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ABSTRACT

HARNESSING THE MECHANICS OF THIN-WALLED METALLIC
STRUCTURES: FROM PLATE-LATTICE MATERIALS TO
COLD-FORMED STEEL SHEAR WALLS

May 2021
Fani Derveni
Diploma, Aristotle University of Thessaloniki, Greece
M.S., University of Massachusetts Amherst, US
Ph.D., University of Massachusetts Amherst, US

Directed by: Drs. Kara D. Peterman and Simos Gerasimidis

Thin-walled structures have received a lot of interest during the last years due to
their light weight, cost efficiency, and ease in fabrication and transportation, along
with their high strength and stiffness. This dissertation focuses on the mechanical
performance of thin-walled metallic structures from cold-formed steel shear walls and
connections (PART I) to plate-lattice architected materials (PART II) via computa-
tional, experimental, and probabilistic methods.

Cold-formed steel (CFS) shear walls subjected to seismic loads is the focus of
PART T of this dissertation. An innovative three-dimensional shell finite element
model of oriented strand board (OSB) sheathed CFS shear walls is introduced and
benchmarked by nine different experimental studies. Particular attention is given
to the fastener behavior since they are governed by significant inherent variability
and they represent a dominant failure mechanism in CFS shear walls. Shear fas-
tener behavior is experimentally determined and introduced into the finite element
approach. To further address the connection variability, an extensive parametric

analysis accompanied by Monte Carlo simulations are conducted. Design recommen-
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dations for higher capacity sheathings (fiber cement board (FCB) and steel-gypsum
(SG) composite board) that are not currently enabled in design specifications are also
introduced.

Architected plate-lattice materials subjected to uniaxial compression is the focus
of PART II of this dissertation. Architected materials are structures whose mechani-
cal performance is governed by their geometry rather than their constituent material.
Plate-lattices are composed of plates along the planes of crystalline structures. They
represent the stiffest and strongest existing materials, since they can reach the Hashin-
Shtrikman and the Suquet upper bounds. The stability and imperfection sensitivity
of plate-lattices are evaluated in this work via elastic and plastic shell finite element
analyses. Plate-lattice geometries of cubic symmetry are examined, such as the simple
cubic (SC), the body-centered cubic (BCC), the face-centered cubic (FCC) structures
and their combinations (SC-BCC, SC-FCC) over a range of relative densities between
p*=0.5% and p*=25%. Imperfections are characterized by modal shapes at five differ-
ent imperfection amplitudes. Finally, knockdown factors are recommended for these

metamaterials.
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3.12 FCB- and SG-sheathed CFS shear walls of different aspect ratios of
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6.1

6.2
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ratio. Horizontal red line indicates a perfect prediction. . . . . . . . .
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Fleck [35]) and (b) honeycombs (photo by Papka and Kyriakides [81]),
(c) truss-lattices (photo by Gross et al. [51]), (d) shell-lattices (photo
by Bonatti and Mohr [17], and (e) plate-lattices (photo by Tancogne-
Dejean et al. [102]). . . . . . . . ..o
Plate-lattice architected materials of cubic symmetry representation.
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Mesh representation for all SC, BCC, FCC, SC-BCC and SC-FCC
plate-lattices. The selected mesh size is equal to 0.3 mm (0.012 in.).
The unit-cell length remains constant and equal to L=16.404 mm
(0.646 in.) and thickness varies with relative density for the different
architectures (tsc, tpcc, troc). Uniaxial compression is applied for
buckling evaluation, while axial compression, shear and biaxial com-

pression are applied for elastic moduli evaluation. . . . . . ... . ..
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6.3
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7.1

7.2

7.3

7.4

Plate-lattice architected material architectures. (a) Three anisotropic
elementary architectures of cubic symmetry (SC, BCC,FCC) and two
isotropic combinations (SC-BCC, SC-FCC). Side length L is constant
for all unit-cells, while ¢ represents the minimum plate thickness of
each geometry, (b) slenderness ratio (L/t) against relative density (p*)
graph indicating the thickness differences between the architectures of
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Part I:

Lateral Performance of
Cold-Formed Steel Shear Walls

and Connections



1 INTRODUCTION: PART I

1.1 Cold-formed steel shear walls: background and motiva-
tion

Cold-formed steel (CFS) has demonstrated a significant escalation and a wide
use in low- and mid-rise repetitively-framed construction in the last 50 years, due
to its numerous advantages over traditional structural engineering materials. Chief
among these are high strength-to-weight ratio, low-cost maintenance, high durability,
recyclability, non-combustibility, and, ease in installation and prefabrication. CFS is
used for both structural and non-structural applications and can be used as lateral
force resisting systems. Additionally, CF'S is extensively used as partition walls and
in secondary systems (such as purlins or girts) in metal buildings. CFS-framed build-
ings enable efficient on-site and remote-site fabrication methods via modularization.
Shear walls are the primary lateral load resisting system in CFS construction. Typ-
ical CFS shear walls are comprised of the main structural frame (CFS stud lipped
channels and CFS track unlipped channels) connected to x-bracing or sheathing on
the exterior and/or in the interior, such as wood panels, steel sheets, cement-based
panels, gypsum-based boards. To eliminate the overturning moment and prevent the
wall uplift under earthquake or wind events, hold-downs or tie-rods are used at the
base of the wall. Additional components, such as a ledger track, vertical and horizon-
tal seams can be also present in shear wall construction. A typical CFS shear wall

graphical representation is illustrated in Fig. 1.1.
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Figure 1.1: Typical sheathed cold-formed steel (CFS) shear wall configuration and
details. CFS studs (lipped channels) and CFS tracks (unlipped channels) represent
the wall structural frame connected to sheathing panels in the exterior side, and
connected to the foundation by hold-downs. Construction details, such as ledger
track and/or vertical seam, might be present.

CFS shear walls have seen significant study worldwide, with a wealth of experi-
mental, computational and analytical results aimed at understanding their behavior.
Recently, there are various experimental studies on wood-, and steel-sheathed CFS
shear walls focused on the shear capacity predictions of different shear wall configu-
rations. These are discussed in the subsequent literature review. In aggregate, they
explore a wide range of characteristics influencing structural behavior. Since full-scale
shear wall tests are a cost-intensive research approach, the next step in shear wall
analysis is to develop a robust computational tool to enable greater innovation in

the industry. That necessitates the introduction of a generalized benchmark compu-



tational approach, that can account for different wall configurations and details, as
well as the variable CFS connection response, and can allow for deterministic wall
response assessment.

Furthermore, current AISI-S400 [5] design provisions include CFS shear wall ca-
pacity predictions for wood- and steel-sheathed walls limited to very specific CF'S and
sheathing thicknesses, specific screw diameters and specific fastener spacings. That
means that there is not only a need for enhancing the current provisions with different
parameters and wall characteristics, but also a need for expanding the design code
into new higher lateral capacity systems in order to enable their adoption and use by
practitioners. Recently, cementitious and gypsum-based composite panels have ex-
plored onto the construction market due to their higher fire and weather resistance,
long-life span, lower acoustic transmission, and superior mechanical properties. De-
sign recommendations are required for these CF'S shear wall systems in order to enable
their adoption within design specifications and allow for safe and efficient structural
alternatives to the state-of-the-practice methods.

As modern engineering practice pushes innovative, effective and sustainable con-
struction methods to the forefront, it is essential for behavior to lead the way. This
work successfully benchmarks a new high fidelity modeling approach, and provides
the first insights into the performance of CFS shear walls sheathed in cementitious

and composite panels.

1.2 Literature review

Cold-formed steel research can be loosely divided into system-level investiga-
tions (such as full buildings), subsystem-level evaluation (such as shear walls) and
component-level assessment (such as connections or members). Each has seen sig-

nificant research effort in recent decades around the world. Furthermore, different



experimental, finite element, analytical, theoretical, and probabilistic methods have

been used to shed light on the lateral performance of CFS framing systems.

1.2.1 CFS full-building level research

Full CFS system behavior has been evaluated under different loading conditions
and different building characteristics. A two-story OSB-sheathed CFS building sub-
jected to earthquake loading was examined by Schafer et al. [89], as a part of the
recent CFS-NEES project. Both non-destructive and destructive testing (Peterman
et al. [84], Peterman et al. [85]) has been conducted, as well as a computational
modeling approach (Leng et al. [67]). Furthermore, a five-story CFS building behav-
ior sheathed with composite steel-gypsum panels tested by Wang et al. [110] under
seismic loading, demonstrating physical damage in shear wall components used in ar-
chitectural facades. A six-story CFS building sheathed with steel-gypsum sheathings
is subjected to seismic events, post-seismic fire exposure and post-fire earthquake
events in Hutchinson et al. [59], displaying various component failure mechanisms,

while the building resisted collapse.

1.2.2 CFS sub-system shear wall level research

Sub-system shear wall lateral performance is experimentally investigated by var-
ious researches throughout US and Canada. CFS shear walls sheathed with OSB,
gypsum wallboard, plywood, and FiberBond wallboard are tested by Santa Clara
University (Serrette et al. [95], Serrette et al. [96], Serrette et al. [94], Serrette et al.
[97]). These tests predicted shear wall capacities of OSB-sheathed CFS shear walls
which have been adopted by the design code provisions in the North American Stan-
dard. McGill University (Branston et al. [19], Branston [18], Chen [24], Blais [15],

Hikita [57]) has explored the lateral performance of OSB- and plywood-sheathed CFS



shear walls under monotonic and reversed cyclic loading. The effect of shear wall as-
pect ratio, fastener spacing and CFS thickness was evaluated to further improve the
CFS design guidelines. OSB-sheathed shear walls of different wall aspect ratios and
field stud thickness, as well as additional details such as ledger, vertical and horizon-
tal seams, and interior gypsum board have been laterally tested by Johns Hopkins
University (Liu et al. [70]), Liu et al. [69]) to enhance the design possibilities with
walls composed of different construction details. OSB-sheathed shear wall response
was dominated by the shear fastener behavior between the structural frame and the
sheathing panels.

CFS shear walls sheathed with steel sheets have been also extensively examined
via different experimental programs. The impact of wall aspect ratio, steel sheet
thickness, and spacing of the screws on steel-sheathed wall response was examined by
Yu [116]. The effect of loading condition, CFS profile thickness and framing type was
studied by DaBreo et al. [27]. Singh et al. [100] investigated the impact of exterior
finish and wall type in steel-sheathed wall response through shake table seismic and
monotonic tests. Furthermore, shear walls sheathed with corrugated steel have been
experimentally evaluated under lateral and/or gravity loading (Fiilép and Dubina
[46], Zhang et al. [118]). Towards an effort of reaching higher shear capacities, dif-
ferent gypsum-based and cement-based materials have received an increasing interest
from the research community and design practice. Shear walls sheathed with fiber ce-
ment board (FCB) sheathing have been tested under monotonic and/or cyclic loading
(Zeynalian and Ronagh [117], Khaliq and Moghis [64]), while shear walls sheathed
with steel-gypsum (SG) have been tested under cyclic and fire loading by Hoehler
et al. [58]. Resistant gypsum-based sheathings have been also studied through sub-
system tests (Macillo et al. [72]) and full building tests (Fiorino et al. [42]). The effect

of different sheathings, such as steel, gypsum, fiber cement board, steel and gypsum



composite, fiber cement board and steel composite, is examined under cyclic loading
by Mohebbi et al. [76], demonstrating that higher wall strength and stiffness occurred
when FCB and gypsum sheathings are present in comparison to bare steel sheathing.

CFS shear wall finite element analyses have been conducted using different soft-
wares and methods. The finite element software OpenSees [74] is used to intro-
duce performance-based modeling approaches for OSB-sheathed CFS shear walls
(Buonopane et al. [20], Bian et al. [14], Kechidi and Bourahla [63]), while software
DRAIN-3DX is used through a spring representation (Fiilop and Dubina [46]). In
addition, finite element software ABAQUS (ABAQUS [1]) is used towards a high
fidelity modeling approach for OSB-sheathed walls emphasizing fastener response
(Ngo [78], Ding [37]), while focusing on specific shear wall configurations and char-
acteristics and underestimating their capacity. Steel-sheathed CFS shear walls have
been also computationally explored via phenomenological performance-based model-
ing in OpenSees (Singh and Hutchinson [99]) and high-fidelity modeling in ABAQUS
(Zhang et al. [118]). Gypsum-based CFS shear wall finite element modeling is con-
ducted by Fiorino et al. [44] through SAP2000 detailed modeling, and unified truss
models in OpenSees. Even though, multiple experimental research efforts exist for
sheathed CFS shear walls, a robust high fidelity computational benchmark tool ca-
pable of capturing strength, stiffness and failures for a variety of sheathings and wall

characteristics has not yet been reported.

1.2.3 CFS connection level research

Numerous research efforts have been conducted to experimentally assess the con-
nection response between cold-formed steel members and sheathing. CFS-to-wood
connection shear behavior was evaluated by Okasha [79] through different component

thicknesses and wood orientations, while CFS-to-OSB and CFS-to-gypsum connection



response is examined under monotonic and cyclic loading by Peterman et al. [83], in-
vestigating the effect of fastener spacing and CFS thickness, and extracting Pinching4
parameters to describe their un- and re-loading behavior. The shear connection be-
havior of OSB- and gypsum-sheathed CF'S studs is tested under monotonic and cyclic
loading by Fiorino et al. [40], investigating the impact of sheathing orientation, screw
edge distance, as well as cyclic protocol and load rate, while additionally the effect
of humidity, screw over-driving, screw spacing, and specimen re-use is monotonically
examined (Vieira and Schafer [107], Vieira Jr and Schafer [108]). The CFS-to-OSB
connection shear response is also examined via a random fastener characterization of
a lognormal distribution by Bian et al. [13], aiming to address the inherent variability
of these fasteners and understand their impact in shear wall response through Monte
Carlo simulations.

Different sheathing types, such as OSB, steel, plywood, and gypsum, connected to
CFS members were tested through single-screw tests by Tao et al. [106] and Pinching4
shear connection parameters were extracted, while steel-sheathed connection speci-
mens are tested under monotonic and asymmetric cyclic loading by Zhang et al. [119].
Shear connection behavior between CFS members and cement-based and gypsum-
based sheathing materials were also monotonically tested (Selvaraj and Madhavan
(93], Fiorino et al. [43]). Besides shear connection response evaluation, pull-out steel-
to-steel connection behavior was recently monotonically tested by Castaneda and
Peterman [22] by varying the CFS steel sheet thickness. Although CFS-to-OSB shear
connection behavior has been determined experimentally, none of these test programs
test sufficient repetitions to enable a statistical characterization of the variability.
Furthermore, limited studies have been conducted on the impact of higher capac-
ity sheathings, such as FCB and SG composite, on the hysteretic shear connection

behavior.



1.3 Dissertation organization of PART I

The main goal of this work is to provide an innovative benchmark fastener-based
shear wall modeling approach for sheathed CFS shear walls under lateral loading
through experimentally-obtained fastener data and to enhance the possibilities of ef-
ficient and higher capacity design options through design guideline recommendations.

PART T of this dissertation is organized as follows:

e Chapter 1 (this Chapter) includes the introduction and motivation for PART
I of this dissertation, as well as the literature review for the examined fields
and the contribution of this study to the research community and the design

practice.

e Chapter 2 focuses on the lateral behavior of oriented strand board (OSB)
sheathed cold-formed steel (CFS) shear walls by introducing and validating an
experimentally-derived fastener-based computational approach. Analytically,
this Chapter is composed of an experimental program of 30 identical CFS-to-
OSB variable connection specimens, a finite element model of OSB-sheathed
CFS shear walls introduction and validation by previous experimental studies,
and an extensive parametric analysis and reliability of the modeling parameters.

This Chapter presents the work of Derveni et al. [32], and [28], [31].

e Chapter 3 presents the recommended design guidelines for CFS shear walls
sheathed with fiber cement board (FCB) and steel-gypsum (SG) composite pan-
els through fasterner-based modeling, as well as the proposed fastener hysteretic
characterization. In detail, this Chapter consists of an experimental program
of 18 CFS-to-FCB and CFS-to-SG connection specimens under monotonic and

cyclic loading, a Pinching4 model connection characterization, a computational



model of FCB- and SG-sheathed CFS shear walls, and a shear capacity design
predictions recommendation and validation. This Chapter presents the work of

Derveni et al. [29], and [30].

e Chapter 4 includes the summary and overall conclusions of PART I of this

dissertation, as well as potential future extensions of this work.
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2 EXPERIMENTALLY DERIVED FASTENER-
BASED FINITE ELEMENT MODELING OF
COLD-FORMED STEEL SHEAR WALLS

Chapter overview: This chapter evaluates the lateral response of oriented strand-
board (OSB) sheathed cold-formed steel (CFS) shear walls, introduces a benchmark
finite element modeling approach, conducts an experimental program of 30 connec-
tion specimens, and examines connection variability in shear wall behavior through a

parametric analysis and Monte Carlo simulations.

2.1 Experimental program of CFS-to-sheathing shear con-

nections

Shear connection behavior represents the dominant failure mechanism of ori-
ented strand board (OSB) sheathed cold-formed steel (CFS) shear walls necessitat-
ing the full characterization of their strength, stiffness, ductility, degradation, failure
modes, and statistical variability. The shear connection behavior is investigated herein
through 30 identical CFS-to-OSB connection experiments to obtain statistically sig-

nificant data.

2.1.1 Test specimen and test rig

The test program is composed of stud-screw-sheathing assemblies subjected to
monotonic loading, as adapted from Peterman et al. [83]. Two OSB sheathing sheets
are connected to two CFS studs on both sides with eight CFS-to-OSB fasteners,
as shown in Fig. 2.1. Hot-rolled steel plates enclose the CFS stud webs (Fig. 2.1c,
Fig. 2.1d), aiming to restrain the deformation of the web of the studs and to lead the

failure to the fasteners. Loading is applied at the top part of the specimen, while the
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bottom part is fixed. The test rig is illustrated in Fig. A.1a in Appendix A.
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Figure 2.1: Test rig and connection specimens (stud-screw-sheathing). (a) Front view
of the specimen indicating loading direction, (b) actual test specimen photo in the rig,
(c) side view of the specimen indicating steel plate dimensions, (d) inside view of the
specimen representing A-A section, and (e) isometric view of the specimen indicating
the fastener spacing s=304.8 mm. A test program of 30 identical experiments is
conducted to examine connection variability.

The specimens are constructed of 304.8 mm x 406.4 mm (12 in. x 16 in.) of 11.11
mm (7/16 in.) thick, Exposure 1 OSB sheathing sheets connected to 1.37 mm (54
mils) thick CFS studs (lipped channel sections) of 152.4 mm deep web, 41.3 mm wide
flange, 12.7 mm deep lip (600S162-54 notation in AISI-S200 [4]). OSB sheathing and

CFS members are connected via M4 x 50 (No. 8) flathead QuickDrive screws located
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at 38.1 mm (1.5 in.) from the edge of the sheathing in the center of the flanges of
the studs (AISI-S100 [3]) and spaced every s=304.8 mm (12 in.). In real shear walls,
fasteners tilt parallel to the stud flanges, and do not bear on the studs. This test
setup causes the fasteners to tilt perpendicular to the flanges, leading to bearing at
large deformations. To avoid fastener bearing on the web of CFS studs due to the
excessive fastener tilting during the tests, all screw edges were cut. Based on Vieira
and Schafer [107], screw edge cutting does not affect the connection behavior, and

prevents failure phenomena not present in actual shear wall behavior.

2.1.2 System test connection results of 30 identical specimens

System force-displacement behavior of the 30 identical tests is illustrated in Fig. 2.2¢,
indicating a significant 38% peak strength variability. The governing connection fail-
ure modes were either screw pull-through (occurred in 21 specimens) or screw shear
failure (occurred in 9 specimens). Actual specimen pictures after testing depicting
pull-through and shear failures are shown in Fig. 2.2a and Fig. 2.2b respectively. The
progression of failure between the different screws depends on minute differences in
screw installation, sheathing and steel geometric imperfections, and localized sheath-
ing properties, which allow any screw to fail before others randomly.

Screw pull-through failure mode is a progressive failure mechanism. At the be-
ginning of each test, tilting of all screws is initiated until the pull-through of some of
the screws which is followed by the localized sheathing bearing in the locations of the
SCTews.

Shear screw failure mode is governed by abrupt drops in the force-displacement
behavior. Tilting of the fasteners is observed until the shear failure of some screws
becomes present. Pull-through across some of the fasteners is also observed post-peak

leading to local bearing of OSB sheathing.
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Figure 2.2: Experimental system shear fastener results of 30 tests under monotonic
loading. The governing failure mechanisms of these systems are either (a) screw pull-
through (photos of actual specimens after testing) or (b) shear screw failure (photos
of actual specimens after testing). (c¢) Force-displacement illustration of system con-
nection behavior including the response of the different failure modes, as well as the
over-driven screws impact.

The impact of over-driven screws is also examined via three tested specimens
indicated in Fig. 2.2c with cross markers. Each of these specimens included one over-
driven screw which was backed out to flush with the OSB sheathing. The results
illustrate lower predicted capacities of these instances, as also described by Vieira
and Schafer [107]. Screw over-driving is a common construction error which allows
the screw to pull-through easier and faster while bearing, and thus it affects the
connection capacity. Tensile coupon testing of CF'S studs taken from the same batch
with the specimens that failed due to both screw pull-through and shear screw failure
resulted to yield strength of 332 MPa (48 ksi) and 335 MPa (51 ksi) respectively. The

stress-strain response of the coupon tests is illustrated in Fig. A.2b in the Appendix

A.
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2.1.3 Individual screw response conversion

System connection testing is chosen over individual screw testing to account for
and reduce connection variable response. To convert the response of the system of
eight fasteners to the response of each single fastener, Eq. 1, Eq. 2 and Eq. 3 are used
to calculate the individual screw force P;, the individual screw displacement A; and
the individual screw stiffness K;, respectively (derived from Vieira and Schafer [107]).
Fig. 2.3a represents a schematic representation of force and displacement distribution
to obtain single screw shear behavior (as illustrated in Fig. A.2a in Appendix A).

The single screw force P; (from free body diagram in Fig. 2.3a) is calculated as:

P =

g . (1)

The individual fastener displacement A; (deformation localization in fastener lo-

cations) is defined as:

2

The stiffness per screw K; (parallel spring model) is calculated as:

K
K==
2

(3)

where P is the system force, A is the system displacement, and K is the system

stiffness.

2.1.4 Statistical characterization of fastener behavior

To address the CFS fastener response variability, a statistical characterization is

conducted herein by using the average connection response p of the 30 identical tests,
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their standard deviations o, and their coefficient of variations COV', as summarized
in Table 2.1. The mean backbone of the 30 tests is defined based on a four-point fit
to data curve at 40% peak load, 80% peak load, 100% peak load and 30% post peak
load, as illustrated in Fig. 2.3b. Fig. 2.3b also includes the upper and lower response
bounds based on p + ¢ and put20. Shaded areas indicate the reliability range of
CFS-to-OSB connection data. A significant COV=12% is obtained for connection
peak strength, which is within the range obtained from a previous experimental study
of 5-12 test repetitions of CFS-to-OSB fasteners by Iuorio et al. [60].

(a) (b)

-+ F1i
25l it to data ()

Force at each fastener (kN)

uto

0 5 10 15
Displacement at each fastener (mm)

Figure 2.3: Individual screw response conversion from stud-screw-sheathing system
behavior and statistical characterization. (a) Conversion of system to screw behavior
via displacement and force schematic representation. (b) Individual screw force-
displacement behavior using the statistical average p of the 30 identical tests, as well
as the u 4+ o bounds, and pu420 bounds.

Connection variability is further investigated in Section 2.4 via a probabilistic
approach based on random fastener response characterization. Design codes do not

include strength comparisons for these fasteners.
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Table 2.1: Statistical characterization obtained from the 30 identical connection tests.
Py, Py, P3, P, denote the load and Ay, Ay, A3, A, the displacement of each of the
four points constructing the CFS-to-OSB fastener behavior.

Backbone data points Mean p Std o COV

(EN)  (:N) (%)
P, @ 40% Peak load 0.814 0.098 12.10
P, @ 80% Peak load 1.627 0.197 12.10
P3 @ Peak load 2.034 0.246 12.10
P, @ 30% Peak load 0.610 0.074 12.10

Backbone data points Mean p Std ¢ COV

(mm)  (mm) (%)
Ay @ 40% Peak load 0.540 0.125 23.30
Ay @ 80% Peak load 2400 0.400 16.70
A3z @ Peak load 5.400 0.737 13.80
Ay @ 30% Peak load 11.60  2.800 24.00

2.2 Finite element modeling of OSB-sheathed CF'S shear walls

The main focus of this study is to introduce and validate a robust benchmark finite
element model of OSB-sheathed CFS shear walls. A high fidelity modeling approach
is introduced by using the finite element software ABAQUS [1], and is validated by
nine different wall experiments throughout US and Canada (Liu et al. [70], Branston
[18], Blais [15], Hikita [57]). The introduced computational method aims to accurately
capture strength, stiffness and failure mechanisms of OSB-sheathed walls regardless
of wall configuration, dimensions, and different components and details. All the
examined shear walls adopted in this work are composed of a CFS structural frame
composed of chord studs, field studs and tracks, OSB sheathing in one side, hold-
downs in the bottom part of the walls to prevent the uplift, and screws connecting the
CFS members, as well as the OSB sheathing to the CFS frame. Particular attention
is given to the CFS-to-OSB connection behavior by describing it via experimental

data.
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2.2.1 Model geometry

The simulated OSB-sheathed CFS shear walls are adopted from two different test
rigs based on the CFS-NEES study (Liu et al. [70]) and the McGill studies (Branston
[18], Blais [15], Hikita [57]). Various CFS and OSB member cross-sectional properties,
hold-down components and details presence (ledger, vertical seam) are investigated
throughout the different examined wall configurations. A schematic representation
of the simulated shear wall geometries including symbols (notation list in Appendix
A) for dimensional and cross-sectional properties are illustrated in Fig. 2.4. Table 2.2
summarizes the CFS member different cross-sections, while Table 2.3 presents the
different wall dimensions (aspect ratios), component thicknesses and hold-down types

between the selected wall configurations.

Table 2.2: Cross-sectional dimensions of all examined CFS members (H is the web
depth, B is the flange width, and D is the lip depth of each CFS component).

Wall selection ~ Component Cross-section B H D

(mm) (mm) (mm)

Liu et al. 2014 Stud C-lipped 41.3 1524 127
Track C-unlipped 38.1 1574 —
Ledger C-unlipped 50.8  304.8 —

Branston 2004 Stud C-lipped 41.3  92.08 12.7
Track C-unlipped 30.2  92.08 —

Blais 2006 & Stud C-lipped 41.3 92.08 12.7

Hikita 2006 Track C-unlipped 31.8  92.08 —

Two different wall configurations of different aspect ratios, a 1.22 m x 2.74 m (4
ft x 9 ft) and a 2.44 m x 2.74 m (8 ft x 9 ft), are adopted from Liu et al. [70] and are
subjected to monotonic loading. CF'S studs and tracks constitute the structural frame
connected to a ledger track at the top interior wall side, to OSB sheathing at the full

exterior wall side, and to hold-downs at the bottom chord stud part. The smallest
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aspect ratio (h/w) wall consists of an additional vertical seam in the middle field stud
flange composed of two rows of connections spaced every 152.4 mm (6 in.). Horizontal
seams are not included in the finite element analysis, since they do not fail during the
test and they have little effect in shear wall capacity. CFS members are assembled via
M5 (No. 10) screws, while CFS frame to OSB sheathing are assembled via self-drilling
M4 (No. 8) flathead Simpson Quick Drive screws in both wall configurations.

Table 2.3: Wall and component dimension, and detail selection for all nine simulated
CFS shear walls. (w is the wall width, & is the wall height, ¢, is the OSB thickness, ¢;

is the stud thickness, ¢, is the track thickness, s, is the wall perimeter screw spacing
and sy is the wall field stud screw spacing).

Wall Database wxh t1 to ts Sp St Hold-down
(Test No.) (m) (mm) (mm) (mm) (mm) (mm)

Liu et al. 2014 (1c) 1.22x2.74 1.37 1.37  11.11 152.4* 304.8 S/HDU6
Liu et. al 2014 (11c¢) 244 x 274 1.37 1.37 11.11 152.4* 304.8 S/HDUG6
Hikita 2006 (51b) 1.22x 244 1.37 1.09 11.11 1524 304.8 S/HD10

Branston 2004 (21abc) 1.22x2.44  1.12 1.12 11.11 1524 304.8 S/HD10
Branston 2004 (23abc) 1.22x2.44  1.12 1.12  11.11 101.6 304.8 S/HD10
Branston 2004 (25abc) 1.22 x2.44  1.12 1.12  11.11  76.20 304.8 S/HD10

Blais 2006 (41abc) 1.22x 244 1.09 1.09 9.525 1524 304.8 S/HD10
Blais 2006 (43abc) 1.22 x 244 1.09 1.09 9.525 101.6 304.8 S/HD10
Blais 2006 (45abc) 1.22x 244 1.09 1.09  9.525 76.20 304.8 S/HD10

x Staggered perimeter fastener application

Seven different wall configurations of 1.22 m x 2.44 m (4 ft x 8 ft) dimensions are
adopted from McGill effort (Branston [18], Blais [15], Hikita [57]) and are subjected
to monotonic loading. CFS studs and tracks consist the structural frame connected
to OSB sheathing at the exterior side of the walls, and to hold-downs at the bottom
part of the chord studs. The OSB sheathing is connected to the CFS members via
M4 (No. 8) self-piercing screws, while studs are connected to tracks by M5 (No. 10 )
screws, and back-to-back chord studs are fastened through M4 (No. 8) screws. The

impact of shear wall perimeter fastener spacing is investigated through three different

19



spacings at 12.7 mm (1/2 in.) screw edge distance.

All simulated OSB-sheathed CF'S shear walls are simulated using their nominal di-
mensions, and cross-sectional and material properties to ensure a consistent and gen-
eral benchmark modeling approach. Geometric imperfections, and residuals stresses
and strains are not included in this modeling method (similarly to Ngo [78] and Ding
[37]) since CFS members did not buckle during the tests and the wall behavior was

fastener-governed.

t;: stud Ledger
thickness (if present)
D}
Chord studs
H (back-to-back)
—
5 Field stud
| Sheathing
H
Hold-down
t,:track R e
thickness W t,: sheathing thickness

Figure 2.4: Representation of a typical OSB-sheathed CFS shear wall configuration
including dimension symbols for wall and component cross-sections. Stud and track
cross-sections are described by their web depth H, their flange width B, their lip
depth D (for studs), and their thickness ¢; and ¢, respectively. Wall dimensions are
described by their height h and their width w, while sheathing thickness is denoted
as t;. The fastener spacing is classified as perimeter spacing s,, and field stud spacing
sy. Nine shear walls of different configurations and dimensions are simulated.
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2.2.2 Mesh discretization and element type

All CFS components and OSB sheathing are constructed and assembled in ABAQUS
software by using three-dimensional four-node S4R shell elements with reduced in-
tegration points. Fig. 2.5 illustrates wall schematics and different views of a typical
simulated wall including the mesh of all components. A fine mesh of a size of 6.35 mm
(0.25 in.) is selected for CFS members (studs, tracks, ledger) and a coarser mesh of
a size of 50.8 mm (2 in.) is chosen for the OSB sheathing. CFS component mesh size
and element type effects are assessed by Schafer et al. [90]. The selected fine mesh
of CFS members allows for two elements in the lips of the studs, while the effect of a

finer mesh of 38.1 mm (1.5 in.) in OSB sheathing is addressed in Subsection 2.3.2.

2.2.3 Material properties

The material properties of all simulated components are described herein. OSB
sheathing is modeled as orthotropic elastic material, while CF'S members are modeled

as isotropic and elastic perfectly plastic materials.

2.2.3.1 OSB material properties

Elastic orthotropic material properties for OSB sheathing are obtained by con-
verting the panel bending stiffness (E1), and the panel rigidity (Gt)s into Young’s
modulus F and shear modulus Gy respectively, as analytically discussed in Schafer
et al. [91]. The OSB panel bending stiffness parallel to the strength axis (ET)s1,
the panel bending stiffness perpendicular to the strength axis (E[)so, and the panel
rigidity through thickness (Gt)s12 are described in APA-D510C [8] for both simulated
sheathing types, the 11.11 mm (7/16 in.) thick and the 9.525 mm (3/8 in.) thick

OSB, as shown in Table 2.4. Eq. 4 and Eq. 5 are used to obtain the Young’s modulus
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and the shear modulus respectively (Table 2.4).

The Young’s modulus of OSB sheathing is defined as:

12(ET),

FE. =
S tg

The shear modulus of OSB sheathing is calculated as:

(Gt)s

G, =
ts

where t, is the sheathing thickness of each selected OSB panel.

(5)

Orthotropic material properties are introduced to the finite element model via

Engineering Constants from ABAQUS library. To obtain orthotropic material prop-

erties, Young’s modulus and shear modulus in all three-dimensions are required. The

out-of-plane Young’s modulus F,j is set equal to Fy, from Table 2.4, and out-of-plane

shear moduli G413 and G935 are set equal to (G412 from Table 2.4, while the Poisson’s

ratio v4=0.3 is introduced in all three-dimensions. The effect of different shear moduli

in shear wall response is further discussed in Subsection 2.3.2.

Table 2.4: OSB sheathing material properties. Modulus of elasticity and shear mod-
ulus are calculated based on the OSB thickness and OSB rate of the different exper-

imental configurations.

OSB sheathing type (E1)g1 (ET)s2 (Gt)s12
(kN —mm?/mm) (kN —mm?/mm) (kN/mm)
|| strength axis 1 strength axis  through thickness
11.11mm, 24/16 rated 734.36 150.64 14.62
9.525mm, 24/0 rated 564.90 103.56 13.57
OSB sheathing type Egq Ey Gs12
(MPa) (M Pa) (M Pa)
|| strength axis 1 strength axis  through thickness
11.11mm, 24/16 rated 6422 1317 1316
9.525mm, 24/0 rated 7844 1438 1425
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Figure 2.5: Representation of a typical simulated shear wall including mesh dis-
cretization and connection classification. (a) Shear wall assembly including the se-
lected coordinate system and loading. (b) Mesh representation of OSB sheathing and
CFS-to-OSB connection simulation via the connector element Cartesian. (b) CFS
structural frame including studs, tracks and their connections. (d) Ledger mesh and
its connection to the frame via MPC pinned constraints, and (e) back-to-back chords
studs connected through MPC pinned constraints. (f) Hold-down representation by
a rigid body and a Spring2 element. (g) Displacement control loading application at

top track. (h) Bottom track and (i) top track boundary conditions for the different
walls.

2.2.3.2 CFS material properties

Elastoplastic material properties are implemented in the finite element modeling

approach for all CFS components. A modulus of elasticity equal to E=203 GPa
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(29500 ksi), and a Poisson’s ratio equal to v=0.3 remain constant between the different
shear wall configurations. For the shear walls adopted from Liu et al. [70], the yield
strength is equal to o,=344 MPa (50 ksi), while for the McGill effort walls (Branston
(18], Blais [15], Hikita [57]) the yield strength is 0,=230 MPa (33 ksi). The impact

of measured yield strengths in full shear wall behavior is assessed in Subsection 2.3.2.

2.2.4 Connection simulation

Shear wall connections are classified into two categories in this work, CFS-to-
CF'S connections (between CFS members) and CFS-to-OSB (between CFS members
and OSB sheathing), and are simulated via different modeling assumptions. CFS-to-
OSB connections constitute the critical load path of OSB-sheathed shear walls during

testing, while CF'S-to-CFS connections did not fail during the tests.

2.2.4.1 CFS-to-CFS connection modeling

Multi-point constraints (MPC) pinned are used to simulate CFS-to-CFS connec-
tions. MPC pinned allows for independent motion of all three rotational degrees of
freedom, while it constraints all three translational degrees of freedom. CFS-to-CFS
connections appear in the examined CFS shear walls between a) back-to-back chord
stud webs though two lines of connections spaced every 304.8 mm (12 in.) verti-
cally, b) stud-to-track center points of their flanges (both in chord and field studs),
and c) stud-to-ledger as flange-to-web connections spaced every 50.8 mm (2 in.) at
top interior wall side. CFS-to-CFS connections and their location are illustrated in

Figs. 2.5¢, 2.5d and 2.5e.
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2.2.4.2 CFS-to-OSB connection modeling

Connector elements (CONN3D2) Cartesian are selected for CFS-to-OSB connec-
tion simulation. CONN3D2 Cartesian allows for motion in all three translational
degrees of freedom through an assigned nonlinear connection behavior. CFS-to-OSB
connections represent the dominant failure mechanism in the full shear wall response,
as discussed in the experimental studies by Liu et al. [70], Branston [18], Blais [15]
and Hikita [57]. For this reason, experimentally-determined shear behavior is intro-
duced to represent the response of these connections. Connector element behavior
is assigned to wires at the locations of CFS-to-OSB connections, which are created
between two matching nodes between OSB sheathing (first selected node) and CFS
members (second selected node), as illustrated in Fig. 2.5b.

For the shear CFS-to-OSB connection behavior, experimental four-point nonlinear
response is introduced in the finite element model based on available tests of the same
screw diameters and CFS and OSB material thicknesses with the simulated shear
walls. To simulate the connection behavior of the nine selected OSB-sheathed CFS
shear walls, four different fastener behaviors are adopted, as summarized in Table 2.5

and illustrated in Fig. 2.6b:

e 1.37 mm CFS to 11.11 mm OSB (54 mils to 7/16 in.) connection behavior

obtained from Peterman et al. [83] and introduced in Liu et al. [70] walls,

e 1.37 mm CFS to 11.11 mm OSB (54 mils to 7/16 in.) fastener data based on
the mean (u) backbone of the 30 identical tests conducted in Section 2.1 and
assigned in Hikita [57] wall,

e 1.12 mm CFS to 11.11 mm OSB (44 mils to 7/16 in.) connection behavior

adopted via a linear interpolation between available tests of 0.84 mm CFS to
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11.11 mm OSB (33 mils to 7/16 in.) and 1.37 mm CFS to 11.11 mm OSB (54
mils to 7/16 in.) from Peterman et al. [83] and introduced in Branston [18§]

walls, and

e 1.09 mm CFS to 9.525 mm OSB (43 mils to 3/8 in.) connection data obtained
from an approximated fastener capacity reduction factor of the thickness dif-
ference between 9.525 mm (3/8 in.) and 11.11 mm (7/16 in.) OSB sheathings

and assigned in Blais [15] walls.

Besides their experimental-derived behavior, the orientation of CFS-to-OSB sim-
ulated connections need to be addressed via connection local coordinate systems. As
illustrated in Fig. 2.6a the connection vector forces are not aligned with any of the
global coordinate system <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>