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ABSTRACT

HARNESSING THE MECHANICS OF THIN-WALLED METALLIC
STRUCTURES: FROM PLATE-LATTICE MATERIALS TO

COLD-FORMED STEEL SHEAR WALLS

May 2021

Fani Derveni

Diploma, Aristotle University of Thessaloniki, Greece

M.S., University of Massachusetts Amherst, US

Ph.D., University of Massachusetts Amherst, US

Directed by: Drs. Kara D. Peterman and Simos Gerasimidis

Thin-walled structures have received a lot of interest during the last years due to

their light weight, cost efficiency, and ease in fabrication and transportation, along

with their high strength and stiffness. This dissertation focuses on the mechanical

performance of thin-walled metallic structures from cold-formed steel shear walls and

connections (PART I) to plate-lattice architected materials (PART II) via computa-

tional, experimental, and probabilistic methods.

Cold-formed steel (CFS) shear walls subjected to seismic loads is the focus of

PART I of this dissertation. An innovative three-dimensional shell finite element

model of oriented strand board (OSB) sheathed CFS shear walls is introduced and

benchmarked by nine different experimental studies. Particular attention is given

to the fastener behavior since they are governed by significant inherent variability

and they represent a dominant failure mechanism in CFS shear walls. Shear fas-

tener behavior is experimentally determined and introduced into the finite element

approach. To further address the connection variability, an extensive parametric

analysis accompanied by Monte Carlo simulations are conducted. Design recommen-
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dations for higher capacity sheathings (fiber cement board (FCB) and steel-gypsum

(SG) composite board) that are not currently enabled in design specifications are also

introduced.

Architected plate-lattice materials subjected to uniaxial compression is the focus

of PART II of this dissertation. Architected materials are structures whose mechani-

cal performance is governed by their geometry rather than their constituent material.

Plate-lattices are composed of plates along the planes of crystalline structures. They

represent the stiffest and strongest existing materials, since they can reach the Hashin-

Shtrikman and the Suquet upper bounds. The stability and imperfection sensitivity

of plate-lattices are evaluated in this work via elastic and plastic shell finite element

analyses. Plate-lattice geometries of cubic symmetry are examined, such as the simple

cubic (SC), the body-centered cubic (BCC), the face-centered cubic (FCC) structures

and their combinations (SC-BCC, SC-FCC) over a range of relative densities between

ρ*=0.5% and ρ*=25%. Imperfections are characterized by modal shapes at five differ-

ent imperfection amplitudes. Finally, knockdown factors are recommended for these

metamaterials.
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Part I:

Lateral Performance of

Cold-Formed Steel Shear Walls

and Connections



1 INTRODUCTION: PART I

1.1 Cold-formed steel shear walls: background and motiva-

tion

Cold-formed steel (CFS) has demonstrated a significant escalation and a wide

use in low- and mid-rise repetitively-framed construction in the last 50 years, due

to its numerous advantages over traditional structural engineering materials. Chief

among these are high strength-to-weight ratio, low-cost maintenance, high durability,

recyclability, non-combustibility, and, ease in installation and prefabrication. CFS is

used for both structural and non-structural applications and can be used as lateral

force resisting systems. Additionally, CFS is extensively used as partition walls and

in secondary systems (such as purlins or girts) in metal buildings. CFS-framed build-

ings enable efficient on-site and remote-site fabrication methods via modularization.

Shear walls are the primary lateral load resisting system in CFS construction. Typ-

ical CFS shear walls are comprised of the main structural frame (CFS stud lipped

channels and CFS track unlipped channels) connected to x-bracing or sheathing on

the exterior and/or in the interior, such as wood panels, steel sheets, cement-based

panels, gypsum-based boards. To eliminate the overturning moment and prevent the

wall uplift under earthquake or wind events, hold-downs or tie-rods are used at the

base of the wall. Additional components, such as a ledger track, vertical and horizon-

tal seams can be also present in shear wall construction. A typical CFS shear wall

graphical representation is illustrated in Fig. 1.1.
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Figure 1.1: Typical sheathed cold-formed steel (CFS) shear wall configuration and
details. CFS studs (lipped channels) and CFS tracks (unlipped channels) represent
the wall structural frame connected to sheathing panels in the exterior side, and
connected to the foundation by hold-downs. Construction details, such as ledger
track and/or vertical seam, might be present.

CFS shear walls have seen significant study worldwide, with a wealth of experi-

mental, computational and analytical results aimed at understanding their behavior.

Recently, there are various experimental studies on wood-, and steel-sheathed CFS

shear walls focused on the shear capacity predictions of different shear wall configu-

rations. These are discussed in the subsequent literature review. In aggregate, they

explore a wide range of characteristics influencing structural behavior. Since full-scale

shear wall tests are a cost-intensive research approach, the next step in shear wall

analysis is to develop a robust computational tool to enable greater innovation in

the industry. That necessitates the introduction of a generalized benchmark compu-
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tational approach, that can account for different wall configurations and details, as

well as the variable CFS connection response, and can allow for deterministic wall

response assessment.

Furthermore, current AISI-S400 [5] design provisions include CFS shear wall ca-

pacity predictions for wood- and steel-sheathed walls limited to very specific CFS and

sheathing thicknesses, specific screw diameters and specific fastener spacings. That

means that there is not only a need for enhancing the current provisions with different

parameters and wall characteristics, but also a need for expanding the design code

into new higher lateral capacity systems in order to enable their adoption and use by

practitioners. Recently, cementitious and gypsum-based composite panels have ex-

plored onto the construction market due to their higher fire and weather resistance,

long-life span, lower acoustic transmission, and superior mechanical properties. De-

sign recommendations are required for these CFS shear wall systems in order to enable

their adoption within design specifications and allow for safe and efficient structural

alternatives to the state-of-the-practice methods.

As modern engineering practice pushes innovative, effective and sustainable con-

struction methods to the forefront, it is essential for behavior to lead the way. This

work successfully benchmarks a new high fidelity modeling approach, and provides

the first insights into the performance of CFS shear walls sheathed in cementitious

and composite panels.

1.2 Literature review

Cold-formed steel research can be loosely divided into system-level investiga-

tions (such as full buildings), subsystem-level evaluation (such as shear walls) and

component-level assessment (such as connections or members). Each has seen sig-

nificant research effort in recent decades around the world. Furthermore, different
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experimental, finite element, analytical, theoretical, and probabilistic methods have

been used to shed light on the lateral performance of CFS framing systems.

1.2.1 CFS full-building level research

Full CFS system behavior has been evaluated under different loading conditions

and different building characteristics. A two-story OSB-sheathed CFS building sub-

jected to earthquake loading was examined by Schafer et al. [89], as a part of the

recent CFS-NEES project. Both non-destructive and destructive testing (Peterman

et al. [84], Peterman et al. [85]) has been conducted, as well as a computational

modeling approach (Leng et al. [67]). Furthermore, a five-story CFS building behav-

ior sheathed with composite steel-gypsum panels tested by Wang et al. [110] under

seismic loading, demonstrating physical damage in shear wall components used in ar-

chitectural facades. A six-story CFS building sheathed with steel-gypsum sheathings

is subjected to seismic events, post-seismic fire exposure and post-fire earthquake

events in Hutchinson et al. [59], displaying various component failure mechanisms,

while the building resisted collapse.

1.2.2 CFS sub-system shear wall level research

Sub-system shear wall lateral performance is experimentally investigated by var-

ious researches throughout US and Canada. CFS shear walls sheathed with OSB,

gypsum wallboard, plywood, and FiberBond wallboard are tested by Santa Clara

University (Serrette et al. [95], Serrette et al. [96], Serrette et al. [94], Serrette et al.

[97]). These tests predicted shear wall capacities of OSB-sheathed CFS shear walls

which have been adopted by the design code provisions in the North American Stan-

dard. McGill University (Branston et al. [19], Branston [18], Chen [24], Blais [15],

Hikita [57]) has explored the lateral performance of OSB- and plywood-sheathed CFS
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shear walls under monotonic and reversed cyclic loading. The effect of shear wall as-

pect ratio, fastener spacing and CFS thickness was evaluated to further improve the

CFS design guidelines. OSB-sheathed shear walls of different wall aspect ratios and

field stud thickness, as well as additional details such as ledger, vertical and horizon-

tal seams, and interior gypsum board have been laterally tested by Johns Hopkins

University (Liu et al. [70]), Liu et al. [69]) to enhance the design possibilities with

walls composed of different construction details. OSB-sheathed shear wall response

was dominated by the shear fastener behavior between the structural frame and the

sheathing panels.

CFS shear walls sheathed with steel sheets have been also extensively examined

via different experimental programs. The impact of wall aspect ratio, steel sheet

thickness, and spacing of the screws on steel-sheathed wall response was examined by

Yu [116]. The effect of loading condition, CFS profile thickness and framing type was

studied by DaBreo et al. [27]. Singh et al. [100] investigated the impact of exterior

finish and wall type in steel-sheathed wall response through shake table seismic and

monotonic tests. Furthermore, shear walls sheathed with corrugated steel have been

experimentally evaluated under lateral and/or gravity loading (Fülöp and Dubina

[46], Zhang et al. [118]). Towards an effort of reaching higher shear capacities, dif-

ferent gypsum-based and cement-based materials have received an increasing interest

from the research community and design practice. Shear walls sheathed with fiber ce-

ment board (FCB) sheathing have been tested under monotonic and/or cyclic loading

(Zeynalian and Ronagh [117], Khaliq and Moghis [64]), while shear walls sheathed

with steel-gypsum (SG) have been tested under cyclic and fire loading by Hoehler

et al. [58]. Resistant gypsum-based sheathings have been also studied through sub-

system tests (Macillo et al. [72]) and full building tests (Fiorino et al. [42]). The effect

of different sheathings, such as steel, gypsum, fiber cement board, steel and gypsum
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composite, fiber cement board and steel composite, is examined under cyclic loading

by Mohebbi et al. [76], demonstrating that higher wall strength and stiffness occurred

when FCB and gypsum sheathings are present in comparison to bare steel sheathing.

CFS shear wall finite element analyses have been conducted using different soft-

wares and methods. The finite element software OpenSees [74] is used to intro-

duce performance-based modeling approaches for OSB-sheathed CFS shear walls

(Buonopane et al. [20], Bian et al. [14], Kechidi and Bourahla [63]), while software

DRAIN-3DX is used through a spring representation (Fülöp and Dubina [46]). In

addition, finite element software ABAQUS (ABAQUS [1]) is used towards a high

fidelity modeling approach for OSB-sheathed walls emphasizing fastener response

(Ngo [78], Ding [37]), while focusing on specific shear wall configurations and char-

acteristics and underestimating their capacity. Steel-sheathed CFS shear walls have

been also computationally explored via phenomenological performance-based model-

ing in OpenSees (Singh and Hutchinson [99]) and high-fidelity modeling in ABAQUS

(Zhang et al. [118]). Gypsum-based CFS shear wall finite element modeling is con-

ducted by Fiorino et al. [44] through SAP2000 detailed modeling, and unified truss

models in OpenSees. Even though, multiple experimental research efforts exist for

sheathed CFS shear walls, a robust high fidelity computational benchmark tool ca-

pable of capturing strength, stiffness and failures for a variety of sheathings and wall

characteristics has not yet been reported.

1.2.3 CFS connection level research

Numerous research efforts have been conducted to experimentally assess the con-

nection response between cold-formed steel members and sheathing. CFS-to-wood

connection shear behavior was evaluated by Okasha [79] through different component

thicknesses and wood orientations, while CFS-to-OSB and CFS-to-gypsum connection
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response is examined under monotonic and cyclic loading by Peterman et al. [83], in-

vestigating the effect of fastener spacing and CFS thickness, and extracting Pinching4

parameters to describe their un- and re-loading behavior. The shear connection be-

havior of OSB- and gypsum-sheathed CFS studs is tested under monotonic and cyclic

loading by Fiorino et al. [40], investigating the impact of sheathing orientation, screw

edge distance, as well as cyclic protocol and load rate, while additionally the effect

of humidity, screw over-driving, screw spacing, and specimen re-use is monotonically

examined (Vieira and Schafer [107], Vieira Jr and Schafer [108]). The CFS-to-OSB

connection shear response is also examined via a random fastener characterization of

a lognormal distribution by Bian et al. [13], aiming to address the inherent variability

of these fasteners and understand their impact in shear wall response through Monte

Carlo simulations.

Different sheathing types, such as OSB, steel, plywood, and gypsum, connected to

CFS members were tested through single-screw tests by Tao et al. [106] and Pinching4

shear connection parameters were extracted, while steel-sheathed connection speci-

mens are tested under monotonic and asymmetric cyclic loading by Zhang et al. [119].

Shear connection behavior between CFS members and cement-based and gypsum-

based sheathing materials were also monotonically tested (Selvaraj and Madhavan

[93], Fiorino et al. [43]). Besides shear connection response evaluation, pull-out steel-

to-steel connection behavior was recently monotonically tested by Castaneda and

Peterman [22] by varying the CFS steel sheet thickness. Although CFS-to-OSB shear

connection behavior has been determined experimentally, none of these test programs

test sufficient repetitions to enable a statistical characterization of the variability.

Furthermore, limited studies have been conducted on the impact of higher capac-

ity sheathings, such as FCB and SG composite, on the hysteretic shear connection

behavior.
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1.3 Dissertation organization of PART I

The main goal of this work is to provide an innovative benchmark fastener-based

shear wall modeling approach for sheathed CFS shear walls under lateral loading

through experimentally-obtained fastener data and to enhance the possibilities of ef-

ficient and higher capacity design options through design guideline recommendations.

PART I of this dissertation is organized as follows:

• Chapter 1 (this Chapter) includes the introduction and motivation for PART

I of this dissertation, as well as the literature review for the examined fields

and the contribution of this study to the research community and the design

practice.

• Chapter 2 focuses on the lateral behavior of oriented strand board (OSB)

sheathed cold-formed steel (CFS) shear walls by introducing and validating an

experimentally-derived fastener-based computational approach. Analytically,

this Chapter is composed of an experimental program of 30 identical CFS-to-

OSB variable connection specimens, a finite element model of OSB-sheathed

CFS shear walls introduction and validation by previous experimental studies,

and an extensive parametric analysis and reliability of the modeling parameters.

This Chapter presents the work of Derveni et al. [32], and [28], [31].

• Chapter 3 presents the recommended design guidelines for CFS shear walls

sheathed with fiber cement board (FCB) and steel-gypsum (SG) composite pan-

els through fasterner-based modeling, as well as the proposed fastener hysteretic

characterization. In detail, this Chapter consists of an experimental program

of 18 CFS-to-FCB and CFS-to-SG connection specimens under monotonic and

cyclic loading, a Pinching4 model connection characterization, a computational
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model of FCB- and SG-sheathed CFS shear walls, and a shear capacity design

predictions recommendation and validation. This Chapter presents the work of

Derveni et al. [29], and [30].

• Chapter 4 includes the summary and overall conclusions of PART I of this

dissertation, as well as potential future extensions of this work.
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2 EXPERIMENTALLY DERIVED FASTENER-

BASED FINITE ELEMENT MODELING OF

COLD-FORMED STEEL SHEAR WALLS

Chapter overview: This chapter evaluates the lateral response of oriented strand-

board (OSB) sheathed cold-formed steel (CFS) shear walls, introduces a benchmark

finite element modeling approach, conducts an experimental program of 30 connec-

tion specimens, and examines connection variability in shear wall behavior through a

parametric analysis and Monte Carlo simulations.

2.1 Experimental program of CFS-to-sheathing shear con-

nections

Shear connection behavior represents the dominant failure mechanism of ori-

ented strand board (OSB) sheathed cold-formed steel (CFS) shear walls necessitat-

ing the full characterization of their strength, stiffness, ductility, degradation, failure

modes, and statistical variability. The shear connection behavior is investigated herein

through 30 identical CFS-to-OSB connection experiments to obtain statistically sig-

nificant data.

2.1.1 Test specimen and test rig

The test program is composed of stud-screw-sheathing assemblies subjected to

monotonic loading, as adapted from Peterman et al. [83]. Two OSB sheathing sheets

are connected to two CFS studs on both sides with eight CFS-to-OSB fasteners,

as shown in Fig. 2.1. Hot-rolled steel plates enclose the CFS stud webs (Fig. 2.1c,

Fig. 2.1d), aiming to restrain the deformation of the web of the studs and to lead the

failure to the fasteners. Loading is applied at the top part of the specimen, while the
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bottom part is fixed. The test rig is illustrated in Fig. A.1a in Appendix A.

(b)

(d) (e)

(c)

s

A

(a)

Section A-A

A

Figure 2.1: Test rig and connection specimens (stud-screw-sheathing). (a) Front view
of the specimen indicating loading direction, (b) actual test specimen photo in the rig,
(c) side view of the specimen indicating steel plate dimensions, (d) inside view of the
specimen representing A-A section, and (e) isometric view of the specimen indicating
the fastener spacing s=304.8 mm. A test program of 30 identical experiments is
conducted to examine connection variability.

The specimens are constructed of 304.8 mm x 406.4 mm (12 in. x 16 in.) of 11.11

mm (7/16 in.) thick, Exposure 1 OSB sheathing sheets connected to 1.37 mm (54

mils) thick CFS studs (lipped channel sections) of 152.4 mm deep web, 41.3 mm wide

flange, 12.7 mm deep lip (600S162-54 notation in AISI-S200 [4]). OSB sheathing and

CFS members are connected via M4 x 50 (No. 8) flathead QuickDrive screws located
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at 38.1 mm (1.5 in.) from the edge of the sheathing in the center of the flanges of

the studs (AISI-S100 [3]) and spaced every s=304.8 mm (12 in.). In real shear walls,

fasteners tilt parallel to the stud flanges, and do not bear on the studs. This test

setup causes the fasteners to tilt perpendicular to the flanges, leading to bearing at

large deformations. To avoid fastener bearing on the web of CFS studs due to the

excessive fastener tilting during the tests, all screw edges were cut. Based on Vieira

and Schafer [107], screw edge cutting does not affect the connection behavior, and

prevents failure phenomena not present in actual shear wall behavior.

2.1.2 System test connection results of 30 identical specimens

System force-displacement behavior of the 30 identical tests is illustrated in Fig. 2.2c,

indicating a significant 38% peak strength variability. The governing connection fail-

ure modes were either screw pull-through (occurred in 21 specimens) or screw shear

failure (occurred in 9 specimens). Actual specimen pictures after testing depicting

pull-through and shear failures are shown in Fig. 2.2a and Fig. 2.2b respectively. The

progression of failure between the different screws depends on minute differences in

screw installation, sheathing and steel geometric imperfections, and localized sheath-

ing properties, which allow any screw to fail before others randomly.

Screw pull-through failure mode is a progressive failure mechanism. At the be-

ginning of each test, tilting of all screws is initiated until the pull-through of some of

the screws which is followed by the localized sheathing bearing in the locations of the

screws.

Shear screw failure mode is governed by abrupt drops in the force-displacement

behavior. Tilting of the fasteners is observed until the shear failure of some screws

becomes present. Pull-through across some of the fasteners is also observed post-peak

leading to local bearing of OSB sheathing.

13



30 identical tests
(c)(a)

Screw pull-through

Screw shear failure
Overdriven screws

(b)

Figure 2.2: Experimental system shear fastener results of 30 tests under monotonic
loading. The governing failure mechanisms of these systems are either (a) screw pull-
through (photos of actual specimens after testing) or (b) shear screw failure (photos
of actual specimens after testing). (c) Force-displacement illustration of system con-
nection behavior including the response of the different failure modes, as well as the
over-driven screws impact.

The impact of over-driven screws is also examined via three tested specimens

indicated in Fig. 2.2c with cross markers. Each of these specimens included one over-

driven screw which was backed out to flush with the OSB sheathing. The results

illustrate lower predicted capacities of these instances, as also described by Vieira

and Schafer [107]. Screw over-driving is a common construction error which allows

the screw to pull-through easier and faster while bearing, and thus it affects the

connection capacity. Tensile coupon testing of CFS studs taken from the same batch

with the specimens that failed due to both screw pull-through and shear screw failure

resulted to yield strength of 332 MPa (48 ksi) and 335 MPa (51 ksi) respectively. The

stress-strain response of the coupon tests is illustrated in Fig. A.2b in the Appendix

A.
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2.1.3 Individual screw response conversion

System connection testing is chosen over individual screw testing to account for

and reduce connection variable response. To convert the response of the system of

eight fasteners to the response of each single fastener, Eq. 1, Eq. 2 and Eq. 3 are used

to calculate the individual screw force Pi, the individual screw displacement ∆i and

the individual screw stiffness Ki, respectively (derived from Vieira and Schafer [107]).

Fig. 2.3a represents a schematic representation of force and displacement distribution

to obtain single screw shear behavior (as illustrated in Fig. A.2a in Appendix A).

The single screw force Pi (from free body diagram in Fig. 2.3a) is calculated as:

Pi =
P

4
. (1)

The individual fastener displacement ∆i (deformation localization in fastener lo-

cations) is defined as:

∆i =
∆

2
. (2)

The stiffness per screw Ki (parallel spring model) is calculated as:

Ki =
K

2
. (3)

where P is the system force, ∆ is the system displacement, and K is the system

stiffness.

2.1.4 Statistical characterization of fastener behavior

To address the CFS fastener response variability, a statistical characterization is

conducted herein by using the average connection response µ of the 30 identical tests,
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their standard deviations σ, and their coefficient of variations COV , as summarized

in Table 2.1. The mean backbone of the 30 tests is defined based on a four-point fit

to data curve at 40% peak load, 80% peak load, 100% peak load and 30% post peak

load, as illustrated in Fig. 2.3b. Fig. 2.3b also includes the upper and lower response

bounds based on µ ± σ and µ±2σ. Shaded areas indicate the reliability range of

CFS-to-OSB connection data. A significant COV=12% is obtained for connection

peak strength, which is within the range obtained from a previous experimental study

of 5-12 test repetitions of CFS-to-OSB fasteners by Iuorio et al. [60].

Fit to data (μ)

(b)(a)

μ+2σμ+σμ-σμ-2σ μ

Figure 2.3: Individual screw response conversion from stud-screw-sheathing system
behavior and statistical characterization. (a) Conversion of system to screw behavior
via displacement and force schematic representation. (b) Individual screw force-
displacement behavior using the statistical average µ of the 30 identical tests, as well
as the µ± σ bounds, and µ±2σ bounds.

Connection variability is further investigated in Section 2.4 via a probabilistic

approach based on random fastener response characterization. Design codes do not

include strength comparisons for these fasteners.
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Table 2.1: Statistical characterization obtained from the 30 identical connection tests.
P1, P2, P3, P4 denote the load and ∆1, ∆2, ∆3, ∆4 the displacement of each of the
four points constructing the CFS-to-OSB fastener behavior.

Backbone data points Mean µ Std σ COV

(kN) (kN) (%)

P1 @ 40% Peak load 0.814 0.098 12.10

P2 @ 80% Peak load 1.627 0.197 12.10

P3 @ Peak load 2.034 0.246 12.10

P4 @ 30% Peak load 0.610 0.074 12.10

Backbone data points Mean µ Std σ COV

(mm) (mm) (%)

∆1 @ 40% Peak load 0.540 0.125 23.30

∆2 @ 80% Peak load 2.400 0.400 16.70

∆3 @ Peak load 5.400 0.737 13.80

∆4 @ 30% Peak load 11.60 2.800 24.00

2.2 Finite element modeling of OSB-sheathed CFS shear walls

The main focus of this study is to introduce and validate a robust benchmark finite

element model of OSB-sheathed CFS shear walls. A high fidelity modeling approach

is introduced by using the finite element software ABAQUS [1], and is validated by

nine different wall experiments throughout US and Canada (Liu et al. [70], Branston

[18], Blais [15], Hikita [57]). The introduced computational method aims to accurately

capture strength, stiffness and failure mechanisms of OSB-sheathed walls regardless

of wall configuration, dimensions, and different components and details. All the

examined shear walls adopted in this work are composed of a CFS structural frame

composed of chord studs, field studs and tracks, OSB sheathing in one side, hold-

downs in the bottom part of the walls to prevent the uplift, and screws connecting the

CFS members, as well as the OSB sheathing to the CFS frame. Particular attention

is given to the CFS-to-OSB connection behavior by describing it via experimental

data.
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2.2.1 Model geometry

The simulated OSB-sheathed CFS shear walls are adopted from two different test

rigs based on the CFS-NEES study (Liu et al. [70]) and the McGill studies (Branston

[18], Blais [15], Hikita [57]). Various CFS and OSB member cross-sectional properties,

hold-down components and details presence (ledger, vertical seam) are investigated

throughout the different examined wall configurations. A schematic representation

of the simulated shear wall geometries including symbols (notation list in Appendix

A) for dimensional and cross-sectional properties are illustrated in Fig. 2.4. Table 2.2

summarizes the CFS member different cross-sections, while Table 2.3 presents the

different wall dimensions (aspect ratios), component thicknesses and hold-down types

between the selected wall configurations.

Table 2.2: Cross-sectional dimensions of all examined CFS members (H is the web
depth, B is the flange width, and D is the lip depth of each CFS component).

Wall selection Component Cross-section B H D

(mm) (mm) (mm)

Liu et al. 2014 Stud C-lipped 41.3 152.4 12.7

Track C-unlipped 38.1 157.4 −
Ledger C-unlipped 50.8 304.8 −

Branston 2004 Stud C-lipped 41.3 92.08 12.7

Track C-unlipped 30.2 92.08 −

Blais 2006 & Stud C-lipped 41.3 92.08 12.7

Hikita 2006 Track C-unlipped 31.8 92.08 −

Two different wall configurations of different aspect ratios, a 1.22 m x 2.74 m (4

ft x 9 ft) and a 2.44 m x 2.74 m (8 ft x 9 ft), are adopted from Liu et al. [70] and are

subjected to monotonic loading. CFS studs and tracks constitute the structural frame

connected to a ledger track at the top interior wall side, to OSB sheathing at the full

exterior wall side, and to hold-downs at the bottom chord stud part. The smallest
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aspect ratio (h/w) wall consists of an additional vertical seam in the middle field stud

flange composed of two rows of connections spaced every 152.4 mm (6 in.). Horizontal

seams are not included in the finite element analysis, since they do not fail during the

test and they have little effect in shear wall capacity. CFS members are assembled via

M5 (No. 10) screws, while CFS frame to OSB sheathing are assembled via self-drilling

M4 (No. 8) flathead Simpson Quick Drive screws in both wall configurations.

Table 2.3: Wall and component dimension, and detail selection for all nine simulated
CFS shear walls. (w is the wall width, h is the wall height, ts is the OSB thickness, t1
is the stud thickness, t2 is the track thickness, sp is the wall perimeter screw spacing
and sf is the wall field stud screw spacing).

Wall Database w x h t1 t2 ts sp sf Hold-down

(Test No.) (m) (mm) (mm) (mm) (mm) (mm)

Liu et al. 2014 (1c) 1.22 x 2.74 1.37 1.37 11.11 152.4 ∗ 304.8 S/HDU6

Liu et. al 2014 (11c) 2.44 x 2.74 1.37 1.37 11.11 152.4 ∗ 304.8 S/HDU6

Hikita 2006 (51b) 1.22 x 2.44 1.37 1.09 11.11 152.4 304.8 S/HD10

Branston 2004 (21abc) 1.22 x 2.44 1.12 1.12 11.11 152.4 304.8 S/HD10

Branston 2004 (23abc) 1.22 x 2.44 1.12 1.12 11.11 101.6 304.8 S/HD10

Branston 2004 (25abc) 1.22 x 2.44 1.12 1.12 11.11 76.20 304.8 S/HD10

Blais 2006 (41abc) 1.22 x 2.44 1.09 1.09 9.525 152.4 304.8 S/HD10

Blais 2006 (43abc) 1.22 x 2.44 1.09 1.09 9.525 101.6 304.8 S/HD10

Blais 2006 (45abc) 1.22 x 2.44 1.09 1.09 9.525 76.20 304.8 S/HD10

∗ Staggered perimeter fastener application

Seven different wall configurations of 1.22 m x 2.44 m (4 ft x 8 ft) dimensions are

adopted from McGill effort (Branston [18], Blais [15], Hikita [57]) and are subjected

to monotonic loading. CFS studs and tracks consist the structural frame connected

to OSB sheathing at the exterior side of the walls, and to hold-downs at the bottom

part of the chord studs. The OSB sheathing is connected to the CFS members via

M4 (No. 8) self-piercing screws, while studs are connected to tracks by M5 (No. 10 )

screws, and back-to-back chord studs are fastened through M4 (No. 8) screws. The

impact of shear wall perimeter fastener spacing is investigated through three different
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spacings at 12.7 mm (1/2 in.) screw edge distance.

All simulated OSB-sheathed CFS shear walls are simulated using their nominal di-

mensions, and cross-sectional and material properties to ensure a consistent and gen-

eral benchmark modeling approach. Geometric imperfections, and residuals stresses

and strains are not included in this modeling method (similarly to Ngo [78] and Ding

[37]) since CFS members did not buckle during the tests and the wall behavior was

fastener-governed.

h 

w 

sp 

Ledger
(if present)

Chord studs
(back-to-back) 

Hold-down

Field stud

Track

Sheathing

sf 

ts: sheathing thickness

sp 
t1: stud

 thickness

t2:track
 thickness

B 

H 

H 

D 

Figure 2.4: Representation of a typical OSB-sheathed CFS shear wall configuration
including dimension symbols for wall and component cross-sections. Stud and track
cross-sections are described by their web depth H, their flange width B, their lip
depth D (for studs), and their thickness t1 and t2 respectively. Wall dimensions are
described by their height h and their width w, while sheathing thickness is denoted
as ts. The fastener spacing is classified as perimeter spacing sp, and field stud spacing
sf . Nine shear walls of different configurations and dimensions are simulated.

20



2.2.2 Mesh discretization and element type

All CFS components and OSB sheathing are constructed and assembled in ABAQUS

software by using three-dimensional four-node S4R shell elements with reduced in-

tegration points. Fig. 2.5 illustrates wall schematics and different views of a typical

simulated wall including the mesh of all components. A fine mesh of a size of 6.35 mm

(0.25 in.) is selected for CFS members (studs, tracks, ledger) and a coarser mesh of

a size of 50.8 mm (2 in.) is chosen for the OSB sheathing. CFS component mesh size

and element type effects are assessed by Schafer et al. [90]. The selected fine mesh

of CFS members allows for two elements in the lips of the studs, while the effect of a

finer mesh of 38.1 mm (1.5 in.) in OSB sheathing is addressed in Subsection 2.3.2.

2.2.3 Material properties

The material properties of all simulated components are described herein. OSB

sheathing is modeled as orthotropic elastic material, while CFS members are modeled

as isotropic and elastic perfectly plastic materials.

2.2.3.1 OSB material properties

Elastic orthotropic material properties for OSB sheathing are obtained by con-

verting the panel bending stiffness (EI)s and the panel rigidity (Gt)s into Young’s

modulus Es and shear modulus Gs respectively, as analytically discussed in Schafer

et al. [91]. The OSB panel bending stiffness parallel to the strength axis (EI)s1,

the panel bending stiffness perpendicular to the strength axis (EI)s2, and the panel

rigidity through thickness (Gt)s12 are described in APA-D510C [8] for both simulated

sheathing types, the 11.11 mm (7/16 in.) thick and the 9.525 mm (3/8 in.) thick

OSB, as shown in Table 2.4. Eq. 4 and Eq. 5 are used to obtain the Young’s modulus
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and the shear modulus respectively (Table 2.4).

The Young’s modulus of OSB sheathing is defined as:

Es =
12(EI)s

t3s
. (4)

The shear modulus of OSB sheathing is calculated as:

Gs =
(Gt)s
ts

. (5)

where ts is the sheathing thickness of each selected OSB panel.

Orthotropic material properties are introduced to the finite element model via

Engineering Constants from ABAQUS library. To obtain orthotropic material prop-

erties, Young’s modulus and shear modulus in all three-dimensions are required. The

out-of-plane Young’s modulus Es3 is set equal to Es2 from Table 2.4, and out-of-plane

shear moduli Gs13 and Gs23 are set equal to Gs12 from Table 2.4, while the Poisson’s

ratio vs=0.3 is introduced in all three-dimensions. The effect of different shear moduli

in shear wall response is further discussed in Subsection 2.3.2.

Table 2.4: OSB sheathing material properties. Modulus of elasticity and shear mod-
ulus are calculated based on the OSB thickness and OSB rate of the different exper-
imental configurations.

OSB sheathing type (EI)s1 (EI)s2 (Gt)s12

(kN −mm2/mm) (kN −mm2/mm) (kN/mm)

|| strength axis ⊥ strength axis through thickness

11.11mm, 24/16 rated 734.36 150.64 14.62

9.525mm, 24/0 rated 564.90 103.56 13.57

OSB sheathing type Es1 Es2 Gs12

(MPa) (MPa) (MPa)

|| strength axis ⊥ strength axis through thickness

11.11mm, 24/16 rated 6422 1317 1316

9.525mm, 24/0 rated 7844 1438 1425
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Figure 2.5: Representation of a typical simulated shear wall including mesh dis-
cretization and connection classification. (a) Shear wall assembly including the se-
lected coordinate system and loading. (b) Mesh representation of OSB sheathing and
CFS-to-OSB connection simulation via the connector element Cartesian. (b) CFS
structural frame including studs, tracks and their connections. (d) Ledger mesh and
its connection to the frame via MPC pinned constraints, and (e) back-to-back chords
studs connected through MPC pinned constraints. (f) Hold-down representation by
a rigid body and a Spring2 element. (g) Displacement control loading application at
top track. (h) Bottom track and (i) top track boundary conditions for the different
walls.

2.2.3.2 CFS material properties

Elastoplastic material properties are implemented in the finite element modeling

approach for all CFS components. A modulus of elasticity equal to E=203 GPa
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(29500 ksi), and a Poisson’s ratio equal to v=0.3 remain constant between the different

shear wall configurations. For the shear walls adopted from Liu et al. [70], the yield

strength is equal to σy=344 MPa (50 ksi), while for the McGill effort walls (Branston

[18], Blais [15], Hikita [57]) the yield strength is σy=230 MPa (33 ksi). The impact

of measured yield strengths in full shear wall behavior is assessed in Subsection 2.3.2.

2.2.4 Connection simulation

Shear wall connections are classified into two categories in this work, CFS-to-

CFS connections (between CFS members) and CFS-to-OSB (between CFS members

and OSB sheathing), and are simulated via different modeling assumptions. CFS-to-

OSB connections constitute the critical load path of OSB-sheathed shear walls during

testing, while CFS-to-CFS connections did not fail during the tests.

2.2.4.1 CFS-to-CFS connection modeling

Multi-point constraints (MPC) pinned are used to simulate CFS-to-CFS connec-

tions. MPC pinned allows for independent motion of all three rotational degrees of

freedom, while it constraints all three translational degrees of freedom. CFS-to-CFS

connections appear in the examined CFS shear walls between a) back-to-back chord

stud webs though two lines of connections spaced every 304.8 mm (12 in.) verti-

cally, b) stud-to-track center points of their flanges (both in chord and field studs),

and c) stud-to-ledger as flange-to-web connections spaced every 50.8 mm (2 in.) at

top interior wall side. CFS-to-CFS connections and their location are illustrated in

Figs. 2.5c, 2.5d and 2.5e.
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2.2.4.2 CFS-to-OSB connection modeling

Connector elements (CONN3D2) Cartesian are selected for CFS-to-OSB connec-

tion simulation. CONN3D2 Cartesian allows for motion in all three translational

degrees of freedom through an assigned nonlinear connection behavior. CFS-to-OSB

connections represent the dominant failure mechanism in the full shear wall response,

as discussed in the experimental studies by Liu et al. [70], Branston [18], Blais [15]

and Hikita [57]. For this reason, experimentally-determined shear behavior is intro-

duced to represent the response of these connections. Connector element behavior

is assigned to wires at the locations of CFS-to-OSB connections, which are created

between two matching nodes between OSB sheathing (first selected node) and CFS

members (second selected node), as illustrated in Fig. 2.5b.

For the shear CFS-to-OSB connection behavior, experimental four-point nonlinear

response is introduced in the finite element model based on available tests of the same

screw diameters and CFS and OSB material thicknesses with the simulated shear

walls. To simulate the connection behavior of the nine selected OSB-sheathed CFS

shear walls, four different fastener behaviors are adopted, as summarized in Table 2.5

and illustrated in Fig. 2.6b:

• 1.37 mm CFS to 11.11 mm OSB (54 mils to 7/16 in.) connection behavior

obtained from Peterman et al. [83] and introduced in Liu et al. [70] walls,

• 1.37 mm CFS to 11.11 mm OSB (54 mils to 7/16 in.) fastener data based on

the mean (µ) backbone of the 30 identical tests conducted in Section 2.1 and

assigned in Hikita [57] wall,

• 1.12 mm CFS to 11.11 mm OSB (44 mils to 7/16 in.) connection behavior

adopted via a linear interpolation between available tests of 0.84 mm CFS to

25



11.11 mm OSB (33 mils to 7/16 in.) and 1.37 mm CFS to 11.11 mm OSB (54

mils to 7/16 in.) from Peterman et al. [83] and introduced in Branston [18]

walls, and

• 1.09 mm CFS to 9.525 mm OSB (43 mils to 3/8 in.) connection data obtained

from an approximated fastener capacity reduction factor of the thickness dif-

ference between 9.525 mm (3/8 in.) and 11.11 mm (7/16 in.) OSB sheathings

and assigned in Blais [15] walls.

Besides their experimental-derived behavior, the orientation of CFS-to-OSB sim-

ulated connections need to be addressed via connection local coordinate systems. As

illustrated in Fig. 2.6a the connection vector forces are not aligned with any of the

global coordinate system axes, and thus individual connection local coordinate sys-

tems are introduced to provide accurate shear wall results and failure modes. For

this purpose, a two-stage analysis is introduced:

• At Stage A, a rotation angle θ is calculated based on the connection force in

z-direction and the connection force in x-direction, as depicted in Fig. 2.6a. To

obtain the rotation angle and subsequently local connection coordinate systems,

a linear elastic analysis is conducted at this stage by eliminating any geometric

and connection nonlinearities, as well as CFS member plasticity.

• At Stage B, a local coordinate system is introduced to each individual connec-

tion by rotating the global coordinate system about the out-of-plane y-direction.

This prevents the potential connection capacity overestimation due to axis mis-

alignment. A final pushover analysis is conducted at this stage, by including

material plasticity, and connection and geometric nonlinearities, to obtain wall

strength, stiffness and failure mode results.
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Table 2.5: Four-point backbone of monotonic CFS-to-OSB connection behavior (sym-
metric response in tension and compression). The load-displacement (Pi-∆i) connec-
tion response is chosen based on the different examined CFS to OSB thicknesses.

CFS to OSB thickness P1 P2 P3 P4 ∆1 ∆2 ∆3 ∆4

pattern (kN) (kN) (kN) (kN) (mm) (mm) (mm) (mm)

1.37mm to 11.11mm 1 0.879 1.742 2.178 0.653 0.576 3.301 6.846 10.76

1.37mm to 11.11mm 2 0.814 1.627 2.034 0.610 0.540 2.400 5.400 11.60

1.12mm to 11.11mm 0.802 1.605 2.006 0.602 0.735 3.239 6.477 12.16

1.09mm to 9.525mm 0.682 1.364 1.705 0.512 0.735 3.239 6.477 12.16

1 Experimentally-determined by Peterman et al. [83]

2 Experimentally-determined via 30 tests in this study

θ

z (Shear-CTF3)

x (Shear-CTF1)

y (Pull out-CTF2)

Linear elastic analysis  

(b)(a)

1.09mm CFS to 
9.525mm OSB

1.12mm CFS to 
11.11mm OSB 

1.37mm CFS to 
11.11mm OSB 
(Peterman et al.)

1.37mm CFS to 
11.11mm OSB 
(this paper)

Nonlinear connection data

Linear elastic
region

Single test fit
(Peterman et al.)

θ = tan(         )CTF3

CTF1

Figure 2.6: CFS-to-OSB connection data and simulation method (two-stage ap-
proach). (a) Connection vector forces of a prior linear elastic analysis, and individual
screw local coordinate system calculation. A rotation angle θ is calculated as the total
connection force at z-axis (CTF3) over the total connection force at x axis (CTF1),
leading to the rotation of the global coordinate system about the out-of-plate y-axis
(Direction 2). (b) Nonlinear average connection data used for all different simulated
walls. The solid lines indicate the fastener response used to validate the FE approach,
while the dashed lines is used in the parametric analysis.

The pull-out CFS-to-OSB connection behavior is simulated via a high stiffness of

1750 kN/mm (10000 kips/in.) to prevent any significant OSB out-of-plane movement.

Connection pull-out stiffness is further examined in this study in Subsection 2.3.2.
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2.2.5 Hold-down simulation and boundary conditions

Hold-downs are used at the bottom part of all examined shear walls to withstand

the overturning moment under lateral loading. A rigid body is simulated at the

bottom part of the chord stud webs, whose reference point (RP) in the middle is

connected to the foundation by a linear spring element fixed in the vertical z-direction

(Spring2 from ABAQUS library), as illustrated in Fig. 2.5f. The Spring2 stiffness is

obtained based on the hold-down type in combination to attached chord stud thickness

(taken from the manufacturer specifications based on ASD calculations), as follows:

• For Liu et al. [70] walls, Simpson Strong-Tie S/HDU6 hold-down type is at-

tached to 1.37 mm (54 mils) thick CFS chord studs. The hold-down tensile

stiffness is equal to 2929 kN/m (56.7 kips/in.), while the compressive stiffness

is 1000 times higher than the tensile stiffness, as adopted by Leng et al. [67].

• For McGill effort walls, Simpson Strong-Tie S/HD10 hold-down type is con-

nected to 1.12 mm (44 mils) or 1.09 mm (43 mils) thick CFS studs (Branston

[18] and Blais [15]) and to 1.37 mm (54 mils) thick studs (Hikita [57]). The

stiffness in tension is equal to 17388 kN/m (99.3 kips/in.) and 22292 kN/m

(127.3 kips/in.) respectively. The stiffness in compression is defined as 1000

times higher than the stiffness in tension for both types.

Bottom and top boundary conditions are adopted by the respective simulated

OSB-sheathed shear wall experimental studies (Liu et al. [70], Branston [18], Blais

[15], Hikita [57]). In all nine examined shear walls, four shear anchors (two of them in

hold-down locations) are used in the test program to connect the bottom tracks to the

ground. The shear anchors are modeled as pinned nodes by restraining the horizontal

(x-direction) and out-of-plane (y-axis) directions, as illustrated in Fig. 2.5h. Top
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boundary conditions differentiate between the Liu et al. [70] and the McGill work

(Branston [18], Blais [15], Hikita [57]) based on the respective test rigs (Fig. 2.5i):

• Two lines of nodes in the top tracks spaced every 76.2 mm (3 in.) are used

to restrain the out-of-plane wall motion (y-direction) for Liu et al. [70] shear

walls. The selected node pattern is based on the actuator location and the test

rig of the experimental study by [70].

• One line of nodes is used in the top track spaced every 230 mm (9 in.) for

Branston [18], Blais [15] and Hikita [57] shear walls to restrain the movement

of the walls out-of-plane. This pattern is adopted by McGill University’s test

rig at which six shear anchors (rig bolts) are used in the node locations.

2.2.6 Component interactions and lateral loading

Surface-to-surface contact is selected to represent the CFS structural frame to

OSB sheathing interactions. Hard contact is introduced to define the normal behavior

between OSB sheathing and CFS studs and tracks. Sheathing is selected as the master

surface while CFS members constitute the slave surfaces between these contact pairs,

since OSB board is modeled by a coarser mesh than studs and tracks. Tangential

contact behavior is not introduced herein, while the impact of friction coefficients

between 0.2 and 0.6 in wall response is investigated in Subsection 2.3.2.

Lateral loading is monotonically applied at the top of all the examined OSB-

sheathed CFS shear walls through displacement control, as illustrated in Fig. 2.5g.

A displacement of 0.127 m (5 in.) and of 0.08 m (3 in.) is chosen for Liu et al.

[70] walls and McGill effort (Branston [18], Blais [15], Hikita [57]), respectively. The

displacement is applied at a reference point (RP) in the middle of the top track whose

edges are simulated as a rigid body tied to the RP. Quasi-static analysis (Newton-
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Raphson solver) is used in this work with an initial and a maximum step time equal

to 0.01, and a minimum time increment of 10−7. The impact of a smaller initial and

maximum time step is evaluated in Subsection 2.3.2.

2.3 Result validation and discussion

The finite element modeling results are validated herein by nine experimental

studies. An extensive parametric analysis is also conducted focusing on the reliability

of CFS-to-OSB connections and the effect of different modeling parameters in OSB-

sheathed CFS shear wall response.

2.3.1 Experimental validation of finite element model

The introduced modeling approach is benchmarked for strength, stiffness and

failure mechanisms using existing experimental data. Specifically, wall peak load,

initial stiffness, secant stiffness, and dominant wall failures are discussed.

2.3.1.1 Force-displacement behavior

Fig. 2.7 illustrates the force-displacement behavior of all nine simulated walls

(red-colored lines) and its comparison with the response of the respective experi-

ments (blue-colored lines) from Liu et al. [70], Branston [18], Blais [15] and Hikita

[57]. Wall peak load is accurately predicted within 5% for eight of the nine shear

walls, and within 11% for one of the walls. Wall capacities and the percentage dif-

ferences between simulations and tests are summarized in Table 2.6. Computational

displacement at each wall peak strength is captured within 5% in comparison to the

three tests from Branston [18] and the three tests from Blais [15]), while a percent-

age discrepancy of 23% appears in comparison to the two wall tests from Liu et al.
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[70] and the wall test from Hikita [57]). As shown in Fig. 2.7, six of the adopted

shear wall experiments include three repetitions of the same test (Experiment No. 1,

Experiment No. 2, Experiment No. 3) illustrating the variable wall response up to

11% between identical tests in terms of capacity and displacement at peak strength.

Wall variability is also addressed in Subsection 2.3.2 via a parametric analysis, while

post-peak behavior is out of the scope of this research.

The introduced finite element modeling approach, as shown in Fig. 2.7, is also able

to capture the peak strength decrease and stiffness increase as the perimeter fastener

spacing increases from 76.2 mm (3 in.) to 101.6 mm (4 in.) and to 152.4 mm (6 in.),

and as wall aspect ratio increases (smaller wall width).

Table 2.6: Shear wall capacity comparisons between experiments, finite element (FE)
models and AISI-S400-15 design predictions. Capacity overprediction is indicated by
(+), and capacity underprediction by (−). Wall strength is captured within 11% in
all of the simulated wall specimens.

CFS Shear Wall Experimental FE Model AISI-S400 Code

Database Work Model Difference ∗ Code Difference ∗

(Test No.) (kN) (kN) (%) (kN) (%)

Liu et al. 2014 (1c) 21.80 19.44 −11.9 14.87 −31.8

Liu et. al 2014 (11c) 38.73 38.17 −2.19 33.45 −13.6

Hikita 2006 (51b) 28.18 29.64 +5.18 22.92 −18.7

Branston 2004 (21abc) 16.36 17.01 +3.97 12.07 −26.2

Branston 2004 (23abc) 24.78 25.07 +1.17 17.80 −28.2

Branston 2004 (25abc) 30.09 31.28 +3.95 22.92 −23.8

Blais 2006 (41abc) 14.63 14.64 +0.07 11.70 −20.0

Blais 2006 (43abc) 21.59 21.39 −0.93 17.43 −19.3

Blais 2006 (45abc) 28.93 27.82 −3.84 22.19 −23.3

Overall: 3.69 22.8

COV: 1.11 4.37

∗ In comparison with test results
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1c-Liu et al. 2014 11c-Liu et al. 2014 51b-Hikita 2006

21abc-Branston 2004 23abc-Branston 2004 25abc-Branston 2004

41abc-Blais 2006 43abc-Blais 2006 45abc-Blais 2006

Experiment No. 1 Experiment No. 2Finite element model Experiment No. 3

Figure 2.7: Force-displacement finite element behavior of the examined nine shear
wall configurations in comparison with the respective available experimental response.
The experiment numbers in the legend indicate the repetition number of each test,
while the identifier of each test program used to validate the finite element approach
is indicated in the lower right part of all graphs. These graphs are intended to be
used for strength and stiffness comparisons between computational and experimental
results.

2.3.1.2 Initial and secant stiffness

OSB-sheathed CFS shear wall pre-preak stiffness is characterized by its tangent

and secant response stiffness, as shown in Fig. 2.8. Fig. 2.8a illustrates a load-

displacement graph that indicates the selected three stiffness regions denoted as ini-

tial stiffness (Kinitial) from 0% to 40% model peak load (region OA), middle stiffness
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(Kmiddle) from 40% to 80% model peak load (region AB), and final stiffness (Kf inal)

from 80% to 100% model peak load (region BC). The respective finite element stiff-

ness results normalized by the experimental stiffness results (Kmodel/Kexperiment) are

shown in Fig. 2.8b against the nine examined OSB-sheathed CFS shear walls. Tangent

stiffness is accurately predicted when CFS-to-OSB behavior is informed with available

experimental data from the same test program and rig and by using identical test

components (as in [70]) or when the CFS-to-OSB connection data are obtained from

the same OSB and CFS member thicknesses (as in [57]). Higher stiffness discrep-

ancies are predicted when CFS-to-OSB connections are obtained by CFS thickness

interpolation (as in [18]) or both CFS and OSB thicknesses interpolation (as in [15]).

The significance of experimentally derived CFS-to-OSB connection response is further

discussed in Subsection 2.3.2.

Secant stiffness (Ksecant), as described from the load-displacement graph between

0% to 100% model peak load (region OC) in Fig. 2.8c and as illustrated via stiffness

ratios (Kmodel/Kexperiment) in Fig. 2.8d, is accurately captured in comparison to the

respective tested walls.

2.3.1.3 Failure modes

Local connection coordinate systems, as obtained from a prior linear elastic anal-

ysis, are illustrated in Fig. 2.9a (specimen 1c from Liu et al. [70] is demonstrated for

result representation). The resultant connection vector forces are in alignment with

the local coordinate systems and their angles remain constant until wall peak load.

The angles might change slightly post-peak load for some of the vector forces.
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Figure 2.8: Finite element stiffness evaluation of OSB-sheathed CFS shear walls in
comparison to experimental stiffness results. Tangent stiffness is calculated based on
(a) a typical load-displacement curve indicating the three different stiffness regions
pre-peak as initial (Kinitial), middle (Kmiddle) and final (Kf inal), and (b) the respec-
tive stiffness ratios against all simulated walls. Secant stiffness is calculated based
on (c) a typical load-displacement curve indicating one region pre-peak as secant
(Ksecant) and (b) the respective stiffness ratios for each examined test specimen.

The dominant failure mode in OSB-sheathed CFS shear wall response, as reported

in previous experimental studies, is the pull-through or shear failure of CFS-to-OSB

screws followed by OSB tear out or bearing. The finite element modeling approach

in this work accurately captures the CFS-to-OSB governing connection failures in

agreement with the respective tests. Connection failures are progressively distributed
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between the connections along the length of studs and tracks initiated from the right

bottom wall corner, and propagated to the left corner and lastly to the top wall

corners. Fig. 2.9c depicts the progression of connection failure in the right bottom

wall part (described with symbols in Fig. 2.9a). Corner fasteners are the most critical

since they fail first transferring the load and the failure to each immediate adjacent

fastener until the global wall failure when most of the connections have reached their

capacity (indicated with the dashed line in Fig. 2.9c).
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Figure 2.9: Failure mechanisms and finite element result post-processing. (a) Rep-
resentation of shear wall local connection coordinate system. (b) Von-mises stresses
(zoom-in) at bottom track at failure. (c) Connection progression of failure in the lower
right part of the shear wall (markers are used). (d) Shear wall deformation (von-Mises
stress) indicating high stress concentration near stud-to-track connections.

Shear wall deformed shape and von-Mises stresses for section point 1 (until yield-

ing) are depicted in Fig. 2.9d and in the exploded view in Fig. 2.9b. High stresses

are observed close to the connections between CFS studs and tracks, while smaller

stresses are predicted in the OSB sheathing (rotates as a rectangle during loading).
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2.3.2 Parametric analysis

This section investigates the sensitivity or insensitivity of the introduced finite

element modeling assumptions and parameters, such as the simulation of connections,

boundary conditions, OSB sheathing, contact, mesh, hold-downs, material properties

and time increment. The impact of these parameters in the wall peak strength is the

focus herein, as suggested by the AISI-S400 [5] design capacity predictions.

2.3.2.1 CFS-to-OSB connection reliability analysis

The impact of CFS-to-OSB connection predicted variability in OSB-sheathed CFS

shear wall full response is explored herein. The finite element shear wall behavior is

examined by using three different experimentally-derived CFS-to-OSB connection

data in the shear wall computational modeling. The 1.22 m x 2.74 m (4 ft x 9

ft) shear wall by Liu et al. [70] is selected for representation of the results, since

the components in the shear wall experiment are identical to the components in the

connection tests by Peterman et al. [83]. The test results in Section 2.1 of this work

refer to the same component thicknesses and screw type as [70], but are taken from a

different batch. For this reason, the wall’s nonlinear CFS-to-OSB connection behavior

is adopted from:

• Peterman et al. [83] by using the average response of the tested specimens

(shown with a circle-marker solid line in Fig. 2.6b),

• Peterman et al. [83] by using a fit to data of a single test of the highest capacity

(indicated with a dot-marker dashed line in Fig. 2.6b), and

• Section 2.1 of this current work by using the statistical experimental mean µ

(depicted with a star-marker solid line in Fig. 2.6b).
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The CFS shear wall computational force-displacement response is illustrated in Fig. 2.10a,

Fig. 2.10b, Fig. 2.10c for the three different connection data respectively in compar-

ison to test behavior. The results demonstrate that although connection data are

all obtained from the same OSB and CFS members and screws, a 16% wall capacity

variability is predicted between the different computational results. This highlights

the significant sensitivity of the OSB-sheathed CFS shear wall modeling approach by

the CFS-to-OSB connections, and recommends the use of experimental connection

data using components from the same batch with each respective wall.

To further characterize the connection variability effect in shear wall behavior, the

µ±σ and µ±2σ connection lower and upper bounds of the 30 identical tests in Section

2.1 are used in the Liu et al. [70] shear wall model. The finite element modeling results

illustrated in Fig. 2.10d demonstrate a peak strength variance of ±12% for introduced

connection data within one standard deviation (σ), and capacity variance of ±25%

for connection behavior within two standard deviations. The potential intermediate

wall behaviors are enclosed by the bounds and are indicated with shaded areas in

Fig. 2.10d. These results conclude the sensitivity of the introduced fastener-based

modeling approach to CFS-to-OSB connection response.

2.3.2.2 Modeling insensitivity parameters

The impact of various modeling parameters and assumptions to the introduced

finite element modeling approach is described herein via a parametric analysis with

regards to shear wall peak strength (specimen 1c from Liu et al. [70]). Table 2.7 sum-

marizes the examined parameters and provides their respective percentage differences

in comparison to the mean computational wall capacity indicated with a red-colored

line in Fig. 2.10d. The effect of each parameter is evaluated herein by altering an indi-
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vidual parameter at each simulation while maintaining all the remaining assumptions

as described in Section 2.2. Positive (+) and negative (−) signs in Table 2.7 indicate

capacity increase and decrease when compared to the mean computational wall ca-

pacity respectively, while (±) indicates both decrease and increase in the examined

parameter variation range.

(a)

(c)

(b)

(d)

Average - Peterman et al. 2014 Highest - Peterman et al. 2014

Average - this paper Statistics - this paper

Experiment (Liu et al. 2014) Finite element model

μ-2σ

μ

μ-σ

μ+σ

μ+2σ

Figure 2.10: OSB-sheathed CFS shear wall lateral performance accounting for con-
nection variability (test 1c from Liu et al. [70] for representation). Different data
of 1.37 mm CFS to 11.11 mm OSB connections are adopted from (a) Peterman et
al. [83] using the average test behavior, (b) Peterman et al. [83] using the highest
strength test behavior, and (c) this current study using the average response of the
30 tests. (d) Shear wall response enclosed by the higher and lower response bounds
using the µ± σ and µ±2σ connection statistical data of the 30 tests is shown.

The modeling assumptions and parameters investigated in this study and sum-
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marized in Table 2.7 vary by the use of:

• a global coordinate system for all CFS-to-OSB connections in comparison to

the individual connection local coordinate systems,

• a reduced stiffness varied between 0% to 100% of the initial CFS-to-OSB con-

nection stiffness in local z-axis in comparison to same nonlinear behavior in

both shear directions,

• a tangential contact definition varying the friction coefficient between 0.2 and

0.6 in addition to the normal hard contact definition,

• connector elements Cartesian to simulate CFS-to-CFS connections (stud-to-

track) in comparison with MPC pinned constraints choice,

• measured material properties of CFS profiles (yield strength and stiffness) com-

pared to nominal dimensions,

• an additional rigid body simulation of the hold-downs at track webs in compar-

ison with rigid body hold-down simulation at chord stud webs,

• an additional contact definition between CFS-to-CFS members by also varying

the friction coefficient between 0.2 and 0.8,

• a reduced pull-out connection stiffness varied from 1506 kN/m (9 kips/in.) up

to the selected pull-out stiffness of 1750000 kN/m (10000 kips/in.),

• isotropic and/or plastic OSB sheathing modeling compared to elastic orthotropic

material properties,

• a smaller mesh size of 38.1 mm (1.5 in.) compared to the 50.8 mm (2 in.) of

OSB sheathing,
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• fixed boundary conditions in the locations of the shear anchors or pinned shear

anchors excluding the boundary conditions in hold-down location anchors in

comparison with all pinned bottom track boundary conditions,

• shear modulus varied from the selected 1316 MPa (191 ksi) to 10000 MPa (1450

ksi),

• a maximum and initial time increment of 0.001 in comparison with the selected

time step of 0.01, and

• a hold-down stiffness altered between LRFD prediction of 7734 kN/m (41.8

kips/in.) and 17388 kN/m (99.3 kips/in.) compared to the selected ASD pre-

diction of 2929 kN/m (56.7 kips/in.).

Table 2.7: Impact of modeling assumptions and parameters on the capacity of OSB-
sheathed CFS shear walls. The introduced computational model is mainly sensitive
to CFS-to-OSB connection response.

Sensitivity/insensitivity parameters Impact sign Peak load impact

CFS-to-OSB shear connection behavior (±) 25%

Global connection coordinate system (+) 4.9%

CFS-to-OSB shear stiffness in perpendicular local axis (−) 2− 4.4%

CFS-to-OSB contact friction coefficient (+) 1.3− 3.7%

Stud-to-track connection Cartesian modeling (−) 3.5%

CFS measured material properties (+) 1.8%

Hold-down additional track rigid body modeling (+) 1.3%

CFS-to-CFS contact friction coefficient (−) 0.4− 1%

CFS-to-OSB pull-out connection behavior (−) 0.001− 0.61%

OSB sheathing modeling (+) 0− 0.59%

OSB mesh discretization (+) 0.57%

Shear anchor modeling (BCs) (+) 0.02− 0.19%

OSB sheathing shear modulus (+) 0.03− 0.09%

Initial and minimum time increment (+) 0.04%

Hold-down stiffness (±) 0.01− 0.02%
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The peak strength impact of all these examined modeling parameters, as shown

in Table 2.7, is predicted less than 5% in comparison with the finite element wall

response using the mean connection behavior of the 30 identical tests. This study

further validates the proposed modeling approach, and suggests that the introduced

finite element method for OSB-sheathed CFS shear walls is not largely affected by

any parameter explored herein, and is primarily and foremost affected by the CFS-to-

OSB connection behavior. The examined variables do not also affect the shear wall

initial stiffness (Region OA in Fig. 2.8a), besides the hold-down stiffness and OSB

shear modulus variations, which both lead to a stiffness increase up to 19%.

2.3.3 Comparison with AISI-S400 design predictions

OSB-sheathed CFS shear wall AISI-S400 [5] design predictions underestimate the

shear wall capacity up to 32% in comparison to previous experimental studies (Ta-

ble 2.7). This current work also verifies the underprediction of design wall capacities

through the introduced finite element modeling approach. Since OSB-sheathed CFS

shear walls are highly sensitive to connection response, more shear wall test repeti-

tions are necessary for recalibration of the design predictions.

2.4 Probabilistic approach

This section aims to investigate the stochastic response of OSB-sheathed CFS

shear walls through random shear fastener characterization and subsequently through

shear wall Monte Carlo (MC) simulations. The approach (similarly to Bian et al.

[13]) is based on random fastener response distribution throughout the shear wall for

deterministic finite element analyses. The 1.22 m x 2.74 m (4 ft x 9 ft) shear wall

configuration (specimen 1c from Liu et al. [70]) is adopted for representation, and

is additionally modified to provide results not only for 152.4 mm (6 in.) fastener
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spacing, but also for 304.8 mm (12 in.) and 609.6 mm (24 in.) fastener spacing, as

illustrated in Fig. 2.11.

s1 = 152.4 mm spacing s2 = 304.8 mm spacing s3 = 609.6 mm spacing

s1

s1

s2

s2

s2

s2
s3 s3

s3

Figure 2.11: Various OSB-sheathed CFS shear walls of different fastener spacings
for stochastic response evaluation. Specimen 1c from Liu et al. [70] is used for
representation, and fastener spacings of s1=152.4 mm, s2=304.8 mm and s3=609.6
mm are illustrated. The perimeter and field stud fastener spacings vary between
the different examined configurations, while all remaining wall characteristics are
maintained the same.

2.4.1 Random CFS-to-OSB connection response

Randomness in the structural system is introduced by using the fastener peak

load as a random variable. The mean connection capacity (P3) obtained from the 30

identical tests in Section 2.1 is used as the only random variable, and all remaining

response (backbone) parameters are perfectly correlated with peak strength. The
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statistical characterization of CFS-to-OSB connections, as summarized in Table 2.1,

results to a coefficient of variation (COV=σ/µ) of 12.10% for P3. Lognormal distri-

bution is adopted for P3, and a four-point fastener backbone is defined as P1=40%P3,

P2=80%P3 and P4=30%P3 (constant post-peak P4), as discussed in Bian et al. [13].

Stiffness remains constant and equal to the stiffness of the mean (µ) fastener behav-

ior for each branch of the backbone (K1, K2, K3, K4), and thus displacement (∆1,

∆2, ∆3, ∆4) is calculated using Eq. 6, Eq. 7, Eq. 8 and Eq. 9 for each point of the

four-point backbone.

∆1 =
P1

K1

. (6)

∆2 = ∆1 +
P2 − P1

K2

. (7)

∆3 = ∆2 +
P3 − P2

K3

. (8)

∆4 = ∆3 +
P4 − P3

K4

. (9)

Fig. 2.12 depicts the generated random connection data, along with the deter-

ministic four-point mean connection response µdet. The resultant random fastener

behavior is obtained within and beyond the bounds of the deterministic µ ± σ and

µ±2σ bounds. Since the impact of fastener spacing in the stochastic wall response is

examined in this work, the number of generated random data is equal to the number

of the CFS-to-OSB connections of each of the simulated shear walls.
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μdet+2σdet μdet+σdet RandomMCμdet

K1

K2

K3

K4
(P1,Δ1)

(P2,Δ2)

(P3,Δ3)

(P4,Δ4)

P

Figure 2.12: Random CFS-to-OSB fastener behavior based on the statistical charac-
terization of the 30 tests. The average four-point mean (µdet) connection response is
illustrating including the force (P i), displacement (∆i) and stiffness (Ki) symbols to
describe each point. Random connection data are generated based on a single ran-
dom variable P 3 and by maintaining stiffness constant for all generated data. Random
fastener response is not always enclosed between the deterministic µ ± σ and µ±2σ
bounds.

2.4.2 Monte Carlo simulations of OSB-sheathed shear walls

To further investigate the connection variability effect on shear wall system behav-

ior, a probabilistic approach is used herein. Monte Carlo simulations are probabilis-

tic methods that account for the uncertainty of a system behavior through random

variable generation. Monte Carlo simulations are conducted, herein, through the

deterministic fastener-based finite element modeling approach introduced in Section

2.2, accounting for random fastener distribution. The impact of system randomness

in wall performance with 152.4 mm (6 in.), 304.8 mm (12 in.) and 609.6 mm (24

in.) fastener spacings is investigated through in total 90 simulations (30 Monte Carlo

(MC) simulations for each configuration is selected). The selection of 30 simulations

for each configuration is made based on convergence of their peak strength standard

deviation σMC . For each individual MC simulation, a different set of random fas-
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teners is generated and distributed throughout the wall CFS-to-OSB fasteners. The

MC results are illustrated in Fig. 2.13, along with the deterministic wall response

(µdet), and the bounds of the deterministic µ±σ and µ±2σ for all examined fastener

spacings.

152.4 mm spacing 304.8 mm spacing 609.6 mm spacing

μdet+2σdet μdet+σdet RandomMCμdet

Figure 2.13: Monte Carlo stochastic response of OSB-sheathed CFS shear walls for
three different spacings (identifier in lower right part of the graphs). Shear wall
response is governed by less variability in comparison to the significant connection
variability. The mean deterministic behavior is slightly higher than the mean random
behavior in all cases, while capacity decreases as fastener spacing increases. These
graphs are intended for comparisons of their statistical results for the three different
wall fastener spacings.

The results illustrate that although significant variability governs the CFS-to-

OSB fastener behavior (COV=12%), CFS shear wall behavior is governed by less

variable response (COV less than 5%) for all fastener spacings. Furthermore, the

mean behavior obtained from the Monte Carlo simulations (µMC) is always lower

than the deterministic mean response (µdet), which indicates a series system where

the peak strength is negatively affected by the system response. MC-to-deterministic

mean ratio is lower than 0.93 for all examined cases. The coefficients of variation COV

and the MC-to-deterministic mean ratios µMC/µdet are summarized in Table 2.8.
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A comparison between the different fastener spacings in shear wall response is also

conducted herein. As fastener spacing increases from 152.4 mm (6 in.) to 609.6 mm

(24 in.), fewer fasteners are used to connect OSB sheathing to CFS members, and as

a result the shear wall strength decreases. Furthermore, COV increases with fastener

spacing increase (Table 2.8), demonstrating the higher variability that exists for fewer

CFS-to-OSB connections in the perimeter and field stud. On the other, the MC-to-

deterministic mean ratio is decreased with fastener spacing increase, displaying higher

capacity difference between MC and deterministic simulations for smaller fastener

spacings.

Table 2.8: Statistical parameters of Monte Carlo simulations in comparison to deter-
ministic models for three different shear wall fastener spacings.

Shear wall µdet µMC σMC COVMC µMC/µdet

spacing (kN) (kN) (kN) (%) (−)

152.4 mm 18.07 16.81 0.586 3.486 0.930

304.8 mm 11.46 10.65 0.477 4.481 0.929

609.6 mm 7.360 6.753 0.345 5.107 0.918

These results conclude that deterministic methods slightly underpredict OSB-

sheathed CFS shear wall capacity in comparison to MC analyses. This work is in-

tended to be used for new AISI-S400 [5] design recommendations for CFS shear walls

sheathed with OSB, and specifically to introduce a more accurate resistance factor φ

than the current conservative φ=0.6.
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3 DESIGN GUIDELINES FOR COLD-FORMED

STEEL SHEAR WALLS SHEATHED WITH FIBER

CEMENT BOARD AND STEEL-GYPSUM COM-

POSITE BOARD

Chapter overview: This chapter assesses the behavior of cold-formed steel (CFS)

shear walls sheathed with high capacity fiber cement board (FCB) and steel-gypsum

(SG) composite board, experimentally evaluates the monotonic and cyclic shear con-

nection behavior, introduces Pinching4 parameters for connections, and recommends

design guidelines for high capacity shear walls.

3.1 Shear connection experimental characterization

The shear response of connections for fiber cement board (FCB) sheathing and

steel-gypsum (SG) composite sheathing with cold-formed steel members is experi-

mentally evaluated herein. These tests aim to assess and understand the behavior of

high capacity sheathings in connection response, as well as to provide fastener data

for finite element modeling applications.

3.1.1 Experimental matrix and assembly

The experimental rig, as described in Chapter 2, focuses on the response evalu-

ation of a system of eight fasteners used to connect two toe-to-toe CFS studs with

two sheathing panels of FCB or SG. The actual test rig and the stud-screw-sheathing

specimens are illustrated in Fig. 3.1. The screws are located in the flanges of CFS

studs, while the deformation of the webs of the studs is restrained via steel plates.

This test set up is influenced by Green et al. [50] and Winter [113], and is also adopted

by Vieira and Schafer [107] and Peterman et al. [83]. The cross-sectional properties
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and dimensions of all selected materials are summarized in Table 3.1. In total 18

experiments are conducted evaluating two sheathing types and two screw types un-

der monotonic and cyclic loading, as shown in the test matrix in Table 3.2. Nine

specimens are subjected to monotonic loading and nine to cyclic loading, including

three repetitions of each sheathing-screw configuration (similarly to Tao et al. [106]).

Steel-gyspum composite 

Fiber cement board 

Fixed

Δ
Exterior 
  plate

CFS
stud

Sheathing

Interior 
  plate

Test rig

30
4.

8

406.4

(Units: mm)

1.37 12.7
152.4

152.4

101.6

41.3

88.9 114.3

(a) (b)

(c) (d)

Figure 3.1: CFS-to-FCB and CFS-to-SG connection specimens and test rig. (a)
Actual test specimen photo in INSTRON machine, (b) schematic representation of
connection specimens of fiber cement board (FCB) or composite steel-gypsum board
(SG) sheathing material, (c) cross-sectional dimensions of CFS studs, and (d) inside
specimen view including dimensions of steel plates used to restrain stud webs.

Fiber cement board (FCB) of a thickness of 19.05 mm (0.75 in.) and composite

steel-gypsum (SG) board of a thickness of 16.59 mm (0.65 in.) are the two sheathing

materials selected herein. In the composite SG sheathing, light-gauge steel of a 0.719

mm (0.0283 in.) thickness is adhered to gypsum of a 15.875 mm (5/8 in.) thickness

on the exterior board side.

The two investigated self-drilling screw types are an M4 x 50 (No. 8) and an

M4 x 40 (No. 8), denoted as screw a (taken from the manufacturer) and screw b

respectively throughout this Chapter (depicted in Fig. A.1b in Appendix A). The
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diameter of both screw types is the same, while thread length and location, shank

length, and drill bit differentiate between the screws. Both screw a and screw b are

examined for the FCB sheathing panel, while the common screw b is used for the

SG-sheathed specimens. The edge tip of screw a is cut to avoid bearing towards the

stud webs, as discussed in Chapter 2.

Table 3.1: Component types and cross-sectional dimensions of the experimental con-
nection specimens. Three different sheathing-screw configurations are tested herein
(FCB-a, FCB-b, SG-b).

Component Cross-sectional dimensions (mm)

CFS Studs: 152.4 web, 41.3 flange, 12.7 lip, 1.37 thickness

FCB Sheathing: 304.8 length 406.4 width, 19.05 thickness

SG Sheathing: 304.8 length 406.4 width, 16.59 thickness ∗

Exterior plates: 406.4 length, 152.4 width, 25.4 thickness

Interior middle plates: 139.7 length, 139.7 width, 12.7 thickness

Interior corner plates: 63.5 length, 139.7 width, 12.7 thickness

Self-drilling screw a: M4 x 50, flat head

Self-drilling screw b: M4 x 40, flat head

∗ Composite: 0.719mm thick steel adhered to 15.875mm thick gypsum

Screws are located at least 38.1 mm (1.5 in.) from sheathing edges based on

AISI-S100-16 [3]. The fastener spacings of 152.4 mm (6 in.) and 304.8 mm (12 in.)

are used for the CFS-to-SG specimens (279.4 mm (11 in.) spacing in one specimen),

while a constant fastener spacing of 304.8 mm (12 in.) is selected for all CFS-to-

FCB sheathed specimens since little connection variability exists between the various

fastener spacings.

3.1.2 Test loading

Loading is applied via displacement control at the top of the stud-screw- sheathing

specimens, while the bottom part of the specimens is fixed in the test-rig.
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3.1.2.1 Monotonic tests

Monotonic tensile loading of a rate of 0.028 mm/hour (0.0011 in./hour) was ap-

plied during testing, along with a pre-test load of 45 kN (10 lbs) prior to each ex-

periment. Three monotonic test repetitions were conducted for each sheathing-screw

configuration (FCB-a, FCB-b, SG-b) to provide the reference displacements used in

the cyclic protocol.

Table 3.2: Test matrix of stud-screw-sheathing connection specimens of different
sheathing and screw types, and fastener spacings. In 18 connection specimens are
tested under monotonic and cyclic loading.

Loading Sheathing Screw Screw spacing Repetition

Type Type (mm) No.

304.8 R1

a 304.8 R2

Fiber Cement 304.8 R3

Board 304.8 R1

Monotonic b 304.8 R2

304.8 R3

304.8 R1

Steel-Gypsum b 152.4 R2

279.4 R3

304.8 R1

a 304.8 R2

Fiber Cement 304.8 R3

Board 304.8 R1

Cyclic b 304.8 R2

304.8 R3

152.4 R1

Steel-Gypsum b 304.8 R2

152.4 R3
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3.1.2.2 Cyclic tests

The CUREE protocol, as described in Krawinkler et al. [65] and widely used in

Peterman et al. [83], Fiorino et al. [40], Okasha [79], Fiorino et al. [41] connection

tests, and Liu et al. [70], Hoehler et al. [58], Branston et al. [19], DaBreo et al. [27] wall

tests, is constructed to apply the cyclic loading herein. The CUREE cyclic loading

protocol is constructed for each sheathing-screw specimen (FCB-a, FCB-b, SG-b) by

using a reference displacement ∆ defined as the 60% of the monotonic displacement

at the 80% post-peak load ∆m (∆=0.6∆m), and is composed of initiation, primary

and trailing cycles, as shown in Table 3.3. One cycle every 16 sec (frequency of 0.0625

Hz) is applied during the cyclic loading. The resultant protocol is depicted in Fig. 3.2

as a percentage of ∆, including the reference displacements of all examined specimens

configurations (FCB-a, FCB-b, SG-b).

CUREE Protocol

FCB

a b b

Δ = 7.61mm Δ = 4.59mm Δ = 6.66mm

Reference Displacements

SGFCB

Initiation
cycle

Trailing
cycle

Primary
cycle

Figure 3.2: CUREE protocol for cyclic loading constructed from initiation, primary
and trailing cycles. Displacement is plotted against time as a percentage of reference
displacement ∆. The reference displacement of each screw-sheathing configuration
(FCB-a, FCB-b, SG-b) is depicted.
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Table 3.3: CUREE protocol description for cyclic loading. The CFS-to-sheathing
connection specimens are subjected to in total 55 cycles.

Cycle Name No. of Cycles Cycle Amplitude

Initiation 6 0.05∆ ∗

Primary 1 0.075∆

Trailing 6 0.05625∆

Primary 1 0.1∆

Trailing 6 0.075∆

Primary 1 0.2∆

Trailing 3 0.15∆

Primary 1 0.3∆

Trailing 3 0.225∆

Primary 1 0.4∆

Trailing 2 0.3∆

Primary 1 0.7∆

Trailing 2 0.525∆

Primary 1 1.0∆

Trailing 2 0.75∆

Primary 1 1.5∆

Trailing 2 1.125∆

Primary 1 2.0∆

Trailing 2 1.5∆

Primary 1 2.5∆

Trailing 2 1.875∆

Primary 1 3.0∆

Trailing 2 2.25∆

Primary 1 3.5.0∆

Trailing 2 2.625∆

Primary 1 4.0∆

Trailing 2 3.0∆

∗ ∆ is the reference displacement

3.1.3 Test results of CFS-to-sheathing connections

System test results of all 18 connection specimens are illustrated in Fig. 3.3. The

inset photographs in Fig. 3.3 depict the different failure mechanisms of each sheathing-

52



screw configuration (FCB-a, FCB-b, SG-b) after testing. Full specimen photographs

after testing are shown in Fig. A.1c in Appendix A for both FCB and SG sheathings.

Strength, stiffness and failure modes are discussed herein. Peak strength (Pmax),

and initial (Kin defined at 0-40% peak strength) and secant (Ksec defined at 0-

100% peak strength) stiffness are summarized in Table 3.4 for all experiments under

monotonic and cyclic loading. In general, SG-sheathed specimens result to higher

strength and stiffness than FCB-sheathed specimens. Furthermore, monotonic tests

of all sheathing-screw specimens demonstrate higher peak strength and lower stiffness

compared to the cyclic tests (discussed in Section 3.2).

(a)

(b)

FCB-a FCB-b SG-b

FCB-a FCB-b SG-b

Repetition R1 Repetition R2 Repetition R3

Figure 3.3: System force-displacement test response of in total 18 specimens. (a)
Monotonic results (9 specimens) , and (b) cyclic connection results (9 specimens) of
each examined sheathing-screw configuration (FCB-a, FCB-b, SG-b). Three identical
repetitions of each sheathing-screw configuration are conducted under both monotonic
and cyclic loading. Inset photos illustrate the dominant failure mechanisms (either
screw pull-through or shear screw failure).
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Table 3.4: Summarized test results of the system of eight fasteners. The peak strength
Pmax, and the initial Kin and secant Ksec stiffness are presented for all 18 experiments
under monotonic and cyclic loading.

Monotonic Connection Experiments

Peak strength Initial stiffness Secant stiffness

Test assembly Pmax Kin Ksec

(kN) (kN/mm) (kN/mm)

FCB - a - R1 14.579 4.596 1.372

FCB - a - R2 15.383 4.005 1.243

FCB - a - R3 14.883 4.142 1.366

FCB - b - R1 18.051 4.749 1.608

FCB - b - R2 11.920 5.277 2.521

FCB - b - R3 13.285 4.424 1.947

SG - b - R1 20.992 4.390 1.846

SG - b - R2 22.485 6.989 2.491

SG - b - R3 21.308 7.008 2.485

Cyclic Connection Experiments

Peak strength Initial stiffness Secant stiffness

Test assembly Pmax
+ Pmax

− Kin
+ Kin

− Ksec
+ Ksec

−

(kN) (kN/mm) (kN/mm)

FCB - a - R1 12.369 − 10.318 4.442 4.700 1.625 1.354

FCB - a - R2 13.090 − 9.5116 4.601 3.787 1.719 1.783

FCB - a - R3 12.356 − 9.7672 4.188 4.637 1.622 1.282

FCB - b - R1 12.428 − 11.438 5.966 5.630 2.702 2.488

FCB - b - R2 12.691 − 12.022 6.045 5.429 2.219 2.614

FCB - b - R3 11.825 − 10.584 5.546 5.341 2.019 2.301

SG - b - R1 15.772 − 13.190 10.22 9.674 2.368 2.826

SG - b - R2 20.945 − 16.248 6.462 5.951 2.279 2.436

SG - b - R3 21.353 − 19.104 7.900 8.335 3.201 2.865

3.1.3.1 Monotonic test results

FCB-sheathed connection specimens were governed either by pull-though of the
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screws or shear failure of the screws under monotonic loading, while SG-sheathed

connection specimens were dominated by shear screw failure. Connection specimens

governed by pull-through showed higher ductility than assemblies failed due to the

abrupt shear failure.

The progression of failure in FCB-a specimens was initiated by screw tilting at the

beginning of the tests leading to the pull-through of the fasteners at peak load. The

FCB sheathing tear out or bearing, as well as shear failure of some of the remaining

screws were present post-peak. Little variability existed in all three FCB-a test repe-

titions. FCB-b connection specimens were dominated by the initial tilting and shear

failure of some of the screws followed by sheathing edge tear out and bearing. One

FCB-b test repetition exhibited a variable response, likely due to the presence of one

over-driven screw.

In SG-b connection specimens, tilting of the screws occurred at the beginning of

the tests leading to the governing shear screw failure, and eventually to the sheathing

bearing in both steel and gypsum panels around screw locations. Little behavior

variability was predicted between the three identical SG-b test repetitions. Steel and

gypsum edge separation was present in two specimens post-peak.

3.1.3.2 Cyclic test results

Both FCB- and SG-sheathed connection specimens were dominated by shear fail-

ure of some of the screws under cyclic loading. Slightly lower capacities are predicted

in the negative quadrants in comparison to the positive quadrants in all configura-

tions.

FCB-a specimens were governed by shear failure of some of the screws followed by

FCB sheathing edge tear out and/or bearing for all test repetitions. Little strength
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and stiffness variability was predicted between the test repetitions. Higher energy dis-

sipation occurred in one of the FCB-a test repetitions (repetition R2) at higher drifts

post-peak load. Similarly, FCB-b specimen response was governed by shear screw

failure accompanied by bearing of the screws at screw locations. Little variability

existed in terms of stiffness, strength and energy dissipation between the repetitions.

In general, energy dissipation of FCB-b specimens was lower than FCB-a specimens.

In SG-b specimen response, the governing failure mechanism was shear failure of

the screws accompanied by localized bearing of steel and gypsum composite sheathing

around the locations of the screws. Steel-to-gypsum separation was present post-peak

load during some of the repetitions. SG-b specimens exhibited capacity variability

in one repetition (repetition R1), due to an over-driven screw, while fastener spacing

did not affect the system connection response.

3.2 Hysteretic characterization of CFS-to-sheathing connec-

tions

To provide hysteretic parameters of CFS-to-FCB and CFS-to-SG connections,

including backbones and Pinching4 parameters, the system eight-fastener response

is converted to individual screw behavior. System load P , system displacement ∆,

and system stiffness K are converted into single connection data using the equations

derived by Vieira and Schafer [107], as described in Chapter 2. Specifically the load

at each screw is calculated as P i = P/4, the individual screw displacement is ∆i =

∆/2 and the single screw stiffness is defined as Ki = K/2. Single screw results are

intended for use in finite element modeling efforts.
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3.2.1 Monotonic tests

The average fit to data monotonic connection behavior is obtained via a four-point

nonlinear behavior obtained at 40% peak load, 80% load, 100% peak load and 30%

post-peak load, as discussed in Chapter 2. Fig. 3.4 illustrates the average fit to data

(top graphs) curves of the monotonic results of all FCB-a, FCB-b and SG-b specimens,

as obtained by averaging the response of the respective three test repetitions. The

mean backbone of each sheathing-screw configuration is summarized in terms of load

(ePfi) and displacement (ePdi) in Table 3.5 and in terms of stiffness in Table 3.6.

The average connection backbones for monotonic loading allow for quantitative

comparisons between the examined sheathing-screw configurations. Average peak

connection strength does not largely differ between specimens fastened with screw a

and specimens fastened with screw b. FCB-a specimens outperform FCB-b connec-

tion specimens in peak load by 3.66%. Initial stiffness of FCB-b configurations is

higher than FCB-a assemblies by 13%. The SG-b average response leads to higher

strength and stiffness than the response of FCB-b specimens. SG-sheathed assem-

blies outperform FCB-a assemblies by 45% in capacity and by 39% in initial stiffness.

Similarly, a higher strength of 50% and a higher stiffness of 23% is predicted for SG-b

specimens in comparison to FCB-b specimens.

3.2.2 Cyclic tests

To characterize the single screw connection response under cyclic loading, Pinch-

ing4 parameters are extracted. Pinching4 model is a uniaxial model generated by

Lowes et al. [71] and Altoontash [7] to provide load-displacement response parame-

ters for the re-loading and un-loading behavior of reinforced concrete during cyclic

loading. Since CFS fasteners are governed by pinched response, the Pinching4 model
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has been widely used in Peterman et al. [83] and Tao et al. [106] connection tests and

in Liu et al. [70] and Buonopane et al. [20] wall tests, and is adopted herein. Fig. 3.5

depicts the Pinching4 load-displacement model including variables of the symmetric

backbone parameters (points A-H), and the symmetric hysteretic parameters (points

a-f).

Table 3.5: Four-point average backbones of CFS-to-sheathing connections for mono-
tonic and cyclic tests, and Pinching4 parameters for the cyclic tests. The recom-
mended parameters are symmetric in positive and negative quadrant for all examined
FCB-a, FCB-b and SG-b assemblies.

Monotonic Connection Experiments

Backbone parameters (mean) ∗

Type ePf1 ePf2 ePf3 ePf4 ePd1 ePd2 ePd3 ePd4

(kN) (kN) (kN) (kN) (mm) (mm) (mm) (mm)

FCB - a 1.495 2.990 3.737 1.121 0.707 3.275 5.650 8.753

FCB - b 1.442 2.884 3.605 1.081 0.604 2.074 3.797 8.803

SG - b 2.160 4.319 5.399 1.620 0.736 2.579 4.829 8.395

Cyclic Connection Experiments

Pinching4 backbone parameters (mean) ∗

Type ePf1 ePf2 ePf3 ePf4 ePd1 ePd2 ePd3 ePd4

(kN) (kN) (kN) (kN) (mm) (mm) (mm) (mm)

FCB - a 0.987 1.973 2.466 0.437 0.454 1.838 3.429 6.750

FCB - b 1.135 2.270 2.837 0.348 0.415 1.447 2.299 6.083

SG - b 1.618 3.236 4.045 0.169 0.426 1.449 3.001 7.333

Pinching4 un- and re-loading parameters (mean) ∗

Type rForceP rDispP uForceP

FCB - a 0.027 0.437 0.001

FCB - b 0.046 0.346 0.001

SG - b 0.017 0.412 0.001

∗ Symmetric negative parameters

A four-point nonlinear cyclic backbone response for each sheathing-screw assem-

bly is extracted similarly to the monotonic tests pre-peak, while the fourth point
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post-peak (points D and H) is chosen at lower drifts to eliminate potential overesti-

mation of energy and/or ductility. An average backbone of the three repetitions of

all FCB-a, FCB-b and SG-b configurations is extracted by selecting the minimum

backbone curve between the positive and negative quadrant to enforce symmetry,

as illustrated in Fig. 3.4 (bottom graphs). All load and displacement parameters of

the backbones under cyclic loading are summarized in Table 3.5, and the respective

stiffness parameters are presented in Table 3.6.

FCB-a-Cyclic

FCB-a-Monotonic FCB-b-Monotonic SG-b-Monotonic

FCB-b-Cyclic SG-b-Cyclic

Individual test backbone Average backbone Symmetric average backbone (min)

Figure 3.4: Average connection response for both monotonic (top graphs) and cyclic
(bottom graphs) loading. Average of the three repetitions of each sheathing-screw
configuration is calculated through a four-point backbone for monotonic tests. Sym-
metric average backbone is obtained by using the minimum average response between
positive and negative quadrants for the cyclic tests.

To extract the hysteretic parameters (un-loading: uForceP and uForceN, re-

loading: rDispP, rForceP, rDispN and rForceN) of CFS-to-FCB and CFS-to-SG con-

nections, an optimization method in MATLAB [73] is introduced. The optimization

scheme is based on the minimization of the error in strength, cumulative energy
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and energy per cycle between each experiment and the respective Pinching4 model.

The cumulative energy of the proposed Pinching4 model is compared with the ex-

perimental cumulative energy in Fig. 3.6, concluding a result agreement for all test

configurations (FCB-a, FCB-b, SG-b) and test repetitions. To obtain the recom-

mended symmetric average Pinching4 parameters shown in Table 3.5, the un-loading

parameters (uForceP, uForceN) are set equal to 0.001 for this optimization method

as adopted by Peterman et al. [83]. The load-displacement behavior of the proposed

Pinching4 model in comparison to the response of each of the FCB-a, FCB-b, SG-b

test repetition is illustrated in Fig. 3.7.

A = (ePd1, ePf1) 
B

C

Displacement

Load

D

E

F

G

H

a

b

c

d

e

f

A

B = (ePd2, ePf2)
C = (ePd3,e Pf3)
D = (ePd4, ePf4)

a = (rDispP dmax, rForceP f(dmax))
b = (dmax, f(dmax))
c = (*, uForceN eNf3)
d = (rDispN dmin, rForceN f(dmin)) 
e = (dmin, f(dmin))
f = (*, uForceP ePf3)

Backbone parameters Pinching4 parameters

 E = (eNd1, eNf1)
F = (eNd2, eNf2)
G = (eNd3, eNf3)
H = (eNd4, eNf4)

 

Figure 3.5: Pinching4 uniaxial model composed of four-point backbones and hys-
teretic parameters (un-loading and re-loading parameters). Uppercase letters are
used to define the connection backbones, while lowercase letters are used to charac-
terize the hysteretic parametets in cyclic loading.

60



a

b

b

(a)

(b)

(c)

FCB

FCB

SG

R1 R2 R3

R1 R2 R3

R1 R2 R3
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Figure 3.6: Cumulative energy against cycle number of Pinching4 model results in
comparison to individual screw test results for (a) FCB-a, (b) FCB-b, and (c) SG-b
specimens for all repetitions. Pinching4 models are in agreement with the experimen-
tal response.

The average cyclic test results are used for comparisons between the different stud-

screw-sheathing configurations. SG-sheathed connection specimens are governed by

higher peak strength and stiffness in comparison to FCB sheathed specimens (both

FCB-a and FCB-b) by 42-64% and 39-75% respectively. Between the different screw

types in FCB-sheathed specimens, FCB-a displayed lower capacity and lower stiffness

compared to FCB-b specimens, by 15% and 26% respectively. In general, average

cyclic behavior is less strong and more stiff for the respective monotonic behavior of
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the different FCB-a, FCB-b and SG-b configurations.

Table 3.6: Stiffness of CFS-to-sheathing connections at each branch of the average
four-point backbones under monotonic and cyclic loading. K1 at 0-40% peak load, K2

at 40-80% peak load, K3 at 80-100% peak load and K4 at 100%-last point post-peak
load represent the stiffness of all examined sheathing-screw specimens.

Monotonic Connection Experiments

Sheathing K1 K2 K3 K4

-screw (kN/mm) (kN/mm) (kN/mm) (kN/mm)

FCB - a 2.115 0.582 0.315 −0.843

FCB - b 2.387 0.981 0.418 −0.504

SG - b 2.935 1.171 0.480 −1.060

Cyclic Connection Experiments

Sheathing K1 K2 K3 K4

-screw (kN/mm) (kN/mm) (kN/mm) (kN/mm)

FCB - a 2.174 0.712 0.310 −0.611

FCB - b 2.735 1.100 0.665 −0.658

SG - b 3.798 1.582 0.521 −0.895

3.3 Finite element modeling of FCB- and SG-sheathed CFS

shear walls

The behavior of high-capacity sheathings (FCB and SG composite) in the full re-

sponse of CFS shear walls is evaluated in this work through a finite element modeling

method described in Chapter 2 and adopted herein. This method suggests a fastener-

based finite element model emphasizing the significance of the CFS-to-sheathing con-

nections in the shear wall strength, stiffness and dominant failures. OSB-sheathed

shear wall experimental data used in Chapter 2 to validate the introduced method,

while this Chapter aims to expand the capabilities of this benchmark modeling effort

into FCB- and SG-sheathed shear walls.
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Figure 3.7: Resulted Pinching4 connection response in comparison with the respec-
tive experimental results for (a) FCB-a, (b) FCB-b, and (c) SG-b of all test rep-
etitions. The force-displacement response herein indicate behavior at each single
fastener. Pinching4 parameters are obtained via an optimization method based on
strength and cumulative energy.

The computational model is based on a two-stage method comprised of a linear

elastic analysis at Stage A to obtain the CFS-to-sheathing connection vector force

rotation during applied loading, and a final pushover analysis at Stage B by imple-

menting local coordinate systems to account for the vector force rotation angle. All

existing nonlinearities (connection and geometric) and plasticity are eliminated dur-

ing Stage A, while included at Stage B to obtain the resulted and accurate lateral

shear wall behavior. The alignment of one of the shear axes of the local coordinate
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systems with the vector force directions aims to accurately predict the connection

capacities (eliminating potential overestimation).

3.3.1 Computational model geometry and description

The adopted shear wall configuration is a typical 1.22 m × 2.44 m (4 ft × 8

ft) shear wall of an aspect ratio of h:w=2:1 as required by the current design AISI-

S400 [5] specifications. The selected structural shear wall archetype, as depicted

in Fig. 3.8, is adopted by the test rig of Branston [18] and is modified in terms

of sheathing type and thickness (FCB and SG sheathing instead of OSB) and CFS

profiles to implement the experimentally-derived connection response from Section

3.2. In detail, the CFS structural frame is sheathed in the exterior and is connected

to the foundation by hold-downs. Fasteners between sheathing (FCB and SG) and

CFS members (stud and tracks) are located at 12.7 mm (1/2 in.) from the edges of

the sheathing panels by varying their spacing. As recommended by AISI-S400-15 [5],

the impact of perimeter fastener spacing is investigated through a 152.4 mm (6 in.), a

101.6 mm (4 in.), a 76.2 mm (3 in.), and a 50.8 mm (2 in.) connection spacing, while

field to sheathing connection spacing is maintained constant and equal to 304.8 mm

(12 in.). The wall component dimensions and cross-sectional properties (similarly to

the connection specimens in Table 3.1) are selected as follows:

• CFS studs of a thickness of 1.37 mm (54 mils), web depth of 152.4 mm (6 in.),

flange width of 41.3 mm (3.62 in.), and lip depth of 12.7 mm (0.5 in.).

• CFS tracks of a thickness of 1.37 mm (54 mils), web depth of 152.4 mm (6 in.),

and flange width of 41.3 mm (3.62 in.).

• FCB sheathing of a thickness of 19.05 mm (0.75 in.) or SG composite of a

thickness of 16.59 mm (0.65 in.) composed of steel of a thickness of 0.719 mm
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(0.0283 in.) adhered to gypsum of a thickness of 15.875 mm (5/8 in.).

• M4 x 50 (No. 8) screw (type a) or M4 x 40 (No.8) screw (type b) for the

connections between CFS members and sheathing.

• M5 (No. 10) screws for the connections between CFS studs to CFS tracks, and

M4 (No. 8) screws for back-to-back stud connections.

• Simpson Strong-Tie S/HD10S hold-downs (Simpson Strong-Tie Co. Inc. [98]).
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Figure 3.8: FCB-sheathed or SG-sheathed CFS shear wall configurations used in the
finite element modeling approach. The adopted shear wall configuration is based on
the experimental rig of Branston [18]. A wall aspect ratio of h:w=2:1 (height:width)
is selected and the impact of fastener spacing (s=152.4mm, s=101.6mm, s=76.2mm,
s=50.8mm) is assessed under lateral loading δ.
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3.3.2 Mesh size and type

The mesh discretization of CFS members, and FCB and SG sheathing is adopted

by Chapter 2 and is displayed in Fig. 3.9 including different wall views. A fine mesh

size of 6.35 mm (0.25 in.) is selected for CFS studs and tracks, while a coarser

mesh size of 50.8 mm (2 in.) is assigned to both high capacity sheathings (FCB and

SG). All shear wall components are simulated through S4R elements which represent

four-node shell elements with reduced integration scheme and linear shape functions.

3.3.3 Component material properties

The CFS material properties include a Young’s modulus of E=203 GPa (29500

GPa), a Poisson’s ration of v=0.3, and a yield strength of σy=345 MPa (50 ksi). An

elastic perfectly plastic isotropic material is chosen for CFS members.

Due to the governing connection failures, the FCB material is simulated as an

elastic isotropic material. A modulus of elasticity equal to 8963 MPa (1300 ksi) is

used, as provided from the manufacturer.

The composite SG sheathing is simulated via a composite section definition at

which different plies of different elastic moduli are defined. SG is modeled as elastic

isotropic material by using a Young’s modulus of 203 GPa (29500 ksi) for the steel

ply, and a Young’s modulus of 3479 MPa (505 ksi) for the gypsum ply as obtained

from Gypsum Association [53]. Gypsum bending stiffness (EI)g is provided as 440-

1160 kN-mm2/mm (3000-8000 lb-in2/in) and it is converted into Young’s modulus

as described in Chapter 2 through the equation Eg=12(EI)g/tg
3, where Eg is the

gypsum Young’s modulus and tg the gypsum thickness. The gypsum modulus of

elasticity varies within 1320–3479 MPa, while the highest Eg is used herein.
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3.3.4 Connection modeling and contact definition

The modeling of the connections and the interactions in shear wall simulations is

adopted by Chapter 2.

The CFS-to-CFS connections are simulated differently than the CFS-to-sheathing

connections (CFS-to-FCB and CFS-to-SG), as follows:

• Multi-point pinned constraints (MPC) are used for CFS-to-CFS connections.

The MPC pinned definition is introduced between two nodes by setting their

displacements equal. The first chosen node is a dependent node, while the sec-

ond selected node is the independent. CFS-to-CFS connections are illustrated in

Fig. 3.9b between studs and tracks (in the middle of their flanges) and between

chord-stud webs (in two lines) spaced every 304.8 mm (12 in.).

• Connector elements Cartesian (CONN3D2) are selected for CFS-to-FCB and

CFS-to-SG connections, which act as springlike elements allowing for inde-

pendent behavior between the three translational degrees of freedom. The

first chosen node in the sheathing connected to the second selected node in

the CFS members constitute a wire at which CONN3D2 is applied. The two

shear connection directions are simulated through the average experimental

load-displacement data extracted in Section 3.2 for monotonic tests, while pull-

out behavior is set equal to a rigid behavior of a stiffness of 1750000 kN/m

(2929 kips/in.)

Contact pairs are used to define the interactions between CFS stud and track to

FCB and SG sheathing. Normal behavior to eliminate the out-of-plane penetration

of the sheathing into the CFS members is defined through a hard contact definition.

Sheathing is chosen as the master surface, while CFS structural frame is selected as

the slave surface.
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Figure 3.9: FCB-sheathed and SG-sheathed CFS shear wall mesh discretization and
connection representation in ABAQUS software. (a) Sheathing mesh is depicted along
with CFS-to-sheathing connections simulated via CONN3D2 Cartesian connector ele-
ment. (b) Exploded view of CFS components (studs and tracks), their mesh and their
connections through MPC pinned constraints are shown. Top and bottom boundary
conditions, as well as hold-downs simulated by a rigid body and a linear spring be-
havior (Spring2) are illustrated. A global coordinate system is included.

3.3.5 Applied load and boundary conditions

Monotonic applied loading of 0.08 m (3.15 in.) is introduced at the center of the

top track cross-section. A rigid body is defined at this edge of the track tied to a

reference point at which the load is applied via displacement control. A maximum

and an initial step of 0.01 is chosen, while a minimum step of 10−7 is selected.

Top boundary conditions are applied at the web of the top track via six nodes

spaced every 230 mm (9 in.), restraining the out-of-plane wall motion (y-axis). Fig. 3.9b
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illustrates the top track boundary conditions through magenta stars at the locations

where the wall is attached to the test rig in Branston [18]. Bottom boundary con-

ditions are introduced in the locations of the shear anchors in Branston [18] and are

illustrated via green crosses in Fig. 3.9b. Horizontal (x-axis) and out-of-plane (y-axis)

movement are restrained in these node locations.

Hold-downs are attached at the bottom wall part to prevent the wall uplift, as

graphically illustrated in Fig. 3.9b. A rigid body is defined at the locations of hold-

downs in both chord studs tied to a reference point in the middle. The reference point

is connected to the ground via a two-node spring element (Spring2 from ABAQUS)

at which a linear behavior is applied in a fixed direction (z-axis). The stiffness of

the hold-down spring is calculated based on ASD provisions from Simpson S/HD10S

specifications and is equal to 22292 kN/m (127.3 kips/in.) in tension. The stiffness in

compression is equal to 1000 times the tensile stiffness (Leng et al. [67]), as discussed

in Chapter 2.

3.3.6 FCB- and SG-sheathed CFS shear wall computational results

Load-displacement resultant behavior of FCB-sheathed shear walls fastened with

both screw a and screw b, and SG-sheathed shear walls fastened with screw b is

illustrated in Fig. 3.10 for the four different perimeter fastener spacings of 152.4

mm (6 in.), 101.6 mm (4 in.), 76.2 mm (3 in.), and 50.8 mm (2 in.). Strength,

stiffness and failure mechanisms are discussed herein by comparing the response of

the different sheathings, as well as the response of the various fastener spacings for

each configuration.
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50.8mm fastener spacing76.2mm fastener spacing

Figure 3.10: Force-displacement finite element response of CFS shear walls sheathed
with FCB (for screws a and b) and SG composite (for screw b) for four different fas-
tener spacings, such as 152.4mm, 101.6mm, 76.2mm, 50.8mm (identifier in the lower
right part of the graphs). Capacity percentage differences between FCB-sheathed and
SG-sheathed shear walls are decreasing as fastener spacing is reducing.

3.3.6.1 Shear wall strength and stiffness

In general, as fastener spacing decreases (more fasteners in the perimeter), the

shear wall capacity of all examined shear wall configurations increases, by 25%-48%

(Fig. 3.10). Wall peak load (Pmax) is presented in Table 3.7 for all examined sheath-

ings and perimeter spacings. Higher peak strength is predicted for SG-sheathed shear

walls of bigger fastener spacings in comparison to FCB-sheathed shear walls. This
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strength supremacy reduces as fastener spacing decreases from 152.4 mm (6 in.) to

50.8 mm (2 in.) due to the different governing failure mechanisms discussed in the

following Subsection. SG-b shear wall configurations outperform the FCB-sheathed

walls, by 0.4%-45%. FCB-a and FCB-b shear walls show little strength variability of

0.02%-2.5% for all fastener spacings.

Initial stiffness (Kin between 0-40% peak load) and secant stiffness (Ksec between

0-100% peak load) are summarized in Table 3.7 for all fastener spacings and every

sheathing-screw configuration. Higher initial and secant stiffness are predicted for

SG-sheathed walls compared to FCB-sheathed walls (both screws), by 7%–20% and

16%-53% respectively. Between the different screw types in FCB wall assemblies,

FCB-b is governed by a higher initial stiffness of 3%-6%, and a higher secant stiffness

13%-26% in comparison to FCB-a walls for the different fastener spacings.

3.3.6.2 Failure mechanisms and fastener spacing impact

The dominant failure mechanisms (in addition to strength and stiffness) in FCB

and SG-sheathed CFS shear walls are largely affected by the perimeter fastener spac-

ings. A fastener spacing of 152.4 mm (6 in.) for all examined sheathing and screw

types lead to CFS-to-sheathing connection failures, initiated from the corners of the

wall and progressively transferred to each adjacent fastener along stud and track

flanges. Failure initiates from the right bottom part of the walls and it distributes

to all of the wall corners. For 101.6 mm (4 in.), FCB-sheathed shear walls (fastened

with both screw a and screw b) are governed by CFS-to-sheathing connections, while

SG-sheathed shear wall response is dominated by the yielding and large deformation

of the top track. The 76.2 mm (3 in.) fastener spacing result to the occurrence

of both connection failures and top track failure for FCB-sheathed walls, while SG-
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sheathed walls are governed exclusively by CFS steel framing failures (top track). At

the smallest fastener spacing of 50.8 mm (2 in.), both FCB- and SG-sheathed walls

are dominated by the yielding of the top track at the location of the applied load.

Table 3.7: Finite element modeling results of FCB- and SG-sheathed shear walls of
the different screw types and perimeter fastener spacings. Secant stiffness Ksec (0-
100% peak load), initial stiffness Kin (0-40% peak load) and peak strength Pmax are
summarized for all computational models.

Secant stiffness Initial stiffness Peak strength

Assembly Spacing Ksec Kin Pmax

type (mm) (kN/mm) (kN/mm) (kN)

FCB - a

152.4 0.729 1.151 30.31

101.6 1.054 1.874 44.71

76.20 1.132 2.080 57.50

50.80 1.768 2.422 56.95

FCB - b

152.4 0.924 1.604 29.58

101.6 1.274 1.961 43.81

76.20 1.384 2.172 56.45

50.80 1.999 2.500 56.96

SG - b

152.4 1.073 1.808 42.92

101.6 1.515 2.174 56.92

76.20 1.737 2.325 56.96

50.80 2.345 2.672 57.20

The different failure mechanisms are illustrated in Fig. 3.11 through connection

progression of failure at the wall corners for higher spacings, and von-Mises stresses

in the exploded view of the top track as fastener spacing decreases. Small fastener

spacings lead to higher rigidity in shear wall perimeters, focusing the failure in the

CFS framing itself than in the connections. Fastener spacing constitutes a crucial

factor in the capacity, stiffness and failures of FCB- and SG-sheathed CFS shear

walls.
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Figure 3.11: Governing failure mechanisms of all different FCB- and SG-sheathed
shear walls. The failure mode changes as fastener spacing s decreases (152.4 mm,
101.6 mm, 76.2 mm, 50.8 mm) from CFS-to-sheathing connection progression of
failure to CFS track failures. A wall representation including local fastener coordinate
systems is depicted, along with progression of connection failures in wall corners and
von-Mises stress in top track.

3.4 Shear wall AISI-S400 design recommendations and dis-

cussion

Higher capacity sheathings (such as FCB and SG) are not currently enabled within

the AISI-S400-15 [5] design specifications. The finite element modeling suite in this

study allows for design recommendations of FCB- and SG-sheathed CFS shear walls

of different fastener spacings.
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3.4.1 Deign capacities of FCB- and SG-sheathed shear walls

Base shear capacities per unit width vn are provided in Table 3.8, accounting

for the different examined sheathings (FCB and SG), screw types (a and b), and

fastener spacings (152.4 mm (6 in.), a 101.6 mm (4 in.), a 76.2 mm (3 in.) and a 50.8

mm (2 in.)). Shear wall capacities of an aspect ratio of h:w=2:1 are summarized in

Table 3.8, as suggested in AISI-S400-15 [5] code provisions for OSB-sheathed walls.

The predicted shear wall capacities of FCB-sheathed walls (both screw types) and

SG-sheathed walls are higher than the state-of-the-art OSB-sheathed CFS shear walls.

Although OSB-sheathed experiments have been used to validate the finite element

method used to provide these design recommendations, future experimental studies

on the behavior of shear walls sheathed with FCB and SG are suggested in this work.

Table 3.8: Design recommendations of base shear capacities per unit width (vn)
of FCB- and SG-sheathed CFS shear walls. The results of four perimeter fastener
spacings are summarized for a wall aspect ratio 2:1.

Shear capacity per unit width

vn (kN/m)

Assembly Aspect Screw spacing CFS Screw

description ratio (mm) thickness size-type

(h : w) 152.4 101.6 76.20 50.80 (mm)

19.05 mm FCB 2:1 24.86 36.67 47.16 46.71 1.37 M4 - a

19.05 mm FCB 2:1 24.26 35.93 46.30 46.72 1.37 M4 - b

19.05 mm FCB 2:1 24.56 36.30 46.73 46.72 1.37 M4 ∗

16.59 mm SG 2:1 35.20 46.69 46.72 46.92 1.37 M4 - b

∗ Average of screw a and b

3.4.2 Impact of shear wall aspect ratio

To validate the design recommendations of FCB- and SG-sheathed CFS shear

walls discussed in the previous subsection, the impact of shear wall aspect ratio (h:w
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higher than 2:1 and lower than 2:1), along with different wall characteristics and

dimensions, are computationally evaluated herein and are compared with the wall

capacities for h:w=2:1. Two shear wall configurations, as adopted by Liu et al. [70]

(illustration in Fig. 3.12), are examined by maintaining the thicknesses and material

properties of the FCB and SG sheathings discussed throughout this Chapter (in-

stead of OSB sheathing) and by using the following different wall characteristics, and

component dimensions and cross-sectional properties:

• a 1.22 m x 2.74 m (4 ft x 9 ft) wall and a 1.22 m x 2.74 m (4 ft x 9 ft) wall of

an aspect ratio of 2.25:1 and 1.125:1 respectively,

• CFS tracks of a thickness of 1.37 mm and a cross section of 157.4 mm deep web,

and 38.1 mm wide flange (600T150-54),

• CFS studs of a thickness of 1.37 mm and a cross section of 152.4 mm deep web,

41.3 mm wide flange, and 12.7 mm deep lip (600S162-54),

• a perimeter staggered fastener spacing of 152.4 mm (6 in.), and a field stud

fastener spacing of 304.8mm (12in.),

• S/HDU6 Simpson Strong-tie hold-downs of a tensile stiffness of 2929 kN/m

(56.7 kips/in.) and a compressive stiffness of 1000 times the tensile stiffness.

• a ledger track detail of a thickness of 2.46 mm and a cross section of 304.8 mm

deep web, and 50.8 mm wide flange (1200T200-97) in both walls,

• a vertical seam detail of two lines of fasteners in the middle field stud spacing

152.4 mm (6 in.) for the smallest 1.125 wall aspect ratio, and

• an applied monotonic loading of 0.127 m (5 in.) via displacement control.
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The finite element modeling approach described in Section 3.3 is used to provide

the shear wall capacities of these two walls, which are compared with the predicted

shear capacities Vn based on the equations in AISI-S400 [5] design code. For wall

aspect ratios h:w≤2 and wall aspect ratios 2<h:w≤4, Eq. 10 and Eq. 11 are used

respectively.

Base shear capacity of shear walls of h:w≤2 (h:w=2.25:1 herein) is calculated as:

Vn = vnw (10)

Base shear capacity of shear walls of 2<h:w≤4 (h:w=1.125:1 herein) is defined as:

Vn = vnw(
2w

h
) (11)
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Figure 3.12: FCB- and SG-sheathed CFS shear walls of different aspect ratios of
h:w≤2 and 2<h:w≤4. (a) Representation of wall dimensions, components and ad-
ditional structural details, such as ledger, staggered fasteners and vertical seam (if
present). (b) Capacity ratio of finite element model over recommended shear strength
predictions for all sheathing-screw wall configurations (FCB-a, FCB-b, SG-b) against
wall aspect ratio. Horizontal red line indicates a perfect prediction.
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The finite element modeling results are compared to the recommended design base

shear capacities in Fig. 3.12 for all FCB-a, FCB-b and SG-b shear wall configurations

against the two examined aspect ratios. The horizontal red line indicates a perfect

prediction. The resultant shear capacity ratios Vmodel/Vnominal indicate an agreement

of computational-to-predicted capacities within 1.2%-2.5% for wall aspect ratios lower

than 2, while the recommended capacities underestimate the wall behavior by 14%-

17% for wall aspect ratios higher than 2 towards conservatism. The more conservative

recommended predictions can be associated with the 304.8 mm (1 ft) ledger in the

2.25 wall aspect ratio, which as discussed in Liu et al. [70] might behave as a h:w=2:1

wall.

The evaluation of the lateral performance of FCB- and SG-sheathed CFS shear

walls under cyclic loading is an immediate future step of this work to additionally

account for the hysteretic wall response using the CFS-to-sheathing Pinching4 pa-

rameters recommended in Section 3.3.
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4 CONCLUSIONS AND FUTURE WORK: PART

I

4.1 Concluding remarks and summary

PART I of this dissertation focused on the lateral performance of cold-formed steel

(CFS) shear walls by varying the sheathing type, the screw type, the fastener spac-

ing, the wall aspect ratio, the CFS thickness, the hold-down type, and the presence

of constructional details. The shear connection response was also evaluated under

monotonic and cyclic loading, and hysteretic parameters were extracted. The conclu-

sions of this dissertation are multifaceted and shed light on innovative higher capacity

shear wall design systems.

4.1.1 OSB-sheathed shear walls and connections

A benchmark finite element modeling approach of OSB-sheathed CFS shear walls

was introduced accounting for CFS-to-OSB experimental connection variable behav-

ior.

The shear behavior of the connections between CFS members and OSB sheathing

were experimentally examined and their inherent response variability was quantified

through 30 identical connection tests under monotonic loading. The results demon-

strated a significant connection capacity variability of 38%. The connection behavior

was governed by two failure mechanisms: a) the pull-through of the screws followed

by bearing in the locations of the screws, and b) the shear failure of the screws

(broken screws) followed by bearing. An average backbone connection behavior was

extracted, along with statistical parameters.

This study also introduced a high fidelity fastener-based finite element model-

ing approach to evaluate and understand the lateral behavior of CFS-shear walls
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sheathed with OSB sheathing. The introduced modeling approach was compared

and validated with nine different experimental configurations throughout the liter-

ature. The results showed that the introduced computational modeling approach

accurately captured strength, stiffness, and failure modes in accordance with the ex-

periments. CFS-to-OSB connection behavior represented the most critical load path

in shear wall response (initiated from the corners and distributed along stud and

track length), and thus important attention was given to their simulation through

experimentally-derived behavior. An extensive parametric analysis was conducted

and showed that CFS-to-OSB connections response varying between µ±σ an µ±2σ

significantly affected the shear wall response by 12% and 25% respectively. All the

remaining examined parameters did not impact (less than 5%) the shear wall capacity

and failures, while stiffness was additionally affected by the OSB shear modulus and

the hold-down stiffness.

To further address the connection variability and its effect in shear wall capac-

ity, a probabilistic analysis was conducted. Randomness was introduced in the sys-

tem behavior through the average connection peak load variable, while stiffness was

maintained constant in all generated random fastener backbones. Monte Carlo (MC)

simulations on OSB-sheathed shear walls were conducted for three fastener spacings

(152.4 mm (6in.), 304.8 mm (12 in.), 609.6 mm (24 in.)), illustrating a wall vari-

ability less than 5% for all cases. Higher coefficient of variation was predicted as

fastener spacing increased, while MC-to-deterministic mean ratio reduced as fastener

spacing increased indicating a series system. These results concluded that although

significant variability governed the connection response, less variability dominated

the OSB-sheathed CFS shear wall response.
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4.1.2 Higher capacity sheathed shear walls and connections

The impact of higher capacity sheathings, such as FCB and composite SG, was

investigated using two screw types on connection behavior via monotonic and cyclic

experiments, and on full shear wall behavior via high fidelity finite element analyses.

The shear connection behavior of FCB-sheathed specimens fastened with screw

a and screw b, and SG-sheathed specimens fastened with screw b was evaluated via

an experimental program of 18 tests (9 monotonic and 9 cyclic). Little variabil-

ity occurred between the identical repetitions of each sheathing-screw configuration,

and screw pull-through or shear screw failure governed the connection response for

both FCB and SG sheathings, followed by sheathing tear out and/or bearing. CFS-

to-FCB and CFS-to-SG capacities were predicted higher than the state-of-the-art

CFS-to-OSB connection capacities, while stiffness was slightly higher than OSB-

sheathed specimens. SG-sheathed specimens resulted to the highest behavior than

FCB-sheathed specimens (screws a and b). Furthermore, average backbones and

Pinching4 hysteretic parameters were obtained from these tests and proposed in this

work through an optimization method which minimized the error in strength and

cumulative energy.

CFS shear walls sheathed with FCB and SG composite sheathings were compu-

tationally examined for four different fastener spacings (152.4 mm (6 in.), 101.6 mm

(4 in.) and 76.2 mm (3 in.) and 50.8 mm (2 in.)) under monotonic loading. The fi-

nite element modeling results illustrated that SG-sheathed shear walls were governed

by a higher peak strength and a higher initial stiffness for bigger fastener spacings

(higher than 101.4 mm (4 in.)) in comparison with FCB-sheathed shear walls (screws

a and b), while lower perimeter fastener (lower than 76.2 mm (3 in.)) spacings leaded

to similar capacities between the different sheathings. This was attributed to the
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different dominant failure mechanisms. As fastener spacing on the wall perimeter

reduced from 152.4 mm (6 in.) to 50.8 mm (2 in.), the governing failure mechanism

shifted from CFS-to-sheathing connection failures to CFS members failures (yielding

of the top track). Specifically, FCB-sheathed walls were governed by CFS-to-FCB

connection failures for fastener spacing higher than 101.6 mm (4 in.), while top track

yielding and large deformation governed the wall response for 50.8 mm (2 in.) fas-

tener spacing. SG-sheathed CFS shear walls were dominated by connection failures

for 152.4 mm (6 in.) fastener spacing, while fastener spacing lower than 101.6 mm

(4 in.) leaded to the CFS framing failure. This study also introduced innovative de-

sign recommendations for FCB- and SG-sheathed shear walls that are not currently

enabled in the design specifications of AISI-S400 [5]. Shear capacities per unit width

were recommended for these systems focusing on a wall aspect ratio of h:w=2:1, as

in the current AISI-S400 provisions for OSB-sheathed walls. The wall aspect ratio

and the different wall characteristics and constructional details did not affect the rec-

ommended shear capacities. FCB-sheathed and SG-sheathed CFS shear wall shear

capacities were predicted higher than the state-of-the-design OSB-sheathed walls.

4.2 Future extensions

This study provided a robust fastener-based finite element modeling method to

evaluate the lateral behavior of sheathed CFS shear walls, and recommended inno-

vative design recommendations of high capacity sheathing options. To expand this

research and enhance the current findings, the following future extensions are sug-

gested:

• Introduction of a new and accurate design method for sheathed CFS shear walls

is an immediate extension of this work. This will aim to improve the conserva-
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tive resistance factor φ=0.6 considered in the current design code provisions for

OSB-sheathed CFS shear walls. The probabilistic approach conducted in this

dissertation can be used towards this direction by calculating a new resistance

factor based on MC-to-deterministic mean capacity ratios and the predicted

coefficients of variations for the different fastener spacings. This will improve

the design predictions for both researchers and practitioners.

• An experimental program of FCB- and SG-sheathed CFS shear walls is a future

step of this study. Although experiments on OSB-sheathed walls are used to

validate the introduced computational approach in this work, monotonic and

cyclic experiments on FCB- and SG-sheathed CFS shear walls will further sup-

port the recommended design capacities. This test program can focus on various

wall configurations and characteristics, and provide new wall data to enable the

adoption of their superior capacities in the current AISI-S400 code. These high

capacity sheathings can be also tested and used in diaphragm design.

• Introduction/modification of the proposed finite element modeling approach to

account for the hysteretic fastener response under cyclic loading. This will allow

the use of the recommended experimental Pinching4 parameters for FCB- and

SG-sheathed connections and the investigation of their cyclic impact in shear

wall behavior. Phenomenological performance-based finite element modeling

approaches, as well as high-fidelity computational methods can benefit from

the Pinching4 connection behavior.

• Investigation of new shear wall characteristics, such as tunable fastener patterns,

and exploration of modular CFS wall systems is another suggestion of this

work. The benchmark modeling approach of this work can be used to efficiently

provide predictions of panelized wall systems in the sub-system level, as well
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as in the full building level. This will allow the investigation of innovative

prefabricated wall systems based on optimal connection pattern and number,

sheathing type and thickness or detail presence of each individual application.

• Development of a simplified modeling approach for sheathed cold-formed steel

shear walls is a promising future extension of this work. For example, a spring-

like element able to represent the full shear wall lateral response will largely

reduce the model computational cost, and will also allow for full building sim-

ulations using high fidelity modeling approaches. This method, along with the

introduction of analytical closed-form equations, can accurately, cost-efficiently

and time-efficiently describe the full shear wall behavior and be easily adopted

by engineers in academia and industry.

• Innovative energy absorbing elements/methods to improve the CFS building

performance can be examined under earthquake events as a future step. Addi-

tive manufacturing and 3D printing techniques can enhance this effort by fabri-

cating new mechanical metamaterials that can provide properties unachievable

in the nature (further discussed in PART II of this dissertation). Cellular lat-

tice structures of superior properties, such as multi-stability or auxeticity, can

benefit CFS construction by replacing their connecting elements or sheathings.

To conclude, this dissertation is the first research effort of providing an accurate

benchmark modeling approach of OSB-sheathed walls by tackling the connection

variability, while it provides pioneering design recommendations of FCB- and SG-

sheathed higher capacity walls and hysteretic Pinching4 connection parameters. As

a result, its expansion will benefit the research community and the design through

new and more advantageous methods than the common state-of-the-design structural

applications.
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Part II:

Mechanical Performance of Metal

Plate-Lattice Architected Materials



5 INTRODUCTION: PART II

5.1 Architected materials: background and motivation

The increased demand of lightweight materials with advanced strength and stiff-

ness properties in structural applications pushes to the forefront innovative man-

made materials to enhance the state-of-the-art material options. The accelerated

development of 3D printing and additive manufacturing techniques (such as direct

laser writing (DLW), self-propagating photopolymer waveguides (SPPW), projection

micro-stereolithography (PSL)) enhances the opportunities of obtaining new mate-

rials of intricate architectures with advantageous and unique properties previously

unachievable in nature. Significant attention has been given to cellular solids (mate-

rials composed of solids and voids) with mechanical properties determined primarily

by their architectural design rather than their solid constituent material. These mate-

rials are called architected materials, and along with lattice design adaption (solids in

crystal locations) in their topology, they can offer superior material properties and ex-

pand the design charts to low-density structures with high strength, stiffness, fracture

toughness, damage tolerance, energy absorption, and stability. Furthermore, extraor-

dinary properties such as negative Poisson’s ratio, negative stiffness, near zero shear

modulus, recoverability, and negative thermal expansion among others, have been

attained during the last years by pushing outside of the state-of-the-art methods and

by introducing new mechanical metamaterial architectures.

The rapid evolution of engineering materials is discussed by Ashby [9] and is de-

scribed via material property charts including combinations of two material properties

at each of the graphs. These charts indicate not only current material capabilities,

but also unattainable property combinations that existing materials haven’t achieved

yet. This allows for the investigation of innovative architected materials of different
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geometries to achieve new advantageous properties (Zheng et al. [120], Bauer et al.

[10]). Fleck et al. [45] discusses the abilities and behavior of different architectures of

micro-architected materials in terms of strength, stiffness and fracture toughness. A

significant parameter towards the exploration of different mechanical metamaterials

is the use and development of various additive manufacturing techniques. For exam-

ple, a three-dimensional holographic lithography is explored by Campbell et al. [21]

to fabricate microstructures, such as photonic crystals. A laser powder-bed fusion

method is used by Wang et al. [111] for the fabrication of high strength and ductility

material architectures, while self-propagating photopolymer waveguide approach is

studied by Jacobsen et al. [61] for the fabrication of open-cell truss structures, and is

also used by Schaedler et al. [88] to construct ultralight microlattice structures with

superior properties.

Imperfection sensitivity has been extensively examined in cylindrical shells and

spherical shells by describing their behavior with knockdown factors (Seide et al.

[92], Peterson et al. [86], Gerasimidis et al. [47], Yadav and Gerasimidis [115], Yadav

et al. [114]). Since geometric imperfections are inevitable in real-life (through additive

manufacturing or big-scale construction), understanding the imperfection sensitivity

of cellular materials and provide knockdown factors can shed light on new properties

aiming to fill the empty space in the design charts. Imperfection sensitivity has

been greatly examined in two-dimensional cellular solids by investigating the impact

of six imperfection types on the yielding of 2D foams (Chen et al. [23]), as well as

the effect of five imperfect morphologies on the fracture toughness of 2D lattices

(Romijn and Fleck [87]). Furthermore, the imperfection sensitivity of isotropic 2D

lattice structures, such us triangular, Kagome and hexagonal grids, is examined by

Symons and Fleck [101] with regards to their elastic moduli. Three-dimensional lattice

sensitivity to imperfections is also examined via a Selective Laser Melting technique
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(Liu et al. [68]), assessing the mechanical performance and failure mechanisms of

metallic imperfect lattice structures.

Innovative mechanical metamaterials, as obtained by tailoring their architectures,

offer new and superior material properties unachievable by any traditional structural

materials, such as concrete or steel. The interconnection of Materials Engineering and

Structural Engineering can offer significant benefits to the current construction meth-

ods. A notable example is the Eiffel Tower, which is based on a structural hierarchical

design. Focusing on innovative ultra-thin cellular lattice structures, understanding

their capabilities, and expanding them into imperfection insensitive properties, not

only will further fill the material design charts, but will also advance the structural

design code provisions.

5.2 Literature review

Cellular lattice materials are categorized either as closed-cell architectures (such as

honeycombs) or open-cell architectures (such as trusses). This classification emerges

from the geometry of the lattices which determines the deformation and the failure

mechanisms of each topology. Open-cell geometries are stretching-dominated mate-

rials (strut stretching failures), while closed-cell geometries are bending-dominated

materials (cell wall bending failures). The different architected material topologies

that have received particular attention during the past years can be chronologically

classified as foams and honeycombs, truss-lattices, shell-lattices, and plate-lattices (as

illustrated in Fig. 5.1).
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Plate-lattices
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Honeycombs(b)

Truss-lattices(c)

(e)

Figure 5.1: Architected material topologies: (a) foams (photo by Deshpande and
Fleck [35]) and (b) honeycombs (photo by Papka and Kyriakides [81]), (c) truss-
lattices (photo by Gross et al. [51]), (d) shell-lattices (photo by Bonatti and Mohr
[17], and (e) plate-lattices (photo by Tancogne-Dejean et al. [102]).

5.2.1 Foam and honeycomb material research

Honeycombs (two-dimensional cellular materials) and foams (three-dimensional

cellular materials) have been investigated by multiple research efforts over the past

years. Gibson et al. [49] investigated the elastic and plastic mechanical properties

of silicone rubber and aluminum honeycombs of different densities and cell geome-

tries via experimental and analytical methods. Polycarbonate honeycombs have been

uniaxially crushed (Papka and Kyriakides [82]), and biaxially crushed (Papka and
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Kyriakides [81]), demonstrating localized stability-governed collapse mechanisms.

The mechanical performance of foams has been evaluated by Gibson and Ashby

[48] through testing and analysis of three types of polymeric foams describing their

different collapse mechanisms. Deshpande et al. [34] investigated foams governed of

stretching-dominated or bending dominated behavior based on the rigidity of the pin-

jointed assemblies of the materials. The impact of strain rate is studied by Deshpande

and Fleck [35] via testing of two ultra-light aluminum alloy foams.

5.2.2 Truss-lattice material research

The mechanical performance of truss-lattices have been extensively studied by

multiple research efforts (Wallack and Gibson [109], Wicks and Hutchinson [112]),

displaying their superior properties against foams and honeycombs. Significant at-

tention has been given to octet truss-lattice materials and their mechanical properties

(Deshpande et al. [36], Mohr [77], Elsayed and Pasini [39]). Furthermore, fracture

toughness of the octet truss has been evaluated by O’Masta et al. [80], while defect

sensitivity has been assessed by Gross et al. [51]. Nanolattices also received a lot of

interest by multiple researchers (Gu and Greer [52], Bauer et al. [11]), demonstrating

the significant benefits they offer in terms of strength and stiffness, and their poten-

tial on upscaling and hierarchy. Meza et al. [75] studied the resilience of hierarchical

materials using the octahedron and octet-truss with regards to strength, stiffness,

and failure mechanisms. Tancogne-Dejean and Mohr [104] evaluated the response

of elastic isotropic truss lattices of cubic symmetry through analytical, experimental

and computational work, while Tancogne-Dejean and Mohr [105] showed that tapered

truss-lattices resulted to higher elastic moduli and specific energy absorption than the

standard rod truss-lattice of the same geometry.
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5.2.3 Shell-lattice material research

Recent studies have focused on shellular lattice architectures (continuous smooth

shells) concluding their superiority in elastic moduli in comparison to truss-lattices.

Han et al. [55] experimentally examined the response of shellular structures of a Triple

Periodic Minimal Surface (TPMS-like) in comparison to microlattices and nanolat-

tices, while Han et al. [54] introduced a fabrication method of such structures. Bonatti

et al. [16] introduced and investigated optimized smooth-shell TPMS-like materials

of face-centered cubic (FCC) geometry via experimental and computational work,

demonstrating their advantageous properties against the octet truss. Bonatti et al.

[17] expanded this work into additional smooth-shell architectures based on the simple

cubic (SC) and body centered cubic (BCC) geometries. Lee et al. [66], computation-

ally evaluated the response of shell-lattices of Schwarz Primitive TPMS structures

with periodic boundary conditions, while Al-Ketan et al. [6] experimentally exam-

ined the mechanical properties of primary interpenetrating phase composites (IWPs)

of TPMS structures under compression in comparison to truss-lattices.

5.2.4 Plate-lattice material research

Recently, a new generation of lattice materials composed of plates in the closest-

packed planes of crystals, denoted as plate-lattices, has been explored by Berger et

al. [12] and Tancogne-Dejean et al. [102]. Plate-lattice architectures of cubic sym-

metry have been proposed and compared with truss lattices and/or foams achieving

high stiffness (Hashin Shtrikman upper bound [56] is reached) and elastic isotropy.

Specifically, Berger et al. [12] numerically and analytically examined the stiffness and

elastic isotropy of a cubic+octet foam combination (or simple cubic and face-centered

cubic (SC-FCC) combination), while Tancogne-Dejean et al. [102] experimentally and
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numerically evaluated the stiffness and elastic isotropy of SC-FCC (simple cubic and

face-centered cubic) and SC-BCC (simple cubic and body-centered cubic) in com-

parison to truss-lattices of the same architectures. Furthermore, strength has been

investigated by Tancogne-Dejean et al. [103] for different strain rates via experimen-

tal and computational methods focusing on SC-BCC, and by Crook et al. [26] for

SC-FCC plate-nanolattices showing that plate-lattices can also reach the strength

theoretical upper bound (Suquet bound) through experimental and numerical ap-

proaches. Plate-lattices have been also approached by Chen et al. [25] and Kader

et al. [62] enhancing their advantageous properties against different types of cellular

materials and by evaluating their cell morphology, respectively. Besides closed-cell

plate-lattices, half-open-cell plate-lattices are also investigated by Duan et al. [38]

in comparison to truss-lattices and smooth-shell lattices via experiments and finite

element modeling.

Although stiffness has been extensively evaluated showing that plate-lattices are

the stiffest materials to date, and strength has been widely approached for high rel-

ative densities indicating that plate-lattices are additionally the strongest existing

lattices, to the author’s knowledge strength and stability of low-density plate-lattice

materials has not yet been reported. The understanding of their behavior and their

capabilities is crucial for both Materials Engineering and Structural Engineering,

since they can fill the current charts with new properties previously unattainable by

any architected materials, and enhance the design options with innovative and supe-

rior structural materials. The adoption of these materials in structural applications,

and specifically in lightweight construction, can potentially improve the performance

of infrastructure towards reliability and resilience. Plate-lattices can offer benefits,

such as ultra-high strength and stiffness, imperfection insensitivity, energy dissipation

mechanisms, damage tolerance, and act as self-healing materials and repair structural
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components in structural applications.

5.3 Dissertation organization of PART II

This work aims to provide pioneering research on the imperfection sensitivity of

plate-lattice architected materials under compression and propose new and accurate

knockdown factors for these structures. This study is a high-fidelity finite element

modeling approach focused on perfect and imperfect plate-lattices of cubic symmetry

with periodic boundary conditions. Eigenmodes are used to introduce the different

initial imperfections to the imperfect plate-lattice architectures.

PART II of this dissertation is organized as follows:

• Chapter 5 (this Chapter) includes the introduction and the motivation for PART

II of this dissertation, as well as the literature review for the examined fields

and the contribution of this study to the research community and the design.

• Chapter 6 focuses on the mechanical elastic properties of metal plate-lattice ma-

terials of cubic symmetry by introducing finite element models under compres-

sion loading to observe elastic buckling and by comparing the resulted elastic

moduli with the theoretical stiffness bound (Hashin-Shtrikman upper bound).

• Chapter 7 presents the stability evaluation and the imperfection sensitivity in-

vestigation of plate-lattices. Analytically, this Chapter is composed of fully

elastic-plastic nonlinear finite element analyses of perfect and imperfect lattice

architectures under compression focusing on low relative densities. This Chap-

ter partially presents the work of Derveni et al. [33].

• Chapter 8 includes the summary and overall conclusions of PART II of this

dissertation, as well as future extensions of this work.
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6 ELASTIC PROPERTIES AND ELASTIC BUCK-

LING OF METAL PLATE-LATTICE MATE-

RIALS

Chapter overview: This chapter examines the elastic response of plate-lattice ma-

terials, introduces the finite element method, evaluates the Young’s, shear and bulk

modulus in comparison with the theoretical bounds, and predicts the elastic critical

buckling strain for various relative densities.

6.1 Plate-lattice architected materials

Plate-lattice architected materials are innovative materials composed of plates of

different orientations in space used to transfer loading between the adjacent mem-

bers of the lattice structures. The selected different plates of plate-lattices feature a

cubic symmetry and are located in a way similar to crystal structures. Berger et al.

[12] introduced an isotropic plate-lattice structure composed of a combination of the

simple cubic (SC) and face-centered cubic (FCC) symmetry (cubic+octet geometry),

and Tancogne-Dejean et al. [102] introduced a design map of more geometries in-

cluding additionally the body-centered cubic (BCC) symmetry and its combinations

(SC-BCC, SC-BCC-FCC) along with SC-FCC. These plate-lattices showed superior

properties in comparison to any existing mechanical metamaterials and are adopted

and investigated in this current study.

6.1.1 Lattice topology

Unit-cells of SC, BCC, FCC, SC-BCC and SC-FCC, as adapted from Berger

et al. [12] and Tancogne-Dejean et al. [102], are constructed as shown in Fig. 6.1.

The anisotropic SC, BCC and FCC structures are used to obtain the isotropic com-
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binations SC-BCC and SC-FCC using fractions of the thickness of SC plates (tSC),

as indicated in Fig. 6.1. To construct SC-BCC, the thickness of BCC plates is equal

to tBCC=
√

2tSC , while to construct SC-FCC the thickness of FCC plates is equal

to tFCC=9tSC/8
√

3. The Zener ratio ζ, as defined in Eq. 12, is illustrated against

relative density ρ* for SC-BCC and SC-FCC in Fig. 6.1, demonstrating the isotropy

of these structures.

The Zener ratio is calculated as:

ζ =
2C3

(C1 − C2)
(12)

where C1, C2 and C3 are the three elastic constants of the stiffness tensor matrix

for geometries of cubic symmetry, as defined in Eq. 13. A Zener ratio equal to ζ=1

indicates isotropy.

The stiffness tensor is defined as:

C =



C1 C2 C2 0 0 0

C2 C1 C2 0 0 0

C2 C2 C1 0 0 0

0 0 0 C3 0 0

0 0 0 0 C3 0

0 0 0 0 0 C3


(13)

6.1.2 Plate-lattice size

This work examines the mechanical performance of plate-lattices of different rel-

ative densities. The ratio of the volume of the solid phase (V s) by the volume of the

unit-cell (V ) defines each relative density ρ*. Relative density varies by altering the
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thickness of the plates (tSC , tBCC , tfCC) and maintaining constant the side length

(L) of the unit-cells. Side length is equal to L=16.404 mm (0.646 in.), while thickness

varies from 1.367 mm (0.0538 in.) to ultra-thin 5.468 µm (0.000215 in.). As a result,

four different relative densities ρ*=25%, ρ*=15%, ρ*=5% and ρ*=0.5% are selected.

Given that SC, BCC, FCC, SC-BCC and SC-FCC geometries are not composed of the

same number of plates, the plate thicknesses vary between the different geometries of

the same relative densities ρ*, as summarized in Table 6.1.

BCC

SC

FCC

SC-BCC

SC-FCC

tSC

tSC

2t S
C

t SC

9tSC /8
3

Figure 6.1: Plate-lattice architected materials of cubic symmetry representation. The
anisotropic SC, BCC and FCC, and their isotropic combinations SC-BCC, SC-FCC
are constructed. Isotropy is obtained via thickness ratios of the constituent geometries
(indicated in the arrows using the SC thickness (tSC)). The Zener Ratio (ζ) against
relative density (ρ*) is illustrated to show the isotropy of SC-BCC and SC-FCC.

6.2 Finite element modeling

High-fidelity computational modeling of plate-lattices is introduced through finite

element software ABAQUS (2018) [2]. The modeling approach and assumptions do

not alter with the architecture and relative density, in order to obtain consistent

and comparable results for all simulations. Material properties, boundary conditions,
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analysis solver, loading conditions, mesh type and mesh size are described herein.

All SC, BCC, FCC, SC-BCC, SC-FCC (adapted from Tancogne-Dejean et al. [102]

and/or Berger et al. [12]) geometries are constructed and assembled in ABAQUS.

Table 6.1: Plate thickness of all SC, BCC, FCC, SC-BCC and SC-FCC for relative
densities of ρ*=25%, ρ*=15%, ρ*=5% and ρ*=0.5%. Thickness varies for the different
geometries of the same relative densities.

Plate thickness (mm)

Geometry ρ*=25% ρ*=15% ρ*=5% ρ*=0.5%

SC tSC : 1.367 0.820 0.273 0.027

BCC tBCC : 0.483 0.290 0.097 0.010

FCC tFCC : 0.592 0.355 0.118 0.012

SC-BCC tSC
∗: 0.273 0.164 0.055 0.005

tBCC : 0.387 0.232 0.077 0.008

SC-FCC tSC : 0.547 0.328 0.109 0.011

tFCC
∗: 0.355 0.213 0.071 0.007

∗ Minimum thickness also denoted as t in Chapter 7

6.2.1 Constituent material properties

Metal plate-lattices are simulated, and specifically PH1 stainless steel powder

properties are used to simulate the base material. The base material is modeled as

elastic herein. The Young’s Modulus of the selected stainless steel material is equal to

Es=200 GPa (29000 ksi) and the Poisson’s ratio is equal to ν=0.3. The base material

density is equal to ρ=7.8 g/cm3 (0.28 lb/in.3).

6.2.2 Mesh size and element type

The plate-lattices are composed and assembled of plates of different orientations

in space. This requires same mesh size and element type between the different plates

of each architecture in order to merge all the nodes of the plates and to unify the
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assembly. Mesh type of three-dimensional four-node S4 shell elements are selected

from ABAQUS library and a uniform mesh size of 0.3 mm (0.012 in.) is used for

all plate-lattice unit-cells. All the nodes in the intersections of plates are merged by

merging their mesh. Fig. 6.2 illustrates the meshed SC, BCC, FCC, SC-BCC, and

SC-FCC geometries and their dimensions.

6.2.3 Lattice boundary conditions

All unit-cells are simulated by using periodic boundary conditions (PBC). Peri-

odicity is used to represent structures that can be repetitively assembled in all x-,

y-, z-directions. This eliminates any possible impact of finite size structures ver-

sus tessellations. Periodic boundary conditions are applied via virtual nodes which

are connected with equations constraints. The rotation of the boundary surfaces

are allowed, while displacements are constrained. Based on the mesh, nodes of the

plate-lattice boundary surfaces in opposite sides of the unit-cells are connected via

kinematic constraints.

6.2.4 Analysis solver and loading conditions

This study examines both, elastic properties and elastic buckling of plate-lattices

of different relative densities. For this reason, Linear Perturbation Analyses are con-

ducted, and specifically Static step is chosen to evaluate the elastic moduli, and Buckle

step is selected to assess the elastic buckling of SC, BCC, FCC, SC-BCC, SC-FCC

plate-lattice materials. A strain of 0.01 mm/mm is applied in all unit-cells for static

and buckle analyses. To define the elastic unit-cell properties, uniaxial compression

in all x-, y-, z- directions is applied, as well as shear in all three directions, and bi-

axial compression in the three directions (simultaneous compression in two axes). To

evaluate the elastic buckling capacity, uniaxial compression in x-direction is applied,
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as shown in Fig. 6.2.
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Figure 6.2: Mesh representation for all SC, BCC, FCC, SC-BCC and SC-FCC plate-
lattices. The selected mesh size is equal to 0.3 mm (0.012 in.). The unit-cell length
remains constant and equal to L=16.404 mm (0.646 in.) and thickness varies with
relative density for the different architectures (tSC , tBCC , tFCC). Uniaxial compres-
sion is applied for buckling evaluation, while axial compression, shear and biaxial
compression are applied for elastic moduli evaluation.

6.3 Elastic results and discussion

The linear elastic performance of plate-lattices are numerically examined and re-

sults are provided for stiffness, strength and failures. The resulted elastic moduli are

presented to capture the stiffness of SC, BCC, FCC, SC-BCC and SC-FCC, and the

resulted elastic critical buckling strains to understand their capacities. The metal

elastic moduli predicted herein are also used to validate the introduced finite element

(FE) modeling approach by comparing them with Tancogne-Dejean et al. [102] poly-
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mer respective moduli. The introduced FE model is further expanded into stability

predictions.

6.3.1 Elastic moduli of plate-lattices

Plate-lattice Young’s modulus E, shear modulus G and bulk modulus K are eval-

uated and discussed herein. Fig. 6.3 illustrates the resultant elastic moduli for all

anisotropic SC, BCC, FCC architectures and all isotropic SC-BCC, SC-FCC for the

different examined relative densities of ρ*=0.5%, ρ*=5%, ρ*=15% and ρ*=25%. Nor-

malized Young’s modulus, shear modulus and bulk modulus are obtained by dividing

these elastic properties by the respective moduli of the solid material (Es, Gs, Ks)

multiplied by the respective relative densities (ρ*) against relative densities. De-

formed shapes of the different loading conditions are illustrated in Fig. 6.4 through

von-Mises stress contours of all examined geometries (red color: highest stresses, blue

color: lowest stresses).

6.3.1.1 Anisotropic SC, BCC, FCC plate-lattices

The Young’s modulus (E), the shear modulus (G) and the bulk modulus (K) of the

anisotropic plate-lattices (SC, BCC, FCC), as shown on the right graphs of Fig. 6.3,

refer to the [100] loading direction. In detail, the Young’s modulus of SC is the highest,

while the Young’s modulus of FCC is the lowest between the examined architectures.

An opposite trend is obtained for the shear modulus, while bulk modulus is similar for

all architectures. These results are in accordance with Tancogne et al. [102] (shown

in Fig. S1 in their supplementary information for polymer specimens).
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SC BCC FCC SC-FCCSC-BCC(a)

(b)
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Figure 6.3: Elastic moduli for the anisotropic SC, BCC and FCC, and for the isotropic
SC-BCC and SC-FCC in comparison to the theoretical Hashin Shtrikman (HS) upper
bound. a) Normalized Young’s modulus against relative density (ρ*), b) normalized
shear modulus versus ρ*, and c) normalized bulk modulus against ρ* for all geome-
tries. Isotropic plate-lattices reach the HS bound for low relative densities.
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Figure 6.4: Von-Mises stresses of (a) SC, (b) BCC, (c) FCC, d) SC-BCC and e) SC-
FCC for different loading conditions, such as uniaxial compression, shear and biaxial
compression. The red color represents the highest stresses, the blue the lowest and
all the remaining are intermediate stresses.
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6.3.1.2 Isotropic SC-BCC, SC-FCC plate-lattices

The elastic moduli E, G and K of the isotropic plate-lattices (SC-BCC, SC-FCC)

are depicted on the left graphs of Fig. 6.3, along with the Hashin-Shtrikman (HS)

bound predictions. The HS bound is the theoretical stiffness bound for composite

two-phase materials. Both, SC-BCC and SC-FCC, are able to achieve the HS upper

bound for all Young’s, shear and bulk modulus for low relative densities. The HS

bound for all elastic moduli is calculated based on Eq. 14, Eq. 15, Eq. 16, Eq. 17 for

bulk KHS, shear GHS and Young’s EHS modulus, and for the Poisson’s ratio vHS,

respectively. These results are also in agreement with Tancogne-Dejean et al. [102],

and they support the superiority of plate-lattices in terms of stiffness in comparison

to any architected materials investigated to date. It needs to be mentioned here

that differences for higher relative densities between this current work and Tancogne-

Dejean et al. [102] are attributed to the shell element choice in comparison to solid

element selection, while for smaller relative densities the resulted stiffness is identical

in both studies. This current work investigates low relative densities between ρ*=0.5%

and ρ*=25% to provide accurate results.

The Hashin-Shtrikman bulk modulus upper bound is defined as:

KHS = Ks +
1− ρ∗

(Kv −Ks)−1 + ρ∗(Ks + 4
3
Gs)−1

(14)

The Hashin-Shtrikman shear modulus upper bound is defined as:

GHS = Gs +
1− ρ∗

(Gv −Gs)−1 + 2ρ∗(Ks+2Gs)

5Gs(Ks+
4
3
Gs)

(15)
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The Hashin-Shtrikman upper bound on Young’s modulus is calculated as:

EHS =
9GHSKHS

3KHS +GHS

(16)

The corresponding Hashin-Shtrikman Poisson’s ratio is obtained as:

vHS =
3KHS − 2GHS

2(3KHS +GHS)
(17)

where EHS, GHS, KHS are the theoretical upper bounds of Young’s modulus,

shear modulus and bulk modulus, respectively, while Es, Gs, Ks are the elastic moduli

of the solid phase, and Kv=0, Gv=0 are the bulk and shear moduli of the void phase

with zero stiffness.

6.3.2 Elastic buckling of plate-lattices

To evaluate and understand the elastic buckling response of plate-lattice archi-

tected materials, the different resultant eigenvalues and eigenmodes are extracted

from the Buckle analyses. Unit-cells are used for all geometries in this section, ex-

cept for SC for which a 2x2x2 tessellation is selected. As described in the following

Chapter 7 through a tessellation dependency study, a 2x2x2 SC is used to capture

buckling wavelengths twice those of the unit cells. All 2x2x2 SC, 1x1x1 BCC, 1x1x1

FCC, 1x1x1 SC-BCC and 1x1x1 SC-FCC plate-lattices with periodic boundary con-

ditions are subjected to uniaxial compression (0.02 mm/mm applied strain for 2x2x2

tessellations instead of 0.01 mm/mm for unit-cells). The first 25 eigenmodes of all ge-

ometries are illustrated in Fig. 6.5 for relative densities of ρ*=0.5%, ρ*=5%, ρ*=15%,

and ρ*=25%. Fig. 6.5 also includes the first eigenmode shapes of all geometries, that

are used in the Chapter 7 as initial imperfections to the geometries. Table 6.2 summa-

rizes the critical buckling strain values based on the first eigenvalue (λ1), and Fig. 6.6
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include the resultant first eigenmode shapes including displacement (magnitude) con-

tours of the different geometries.

Figure 6.5: Eigenvalue ratio (eigenvalue (λ) normalized by first eigenvalue (λ1))
against the 25 first eigenmodes. Elastic buckling and imperfection sensitivity is in-
dicated. A λ/λ1 decrease between the relative densities of each geometry indicates
imperfection sensitivity for low-density materials. Lower λ/λ1 between the architec-
tures indicate geometries more prominent to imperfections. Inset figures depict the
first eigenmode shapes.

6.3.2.1 Critical buckling strain of plate-lattices

The results in Fig. 6.5 constitute an indication of the imperfection sensitivity of

plate-lattices through normalized eigenvalues (λ/λ1) as relative density decreases for

linear elastic analyses, as well as the stability assessment for all the different ge-

ometries. The anisotropic plate-lattices SC, BCC and FCC show a decrease in the

normalized eigenvalues as relative density increases for the first 25 eigenmodes. This

means that imperfection sensitivity exists for these structures. Imperfection sensitiv-
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ity is more pronounced in higher eigenmodes. The isotropic plate-lattices, SC-BCC

and SC-FCC, result to smaller normalized eigenvalue reductions as relative density

decreases from ρ*=25% to ρ*=0.5%. This indicates less imperfection sensitivity be-

tween the different densities of the same geometries. The eigenvalue ratios (λ/λ1)

of the isotropic plate-lattice combinations are slightly smaller in comparison to the

anisotropic lattice structures (SC, BCC, FCC).

Table 6.2: Elastic buckling capacity of SC, BCC, FCC, SC-BCC and SC-FCC based
on the first eigenvalues for densities between ρ*=0.5% and ρ*=25% under uniaxial
compression.

Uniaxial Compression

Plate-lattice Critical buckling strain λ1 (mm)

geometry ρ*=0.5% ρ*=5% ρ*=15% ρ*=25%

SC 1.218e-5 1.214e-3 0.011 0.028

BCC 0.757e-5 0.755e-3 0.007 0.018

FCC 2.990e-5 2.970e-3 0.026 0.066

SC-BCC 0.378e-5 0.377e-3 0.003 0.009

SC-FCC 0.900e-5 0.898e-3 0.008 0.022

The first eigenvalue represents the most critical buckling capacity towards conser-

vatism, and thus is further discussed herein. As shown in Table 6.2, FCC results to

the highest buckling strain for all examined relative densities, which decreases for SC,

SC-FCC, BCC and SC-BCC which results to the lowest eigenvalue λ1. Even though

eigenvalues are different over the range of relative densities between ρ*=25% and

ρ*=0.5% (decreasing almost linearly), the modal shapes (first eigenmodes) remain

constant for each respective eigenmode in all densities. Furthermore, same modal

shapes throughout the different relative densities are predicted for higher modes in

each architecture, as graphically illustrated in Fig. 6.6. The SC geometry is governed

by buckling in the plates aligned with the loading direction. Similarly, BCC lattice

structures are governed by plate buckling in the vertical plates, while SC-BCC by
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the buckling of one set of vertical plates. FCC is dominated by triangular side plate

buckling, while SC-FCC by triangular face plate-buckling.

First eigenmode (Displacement)

1.73

00

0 0 0

1.00
(mm) (mm)
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1.00 1.671.41

Figure 6.6: First eigenmode illustration of each plate-lattice material for all relative
densities within ρ*=25% and ρ*=0.5%. The modal shapes remain constant between
all relative densities for all architectures (SC, BCC, FCC, SC-BCC, SC-FCC). Con-
tours refer to the displacement (magnitude) for all geometries.

6.3.2.2 Impact of loading type

The critical buckling strain based on the first eigenvalue of plate-lattices under

hydrostatic pressure is presented in Table 6.3 for comparison purposes with uniaxial

compression eigenvalues. An applied strain of 0.01 mm/mm is chosen for all three

directions. The first eigenvalues of the same relative densities for the different load-

ing conditions show the same trend as FCC and SC have the highest capacity and

SC-BCC results to the lowest capacity between the examined geometries. Lower

eigenvalues of plate-lattices are predicted under hydrostatic pressure when compared

to uniaxial compression. First eigenmode shapes also differ between hydrostatic load-
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ing and uniaxial compression loading.

Table 6.3: Elastic buckling capacity of SC, BCC, FCC, SC-BCC and SC-FCC based
on the first eigenvalues for densities between ρ*=0.5% and ρ*=25% under hydrostatic
pressure.

Hydrostatic Pressure

Plate-lattice Critical buckling strain λ1 (mm)

geometry ρ*=0.5% ρ*=5% ρ*=15% ρ*=25%

SC 5.281e-6 5.262e-4 4.612e-3 0.012

BCC 2.312e-6 2.309e-4 2.058e-3 0.006

FCC 5.265e-6 5.249e-4 4.612e-3 0.012

SC-BCC 1.503e-6 1.501e-4 1.342e-3 0.004

SC-FCC 1.894e-6 1.892e-4 1.688e-3 0.005

Elastic and hyperelastic buckling capacity including geometric nonlinearities and

imperfection sensitivity is an immediate future step of this work to fully characterize

the elastic performance of plate-lattice materials under uniaxial compression and/or

hydrostatic pressure. These results will also aim to introduce new and/or imperfection

insensitive plate-lattice geometries.
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7 IMPERFECTION SENSITIVITY AND KNOCK-

DOWN FACTORS OF METAL PLATE-LATTICE

ARCHITECTED MATERIALS

Chapter overview: This chapter investigates the stability and imperfection sensitiv-

ity of plate-lattice materials, describes the finite element modeling approach, discusses

the plate-lattice response of different relative densities in terms of strength, stiffness

and failure mechanisms, and suggests innovative knockdown factors.

7.1 Plate-lattice materials and methods

Plate-lattice mechanical metamaterials are innovative materials composed of plates

in a manner analogous to crystal structures. Similarly to Chapter 6, closed-cell geome-

tries are selected in this study, and the mechanical performance of the different lattice

topologies is examined for various relative densities. Since the selected plate-lattices

result to superior properties in terms of stiffness (Berger et al. [12], Tancogne-Dejean

et al. [102]) and strength (Crook et al. [26]) in comparison to any existing archi-

tected materials, the goal of this work is to additionally shed light on the unexplored

stability and imperfection sensitivity of these materials. The different architectures

and relative densities, as well as the introduced finite element method are described

herein.

7.1.1 Plate-lattice geometry

Five plate-lattice material topologies, as described in Chapter 6, are selected and

illustrated in Fig. 7.1a. The simple cubic (SC), the body-centered cubic (BCC), and

the face-centered cubic (FCC) structures are used independently and in combina-

tions. All SC, BCC, and FCC geometries are lattices of cubic symmetry and they
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are anisotropic. The combinations of these architectures based on different thickness

ratios between their plates lead to the isotropic plate-lattices SC-BCC and SC-FCC.

Analytical equations on the thickness combination ratios of these materials are dis-

cussed by Berger et al. [12] and Tancogne-Dejean et al. [102] and are adopted herein.

Eq. 18 displays the thickness ratios of the SC-BCC lattice combinations, while Eq. 19

displays the thickness ratios of the SC-FCC combinations.
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Figure 7.1: Plate-lattice architected material architectures. (a) Three anisotropic
elementary architectures of cubic symmetry (SC, BCC,FCC) and two isotropic com-
binations (SC-BCC, SC-FCC). Side length L is constant for all unit-cells, while t
represents the minimum plate thickness of each geometry, (b) slenderness ratio (L/t)
against relative density (ρ*) graph indicating the thickness differences between the
architectures of the same density. The lowest slenderness ratios are observed in SC,
while the highest slenderness are shown in SC-BCC.

The isotropic SC-BCC plate-lattices are calculated as:

tBCC
tSC

=
√

2 (18)

The isotropic SC-FCC plate-lattices are defined as:

tFCC
tSC

=
9

8
√

3
(19)
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where tSC is the plate thickness of SC geometry, tBCC is the plate thickness of

BCC geometry, and tFCC is the plate thickness of FCC geometry.

A variety of relative densities is examined by varying the thickness of the plate-

lattices and maintaining constant the unit-cell length. Specifically, relative densities

between ρ*=0.5% and ρ*=25% are selected aiming to provide pioneering results on

ultra-low relative densities. Relative densities are calculated based on the ratios of

volume of the solid constituent (V s) over the volume of the whole unit-cell (V ), as

depicted in Eq. 20 (ρ* of each plate-lattice geometry is calculated via Eq. 21, Eq. 22,

Eq. 23, Eq. 24 and Eq. 25 in Appendix B). The unit-cell length is equal to L=16.404

mm (0.649 in.) for all geometries (as in Tancogne-Dejean et al. [103]).

ρ∗ =
Vs
V

(20)

Since the main goal of this study is to explore and understand the stability and

sensitivity of plate-lattices to geometric imperfections, the material sizes can be also

described by their plate slenderness ratios, similarly to cylindrical and spherical shell

definitions. The slenderness ratio is defined as the ratio of the constant length L

over the minimum plate thickness t (L/t). The plate thickness of the lattices varies

between the different geometries of the same relative density. Fig. 7.1b illustrates the

slenderness ratio of all SC, BCC, FCC, SC-BCC, and SC-FCC plate-lattices against

their relative density. SC, BCC, FCC are composed of plates of uniform thickness

throughout the unit-cell (constant thickness), while SC-BCC and SC-FCC are com-

posed of two different thicknesses based on each constituent geometry, from which t

refers to the SC plate thickness and to the FCC plate thickness, respectively (mini-

mum thickness at each case). As number of plates increases between the geometries,

plate thickness decreases, and thus slenderness ratios increase for the same relative
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density. As a result, SC-BCC has the highest slenderness ratios since it is the most

braced with plates geometry, while SC has the lowest slenderness ratios as it is com-

posed of fewer plates in comparison to all geometries of the same densities.

7.1.2 Finite element modeling

Herein, 200 nonlinear plastic analyses are conducted to examine the imperfection

sensitivity, as well as 40 linear elastic analysis to obtain the respective modal shapes

that are used as initial imperfections for the imperfect geometries. High-fidelity fi-

nite element analysis is conducted through finite element software ABAQUS ([2]).

Table 7.1 summarizes the simulated geometries and the analysis suite for this section.

Table 7.1: Finite element analysis matrix and methods for plate-lattice architected
material imperfection sensitivity study. Imperfections are included as modal shapes
and knockdown factors are recommended for ρ*=25% to ρ*=0.5%.

Relative density Anisotropic Isotropic

(ρ*) SC BCC FCC SC-BCC SC-FCC

ρ*=25%, ρ*=20%, 40 Linear Eigenvalue Analyses

ρ*=15%, ρ*=10%, → Initial imperfection shapes

ρ*=7%, ρ*=5%, 200 Nonlinear Dynamic Analyses

ρ*=3%, ρ*=0.5% → Knockdown factors of 0t, 0.1t, 0.5t, 1t, 2t

7.1.2.1 Mesh size, element type, and material properties

As described in Chapter 6, S4 four-node shell elements are used for the simulation

of all geometries. Different element types (S4, S4R, S8R, S3, S3R) have been also

examined, and S4 is chosen based on result accuracy and computational cost reduc-

tion. The mesh size is selected as 0.3 mm (0.012 in.) for all geometries, which is in

agreement with Tancogne-Dejean et al. [103] and Crook et al. [26] mesh sizes. Equal

number of elements is used in all the constituent plates of each plate-lattice material,
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which allows for mesh merging of the nodes and elements at the intersections. This

is necessary in order to restrict the constituent plates of behaving independently in

space, and to assure accurate load transferring between the components. Mesh con-

vergence and mesh sizes are depicted in Fig. 7.2 for all SC, BCC, FCC, SC-BCC,

SC-FCC plate-lattices.

Mesh size = 0.3 mm 

Mesh convergence

Figure 7.2: Mesh convergence based on the first eigenvalue ratio (λ/λperf ect) against
the ratio 1/mesh-size for all anisotropic SC, BCC and FCC, and isotropic SC-BCC
and SC-FCC. A constant mesh size of 0.3 mm (0.012 in.) is selected for all examined
geometries and for all relative densities using S4 elements.

This work focuses on metal plate-lattices, and specifically the PH1 stainless steel

powder is used, as discussed in Chapter 6. The constituent material is simulated as

elastic perfectly plastic and its properties (Young’s modulus Es, yield strength σy,

density ρ) are summarized in Table 7.2.
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Table 7.2: Material properties of stainless steel SC, BCC, FCC, SC-BCC, SC-FCC
plate-lattice architected materials.

Material Property PH1 Stainless Steel ∗

Young’s modulus 200 GPa

Yield strength 1000 MPa

Density 7.8 g/cc

∗ Simulated as elastic-perfectly plastic

7.1.2.2 Uniaxial loading and boundary conditions

The plate-lattices are subjected to uniaxial compression (at x-direction). The

strain rate is selected as 0.0004/sec for all architectures. Dynamic Implicit solver is

chosen for all analyses, since Static General and Static Riks cannot accurately capture

the response of the low-density materials. A Quasi-Static application is selected

and a Smooth Step amplitude is used. A time period of T=50 sec, an initial and

maximum increment size of 0.005, and a minimum step size of 10−10 are applied.

The preceding parameters are obtained via an extensive parametric study, which

aims to accurately capture the full behavior of all lattice structures, and in parallel

to reduce the computational cost. For this purpose, a stiffness damping coefficient of

0.001 is also incorporated in the models. Geometric nonlinearities are also included

in this work.

Periodic boundary conditions are used to simulate the plate-lattice materials aim-

ing to reduce any finite size effects. Kinematic constraints are applied between the

periodic pairs (matching nodes) in the lattice boundary surfaces. The periodic bound-

ary condition application includes virtual nodes through equation constraints.
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7.1.2.3 Tessellation dependency

To further eliminate finite size effects, a tessellation dependency study is con-

ducted. Tessellation numbers of up to 10x10x10 are examined in terms of eigenvalue

1. Fig. 7.3 illustrates that the BCC, FCC, SC-BCC, and SC-FCC can be accurately

simulated through unit-cell models with periodic boundary conditions, while SC first

eigenvalue convergence is achieved for 2x2x2 tessellations. The first eigenmode shape

of SC is governed by buckling with a wavelength twice that of the unit-cell in con-

trast to the remaining geometries. Since the first eigenmode is used in this work, as

an initial imperfection, the tessellation dependency convergence is mainly focused on

this parameter.

1x1x1 2x2x2 1x1x1

1x1x11x1x1

Figure 7.3: Tessellation dependency study. Eigenvalue against tessellation number
is displayed for all architectures (up to 10x10x10 tessellation). A 1x1x1 unit-cell is
chosen for BCC, FCC, SC-BCC and SC-FCC, while a 2x2x2 tessellation is selected
for SC to provide accurate results. The resulted eigenmodes illustrated that SC is
governed by a buckling mode twice the length of the unit-cells.
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7.2 Modal shapes and imperfections

Since the main focus of this study is the imperfection sensitivity of plate-lattices,

the selection of imperfection amplitudes and the different resulted eigenmodes and

eigenvalues need to be discussed for all 2x2x2 SC, 1x1x1 BCC, 1x1x1 FCC, 1x1x1

SC-BCC, 1x1x1 SC-FCC. A comparison of the critical buckling strain between the

geometries is also illustrated.

7.2.1 Imperfection amplitudes

Imperfections are introduced in all the geometries based on their modal shapes.

Specifically, the first eigenmode is used as an initial imperfection and its magnitude is

scaled by the thickness of the plates. The imperfection amplitudes considered in this

work are 0.1t, 0.5t, 1t, and 2t, where t is the minimum thickness of the plates of each

plate-lattice. Although SC, BCC and FCC are composed of a uniform plate thickness

with a constant t, SC-BCC and SC-FCC are composed of two sets of elementary

plate architectures and thus the minimum t is used towards conservatism. Since the

imperfection sensitivity of plate-lattices is evaluated for a range of relative densities

between ρ*=0.5% and ρ*=25%, the selected amplitudes vary for the different den-

sities. The impact of an imperfection amplitude of a constant magnitude regardless

the relative density is also evaluated in the Subsection 7.3.4.

7.2.2 Eigenmodes and eigenvalues

The first eigenvalues and eigenmodes are illustrated in Fig. 7.4. The critical

buckling strain based on the first eigenvalue varies between the architectures. The

isotropic combinations SC-BCC and SC-FCC result to lower critical buckling strain

values in comparison to the anisotropic SC, BCC and FCC plate-lattice buckling
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strains (FCC outperforms the remaining geometries in critical buckling strain). SC-

BCC and SC-FCC are composed of more plates and thus they are composed of more

braced lengths in contrast to SC, BCC and FCC.

First eigenmode
FCC

SC

SC-FCC

BCC

SC-BCC

Figure 7.4: Summarized first eigenvalues and eigenmodes of all plate-lattice materials
for various relative densities within ρ*=25% and ρ*=0.5%. Modal shapes (eigenmode
1) depicted herein remain constant between all relative densities for all architectures
(SC, BCC, FCC, SC-BCC, SC-FCC). The critical buckling strain (eigenvalue 1) of
the isotropic combinations (SC-BCC and SC-FCC) is smaller than the anisotropic
lattices (SC, BCC and FCC).

The first eigenmodes, as shown in the inset figures of Fig. 7.4, are the selected

initial imperfections of the imperfect lattices. These modal shapes do not vary with

relative density, and thus the same imperfect shape is introduced for all relative densi-

ties of the same architecture. The SC and BCC plate-lattice imperfections are mainly

focused on the plates aligned with the loading direction, while the FCC geometric

imperfections are concentrated in the side triangular plates. The SC-BCC imperfect

shape is more pronounced in one of the plates aligned with the loading directions,
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and the SC-FCC imperfect shape is based on the face triangular plate deformation.

The impact of different modal shapes as initial imperfections is also examined in

Subsection 7.3.4.

7.3 Stability results and discussion

The goal of this work is to assess the strength, stiffness and failure modes of perfect

and imperfect plate-lattices, and to introduce accurate knockdown factors of strength

and stiffness for various relative densities and imperfection amplitudes. Herein, the

finite element results and main findings for material behavior including plasticity are

presented and discussed.

7.3.1 Strength and stiffness

Fig. 7.5 (along with Fig. B.1, Fig. B.2, Fig. B.3, Fig. B.4 in Appendix B) depict the

macroscopic stress versus the applied strain for all SC, BCC, FCC, SC-BCC, and SC-

FCC plate-lattices of various relative densities (four out of the eight densities within

ρ*=25% and ρ*=0.5%), respectively. These results are intended for comparisons

between the different relative densities of each geometry, as well as for comparisons

between the different geometries in terms of strength and initial stiffness.

The capacity of all examined plate-lattices decreases as relative density decreases

(thinner plates). This trend is also illustrated in Fig. 7.6 via peak load against relative

density graphs. The strength from ρ*=25% to ρ*=0.5% does not decrease linearly

throughout the density range due to the different governing failure mechanisms be-

tween higher and lower relative densities (discussed in the following Subsection 7.3.2).

SC plate-lattices result to higher strength in comparison to all other geometries since

they are composed of plates 80% thicker than the SC-BCC which is composed of

the most and thinnest plates. The effect of imperfection amplitudes in the capacity
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of plate-lattices varies for the different relative densities of each architecture, and is

discussed in Subsection 7.3.3.

ρ*=25% ρ*=10%

ρ*=5% ρ*=0.5%

Figure 7.5: Macroscopic stress against applied strain of SC plate-lattices of four
relative densities within ρ*=25% and ρ*=0.5% for representation. Markers indicate
plasticity initiation for each relative density. Strength and stiffness reduces as relative
density decreases. The reduced imperfection impact to the capacity, stiffness and
displacement is illustrated as relative density reduces.

Initial stiffness of perfect and imperfect architectures is summarized for all geome-

tries and relative densities in Fig. 7.7, as obtained from the stress-strain curves. Initial

stiffness decreases as imperfection amplitude increases for all SC, BCC, FCC, SC-BCC

and SC-FCC plate-lattices. Constant stiffness knockdown factors are predicted for all

relative densities of each architecture. Furthermore, linear stiffness decrease occurs as
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relative density decreases for all geometries. SC results to the highest stiffness, while

FCC to the lowest initial stiffness for uniaxial compression. Furthermore, displace-

ment at peak load for all plate-lattice architectures and all examined imperfection

amplitudes are summarized in Table 7.3 for four relative densities between ρ*=25%

and ρ*=0.5%.

Figure 7.6: Peak load against relative densities within ρ*=0.5% and ρ*=25% for all
SC, BCC, FCC, SC-BCC and SC-FCC plate-lattice materials of various imperfection
amplitudes of 0t, 0.1t, 0.5t, 1t, 2t. Nonlinear strength increase is predicted as relative
density increases. As plate thicknesses reduce (lower density), a lower imperfection
impact is observed.

7.3.2 Failure mechanisms

The failure modes of the different examined plate-lattice architectures vary with

relative density and with imperfection amplitude. In general, high-density materials

are purely governed by plasticity and bending of the plates, while low-density lattices

are governed by elastic buckling followed by plasticity and plate-bending. In all
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simulations, plasticity is present before the macroscopic peak strength is reached.

Deformed shapes of all architectures for the highest and lowest examined relative

densities (ρ*=25% and ρ*=0.5%, respectively) and imperfection amplitudes (2t and

0t) are illustrated in Fig. 7.8 through von-Mises stress contours.

Figure 7.7: Initial stiffness versus relative densities within ρ*=0.5% and ρ*=25% for
all SC, BCC, FCC, SC-BCC and SC-FCC plate-lattice materials of various imperfec-
tion amplitudes of 0t, 0.1t, 0.5t, 1t, 2t. Linear stiffness increase is predicted as relative
density increases. As relative density increases, stiffness becomes more imperfection
sensitive in comparison to lower densities.

For SC plate-lattices of relative densities between ρ*=25% and ρ*=10%, the axial

compression and yielding of the vertical plates govern the response of the perfect

geometries followed by rotation of the intersections aligned with the loading direction

and bending of the plates. All the imperfect architectures for these densities are

governed by yielding and bending of the plates in a manner similar to their initial

imperfect shapes. For relative densities between ρ*=7% and ρ*=5%, perfect SC plate-

lattices initially show axial compression and high stress concentration in the vertical
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plates (in loading direction), which is followed by elastic buckling initiated from the

rotation of the top intersections prior to yielding of the plates and bending. Imperfect

lattices also show yielding of the plates and large deformation due to rotation of

the top intersections. For low (ρ*=3%) and ultra-low (ρ*=0.5%) relative densities,

a buckling mode different from the initial imperfection (more waves) governs the

response in both perfect and imperfect plate-lattices. The perfect SC plate lattices

show high stress concentration in the vertical plates, a first buckling mode similar

to the initial imperfection (first jump in stress-strain curves), and different buckling

mode/modes (second and/or third jump in stress-strain curves) before the yielding

of the plates and the bending and folding mechanism at peak strength.

Similar behavior and progression of failure are observed in all architectures. For

FCC plate-lattices of relative densities between ρ*=25% and ρ*=10%, axial com-

pression, and yielding of the plates govern the response of their perfect geometries,

while bending on a way similar to the initial imperfection govern the imperfect lattice

response. As relative density decreases from ρ*=7% to ρ*=0.5%, the perfect cases

failure progression initiates by the high stress concentration in the intersections fol-

lowed by the rotation of the intersections towards the loading direction and buckling

of the triangular plates in a different mode from the initial imperfection (more waves).

Plasticity appears after the elastic buckling and before peak load is reached. Since

BCC, SC-FCC, and SC-BCC are composed of more plates acting as braces, their

plates are thinner for the same relative densities in comparison to SC and FCC. That

means that even though progression of failure is similar to the preceding descriptions

for the remaining SC-FCC, BCC and SC-BCC plate-lattices, the governing yielding

and bending of the plates shift to elastic buckling prior to yielding and bending from

relative densities of ρ*=10%, ρ*=15%, ρ*=20% (bifurcation points) and lower for

SC-FCC, BCC and SC-BCC, respectively.
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Table 7.3: Displacement at peak load for all SC, BCC, FCC, SC-BCC and SC-FCC
plate-lattice architectures and all 0t, 0.1t. 0.5t, 1t and 2t imperfection amplitudes
for relative densities within ρ*=25% and ρ*=0.5% (four densities are depicted for
representation).

Displacement at peak load (mm)

Geometry Amplitude ρ*=25% ρ*=10% ρ*=5% ρ*=0.5%

0t 1.647 0.825 0.146 0.119

0.1t 0.246 0.144 0.149 0.119

SC 0.5t 0.380 0.174 0.161 0.119

1t 0.246 0.208 0.176 0.119

2t 0.612 0.332 0.213 0.119

0t 0.340 0.186 0.183 0.340

0.1t 0.190 0.185 0.183 0.274

BCC 0.5t 0.216 0.186 0.183 0.340

1t 0.244 0.190 0.184 0.274

2t 0.274 0.199 0.191 0.340

0t 0.244 0.144 0.141 0.120

0.1t 0.190 0.144 0.139 0.121

FCC 0.5t 0.244 0.144 0.133 0.120

1t 0.340 0.166 0.129 0.120

2t 0.492 0.216 0.128 0.120

0t 0.187 0.157 0.147 0.412

0.1t 0.166 0.157 0.146 0.452

SC-BCC 0.5t 0.190 0.160 0.147 0.452

1t 0.190 0.156 0.146 0.375

2t 0.216 0.156 0.147 0.412

0t 0.412 0.108 0.107 0.274

0.1t 0.190 0.110 0.105 0.274

SC-FCC 0.5t 0.190 0.106 0.106 0.274

1t 0.190 0.104 0.106 0.274

2t 0.190 0.103 0.106 0.306
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von-Mises stress

maxmin

Perfect Imperfect (2t)
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-F
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C

ρ*=25%

Perfect Imperfect (2t)
ρ*=0.5%

Figure 7.8: Deformed shapes of all SC, BCC, FCC, SC-BCC and SC-FCC plate
lattices at peak load. The contours represent von-Mises stresses of each architecture
(red: high stress, blue:low stress). The highest examined relative density ρ*=25%
and the lowest ρ*=0.5%, as well as the lowest imperfection 0t (perfect) and the
highest 2t imperfection, are illustrated herein for representation. Different buckling
modes govern the low-density materials (figure scale=5) in comparison to high-density
materials (non scaled figures).
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7.3.3 Knockdown factors

Innovative knockdown factors are introduced for all examined plate-lattices in

Fig. 7.9 in terms of capacity for different slenderness ratios. The slenderness ratio

for each geometry is defined as the ratio of length over the minimum plate thickness

(L/t), and the knockdown factors are calculated as the ratio of peak strength of

imperfect architectures over the peak strength of the perfect lattices (P/P y). As

explained in Section 7.1, as relative density decreases the slenderness ratio increases.

The results of all examined plate-lattices (SC, BCC, FCC, SC-BCC, SC-FCC), all

relative densities (ρ*=0.5%, ρ*=0.5%, ρ*=0.5%, ρ*=3%, ρ*=5%, ρ*=7%, ρ*=10%,

ρ*=15%, ρ*20%, ρ*=25%), and all imperfection amplitudes (0.1t, 0.5t, 1t, 2t) are

discussed herein and depicted in Fig. 7.9.

Figure 7.9: Strength Knockdown factors against slenderness ratios of SC, BCC, FCC,
SC-BCC and SC-FCC plate-lattices. Summarized knockdowns of various relative den-
sities (ρ*=25%, ρ*=20%, ρ*=15% , ρ*=10%, ρ*=7%, ρ*=5%, ρ*=3% and ρ*=0.5%)
and of different imperfection amplitudes (0.1t, 0.5t, 1t, 2t) are illustrated. Plate-
lattices indicate imperfection sensitivity for high relative densities, while for low rela-
tive densities they become imperfection sensitivity. SC is the most sensitive geometry,
and SC-BCC is the most insensitive architecture to geometric imperfections.
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Strength knockdown factors for all the examined geometries vary within 0.5 and 1.

SC plate-lattice result to the lowest knockdown factors showing the highest imperfec-

tion sensitivity, while SC-BCC result to the lowest knockdown factors in comparison

to all geometries for higher relative densities. As relative density decreases (slender-

ness ratio increases) all the geometries become imperfection insensitive. This is the

most significant finding of this work which allows SC, BCC, FCC, SC-BCC, SC-FCC

plate-lattices to maintain their capacities regardless any geometric imperfections. The

change of imperfection sensitive relative densities to imperfection insensitive relative

densities lies in the different governing failure modes, as described in Subsection 7.3.2.

Given that plate thickness varies for the different geometries of the same relative den-

sities, the bifurcation point of imperfection sensitivity to imperfection insensitivity in

all geometries varies.

For SC-plate lattices, knockdown factors decrease from ρ*=25% to ρ*=10%, in-

dicating imperfection sensitivity (capacity decreases from 0.1t to 2t). For ρ*=7%

to ρ*=5%, sensitivity to imperfections is still present, while knockdown factors are

increasing (higher than 0.8). For SC plate-lattices of ρ*=3% to ρ*=0.5%, knockdown

factors are equal to unity which means that their capacity is governed by imperfec-

tion insensitivity. Similar behavior is observed for all plate-lattices examined herein.

FCC plate-lattices are sensitive to geometric imperfections for ρ*=25% to ρ*=3%,

while they become imperfection insensitive for ρ*=0.5%. Imperfection insensitivity

appears for SC-FCC plate lattices for relative densities lower than ρ*=5%, while for

BCC imperfection insensitivity is predicted for relative densities lower than ρ*=7%.

SC-BCC becomes imperfection insensitive for relative densities lower than ρ*=20%,

while it is governed by the highest knockdown factors (close to 1) in comparison to all

remaining geometries. The knockdown factors of SC-BCC plate-lattices of ρ*=25%

indicate a lowest knockdown factor of 0.95 which is in accordance with Tancogne-
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Dejean et al. [103] experimental-to-computational knockdown factor of 0.95 for low

strain rate tests. The proposed knockdown factors of plate-latices accounting for

plasticity are introduced herein aiming to constitute a benchmark approach of imper-

fection sensitivity/insensitivity for these structures.

7.3.4 Amplitude and initial imperfection impact

To further examine the impact of imperfection amplitude in the imperfection

insensitive relative densities, a constant imperfection amplitude of 2.734 mm (0.108

in.) (equal to 2t of ρ*=25%) is applied in SC geometry of ρ*=0.5% (equal to 100t

of ρ*=0.5%). Fig. 7.10a, illustrates that the examined plate-lattices are imperfection

insensitive even for higher imperfection amplitudes relatively to their thicknesses.

(a) (b)

Figure 7.10: Parameter impact to imperfection insensitivity of SC plate-lattice ma-
terials of relative density ρ*=0.5%. (a) High amplitude effect (100t), and (b) initial
imperfection shape effect (eigenmode 15, eigenmode 36) using 2t imperfection am-
plitudes. Imperfection insensitivity is observed for different imperfection amplitudes
and different initial imperfections for plate-lattices. Inset figures illustrate the initial
imperfection shapes at the different cases.

Furthermore, the impact of different initial imperfections is investigated herein,

by selecting a different eigenmode from the Buckle analysis as the initial imperfection.

The results of 2t imperfection amplitude are illustrated in Fig. 7.10b (corresponding
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eigenomodes are included as inset figures), showing that SC plate-lattices of ρ*=0.5%

maintain their imperfection insensitivity properties regardless the initial imperfection,

since the peak strength knockdown is overestimated by 0.52% to 12% for the different

examined modes in comparison to first eigenmode.

The main and pioneering finding of this work is that besides high strength and

stiffness, closed-cell plate-lattices of cubic symmetry are also insensitive to geometric

imperfections. These new properties enhance the superiority of plate-lattices in com-

parison to other metamaterials, and can benefit not only Materials Science, but also

Structural Engineering applications.
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8 CONCLUSIONS AND FUTURE WORK: PART

II

8.1 Concluding remarks and summary

PART II of this dissertation focused on the elastic and plastic performance, and

imperfection sensitivity of plate-lattices mechanical metamaterials. Five periodic

closed-cell plate-lattices of relative densities between ρ*=25% and ρ*=0.5% were

examined, from which SC, BCC, FCC were the anisotropic geometries and SC-BCC,

SC-FCC were the isotropic combinations. The conclusions of this dissertation are

pioneering and shed light on new properties of these structures.

8.1.1 Elastic performance of plate-lattices

A shell finite element model was introduced and the periodic plate-lattices sub-

jected to uniaxial compression, shear and biaxial compression were examined to obtain

the elastic moduli, while the plate-lattices under uniaxial compression and hydrostatic

pressure were investigated to obtain the elastic critical buckling strain.

The examined isotropic SC-BCC and SC-FCC plate-lattices were able to approach,

and most importantly achieve the theoretical Hashin-Shtrikman stiffness upper bound

for all Young’s, shear and bulk moduli for low densities. This renders isotropic plate-

lattice mechanical metamaterials as the stiffest materials to date. The normalized

elastic moduli of both SC-BCC and SC-FCC resulted to the same stiffness of around

0.50, 0.52 and 0.39 for normalized Young’s, shear and bulk modulus, respectively. The

anisotropic SC, BCC, and FCC elastic moduli showed that SC normalized Young’s

modulus was higher than BCC and FCC by around 37% and 52% respectively for

all examined relative densities, while SC normalized shear modulus was lower than
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BCC and FCC by 62% and 71% respectively. Normalized bulk modulus resulted to

the same stiffness of around 0.38 for all geometries and relative densities.

The critical elastic buckling strain based on the first eigenvalue was predicted

lower for the isotropic plate-lattice combinations in comparison to anisotropic plate

lattices. Specifically, FCC and SC illustrated the highest first eigenvalues, while

SC-BCC demonstrated the lowest first eigenvalues for all relative densities between

ρ*=0.5% and ρ*=25% and for both uniaxial compression and hydrostatic loading.

In general, uniaxial compression leaded to higher elastic buckling strains than hy-

drostatic pressure. The elastic imperfection sensitivity was also approached through

normalized eigenvalues for the first 25 eigenmodes. The normalized eigenvalues de-

creased as relative density increased indicating imperfection sensitivity by varying the

relative densities. All the anisotropic SC, BCC and FCC showed higher imperfection

sensitivity than the isotropic SC-BCC and SC-FCC between the different relative

densities since their normalized eigenvalues varied more with the relative density.

Furthermore, SC-BCC and SC-FCC were governed by lower normalized eigenvalues

in comparison to SC, BCC, and FCC. Finally, the predicted eigenmodes of all archi-

tectures where constant between the different relative densities.

8.1.2 Imperfection sensitivity of plate-lattices

Perfect and imperfect plate-lattices of different imperfection amplitudes were ex-

amined under uniaxial compression. The first eigenmodes of the elastic buckling

analyses were used as initial imperfections to all SC, BCC, FCC, SC-BCC and SC-

FCC, and the 0.1t, 0.5t, 1t and 2t imperfection amplitudes were considered (t is the

minimum plate thickness of each geometry). The impact of the constituent material

plasticity was also investigated herein.

The peak strength of all the investigated plate-lattice materials reduced with the
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decrease of relative density from ρ*=25% to ρ*=0.5%. Eight relative densities within

this range were selected. Similarly initial stiffness decreased as relative density re-

duced. The strength decrease was not predicted as linear, while the stiffness decrease

was linear. SC was the strongest and stiffest architecture, while SC-BCC was the

least strong and stiff geometry. Increased imperfection amplitude indicated strength

decrease or constant strength, while demonstrated decreased stiffness. Two failure

mechanisms mainly governed the behavior of all SC, BCC, FCC, SC-BCC and SC-

FCC: a) the yielding of the plates (primarily those aligned with the loading direction)

followed by rotation of the intersections at the loading direction and bending of the

plates, and b) the elastic buckling of a mode different from the introduced initial

imperfection (after the rotation of the top intersections) followed by the yielding of

the plates initiated from the intersections and leading to the plate-lattice bending

mechanism. The first case was more pronounced in the higher density ranges, while

the second mode was present in the low density ranges. In general, plasticity governed

the response of all SC, BCC, FCC, SC-BCC, SC-FCC plate-lattices for all relative

densities and all imperfection amplitudes.

The most significant finding of this work was the innovative knockdown factor pre-

dictions for all examined plate-lattices. The results demonstrated that all examined

plate-lattice architectures were sensitive to imperfections for higher relative densities,

while their sensitivity reduced as relative density decreased, and it was finally elimi-

nated for lower relative densities. SC showed the highest sensitivity to imperfections

with a knockdown factor of around 0.5 for ρ* higher than 10%, while it became im-

perfection insensitive for ρ* lower than 3%. FCC followed SC with knockdowns of

0.6 for ρ* higher than 10% and imperfection insensitivity for ρ* equal to 0.5%. SC-

FCC become imperfection insensitive for ρ* lower than 5%, while BCC and SC-BCC

where the least imperfection sensitive geometries indicating imperfection insensitiv-
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ity for ρ* lower than 7% and ρ* lower than 20% respectively. This was attributed

to the topologies of the architectures (more plates leaded to smaller thicknesses) and

as a result the different governing failure mechanisms from pure yielding and plate

bending for high densities to elastic buckling followed by yielding and bending for the

low-densities. Finally, knockdown factors were not affected by the selected imper-

fection amplitudes, as well as the selected eigenmode shapes of initial imperfections.

This study concludes that plate-lattices, besides their high stiffness and strength, are

also insensitive to geometric imperfections.

8.2 Future extensions

This work provided a pioneering research mainly focused on the stability and

imperfection sensitivity of plate-lattice mechanical metamaterials including plastic-

ity. To expand this research and enhance the current findings, the following future

extensions are suggested:

• Investigation of elastic and hyperelastic plate-lattice material stability and im-

perfection sensitivity is an immediate extension of this work. This will aim to

understand the behavior of perfect and imperfect geometries governed mainly by

elastic buckling, and provide new knockdown factors. This proposed research,

along with the current results of this dissertation, can be used as a benchmark

approach to fully characterize the response not only of metal plate-lattices, but

also of lattices of various constituent materials, such as polymer.

• Additive manufacturing of perfect and imperfect metal plate-lattice architec-

tures is a future step of this study. This will allow for the investigation of

innovative techniques to fabricate closed-cell plate-lattices to experimentally ex-

amine and validate the imperfection sensitivity/insensitivity of these structures.
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Different imperfections besides modal shapes can be used, such as wavy imper-

fection or a dimple imperfection, to examine the knockdown effect accounting

for both imperfection type and amplitude.

• Introduction of new plate-lattice geometries, closed-cell or open-cell, including

appropriate braces to prevent brittle buckling failures or using unique architec-

tural designs to eliminate the imperfection sensitivity is a future extension of

this work. New geometries, and specifically open-cell geometries, will advance

the experimental investigation of plate-lattices, since additive manufacturing

allows for easier 3D printing techniques of open-cell architectures.

• Another future suggestion is the investigation of plate-lattice materials in the

nano-scale. Nanolattices follow the ”smaller is stronger” concept, and can of-

fer multiple advantages and superior properties in comparison to bigger scale

materials. The investigation of the size effect in plate-lattices will allow for

comparisons with different lattice architectures, such as truss-lattices, of a vari-

ety of relative densities tackling the strength, stiffness, energy absorption, and

stability of ultra-thin architectures.

• Structural hierarchy, as in Eiffel Tower, is another promising future recommen-

dation that can be triggered to enhance the mechanical performance of various

structural applications. Hierarchically-structured nanometric or micrometric

plate-lattices can offer superior and unique properties, such as recoverability,

and can reinforce the potential of the upscaling of these structures. This will

benefit both, Materials Science literature and Structural Engineering design.

• Interdisciplinary goals between Structural Engineering and Materials Engineer-

ing can be also achieved by combining and expanding the findings of this dis-

sertation. For example, plate-lattice materials can replace the critical fasteners
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between CFS and sheathing in cold-formed steel wall construction, and pro-

vide higher wall capacity, higher wall stiffness, and higher wall and connection

energy absorption capacity under earthquake or wind loading. Furthermore,

the extraordinary plate-lattice material properties, including their imperfection

insensitivity, will allow for innovative infrastructure repair solutions.

To conclude, this dissertation is the first research effort of tackling the imper-

fection sensitivity of various plate-lattice materials focusing in low-density materials

and providing knockdown factors. As a result, its expansion will benefit different

engineering fields through new and more advantageous materials and methods than

the common state-of-the-art options.
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A APPENDIX

This Appendix includes the connection test rig and specimen in the INSTRON

machine, illustrating an OSB-sheathed specimen (Fig. A.1). The test rig illustrated

herein is used for all relevant connection test configurations. The different screw types

a and b are also pictured indicating their differences, and photographs of FCB- and

SG-sheathed connection specimens are included for representation after testing.

Screw a Screw b

FCB 
after tesing

SG
after tesing

OSB 
before tesing

(a) (b)

(c)

Figure A.1: Experimental connection test configuration and components. (a) Test
rig and stud-screw-sheathing specimen located in INSTRON machine before testing.
OSB sheathing is illustrated in the photograph for representation. (b) Examined self-
drilling screw types indicating the screw length, head and thread differences between
screw a and b. (c) Pictures of actual specimens (FCB and SG) after testing illustrating
the failure of the connections either due to screw pull-through or shear screw failure.
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This Appendix also includes the converted system to individual screw test results

of the 30 identical specimens (using Eq. 1, Eq. 2, Eq. 3 from Chapter 2), as well as

tensile coupon tests of studs used in specimens failed by both pull-through and shear

failure (three repetitions each) in Fig. A.2.

(a) (b)

Screw pull-through
Screw shear failure

Figure A.2: Experimental results and failure indication. (a) Single screw test results
of the 30 identical tests, and (b) tensile CFS coupon stud testing (in total 9 tests).
Grey-colored lines indicate specimens failed by screw pull-through, while blue-colored
lines indicate specimens failed by shear screw failure.

The following acronyms are used in PART I of this dissertation:

BC − Boundary Condition,

CFS − Cold-Formed Steel,

FCB − Fiber Cement Board,

FE − Finite Element method,

MC − Monte Carlo simulation,

MPC − Multi-Point Constraint,

OSB − Oriented Strand Board,

RP − Reference Point, and

SG − Steel-Gypsum board.
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The following symbols and notation are used in PART I of this dissertation:

B = stud and track flange width (mm),

COV = coefficient of variation of connection response (%),

CTF1 = connection total force at direction 1 in ABAQUS (kN),

CTF2 = connection total force at direction 2 in ABAQUS (kN),

CTF3 = connection total force at direction 3 in ABAQUS (kN),

D = stud and track lip depth (mm),

E = Young’s modulus of CFS (MPa),

Es = Young’s modulus of OSB sheathing (MPa),

Es1 = Young’s modulus of OSB sheathing // to strength axis (MPa),

Es2 = Young’s modulus of OSB sheathing ⊥ to strength axis (MPa),

Es3 = out-of-plane Young’s modulus of OSB sheathing (MPa),

(EI)s = panel bending stiffness (kN −mm2/mm),

eNdi = connection backbone displacement in negative branch (mm),

eNf i = connection backbone load in negative branch (kN),

ePdi = connection backbone displacement in positive branch (mm),

eNf i = connection backbone load in positive branch (kN),

Gs = shear modulus of OSB sheathing (MPa),

Gs12 = shear modulus of OSB sheathing through thickness (MPa),

Gs13 = out-of-plane shear modulus of OSB sheathing (MPa),

Gs23 = out-of-plane shear modulus of OSB sheathing (MPa),

(Gt)s = panel rigidity (kN/mm),

H = stud and track web depth (mm),

h = shear wall height (m),

K = stud-screw-sheathing specimen stiffness (kN/m),

Ki = individual screw stiffness (kN/m),
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Ksecant = FE model secant stiffness at 0-100% peak load (kN/m),

Kinitial = FE model initial stiffness at 0-40% peak load (kN/m),

Kmiddle = FE model middle stiffness at 40-80% peak load (kN/m),

Kf inal = FE model final stiffness at 80-100% peak load (kN/m),

P = stud-screw-sheathing specimen force (kN),

Pi = individual screw force (kN),

P1 = individual screw force at 40% peak load (kN),

P2 = individual screw force at 80% peak load (kN),

P3 = individual screw force at 100% peak load (kN),

P4 = individual screw force at 30% post peak load (kN),

rDispN = reloading screw displacement parameter in negative branch (mm),

rDispP = reloading screw displacement parameter in positive branch (mm),

rForceN = reloading screw force parameter in negative branch (kN),

rForceP = reloading screw force parameter in positive branch (kN),

s = screw spacing at stud-screw-sheathing tests (mm),

sp = screw spacing at shear wall perimeter (mm),

sf = screw spacing at shear wall field stud (mm),

t1 = stud thickness (mm),

t2 = track thickness (mm),

ts = sheathing thickness (mm),

uForceN = unloading screw force parameter in negative branch (kN),

uForceP = unloading screw force parameter in positive branch (kN),

w = shear wall width (m),

∆ = stud-screw-sheathing specimen and reference displacement (mm),

∆i = individual screw displacement (mm),

∆m = screw monotonic displacement at 80% post-peak load (mm),
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∆1 = individual screw displacement at 40% peak load (mm),

∆2 = individual screw displacement at 80% peak load (mm),

∆3 = individual screw displacement at 100% peak load (mm),

∆4 = individual screw displacement at 30% post peak load (mm),

θ = connection local coordinate system angle calculation,

µ = mean connection response (mm or kN),

ν = Poisson’s ratio of CFS,

νs = Poisson’s ratio of OSB sheathing,

σ = standard deviation of connection response (mm or kN), and

σy = yield strength of CFS members (MPa).
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B APPENDIX

This Appendix includes the resulted relative density calculations, as adapted by

Tancogne-Dejean et al. [102], for all SC, BCC, FCC, SC-BCC, and SC-FCC plate-

lattice architected materials. Eq. 21, Eq. 22, Eq. 23, Eq. 24 and Eq. 25 are used

to calculate all respective ρ* based on tSC , tBCC and tFCC plate thicknesses of SC

plates, BCC plates and FCC plates respectively and the constant side length L. These

equations are used along with Eq. 18 and Eq. 19 for the isotropic combinations.

The relative density of SC plate-lattices is calculated as:

ρ∗ = 3
tSC
L

(21)

The relative density of BCC plate-lattices is obtained as:

ρ∗ = 6
√

2
tBCC
L

(22)

The relative density of FCC plate-lattices is defined as:

ρ∗ = 4
√

3
tFCC
L

(23)

The relative density of SC-BCC plate-lattices is obtained as:

ρ∗ = 15
tSC
L

(24)

The relative density of SC-FCC plate-lattices is calculated as:

ρ∗ = 7.5
tSC
L

(25)
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This Appendix also includes the stress-strain curves of BCC, FCC, SC-BCC and

SC-FCC plate-lattices (similarly to SC in Chapter 7) for ρ*=25%, ρ*=10%, ρ*=5%,

ρ*=0.5% (four out of eight densities for representation) and for 0t, 0.1t, 0.5t and 2t

imperfection amplitudes. Fig. B.1, Fig. B.2, Fig. B.3, Fig. B.4 (along with Fig. 7.5)

indicate the strength, stiffness and imperfection sensitivity decrease as relative density

decreases for all examined plate-lattices.

ρ*=25% ρ*=10%

ρ*=5% ρ*=0.5%

Figure B.1: Macroscopic stress against applied strain of BCC plate-lattices of four
relative densities within ρ*=25% and ρ*=0.5% for representation. Strength and stiff-
ness reduces as relative density decreases. The reduced imperfection impact to the
capacity, stiffness and displacement is illustrated as relative density reduces.
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Plasticity appears before the peak load is reached for all plate-lattice architectures

herein and for all examined relative densities and imperfection amplitudes. The

graphs in this Appendix can be used to compare strength and stiffness between the

different geometries, indicating that SC is the strongest and stiffest of the geometries,

while SC-BCC has the lowest strength and stiffness in comparison to the remaining

geometries for uniaxial compression.

ρ*=25% ρ*=10%

ρ*=5% ρ*=0.5%

Figure B.2: Macroscopic stress against applied strain of FCC plate-lattices of four
relative densities within ρ*=25% and ρ*=0.5% for representation. Strength and stiff-
ness reduces as relative density decreases. The reduced imperfection impact to the
capacity, stiffness and displacement is illustrated as relative density reduces.
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The isotropic SC-BCC and SC-FCC plate-lattices indicate less imperfection sen-

sitivity than their constituent SC, BCC and FCC plate-lattices even for higher rel-

ative densities. As shown in these stress-strain curves SC-BCC is the least sensitive

plate-lattice to geometric imperfections in comparison to the remaining examined

geometries.

ρ*=25% ρ*=10%

ρ*=5% ρ*=0.5%

Figure B.3: Macroscopic stress against applied strain of SC-BCC plate-lattices of
four relative densities within ρ*=25% and ρ*=0.5% for representation. Strength and
stiffness reduces as relative density decreases. The reduced imperfection impact to
the capacity, stiffness and displacement is illustrated as relative density reduces.

142



ρ*=25% ρ*=10%

ρ*=5% ρ*=0.5%

Figure B.4: Macroscopic stress against applied strain of SC-FCC plate-lattices of
four relative densities within ρ*=25% and ρ*=0.5% for representation. Strength and
stiffness reduces as relative density decreases. The reduced imperfection impact to
the capacity, stiffness and displacement is illustrated as relative density reduces.

The following acronyms are used in PART II of this dissertation:

BCC − Body-Centered Cubic,

FCC − Face-Centered Cubic,

HS − Hashin-Shtrikman bound,

PBC − Periodic Boundary Conditions,

SC − Simple Cubic,

SC-BCC − Simple Cubic and Body-Centered Cubic, and

SC-FCC − Simple Cubic and Face-Centered Cubic.
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The following symbols and notation are used in PART II of this dissertation:

C = elastic stiffness tensor,

Ci = elastic constants of the stiffness tensor,

E = Young’s modulus of plate-lattice materials (GPa),

EHS = Hashin-Shtrikman Young’s modulus upper bound (GPa),

Es = Young’s modulus of solid phase of materials (GPa),

G = shear modulus of plate-lattice materials (GPa),

GHS = Hashin-Shtrikman shear modulus upper bound (GPa),

Gs = shear modulus of solid phase of materials (GPa),

Gv = shear modulus of void phase of materials (GPa),

K = bulk modulus of plate-lattice materials (GPa),

KHS = Hashin-Shtrikman bulk modulus upper bound (GPa),

Ks = bulk modulus of solid phase of materials (GPa),

Kv = bulk modulus of void phase of materials (GPa),

L = side length of plate-lattices (mm),

P = peak load of perfect plate-lattices (kN),

Py = peak load of perfect plate-lattices (kN),

T = time period (sec),

t = minimum thickness of combined plate-lattices (mm),

tBCC = plate thickness of FCC plate-lattices (mm),

tFCC = plate thickness of BCC plate-lattices (mm),

tSC = plate thickness of SC plate-lattices (mm),

V = volume of the whole unit-cell (mm3),

Vs = volume of solid phase of materials (mm3),

λ = eigenvalue of plate-lattices,

λ1 = first eigenvalue (critical buckling strain),
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ν = Poisson’s ratio of constituent material,

νHS = Hashin-Shtrikman Poisson’s ratio,

ρ = density of 316L stainless steel (g/cm3)

ρ* = relative density,

σy = yield strength of base material (MPa), and

ζ = Zener ratio of isotropic plate-lattices.
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