VARIATIONAL ROVIBRATIONAL CALCULATION FOR LINEAR TETRAATOMIC MOLECULES: II. THE B11244 STORY RETOLD

<u>BENJAMIN SCHRÖDER</u>, Institut für Theoretische Chemie, Universität Stuttgart, Stuttgart, Germany; PE-TER SEBALD, Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Göttingen, Germany.

The linear propynylidynium l-C₃H⁺ (X¹ Σ ⁺) is part of the select group of interstellar cations. Its discovery was accompanied by a controversy in the astrophysical community.^{*a*} Following its initial detection, theoretical calculations questioned the assignment based on 2nd order vibrational perturbation theory (VPT2) calculations. The matter was ultimately resolved by laboratory rotational spectra.^{*b*} The failure of VPT2 was subsequently attributed to a shallow CCC bending potential.^{*c*} Discrete Variable Representation (DVR) calculations^{*d*} later confirmed the D_0/D_e ratio but resulted in a large sextic centrifugal distortion constant H_0 exceeding the astronomical value by an order of magnitude.

Using a new variational method for tetraatomic linear molecules (C8v4; see also P5277), based on Watsons isomorphic Hamiltonian for linear molecules, theory and experiment are reconciled. The C8v4 calculations confirm the small size of H_0 obtained in previous experimental studies. A high-level composite *ab initio* potential energy function (PEF) has been developed, combining explicitly correlated coupled-cluster results with corrections for core-valence correlation, scalar relativistic effects and higher-order correlation as well as the diagonal Born-Oppenheimer correction. Large scale C8v4 calculations using this PEF show excellent agreement with the available experimental rotational^{*a.c*} and vibrational parameters.^{*e*} The presented rotational spectroscopic parameters of excited vibrational states should facilitate forthcoming experimental spectroscopic studies on $l-C_3H^+$.

^a Pety et al., Astron. Astrophys. 548, 68 (2012); Huang et al., Astrophys. J. Lett. 768, 25 (2013).

^b Brünken et al., Astrophys. J. Lett. 783, 36 (2014).

^c Botschwina et al., Astrophys. J. 787, 72 (2014).

^d Mladenović J. Chem. Phys. 141, 224304 (2014).

^e Brünken et al., J. Phys. Chem. A 123, 8053 (2019).