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ABSTRACT 

SURFACE ENHANCED RAMAN SPECTROSCOPY (SERS) AS AN APPROACH FOR 

THE EMERGING LIQUID BIOPSY DIAGNOSTICS. 

 

 

May 2021 

 

 B.E., QAZVIN INTERNATIONAL UNIVERSITY, IRAN 

 

MS., GUILAN UNIVERSITY, IRAN 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST, MA, USA 

 

Directed by: Professor Byung Kim   

 

 

Large Molecule bioanalysis and biosensor development are essential techniques that are 

required in many applications, including biotherapeutic development, in vitro diagnostic, 

biomarker detection, and early detection.  These techniques should be highly specific and sensitive 

enough to identify and quantify an analyte of interest with minimum sample pretreatment 

requirements.  

This work explores the development and application of chip-scale bioassays based on 

surface-enhanced Raman scattering (SERS). It introduces sensing techniques to quantify various 

disease biomarkers, specifically pancreatic cancer. Blood is the best source of information about 

our body's function. There are many biomarkers in the blood, and each biomarker's high expression 

level can be referred to as a specific disorder. In this work, we have developed sensitive detecting 

methods to quantify these biomarkers. We successfully validated this method with human serum 

samples. Due to its capability to detect multiple biomarkers, the proposed bioanalytical technique 

can enhance the specificity of the approach enabled by machine learning based data classification 

algorithm. 
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CHAPTER 1  

INTRODUCTION  

1.1 Dissertation organization 

This work explores the development and application of chip-scale bioassays based on surface-

enhanced Raman scattering (SERS). It introduces a sensing technique to quantify various cancer 

biomarkers, specifically pancreatic cancer. A general introduction, including basic knowledge of 

Raman spectroscopy, SERS, and immunoassay, is presented in this chapter. In Chapters 2 and 3, 

a method for quantification of pancreatic cancer biomarkers is introduced. Chapter 2 presents the 

effects of gold particle-size and substrate materials on the amplification of Raman signals. The 

expression level of three pancreatic cancer biomarkers was measured using intensity-based SERS 

immunoassay. Chapter 3 investigates the efficiency of a SERS-based immunoassay technique in 

detecting tumor-derived EVs in the serum of cancer patient samples and its ability to differentiate 

between PC and CP patients.  In Chapter 4, a SERS-based protein biomarker detection platform in 

a microfluidic chip is investigated to detect several protein biomarkers of OVC, PC, and 

pancreatitis (CA19- 9, HE4, MUC4, MMP7, and mesothelin). Chapter 4 also explores the impact 

of two machine learning algorithms (Decision tree and K nearest neighbor classification) on the 

assay's specificity and improving the chance of recognition for one specific disorder among 

diseases with overlapped protein biomarkers changes. In Chapter 5, a novel SERS-based 

frequency-shift immunoassay is reported for the detection of cancer markers in human serum. The 

expression level of five biomarkers has been measured in the serum of pancreatic and ovarian 

cancer patients and compared to that of healthy individuals. 
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1.2 Raman Spectroscopy 

Raman spectroscopy was discovered in 1928 by C.V. Raman spectroscopy is a highly 

specific technique that can identify our targeted molecules through their specific molecular 

structure, and fingerprint information can be served in their Raman spectra. Raman occurs because 

of molecular vibration. Vibration can change the molecule's binding structure's polarizability, 

resulting from a molecule binding structure and light interaction. Raman signal is intrinsically 

weak, and that is because a few photons (1 in 107) scatter with a small difference in wavelength 

compared to incident photons wavelength. Raman spectroscopy measures the numbers of those 

photons with different wavelength compared to the original photons.  This shift in wavelength 

(Raman shift) of inelastically scattered radiation can provide chemical and structural information 

of our target molecule 1,2.  Due to weak signal, Raman spectroscopy has not been widely used in 

biomolecular studies until 1974 when significant enhancement of the signal observed and 

discovered by Fleischman et al. in Jeanmarie and Van Duyne, and it is known as Surface-enhanced 

Raman Spectroscopy 3,4. 

1.3 Surface Enhanced Raman Spectroscopy  

Surface-Enhanced Raman Spectroscopy (SERS) is vibrational optical spectroscopic 

technique based on significant enhancement of inelastic scattering of molecules which absorbed 

on a gold or silver nanostructure. While there have been a huge number of studies trying to explain 

the SERS phenomenon it is generally agreed that SERS enhancement is largely due to 

electromagnetic (EM) enhancement.  

This Electromagnetic enhancement effect is based on the amplification of the EM field due 

to resonance excitations of localized conduction-electron oscillations at the metallic nanostructure 

surface2. In other words, free electrons in a nanostructure metal absorb the energy and start to 
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oscillate with a resonance frequency determined by the dielectric function of the metal, the surface 

plasmon resonance. Thus, there is a huge enhancement in the incident field, which leads to the 

enhancement of scattered fields in shifted frequency.  The average SRES enhancement factor is 

about 105 but even values about 1011-1014 can be achieved in very sensitive and engineered 

approaches. These results of the SERS introduced a promising way of using this technique to 

observe very low concentrations of molecules on nanoparticles and nanostructured surfaces. 

1.4. Immunoassay  

Immunoassay plays a critical role in various bioanalytical applications, such as early 

detection, biotherapeutic development, biopharmaceutical analysis. It is a selective method that 

measures molecules' presence in a solution using an antibody or an antigen. Sandwich 

immunoassay conventionally uses two antibodies to bind to different binding sites (epitopes) of 

the antigen. One type of antibody that is used in sandwich immunoassay serves as a capture 

antibody. The capture antibody is responsible for capturing the antigen from the matrix and 

immobilizing it on the binding surface. The first step in an immunoassay is the immobilization of the 

captured antibody on the surface and segregating the target antigen. Then the detection antibody would 

Figure 1: Raman Spectroscopy vs. SERS 
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be tagged with the appropriate label5. SERS-based immunoassay is employed to segregate target 

protein among other proteins and, at the same time, provide high SERS intensity. Intrinsic label-free 

detection of proteins with SERS-based immunoassay is not effective due to lack of sensitivity and 

specificity. Without segregation and purification steps, final intensities are affected by the 

compositions, other proteins, and salts in the solution. 

The most commonly used platform for SERS-based immunoassay is that the target antigen is 

selectively sandwiched between gold surface coated with antibody, and gold nanoparticles, which are 

functionalized with antibody and Reporter. Extrinsic Raman labels (ERLs) are designed to bind 

selectively to a captured antigen and to increase Raman scattering, and provide a strong Raman 

spectroscopic signal.  
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CHAPTER 2 

 

DETECTION OF PANCREATIC CANCER PROTEIN BIOMARKERS USING A SERS-

BASED IMMUNOASSAY 

2.1 Abstract 

Early diagnosis of pancreatic cancer is critical to reduce the mortality rate of this disease. 

Current biological analysis approaches cannot robustly detect several low abundance pancreatic 

cancer biomarkers in sera, limiting the clinical application of these biomarkers. This study 

demonstrates a novel system for multiplex detection of pancreatic biomarkers CA19-9, MMP7 and 

MUC4 in sera samples with high sensitivity. Measuring the levels of these biomarkers in 

pancreatic cancer patients, pancreatitis patients, and healthy individuals reveals the unique 

expression pattern of these markers in pancreatic cancer patients, suggesting the great potential of 

using this approach for early diagnostics of pancreatic cancers 

2.2 Introduction 

Pancreatic cancer (PC) remains to be one of most deadly cancers with a five years’ survival 

rate of 8% 6,7, which has not been improved over the past 40 years. The high mortality rate of PC 

is mainly due to the lack of early symptoms, and absence of specific biomarkers and diagnostic 

platform for early detection. As a result, most pancreatic cancer patients are diagnosed in late 

stages with advanced diseases, which prevent effective surgical interventions and/or 

chemotherapy. Currently, biopsy and standard imaging approaches like MRI, CT Scan and 

endoscopy are routinely used for diagnosing PC in high-risk patients (e.g., those with pancreatitis). 

However, these approaches often fail since the location of pancreas sits across the back of the 
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abdomen, behind the stomach8. In addition, the high cost of these methods prevents them from 

being standard screening tests for normal adults.  

Detecting biomarkers in body fluid is a cheaper and potentially more effective approach 

for PC diagnostics. CA19-9 antigen is currently the most common and only validated serum 

marker for the prognosis and diagnosis of PC. However, CA19-9 cannot be used as a screening 

test for PC because it fails to distinguish PC with several benign diseases like liver cirrhosis, 

cholangitis, and chronic pancreatitis (false positive) and has low expression level in Lewis negative 

diseases (false negative)9,10. Furthermore, CA19-9 cannot be found in 10% of the population 

because their body do not synthesize CA19-911,12. Thus, there is an urgent need for identifying 

novel PC biomarkers to assess patient prognosis. Several emerging biomarkers, including 

MUC413,14, and MMP715-17 have been identified as potential biomarkers of PC. However, the low 

abundance of these proteins in serum limits their applications for PC diagnostics, and the 

sensitivity and specificity of these markers have not been thoroughly examined. 

Surface Enhanced Raman Spectroscopy (SERS) can provide an intrinsic fingerprint 

information of samples with high sensitivity2. SERS is a vibrational optical spectroscopic 

technique based on significant enhancement of inelastic scattering of molecules absorbed on gold 

or silver nanostructures2,18. In the past decades, SERS technique has been widely employed to 

detect and analyze chemical structure of various materials19-21. SERS-based detection of low 

abundance biomarkers has attracted much attention in recent years. Although various types of gold 

and silver particles and multifarious substrates have been exploited to improve sensitivity and 

specificity, broad applications of SERS in the detection of biomolecules have not been realized7,22-

25.  
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In this work, we examined the possibility of using SERS-based immunoassay to detect 

CA19-9, MUC4, and MMP7 simultaneously for evaluating the risk of PC. We first systematically 

examined the effects of gold particle size, gap distance between immobilized particle and 

underlying substrate, and substrate materials on the amplification of Raman signals. We next 

developed a micropatterning approach to precisely control the address of capture antibody for 

multiplex detection of PC biomarkers in sera. The sensitivity of the platform was first evaluated 

by quantification of different concentration of spiked proteins in the pooled human sera. The 

usefulness of this platform is further evaluated by detecting levels of different biomarkers in sera 

samples collected from normal adults, patients with pancreatitis, and patients with pancreatic 

cancer. Our results demonstrated the advantages of using gold nanoshells and micropatterning for 

high-sensitivity, low-cost, multiplex detection of biomarkers and provided a streamlined process 

for multiplex detection. 

2.3 Experimental Setup 

2.3.1 Reagent 

Gold Nanoparticles (60 nm in diameter, 2.6 × 1010 particles/ml) were purchased from Ted 

Pella. Gold Nanoshells (660 nm resonant, 151 nm diameter, 3.7 × 1010 particles/ml and 800 nm 

resonant, 163 nm diameter, 3.9 × 1010 particles/ml) were purchased from NanoComposix. 

Sodium chloride, StartingBlock and borate buffer (50mM) were obtained from ThermoFisher 

Scientific. Dithiobis-(succinimidyl proprionate) (DSP), dimethylsulfoxide (DMSO), 4-

Nitrobenzenethiol (4-NBT), acetonitrile, phosphate buffered saline (PBS), and bovine serum 

albumin (BSA) were acquired from Sigma Aldrich. Pooled human serum was acquired from 

Innovative Research. 
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In our SERS-based immunoassay, three different sets of monoclonal antibodies were used 

to modify the capture substrate and extrinsic Raman labels (ERLs), and corresponding 

recombinant proteins were used to validate the immunoassay. Lyophilized MMP7 mAb along with 

recombinant human MMP7 as an antigen (~28 kDa) were purchased from R&D Systems. CA19-

9 antibody along with Lyophilized CA19-9 recombinant protein (~40 kDa) were purchased from 

LifeSpan Bioscience and monoclonal anti-MUC4 and human MUC4 peptide as an antigen were 

obtained from Abcam. 

Four different substrates were used in our assay. Gold nanopillar substrates were purchased 

from Silmeco; gold deposited paper substrates were purchased from Diagnistic anSERS Co; gold 

coated silicon substrates were purchased from Sigma Aldrich; gold coated microscope slides were 

purchased from Ted Pella. 

2.3.2 Preparation pf ERL 

As illustrated in Fig. 2, antibody-conjugated ERLs were prepared based on standard 

protocols as reported by Porter, Lipert et al. 26. Specifically, modified gold nanoparticles and gold 

nanoshells as ERLs are exploited to provide more intense Raman signal and immunopositivity. In 

this paper, all of gold particles were modified with two different thiols, DSP and 4-NBT.  

DSP has both disulfide and succinimidyl functionalities for chemisorption onto the gold 

and facile covalent binding of antibodies to the gold particles and substrate; however, DSP does 

not show intrinsically intense Raman signal. 4-NBT, on the other hand, has been used to provide 

intense Raman signal due to aryl nitro group with an intrinsically strong Raman active vibrational 

mode. 4-NBT also contains a disulfide group for spontaneous chemisorption to the gold particles 

27. Preparation of ERLs is described as follows: 1.0 mL suspension of gold nanoparticles or gold 

nanoshells, 40 µL of 50 mM borate buffer, 2.0 μL of 1.0 mM DSP in DMSO and 8.0 μL of 1.0 
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mM 4-NBT solution in acetonitrile were mixed and left to react for 8 h. To discard excess thiols, 

the suspension was centrifuged at 2000g for 10 min and supernatant was removed with a syringe. 

Gold nanoparticles/nanoshells were resuspended in 2.0 mM borate buffer. ERL preparation was 

continued by adding 20 μg of MMP7, MUC4 or CA19-9 primary antibodies to the suspension and 

incubating for 16 h at 4 oC. Next, 100 μL of 10% BSA was added to the suspension for stabilizing 

the suspension and blocking nonspecific binding sites and unreacted succinimidyl. After 8 h, 

functionalized ERLs were rinsed three times by centrifugation. The ERL pellet was resuspended 

in 1.0 mL of 2 mM borate buffer containing 1% BSA. The pellet was then resuspended in 0.5 mL 

Figure 2. A SERS-based immunoassay for biomarker quantification: (I) Functionalizing 

gold substrate with thiol and antibody; (II) Capturing desired antigens from the serum; (III) 

Loading antibody-conjugated ERL, Gold nanoparticles were modified with antibody and 

Raman reporter 



 

 24 

of 2.0 mM borate buffer containing 1% BSA. Finally, suspension was modified with 50 mL of 

10% NaCl for stabilization, and then passed through a 0.22 µm syringe filter to remove any large 

aggregate. 

2.3.3 Optimization of ERL’s Raman Signal 

To maximize Raman enhancement factor of ERL for this application, various combination 

of most commonly used substrates and nanoparticles were tested and compared. ERLs were 

prepared using gold nanoparticles, and gold nanoshells with 660 nm and 800 nm resonant 

wavelength. Also, four different kind of substrates, glass substrate, gold deposited paper substrate, 

gold nanopillar substrate and gold coated silicon substrate, were coated with DSP. SEM image of 

gold nanoparticle on gold coated silicon substrate can be found in Fig.  3. 20 µL of each 4-NBT 

Figure 3 SEM image of gold Nanoshell on gold coated silicon wafer 
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functionalized nanoparticle solution was then pipetted on these four substrates. After 8 h of 

incubation, the samples were dried with a stream of air. Each substrate was then placed under 

Raman system and spectra were collected from these twelve-different conditions.  

2.3.4 Functionalizing capture substrate and immunoassay procedures 

As shown in Fig. 4, substrates were immersed in 1mM DSP in ethanol for 16 h and then 

rinsed with ethanol and dried under stream of air. As a result, gold substrates are coated with a 

layer of DSP. To confine the substrates and form the addressed arrays, we used a patterned stamp 

made of polydimethylsiloxane (PDMS). PDMS stamps were fabricated by pouring a 10:1 (w/w) 

mixture of Sylgard 184 elastomer and curing agent and mixture were cured for 1 hour at 80ºC. The 

PDMS stamp was first patterned with a 3⨯15 array of punched holes (diameter d = 3 mm) and 

then immersed in 2 mM ODT for 1 min. ODT is a water-soluble sulfur compound, which can bind 

to gold surface and form a strong hydrophobic layer. Dried PDMS stamp was then pressed on to 

the gold substrate to transfer ODT to gold substrates. As a result, addresses surrounded with 

hydrophobic ODT monolayer were formed to confine droplets of aqueous samples.  

Antibodies conjugation to each of three substrates were conducted as follow; addresses 

were modified with MMP7, CA19 and MUC4 primary antibody. (Fig. 4). For each capture address 

10 µL, 100 µg* mL-1 antibodies were used. All coated substrates were reacted with antibodies for 

8 h in a humidity chamber. Thus, a capture antibodies layer was formed by attaching to 

succinimidyl ester of DSP on the substrate. Antibodies were then aspirated by rinsing with 10mM 

PBS. Rinsing was performed by reverse pipetting for five times with the same pipette tip to avoid 

contamination. Next, 20 µL of StartingBlock blocking buffer was added to each address to react 

for 16 h, then the capture substrates were ready to use. 
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After ERL and capture substrates functionalization, the substrates should be loaded with 

samples. For protein spiking assay, captured substrates were exposed to 20 µL of different 

concentrations of MMP7, MUC4 and CA19-9 recombinant proteins. Concentrations between 20 

µg/ml down to 2 ng/ml were spiked in pooled human sera. For clinical samples, 20 µL of undiluted 

sera were applied and left in humidity chamber. After 8 h incubation, each sample area was rinsed 

with buffer (2 mM borate, 150 mM NaCl) via reversed pipetting. Captured antigens were then 

labeled by exposing addresses with 20 µL of related ERL suspension for 16 h in humidity chamber 

(Fig. 4). Finally, the substrates were rinsed with buffer (2 mM borate, 150 mM NaCl), and dried 

with a stream of air, and analyzed by the Raman device. 

Figure 4. A micropatterning approach for the multiplex detection of MMP7, MUC4 and 

CA19-9 levels in serum samples using the SERS-based immunoassay. (a) The PDMS stamp 

was first patterned with a 3⨯15 array of punched holes (diameter d = 3 mm) and then 

immersed in 2 mM ODT for 1 min, dried PDMS stamp was then pressed on to the gold 

substrate. (b) 10 µl, 100 µ𝒈 𝒎𝒍−𝟏 antibodies were loaded in to the capture addresses. (c) The 

addresses were then exposed with blocking buffer, (d) serum samples and (e) ERL. (f) 

Finally, Raman signals from 5 random positions were collected from each capture address. 
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2.3.5 ELISA quantification  

The micro-ELISA plate has been pre-coated with a CA19-9 antibody specific to Human 

CA-19-9. The standard sample was centrifuged at 10000xg for one minute and serially diluted to 

200, 67, 22, 7.4, 2.5, 0.8, and 0.27 ng/mL. 100 uL of each concentration of standard samples were 

added in designated wells. The plate was covered with the sealer and was subsequently incubated 

for 90 minutes at 37 °C. The plate was then was washed and blotted. Standards or samples are 

plated in wells and combined with the specific antibody. Immediately 100 uL of Biotinylated 

Detection antibody was added to each well covered with the plate sealer and gently mixed up. 

After a 1-hour incubation, the solution was washed and blotted from each well, followed by adding 

100 uL Avidin Horseradish Peroxidase (HRP) conjugate solution to each well. Free components 

were washed away. The substrate solution (TMB) was then added to each well. Only those wells 

that contain Human CA19-9, biotinylated detection antibody, and Avidin-HRP conjugate appeared 

blue in color. In the next step, the enzyme-substrate reaction was terminated by the addition of the 

stop solution, and the color turned yellow. The optical density (OD) was measured 

spectrophotometrically at a wavelength of 450 nm ± 2 nm. The OD value is proportional to the 

concentration of CA19-9. The concentration of CA19-9 in the samples and individuals can be 

calculated by comparing the OD of the samples to the standard curve.  

2.3.6 SERS readout instrument  

All the measurements and Raman spectra collection were performed with portable 

BWS415 i-Raman from B&W TEK Co. The incident laser light was focused to 85 µm spot size 

on the substrate normal incidence. The working distance is 5.9 mm. The light source has a power 

of 499.95 mW, and an excitation wavelength of 785 nm, and the same objective was used to collect 
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the scattered radiation. The antigen concentration was quantified using (𝑣𝑠(𝑁𝑜2)) of 4-NBT 

intensity at the 1336 𝑐𝑚−1  position averaged over five readouts on each address. For 

reproducibility, three addresses were measured for each concentration.  

2.3.7 Patient sample collection  

Under an IRB approved protocol, patients with pancreatic cancer, benign pancreatic 

disease and normal control patients were identified from the UMass Memorial Medical Center 

Chemotherapy Infusion Center and Gastroenterology Clinics. Patients were identified from review 

Serum Sample Sex/Age Sample Characteristics 

PC #1 F/38 Metastatic pancreatic adenocarcinoma 

PC #2 F/58 Metastatic pancreatic adenocarcinoma 

PC #3 M/61 Metastatic pancreatic adenocarcinoma 

PC #4 F/88 Locally advanced pancreatic cancer 

PC #5 M/57 Metastatic pancreatic adenocarcinoma 

Pancreatitis #1 M/41 Acute pancreatitis- gallstone disease 

Pancreatitis #2 F/55 Chronic pancreatitis- autoimmune 

Pancreatitis #3 M/61 Chronic pancreatitis- alcohol related 

Pancreatitis #4 F/43 
Chronic pancreatitis-hereditary, cystic fibrosis gene 

mutation 

Pancreatitis #5 M/55 Chronic pancreatitis- alcohol related 

Control 

patients 

M:F 3:2/ 

Age 53-75  

Average 62 

 

 

Table 1 Clinical sample characteristics. 
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of the weekly schedules and consecutive patients were enrolled to avoid bias. Patient gender, age 

and clinical sample characteristics are shown in table 1.  Sera samples (4 ml serum per patient) 

were collected and immediately processed/frozen for analysis. 

2.4 Result and Discussions 

2.4.1 Material and platform optimization 

We first identified the combination of nanoparticles and substrates that most drastically 

amplify the SERS signals. As descripted in section 2.3.2 and 2.3.3, we tested the effects of 

nanoparticles-substrates coupling on the amplification of 4-NBT SERS signals. As shown in Fig.5, 

Figure 5. Comparison of the SERS signal enhancement using different combinations of gold 

nanoparticles and substrates. (a) A plot showing the Raman intensities of 4-NBT (1336 cm-

1) enhanced by gold nanoparticles – gold substrate combinations. Each point represents 5 

random readout. P values were calculated using one-way ANOVA test.  ***, P < 0.001. (b) 

A plot showing the complete Raman spectrum acquired from gold coated silicon wafer 

coupled with different nanoparticles. (c) A plot showing the complete Raman spectrum 

acquired from gold nanoshells with  resonant wavelength of 660  nm coupled with different 

substrates. 
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we found that gold nanoshell with resonant wavelength of 660  nm provided highest amplification 

of the SERS signals, regardless of the substrates used. Moreover, substrates also have a very 

significant effect. Despite of nanoparticles tested, gold coated silicon substrate consistantly 

achived the higheset signlaing enhancement as compared with the glass substrate or gold 

nanopillar substrate. Thus, we will use gold nanoshells with  resonant wavelength of 660  nm 

coupled with gold coated sillicon substrate in our following studies. 

We reasoned that the observation here can be attribute to the shifting of surface plasmon 

resonance (SPR) of the suspended gold nanoparticles towards longer wavelength when 

immobilized on gold substrates. As reported previously1,28,29 , the SERS signal is maximized when 

SPR is shifted between excitation source λex (785 nm for our Raman device) and the scattered 

radiation λsc (877 nm for 4-NBT). It is known that the gap distance between nanoparticles and 

substrates can serve as an important factor for changing the maximum SPR and consequently 

SERS intensity 30. Our results suggest that a smooth gold surface (coated on silicon) can more 

Figure 6 The calibration curve for detecting (a) CA19-9, (b) MMP7 and (c) MUC4 using the 

SERS-based immunoassay. Corresponding proteins were spiked in buffer solution with 

concentration increasing from 2 ng* mL-1 to 20 µg* mL-1. Error bars Error bars show the 

standard deviation. Five random spots were measured at each single address, and three 

addresses were measured for each concentration. 
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significantly enhance SERS signals compared with rough surfaces (deposited on paper or gold 

nanopillars), likely through SPR shifting of 660 nm gold nanoshells. 

2.4.2 Detection of spiked PC biomarkers in pooled human sera 

We next prepared antibody-conjugated ERLs to determine the detection limit of three 

potential PC biomarkers, MUC4, MMP7 and CA19-9, using the SERS based approach. We spiked 

corresponding recombinant proteins in the pooled human serum with a serial dilution. As shown 

in Fig. 6, as spiked protein concentration increased from 2 ng* mL-1 to 20 µg* mL-1, SERS signals 

also steadily increased as a function of analyte concentration. These results suggest that our 

platform has potential to detect under 2 ng* mL-1 concentration of each measured PC biomarker. 

This detection sensitivity should be sufficient to distinguish those biomarkers in healthy 

individuals and PC patients based on reported ranges 15,31-34. 

Figure 7 First readout of SERS spectra for detection of CA19-9 in PC#1, Pancreatitis #1 

and control #1 
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2.4.3 Detection of PC biomarkers in patient sample 

We further evaluated whether this SERS based immunoassay can detect these biomarkers in 

PC patients. A total of 15 sera samples were collected, from five normal individuals, five patients 

with various types of pancreatitis but not PC, and five PC patients. As an example of biomarker’s 

spectra which can be detected by assay, few SERS readouts are demonstrated in Fig. 7.  As shown 

in Fig. 8 and appendix figure 1, significantly higher levels of MUC4, MMP7, and CA19-9 were 

detected in PC patients compared with normal controls and pancreatitis patients, while a marginal 

increase of these markers were found in pancreatitis patients. 

To evaluate the sensitivity and robustness of this assay, we further calculated the Z-score 

of each marker, which is determined by the following equation 35. 

 

                     𝑍𝑖 =
𝑥𝑖−�̅�

𝜎
                           (1)        

    

Where the 𝑥𝑖 is sample’s intensity, �̅� and 𝜎 are mean and population standard deviation of normal 

controls. 

As shown in Fig. 8c, CA19-9 appears to have the best predicting capability because its 

averaged Z-score for PC patients is 2.96 folds larger than that of pancreatitis patients. Averaged 

Z-scores of MMP7 and MUC4 for PC patients are 2.78 and 2.2 folds larger than that of pancreatitis 

patients. Although CA19-9 shows a high sensitivity for diagnosing PC patients, its level also 

elevates significantly in patients with pancreatitis, as illustrated in Fig. 8b&c.  It is notable that 6% 

to 9% of pancreatic resection for suspected PC are done inappropriately for pancreatitis, partially 

due to the lack of selectivity of CA 19-915,36. Our results here highlight the importance of 
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simultaneous detection of other PC biomarkers including MUC4 and MMP7, whose level do not 

increase in pancreatitis patients but elevate significantly in PC patients. 

Notably, one patient (PC #2) has a relatively low level of CA19-9, while the MUC4 and MMP7 

level are significantly higher than the pancreatitis group. These results suggest a heterogeneous 

Figure 8. Multiplex detection of MMP7, MUC4 and CA19-9 levels in serum of normal, PC 

and pancreatitis samples (total of 15 sera samples) using the SERS-based immunoassay. (a) 

Raman intensities of 4-NBT (1336 cm-1) corresponded to MMP7, MUC4 and CA19-9 in 

serum samples. Each box represents 15 readouts. (b) Z- scores for each biomarker in PC 

and pancreatitis serum samples based on mean of total controls. (c) PC vs. pancreatitis Z-

scores 
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expression of different PC biomarkers in patient sera depending on the development stages of the 

disease and highlight the necessity of multiplex detection. Several pancreatitis patients (#1, #3, #4 

and #5) have relatively higher-level expression of these biomarkers, and carefully following up 

disease development might be necessary based on the test results. 

2.4.4 SERS vs. ELISA 

To evaluate performance of the proposed technique, the assay was performed using the most 

common immunoassay technique in the industry, ELISA. Enzyme-Linked Immunosorbent Assay 

(ELISA) is a common immunoassay, in which antibodies, peptides, proteins, and small biomarkers 

can be detected and quantified using a multi-well plate. The assay uses a solid-phase type 

of enzyme immunoassay to detect a protein's presence in a liquid sample using antibodies directed 

against the protein to be measured.  

Sandwich Immunoassay is a type of assay that requires a compatible antibody pair that 

recognizes different antigenic targets (epitopes) on the same antigen. The first antibody, called the 

capture antibody, is coated on the plate and used to immobilize the antigen upon binding with the 

sample during incubation. The free antigen is removed by a washing step, and then a detection 

antibody is added to bind the captured antigen and enable subsequent detection.  

The amount of a target protein within a sample could be precisely determined by setting 

up a standard curve of the known target protein concentrations using a purified antigen. The 

preparation of the ELISA standard curve is critical for accurate sample quantification. Estimation 

of the analyte concentration depends upon the construction of a standard curve, that is prepared by 

making serial dilutions of the protein standard within a range of concentrations close to the 

expected concentrations of the unknown samples. The concentration of the unknown samples is 

determined by interpolation, which relies on a properly generated standard curve. The standard 

https://en.wikipedia.org/wiki/Enzyme_immunoassay
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curve should be prepared using purified protein. Fig. 9 shows a plate map, raw data, and the 

analyzed data for measuring the concentration of CA19-9 in serum samples of standard samples, 

five pancreatic cancer patients, five pancreatitis patients, and five control samples. As shown in 

Figure 9 Plate map, raw data, and the analyzed data for measuring the concentration of 

CA19-9 in serum samples of standard samples, five pancreatic cancer patients, five 

pancreatitis patients, and five control samples. 
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the Fig. 9, the optical density, which is considered as assay signals in this experiment, decreased 

from 3.87 to 0.05 by serial dilution of standard samples. the control sample is a buffer that doesn't 

contain any biomarkers, and the corresponding signal is considered as background noise. 

The data was analyzed using a weighted 4-parameter curve.  The X-axis is the 

concentration, and the Y-axis is the adjusted absorbance.  This 4-parameter logistic model allows 

us to extend the range of the standard curve since the range is not limited to a linear, symmetrical 

region and is only limited by the minimum and maximum detectable dose.  The standard curve is 

weighted so that those standard responses that are more reliable have a greater influence on the 

computed standard curve than those which are less reliable.  The immunoassay dose-response 

curve is described by the weighted model-based curve equation given below: 
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Where: 

x = standard concentration 

y = response 

a = Y value corresponding to asymptote at high values of X-axis 

b = Directs the shape of the curve, how rapidly the curve makes its transition from 

the asymptote at the center of the curve. 

c = X value corresponding to the midpoint between a and d 

d = Y value corresponding to asymptote at low values of X-axis 

 

Using the 4-parameter logistic model the OD and the concentration of pancreatic cancer patient 

samples, pancreatitis samples, and healthy individuals were measured and reported in table 2 
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Figure 10 Standard curve of CA19-9 using weighted 4-parameter logistic model. 

Samples Optical Density (OD) Conc. (ng/mL) 

PC #1 3.04 45.47 
PC #2 2.73 24.92 
PC #3 3.79 193.3 
PC #4 3.41 92.05 
PC #5 3.45 99.26 
OPC #1 2.78 27.35 
OPC #2 1.68 3.168 
OPC #3 2.25 9.73 
OPC #4 2.08 7.059 
OPC #5 1.71 3.36 
Control #1 1.31 1.53 
Control #2 1.7 3.32 
Control #3 1.21 1.24 
Control #4 1.85 4.5 
Control #5 1.07 0.94 

 

Table 2 Optical densities and corresponding concentrations of patient 

samples. 
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Here, we compared the ELISA and SERS results of the quantified CA19-9 in the serum of 

pancreatic cancer, pancreatitis, and control samples. For measuring the concentration of the target 

biomarker, SERS uses the relative SERS intensity while ELISA uses optical density (OD). Fig. 11 

shows the measured values of CA19-9 in all samples using ELISA and SERS approach. The plot 

indicates good coordination between the data measured with ELISA and SERS. In both methods, 

the highest signals were measured for pancreatic cancer samples, where PC#1 has the lowest and 

PC#3-5 have the highest signals. For the signals measured for pancreatitis and control samples, 

Figure 11 Comparison between SERS and OD signals, which are acquired from five 

pancreatic cancer patients, five pancreatitis patients, and five control samples. 
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significant similarity can be observed in the trend of the signals where pancreatitis #1 has the 

highest signal, and the control sample has the lowest signal.  

2.5 Conclusion  

This study demonstrated that immobilization of functionalized gold nanoshells with 

resonance wavelength of 660 nm on the gold coated silicon substrate lead to a significant 

improvement of SERS signals. Using a multiplex, high-throughput SERS-based immunoassay 

platform, we successfully detected three PC biomarkers, CA19-9, MMP7 and MUC4, in spiked 

sera samples at the concentration as low as 2 ng* mL-1. Also, for the first-time, simultaneous 

detection of these three biomarkers was accomplished using a micropatterning approach for PC 

and pancreatitis patient samples. Our findings demonstrate the great promise of using SERS as a 

low-cost, high-sensitivity, and high-throughput approach for the emerging liquid biopsy 

diagnostics. 
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CHAPTER 3 

SERS-BASED IMMUNOASSAY DETECTION OF TUMOR-DERIVED 

EXTRACELLULAR VESICLES TO DIFFERENTIATE PANCREATIC 

CANCERS FROM CHRONIC PANCREATITIS   

3.1 Abstract 

Pancreatic cancer (PC) is an aggressive malignancy with an exceptionally high mortality 

rate because it lacks effective early diagnosis methods. To improve the ability to diagnose PC, the 

identification of biomarkers that can differentiate PC patients from both normal controls (NC) and 

those with chronic pancreatitis (CP) is vital. This study demonstrates the detection of extracellular 

vesicles (EVs) as an excellent resource of diagnostic biomarkers in serum samples from NC 

individuals, and CP and PC patients using a SERS-based immunoassay technique. The assay uses 

the Au-CD81-EVs-EphA2-Au complex to capture PC tumor-derived EVs specifically and 

produces highly localized regions of intense field enhancement (hot spots) concurrently. Applying 

a machine learning algorithm to the analysis of the expression level of EVs biomarkers in PC, CP 

and NC individuals, the sensitivity and specificity were measured as 0.95 and 0.96 respectively. 

Measuring PC tumor-derived EVs’ expression levels in serum of PC patients, CP patients, and NC 

individuals suggests the great potential of using this biomarker to differentiate pancreatic cancers 

from chronic pancreatitis. 

3.2 Introduction 

Cancer is a leading cause of death worldwide that accounted for 18.1 million new cases 

and 9.6 million deaths in 201837. Among all types of cancer, pancreatic cancer (PC) has the highest 
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mortality rate, with a five-year survival rate of 8% that has not improved over the past 40 years6,7. 

Most patients are found to be in an advanced stage with metastasis at the time of diagnosis38. An 

early, accurate, and sensitive diagnosis can lead to effective cancer management by decreasing the 

treatment cost, enhancing the overall survival rate substantially39, and enhancing cancer treatment 

efficacy significantly40.  

One of the principal challenges in pancreatic cancer diagnosis is to distinguish pancreatic 

cancer (PC) patients from chronic pancreatitis (CP) patients and healthy individuals41-43. CP and 

PC present with similar symptoms and signs frequently, which makes differential diagnosis 

difficult44-46. The expression level of the only approved serum marker for PC’s diagnosis and 

prognosis (CA 19-9) can be elevated in both PC and CP patients47,48. Notably, 6%–9% of 

pancreatic resections for suspected PC are performed inappropriately in cases of pancreatitis, 

attributable in part to CA 19-9’s lack of selectivity 49,50. Various studies have attempted to solve 

this dilemma; however, effective diagnostic methods to detect PC and differentiate it from CP 

remain insufficient51. Thus, biomarkers in biofluids and convenient diagnostic methods that can 

be employed effectively for the differential diagnosis of CP and PC are needed for effective 

therapy and to reduce cancer mortality. In addition to protein biomarkers, extracellular vehicles 

(EVs) that are secreted from cancer cells represent a good source of such biomarkers.  

EVs are a heterogeneous group of cell-derived membranous structures. These particles can 

be released from a cell naturally but cannot replicate. Most cells secrete abundant EVs into the 

extracellular space, and therefore, can be found in biological fluids52-54. Further, EVs are involved 

in multiple physiological and pathological processes and carry a cargo of proteins, nucleic 

acids, lipids, and metabolites55,56. EVs play an active role in tumor initiation, progression, and 

metastasis57-59 because of their ability to communicate between cells using their cargo of protein 

https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Metabolite


 

 42 

and nucleic acids60-62. Therefore, circulating tumor-derived EVs can be considered excellent 

potential cancer biomarkers for liquid biopsy and cancer detection63-66. More importantly, PC-

derived EVs represent a likely source for a biomarker that can discriminate between PC and CP 

patients. Cancer cells express differentially multiple factors present in circulating EVs that are 

secreted by pancreatic tumors and not present in patients with CP67,68. In recent years significant 

efforts have been dedicated to developing novel biosensors for EV detection based on 

microfluidics, nanomaterials, or plasmonics69-73. However, the majority of these platforms are only 

proof of concept. 

Among many approaches to detect cancer biomarkers in serum, Surface Enhanced Raman 

Spectroscopy (SERS) is an emerging technology that provides highly sensitive intrinsic fingerprint 

information on biomarkers2,74-76. Quantification of biomarkers based on SERS intensity is 

affiliated with experimental parameter factors that prevent biomarkers standard detection. This 

method is cumbersome, and immobilization of functionalized gold particles (NPs) are often 

associated with technical issues such as the inhomogeneous distribution of NPs on substrates 

during multiple manual washing steps. During the past two decades, SERS has become one of the 

most attractive analytical tools for immunoassay77-79. A SERS immunoassay is usually developed 

with a sandwich structure, in which two types of antibodies are used as capture and detection 

components80.   

Employing EVs as a cancer biomarker requires a detection technique that differentiates 

between normal and tumor-derived EVs. Specific detection of tumor-derived EVs among normal 

EVs has been challenging during past decades because of the small number of tumor-derived EVs 

in body fluids, which has prevented its clinical applications, such as early detection. It has been 

difficult to detect tumor-derived EVs with conventional methods, as they require EV purification 
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and subsequent analysis to quantify the relative abundance of the candidate diagnosis81. This study 

investigates the efficiency of a SERS-based immunoassay technique in detecting tumor-derived 

EVs in the serum of cancer patient samples and its ability to differentiate between PC and CP 

patients. 

3.3 Experimental Details 

3.3.1 Reagent 

Gold nanoparticles (60 nm in diameter, 2.6X1010 particles ml−1) were purchased from 

Ted Pella. Sodium chloride, StartingBlock, and borate buffer (50mM) were obtained from 

ThermoFisher Scientific. Dithiobis-(succinimidyl propionate) (DSP), dimethylsulfoxide (DMSO), 

4-Nitrobenzenethiol (4-NBT), acetonitrile, phosphate buffered saline (PBS), and bovine serum 

albumin (BSA) were acquired from Sigma Aldrich.  

In our SERS-based immunoassay, CD81 and EphA2 antibodies were used to modify the 

capture substrate and gold nanoparticles, respectively. CD81 monoclonal antibody was purchased 

from Abcam, and EphA2 monoclonal antibody was obtained from ThermoFisher. 

3.3.2 Functionalizing the substrate and capturing nonspecific EVs 

The optimization of Extrinsic Raman Labels (ERL) has been described previously82 and 

chapter 2.3.2. As a part of the method development, we optimized the signal and enhancement 

factor by examining the effects of gold particle size and type, the gap distance between the 

immobilized particle and the underlying substrate, and substrate materials on the amplification of 

Raman signals. The enhancement factor of our optimized sandwich immunoassay platform was 

estimated to be ~10782. We demonstrated that the immobilization of functionalized gold 
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nanoparticles with a resonance wavelength of 540 nm and a diameter of 60 nm on the gold-coated 

silicon substrate leads to a significant improvement of SERS signals.  

Sandwich immunoassay conventionally uses two antibodies to bind to different binding 

sites (epitopes) of the antigen. One type of antibody that is used in sandwich immunoassay serves 

as a capture antibody. The capture antibody is responsible for capturing the antigen from the matrix 

and immobilizing it on the binding surface. CD81 is a recognized EV-marker protein for capturing 

EV and is expressed on EVs of all pancreatic cell lines of the capture antibody83,84. We therefore 

used antibodies that were enriched on EV membranes against CD81 to capture all EVs (including 

normal and tumor-derived) present in the serum sample. The self-assembled monolayers of thiols 

on gold surfaces are one of the most popular model systems for immunoassays. DSP is a thiol 

Figure 12 A SERS-based immunoassay for PC tumor-derived EVs quantification: (I) 

Functionalizing gold substrate with thiol and CD81 antibody; (II) Capturing  normal and 

tumor-derived EVs present in the serum sample.  (III) Loading EphA2-NPs-Reporter to 

enhance Raman signal and selectively label tumor-derived EVs 
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molecule that was used in the experiment to immobilize the CD81 antibody on the gold-coated 

substrate. The strength of the gold–sulfur (Au–S) interaction that is formed between thiol and gold 

surfaces provides spontaneous binding of DSP to the gold surface. DSP also has succinimidyl 

functionalities to facile covalent binding of antibodies to the substrate. 

The DSP coated substrate was then modified with the CD81 antibody (Fig.12). 10 μl of 10 

μgml−1 antibodies were used for each capture address. DSP coated substrate was then reacted with 

the antibody for 2 hours. Thus, a capture antibodies layer was formed by attaching to succinimidyl 

ester of DSP on the substrate. The antibody was then rinsed by PBS. Next, 10 µL of StartingBlock 

blocking buffer was applied to each address to react for 10 hours; then, the capture substrates were 

ready to use. 

After the ERL and capture substrates functionalization, the substrates should be loaded 

with samples. 20 µL of undiluted clinical sera samples, were applied on the substrate, and after 6 

hours of incubation, it was rinsed with buffer (2 mM borate, 150 mM NaCl). Captured antigens 

were then labeled by applying each address with 10 µL of ERL suspension for 10 hours. Finally, 

the substrates were rinsed with buffer (2 mM borate, 150 mM NaCl) and analyzed by the Raman 

device. 

3.3.3 Preparation of ERL and labeling tumor-derived EVs 

In this study, functionalized gold nanoparticles were designed to bind to the PC tumor-

derived EVs specifically. Gold nanoparticles were used as carrier components for EphA2 and 

SERS labels. EphA2 antibody was immobilized on the gold particles using DSP to detect 

overexpressed antigen markers on the tumor-derived EVs. Therefore, modified nanoparticles 

specifically discriminate between tumor-derived EVs, which have high expression of EphA2 on 

their membrane, and normal EVs, which were already captured on the substrate using CD81, a 
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common protein marker on all secreted EVs. 4-NBT was used as a reporter molecule to provide 

intense Raman signal due to its aryl nitro group with an intrinsically strong Raman active 

vibrational mode. 4-NBT also contains a disulfide group for spontaneous chemisorption to the 

gold particles. 

Details of the procedure for the preparation of functionalized gold nanoparticles are as 

follows. 1.0 mL suspension of gold nanoparticles, 40 mL of 50 mM borate buffer, 2.0 mL of 1.0 

mM DSP in DMSO, and 8.0 mL of 1.0 mM 4-NBT solution in acetonitrile were mixed and left to 

react for 8 hours. To discard excess thiols, the suspension was centrifuged at 2000g for 10 minutes, 

and the supernatant was removed with a syringe. Gold nanoparticles were resuspended in 2.0 mM 

borate buffer. ERL preparation was continued by adding 20 mg of EphA2 antibodies to the 

suspension and incubating for 8 hours at 4°C. Next, 100 mL of 10% BSA was added to the 

suspension to stabilize the suspension and block nonspecific binding sites and unreacted 

succinimidyl for 8 hours. After the interaction between ERL and the blocking buffer, the solution 

needs to be rinsed three times. For the rinsing process, the suspension was centrifuged, and after 

decanting the clear supernatant, the loose red sediment was resuspended in 1.0 mL of 2.0 mM 

borate buffer containing 1% BSA. The triple rinsed ERL pellet was then resuspended in 0.5 mL 

of 2.0 mM borate buffer containing 1% BSA to obtain a final solution with the desired 

concentration of gold nanoparticles. Finally, the suspension was modified with 50 mL of 10% 

NaCl for stabilization and then passed through a 0.22 mm syringe filter to remove any large 

aggregates. The substrate modified with antibody was exposed to 20 μl of different serum samples. 

After 2 hours of incubation, each sample area was rinsed with buffer (2 mM borate, 150mM NaCl) 

via reversed pipetting. Captured EVs were then labeled by loading 20 μl of modified gold 

nanoparticle suspension for 8 hours in the humidity chamber. In the end, the substrates were rinsed 
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with buffer (2 mM borate, 150mM NaCl) and dried with a stream of air, and finally analyzed by 

the Raman device. 

3.3.4 SERS readout instrumentation and quantification 

All the measurements and Raman spectra collection were performed with portable 

BWS415 i-Raman from B&W TEK Co. The incident laser light was focused on 85 µm spot size 

on the normal substrate incidence. The working distance is 5.9 mm. The light source has a 499.95 

mW power and an excitation wavelength of 785 nm, and the same objective was used to collect 

the scattered radiation.  

Fig. 13 shows the method used to quantify biomarkers’ expression levels. An SEM image 

of captured EVs-ERL is shown in Fig. 13.a, where the EVs-ERL complexes are formed using 

Figure 13 EVs quantification method (a) SEM image of captured ERL-EVs on the gold 

coated substrate (b) collecting the SERS signal using Raman spectroscopy (c) The EVs 

concentration was quantified using (𝒗𝒔(𝑵𝒐𝟐)) of 4-NBT intensity at the 1336 𝒄𝒎−𝟏 . 
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sandwich immunoassay and hot spots that help enhance the signal. The hot spots are the junctions 

between gold nanoparticles and a gold substrate, where certain resonances in highly spatially 

localized regions are the source of an extremely enhanced local field85. The EVs concentration was 

quantified using (𝑣𝑠(𝑁𝑜2)) of 4-NBT intensity at the 1336 𝑐𝑚−1 , which has the maximum 

intensity among all of the 4-NBt signal peaks (Fig. 13.c). As an example of the biomarker’s spectra, 

the SERS readout is illustrated in Fig 13.c. For reproducibility, three addresses were measured for 

each concentration, and a total of 10 readouts on each sample’s biomarker were obtained. 

3.3.5 Patient sample collection and samples characteristics 

Under an IRB approved protocol, patients with PC, CP, and NC patients were identified 

from the UMass Memorial Medical Center Chemotherapy Infusion Center and Gastroenterology 

Clinics. Patients were identified from a review of the weekly schedules, and consecutive patients 

were enrolled to avoid bias. Patient gender, age, and clinical sample characteristics are presented 

in table 3.  Sera samples (4 ml serum per patient) were collected and immediately processed/frozen 

for analysis.  

   
PC #1 F/38 Metastatic pancreatic adenocarcinoma 
PC #2 F/58 Metastatic pancreatic adenocarcinoma 
PC #3 M/61 Metastatic pancreatic adenocarcinoma 
PC #4 F/88 Locally advanced pancreatic cancer 
PC #5 M/57 Metastatic pancreatic adenocarcinoma 
CP #1 M/41 Acute pancreatitis- gallstone disease 
CP #2 F/55 Chronic pancreatitis- autoimmune 
CP #3 M/61 Chronic pancreatitis- alcohol related 
CP #4 F/43 Chronic pancreatitis-hereditary, cystic fibrosis gene 

mutation 
CP #5 M/55 Chronic pancreatitis- alcohol related 
Control M:F 3:2/ 

Age 53-75 Average 
62 

 

Table 3. Clinical Sample Characteristics 
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3.4 Result and discussion 

3.4.1 Detection of PC tumor-derived EVs in patient samples 

Several protein markers can be found conventionally on the standard EVs’ membrane. As 

an example, CD9, CD63, and CD81 are EV-enriched membrane biomarkers present on EVs 

derived from most cells86,87. However, only a few proteins on the EVs membrane represent cancer-

associated biomarkers. Through comprehensive analysis of EVs from normal and tumor-derived 

pancreatic cell lines, Ephrin type-A receptor 2 (EphA2) has been identified as a good candidate 

biomarker that was enriched selectively on pancreatic cancer cells’ EVs88,89. In this analysis, 128 

membrane proteins were investigated, of which only 26 were expressed on the EVs of at least 2 of 

the 3 PC cell lines. According to the Oncoming database, of these 26 membrane proteins, only 

Figure 14 Experimental setup for detection of PC tumor-derived EVs in  levels in serum 

samples of PC, CP and NC individuals. For reproducibility, three addresses were 

measured for each concentration and a total of 10 readouts on each sample’s biomarker 

were obtained. 
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EphA2 exhibited significantly higher expression in human PC tissue samples than CP or NC 

pancreatic tissue samples90,91. EphA2 plays a critical role in PC progression, metastasis, and 

prognosis.81 

Serum samples from five healthy individuals, five CP patients, and five PC patients were 

analyzed and compared to evaluate the specificity of the proposed SERS-based CD81-EphA2 

complex in detecting PC tumor-derived EVs. Serum samples from these three groups were selected 

to determine the PC specificity of the EphA2-EV (CD81-EphA2) and general-EV (CD81) 

detection and quantification systems. Fig. 14 demonstrates the experimental setup for the 

quantification of PC tumor-derived EVs in serum samples of PC, CP, and NC.  

As shown in Fig. 15a and b, significantly higher levels of PC tumor-derived EVs were 

detected in PC patients compared to CP patients and NC individuals. There was a significant mean 

Figure 15 Quantification of tumor-derived EVs in serum samples of PC, CP and NC 

individuals (total of 15 sera samples) using the SERS-based immunoassay. (a) Raman 

intensities of 4-NBT (1336 cm−1) corresponded to number of captured tumor-derived EVs 

in serum samples. (b) Plot box of expression level of tumor-derived EVs in PC, CP and NC 

individuals. P values were calculated using one-way ANOVA test. ***, P < 0.001. Tukey’s 

post hoc test revealed significant mean differences between PC and CP samples (p < .001) 

and between PC and NC (p < .001). The difference between CP and NC samples was non-

significant. 
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difference for the concentration of EVs biomarker between the three groups (F(2,72) = 59.15, 

p<.001). Tukey’s post hoc test revealed significant mean differences between PC and CP samples 

(p < .001) and between PC and NC (p < .001). The difference between CP and NC samples was 

non-significant. 

To investigate whether the proposed EphA2-EV immunoassay technique has the potential 

to detect early PC cases, we analyzed the EphA2-EV signal in the serum sample of PC patient #1, 

which was diluted with different factors (1:2, 1:3, 1:4, and 1:5). As can be seen in Fig. 16, the 

signals recorded for PC patient #1 were 348, 162, 71, 52, and 40 for the dilution factors of 1:1, 

1:2, 1:3, 1:4, and 1:5, respectively. We can see a robust trend in which a diminished signal is 

associated with a decreasing concentration of an analyte in the serum sample. These results 

Figure 16 The SERS signals recorded for PC patient #1 which was 

diluted with different factors (1:2, 1:3, 1:4, and 1:5). 
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indicate an association between circulating EphA2-EV and PC, including early-stage PC, 

suggesting EphA2-EV’s potential utility as an early detection marker. 

3.4.2 Differentiating pancreatic cancer from chronic pancreatitis  

To evaluate the ability to discriminate between PC and CP patients, the Z-score ratio 

between these two groups can be calculated accordingly. The calculations of the Z-score of each 

biomarker can be determined by the following equation92.   

𝑍𝑖 =
𝑥𝑖−�̅�

𝜎
                           (3)           

Where the 𝑥𝑖 is sample's intensity, �̅� and 𝜎 are population mean and standard deviation of 

NC. Calculation of Z-Score for PC and CP patients is a statistical measurement that compares 

patients' results to a healthy population and gives an idea of how far your data is from the mean of 

NC. 

In the previous chapter (2.4.3), we calculated the Z-Score for three PC protein biomarkers, 

CA19-9, MMP7, and MUC4. In that analysis, CA19-9 appeared to have the best ability to 

discriminate between PC and CP patients. For CA19-9, the mean Z-score for PC patients was 3-

Figure 17 (a) Z-scores for CA19-9 protein biomarker and tumor-derived EVs in PC, CP 

and NC serum samples based on mean of total NC. (b) PC versus CP and NC Z-scores. 
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fold larger than that of CP patients, while the mean Z-scores of MMP7 and MUC4 for PC patients 

were 2.78 and 2.2-fold larger than that of CP patients. Fig. 17 compares the Z score of CA19-9, 

the only approved PC biomarker, and that of PC tumor-derived EVs. It can be seen from Fig. 17 

that although CA19-9 shows a better sensitivity in diagnosing PC patients compared to EVs, it 

also increases significantly in CP patients. However, the Z-score ratio of PC to CP for EV 

biomarkers is substantially large value, indicating that it is the biomarker that discriminates best 

between these two patient populations. 

3.4.3 Data Analysis  

3.4.3.1 Classification Algorithms 

Each measurement for each biomarker in each sample is the intensity of the peak value in 

Raman spectrum. Dataset includes five samples in each of classes PC, CP and NC individuals. 10 

measurements of EVs expression measured for each patient, totaling to 150 data points. 

Classification tree is employed to predict the condition of patients. Details of this approach can be 

found in the previous work. Since the size of the dataset is limited, five-fold cross-validation is 

utilized to estimate the generalization error, in which the dataset is randomly partitioned into five 

equal subsets. In each run, four subsets are used to train the model, and the other held-out subset 

is used to test the performance of the trained model. The outcome of these five tests for the 

sensitivity and specificity of the model are averaged and reported as the performance of the model. 

In order to avoid over-fitting, the maximum depth of the decision tree is set to two. 
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3.4.3.2 Classification Algorithms 

To evaluate the performance of each model the sensitivity, specificity, and accuracy are 

computed similar to our previous publication. To measure the stability of the performance of the 

proposed model the data is divided into training and testing data with 5-fold cross validation. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (5) 

Using 5-fold cross validation, the performance of the proposed method is computed as 

follows; Sensitivity = 0.95, Specificity = 0.96. 

 

 

Figure 18: The classification tree trained with whole dataset of peak-value Raman shifts 

with depth = 2. 
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3.4 Conclusion 

In this study, we detected tumor-derived EVs in PC patients’ sera samples successfully, 

while there was no evidence of elevated tumor-derived EVs in patients with CP. The EphA2-EV 

signal was significantly higher in PC patients’ serum samples than in samples from CP patients or 

NC individuals (p < 0.001).  

The SERS-based immunoassay approach described in this study offers a rapid, 

purification-free measurement of circulating EVs in small sample volumes that require minimal 

sample preparation. Our finding indicated that EphA2-EV levels in serum matrix are excellent 

classifiers to differentiate PC cases from CP and healthy individuals and offer significantly better 

performance compared to conventional protein biomarkers such as CA19-9, MMP7, and MUC4. 
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CHAPTER 4 

MACHINE LEARNING ALGORITHMS ENHANCING THE SPECIFICITY OF 

CANCER BIOMARKERS DETECTION BASED ON SERS IMMUNOASSAYS IN 

MICROFLUIDIC CHIPS 

4.1 Abstract  

The specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There 

are only a few biomarkers that have been approved for the use of cancer diagnostics; however, 

these biomarkers suffer from the lack of high specificity. Moreover, determining the exact type of 

disorder for patients with positive liquid biopsy test is difficult, especially when the aberrant 

expression of one single biomarker can be found in various other disorders. In this study, a SERS-

base protein biomarker detection platform in a microfluidic chip and two machine learning 

algorithms (K-Nearest Neighbor and Classification Tree) are used to improve the reproducibility 

and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to 

the analysis of the expression levels data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, 

and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and 

healthy individuals improves the chance of recognition for one specific disorder among 

aforementioned diseases with overlapped protein biomarkers changes. Our results demonstrate a 

convenient but highly specific approach for cancer diagnostics using serum samples. 

4.2 Introduction 

Early diagnosis would significantly decrease the mortality from cancer prior to the onset 

of metastasis with removal surgery or even at the early initiation of metastasis with current 

common therapies such as chemotherapy and cytotoxic drug93-96.  Liquid biopsy is an emerging 
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non-invasive diagnosis approach which can be used as an inexpensive early detection tool and 

alternative to cumbersome imaging and tissue biopsy techniques 97,98. The high cost and invasive 

nature of conventional tissue biopsies prevent them from being standard screening tests for normal 

adults. Recent studies demonstrated that liquid biopsies have potentials to diagnose adenovirus 

infection 99, lung cancer 100, breast cancer 101, lung cancer 100, breast cancer 101 and ovarian cancer 

(OVC) 102. 

One of the major challenges that bottleneck the broad applications of the liquid biopsy in 

cancer screening is the lack of specificity. So far, only few protein biomarkers have been approved 

by the FDA for the use of cancer diagnostics. However, these biomarkers are often non-specific to 

a certain type of cancer. For example, CA19-9 is the only validated serum biomarker for pancreatic 

cancer (PC). However, CA19-9 also elevates in patients with OVC103 and chronic pancreatitis104. 

Similarly, human epididymis protein 4 (HE4), an approved serum biomarker for OVC 105,106,  also 

overexpressed in patients with PC107,108,  endometrial cancer 109, and lung cancer110,111. MMP-

716,17,112, MUC-413,14 and mesothelin 113,114 are some other examples of potential biomarkers for 

PC that also have been identified as potential biomarkers for OVC115-117. Thus, relying on a single 

biomarker for cancer diagnostics has limited success.    

Current strategies to improve the specificity of liquid biopsy is to detect various types of 

biomarkers not limiting to proteins, but also including microRNAs, circulating tumor DNA, 

etc.118,119. Although this approach significantly improves the detection specificity, multiple 

detection methods such as immunoassays and PCR are required, limiting its application in 

resource-limited settings.  

We recently reported a Surface Enhanced Raman Spectroscopy (SERS)-based 

immunoassay for detecting several biomarkers of PC in sera82.  SERS can provide intrinsic 
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fingerprint information of samples with high sensitivity74. The SERS technique has evolved as one 

of the most suitable candidates for the multiplex detection120,121, due to the sharp and narrow 

spectra and multiple signatures of Raman spectra122. SERS has been widely used for the detection 

of cancer biomarkers123,124. Although SERS is a promising way for biomarker detection, a 

quantitative assessment of SERS is difficult, partially due to the poor reproducibility125,126. This is 

because SERS-based immunoassays using conventional immobilization of functionalized gold 

particles (NPs) are often associated with technical issues such as the inhomogeneous distribution 

of NPs on substrates during multiple manual washing steps126. It has been suggested that a highly 

sensitive and reproducible SERS-based analysis can be addressed if a continuous flow and 

homogeneous mixing conditions are maintained125.  

In this work, we reported a SERS-base multiplex protein biomarker detection platform in 

a microfluidic chip to detect several protein biomarkers of OVC, PC, and pancreatitis (CA19-9, 

HE4, MUC4, MMP7, and mesothelin). The microfluidic platform significantly improved the 

reproducibility of the assay, and multiplex detection can improve the specificity for cancer 

detection. We further employed machine learning algorithms to predict the type of disease and 

find critical biomarkers among multiple biomarkers to distinguish between diseases with similar 

biomarkers (PC, OVC, and pancreatitis). Decision tree and K nearest neighbor classification 

methods are used in this analysis. Together, we demonstrated a convenient but highly specific 

approach for cancer diagnostics using serum samples. 
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4.3 Experimental Setup  

4.3.1 Reagent 

Gold Nanoshells (660 nm resonant, 151 nm diameter, 3.7 × 1010Particles/ml and 800 nm 

resonant), was purchased from NanoComposix. Sodium chloride, StartingBlock, and borate buffer 

(50mM) were obtained from ThermoFisher Scientific. Dithiobis-(succinimidyl propionate) (DSP), 

dimethylsulfoxide (DMSO), 4-Nitrobenzenethiol (4-NBT), acetonitrile, phosphate buffered saline 

(PBS), and bovine serum albumin (BSA) were acquired from Sigma Aldrich.  

In our microfluidic SERS-based immunoassay, five different sets of monoclonal antibodies 

were used to modify the capture substrate and extrinsic Raman labels (ERLs). HE4 antibody was 

purchased from Proteintech, anti-mesothelin antibody and monoclonal anti-MUC4 were obtained 

from Abcam, Lyophilized MMP7 mAb was purchased from R&D Systems. The CA19-9 antibody 

was purchased from LifeSpan Bioscience. 

4.3.2 Preparation of ERL 

The preparation of antibody conjugated ERLs has been described previously in chapter 

2.3.2 and also is illustrated in Fig. 19. Specifically, modified gold nanoshell as ERL is exploited 

to provide more intense Raman signal and immunopositivity. In this work, gold particles were 

modified with two different thiols, DSP and 4-NBT. DSP has both disulfide and succinimidyl 

functionalities for chemisorption onto the gold and facile covalent binding of antibodies to the 

gold particles and substrate; however, DSP does not show intrinsically intense Raman signal. 4-

NBT, on the other hand, has been used to provide intense Raman signal due to aryl nitro group 

with an intrinsically strong Raman active vibrational mode. 4-NBT also contains a disulfide group 

for spontaneous chemisorption to the gold particles27. Preparation of ERLs is described as follows: 
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1.0 mL suspension of gold nanoshells, 40 µL of 50 mM borate buffer, 2.0 μL of 1.0 mM DSP in 

DMSO and 8.0 μL of 1.0 mM 4-NBT solution in acetonitrile were mixed and left to react for 8 h. 

To discard excess thiols, the suspension was centrifuged at 2000g for 10 min, and the supernatant 

was removed with a syringe. Gold nanoshells were resuspended in 2.0 mM borate buffer. ERL 

preparation was continued by adding 20 μg of MMP7, MUC4, HE4, Mesothelin or CA19-9 

primary antibodies to the suspension and incubating for 16 h at 4oC. Next, 100 μL of 10% BSA 

was added to the suspension for stabilizing the suspension and blocking nonspecific binding sites 

and unreacted succinimidyl for 8 hours. After interaction between ERL and blocking buffer, the 

solution needs to be rinsed three times. For the rinsing process, the suspension was centrifuged, 

and after decanting the clear supernatant, the loose red sediment was resuspended in 1.0 mL of 2.0 

mM borate buffer containing 1% BSA. The triple-rinsed ERL pellet was then resuspended in 0.5 

Figure 19: A SERS-based immunoassay for biomarker quantification: (I) Functionalizing 

gold substrate with thiol and antibody; (II) Capturing desired antigens from the serum; (III) 

Raman signal is weak without ERL (IV) Loading antibody-conjugated ERL to enhance 

Raman signal, Gold nanoparticles were modified with antibody and Raman reporter 
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mL of 2.0 mM borate buffer containing 1% BSA to have a final solution with the desired 

concentration of gold nanoparticles. Finally, the suspension was modified with 50 μL of 10% NaCl 

for stabilization and then passed through a 0.22 µm syringe filter to remove any large aggregate. 

4.3.3 Functionalizing Capture Substrate and Microfluidic Immunoassay Procedures 

The optimization of ERL’s Raman signal has been described in chapter 2.4.1. We 

systematically examined the effects of gold particle size, the gap distance between the immobilized 

particle and the underlying substrate, and substrate materials on the amplification of Raman signals 

and demonstrated that immobilization of functionalized gold nanoshells with a resonance 

wavelength of 660 nm on the gold coated silicon substrate leads to a significant improvement of 

SERS signals. Thus, we will use gold nanoshells with a resonant wavelength of 660 nm coupled 

with the gold coated silicon substrate in our following studies. 

As shown in Fig. 20 substrate was immersed in 1 mM DSP in ethanol for 10 h and then 

rinsed with ethanol and dried under a stream of air. As a result, a layer of DSP is formed on the 

gold substrate. The microfluidic method is used to provide on-chip flow with sequential injections. 

Polydimethylsiloxane (PDMS) replica molding from a 3D printed mold was used to fabricate a 

microfluidic device. PDMS stamps were fabricated by pouring a 10:1 (w/w) mixture of Sylgard 

184 elastomer and curing agent and mixture were cured for 1 h at 80 °C. Patterned PDMS was 

then attached to the DSP coated gold substrate. Capture addresses were filled with 20 μL, 100 µg* 

mL-1 antibody as the first injection. DSP coated substrate was then reacted with the antibody for 

6 h. Thus, a capture antibodies layer was formed by attaching to succinimidyl ester of DSP on the 

substrate. 
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4.3.4 SERS Readout Instrumentation  

All the measurements and Raman spectra collection were performed with portable 

BWS415 i-Raman from B&W TEK Co. The incident laser light was focused to 85 µm spot size 

on the substrate normal incidence. The working distance is 5.9 mm. The light source has a power 

of 499.95 mW, and an excitation wavelength of 785 nm and the same objective was used to collect 

the scattered radiation. The antigen concentration was quantified using (𝑣𝑠(𝑁𝑜2)) of 4-NBT 

intensity at the 1336 𝑐𝑚−1 . For reproducibility, three addresses were measured for each 

concentration and total of 10 readouts on each sample’s biomarker.  

Figure 20 A microfluidic SERS-based immunoassay approach for the multiplex detection of 

CA19-9 levels in serum samples (a) PDMS replica molding from a 3D printed mold was used 

to fabricate a microfluidic device. PDMS replicated with one closed and open surface. (b) 

Patterned PDMS is attached to gold coated microscope slide. (c) 10 µl, 100 µ𝒈 𝒎𝑳−𝟏 CA 19-

9 antibody were loaded in to the capture addresses, the addresses were then exposed with 

blocking buffer (d) serum samples and (e) ERL. (f) Finally, Raman signals from 10 random 

positions were collected from each capture address.
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4.3.5 Patient Sample Collection and Samples characteristics  

Under an IRB approved protocol, patients with pancreatic cancer, benign pancreatic 

disease, and normal control patients were identified from the UMass Memorial Medical Center 

Chemotherapy Infusion Center and Gastroenterology Clinics. Patients were identified from a 

review of the weekly schedules, and consecutive patients were enrolled to avoid bias. Patient 

gender, age, and clinical samples characteristics are shown in able 4.   

Sera samples (4 mL serum per patient) were collected and immediately processed/frozen for 

analysis. Five ovarian cancer samples were purchased from Innovative Research. 

Table 4: Clinical Sample Characteristics 

Serum Sample Sex/Age Sample Characteristics 

PC #1 F/38 Metastatic pancreatic adenocarcinoma 

PC #2 F/58 Metastatic pancreatic adenocarcinoma 

PC #3 M/61 Metastatic pancreatic adenocarcinoma 

PC #4 F/88 Locally advanced pancreatic cancer 

PC #5 M/57 Metastatic pancreatic adenocarcinoma 

Pancreatitis #1 M/41 Acute pancreatitis- gallstone disease 

Pancreatitis #2 F/55 Chronic pancreatitis- autoimmune 

Pancreatitis #3 M/61 Chronic pancreatitis- alcohol related 

Pancreatitis #4 F/43 Chronic pancreatitis-hereditary, cystic 

fibrosis gene mutation 

Pancreatitis #5 M/55 Chronic pancreatitis- alcohol related 

OVC#1 F/57 Endometrioid adenocarcinoma of the 

ovary 

OVC#2 F/59 Adenocarcinoma, invasive of the ovary 

OVC#3 F/62 Serous carcinoma of the ovary 

OVC#4 F/50 Adenocarcinoma, mucinous type of the 

ovary 

OVC#5 F/59 Endometrioid carcinoma of the ovary 

Control M:F 3:2/ 

Age 53-75 

Average 62 
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4.4 Results and discussion 

4.4.1 Microfluidic and assay reproducibility   

To investigate the effect of microfluidic approach on the reproducibility of the Raman 

signal, CA19- 9 in serum samples of PC/pancreatitis patients and healthy individuals were 

detected, and the Raman intensities obtained from the on-chip assay is compared with conventional 

assay using either a handheld Raman probe or a Raman microscope (Fig. 21a). Notably, the 

measurement variation of the microfluidic assay reduced to about 50% of the variation of the 

conventional assays (Fig. 21b). For reproducibility, each microfluidic unit contained three 

addresses to capture one single biomarker from one serum sample. Thus, for each serum sample 

(including control, PC, ovarian cancer, and pancreatitis), five microfluidic units were used to detect 

five different biomarkers (CA19-9, HE4, Mesothelin, MMP7, and MUC4). Total of 10 Raman 

signals were collected from each microfluidic unit. 

Figure 21 (a) Raman intensity obtained using different approaches. (b) Coefficient of 

variation (CV) of different approaches, which is calculated by the ratio of the standard 

deviation to the mean. 
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4.4.2 Detection of Ovarian and Pancreatic Cancer Biomarkers in Patients Samples 

In chapter 2.4.2 the quantification of different concentration of spiked proteins in the 

pooled human sera was evaluated as a proof of concept. We further used microfluidic SERS-based 

immunoassay to detect five potential biomarkers (CA19-9, HE4, Mesothelin, MMP7, MUC4) 

from a total of 20 sera samples including five from normal individuals, five from patients with 

various types of pancreatitis but not PC, five from PC patients and five from ovarian cancer 

patients. Raman spectra of five selected biomarkers in clinical sera samples are shown in Fig. 22. 

It appears that CA19-9 is the most sensitive biomarker with the highest expression level in 

almost all patient samples, and other biomarkers, by themselves, cannot distinguish the PC and 

OVC. Thus, to fully leverage the data obtained from multiple biomarkers for a more accurate 

prediction, more comprehensive data analysis is needed.   

Figure 22 Multiplex detection of CA19-9, HE4, Mesothelin, MMP7 and MUC4 levels in 

serum of normal, PC, ovarian cancer and pancreatitis samples (total of 20 sera samples) 

using the microfluidic SERS-based immunoassay. Raman intensities of 4-NBT (1336 cm-1) 

corresponded to CA19-9, HE4, Mesothelin, MMP7 and MUC4 in serum samples. Each box 

represents 50 readouts.
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4.4.3 Data Analysis  

We next sought to use machine earning based approach to analyze the Raman intensity 

data we obtained to provide a better prediction of the condition of patients. We first processed the 

raw Raman spectrum data to reduce the noise level.  As the background noise level in SERS signals 

is relatively low compared with the strongly enhanced peak signals, we applied a simple Fast 

Fourier Transform (FFT) to the Raman intensity data three times to reduce the noise and smooth 

the Raman spectrum. The original and denoised spectra of CA19-9 for a pancreatic cancer sample 

are plotted in Fig. 23(a), (b) respectively. Fig. 23(c) also demonstrates the original and denoised 

spectrum together for a better comparison. The processed Raman spectrum of each measurement 

of biomarker b on patient i is denoted by 𝑅𝑖,𝑠
𝑏 (𝜈),    as a function of wavelength discretized with 

1783 points. Measured biomarkers include CA19-9, HE4, Mesothelin, MMP7, and MUC4. 

Figure 23 Pre-processing of Raman spectrum. (a) The measured Raman 

spectrum; (b)The denoised spectrum using FFT filter; (c) the original and 

denoised spectrum together.
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Performing ten measurements for each of the 20 individual samples and five biomarkers, the 

dataset includes 1000 Raman spectra 𝑅𝑖,𝑠
𝑏 (𝜈).  

Two supervised algorithms are employed to classify the condition of the patients. First, the 

Raman spectra peak values  𝑅𝑖,𝑠
𝑏 (𝜈) are used for decision tree classifiers, which are fast, simple, 

and provide useful information about the importance of biomarkers. However, since a single peak 

value at 𝜈𝑟 = 1500𝑐𝑚−1 , the resonance wavelength of Raman reporter, is used for classification, 

it is vulnerable to noise.  Therefore, the full spectrum of Raman spectra 𝑅𝑖,𝑠
𝑏 (𝜈) are then analysed 

using K-Nearest Neighbor (K-NN) classifiers, which are easy to implement and robust to spike 

noise. However, K-NN does not scale favorably when the size of the dataset increases. In this case, 

the artificial neural network may be used to learn the pattern of Raman spectra for different 

biomarkers/diseases, in order to classify patients efficiently. Since the size of our dataset is not too 

large yet, we have employed K-NN classifiers at this stage for the full spectrum analysis. 

4.4.3.1 Classification Algorithms 

4.4.3.1.1 Classification Tree 

Classification trees (CT), considerably advanced in127 assigns class labels to samples using 

a conjunction of rules organized into a tree structure classifier. The inputs of the algorithm are 

vectors 𝑋𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑘) , 𝑖 = 1,2, … , 𝑁 , where k is the number of features and N is the 

number of the training dataset. The rule of each decision node m, in the form of 𝑥𝑑  <  𝑡𝑚 or 𝑥𝑑 =

 𝑡𝑚, tests a single feature 𝑥𝑑 of the sample against a threshold 𝑡𝑚 to assign it to the left or right 

sub-tree. Classification trees are usually constructed using recursive partitioning algorithms, in 

which all possible partitioning based on a single feature are evaluated and the one with the best 

score is selected. The scoring of the partitioning may be performed using the Gini impurity127 or 
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information gain. Assuming that the training dataset at node m is represented by 𝑇𝑟𝑚 of size 𝑁𝑚, 

and each partitioning candidate is denoted by 𝜃(𝑗, 𝑡𝑚) consisting of feature j and threshold 𝑡𝑚, the 

impurity at m is computed as follows: 

𝐺(𝑇𝑟, 𝜃) =
𝜂𝑙𝑒𝑓𝑡

𝑁𝑚
𝐻(Trleft(θ)) +

ηright

Nm
𝐻 (𝑇𝑟𝑟𝑖𝑔ℎ𝑡(𝜃))     (6) 

where 𝐻( ) is the impurity function, 𝜂𝑙𝑒𝑓𝑡 is the size of the dataset in the left sub-tree, and 𝜂𝑟𝑖𝑔ℎ𝑡 

is the size of the dataset in the right sub-tree with partition θ. The best partition θ∗ minimizes the 

function 𝐺(𝑇𝑟, 𝜃). Gini impurity and cross-Entropy are the two-common choices for the impurity 

function H. The Gini impurity is computed using: 

𝐻(𝑇𝑟𝑚) = ∑ 𝑝𝑚𝑙(1 −

𝑙

𝑝𝑚𝑙)     (7) 

where 𝑝𝑚𝑙 is the proportion of class 𝑙 observations at node m. The cross-Entropy or information 

gain is calculated by: 

𝐻(𝑇𝑟𝑚) = − ∑ 𝑝𝑚𝑙𝑙𝑜𝑔 (1 −

𝑙

𝑝𝑚𝑙)       (8)    

In this paper, Gini impurity is utilized. 

 

Data Preparation for CT 

The peak values of 𝑟𝑖,𝑠
𝑏 = 𝑅𝑖,𝑠

𝑏 (𝜈𝑟) at the resonance wavelength of Raman reporter 𝜈𝑟 =

1336𝑐𝑚−1 for measurement s of each biomarker b and patient i are first extracted. Then, the 

average over the measurements for each biomarker, 𝑟𝑖
𝑏 = 𝑎𝑣𝑔𝑠(𝑟𝑖,𝑠

𝑏 ), is computed and used as the 

features of the input dataset. Therefore, the input data for patient i takes the form: 

 

𝑋𝑖 = (𝑟𝑖
𝐶𝐴19−9, 𝑟𝑖

𝑀𝑈𝐶4, 𝑟𝑖
𝑀𝑒𝑠𝑜𝑡ℎ𝑒𝑙𝑖𝑛, 𝑟𝑖

𝐻𝐸4, 𝑟𝑖
𝑀𝑀𝑃7)         (9) 



 

 69 

4.4.3.1.2 K-Nearest Neighbor (KNN) Algorithm 

The K-NN algorithm is a supervised learning method for classifying data points based on 

the proximity or similarity of them to the previously observed data. The algorithm accepts a new 

patient's data and compares it with a training set of previously classified patients with various 

medical conditions. The algorithm then utilizes the K-NN technique to classify patients as having 

or not having a specific condition. K-NN is easy to implement, adaptive to relatively noisy training 

sets, and naturally handles multi-class classification problems. K-NN has been extensively used in 

the medical field with a relatively high rate of success compared to other methods like Linear 

Discriminant Analysis (LDA) 128,129. 

The basic underlying hypothesis of K-NN is that if two data-points have a high degree of 

similarity, there is a high probability that they belong to the same class. In other words, the 

probability of two data points belonging to the same class is proportional to their degree of 

proximity or similarity. There are various measures for quantifying similarity for the K-NN 

classifier, however, in our work we use Euclidean distance as our measure of similarity. In order 

to diagnose a new patient, we first calculate the Euclidean distance between the patient's data-point 

and all the data-points in the training set. We then sort the distances in increasing order and keep 

the top k points with the shortest distance to the patient's data. Since we already have the diagnosis 

on all the k points from the training set, the majority value among the k diagnoses will be used as 

the diagnostic predictor for the new patient. 

The K-NN algorithm works based on a similarity measure between the data-points. There 

are various measures of similarity used in the literature to capture different properties of data130. 

In this work, we use the simplest and most straightforward measure of similarity which is the 
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Euclidean distance. The Euclidean distance between two points p and q in an n-dimensional space 

ℝn is defined as: 

𝐷(𝑝, 𝑞) = √(𝑞1 + 𝑝1)2 + (𝑞2 + 𝑝2)2 + ⋯ + (𝑞𝑛 + 𝑝𝑛)2 = √∑(𝑝𝑖 − 𝑞𝑖)2

𝑖=𝑁

𝑖=1

         (10) 

Data Pre-processing for K-NN 

The most prevalent method in the literature for analyzing Raman spectroscopy data is to 

use the peaks of the spectra. However, this method is very sensitive to noise in the data since a 

single noisy fluctuation in one of the points of the spectrum could change the result of the 

classification model. In this work, we introduce a novel method for analyzing Raman spectral data 

for cancer diagnosis by using the whole spectrum. As we will discuss in the results section, this 

method outperforms our decision tree algorithm which uses only the peaks of Raman spectral data. 

This is in part because we are extracting more information from the spectra and this extracted 

information is more robust to noise in the experimental setup. 

For measurement s of patient i for biomarker b, our Raman spectra 𝑅𝑖,𝑠
𝑏  is a vector of 1783 

intensities. This 1783-dimensional vector could be regarded as a point in a 1783-dimensional 

space. Therefore, we can define a similarity metric for the spectral data of a patient based on the 

Euclidian distance between the vectors of specific biomarkers. In addition, in order to use the entire 

data for all the biomarkers for each patient, we can create a large vector by appending all the 

vectors corresponding to different biomarkers and creating a larger vector. 

𝑅𝑖,𝑠 = [𝑅𝑖,𝑠
𝐶𝐴19−9, 𝑅𝑖,𝑠

𝑀𝑈𝐶4, 𝑅𝑖,𝑠
𝑀𝑒𝑠𝑜𝑡ℎ𝑒𝑙𝑖𝑛, 𝑅𝑖,𝑠

𝐻𝐸4, 𝑅𝑖,𝑠
𝑀𝑀𝑃7)     (11) 

 

Given this high dimensional vector which contains the whole information of all the Raman 

spectral data for all biomarkers for a sample of a patient, first, we calculate the Euclidean distance 
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between this new sample and the rest of the previously known training dataset. We then create a 

list containing all the distances: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = [𝐷(𝑅𝑡𝑒𝑠𝑡,𝑅1,1)  𝐷(𝑅𝑡𝑒𝑠𝑡,𝑅1,1) … . 𝐷(𝑅𝑡𝑒𝑠𝑡,𝑅𝑖,𝑠) … 

𝐷(𝑅𝑡𝑒𝑠𝑡,𝑅𝑖,𝑠) . . . . 𝐷(𝑅𝑡𝑒𝑠𝑡,𝑅𝑛,10)]         (12) 

 

Where i corresponds to the i-th patient and s corresponds to measurement s of the i-th 

patient. (In this work, we had 10 measurements for each patient) in the training data. The next step 

in the algorithms follows by sorting this list of distances and choosing the k shortest distances from 

the list. These k instances correspond to k pre-classified samples in the training set. The final stage 

of the algorithm is performed by taking a majority vote over the classes corresponding to these k 

samples and determining the diagnosis for the unknown test sample. 

4.4.3.2 Performance Evaluation 

To evaluate the performance of each model the sensitivity, specificity, and accuracy are 

computed. The sensitivity is the ratio of positive samples that are correctly classified as positive, 

i.e., the proportion of patients that are classified with the correct type of cancer. The specificity is 

the ratio of negative samples that are correctly classified as healthy, i.e., the proportion of normal 

individual that are classified as healthy. The accuracy is the proportion of samples that are correctly 

classified131. To measure the stability of the performance of the proposed model the data is divided 

into training and testing data with 5-fold cross validation. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
           (13) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
            (14) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (15) 

 

4.4.3.3 Data Analysis Result 

First, the data analysis results using classification trees is presented to show the 

effectiveness of multiplex biomarker method. Next, the results of full spectrum analysis using K-

NN approach is presented. Python scikit-learn132 tool is used for all the analysis performed in this 

paper 

3.4.3.3.1 Peak-Value Analysis 

Classification trees are used to analyze the peak-value dataset of Raman shift 

measurements. Since the size of the dataset is limited, a specific test set is not held out to evaluate 

the performance of the classification. Instead, five-fold cross-validation is utilized to estimate the 

generalization error, in which the dataset is split into five equal subsets. Four subsets are used to 

train the model, and the other held-out subset is used to test the performance of the trained model. 

This train-test approach is performed five times, and in each test, one subset is held out. The 

outcome of these five tests for the sensitivity and specificity of the model are averaged and reported 

as the performance of the model. In order to avoid over-fitting, the depth of trees is limited to two.  
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The performance of the classification trees with 5-fold cross-validation with depth = 2 for 

an increasing number of biomarkers are presented in table 5. The sensitivity and specificity for 

each panel of normal adults, Pancreatic cancer patients, Pancreatitis patients, and Ovarian cancer 

patients in the table demonstrate that the accuracy of the early cancer perdition is improved by 

employing multiplex biomarkers. Finally, we used the whole dataset to train the classification tree 

shown in Fig. 24. This plot shows that the most important biomarkers in diagnosis are HE4, CA19-

9, and MUC, as expected. Note that the whole dataset is used to train this model. Therefore, the 

Figure 24 The classification tree trained with whole dataset of peak-value Raman shifts with 

depth = 2. This shows that the most important biomarkers in diagnosis are HE4, CA19-9, 

and MUC4. 

Table 5 The sensitivity and specificity for each panel of patients using classification trees 

with 5-fold cross-validation with depth ¼ 2 for increasing number of biomarkers 
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same data cannot be used to evaluate the performance of the model. It could be used to predict the 

healthiness of future patients.  

4.4.3.3.2 Full Spectrum Analysis  

In order to achieve better accuracy, we have applied K-NN classifier with k = 5, which 

employs the full spectrum of all biomarkers. The whole dataset includes 200 vectors 𝑅𝑖,𝑠 of the 

format in Eq. (7), which is randomly splitted in 20% for training data 𝑅𝑖,𝑠
𝑡𝑟𝑎𝑖𝑛 and 80% for test data 

𝑅𝑖,𝑠
𝑡𝑒𝑠𝑡. Using this setup, we achieved sensitivity of 86%, specificity 93%, and accuracy of 91% to 

predict the class of each measurement 𝑅𝑖,𝑠
𝑡𝑒𝑠𝑡 in the test data. If we use the majority vote of the 5 

measurements to diagnose the patient, the prediction would always be correct. Since the dataset 

size is limited, we cannot compute a more accurate estimation of the test error for this classifier. 

The general setting of a K-NN classifier is very hard to visualize due to the high number 

of dimensions in the algorithm. In order to visualize how our K-NN algorithm works, we simplify 

our model to only two biomarkers. Fig. 25 depicts the Scatter plot of the distance of a sample test 

data-point from all other data-points in the training set. The x-axis denotes the distance between 

the test data-point and all the training set data-points for the HE4 biomarker, 𝐷(𝑅𝑡𝑒𝑠𝑡
𝐻𝐸4, 𝑅𝑡𝑟𝑎𝑖𝑛

𝐻𝐸4 ). The 

Y-axis denotes the distance between the test data-point and all the training set data-points for the 

CA19-9 biomarker, 𝐷(𝑅𝑡𝑒𝑠𝑡
𝐶𝐴19−9, 𝑅𝑡𝑟𝑎𝑖𝑛

𝐶𝐴19−9).  The point (0,0) in the plot, which is not shown, is where 

the test data-point resides. This is because the test data-point is regarded as the center for 

calculating all the corresponding distances. As it can be seen in the Fig. 25, all 5-nearest neighbors 

of the test patient’s data points are diagnosed as PC. Therefore, we conclude that the unknown data 

point should be diagnosed as PC, which is a correct diagnosis for the test sample.  
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In our case, we can clearly observe that when we translate our problem into K-NN, a small 

sample of our small dataset encapsulates lots of information about the spatial patterns between 

different classes. This means that there is a clear spatial separation between different classes in the 

defined high-dimensional space. In addition, it is worth noting that the smallness of our dataset is 

a limitation to any statistical analysis technique. Thus, we need to assess different statistical 

techniques with respect to their robustness. As mentioned earlier, using the smallest subset of our 

data (20%) as the training set for our K-NN model yields very accurate results which shows its 

Figure 25 Scatter plot of the distance of a sample test data-point from all other data-points 

in the training set. In this case k in our K-NN algorithm is set to 5. The point (0,0), which is 

not shown, is where the test point resides. Looking at the 5-nearest neighbours, one quickly 

concludes that the test sample should be diagnosed as PC, which in this case is a correct 

diagnosis.
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robustness to the size of the training set. In our future work, we plan to increase the size of our 

dataset and perform state of the art machine learning techniques such as deep neural networks for 

statistical analysis. 

In order to evaluate the effectiveness of adding new biomarkers to our classification 

problem, we make use of a conventional machine learning concept called Receiver Operating 

Characteristic (ROC) curve. In a ROC curve, true positive rate (TPR) is plotted against the false 

positive rate (FPR) at various threshold settings. The trained machine learning classifier outputs 

Figure 26 ROC curve for various combinations of biomarkers for the k-nearest 

neighbour model with k=3 and 80 percent of the data as the training set and 20 

percent as the test set.
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the probability that a given test sample is positive. To plot the ROC curve, we start by sorting all 

the test samples based on the predicted probability of being a positive sample. We then decrease 

the threshold gradually from 1 until it is equal to the highest probability and see if the 

corresponding sample test is a true positive or a false positive. If we have a true positive/false 

positive for our first sample, we draw a unit vertical/horizontal line starting from the point (0,0). 

We then continue decreasing the threshold to arrive at the next sample in our sorted list and 

continue to draw vertical/horizontal unit length lines for true positives/false positive. It has been 

shown that the area under the ROC curve (AUC) is equal to the probability that a classifier will 

rank a randomly chosen positive instance higher than a randomly chosen negative one (assuming 

'positive' ranks higher than 'negative'). AUC is a standard metric for evaluating machine learning 

classifiers. A perfect predictor has AUC of 1. On the other hand, a random prediction model gives 

us AUC of 0.5. To this end, the K-NN model is trained with 80 percent of the data using K=3 and 

tested with the other 20 percent of the data. This arrangement is chosen to demonstrate the effect 

of biomarkers more clearly. Fig. 26 shows the ROC curve for various combinations of biomarkers. 

As it can be seen in the Fig. 26, adding biomarkers significantly increases our prediction accuracy. 

4.5 Conclusion  

Multiplex detection of five biomarkers which elevate in both PC and ovarian cancer was 

accomplished with microfluidic SERS-based immunoassay approach.We employed decision tree 

classification and nearest neighbor method to evaluate the importance of different biomarkers and 

estimate the specificity and accuracy of the prediction. The result from data analysis demonstrated 

that multiplex detection of protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in 

cancer patients and diseases with similar protein biomarkers significantly increased specificity and 
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prediction accuracy.  It is also observed that HE4 and MUC4 biomarkers improved the specificity 

of diagnosis, in addition to CA19-9 biomarker. 
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CHAPTER 5 

A MAGNETIC ENHANCED RAMAN FREQUENCY SHIFT IMMUNOASSAY USING 

GOLD-COATED NANOPILLAR SUBSTRATE FOR QUANTIFICATION OF PROTEIN 

BIOMARKERS 

5.1 Abstract 

In this work, a SERS-based frequency-shift immunoassay is reported for the detection of 

cancer markers in human serum. The expression level of five cancer biomarkers (CA-125, CA19-

9, CEA, OPN, Prolactin) have been measured in the serum of pancreatic and ovarian cancer 

patients and compared to that of healthy individuals. These measurements indicate that serum from 

cancer patients produced a larger change in SERS frequency shift compared to that in sera from 

healthy individuals.  The population means of pancreatic, ovarian, and healthy individuals 

are different for all of the tested biomarkers. This study demonstrates that employing magnetic 

beads can increase the sensitivity of the frequency shift immunoassay. Applying a machine 

learning algorithm to the analysis of the expression level of protein biomarkers in pancreatic, 

ovarian cancer patients, and healthy individual samples showed that the sensitivity, specificity, 

and accuracy were 0.93, 0.97 and 0.96, respectively. 

5.2 Introduction 

Among many approaches to detect protein biomarkers in serum, Surface Enhanced Raman 

Spectroscopy (SERS) is an emerging technology that provides intrinsic fingerprint information of 

samples with high sensitivity2,74. Gold/silver nanoparticles and substrates with nanostructures need 

to be coupled to amplify inelastic scattering signals of targeted molecules and reach the desired 

sensitivity133,134. However, SERS technology has not yet been extensively used for cancer 
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biomarker detection in the clinic; even it demonstrates higher sensitivity than enzyme-linked 

immunosorbent assay (ELISA) in some cases34,135. While most current studies focus on developing 

new materials to achieve higher signal enhancement, the major challenges that prevent the wide 

spreading application of SERS are the lack of standardized testing materials and reproducible 

SERS based immunoassay approach125,136,137. This is because SERS-based immunoassays using 

conventional immobilization of functionalized gold particles (NPs) are often associated with 

technical issues such as the inhomogeneous distribution of NPs on substrates during multiple 

manual washing steps126. Also, quantification of biomarkers based on SERS intensity is affiliated 

with some experimental parameters including integration time, laser power, laser focus, amount 

of Raman reporters, and other environmental factors which prevent standard detection of 

biomarkers.  

Biomarkers quantification based on frequency shift was first introduced by Olivo and 

coworkers138,139 and investigated by other study 140. This SERS nanostress sensing is a novel 

readout method which is supported by the observation that the Raman frequencies of an antibody-

conjugated SERS-active molecule can be affected when binding it to its targeted antigen. The 

mechanical perturbations of the linker molecule in the conjugated antibody/linker construct are 

responsible for the observed shifts138. However, the main obstacle in these studies is the limited 

sensitivity, which is due to the relatively small shift of frequencies. The range of frequency shifts 

for low concentration analyte has been observed to be near 1-2 𝑐𝑚−1. By considering the fact that 

many Raman spectroscopy systems, especially portable and handheld devices, have the meager 

spectral resolution (~3 −  10 𝑐𝑚−1), detection of the broad range of biomarker's concentration is 

almost impossible unless using the advanced and expensive Raman spectroscopy systems with the 

small spectral resolution (~0.3 𝑐𝑚−1). 
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In this work, we developed a novel magnetic enhanced Raman frequency shift 

immunoassay using gold-coated nanopillar substrate to amplify the SERS signals produced by 

Raman reporters and improved the assay sensitivity by two orders of magnitude. Advantages of 

these approaches are 1) heterogeneous distribution of NPs can be prevented by excluding the 

nanoparticle-based Extrinsic Raman Labels (ERLs) from the assay. 2) The frequency shift will be 

quantified which should significantly increase the reproducibility of the assay by reducing the 

assay dependency to the experimental parameters.  3) In conventional ERLs SERS-based 

immunoassay, Raman reporters are located ~15-30 nm far from the surface of metal nanostructure 

because of utilizing ERLs and two antibodies in the assay, however, most substantial enhancement 

commonly occurs when Raman reporter molecules have been located proximately to the 

roughened metal surface (<7nm)141,142. In our assay, optimal enhancement can be achieved by 

direct binding of Raman reporter which also serves as linker molecule to the SERS active 

substrates. 4) Significant enhancement occurs when the assay is accompanied by magnetic forces; 

as a result, sensitivity of the platform is significantly improved. 

5.3 Experimental Setup 

5.3.1 Reagents 

Gold coated nanopillar substrates were purchased from Silmeco, 4-Aminothiophenol (4-

ATP), 1-ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDC), N hydroxysuccinimide (NHS), 

Glycin were obtained from Sigma Aldrich. Magnetic beads were purchased from Expedeon. 

Neodymium magnet was purchased from CMS Magnetics, INC. Monoclonal anti-MUC4 and 

human MUC4 peptide as an antigen were obtained from Abcam. 
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5.3.2 Functionalization Capture Substrate and Immunoassay Procedures 

It has been shown that gold-coated nanopillar substrate can provide very high enhancement 

factor with good reproducibility due to leaning effect of nanopillar143. In this study, gold-coated 

silicon wafer with standing vertical silicon pillars in the range 50–80 nm wide and 600 nm heights 

has been used to capture and detect antigen (Fig. 27).   

As illustrated in Fig. 28, the gold-coated nanopillar substrate was first coated with 4-ATP 

via Ag-S bonding by immersing the substrate in 10mM 4-ATP for 1 hour. After removing unbound 

4-ATP molecules with ethanol and PBS, the carboxyl groups on capture antibodies was activated 

by EDC/NHS (EDC =171mM/NHS = 427.5mM) to bind to 4-ATP. 5µL of EDC/NHS solution 

was added to MUC4 antibody diluted in 0.5mL of PBS and was allowed to react for 15 minutes. 

The activated antibody was applied on the functionalized substrate and was incubated for 2 hours. 

The substrate was then washed with PBS, and the unspecific binding was blocked by soaking the 

substrates in 1mM EDC/NHS-activated glycine solutions for 6 hours. The substrate then was ready 

to use. Different concentration of MUC4 recombinant protein at 10, 100, and 1000 ng/mL were 

spiked in normal serum samples and then applied on the functionalized substrates to react for 2 

Figure 27: A schematic showing the magnetic enhanced SERS-based Raman frequency shift 

immunoassay. (I) Gold coated nanopillar substrate; (II) functionalizing the substrate with 

linker reporter molecule; (III) Stretching of linker molecule (4-ATP) due to intermolecular 

repulsion between immobilized MUC4 antibodies; (IV) Relaxation of the linker molecule (4-

ATP) owing to hydrophobic interactions between bound antigens; (V) compressing the 

linker molecular using functionalized magnetic beads and magnetic force.   
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hours. Finally, the substrates were thoroughly washed with PBS, dried with the air stream and 

analyzed by the Raman device. 

5.3.3 Magnet Enhancement  

As shown in Fig. 27, the magnetic field was generated by using a magnet bar and the gold 

coated nanopillar substrate was directly placed on the flat surface of the magnet. The magnet is a 

grade N45 permanent neodymium magnet which can hold up to 33 lbs. It is magnetized through 

the 1/4" thickness so the north and south poles are on the flat surfaces. The Magnetic beads allow 

antibodies to be covalently attached to 500nm particles. 50µL of the 0.4mg ml-1 MUC4 antibody 

was added to the magnetic beads. The beads were reconstituted by gently and thoroughly pipetting 

up and down. The tube was then placed on the magnet bar for 5-10 seconds to collect the particles 

and remove supernatant. The beads were washed by adding 200 µL of washing buffer to the tube 

and mix thoroughly for 15 seconds. The tube was again placed on the magnetic bar for 5-10 

Figure 28 SEM image of gold-coated silicon substrate 
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seconds to collect the particles and discard the supernatant.  The solution was then rinsed one more 

time. Next, 200 µL of blocking buffer was added to the suspension for stabilizing the suspension 

and blocking nonspecific binding sites. The solution was left to react for 30 minutes at room 

temperature and was placed on the magnetic bar for 5-10 seconds to collect the particles and 

discard the supernatant. The washing step was repeated twice. The pellet was then resuspended 

and mixed thoroughly in 25 µL of storage buffer. At the end of the protocol, the tube contained 

1 × 1010 particles/ml in the 25µL.  The prepared magnetic beads were then applied on the captured 

antigens and the magnetic force was applied through magnet to further compress the reporter 4-

ATP by placing the magnets on the bottom of the substrates. 

5.3.4 Multiplex Detection  

We subsequently investigate whether multiplexed detection of two biomarkers can be 

achieved using two bifunctional reporters, 4-ATP and 6-MP. Fabrication of mixed Anti-CA19-

9/4-ATP and Anti-HE4/ 6MP was conducted as follows. Gold-coated nanopillar SERS-active 

substrates were cleaned thoroughly with ethanol. These substrates were then immersed in a 100 

nM 4-ATP solution prepared in ethanol for one hour to form a submonolayer of 4-ATP. The 

substrates were then removed from the solution and washed thoroughly with ethanol to remove 

unbound 4-ATP, followed by rinsing with PBS. Anti-HE4 was then conjugated to the 4-ATP 

submonolayer in a similar manner. Anti-HE4-conjugated 6-MP was prepared by mixing diluted 

anti-HE4 solution (1 μL of anti-HE4 stock in 0.5 mL of PBS) with 100 μM 6-MP. This step was 

followed by activation with EDC/NHS (171 mM/427.5 mM) for eight hours at room temperature. 

The mixture was then applied onto the anti-Ca19-9/4-ATP-coated SERS-active substrate and 

reacted for two hours at room temperature. Finally, the conjugated substrates were removed from 

the mixture and washed thoroughly with PBS. The substrates were then blocked with 0.1 mM 
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EDC/NHS-activated glycine prepared in PBS for about eight hours. Upon completion of the 

incubation, the substrates were thoroughly washed with PBS. The steps of the multiplex detection 

of cancer biomarkers using magnetic-enhanced frequency shift detection is shown in Fig. 29. 

5.3.5 SERS Readout Instrumentation  

All the measurements and Raman spectra collection were performed with portable 

BWS415 i-Raman from B&W TEK Co. The incident laser light was focused to 85 µm spot size 

on the substrate normal incidence. The working distance is 5.9 mm. The light source has a power 

of 499.95mW, and an excitation wavelength of 785nm and the same objective was used to collect 

the scattered radiation. In this study, the antigen concentration was quantified using two 

approaches. For intensity-based quantification, 𝑣𝑠(𝑁𝑜2) of 4-NBT intensity at the 1336𝑐𝑚−1  

position averaged over five readouts on each substrate. The shifts on the peak near 

1580𝑐𝑚−1 corresponding to the symmetric aromatic C-C stretch (𝜈(CC)) of 4-ATP were used for 

Figure 29. Multiplex detection of CA19-9 and HE4 using magnetic-enhanced frequency shift 

detection. 
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shift-based quantification and also averaged across five measurements from a monolayer of a 

Raman reporter (4-ATP) recorded at different places on one substrate.  

5.4 Result and Discussions  

5.4.1 Detection of spiked antigen and patient sample’s biomarker in the absence of magnetic 

field 

We first sought to determine which intensity peak of the Raman reporter 4-ATP has the 

most significant frequency shift upon antigen binding. There are multiple Raman intensity peaks 

for 4-ATP which occur at 639, 705, 1007, 1081, 1179, 1427 and 1586 cm-1. Table 6 shows the 

peak assignments of the linker molecule 4-ATP. As shown in Fig. 30, among these peaks, 

wavenumber down-shifts upon binding to the MUC4 antibody and up-shifts as a function of 

exposure to MUC4 solutions of different concentration were observed at only 1077.5 cm-1 and 

1583 cm-1. Our experimental results demonstrated that 1583 cm-1 peak is more sensitive than 

1077.5 cm-1 for detection of the spiked antigen in serum sample. 

Wavenumber (CM-1) Vibrational assignment 

639 𝛾(𝐶𝐶𝐶) 

705 𝜋(𝐶𝑆) + 𝜋(𝐶𝐻) + 𝜋(𝐶𝐶) 

1007 𝛾(𝐶𝐶𝐶) + 𝛾(𝐶𝐶) 

1081 𝜈(𝐶𝑆) 

1179 𝛿(𝐶𝐻) 

1427 𝜈(𝐶𝑆) + 𝛿(𝐶𝐻) 

1586 𝜈(𝐶𝐶) 

 

Table 6: Vibrational assignment of linker molecule 4-ATP 
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Without antigen binding, the reporter molecules are stretched mechanically which caused 

by intermolecular repulsion between the immobilized MUC4 antibodies and steric hindrance138, 

while hydrophobic interactions between bound antigens allowing more efficient packing and make 

these molecules to relax. As a result, a shift of Raman frequency can be observed, which is 

quantitatively correlated with the concentration of the targeted antigen (Fig 31.a). As spiked 

protein concentration decreased from 1000ng ml-1 to 10ng ml-1, SERS signals also steadily 

Figure 30: Response of the (a) 1077 Cm-1 and (b) 1583 Cm-1 peaks to different MUC4 

protein concentrations. 
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decreased as a function of analyte concentration. To ensure that the Raman peak shifts of the 4ATP 

reporters was specifically due to antigen binding, the functionalized capture substrate was exposed 

to BSA without antigen as a control sample, and no frequency shifts have been observed. The peak 

position of the reporter on the substrate shifted 1.7 ± 0.0 𝑐𝑚−1  to the left side when it binds to 

antibody whereas the peak up-shifts 0.7 ± 0.0 𝑐𝑚−1, 1.77 ± 0.31 𝑐𝑚−1 , 3.67 ± 0.45 𝑐𝑚−1 when 

it respectively  binds to 1000,100,10 ng ml-1 spiked MUC4 in serum and averaged over five random 

measurements. 

This approach only requires Raman active surfaces but not nanoparticles. In addition, it 

does not rely on the absolute intensity in the SERS spectrum and thus has the potential to achieve 

a very high reproducibility. This method permits direct binding of Raman Reporter to the metal 

substrate without use of the secondary antibody which results in higher enhancement comparing 

Figure 31 Detection of MUC4 spiked in normal serum and real cancer patient using magnetic 

enhanced Raman frequency shift assay. MUC4 recombinant proteins were spiked at 

different concentration in the serum. A real normal and cancer patient sample also were 

tested, and the shifts are shown.   
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to the conventional ERLs SERS-based immunoassay which requires two antibodies for each 

antigen.  

5.4.2 Effect of magnetic field on antigen detection 

As shown in Fig. 31 when the magnet was located underneath the substrates, a significant 

enhancement of frequency shift was observed, especially for the lowest concentration (10 ng ml-1, 

i.e., 10 pM), where 100% increase was achieved. As can be seen in Fig. 31, 100%, 80% and 35% 

enhancement were observed for 10, 100, and 1000 ng/mL respectively. These trends observed in 

the SERS spectra indicated that the magnetic beads which were bound to MUC4 protein, made the 

antigen becoming closer to the linker/reporter monolayer under magnetic field. A relaxation of the 

linker molecule was examined by removing the magnetic force. These promising results 

demonstrate that magnetic beads can further increase the sensitivity and dynamic range of the 

assay. 

The true and ultimate test for any immunoassay is the sensing capability for real serum 

sample. For sensing of one biomarker in the presence of the others and showing clinical 

applications of this approach, the concentration of MUC4 also is quantified in cancer patient 

sample. MUC4 has been identified as potential biomarkers which aberrantly expressed in several 

cancers including pancreatic144, breast145, ovarian116 and lung cancer146. The serum of patients with 

pancreatic cancer, and normal individuals were collected under an IRB approved protocol and 

were identified from the UMass Memorial Medical Center Chemotherapy Infusion Center and 

Gastroenterology Clinics. Patients were identified from the review of the weekly schedules, and 

consecutive patients were enrolled to avoid bias. As shown in Fig. 31c, significantly higher levels 

of MUC4 was detected in PC patient’s sample compared with normal control sample. Slight 

frequency shift (~1 𝑐𝑚−1) also was observed for diluted (x2) PC patient’s sample. These results 
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encourage using magnetic enhanced Raman frequency shift immunoassay as a potential 

application for early-stage cancer detection in clinical settings. 

Figure 32 The effect of experimental parameters (integration time, Raman Reporter 

Concentration and probe high) is evaluated in (a,b,c) , intensity-based quantification and 

(d,e,f) Frequency shift-based quantification 
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5.4.3 Effect of experimental parameters on the assay 

As stated earlier, intensity-based quantification can be affected by experimental parameters 

including the amount of Raman reporters, integration time, laser power and laser focus. 

Reproducibility improvement of our suggested magnetic enhanced Raman frequency shift was 

investigated and compared with conventional intensity-based quantification. As shown in Fig. 32, 

by changing the integration time, Raman reporter concentration and probe high (laser power), the 

intensity-based quantification undergo significant variation respectively, while the frequency-shift 

based approach remained almost constant.  

Also, as shown in Fig.  33, very slight shift variation can be observed from five random 

measurements on the substrate, while there are relatively more scattered data points for intensity 

measurements.   

Figure 33 Scatter data points for different concentrations of spiked MUC4 in normal 

serum. Readouts were collected for each concentration from five random locations on 

the substrate. 
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5.4.4 Multiplex Detection of cancer biomarkers  

Fig. 29 shows the experiment's steps that form the mixed binding, in which peaks belong 

to 4-ATP and 6-MP.  Detections of binding events in each type of sensor (anti-CA19-9/4-ATP and 

anti-HE4/6-MP) are illustrated in Fig. 34, whereby peak shifts at 1080 cm-1 in the composite   the 

bindings in the anti-CA19-9/4-ATP sensor, while those at 1290 cm-1, in the anti-HE4/6-MP sensor. 

In the two-step functionalization, first, the initial submonolayer of 4-ATP was self-organized and 

attached to the gold-coated nanopillar, leading to the anti-CA19-9 self-assembled into domains 

upon conjugating to this 4-ATP layer. Subsequent functionalization with the anti-HE4/6-MP 

Figure 34. Typical SERS spectrum derived from multiplex detection of anti-CA19-9/4-ATP 

and anti-HE4/6-MP. 
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complex then fills up the remaining unoccupied sites on the Au surface. This two-step procedure 

creates submicrometer regions of anti-CA19-9/4-ATP and anti-HE4/6-MP, between which 

binding events do not interfere, hence the selectivity. 

When the substrate was exposed to 100 and 10 ng/mL spiked antigen, the peak shifted to 

higher wavenumbers by 1.98 cm-1 and 1.18 cm-1  for CA-19-9, and by 1.24 cm-1  and 0.414 cm-1   

for HE4 respectively, which indicates a linear relationship over this range. As can be seen in Fig. 

35, in each case, only the sensor, specific to the used antigen produces the largest response, while 

responses in the other are suppressed, indicating some level of selectivity. 

Figure 35. Responses of the 1080 and 1290 cm-1 peak to different antigen (CA19-9 and HE4) 

concentrations 
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5.4.5 Detection of cancer biomarkers in various type of cancers 

Five most critical biomarkers (CA-125, CA19-9, CEA, OPN, Prolactin) were quantified in 

twenty-five serum samples of common cancer types (lung, ovarian, pancreatic, colorectal, Control) 

using proposed approach. as shown in Fig.36, and appendix figure 2, significantly higher levels of 

these critical biomarkers were detected in cancer patients compared with normal controls. 

Figure 36: Detection of CA-125, CA19-9, CEA, OPN, Prolactin levels in serum of lung, 

ovarian, pancreatic, colorectal, Control samples using magnetic enhanced Raman frequency 

shift assay. 
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5.4.6 Differentiating pancreatic cancer from ovarian cancer  

The ultimate test for any immunoassay that determined its clinical application is its 

capability of sensing one biomarker in the presence of others. Serums for cancer patients and 

healthy individuals were collected Under an IRB approved protocol and were identified from the 

UMass Memorial Medical Center, Chemotherapy Infusion Center, and Gastroenterology Clinics. 

Patients were identified by reviewing weekly schedules, and consecutive patients were enrolled to 

avoid bias.  The expression level of five cancer biomarkers (CA-125, CA19-9, CEA, OPN, 

Prolactin) has been measured in serums of ovarian cancer, pancreatic cancer, and control samples 

(total of 15 sera samples) using magnetic enhanced Raman frequency shift immunoassay. These 

measurements indicate that serums from cancer patients produced a larger change in SERS 

frequency shift compared to that of sera from healthy individuals (Fig. 37).  The P values were 

Figure 37. Detection of CA-125, CA19-9, CEA, OPN, and Prolactin levels in serum of 

ovarian, pancreatic and control samples using magnetic enhanced Raman frequency shift 

assay. P values were calculated using one-way ANOVA test. ***, P < 0.001. 
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calculated using a one-way ANOVA test, indicating that population means of pancreatic, ovarian, 

and healthy individuals are significantly different for all of the tested biomarkers. Our findings 

demonstrate the great promise of using magnetic enhanced Raman frequency shift immunoassay 

as a low-cost and high-throughput approach as the emerging liquid biopsy diagnostics method. 

5.4.6.1 Data Analysis  

5.4.6.1.1 Classification Algorithms   

The outcome of each measurement for each biomarker in any sample is the frequency shift 

of the peak value in the Raman spectrum. The dataset includes five subjects in each class  of 

pancreatic cancer, ovarian cancer, and healthy individuals. Three different biomarkers are 

measured for each patient, totaling 45 data points. The classification tree is employed to predict 

Figure 38 Classification tree trained with the whole dataset of shift frequency-value 

with whole dataset of peak-value Raman shifts with depth = 2 
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the condition of patients. Details of this approach can be found in the previous work133. Since the 

size of the dataset is limited, five-fold cross-validation is utilized to estimate the generalization 

error, in which the dataset is randomly partitioned into five equal subsets. In each run, four subsets 

are used to train the model, and the other held-out subset is used to test the performance of the 

trained model. The outcome of these five tests for sensitivity and specificity of the model are 

averaged and reported as model performance. In order to avoid over-fitting, the maximum depth 

of the decision tree is set to two. 

5.4.6.1.2 Performance Evaluation 

To evaluate the performance of each model, the sensitivity, specificity, and accuracy are 

computed similarly to our previous work133. Sensitivity is calculated as (defined as) the proportion 

of patients that are classified with the correct type of cancer. Specificity is calculated as (defined 

as) the proportion of healthy individuals that are classified as healthy.  Accuracy points out to the 

proportion of patients that are correctly classified147. Using 5-fold cross-validation, the 

performance of the proposed method is computed as follows. 

 

Sensitivity = 0.93, Specificity = 0.97, Accuracy = 0.96 

 

Finally, we used the whole dataset to train the classification tree shown in Fig. 38. This plot shows 

that the most critical biomarker in diagnosis for Pancreatic cancer is CEA, and for ovarian cancer 

it is CA125. Note that the whole dataset is used to train this model. Therefore, the same data cannot 

be utilized to evaluate the performance of the model. It could be used, however, to predict the 

condition of future patients. 
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5.6 Conclusions  

We have developed magnetic enhanced Raman frequency shift immunoassay for detection 

of protein biomarker. This study demonstrated the detection of the various concentration of MUC4 

spiked in the human serum sample and using SERS frequency shift quantification. From the 

observed SERS spectra, the effect of magnetic force on the MUC4 binding magnetic beads and 

gold coated nanopillar substrates indicates the enhancing capability of the suggested approach for 

the sensitivity of the assay. To emphasize on clinical application of this method in early-stage 

cancer detection, the expression level of MUC4 as an essential cancer biomarker was successfully 

quantified and compared with normal control sample. Also, our testing results demonstrate how 

magnetic frequency shift immunoassay can overcome the reproducibility limitations of 

conventional intensity-based quantification by reducing the effect of experimental parameters 

(Raman reporter concentration, integration time, laser power) on the final result. We have also 

demonstrated multiplexed detection measurements of two cancer biomarkers HE4 and CA19-9 

within one single laser spot. We employed the decision tree classification to evaluate the 

importance of different cancer biomarkers and estimate the specificity and accuracy of the 

prediction. The result from data analysis demonstrated the high predicting capability of our 

proposed technique for precise classification of ovarian cancer, pancreatic cancer, and healthy 

individuals. 
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APPENDIX  

EXPRESSION LEVEL OF CANCER BIOMARKERS IN SERUM OF CANCER 

PATIENTS AND NORMAL INDIVIDULAS USING SERS-BASED IMMUNOASSAY 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix figure 1: SERS detection of MMP7, MUC4 and CA19-9 in serum of normal, PC 

and pancreatitis samples (total of 15 sera samples) using the micropatterning SERS-based 

immunoassay. The antigen concentration was quantified using (𝑣𝑠(𝑁𝑜2)) of 4-NBT intensity 

at the 1336 𝑐𝑚−1 position averaged over five readouts on each address. For reproducibility, 

three addresses were measured for each concentration. Error bars show the standard 

deviation. 
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Appendix figure 2: Detection of CA-125, CA19-9, CEA, OPN, Prolactin levels in serum of lung, 

ovarian, pancreatic, colorectal, Control samples using magnetic enhanced Raman frequency shift 

assay. 
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Appendix figure 3: SERS detection of CA19-9, HE4, Mesothelin, MMP7 and MUC4in serum of 

normal, PC, ovarian cancer and pancreatitis samples (total of 20 sera samples). The antigen 

concentration was quantified using (𝑣𝑠(𝑁𝑜2)) of 4-NBT intensity at the 1336 𝑐𝑚−1 position 

averaged over five readouts on each address. For reproducibility, three addresses were measured 

for each concentration. Error bars show the standard deviation 
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