use of

explicit interventions, such a data generating process produces experimental, rather

than observational, data.

1The term “constructed observational data” denotes empirical data to which additional properties
common in observational data (e.g., confounding) have been synthetically introduced. This term
is distinct from constructed observational studies, which are studies that collect and compare both
experimental and observational data from the same domain (see “Related Work”).

2Pointers to the data sets used in this paper, and R code to perform observational sampling, will
be provided at http://kdl.cs.umass.edu/data

3For ease of exposition, we describe the approach using binary treatment, but the approach is
more general.

43

http://kdl.cs.umass.edu/data


In Chapter 3, we proposed sampling from APO data to produce constructed obser-

vational data. A small number of other researchers (e.g., [128]) have proposed similar

procedures. Such data sets are produced by probabilistically sampling a treatment

value (and its corresponding outcome value) for every unit based on the values of one

or more covariates (P (T |C) := f(C)). We refer to the set C as the biasing covariates.

This procedure, shown in Algorithm 1, induces causal dependence between C and T ,

creating a confounder when an element of C also causes Y . We refer to such a data

generating process as observational sampling from all potential outcomes (OSAPO)

and denote a given data set generated in this way as DOSAPO. OSAPO is the data

generating process assumed under the potential outcomes framework [163].

Data sets produced by OSAPO are extremely useful for evaluating causal model-

ing methods. Causal modeling methods can estimate treatment effect from DOSAPO,

and these estimates can be compared to estimates derived from DAPO. Furthermore,

the process of inducing bias by sub-sampling allows for a degree of control that can

be exploited to evaluate a method’s resilience to confounding, by systematically vary-

ing the strength and form of dependence and whether variables in C are observed.

However, very few experimental data sets exist that record all potential outcomes for

every unit, severely limiting the applicability of this approach.

4.2.1 Observational Sampling of RCTs

Now consider a slightly different data generating process, in which treatment

is randomly assigned and only one potential outcome is measured for each unit i,

producing either Yi(1) or Yi(0), but not both. This is the data generating process

implemented by RCTs, in which every unit is randomly assigned a treatment value,

and the outcome for that treatment is measured. Vast numbers of RCTs are con-

ducted each year, and data sets from many of them are available publicly. In addition,
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growing efforts toward open science are continually increasing the number of publicly

available RCT data sets.

This raises an intriguing research question: Can RCTs be sub-sampled to produce

constructed observational data sets with the same properties as those produced by

APO sampling?

Figure 4.1. Two procedures for sampling constructed observational data sets from
experimental data. Left : From all potential outcomes (APO) data. Right : From
randomized controlled trial (RCT) data. For some function f : D(C)→ {p ∈ R : 0 <
p < 1}

We describe one such sampling procedure in Algorithm 2 — observational sampling

from randomized controlled trials (OSRCT)—which produces a data sample denoted

DOSRCT . As in APO sampling, covariates C bias the selection of a single treatment

value for every unit i. If unit i actually received the selected treatment ts, we add i

to DOSRCT . Otherwise, that unit is ignored. As we show below, when treatment is

binary and treatment and control groups are equal in size, the resulting constructed

observational data set is, in expectation, half the size of the original, regardless of

the form of the biasing. As discussed in Section 4.2.2, a causal modeling method can

then be applied to this data, and the results can be compared to the unbiased effect

estimate from the original RCT data. This basic approach is shown in Figure 4.2.

An RCT can be thought of as a data set where one potential outcome for every unit

is missing at random. Since OSRCT uses the biasing covariates to select treatment,
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and treatment was assigned randomly, the sub-sampling process only changes the

dependence between the biasing covariates and treatment. This is the same as in

OSAPO. The probability of a given unit-treatment pair being included in the sub-

sample is proportional in APO and RCT sampling. That is, DOSRCT is equivalent to

a random sample of DOSAPO.

Theorem 1. For RCT data set DRCT , APO data set DAPO, and binary treatment

T ∈ {0, 1} with P (T = 1) = P (T = 0) = 0.5 in DRCT , and units i,

PDOSRCT
(Ti = t) = 0.5 ∗ PDOSAPO

(Ti = t), for all units i.

Proof. For every unit i and any treatment t′, the biasing covariates Ci are used to

probabilistically select a treatment, which we denote Tsi, with probability P (Tsi =

t′|Ci).

PDOSAPO
(Ti = t′) = P (Tsi = t′|Ci) (4.1)

PDOSRCT
(Ti = t′) = P (Ti = t′)P (Tsi = t′|Ci) (4.2)

= 0.5P (Tsi = t′|Ci) (4.3)

Sub-sampling DOSAPO uniformly at random is equivalent to multiplying PDOSAPO
(Ti =

t′) by a scaling factor, s. When s = 0.5, PDOSRCT
(Ti = t′) = PDOSAPO

(Ti = t′).

Intuitively, the procedure outlined in Algorithm 4.1 works because treatment is

randomly assigned in RCTs. The data is sub-sampled based solely on the value of

a probabilistic function of the biasing covariates, which selects a value of treatment

for every unit i. Since the observed treatment is randomly assigned, it contains no

information about any of i’s covariates. The only bias introduced by this sub-sampling

procedure is the intended bias: a particular form of causal dependence from C to T .

Note that while Theorem 1 assumes equal probability of treatment and control,

the approach generally applies even when P (T = 1) 6= 0.5. In this case, instead of

sub-sampling DOSAPO by a factor of 0.5, the scaling factor is selected based on the
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treatment value. Since treatment is based solely on the value of the biasing covariates,

this is equivalent to modifying the form of the biasing function.

One potential disadvantage of this approach is that sub-sampling to induce bias

necessarily reduces the size of the resulting sample. Somewhat surprisingly, however,

the degree of this reduction does not depend on the intensity of the biasing.

Theorem 2. For binary treatment T ∈ {0, 1} and RCT data set DRCT ,

if either P (T = 1) = P (T = 0) = 0.5, or E[P (Ts = 1|C)] = 0.5,

then E[|DOSRCT |] = 0.5|DRCT |.

Proof. Assume binary treatment T ∈ {0, 1}. For any unit i with covariates Ci, let

P (Ti = t) = pt, P (Tsi = t|Ci) = pTsi=t|c, and n = |DRCT |. Indices are omitted when

clear from context.

P (i ∈ DOSRCT ) = p1pTsi=1|c + p0pTsi=0|c

= p1pTsi=1|c + (1− p1)(1− pTsi=1|c)

= 2p1pTsi=1|c − p1 − pTsi=1|c + 1

E[|DOSRCT |] =
n∑

i=1

[2p1pTsi=1|c − p1 − pTsi=1|c + 1]

= n− np1 + (2p1 − 1)
n∑

i=1

pTsi=1|c

If either p1 = 0.5 or
∑n

i=1 pTsi=1|c = 0.5n, E[|DOSRCT |] = 0.5n.

4.2.2 What Can OSRCT Evaluate?

The constructed observational data created by OSRCT has a substantial benefit

over purely observational data: Unbiased estimates of causal effect can be obtained

from the original RCT data, which can be compared to effect estimates from causal

modeling methods. In a well-designed RCT, treatment assignment is randomized
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Figure 4.2. The process of creating observational-style data from a randomized
controlled trial.

such that, in expectation, the treatment and control groups are equivalent. This

enables the unbiased estimation of the sample average treatment effect (ATE) as

E[yi(1)|ti = 1] − E[yi(0)|ti = 0], where ti denotes the actual treatment received by

unit i. This estimate can be compared to estimates made by causal modeling methods

applied to the constructed observational data.

However, unlike APO data, RCT data only contains one treatment-outcome pair

for every unit, limiting both the available effect estimates and how these data sets

can be used. RCTs measure the effect of a single randomized intervention do(Ti = ti)

for every unit in the data set. Thus, we cannot estimate individual treatment effect

(ITE) from RCT data, a measurement which is available when using APO data.

However, OSRCT data can be used to evaluate a method’s ability to estimate the

unit-level effects of interventions. Any causal modeling method that can estimate

E[Y |do(T = t)] can be evaluated by comparing those estimates against measurements

in the RCT data.

4.2.3 Using the Complementary Sample for Evaluation

One challenge when evaluating causal modeling methods on their ability to esti-

mate unit-level effects of interventions is the need for a held-out test set. The con-

structed observational data is constructed by sub-sampling the original RCT data.
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This means that evaluating on all of the RCT data may produce a biased result by

testing on a superset of the training data. One potential solution is to divide the

RCT data into separate training and test sets. However, since OSRCT necessarily re-

duces the size of the training data by sub-sampling, the extra requirement of holding

out a test set limits the number of RCTs that can be used, since not all random-

ized experiments will have enough data to learn effective models after two rounds of

sub-sampling.

A more data-efficient approach is to use the data rejected by the biased sub-

sampling. OSRCT sub-samples RCT data to create a probabilistic dependence be-

tween the biasing covariates and treatment. Based on the values of the biasing co-

variates, a treatment is selected for every unit. If that treatment is present in the

data, the unit is included in the sample; otherwise the unit is rejected. This rejected

sample (which we call the complementary sample) also has a causal dependence from

the biasing covariates to treatment. The only difference is that the form of that

dependence is the complement of that for the accepted sample, such that covariate

values that lead to a high probability of treatment in the accepted sample would lead

to a low probability of treatment in the complementary sample. Because we know

the functional form of this induced bias, we can weight the data points in the com-

plementary sample according to their probability of being included in the accepted

sample. In aggregate, this type of weighting allows the complementary sample to

approximate the distribution of the training data, and thus be used for testing. This

is equivalent to inverse propensity score weighting [158].

Theorem 3. For binary treatment T ∈ {0, 1}, biasing covariates C, outcome Y ,

estimated outcome Ŷ , biased sample DOSRCT and complementary sample D̄OSRCT , let

ps = P (Tsi = ti|Ci). Then, E[Ŷ − Y ] for DOSRCT = E[(Ŷ − Y ) ps
1−ps ] for D̄OSRCT .

Proof. For DOSRCT ,
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E[Ŷ − Y ]DOSRCT
= E[P (Tsi = ti|Ci)(Ŷi − Yi)]

For D̄OSRCT ,

E[Ŷ − Y ]D̄OSRCT
= E[(1− P (Tsi = ti|Ci))(Ŷi − Yi)]

If we weight the outcome estimates for D̄OSRCT by P (Tsi=ti|Ci)
1−P (Tsi=ti|Ci)

,

E[Ŷ − Y ]D̄OSRCT
= E[

P (Tsi = t|Ci)

1− P (Tsi = ti|Ci)
·

(1− P (Tsi = ti|Ci))(Ŷi − Yi)]

= E[P (Tsi = ti|Ci)(Ŷi − Yi)]

= E[Ŷ − Y ]DOSRCT

4.2.4 Assumptions, Limitations, and Opportunities

The validity of evaluation with OSRCT depends on several standard assumptions

about the validity of the original RCT. Specifically, it assumes that treatment assign-

ment is randomized and that all sampled units complete the study (no “drop-out”).

Intriguingly, one standard assumption—that intent to treat does not differ from ac-

tual treatment—is not necessary. Even if this assumption is violated, the estimated

treatment effect will correspond to the effect of intending to treat, and this estimand

can still be used to evaluate the effectiveness of methods for observational causal

modeling.

Evaluation with OSRCT has some limitations. OSRCT can induce dependence

between any covariate and treatment, but it cannot induce dependence between any
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covariate and outcome. In addition, while the original RCT data can yield an unbiased

estimate of the effect of treatment on outcome, it cannot produce such estimates for

any other pair of variables.

Constructing observational data also provides some unique opportunities. OSRCT

produces data with non-random treatment assignment, and allows for variation in the

level and form of that non-randomness. Additional factors of observational studies

can also be simulated, such as measurement error, selection bias, and lack of positivity.

While some of these may reduce the sample size of the constructed observational data

due to additional sub-sampling, this can allow for the evaluation of a causal modeling

method’s robustness to many features of real-world data.

4.3 Related Work

We deferred discussion of some related work because it directly and exclusively

relates to the content of this chapter. We discuss that work below. The closest prior

work [124] uses an identical idea for a subtly different task: estimating the reward of a

contextual bandit policy without having to actually execute that policy. Specifically,

they propose to evaluate a (non-random) contextual policy by sampling from the

data produced by a randomized policy. They show that the resulting estimate is

unbiased, despite its use of only a subsample of the data originally produced by the

randomized policy. This method is widely employed to evaluate methods in fields such

as computational advertising and recommender systems, and it has been extended

with approaches such as bootstrapping [135].

OSRCT exploits the same idea but in a different setting. In our setting, we have

no interest in estimating the effect of a contextual policy that is known to the agent

(which is somewhat analogous to what, in observational causal modeling, is referred

to as the ”average treatment effect on the treated”). Instead, our goal is to determine

how well a given method estimates the average treatment effect (which, in contextual
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bandits, would be formulated as the reward difference between two specific policies),

even though the algorithm only has access to the actions and outcomes of a single

unknown and non-randomized policy.

Despite the similarity of tasks, this approach—observational sampling from

RCTs—is almost entirely unknown within the causal modeling community. For exam-

ple, two recent papers that contain reviews of existing evaluation methods for causal

modeling methods—Dorie et al. [53] and our own recent work [67]—do not even men-

tion this approach, despite the fact that it overcomes many of the most serious threats

to validity for evaluation studies (e.g., reproducibility, realistic data distributions and

complexity of treatment effects, multiple possible levels of confounding). A handful

of papers have applied it in a one-off manner to evaluate causal modeling methods

[103, 104], but it has not been explicitly formalized or its advantages clearly described.

As a result, it is almost never used.

In addition to this prior work on sampling for evaluating contextual bandit poli-

cies, other prior work has explicitly focused on evaluation methods in causal modeling.

This work has applied a variety of approaches to creating observational data sets such

that a derived estimated treatment effect can be compared to some objective stan-

dard. The ideal approach would score highly on at least three characteristics: data

availability (many data sets with the required characteristics can be easily obtained);

internal validity (differences between estimated treatment effect and the standard can

only be attributed to bias in the estimator); and external validity (the performance

of the estimator will generalize well to other settings). Of three broad classes of prior

work, each suffers from some deficiencies and none clearly dominate the others.

The first class of prior work uses observational data sets with known treatment

effect. One approach gathers observational data about phenomena that are so well-

understood that the causal effect is obvious [143]. Unfortunately, such situations

are relatively rare, limiting data availability. Another approach is to use data from
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matched pairs of observational and experimental studies [52, 164]. In many ways,

such data sets appear to represent a nearly ideal scenario for evaluating methods for

inferring causal effect from observational data. However, pairs of directly comparable

observational and experimental studies have low data availability, and using paired

studies with different settings or variable definitions can greatly reduce internal va-

lidity. Some “constructed observational studies” intentionally create matched pairs

of experimental and observational data sets [116, 89, 168], but these studies also have

low data availability.

Another class of prior work generates observational data from synthetic or highly

controlled causal systems [192, 67, 128, 101]. In this way, the treatment effect is

either directly known or can be easily derived from experimentation. Observational

data is typically obtained via some biased sampling of the experimental data, often

a variety of APO sampling. In the case of entirely synthetic data, data availability

and internal validity are both high, but external validity is low, and such studies

are often criticized as little more than demonstrations. External validity typically

increases somewhat for highly controlled causal systems, but data availability drops

significantly.

The final and newest class of existing work augments an existing observational

study with a synthetic outcome, replacing the original outcome measurement [53, 174].

Given the synthetic nature of the outcome, the causal effect is known. This class

of approach has relatively high data availability, and it trades some loss of external

validity (because real outcome measurements are replaced with synthetic ones) to gain

internal validity (because the true treatment effect is known). Note particularly that

both the treatment effect and the confounding are synthetic, because the function that

determines the synthetic outcome determines how both the treatment and potential

confounders affect the value of outcome.
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The approach proposed here—OSRCT—augments, rather than replaces, these ex-

isting approaches. It occupies a unique position because it simultaneously has fairly

high data availability, internal validity, and external validity. OSRCT’s data avail-

ability is relatively high because it can be applied to data from any moderately large

RCT. Only synthetic data generators and approaches that augment observational

data with synthetic outcomes probably have higher data availability, but both suffer

in terms of external validity. OSRCT’s internal validity is relatively high because

there exist many well-designed RCTs. Using synthetic data generators or highly con-

trolled causal systems will typically produce somewhat higher internal validity, as

will observational data with synthetic outcomes, but this is done at the cost of ex-

ternal validity or data availability. Finally, OSRCT’s external validity is relatively

high because the distributions of all variables and the outcome function occur natu-

rally, while only the confounding is synthetic. Only observational studies with known

treatment effect have higher external validity, and these suffer from severe limitations

on data availability.

4.4 Are RCT Data Sets Available?

OSRCT has the benefit of leveraging existing empirical data rather than requiring

the creation of new data sets specifically for evaluating causal modeling methods, but

it does require that data from RCTs be available and generally accessible to causality

researchers. Fortunately, this is increasingly the case. While many repositories that

host RCTs are restricted for reasons of privacy and security, many other reposito-

ries allow access with only minimal restrictions. In some cases, access requires only

registering with the repository and agreeing not to re-distribute the data or attempt

to de-anonymize it. As long as these data sharing agreements are adhered to, such

data can be easily acquired by causality researchers. This includes repositories such

as Dryad, the Yale Institution for Social and Policy Studies Repository, the NIH
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National Institute on Drug Abuse Data Share Website, the University of Michigan’s

ICPSR repository, the UK Data Service, and the Knowledge Network for Biocom-

plexity. An even larger set of repositories restricts access but will make data available

upon reasonable request.

In addition, funding agencies and journals are increasingly requiring that re-

searchers make anonymized individual patient data available upon reasonable request

[73, 149]. For example, the United States’ National Institutes of Health (NIH) re-

cently requested public feedback on a proposed data sharing policy with the aim of

improving data management and the sharing of data created by NIH-funded projects

[1]. There is also increasing awareness and discussion in the medical community

about the importance of sharing individual patient data, to allow for greater trans-

parency and re-analysis [54, 114, 24, 187]. All of this suggests increasing availability

of individual patient data from randomized controlled trials.

4.5 Experimental Evaluation

To assess OSRCT’s effectiveness at approximating APO data, we performed an

experiment using the Postgres data discussed in Appendix B. In this data, units

are Postgres queries, interventions are Postgres settings (such as type of indexing),

covariates are features of queries (such as the number of joins or the number of rows

returned), and outcomes are measured results of running the query (such as runtime).

If the Postgres database is queried in a recoverable manner, the same query can be

run repeatedly while varying the treatment, creating APO data. For this analysis,

we chose runtime as the outcome, indexing level as the treatment, and the number of

rows returned by the query as the biasing covariate.

To compare RCT and APO data, We converted the APO Postgres data into RCT-

style data by randomly sampling a single treatment for every unit. We then created

constructed observational data from both the original APO data and the RCT-style
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Figure 4.3. Demonstration of OSRCT on data from 11 RCTs, split by outcome
type. Top left: ATE (risk-ratio) for binary outcome, Top right: ATE for continuous
outcome, Bottom left: Outcome estimation for binary outcome, Bottom right: Out-
come estimation for continuous outcome. Outcome estimation errors were normalized
by the range of the outcome. OSRCT allows us to evaluate causal modeling methods
on a wide range of data sets for which unbiased effect estimates are available.

data, creating DOSAPO and DOSRCT . For DOSRCT , as described in Theorem 3, outcome

estimation was evaluated by weighting the errors in the complementary sample. How-

ever, in DOSAPO, no complementary sample is created, since the selected treatment is

guaranteed to be observed for every unit. Instead, we can divide DOSAPO into training

and test sets. If the RCT-style data is created by sub-sampling treatments equally,

by Theorem 2, splitting DOSAPO in half leads to a data set approximately the same

size as DOSRCT , allowing for comparison with equal training set size. We estimated

errors over 100 trials. Results are shown in Figure 4.4.
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Figure 4.4. APO vs RCT sampling on Postgres data. Left : Mean absolute error
of ATE estimates, Right : Mean error of estimated outcomes The similarity between
the RCT and APO data sets suggests that OSRCT and OSAPO produce equivalent
constructed observational data.

Results are very similar for the APO data and the RCT-style data constructed

from it. Consistent with Theorem 1, this suggests that evaluation with OSRCT data

produces equivalent results to OSAPO data. In addition, consistent with Theorem

3, the similarity in outcome estimates suggests that weighting the complementary

sample produces equivalent results to an unweighted held-out test set.

4.6 Conclusion

Research progress in machine learning has long depended on high-quality empirical

evaluation. Until recently, research in causal modeling has been hindered due to an

almost complete lack of empirical data resources. The growth in such data resources

is slow, and the breadth of such data is still limited, especially when compared to the

wealth of evaluation data sets available for associational machine learning.

Data from RCTs provides a large and growing source of data that can be used to

evaluate causal modeling methods. They have the benefit of being widely collected by

researchers in many fields over many years, and are increasingly being made available

for wider use. RCT data is available from a wide variety of domains, and unbiased
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estimates of causal effect can be obtained for evaluation. OSRCT can substantially

increase the data available for evaluating causal modeling methods.
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CHAPTER 5

EVALUATING CURRENT ALGORITHMS
FOR CAUSAL MODELING

There are few studies that compare the performance of several causal modeling

algorithms, partially due to the lack of standardized data sets for evaluation in causal

modeling. Even when data sets are available for comparison, they are either non-

interventional or limited in number, limiting the scope of such studies and preventing

a nuanced understanding of the relative performance of different approaches. When

new algorithms are proposed, they are often only evaluated using structural measures

or on data with no ground truth [41, 171, 186, 119], and rarely evaluate on data

from more than one source. Such evaluations can be informative about the relative

performance of methods on the specific data used, but there is no guarantee that the

conclusions drawn will generalize to data from other sources.

To gain a better understanding of the relative performance of causal modeling

methods, we perform an evaluation using data sets drawn from the most realistic

types and from a variety of sources. As shown in Chapter 4, we can use data from

RCTs to evaluate causal modeling methods. RCTs and the computational APO data

sets are sources of realistic data that have not been used for large-scale evaluations of

causal modeling methods before. We augment these with two additional sources of

realistic data: the synthetic-response data sets produced for the ACIC Competition

[53] and the IBM Causal Inference Benchmarking Framework [174], and a variety

of simulators. This provides us with a range of realistic data, which we can use to

perform an evaluation of causal modeling methods. This constitutes a larger-scale

evaluation of causal modeling methods than has previously been possible.
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We use data from four sources: randomized controlled trials, computational sys-

tems, simulators, and data with real covariates and a synthetic response surface. From

these categories, we collect 37 data sets and then use them to evaluate seven causal

modeling methods. Because the data sets we use generally only have ground truth

ATE for a single treatment-outcome pair, we focus this evaluation on methods that

estimate bivariate ATE and do not include multivariate structure learning methods.

5.1 Related Work

Although comparative studies are rare, a small number of papers have examined

the relative performance of different causal modeling methods. Hahn et al. [83] com-

pare multiple tree and forest based causal modeling methods, using both synthetic

data and data from the ACIC competition [82]. They find that modified versions

of BART performed better than causal forests and the default BART implementa-

tion. In their paper proposing the Dragonnet architecture, Shi et al. [173] compare

Dragonnet to five other neural-network-based methods, using data from the ACIC

competition and additional synthetic-response data from the Infant Health and De-

velopment Program [88]. They find that, on average, Dragonnet net performed the

best. Dorie et al. [53] perform a large-scale evaluation using synthetic-response data,

comparing algorithms submitted by teams as part of a competition. They find that

methods that focused on modeling outcome, even without modeling treatment, gener-

ally outperformed methods focused on modeling treatment. They also find that BART

(which models outcome) and SuperLearners (ensembles of methods) performed best

overall. Elze et al. [57] compare multiple propensity score-based methods: propen-

sity score matching, propensity score stratification, inverse probability of treatment

weighting, and including the propensity score as a regression covariate. They use four

empirical data sets, for which ground truth was estimated from the original published

study. They find that propensity score matching produces the best covariate balance,
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propensity score stratification performs well if there is not much covariate imbalance

and if the number of strata is chosen carefully, IPTW performs poorly when there

were extreme propensity score values (when there is very poor covariate balance),

which can be mitigated by augmenting it with a doubly robust method, and that

covariate adjust performs well overall.

5.2 Data for Evaluation

We collect data from four general methods of generating data, to create a diverse

collection of data sets for evaluation. To be usable for evaluation, it must be possible

to calculate an unbiased estimate of treatment effect. For this work, we choose data

sets that are initially unbiased (so treatment effect can be estimated), and we induce

confounding bias by sub-sampling, as described in Algorithms 1 and 2.

5.2.1 Computational Systems

As described in Chapter 3, Garant and Jensen [64] created three data sets where

all potential outcomes are observed. These data sets are collected from three compu-

tational systems: queries executed by a Postgres database, HTTP requests executed

by web servers on the open internet, and programs compiled under the Java Devel-

opment Kit. For each data set, we selected a single treatment-outcome pair and a

biasing covariate, as described in Table 5.1.

5.2.2 Randomized Controlled Trials

We selected data sets from six repositories of RCTs: Dryad [3]; the Yale Institution

for Social and Policy Studies Repository [12]; the NIH National Institute on Drug

Abuse Data Share Website [5]; the University of Michigan’s ICPSR repository [10];

the UK Data Service [9]; and the Knowledge Network for Biocomplexity [7]. We

selected these repositories because they contained RCT data, were reasonably well-

documented, and had a simple access process. None of these repositories house RCT
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data exclusively, so some search and filtering was necessary to identify relevant data

sets.

Many other repositories of RCT data exist, but they have higher access restric-

tions. Access to these other repositories generally involves requesting permission

for any desired data set. For some, this request only involves submitting a brief

description of the intended use and proving sufficient credentials. For others, this

request may require a detailed data analysis plan and description of the benefits of

the research. Examples include the National Institute of Diabetes and Digestive and

Kidney Diseases [4], Vivli [11], The National Institute of Mental Health Data Archive

[8], Project Data Sphere [6], and the Data Observation Network for Earth [2].

The data sets selected for the evaluation met five criteria:

• Random assignment: Treatment must be fully randomized for OSRCT to

work as intended. We ensured that the selected data sets were created by

randomly assigning treatment to each unit.

• Independent units: Many causal modeling methods assume independent data

instances, so we ensured that the units in the data sets could reasonably be

assumed independent (e.g., no spatial correlation).

• Measured pre-treatment covariate: At least one measured pre-treatment

covariate is necessary to induce confounding bias. The data sets we selected

all had multiple pre-treatment covariates, allowing us to select one that was

correlated with outcome to induce confounding bias.

• Reasonably large sample size: Many RCT data sets are very small (N <

100). We selected only reasonably large data sets (N > 500).

• Ease of use: Some data sets were poorly documented or stored the data over

many files. We selected data sets that would require minimal pre-processing.
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In cases where treatment was not binary, a reasonable binary version of treatment

was constructed, either by grouping merging treatment categories or by selecting a

subset of the data with only two values of treatment. Details about these data sets

are given in Table 5.1.

5.2.3 Synthetic-Response Data

Many data sets for evaluation were created for the ACIC Competition [53] and the

IBM Causal Inference Benchmarking Framework [174]. These data sets were created

using a set of real-world covariates and then simulating both a treatment and an

outcome. While these are similar to the APO and RCT data described above, in that

treatment is generated synthetically based on values of one or more covariates, in these

data sets, the outcome is also generated synthetically. Both the ACIC competition

and the IBM Causal Inference Benchmarking Framework created a large number of

data sets, with varying treatment and outcome functions. We selected five data sets

from each, for a total of ten data sets, to use for our evaluation. Tables 5.2 and 5.3

provide details on the selected data sets.

5.2.4 Simulators

To increase the diversity of data set types, we also generated data sets from three

simulators of varying complexity: (1) A simulator of neuropathic pain [192]; (2) Nemo

[79], a simulator of population dynamics; and (3) three simple simulators from the

WhyNot Python package [139]. For both Nemo and the neuropathic pain simulator,

we chose three distinct treatment-outcome pairs, generating three data sets for each.

For the WhyNot simulators, we chose three separate simulators and generated a single

data set from each, resulting in nine total data sets from simulators.

For both the neuropathic pain simulator and the WhyNot simulators, the selected

treatment was known from design to be set randomly, and a pre-treatment biasing

covariate was chosen based on domain knowledge, producing data sets of the same
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Source ID Coding Sample Num Treatment Outcome Biasing
Size Covars Covar

Dryad 4f4qrfj95 RCT-1 6453 27 Temperature Plant health Species
Dryad B8KG77 RCT-2 15289 4 Video type Bicycle rating Bike access
HDV WT4I9N RCT-3 551 5 Fact truth Fact removed Fact cited

ICPSR 20160213 RCT-4 10 5573 Guest race Accepted Prior black tenants
ICPSR 23980 RCT-5 10098 7 Age Resume response Volunteer service
ISPS d037 RCT-6 4859 2 Race Legislator response Party
ISPS d084 RCT-7 48509 6 E-mail source Voter turnout Prior election turnout
ISPS d113 RCT-8 10200 4 Mailing Voter turnout Gender
KNB 1596312 RCT-9 760 4 Soil heating C02 levels Depth
KNB f1qf8r51t RCT-10 8063 4 Plant protection Plant survival Location

musiclab - RCT-11 3719 13 peer-influence average rating music knowledge
NIDA P1S1 RCT-12 776 5 Nicotine levels Cigarettes per day Weight

UK Data Service 852874 RCT-13 343 5 Shown video Response Ethnicity
UK Data Service 853369 RCT-14 4210 3 Biasing instruction Line-up identification Recruitment method
UK Data Service 854092 RCT-15 691 5 Fact check validity Reaction Political activity

JDK - APO-1 473 5 Obfuscate Num bytecode ops Test javadocs
Networking - APO-2 2599 1 Proxy Elapsed time Server class

Postgres - APO-3 11128 8 Index level Runtime Rows returned
Nemo - Sim-1 10000 9 Breeding Adult viability Deleterious loci
Nemo - Sim-2 10000 9 Deleterious model Deleterious frequency Mutation rate
Nemo - Sim-3 10000 10 Dispersal rate Survival Deleterious loci

Neuropathic pain - Sim-4 10000 25 DLS L4-L5 Lumbago DLS L5-S1
Neuropathic pain - Sim-5 10000 25 DLS C5-C6 Right Skull pain DLS C3-C4
Neuropathic pain - Sim-6 10000 25 DLS C4-C5 Right Shoulder pain DLS C6-C7

WhyNot opiod Sim-7 10000 3 Abuse Overdose deaths Illicit users
WhyNot world2 Sim-8 10000 6 Capital investiment Population Pollution
WhyNot zika Sim-9 10000 9 Zika control strategy Symptomatic humans Exposed mosquitoes

Table 5.1. Data sets used in experiments. ‘ID’ denotes the repository-specific ID for
each data set, where applicable. ‘Coding’ denotes the shortened data set name used
in figures.

format as RCTs. For Nemo, it was possible to run parallel simulations with different

treatment values, producing APO data sets. Table 5.1 provides details about the

simulator data sets.

5.3 Algorithms to Compare

Due to the nature of the ground truth in most of our data sets (treatment ef-

fect of a single treatment on a single outcome), we focused our evaluation on causal

modeling methods that estimate average treatment effect. We chose seven meth-

ods to evaluate: propensity score matching (PSM), inverse probability of treatment

weighting (IPTW) [158], outcome regression (OR), Bayesian additive regression trees

(BART) [43], causal forests (CF) [193], doubly-robust estimation (DRE) [60], and
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ID Coding Sample Num Treatment Percent Outcome Alignment Treatment Effect
Size Covars Function Treated Function Heterogeneity

4 SR-1 4802 56 Polynomial 35% Exponential 75% high
27 SR-2 4802 56 Polynomial 35% Step 25% Medium
47 SR-3 4802 56 Polynomial 65% Exponential 75% High
65 SR-4 4802 56 Step 65% Step 75% Medium
71 SR-5 4802 56 Step 65% Step 25% High

Table 5.2. ACIC Data sets used in experiments. ‘ID’ denotes the ACIC ID for each
data set. ‘Coding’ denotes the shortened data set name used in figures.

ID Coding Sample Num Percent Effect Link
Size Covars Treated Size Type

1b50aae9f0e34b03bdf03ac195a5e7e9 SR-6 10000 151 69% -3.2 Polynomial
2b6d1d419de94f049d98c755beea4ae2 SR-7 10000 151 23% -0.13 Log
19e667b985624159bae940919078d55f SR-8 10000 151 17% 0.06 Exponential
7510d73712fe40588acdb129ea58339b SR-9 10000 151 27% 0.017 Log
c55cbee849534815ba80980975c4340b SR-10 10000 151 19% -0.23 Exponential

Table 5.3. IBM Data sets used in experiments. ‘ID’ denotes the IBM ID for each
data set. ‘Coding’ denotes the shortened data set name used in figures.

a neural-network-based method, Dragonnet (NN) [173]. Chapter 1 provides details

about these methods.

5.4 Experimental Setup

For each data set, we calculated the unbiased ATE to use as a ground truth.

We then sub-sampled, as shown in Algorithms 1 and 2, to produced a biased data

set. All data points rejected by the sampling were held out as the complementary

sample, which was used for evaluating outcome prediction, as described in Section

4.2.3. All algorithms were applied to the biased data, producing estimates of ATE.

All algorithms that are capable of predicting individual-level outcomes also produced

predicted outcomes for the complementary sample. This process was repeated for 30

trials. For data sets with more than 2,000 individuals, we sub-sampled to 2,000, to

keep sample sizes comparable between data sets. The only exception was the five
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data sets from the IBM Causal Inference Benchmarking Framework, for which we

sampled to 5,000, due to their high dimensionality.

For data sets with a binary outcome, we used risk difference instead of ATE,

calculated as P (Y = 1|do(T = 1)) − P (Y = 1|do(T = 0)). Error in ATE and risk

difference estimation was calculated as the absolute difference between the predicted

value and the ground truth value calculated on the unbiased data. ATE and outcome

estimates were normalized by the range of the outcome variable for easier comparison.
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Figure 5.1. Normalized error in estimating ATE: variability for the neural network
method is extremely high

5.5 Results

Effect estimation results can be analyzed in two main ways: comparing the per-

formance of different algorithms within each data set, and comparing how algorithm

performance differs between different data sets. Most evaluations in the literature

focus solely on comparing performance within individual data sets. Evaluating across
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Figure 5.2. Normalized error in estimating ATE, without the neural network
method: variability for propensity score matching is higher than for other methods

data sources, though, can also provide a useful understanding of how different data

design choices affect estimates of relative performance. Initial results for the experi-

mental setup described above, for data sets with continuous outcomes, are shown in

Figure 5.1.

The primary notable feature of these results is the extremely high variability of

the neural network method. There are at least two possible reasons for this. As we

initialize different random weights in each run, the model might be sensitive to the

initialization weights and converge to different local optima. In addition, sample size

for most of the data sets is less than 5000, which is significantly lower than is typically

used for neural network based methods. This might produce overfitting and thus high

variability. For ease of visualization, this method was omitted from the rest of the

graphics in this section.
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Figure 5.3. Normalized error in estimating risk difference: most methods have very
similar performance, though propensity score matching often has higher variability.

Figures 5.2 and 5.3 show results without the neural network method, for data

sets with continuous outcome and binary outcome, respectively. Without the neural

network method, results across data sets appear fairly similar. The only exception

is propensity score matching, which consistently has the highest variability. This

is consistent with the literature, which shows that the pruning done by propensity

score matching can increase data set imbalance, and thus increase estimation bias, by

matching solely on the propensity score [108]. For ease of comparison of the remaining

methods, we omit propensity score matching from the remaining ATE results, which

are shown in Figure 5.4.

One interesting feature of these results is that, overall, performance between the

RCT and APO data is fairly similar, with similar variability ranges and most methods

performing about the same. The simulators have lower variability in general, but, for

the most part, have similarly equivalent performance across methods. This stands
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Figure 5.4. Normalized error in estimating ATE, without propensity-score match-
ing: for the RCT, APO, and simulator data sets, most methods have very similar
performance. However, performance varies more for the synthetic-response data sets

in contrast to the synthetic-response data sets, where we see far more variability

between methods on the same data set. This contrast between the synthetic-response

data sets and the other three types has many possible explanations. One is that the

complexity of the response surface in the synthetic-response data is far higher than

that of the other data sets. Given that the response surface in the RCT data sets

arise naturally in real-world systems, this suggests that the level of complexity in the

synthetic-response data sets is not realistic.

Another possible explanation, however, is that, while the response surface in the

RCT data sets is realistic, the treatment assignment is very simplistic, based on the

value of only a single biasing covariate, while the treatment in the synthetic-response

data sets is assigned based on a complex combination of many covariates. To test this

hypothesis, we defined a more complicated biasing function, using a combination of
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Figure 5.5. Left: Normalized error in estimating ATE, Right: Error in estimating
risk difference, with two biasing covariates: performance is very similar as with a
single biasing covariate

two covariates that are correlated with outcome. Where possible, numeric covariates

were chosen. However, some data sets have only factor covariates, or a very limited

number of numeric covariates, so a mix of factor and numeric biasing covariates were

used.

Results with two biasing covariates are shown in Figure 5.5. For the most part,

estimates are similar to those produced with a single biasing covariate, and we still

do not see the differences between algorithms that we do for the synthetic-response

data sets. It is possible that an even more complicated biasing function, potentially

with many more covariates, is necessary for these results to be similar. However, it

is also possible that the complexity of the response surface in the synthetic-response

data sets is more complicated than is necessary to approximate many instances of

real-world causal effects.

Another potential hypothesis for the performance difference for synthetic-response

data sets is dimensionality. The synthetic-response data sets have significantly more

variables than the other data sets, and this high dimensionality may be leading to

more varied performance between methods. To test this, we reduced the number of

variables for the ACIC competition data sets, from the original 56 down to 17. The

17 variables were chosen to be a super-set of the variables included in the treatment
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Figure 5.6. Dimensionality comparison for the ACIC competition data sets. With
SR-1 and SR-6, performance between methods is more similar with 17 variables than
with 56

and response functions. We then compared the performance of the causal modeling

methods between these two groups of data sets. Results are shown in Figure 5.6 and

suggest that this hypothesis may be partially correct. For at least two of the five ACIC

competition data sets, when the number of variables is reduced to 17, performance

between different algorithms becomes a lot more similar, appearing more in line with

the results for the RCT data sets.

Another aspect of performance that we can investigate with this data is the effect

of sample size on performance. To investigate this, we ran some additional experi-

ments, varying the sample size from 1000 to 10000. We restricted the focus of these

experiments to the simulators, since we could generate any number of samples from

them. Results of these experiments for BART are shown in Figure 5.7. Overall, these

results match our expectation: as sample size increases, variability decreases, and the

mean error approaches zero. These results for BART are similar to those for all other

algorithms, with the exception of propensity-score matching, where performance is

consistently poor across all sample sizes.
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Figure 5.7. Left: Normalized error in estimating ATE, Right: Error in estimating
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decreases and error approaches zero
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Figure 5.8. Left: Normalized error in estimating ATE, Right: Error in estimating
risk difference, with two biasing covariates and increased bias strength: with higher
bias strength, IPTW does significantly worse
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We also tested algorithm performance for different levels of bias. Figure 5.8 shows

results with two biasing covariates, with significantly higher biasing strength, increas-

ing the degree to which the biasing covariates determine treatment. With this degree

of bias, for the simulator data sets, IPTW and causal forest, which had previously

performed similarly to other methods, now are significantly worse. The likely reason

for this poor performance is that, when bias gets very high, overlap is lost, with the

values of the biasing covariates for the treatment group almost totally distinct from

the values in the control group. This lack of overlap is a violation of the positivity

assumption, an assumption made by many causal modeling algorithms. IPTW and

causal forest both focus on estimating the probability of treatment, so it makes sense

that these methods would suffer the most in this situation.

While the ranges of variability for most methods are the same, this doesn’t guar-

antee that each method is producing the same result for each of the 30 trials. Each

methods error could be uncorrelated with the others, suggesting that an ensemble

approach might improve performance. To test this, we computed a correlation ma-

trix for each data set, calculating correlation across the 30 trials for each method.

Results for a few representative data sets are shown in Figure 5.9. In most cases, the

correlation is the weakest with the neural network method, and is generally weaker

with propensity score matching. For all other methods, though, errors are highly

correlated. There are some exceptions, as in SR-7. The reason for these varies. In

the case of SR-7, this is likely a result of the low variability across the 30 trials.

Correlation matrices for all other data sets can be found in Appendix B.2.

Figure 5.10 shows overall mean performance for each algorithm. As observed

above, propensity score matching has the highest error overall. In addition, doubly-

robust estimation appears to have higher error for data sets with binary outcomes.

More nuance can be seen in Figure 5.11, which shows mean error by data source.

The higher error for doubly robust estimation appears to be primarily for simulator
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Figure 5.9. Correlation matrices for four data sets. In most cases, error is highly
correlated
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Figure 5.10. Overall mean absolute
error by algorithm
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Figure 5.11. Overall mean absolute
error by algorithm, by source of data

data sets. For the other data sources, mean performance is fairly consistent across

algorithms.

As discussed in Section 4.2.3, when using OSRCT, the complementary sample can

be used to evaluate algorithms on their ability to estimate individual-level outcomes.

For APO data sets and synthetic-response data sets, a held out test set can be used

instead, which, by Theorem 3, is equivalent to using the weighted complementary

sample. However, many of the algorithms we are evaluating here are not capable

of producing individual-level outcome estimates, so this evaluation is limited to only

BART and outcome regression. Results for outcome estimation are shown in Figures

5.12 and 5.13.

Unsurprisingly, BART consistently outperforms outcome regression. Both of these

methods focus on modeling the response surface, but BART uses a higher capacity

tree-based model rather than a simple regression. The difference is far stronger for

data sets with a continuous outcome, compared to those with a binary outcome.

The difference is also minimal for the RCT data sets. This trend is constant as

we increase the strength of the biasing and when two biasing covariates are used.
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Figure 5.12. Normalized absolute error in estimating a continuous outcome: BART
generally outperforms outcome regression, and the neural network method sometimes
has extremely high variability

The neural network method performs worse overall, often with high variability. This

evaluation is unfortunately limited since none of the other algorithms we evaluated

are capable of producing individual-level outcome estimates. In general, methods

that model outcome are more likely to provide this as an option, making this a useful

evaluation tool when comparing multiple outcome estimation-based methods.

In summary, this analysis supports several conclusions. Performance with the

neural network method has extremely high variability. This could be a result of

inherent randomness in the neural network method, leading to more variability be-

tween runs than the other methods. Alternatively, this could also be due to a lack

of hyper-parameter tuning or the small data set sizes. Performance with propen-

sity score matching also has higher variability. For all other methods, performance

is similar when using the RCT, APO, and simulator data sets, while performance

varies more for the synthetic-response data sets. This variability could be a result of

the more complicated outcome function, the more complicated treatment function,

or high dimensionality. We saw no change in results when increasing the complexity

of the treatment function for other data sets, and methods that focus on estimating

treatment aren’t consistently performing better, so the complexity of the treatment
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Figure 5.13. Error in estimating a binary outcome: BART and outcome regression
have similar performance, and the neural network method sometimes has extremely
high variability

function may not be the answer. However, we showed some preliminary results sug-

gesting that the dimensionality may play a role.

5.6 Future work

There are many interesting directions to extend this work. One of the key take-

aways from this analysis is that, overall, most methods have very similar performance.

However, by looking at a wider variety of data sets, it may be possible to find sit-

uations where some data sets out-perform others. For example, a larger number of

RCTs could be collected with different features (binary or continuous outcomes, many

or few covariates, discrete or continuous features, strong or weak treatment effect),

which could be used to test if some methods perform better than others in different

specific situations.

Similarly, more features of the experimental setup could be varied to test per-

formance in a variety of situations. We tried varying the sample size just for the
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simulators, but sample size could also be varied for the synthetic-response data sets

and for some of the larger RCTs. Some methods may be more efficient with smaller

sample sizes, or may have better performance with very large sample sizes.

There are also opportunities to further investigate the differences between the

synthetic-response data sets and the others. We performed some experiments in-

creasing the complexity of the treatment function, from a single biasing covariate to

two biasing covariates, but there was no significant difference. However, it’s possible

that increasing the number of confounders even more would make the RCT data sets

produce similar results to the synthetic-response data sets. This analysis was partially

limited by the number of covariates in the RCTs, some of which were very limited,

as well as the diversity of data types in the RCT covariates, preventing us from ap-

plying a single biasing function across many data sets. A larger number of RCTs,

with higher dimensionality, could be collected, and more complicated treatment bias-

ing functions defined, to help test if bias function complexity is a contributing factor

to the performance variability observed for the synthetic-response data sets. Such a

set of RCTs could also be used to further test the hypothesis that the performance

difference is due to the larger number of covariates in the synthetic-response data

sets.

Another avenue for investigation is fine-tuning specific methods. This could be

especially beneficial for the neural network method, where the extremely high vari-

ability in performance could be the result of poor parameter settings. Other methods

could also benefit from some data set-specific tuning. In this analysis, each method

was implemented using its default settings, but it may be possible to increase per-

formance by varying these settings. Future work could look at not just the default

performance of these methods, but the best case performance.

Finally, more analysis could be done on evaluating outcome estimation using the

complementary sample. This type of analysis was limited due to our choices of meth-

78



ods to evaluate, since many were not capable of producing individual-level outcome

estimates. Many outcome estimation-based methods for causal modeling do exist,

though, and a deeper evaluation of those types of methods, using both ATE estima-

tion and outcome estimation, could be informative. This could also allow for investi-

gation of how important individual-level outcome estimates are to overall treatment

effect estimation, by assessing how well outcome estimation performance predicts

ATE estimation performance.

5.7 Conclusions

We have performed an evaluation of seven causal modeling methods over 37 data

sets. These data sets are drawn from four sources of empirical data for causal model

evaluation, two of which have never been used before for a large-scale evaluation.

Our results suggest the importance of data diversity for evaluation. We found that

data from RCTs and the three APO data sets from computational systems produce

similar results. However, this performance differs somewhat from simulators, and

significantly from synthetic-response data. The varying performance by data source

demonstrates the importance of evaluating on a variety of data. Many evaluations

of causal modeling methods only evaluate on synthetic data and one or two empir-

ical data sets. This type of evaluation shows a method’s performance for only the

specific properties of the chosen data set, leaving our understanding of the method’s

performance obscured.

This work opens up multiple possible paths for future exploration. The difference

in performance between RCT and synthetic-response data sets should be evaluated

in greater detail, by increasing the complexity of the biasing functions for the RCTs

to match the complexity of the synthetic-response data sets. More work could be

done to test additional causal modeling methods and different implementations. For

ease of comparison, we only used the default implementations of the algorithms, and

79



more fine-tuned implementations (including parameter tuning for the neural network

method) could lead to some interesting performance differences. Finally, other types

of data could be compared against. Our analysis included data from simulators,

but many papers evaluate on purely synthetic data (such as from a hand-specified

structural equation model), and it would be interesting to see how results on synthetic

data compare to more empirical data. We hope that this evaluation can motivate

others in the field to undertake similar projects with different focuses, giving us

a clearer picture of the relative performance of causal modeling methods than has

previously been possible.

80



CHAPTER 6

CONCLUSIONS

Evaluation is an important component of any field of science. It affects how we

perceive methods and what research directions we choose to pursue, and it affects how

we make decisions about deploying methods in practice. Until recently, evaluation

within the causal modeling community has been severely limited due to a dearth

of empirical data resources. There is an increasing effort to produce data sets that

can be used for evaluation. However, these data sets require a great deal of work to

collect, so while the data available for evaluation is increasing, it still lags significantly

behind other fields of machine learning.

In Chapter 3, we demonstrated the value empirical data and interventional mea-

sures can provide for evaluating causal modeling algorithms. Empirical data lets us

assess how well a method works in realistic situations, which is important if we expect

anyone to use these methods in practice. Interventional measures let us assess how

well a method can estimate the effects of actual interventions, which is important if

we expect anyone to use these methods for making decisions.

We are not the first to point out the need for more robust evaluation techniques.

Some of the data sets we discuss were created in response to recognition that bet-

ter evaluation was necessary [53, 174, 143]. In addition, prior work has examined

the importance of testing the generalizability of causal modelings drawn from ob-

servational data [218, 106] and comparing causal effects drawn from observational

and experimental data [46, 56, 55, 76]. However, despite this, as our survey shows,
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empirical evaluation with interventional measures is rarely used by computer science

researchers.

To aid in increasing the availability of data for evaluation, in Chapter 4, we de-

scribed a method for using data from randomized controlled trials to evaluate causal

modeling methods. RCTs have the benefit of being widely collected by researchers

in many fields over many years, and are increasingly being made available for wider

use. RCT data is available from a wide variety of domains, and unbiased estimates

of causal effect can be obtained for evaluation.

In Chapter 5, using a combination of empirical data and interventional measures,

we performed a large-scale evaluation using a larger number of data sets than was pre-

viously possible. Our results emphasize the importance of evaluating on data from

multiple sources. The difference in algorithm performance between the synthetic-

response data sets and the others suggests one of two things: that high levels of

complexity is not necessary to create realistic response surfaces, or that more compli-

cated treatment biasing functions can provide a better understanding of the relative

performance of methods. Future work should look to investigate this. We also found

that propensity score matching, as the literature suggests, often performs poorly in

practice, and that care should be taken to control for variability if applying a neural

network based method for causal modeling.

Overall, current standard practice in the evaluation of causal modeling methods is

largely insufficient, and improving our evaluation methods can have a strong positive

effect on the community. The increasing availability of empirical data for causal

model evaluation means that minimalist empirical evaluation should no longer be

acceptable. By holding our evaluations to a higher standard, we not only improve our

own understanding of causal modeling methods, guiding future research direction, but

we also demonstrate the effectiveness of our methods to those outside the community,

increasing the adoption of methods that can be shown to perform well.
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APPENDIX A

ACRONYMS

Acronym Meaning
ACIC Atlantic Causal Inference Conference
APO All Potential Outcomes
ATE Average Treatment Effect

BART Bayesian Additive Regression Trees
CF Causal Forests

CGM Causal Graphical Model
DAG Directed Acyclic Graph
DRE Doubly-Robust Estimation
GES Greedy Equivalence Search

IPTW Inverse Probability of Treatment Weighting
MMHC Min-Max Hill Climbing

NN Neural Networks
OR Outcome Regression

OSAPO Observational Sampling from APO Data
OSRCT Observational Sampling from RCT Data

PSM Propensity score matching
RCT Randomized Controlled Trial

RMSE Root Mean Square Error
SHD Structural Hamming Distance
SID Structural Intervention Distance

TVD Total Variation Distance

Table A.1. Acronyms used throughout this dissertation

83



APPENDIX B

ADDITIONAL DETAILS ON COMPUTATIONAL
SYSTEM DATA AND ADDITIONAL EXPERIMENTS

B.1 Additional Details on Computational System Data

We introduce a source of empirical data where interventions are possible: large-

scale computational systems. We performed experiments on three large computa-

tional systems: Postgres, the Java Development Kit, and HTTP processing. These

systems have many desirable properties for the purposes of empirical evaluation: (1)

They are pre-existing systems created by people other than the researchers for a pur-

pose other than evaluating algorithms for causal discovery; (2) They produce non-

deterministic experimental results due to latent variables and natural stochasticity;

(3) System parameters provide natural treatment variables; and (4) Each experiment

is recoverable, allowing the same experiment to be performed multiple times with

different combinations of interventions.

Within each computational system, we measure three classes of variables: out-

comes, treatments, and subject covariates. Here, outcomes are measurements of the

result of a computational process, treatments correspond to system configurations

and are selected such that they could plausibly induce changes in outcomes, and

subject covariates logically exist prior to treatment and are invariant with respect to

treatment. Using these variables, we can apply all combinations of treatments to all

subjects, and we can use these results to estimate actual interventional distributions

for the effects of each treatment variable on each outcome variable. We can also then

sub-sample these experimental data sets in a manner which simulates observational
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bias to produce observational-style data sets, allowing us to evaluate an algorithm’s

performance on pseudo-observational data and evaluate it using actual interventional

effects. These data sets will be made available after publication.

We had a number of goals in mind when gathering data from our real domains:

• Causal Sufficiency: The algorithms we studied require that no pair of vari-

ables in the model are both caused by a latent variable. We can guarantee this is

true for pairs of treatments and outcomes (since treatments have no parents in

the original data set), but needed to employ domain knowledge to limit sources

of causal sufficiency violations with regard to other pairs of variables.

• Acyclicity: Each of the systems can be described by a “single-shot” computa-

tional process which starts and finishes without the possibility for feedback.

• Instance Independence: We took efforts to ensure that each execution of the

computational process was independent of previous executions. In most cases,

this required clearing caches and resetting other aspects of system state.

• Plausible Dependence: We selected variables that we believed would be

causally related.

Each domain is characterized by three classes of variables: subject covariates, treat-

ments, and outcomes. Under the factorial experiment design, outcomes were mea-

sured for every combination of subjects and treatments. This yields a data set with

many records for the same subject, as in the example in Table B.1. To permit greater

opportunities for observational sampling, we performed multiple trials of each fac-

torial experiment. Given the difficulty associated with modeling highly complicated

outcomes such as runtime, we employed a normalization scheme for each data set, di-

viding outcome values by a “baseline” value—the median control-case outcome value.

Thus, we ultimately recorded outcomes which represent a deviation from this base-

line. In this regard, our experimental results resemble a within-subjects design [78],
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Subject ID Covariate Treatment Outcome
1 A 0 1.33
1 A 1 0.96
2 B 0 1.89
2 B 1 0.54
3 A 0 1.02
3 A 1 0.99
4 A 0 1.35
4 A 1 1.12

Table B.1. An example of a factorial experiment with four subjects and a binary
treatment

# Javadocs

ObfuscateParallel GC Debug

# Bytecode 
Ops

Allocated 
Bytes

JAR File 
Size

Compile 
Time

Total Unit 
Test Time

Figure B.1. Consistent model for the JDK domain

although without many of the pitfalls that plague experiments on humans, such as

non-independence of outcome measurements. In the original data from each domain,

subject covariates are either discrete, continuous, or binary; treatments are binary;

and outcomes are continuous. We converted each of the variables to a discrete repre-

sentation to make parameterization and modeling more robust.

B.1.1 Java Development Kit

Our experiments on the Java Development Kit (version 1.7.0 60) used 2,500

Java projects obtained from GitHub as the subjects under study. We retrieved only

projects which use the Maven build tool to facilitate automated compilation and
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execution. Additionally, we constrained our search to include only projects which had

unit tests. This may introduce selection bias in our data collection processes, but this

is acceptable. It is not important that our conclusions generalize to some population

of computational systems, only that there are causal dependencies which hold on

the sub-population under investigation. Of those, 473 compiled and ran without

intervention. This group yielded a total of 7,568 subject-treatment combinations.

For each combination, we compile and execute the unit tests of the Java project. In

order to obtain full state recovery between each trial, any compiled project files were

cleared between executions. Thirty-five CPU days were required to collect this data

using several Amazon EC2 instances.

B.1.1.1 Treatments

• Aggressive Compiler Optimization: Disabling this option (enabled by de-

fault) prevents some compiler optimizations from running, potentially slowing

down execution time but perhaps reducing compilation time. This option is

disabled with the javac option -XX:+AggressiveOpts.

• Emission of Debugging Symbols: Debugging symbols are used to provide a

map through the compiled source code that can be used for interactive debug-

ging and diagnostics. Inclusion of these symbols may require some time during

the compilation phase, increase the size of the compiled program, and could

possibly impact runtime. This corresponds to the -g flag of javac.

• Garbage Collection Methodology: The Java Development Kit sup-

ports several garbage collection schemes. Two were considered: parallel

and serial. These schemes are activated with the -XX:-UseParallelGC or

-XX:-UseSerialGC arguments.
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• Code Obfuscation: Several third-party tools are capable of obfuscating com-

piled code, making reverse-engineering difficult. This process could also affect

the size of the compiled project files. The yGuard1 tool was used for this pur-

pose.

B.1.1.2 Outcomes

• Number of Bytecode Instructions: Before execution, Java code is compiled

to an intermediate language referred to as bytecode. We measured the number

of atomic instructions, or operations, in this compiled code to form this outcome

using a custom-built bytecode analysis tool based on Javassist2.

• Total Unit Test Time: Each project we gathered contains one or more unit

tests. To capture the runtime of the full unit test workload, we computed the

sum of runtimes of all unit tests for a given project.

• Allocated Bytes: The Java Virtual Machine supports a profiling option

(-agentlib:hprof=heap=sites) which can be used to track heap statistics

throughout a program’s execution. We utilized this feature to obtain the total

number of bytes allocated during unit test execution.

• Compiled Code Size: Java programs are often packaged in an format known

as a JAR (Java ARchive). To characterize the size of the compiled code, we

recorded the size in bytes of the associated JAR file.

• Compilation Time: In order to execute unit tests, the entire project needs to

be compiled. This outcome represents the time used to convert all source files

to their bytecode equivalents.

1http://www.yworks.com/en/products yguard about.html

2http://www.csg.ci.i.u-tokyo.ac.jp/ chiba/javassist/
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B.1.1.3 Subject Covariates

All subject covariates were obtained using the JavaNCSS tool3.

• # NCSS (non-comment source statements) in Project Source: This

covariate is highly predictive of compiled code size. Conceivably, in observa-

tional settings, large projects could also be associated with more liberal use of

advanced compilation settings and tools, such as a code obfuscator.

• # NCSS, Functions, and Classes in Unit Test Source: These covariates

are somewhat representative of the unit test workload. Projects with many

lengthy unit tests may also have longer total unit test runtime.

• # “Javadoc” comments in Unit Test Source: This covariate could be

indicative of code quality. Well-commented code is perhaps more likely to be

found in high-quality projects. This code may be more likely to be used in

production environments, and thus could be less likely to be observed with

debugging symbols. This feature is used in the treatment-biasing procedure for

construction of observational data sets.

B.1.2 Postgres

Consistent with a data warehousing scenario, we employ a fixed database for our

Postgres (version 9.2.2) experiments: a sample of the data from Stack Overflow, drawn

from the Stack Exchange Data Explorer4. The data explorer also houses many user-

generated queries. We collected 29,375 of the most popular queries to use as subjects

for this study. Stack Exchange’s data warehouse uses Microsoft SQL Server, which

does not completely overlap with Postgres in supported features and syntax. Some

queries use only ANSI-compliant syntax and run successfully on either SQL Server or

3http://javancss.codehaus.org/

4http://data.stackexchange.com/
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Figure B.2. Consistent model for the postgres domain

Postgres. To obtain as large a set of subjects as possible, we employed a semantics-

preserving query rewriting scheme to adapt queries into Postgres-compliant syntax

wherever possible. This yielded a set of 11,252 user-generated queries which executed

successfully within Postgres for a total of 90,016 subject-treatment combinations. In

order to recover system state between trials, the shared memory setting (specifying

how much main memory Postgres can use for caching) was set to 128 kilobytes,

limiting caching significantly. Any queries which required more than 30 seconds

to execute were marked as “failures” in order to prevent long-running queries from

holding up other queries, which typically required one second to execute. As with

the JDK data set, this may induce sampling bias, but we are not aiming for our

experimental findings to generalize to the broader population of database queries.

B.1.2.1 Treatments

• Indexing: A common administration task is to identify indices that can be

used to accelerate lookup of commonly-referenced columns with a particular

value or falling within a range. For our experiments, we employed two indexing
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settings: no indexing, and indexing on primary key/foreign key fields. Domain

knowledge suggests that that the latter approach would dramatically reduce

runtime of some queries. In all cases, the default B-tree index was employed.

• Page Cost Estimates: In order to determine if an index should be used, the

database employs estimates of the relative cost of sequentially accessing disk

pages and randomly accessing disk pages. We utilized two extremes for this set-

ting: one scheme in which random page access is estimated to be fast, relative to

the sequential page access, and one scheme in which the opposite relation holds.

The corresponding database settings we adjusted were random page cost and

seq page cost.

• Working Memory Allocation: The database engine can make use of fast

random-access memory, if available, to store intermediate query results. The

amount of working memory that is allocated to the system can be controlled

with a configuration option. For our investigation, we employed a low-memory

setting and a high-memory setting, with background knowledge suggesting that

the latter would result in faster-executing queries. This treatment was instru-

mented with the work mem and temp buffers options.

B.1.2.2 Outcomes

• Blocks Read from Shared and Temporary Memory: These two outcomes

identify the number of blocks, or memory regions, that were read during query

execution. Shared memory is persistent (disk) and is accessed during normal

table-retrieval procedures. Temporary memory is volatile (main memory) and

is used for staging ordering or joining operations.

91



• Blocks Hit in Shared Memory Cache: This outcome represents the number

of memory reads that were to be performed against shared memory, but were

identified instead in a main memory cache.

• Runtime: The total time to execute the query.

B.1.2.3 Subject Covariates

• Year of Query Creation: The year that the query was entered on the Stack

Exchange data explorer.

• Number of Referenced Tables: The number of distinct tables that are

referenced in the query.

• Total Number of Rows in Referenced Tables: The sum of cardinalities of

tables referenced in the query.

• Number of Join Operators: The number of join operators employed in the

query, requiring merging data from two tables.

• Number of Grouping Operators: The number of grouping operators em-

ployed in the query, requiring reduction and possibly summarization of the data.

• Number of Other Queries Created by the Same User: The total number

of queries that the Stack Exchange user has created.

• Length of the Query in Characters: The length of the query after applica-

tion of relevant rewrite rules.

• Number of Rows Retrieved: The number of rows that are returned by the

query. Logically, this value exists prior to application of any treatment and is

invariant with respect to treatment (since the database is fixed), even though

we can only measure it after query execution.
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Figure B.3. Consistent model for the HTTP domain

B.1.3 Hypertext Transfer Protocol

For our experiment on HTTP & networking infrastructure, we used requests to

specific web sites as subjects. We identified a number of target sites through a

breadth-first web crawl initiated at dmoz.org. We ended the crawl after retrieving

5,472 sites. For 4,350 of those sites, we were able to issue successful web requests with

all combinations treatments, yielding 34,800 subject-treatment combinations. We em-

ployed numerous techniques to ensure that content would not be cached, which could

induce carryover across treatment regimes.

B.1.3.1 Treatments

• Use of a Mobile User Agent: Web browsers supply a user agent to identify

themselves to the web servers that they request pages from. Some sites have

different versions for mobile applications. We artificially adjusted the user agent

from a standard user agent to a mobile user agent to explore this phenomena.

This is accomplished with the HTTP User-Agent header.

• Proxy Server: Web requests can be routed through a proxy, a server which

issues web requests on behalf of a client. The additional time required to route
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the request to and from the proxy server can increase the elapsed time of the

request. Our experiments were executed with Amazon EC2. Our “client” com-

puters were making web requests from the east cost of the United States, and

a proxy server was set up on the west coast.

• Compression: Applications can use the HTTP protocol to request that con-

tent be delivered with or without compression, possibly reducing the cross-

network transmission time. In one compression configuration, the client requests

identity compression, indicating that the content should be transmitted at face

value. In another compression scheme, the client requests gzip, a common and

effective scheme for HTTP content compression.

B.1.3.2 Outcomes

• # of HTML Attributes and Tags: These two outcomes describe the logical

structure of the page. They may vary with respect to “mobile user agent”.

• Elapsed Time: The time between issuance of the request and receipt of a re-

sponse. This could be affected by network characteristics, which are determined

in part by the time at which the request is issued and whether a proxy server

is employed. Requests containing smaller payloads (influenced by compression)

may also be faster to service.

• Decompressed and Raw Content Length: Two outcomes representing the

size of a web page before and after content decompression, if applicable.

B.1.3.3 Subject Covariates

Only one subject covariate was identified for the HTTP domain, the web server

reported via the Server header. This variable was coarsened into a version with 7

levels: Apache/2, Other Apache, Microsoft-IIS, nginx, Other, and Unknown.
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B.2 Additional correlation matrices between causal model-

ing methods

Figure 5.9 presents correlation matrices between causal modeling algorithms, with

correlations calculated across the 30 trials presented in Figure 5.2, for four represen-

tative data sets. Correlation results for all 37 data sets can be found in Figures B.4,

B.5, and B.6.
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Figure B.4. Correlation matrices for APO 1-3 and SR 1-10
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Figure B.5. Correlation matrices for RCT 1-12
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Figure B.6. Correlation matrices for RCT 13-15 and Sim 1-9
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