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Abstract

We optimize the performance of an elastic actuator consisting of an active core in a host which
performs mechanical work on a load. The system, initially with localized elastic energy in the active
component, relaxes and distributes energy to the rest of the system. Using the linearized Mooney-Rivlin
hyperelastic model in a cylindrical geometry and assuming the system to be overdamped, we show that
the value of the Young’s modulus of the impedance matching host which maximizes the energy transfer
from the active component to the load is the geometric mean of Young’s moduli of the active component
and the elastic load. This is similar to the classic results for impedance matching for maximizing the
transmittance of light propagating through dielectric media.

Keywords: impedance matching, elastic actuator, geometric mean

1 Introduction

When light propagates through a planar interface between two perfect dielectrics, a portion of the light is
reflected and the rest is transmitted. To minimize the reflectance in medium 1 with refractive index n1,
or equivalently, to maximize the transmitted light to medium 3 with refractive index n3, one can insert
an index matching layer with refractive index n2 =

√
n1n3 between the two media. Furthermore, the

reflectance is zero if the thickness of the index matching medium is one quarter of the wavelength [1]. One
can apply the same principle to achieve the perfect sound transmittance by positioning a quarter wavelength
impedance matching layer with index

√
(ρ1c1)(ρ3c3), with ρi the mass density and ci the speed of sound [2].

Impedance matching techniques are widely used in applications involving elastic wave propagation as well
as in electronics [3, 4, 5].

The case of a head-on elastic collision of two rigid balls with masses m1 and m3 offers an interesting
analogy. To maximize the energy transfer from m1, which has nonzero initial energy E1, to m3, which has
zero initial energy, one can position a rigid ball with mass m2 =

√
m1m3 and zero initial energy, in between

the two balls [6].
The similarity of these very different physical phenomena is that energy is conserved throughout the pro-

cess: energy is either reflected or transmitted. The transmitted energy can be increased when an impedance
matching medium is inserted. The fraction of reflected energy in case of normal incidence/collision between
two media/balls, is given by,

R12 =

(
Z2 − Z1

Z2 + Z1

)2

, (1)

where Zi = ni for the case of light propagation through an interface, and Zi = mi for elastic collision of
rigid balls. The transmitted energy is given by T12 = 1−R12. If there are three media in series, the fraction
of transmitted energy from medium 1 to medium 3, via medium 2, is given by

T13 = T12T23. (2)
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Here the interference due to multiple reflections has been neglected in Eq. (2), and media 1 and 3 are assumed
to be semi-infinite in the propagation direction. Exact expression including the dependence on the thickness
of layer 2 in the wave propagation case can be found in Refs. [1, 2]. Upon maximizing T13 in Eq. (2) with
respect to Z2, one arrives immediately at,

Z2 =
√
Z1Z3, (3)

thus the value of Z2 which maximizes the energy transmission from 1 to 3 is the geometric mean of Z1 and
Z3. Mechanical impedance is a measure of effectiveness of a force in producing velocity. Remarkably, one
can optimize certain energy transfer processes by inserting an index matching component.

In this paper, we study a related problem of optimizing the transfer of elastic energy from one elastic
body to another via an impedance matching element.

Specifically, we consider three elastic bodies: body 1 is the active element with stored elastic energy,
contained in body 2, the host, which is the impedance matching element and body 3 is the load to which we
wish to transfer elastic energy. For simplicity, we use cylindrical symmetry in our example. All three bodies
are isotropic, homogeneous and uniform and share the same axis of symmetry; body 1 is a cylinder, while
bodies 2 and 3 are annuli. The geometry is shown in Fig. 1.

Figure 1: A schematic showing the three bodies, the inner disk and two annuli, each with different elastic
modulus.

We begin with the host, body 2, which is an annulus with a cylindrical cavity. Initially it is stress free.
We then take another elastic body, with a different elastic modulus, which is too large (or too small) to fit
fully into the cavity of the host. We then compress (or stretch) this body until its shape is the same as
that of the cavity. This is the active body 1. We then place the active body, keeping its shape fixed, into
the cavity of the host. The third body is the load; an annulus whose cavity can perfectly accommodate the
host. Finally, we place the host with the active body into the cavity of the load, as indicated in Fig. 1. The
system is then allowed to relax.

When released, the internal stored elastic energy of the active medium will do mechanical work on
the load. The situation illustrated here is similar to a light driven actuator, where the photoactive part
of the system expands or shrinks on illumination, distributing stress to the surrounding medium, causing a
deformation. The system can then do mechanical work, say expand against a pressure. Given the properties
of the actuator and the load, can we maximize the work by choosing a suitable host material? Below, we
present a mathematical model of the deformation of elastic media in a cylindrical geometry, and determine
Young’s modulus of the impedance matching host which maximizes the energy transferred to the load. The
results suggest a strategy for optimizing the performance of an elastic actuator.

We remark that the similar analysis cannot be carried out in a spherical geometry with volume conserving
materials, since an incompressible sphere cannot be radially deformed.

2 Mathematical Model

We use Lagrangian mechanics to model the system. We start with the incompressible Mooney-Rivlin’s
hyperelastic model, in which the energy density of an elastic material is a linear combination of invariants
of the left Cauchy-Green deformation tensor [7, 8]

W = C1(λ21 + λ22 + λ23 − 3) + C2(λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 − 3), (4)

where λi, i = 1, 2, 3 are principal stretches, and λ3 = 1/(λ1λ2) due to incompressibility. Assuming the
deformations are small, expanding in terms of λ1 − 1 and λ2 − 1, we get,

W = 4(C1 + C2)((λ1 − 1)2 + (λ2 − 1)2 + (λ1 − 1)(λ2 − 1)). (5)
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We further assume that all deformations have cylindrical symmetry, and denote the position of a point in
body R(r)r̂ + Z(z)ẑ. Here r and z are the Lagrangian coordinates denoting the position of mass points in
the undeformed system. Then the principal stretches are given by

λ1 =
∂R

∂r
, λ2 =

R

r
, λ3 =

∂Z

∂z
=

1

λ1λ2
, (6)

where λ1 is along the radial, λ2 along the azimuthal and λ3 along the z− direction. In terms of R(r), we
can express the elastic energy density in the linear regime as

WE =
2

3
E((R′ − 1)2 + (

R

r
− 1)2 + (R′ − 1)(

R

r
− 1)), (7)

where E = 6(C1 + C2) is Young’s modulus and R′ = ∂R/∂r.
The energy per length in the z−direction of the system consisting of the elastic bodies 1, 2 and 3 is given

by

F = 2π

(∫ M

0

WE1dr +

∫ r2

1

WE2dr +

∫ r3

r2

WE3dr

)
, (8)

where the radius of the central hole in the undeformed host is taken to be unity, M is the radius of the
pre-strained active core, r2 and r3 are the outer radii of the host and the load, respectively.

Minimizing the total energy F gives the Euler-Lagrange equation describing the deformation. All three
parts, active core, host, and load, share the same form of the equation, which is given by

R′′r +R′ − R

r
= 0. (9)

It admits the solution

Ri(r) = Air +
Bi

r
, (10)

where Ai and Bi, i = 1, 2, 3, are determined by the interface and boundary conditions, which are detailed
below.

The continuity condition for displacements across the interfaces are given by,

R1(0) is finite, or B1 = 0, (11)

R1(M) = R2(1), or A1M = A2 +B2, (12)

R2(r2) = R3(r2), or, A2r2 +
B2

r2
= A3r2 +

B3

r2
. (13)

In addition, the normal stresses are continuous across the two interfaces, which are

E1(2R′
1 +

R1

r
− 3)r|r=M = E2(2R′

2 +
R2

r
− 3)r|r=1, (14)

E2(2R′
2 +

R2

r
− 3)r|r=r2 = E3(2R′

3 +
R3

r
− 3)r|r=r2 . (15)

We would need another boundary condition at the outmost boundary to complete the set of equations to be
solved.

2.1 Zero-strain boundary condition

If the outer boundary of the load is fixed, boundary condition at r3 reads as,

R3(r3) = r3. (16)

Together with the five interface conditions, these six linear equations determine the six unknowns, Ai and
Bi uniquely, and they are functions of Ei and ri, i = 1, 2, 3. Since the solutions are rather lengthy algebraic
expressions, we omit them and only report the final optimization results.
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We are interested in the transfer of elastic energy from the active core to the outside load. We therefore
ask: what value of Young’s modulus E2 of the host material will maximizes the transfer of energy from the
active core to the load? Maximizing the energy in the load transferred from the active core is equivalent
to maximizing the displacement of inner radius of the load R3(r2). We note that R3(r2) = A3r2 + B3/r2.
Taking the derivative of R3(r2) with respect to E2, we obtain,

E2 =
√
E1E3

√
3r22 + r23
r23 − r22

. (17)

In the case of r3 →∞, the load is infinitely large, we have E2 =
√
E1E3. This results is a reminiscent of an

equivalent result for refractive indices in the case of impedance matching for light propagation in 1D media.

2.2 Zero-stress boundary condition

In this case, the outer boundary of the load is free to move, and the boundary condition at r3 is given by,

(2R′
3 +

R3

r
− 3)|r=r3 = 0. (18)

Together with the interface equations, the six unknowns, Ai and Bi are uniquely determined. Again, we are
interested in the energy transfer from the active core to the load, and we ask the same question as in the
zero-strain case: what value of Young’s modulus E2 of the host material will maximize the transfer of energy
from the active core to the load? Although it is not obvious, maximizing the energy in the load transferred
from the active core is equivalent to maximizing the displacement of outer radius of the load R3(r3). Taking
the derivative of R3(r3) with respect to E2, we obtain

E2 =
√
E1E3

√
3r23 − 3r22
r22 + 3r23

. (19)

Again the result is a geometric mean of Young’s modulus of medium 1 and 3, multiplied with a geometric
factor depending on radii of components. In the case when r3 →∞, E2 =

√
E1E3.

Figure 2 demonstrates the maximum energy transferred to the load from the active material occurs when
the impedance matching modulus E2 is given by Eq. (17) or (19) at zero-strain or zero-stress boundary
condition, respectively.

(a) (b)

Figure 2: Transferred energy to the load F3 normalized by initial energy of active component F 0
1 as a function

of E2 with M = 2, r2 = 2, r3 = 3. The vertical dotdashed lines are located at the optimal value of E2 (a.u.),
given by Eq. (17) and Eq. (19), respectively. (a) zero-strain boundary condition, (b) zero-stress boundary
condition.

4



2.3 Reflectance and transmittance

We finally look at the problem from the reflectance and transmittance point of view and build a connection
with the case of light propagation. Consider the active core and the load only, with fixed outer boundary
condition. The active core initially has stored elastic energy; it is subsequently released and transfers some
of its stored energy to the load. We define the quantities

R12 =
F1

F 0
1

, T12 =
F2

F 0
1

, (20)

as reflectance and transmittance, where Fi is the final equilibrium energy for each component and F 0
1 is the

initial energy of the active core. We remark that the total energy of the system in its final equilibrium state
is less than the initial energy of the active core due to dissipation. In the limit that the outside radius of the
load goes to infinity, we obtain

T12 =
3E1E2

(3E1 + E2)2
. (21)

Upon inserting an impedance matching host between the active core and the load, the transmittance from
the active core to the load becomes

T13 = T12T23 =
9E1E

2
2E3

(3E1 + E2)2(3E2 + E3)2
. (22)

Maximizing T13 over E2 gives
E2 =

√
E1E3. (23)

We have recovered the results from above via an energy transfer point of view in the limit when the size of
the load goes to infinity. The main difference between our case and light propagation case lies in that the
energy is not conserved in the former but is conserved in the latter case. It suggests that energy conservation
is not a key requirement in impedance matching mechanisms.

3 Conclusion

In this work, we are interested in the work done by an active material on the materials surrounding it.
Specifically, we have an initially nonequilibrium elastic system with all the energy stored in one part, and
the system is then allowed to relax. We look for ways to improve the efficiency in transferring energy to
other parts of the system at equilibrium. To do so, we analyzed a composite system consisting an active
elastic material, a host, and a load. We found that in the cylindrical geometry, the transferred energy from
the active material to the load can be maximized by tuning Young’s modulus of the impedance matching
host material. The analysis was done using the linearized Mooney-Rivlin hyperelastic model and assuming
incompressibility of all components. We further assumed that the system was overdamped and elastic
wave propagation was not considered. The active material located at the center of the host, when actuated,
transfers stored energy to the load through the host. We have considered two cases where the outer boundary
of the load is fixed and where it is free. Young’s modulus of the host material which maximizes the energy
transfer is found to be the geometric mean of the moduli of the active material and the load, multiplied by a
geometric factor which depends on the radii of the components. In the limit when the size of the load goes to
infinity, Young’s modulus for the host is simply the geometric mean of the moduli of the active material and
the load. This coincides with the classical result from impedance matching in the case of light propagating
through dielectric media. Although the model is simplified with idealized geometry and is in the small strain
limit, we anticipate the results will help optimize the performance of photomechanical materials by using an
impedance matching host between the active material and the load.

Acknowledgment

This work was supported by the Office of Naval Research [ONRN00014-18-1- 2624]

5



References

[1] Stratton, J.A., 1941. Electromagnetic Theory, McGrow-Hill Book Company. Inc., New York, and London.

[2] Kim, Y.H., Sound propagation: an impedance based approach. John Wiley & Sons, (2010).

[3] Chen, S., Zhang, Y., Hao, C., Lin, S. and Fu, Z., 2014. Functionally graded materials for impedance
matching in elastic media. Physics Letters A, 378(1-2), pp.77-81.

[4] Rahimzadeh, T., Arruda, E.M. and Thouless, M.D., 2015. Design of armor for protection against blast
and impact. Journal of the Mechanics and Physics of Solids, 85, pp.98-111.

[5] Rathod, V.T., 2019. A review of electric impedance matching techniques for piezoelectric sensors, actu-
ators and transducers. Electronics, 8(2), p.169.

[6] Santos, J., de Oliveira, B.P. and Nelson, O.R., Impedance of rigid bodies in one-dimensional elastic
collisions. Revista Brasileira de Ensino de FÃ-sica, 34(1), 1-4 (2012).
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