
c© 2021 Noel Brindise



TOWARDS EXPLAINABLE AI: DIRECTED INFERENCE OF LINEAR
TEMPORAL LOGIC CONSTRAINTS

BY

NOEL BRINDISE

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Adviser:

Professor Cédric Langbort



ABSTRACT

Many systems in robotics and beyond may be classified as mixed logical-

dynamical (MLD) systems. These systems are subject to both logical con-

straints, which govern their safe operation and goals; and dynamical con-

straints, which describe their physical behavior. These time-dependent con-

straints can be described with linear temporal logic (LTL). In the case where

the constraints are not known, their inference offers a type of explanation for

their behavior.

Previous work has attempted to infer constraints for MLD systems by

Bayesian methods, searching for optimally contrastive rules between “good”

and “bad” system runs. However, due to a reliance on an unknown prior

distribution, as well as a limited search space, these efforts are unable to

recover all desired constraints.

We propose an alternative inference method called directed hypothesis

space generation (DHSG). DHSG compares each system run and constructs

a full hypothesis space of all conjunctions and disjunctions of the desired

LTL formula types. In simulation, DHSG recovered a full hypothesis space

for each test case. However, due to a comparatively high computational

demand, it also exhibited run times which increased significantly with state

space complexity. The computational load was lightened by limiting the

length of inferred formulas, at the cost of hypothesis space completeness.

However, the adjustable computation time of the Bayesian approach means

that it retains an advantage under some use cases.

Finally, for scenarios in which neither the LTL rules are known, nor the

state-space regions they govern, DHSG has potential to construct the un-

known regions. This approach would give a basis on which to perform further

inference. Region construction would apply to lesser-understood systems and

presents a topic for future work.
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CHAPTER 1

PRELIMINARIES

1.1 Motivation: Explainable artificial intelligence

1.1.1 Introduction to explainable AI

Artificial intelligence is becoming a shaping force in the human experience,

and countless applications reach into Aerospace. AI route planners pro-

vide military pilots with flight plans and reroutes based on real-time threat,

weather, and efficiency data [3], while AI situational awareness software fil-

ters situational data for space and air military applications [4]. AI shows

significant promise in aircraft adaptive control, able to reassess a damaged

aircraft during flight and adjust control inputs accordingly [5]. However, as

AI becomes increasingly prevalent, the potential for human-machine discon-

nect grows.

Artificial intelligence demands explanation in a wide variety of aerospace

applications. A pilot following a rerouted flight plan, or trusting adaptive

control to take the yoke after aircraft damage, will want to understand the

“what”s and “why”s of the decisions a computer is making on his behalf.

That need for explanation is not only a practical one, but also a moral

one—when a person entrusts their life to a system, they should be informed

about the choices that system makes for them. The looming question is then:

what constitutes a useful explanation, and how can we construct it?

The emerging field of explainable AI (xAI) aims to answer that question,

developing explanations for AI decisions which would otherwise be unin-

telligible to a person. However, while xAI has made large strides in AI

interpretation, there remains significant work to be done to make drones,

robots, military aircraft, and countless other systems intelligible to their hu-

man users.
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It is natural to identify three major stages in the explanation process (Fig-

ure 1.1). The first stage is model construction. Since humans interpret

cause and effect based on a personal context of assumptions and background

knowledge [6], a good explanation must provide an accurate, optimally rele-

vant context. To provide context on an AI, though, an explainer must learn

the context in the first place. The explainer needs to build its own model

of the AI, from which it can mine the relevant details. This stage is where

most xAI research is now focused.

Figure 1.1: 3-stage explanation and the research focus of three fields.
Current xAI research has an overwhelming emphasis on model construction.

Building on current work, the inference method described in the following

chapters aims to make a contribution to that first explanatory step, model

construction. We aim to improve model building via constraint inference,

specifically the inference of linear temporal logic (LTL) constraints on mixed

logical-dynamical (MLD) systems.

1.1.2 MLD system LTL constraint inference as explanation

Constraints on a system are useful for explanation because they are essen-

tially the rules that a system must follow. If we know the constraints, we can

describe the system’s decisions in terms of which rules they are following,

providing a backbone for explanation. In our case, we observe runs of an

MLD system and attempt to recover a set of LTL formulas that those runs

are consistently satisfying. If a set of system runs, or “traces”, is known to be

acceptable—i.e., if the runs are labeled as “good” traces—it makes sense to

characterize their goodness based on which LTL formulas appear to describe

all of them.
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MLD systems operate based on both dynamical and logical rules; one

example is a rock-collecting lunar rover. A rover has some maximum turning

radius (a dynamical rule), while the charge in its batteries must remain

above some threshold (a logical rule for operations). Finally, the rover needs

to perform its task, necessitating a set of logical process rules: the rover must

collect a sample from Region 1 before unloading a sample in Region 2, all

while avoiding Region 3, where the ground is too steep. The mixed logical-

dynamical system of the rover can be expressed as the product of a weighted

transition system, T and a Büchi automaton, B [7]. The product of these two

tuples, B × T is called the product automaton. The system of the product

automaton is very useful because it allows us to impose linear temporal logic

constraints on a process. Any LTL formula ϕ can be expressed in terms

of atomic propositions (here, Boolean labels on each system state), as well

as Boolean and temporal operators, allowing us to specify orders and time

dependencies of states. By checking which ϕ are satisfied, we can determine

which of a set of dynamical and logical rules govern the system.

The remaining preliminaries further describe MLD and LTL, providing

formal definitions and establishing notation.

1.2 Mixed logical dynamical systems and the product

automaton

1.2.1 Definition and syntax

Before a discussion of the constraint inference methodology, it is necessary to

understand the form of the constraints we seek to infer. This thesis considers

mixed logical dynamical (MLD) systems, as proposed in [8]. MLD systems

offer a way to combine system dynamics, logical rules, and operating con-

straint into a single model. Here,

• the dynamics are the physical laws that govern the system’s motion,

• the logical rules are the rules which govern the process(es) the system

is meant to carry out, and
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• the operating constraints are any imposed limits on the system’s oper-

ational range.

We tackle constraint inference for the model of an MLD system described in

[1], a combination of a weighted transition system and a Büchi automaton

known as a “product” automaton.

The weighted transition system deals with the physical states and transi-

tions of the system, and is defined by the tuple

T := (Q, q0, R,Π,L, w)

where

• Q is a finite set of states

• q0 ∈ Q is an initial state

• R ⊆ Q×Q is a transition relation

• Π is a set of atomic propositions

• L : Q→ 2Π is a labeling function

• w : R→ R>0 is a weight function

A run of this transition system thus begins with some state q0 and then

transitions to subsequent states according to R (i.e., for a transition from

the state qi at time ti to the state qi+1 at time ti+1 = ti + w(qi, qi+1), it

must be true that (qi, qi+1) ∈ R. The resulting run rT can be expressed as a

sequence of states q0, q1, q2... (where q0 ∈ Q0 and all qi ∈ Q).

The labeling function L(q) takes this sequence of states and generates

the associated “word” L(q0),L(q1),L(q2)..., where L(qi) gives the subset of

atomic propositions satisfied when the system is in state qi. These atomic

propositions αi are boolean variables which may describe process- or safety-

relevant characteristics of each state. For instance, there may be some α1

which is true if the state qi allows access to a data-upload port for the robot,

and another α2 which is true if the state qi allows access to a charging station.

Encoding the process-related logical rules to be satisfied by the system,

the Büchi automaton is defined as the tuple

B := (S, S0,Σ, δ, F )
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where

• S is a finite set of states

• S0 ⊆ S is a set of initial sets

• Σ is an input alphabet

• δ ⊆ S × Σ× S is a non-deterministic transition relation

• F ⊆ S is a set of accepting final states

The dynamics we consider for this MLD encoding are linear and subject

to linear mixed-integer inequalities, where mixed-integer refers to a mix of

continuous and binary variables.

1.2.2 State-space region specification for constraint
formulation

Constraints on an MLD system can be expressed in part using bounds on

continuous variables. In this way, constraints on a system may be thought of

as sets of bounds on continuous variables, where any given set of bounds may

be enforced or relaxed under the conditions specified by the constraint. For

example, a constraint requiring that a system always remain in a given region

will prescribe that the associated bounds are always enforced; a constraint

specifying a final, “goal” state may only enforce the “goal” bounds on the

final time step, i.e., it enforces that the system state must be within those

bounds only at the final time.

Using this approach, all constraints on a system can be expressed as some

set(s) of bounds on one or more of the system variables. A set of bounds

can be expressed as a region of the system’s state space, in particular using

linear inequalities; this approach is taken by the formulation in [8]. Each

individual inequality specifies a halfspace, where the intersection of all the

specified halfspaces is the region to be governed by the associated constraint.

For our approach to constraint inference, we use a simplified formulation

for states. Because we consider only binary labels—specifying the current

state with a subset of the possible labels—the region of state space we occupy

can be determined by checking which binary labels are applied at the desired
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time step. In this way, we are disregarding (for now) the distinction between

the physical states of the Büchi automaton and process states, choosing to

perform inference purely over the vocabulary of labels.

In all, the regions of state space, represented as labels in our application,

act as arguments in time-dependent system constraints. A natural way to

encode such time- and logic-dependent constraints on an MLD system is

linear temporal logic.

1.3 Linear temporal logic

1.3.1 Definition and syntax

Linear temporal logic (LTL) is an extension of propositional logic that in-

tegrates operators which deal with discrete time, making it a useful logic

for enforcing processes, time dependencies, and long-term behavior in path

planning. All LTL formulas may be expressed in terms of

• one or more atomic propositions, or boolean variables. In our case,

these are the labels contained in the system vocabulary.

• the logical operators ¬ (not) and ∨ (or)

• the unary temporal operator X (next), which requires that its argument

be true for the next time step

• the binary temporal operator U (until), which requires that its first

argument be true until the time step at which its second argument

occurs

A single atomic proposition, as well as any instantiation of the operators

with LTL formulas, constitute an LTL formula. From these basic operators,

additional operators can be constructed to streamline the syntax. Some com-

mon additional operators, defined in Table 1.1, are included in the scenario

described below.

In the case of a robot operating in some state space, a path can be planned

to fit LTL constraints which prescribe, on the most general level, the follow-

ing:
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• Safety: the robot should operate always within the bounds of a “safe”

region of the state space, e.g., a table-top robot should never drive

beyond the dimensions of the table, or it will fall off. Likewise, the

robot’s internal state should remain within its safe operational ranges,

e.g., its processor should not exceed a given operational temperature.

• Objectives: the robot should consistently meet process objectives. These

may be objectives to remain operational, e.g., it must always revisit a

charging state before running out of battery. They may also be objec-

tives related to the robot’s operational purpose, e.g., a picture-taking

robot must always revisit a picture-uploading state after collecting some

amount of photograph data.

To fulfill these types of constraints, the system state may incorporate both

physical and process-related variables. Whether or not the system is in a

certain state is then assessed by the product automaton’s labeling function.

Again, “regions” of state space refers to sets of bounds on one or more of the

state space variables, defined as described in 1.2.2. The variables themselves

may be any subset of the set of product automaton states.

1.3.2 Formula types

We do not consider all LTL formula types, but a selection of the LTL vocab-

ulary which is most applicable to task-performing robot-type systems. For

these systems, the operators of interest are those that express the aforemen-

tioned safety- and objective-type constraints.

When discussing LTL formulas, we refer to a formula consisting of a single

template from our set of predefined templates as atomic. Atomic formulas

do not consist of conjunctions or disjunctions of other stand-alone template

instantiations; in a sense, they are our smallest meaningful LTL units. In

our application, we specifically consider the formula templates given in Table

1.2.

1.3.3 Satisfaction checking

Having defined the LTL formulas of interest, it is necessary to establish a

method of checking formula satisfaction of LTL hypotheses on the traces of
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Table 1.1: LTL temporal operators.

Operator Syntax Meaning

Global Gϕ1 ϕ1 is always true.

Eventual Fϕ1 ϕ1 eventually occurs.

Next Xϕ1 ϕ1 must occur at the next time step.

Until ϕ1Uϕ2 ϕ1 remains true until ϕ2 occurs (and ϕ2 must oc-
cur)

Release ϕ1Rϕ2 ϕ2 must remain true until (and including) the time
step when ϕ1 becomes true. If ϕ1 is never true, ϕ2

must always be true.

Weak until ϕ1Wϕ2 ϕ1 must be true at least until ϕ2 becomes true. If
ϕ2 is never true, then ϕ1 must always be true.

our MLD system. For LTL formulas of general mixed-integer linear con-

straints, the formulation in [7] provides a method for satisfaction checking.

In our case, since state space regions are treated as atomic proposition labels,

we are able to perform LTL satisfaction checking using simple recursion over

time steps. For example, a formula with the “eventually” operator F can be

checked by iterating through time steps and ensuring that a boolean value

remains true at every step, as follows:

Check Fp

For time t ≤ tfinal :

value = check((p true at t) OR (p true at t+ 1))

For time t = tfinal:

value = check(p true at t)

Return value

Similar recursive methods are able to address the other LTL templates of

interest. The entire script used in simulation for basic LTL formula checking

was developed in [2] and is available on GitHub [9].
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Table 1.2: Atomic LTL formula templates.

Template Syntax Meaning

Global Gp1 p1 is always true.

Eventual Fp1 p1 eventually occurs.

Until p1Up2 p1 remains true until p2

occurs (and p2 must oc-
cur)

Response G(p1 →XFp2) If p1 occurs, p2 eventu-
ally follows.

Stability FGp1∧G(p1 → (p1WG¬p1)) p1 eventually occurs
and stays true forever.

At most once G(p1 → (p1WG¬p1)) p1 may only be true on
one contiguous time in-
terval.

Sometime before (p2 ∧ p1)R(¬p1) If p1 occurs, p2 must
have occurred in the
past.
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CHAPTER 2

PROBLEM STATEMENT AND OVERVIEW
OF APPROACH

2.1 Goal of inference

The problem we consider involves an MLD system subject to some set of LTL

requirements and functioning in a finite domain. One concrete example of

such a system is the robot presented in [1]. This robot operates on a tabletop

layout of roads and stations, where the various stations in the layout function

as battery-charging, data collection, and data upload sites. The tabletop

layout, with stations labeled P1− P5, is reproduced in Figure 2.1.

The robot aims to carry out a data collection-and-upload process while

ensuring that it (1) remains charged, (2) penalizes travel time, and (3) stays

within the prescribed roadways and stations. The data collection process, as

well as (1) and (3), are achieved via enforcement of appropriate LTL formulas,

such as those shown in Table 2.1.

Figure 2.1: Table top with roads and parking stations labeled (reproduced
from [1]).

In order for a run of the robot to be considered acceptable, every one of

those LTL formulas must be satisfied by that run. In other words, the success
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Table 2.1: Examples of rules governing tabletop robot in [1].

LTL formula Interpretation

GF(P1) ∧GF(P4) ∧GF(P5) The robot keeps visiting each data
gather location

G((P1 ∨ P4 ∨ P5) =⇒ X(¬(P1 ∨
P4 ∨ P5)U(P2 ∨ P3)))

Whenever the robot gathers data, it
uploads it before doing another data
gather.

G((P2 ∨ P3) =⇒ X(¬(P2 ∨
P3)U(P1 ∨ P4 ∨ P5)))

Whenever the robot uploads data,
it does not visit an upload location
again before gathering new data.

of a run in terms of its requirements and goals can be described by the run’s

satisfaction (or violation) of a set of LTL formulas.

Our particular problem considers the scenario in which we are able to

observe the runs of such a system—in this example, we are able to watch the

robot as it performs—but we do not know the rules under which the system

operates. More specifically, we assume:

1. Unknown system constraints: we do not know, a priori, the LTL

constraints on the system.

2. Labeled runs: each run we observe is labeled, i.e., we are told whether

or not each run “followed the rules” and was considered acceptable.

3. Collectible run data: we are able to collect the run data in terms of

some set of state space variables at each t, where we assume discrete

time.

By assuming collectible run data, we disregard scenarios in which necessary

state data is missing, that is, we are able to observe all states governed by

the unknown LTL rules.

Given these assumptions, our goal is to infer the LTL rules satisfied

by the successful runs of the system. In particular, if we can generate

candidate formulas that are both satisfied by “good” runs and violated by

“bad” runs, these candidates provide potential explanation for the distinction

between “good” and “bad”. Such a distinction provides a description of the

system’s behavior and may be used as a starting point for explanation.
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2.2 Problem setup: Hypothesis space and requirements

This section motivates and describes the framework for the problem solution,

which takes the form of a “hypothesis space” satisfying a set of requirements.

Sections 2.2.1 and 2.2.2 describe the hypothesis space and requirements qual-

itatively, while Sections 2.2.4 and 2.2.5 define them formally.

2.2.1 Hypothesis space overview

The set of candidate formulas generated by the inference process constitute

a “hypothesis space,” a list of rules that correctly classify the runs and may

thus replicate the original, unknown rules that govern the system. Because

every individual rule candidate must be satisfied by good traces (Rule 1

and Rule 2 and Rule 3 must be satisfied...), the hypothesis space can be

represented as a list of conjunctions, as in Figure 2.2. From here, our re-

quirements for inference can be expressed as requirements on this hypothesis

space, describing the necessary qualities for the conjunctive formula.

Figure 2.2: The hypothesis space can be represented as the conjunction of a
list of rule candidates.

2.2.2 Requirements overview and justification

The hypothesis space of LTL formulas is required to possess three qualities:

validity, strictness, and conciseness. This section gives a qualitative descrip-

tion and the relevance of each quality.

Validity: We seek to infer formulas which are satisfied on all “good”

traces. A candidate formula which is satisfied on these traces will be denoted

as valid. If a formula is not valid on all good traces, it would suggest that

that formula must not be a true requirement for goodness; otherwise, traces
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not satisfying the formula would not be labeled “good” in the first place.

Thus, for a formula to be a candidate in the hypothesis space, we require

validity.

Strictness: We seek to hypothesize all constraints which are as strict as

possible. Since the hypothesis space can be expressed as the conjunction of

a set of valid formulas, a fully-strict hypothesis space would not omit any

valid formula which would strengthen the conjunction. Constraint strictness

is critical because any loss of strictness equates to a failure to fully character-

ize the trajectories’ shared qualities. That is, unnecessary loss of strictness

means that the trajectories are in fact following some additional LTL rule(s)

that our hypothesized constraints all fail to capture. However, since this

approach considers only a “relevant” subset of LTL templates (i.e., LTL op-

erators), the results of inference will remain limited to formulas constructed

of instantiations of that subset. Given this qualification, we require strictness

over the set of formula constructable with the chosen set of templates.

Conciseness: Finally, we require that the hypothesis space be as concise

as possible. Conciseness means that the hypothesis space does not include

any formulas which are redundant. This is equivalent to requiring that, for

the conjuncts in the hypothesis space, a deletion of any conjunct would result

in a less strict conjunction. Conciseness is important because it guarantees

the smallest possible fully-valid and fully-strict hypothesis space.

2.2.3 Explanation of Notation

Table 2.2 establishes vocabulary for the proofs and definitions that follow.
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Table 2.2: Explanations of Notation.

Representation Meaning

Φ The full hypothesis space, represented as a single ‘su-
performula’

ϕ An LTL formula

φ An atomic LTL formula (an instantiation of a basic
LTL template)

π A trace (i.e., a run of the system, consisting of a list
of states)

ΠA The full set of good traces

ϕi(πk) true LTL formula ϕi is satisfied on trace πk

φ′ ∈ {ϕ} φ′ is one of the arguments of the disjunct ϕ (i.e., ϕ =
φ1 ∨ ... ∨ φ′)

ϕ′ ∈ {Φ} ϕ′ is one of the arguments of the conjunct Φ (i.e., Φ =
ϕ1 ∧ ... ∧ ϕ′)

2.2.4 Formalized hypothesis space

In Section 2.2.1, we claim that the hypothesis space of all formulas can be

expressed as a conjunction of individual formulas. In fact, the hypothesis

that we infer can be expressed as a conjunction of disjunctions of atomic

formulas. Formally, the hypothesis space can be expressed as in (2.1).

Proposition. Form of Φ.

Any valid, strict, and concise hypothesis space can be expressed in the

form

Φ :=
I∧
i=1

ϕi where ϕi =
J∨
j=1

φj (2.1)

Note here that each ϕi may have any finite number of disjuncts, and thus

each J is distinct.

Proof. Sufficiency of form for Φ.

We require a form which can represent any possible conjunctions and dis-

junctions of atomic formulas φ. Suppose, towards contradiction, that the

structure given in (2.1) is not sufficient. This would imply that, for suffi-

ciency, either

1. Φ must actually include one or more disjunctions
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2. ϕi must actually include one or more conjunctions

If (1) is true, then we have a Φ of the form

Φ := ϕ1 ∧ ϕ2 ∧ ... ∨ ϕn−2 ∧ ϕn−1 ∨ ϕn (2.2)

where there can be any nonzero number of disjunctions, and conjunctions of

φj are possible within each ϕi. For example, take a Φ which includes both

an outer disjunction, as in violation condition (1); and an inner conjunction,

as in violation condition (2):

Φ = (φ1 ∨ φ2) ∨ (φ3 ∧ φ4) (2.3)

However, by the distributive property,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Letting a = d ∨ f ,

(d ∨ f) ∧ (b ∧ c) = ((d ∨ f) ∨ b) ∧ ((d ∨ f) ∨ c)

Which, by the associative property, is equivalent to

(d ∨ f ∨ b) ∧ (d ∨ f ∨ c)

So any “outer” disjunctions of grouped conjunctions or disjunctions may be

simplified, and our example Φ becomes

Φ = (φ1 ∨ φ2 ∨ φ3) ∧ (φ1 ∨ φ2 ∨ φ4) (2.4)

We can then define each grouping of disjunctions as a ϕi:

Φ = ϕ1 ∧ ϕ2 where ϕ1 = φ1 ∨ φ2 ∨ φ3, ϕ2 = φ1 ∨ φ2 ∨ φ4 (2.5)

A similar process can deconstruct any formula of the (likewise unacceptable)

form

Φ = (a ∧ b) ∨ (c ∧ d) (2.6)

By distributive property,
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(a ∧ b) ∨ (c ∧ d) = ((a ∧ b) ∨ c) ∧ ((a ∧ b) ∨ d)

= ((a ∨ b) ∧ (a ∨ c)) ∧ ((a ∨ b) ∧ (a ∨ d))

which, by associative property,

= (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ b) ∧ (a ∨ d)

= (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d)

Therefore, we finally have

Φ = ϕ1 ∧ ϕ2 ∧ ϕ3 where ϕ1 = (a ∨ b), ϕ2 = (a ∨ c), ϕ3 = (a ∨ d) (2.7)

This means that, for any Φ constructed of conjunctions and disjunctions of

atomic formulas, the Φ may always be reduced to the form

Φ :=
I∧
i=1

(
J∨
j=1

φj

)
(2.8)

2.2.5 Formalized requirements

We define validity, strictness, and conciseness from Section 2.2.2 as follows:

Definition. Validity.

The LTL “superformula” Φ of the hypothesis space must be valid for the

full set of good traces ΠA. Thus, Φ is valid if and only if it is satisfied on all

traces πk in ΠA. First, since Φ is a conjunction of ϕi, i.e.,

Φ =
I∧
i=1

ϕi

we can say every individual ϕi in Φ must be satisfied on every trace, since

∃(ϕi ∈ {Φ}, πk ∈ ΠA) s.t. ϕi(πk) false =⇒ Φ(πk) false (2.9)

by the definition of conjunction. Now, for each ϕi to be satisfied, we note
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that ϕi is a disjunction of φj, so

ϕi(πk) true ⇐⇒ ∃φ′j ∈ {ϕi} s.t. φ′j(πk) true (2.10)

In other words, for each ϕi, at least one φ′j among the φj ∈ {ϕi} must be

satisfied on each trace π1, ...πn in order for ϕi to be satisfied by all traces.

Definition. Strictness.

For Φ to be as strict as possible, we require that there does not exist some

other Φ′ such that all of the following are true:

1. Both Φ and Φ′ are valid for all traces

2. Φ′ satisfied =⇒ Φ satisfied

3. Φ satisfied 6=⇒ Φ′ satisfied

(2) and (3) would mean that Φ′ is stricter than Φ, i.e., if Φ′ is satisfied, the

less-strict Φ must also be, but Φ satisfied does not necessarily require that

Φ′ is satisfied.

More formally, take

Φ :=
I∧
i=1

ϕi and Φ′ :=

(
I∧
i=1

ϕi

)
∧

(
I′∧
i′=1

ϕi′

)
(2.11)

Since Φ ∧ Φ′ is a conjunction of conjunctions, we have that(
I∧
i=1

ϕi

)
∧

(
I′∧
i′=1

ϕi′

)
true =⇒

(
I∧
i=1

ϕi

)
true (2.12)

but that, particularly in the case that some ϕi′ ∈ {
∧I′

i′=1 ϕi′} is not true,

I∧
i=1

ϕi true 6=⇒

(
I∧
i=1

ϕi

)
∧

(
I′∧
i′=1

ϕi′

)
true (2.13)

Thus, for strictness, we require a Φ which is a conjunction of, at minimum,

every ϕ′i valid on all good traces such that ϕ′i is not logically implied by an-

other valid ϕi in Φ. (Additional ϕ′i may be included without loss of strictness,

provided they are valid)
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To characterize all such ϕ′i, recall first the form of all ϕi:

ϕi :=
J∨
j=1

φj (2.14)

Since ϕi is a disjunction of φj, it follows that for some

ϕi =
J∨
j=1

φj and ϕ′i =

(
J∨
j=1

φj

)
∨

(
J ′∨
j′=1

φj′

)
(2.15)

i.e., a ϕi whose set of arguments are a subset of the arguments of ϕ′i, we have

ϕi satisfied =⇒ ϕ′i satisfied (2.16)

by the definition of disjunction. Thus, ϕi ∧ ϕ′i is no stricter than ϕi alone.

However, note that

ϕ′i satisfied 6=⇒ ϕi satisfied (2.17)

so ϕ′i is not as strict as ϕ′i ∧ ϕi. This shows that, to guarantee maximal

strictness of Φ, we include at minimum all ϕi such that

• ϕi is satisfied on all traces

• the removal of any of ϕi’s disjuncts φj would result in ϕi becoming

invalid on at least one trace in ΠA

Again, note here that the inclusion of additional ϕ which do not meet the

second criterion would not lead to a decrease in strictness. However, their

inclusion does violate the final requirement for Φ, conciseness.

Definition. Conciseness.

For Φ to be concise, we now prohibit the inclusion of any “redundant” ϕi

in the conjunction. That is, for each conjunction member ϕi, there must not

exist another member ϕ′i such that

ϕi satisfied ⇐⇒ ϕ′i satisfied (2.18)

Once again, such a prohibition does not cause loss of strictness of the con-
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junction. Consider our scenario:(
A∧
a=1

ϕa

)
∧ (ϕi ∧ ϕ′i) where ϕi satisfied =⇒ ϕ′i satisfied (2.19)

Here, it follows from (ϕi satisfied =⇒ ϕ′i satisfied) that

ϕi satisfied =⇒ (ϕi ∧ ϕ′i) satisfied (2.20)

Thus Φ is valid if and only if ϕi is valid, and its behavior is logically the

same whether or not ϕ′i is included in the conjunction. This is equivalent to

stating that strictness is not affected by the removal of ϕ′i.

Now we aim to characterize the redundant ϕ′i. Since all ϕ are disjunctions,

we come to the same conclusion as in Eqns. 2.15 through 2.17; that is, we

can see that ϕi implies ϕ′i whenever the set of the elements φj of ϕi are a

subset of the set of elements in ϕ′i:

{ϕi} ⊂ {ϕ′i} =⇒ (ϕi =⇒ ϕ′i) (2.21)

Conciseness requires that all ϕ′i which are redundant as described in (2.21)

are omitted from Φ.
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CHAPTER 3

ALGORITHM FOR CONSTRUCTION OF
HYPOTHESIS SPACE

3.1 Algorithm for Directed Hypothesis Space

Generation

We aim to build a hypothesis space of the form in (2.2.4) which satisfies all

three criteria of validity, strictness, and conciseness. Section 3.1 outlines an

algorithm which accomplishes this, and Section 3.2 provides a verification for

the result.

3.1.1 Approach

In contrast with previous inference efforts which generate random initial

guesses for hypotheses and then check them against the traces, such as in [2],

the algorithm outlined here first infers the atomic formulas satisfied on each

trace and uses them to “directly” generate the full space of valid formulas.

Considering this distinction, we refer to the new algorithm as “directed,” as

opposed to random, hypothesis space generation (DHSG).

DHSG relies on the basic principle that every good trace must satisfy every

rule. If an atomic formula is satisfied on every good trace, that formula is

valid by itself and may be included in the hypothesis space. If the atomic

formula φ1 is not satisfied on every good trace, there are two possibilities:

• φ1 is partially descriptive of the good traces, and can be included in a

disjunction with other partially-descriptive formulas φ2, φ3, etc., such

that the full disjunction is valid on all traces. We refer to the construc-

tion of such a disjunction as formula reconciliation over the traces.

• φ1 is not part of any reconciled formula and may be discarded entirely.
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At first glance, it appears that φj can always be reconciled with other

atomic formulas to create a fully-valid disjunction. It is indeed true that

a valid hypothesis space could be generated simply by proposing the dis-

junction of all atomic formula instantiations. However, this hypothesis space

would not be full, in the sense that it would lack stricter valid candidates.

Indeed, when the requirements of strictness and conciseness are applied, the

possibilities for reconciliation of φj become far more limited. We are only

able to propose disjunctions of φj which are not redundant or excessively

relaxed. To accomplish this, the construction of candidate disjunctions ϕi

follows the algorithm in Section 3.1.2.

3.1.2 Algorithm: Directed Hypothesis Space Generation

To generate an LTL hypothesis space Φ such that Φ is (1) valid on all traces,

(2) as strict as possible, and (3) concise, we propose an algorithm which loops

through each trajectory πk one by one and reconciles them. Algorithm 1 gives

the concise form of the algorithm. In words, DHSG does the following:

1. Infer all the atomic formulas φj which are valid on the first trace. This

is accomplished using the inference method described in Section 1.3.3.

2. Initialize the hypothesis space Φ as the conjunction of all the valid φj.

3. Iterate through each remaining trace πk. For each iteration, an updated

Φk is constructed.

(a) Infer all the atomic formulas valid on the current trace πk.

(b) Check which of the previous members ϕi of Φ are still valid for

this iteration, given the set of atomic formulas currently satisfied.

• If a given ϕi remains valid, pass it along (unchanged) to the

new Φ. It becomes a member of the conjunction.

• Store the list of φj which do not appear in any such valid ϕi.

This set of “newly satisfied” φj will be used for the reconcili-

ation process.

• If a given ϕi from the previous Φ is not satisfied by πk, store it

in the set of “newly violated” ϕi for potential reconciliation.
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(c) For each of the “newly satisfied” atomic formulas φj, and each of

the “newly violated” ϕi,

• Construct the disjunction ϕ∗i := φj ∨ ϕi. This is the reconcil-

iation step.

• Conjoin ϕ∗i to the current Φ.

4. Once all traces π1...πn have been reconciled, return the final Φ. This is

the full hypothesis space.

Algorithm 1: Directed Hypothesis Space Generation

Result: Returns full hypothesis space Φ

1 Infer all φj valid on π1

2 Initialize Φk−1 =
∧I
i=1 ϕi, where each ϕi := φj

3 for πk ∈ ΠA, k ≥ 2 do
4 Infer all φj valid on πk
5 SatisfiedOnπk φj= inferred φjs
6 NotNewlySatisfied φj = {}
7 Φk= {}
8 for ϕi ∈ {Φk−1} do
9 for φj ∈ SatisfiedOnπk φj do

10 if φj ∈ {ϕi} then
11 Append ϕi to Φk (if not already in Φk)
12 Append φj to notNewlySatisfied φj (if not already in

notNewlySatisfied φj)

13 end

14 end

15 end

16 for φj ∈ SatisfiedOnπk φj
17 & φj 6∈ NotNewlySatisfied φj do
18 for ϕi ∈ Φk−1

19 & ϕi 6∈ Φk do
20 ϕnew=ϕi ∨ φj
21 Append ϕnew to Φk

22 end

23 end
24 Φk−1 = Φk

25 end

26 Return Φk
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3.2 Proof of algorithm correctness

We now walk through the algorithm and prove that the resulting Φ is (1)

valid, (2) maximally strict, and (3) concise as required. We accomplish this

through induction.

Proposition. Correctness of algorithm for Φ.

Given a set of good and bad traces, Algorithm 1 will produce a hypothesis

space Φ which is valid, strict, and concise as defined in Section 2.2.5.

Proof. Validity, strictness, and conciseness of Φ.

Φ1 is valid, strict, and concise: First infer all atomic LTL formulas φj

which hold on π1. Let Φ1 =
∧I
i=1 ϕi, where each ϕi := φj.

1. Φ1 valid? Assuming a priori that every inferred φj is valid, the con-

junction of all φj must also be. Then, since

I∧
i=1

φj =
I∧
i=1

ϕj =: Φ1 (3.1)

our Φ1 must be valid.

2. Φ1 strict? By our definition, there must not exist some other Φ′1

such that Φ′1 is valid on π1 and Φ′1 implies Φ1. We found that this is

equivalent to requiring that we include all ϕi such that

(a) ϕi is valid on all traces

(b) ϕi is not implied by an existing ϕ′ ∈ {Φ}

Moreover, we found that (b) is equivalent to {ϕ′i} ⊂ {ϕi}. To check

(a) subject to (b), suppose we have failed to include some such ϕi.

Then, since we have included all valid φj by assumption, any other

valid-but-omitted ϕ∗i must take the form

ϕ∗i =
J∨
j=1

φj where J > 1 (3.2)

However, since

ϕ∗i valid ⇐⇒ ∃ a valid φ′j ∈ {ϕ∗i } (3.3)
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and we have already recovered all φj valid on π1 and included them in

Φ1, we are left with

(ϕi := φ′j) ∈ {Φ1} and (φ′j ∈ {ϕ∗i }) ∈ {Φ1} (3.4)

This would violate (b), since

({ϕj} ⊂ {ϕ∗i }) ⇐⇒ (ϕi =⇒ ϕ∗i ) (3.5)

Thus, there must not exist any such ϕ∗i that we fail to include in Φ1,

and Φ1 is indeed strict.

3. Φ1 concise? If Φ1 is concise, for any member ϕi ∈ {Φ1}, there must

not exist another member ϕ′i ∈ {Φ1} such that {ϕi} ⊂ {ϕ′i}.

Since

• all of our ϕi consist of a single φj, and

• we add each valid φj only once, so each ϕi is unique,

it is impossible for any of the ϕi ∈ {Φ} to be a subset of any other.

Thus, Φ1 is concise.

* * *

Towards induction, assume validity, strictness, and conciseness hold for

Φk−1.

* * *

Φk is valid, strict, and concise: We now continue to follow the algo-

rithm, checking for satisfaction of our criteria across iterations. Each itera-

tion updates Φk−1 to Φk based on the current trace πk.

For each ϕi ∈ {Φk−1}:

• if ϕi(πk) true, leave it unchanged and include it in Φk.

1. Φk valid? ϕi(πk) is true by our condition, so the conjunction of

all such ϕi constructs a valid Φk.

2. Φk strict? Each individual ϕi was as strict as possible on πk−1

by assumption. Thus, ϕi unchanged for Φk implies ϕi strictness
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unchanged, which implies ϕi as strict as possible on πk. (Note that

Φk itself is not as strict as possible at this stage, since it lacks the

subset of strict-as-possible ϕi which are constructed in the next

algorithmic step.)

3. Φk concise? We know the following:

(a) Φk is initially empty

(b) Each ϕi from Φk−1 conjoined to Φk at this stage remains un-

changed

(c) Φk−1 is concise by assumption

From (a) and (b), the ϕi in Φk are currently a subset of the set of

those in Φk−1. A subset of concise ϕi must also be concise, so Φk

at this stage is concise.

• if ϕi(πk) not true, for each {φj | φj(πk) true & φj 6∈ {Φk−1}}, conjoin

ϕi ∨ φj to Φk.

1. Φk valid? We have that

(a) φj valid on πk

(b) ϕi valid on πk−1 by assumption

(a) and (b) mean that any ϕ∗i := φj ∨ ϕi must also be valid, and

thus Φk remains valid following conjunction of any such ϕ∗i .

2. Φk strict? Our definition of strictness requires that we include all

(valid) ϕi in Φk such that ϕi is not implied by some other member

of Φk, i.e., that any ϕi is not a subset of the elements of another.

Thus, we must show that we successfully include all such ϕi. For

the current case, where ϕi(πk) false,

– We cannot pass ϕi along unchanged to Φk, since

ϕj(πk) ∈ {Φ} false =⇒ Φ not valid.

– We cannot propose ϕi∨φ∗j for an unsatisfied φ∗j for conjunc-

tion onto Φk, since

φ∗j(πk), ϕi(πk) false =⇒ [ϕi∨φ∗j ](πk) false =⇒ Φk still not valid.
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Thus, we are limited to φj which are satisfied on πk. However,

if we propose ϕi ∨ φ∗j for every φ∗j satisfied by πk, we see that if

φ∗j =: ϕ∗i ∈ {Φk−1}, i.e., if the satisfied φ∗j is already a member of

the conjunction of Φk−1, then any proposed {ϕi∨φ∗j} ⊃ φ∗i , which

violates the strictness condition and must be omitted.

Alternatively, in the case that φ∗j is not already its own ϕi in Φ, the

proposed ϕ∗i := ϕi ∨ φ∗j is both satisfied and as strict as possible,

since

– Φk−1 is as strict as possible over π1, ...πk−1 by assumption,

which means that the removal of any φj from the valid ϕi ∈
{Φk−1} would cause ϕi to lose validity across the traces π1, ...πk−1

– Without the additional disjunction of φ∗j , ϕ
∗
i alone is not sat-

isfied on πk

Thus, neither φ∗j nor any of the φj ∈ {ϕi} can be removed from ϕ∗i

without causing ϕ∗j to be violated on at least one trace and there-

fore lose validity. This is equivalent to saying that the disjunction

of any subset of the φj ∈ {ϕ∗i } would not be valid. In all, there

cannot exist any valid ϕ′i ∈ {Φ} such that ϕ′i ⊂ {ϕ∗i }, so all

such ϕ∗i are indeed as strict as possible.

However, we still must verify that there are no other types of

ϕi which could be proposed and conjoined to Φk such that Φk

becomes even stricter. In other words, we must verify that all

ϕ∗i := ϕi ∨ φ∗j conjoined with all ϕi ∈ {Φk−1} are sufficient for

strictness of Φk.

We showed in Section 2.2.4 that the form of the hypothesis space

can always be represented as conjunctions of ϕi with ϕi :=
∨J
j=1 φj,

i.e., we may limit the form of ϕi to pure disjunction. Thus, our

only remaining option for possible unrecovered ϕ∗i would have the

form

ϕ∗i =

(
J∨
j=1

φj

)
∨

(
J∗∨
j∗=1

φj∗

)
where

J∨
j=1

φj =: ϕi ∈ {Φk−1}

(3.6)

i.e., a ϕ∗i to which we add more than one φ∗j to the disjunction.

However, for any such formula, there will always exist some ϕ∗∗i
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where

ϕ∗∗i =

(
J∨
j=1

φj

)
∨

(
J∗−1∨
j∗=1

φj∗

)
s.t. ϕ∗∗i ⊂ ϕ∗i (3.7)

which is also valid for all π1, ...πk. This violates our strictness

condition, since

(ϕ∗∗i ⊂ ϕ∗i ) =⇒ (ϕ∗∗i =⇒ ϕ∗i )

and ϕ∗∗i = ϕ∗i ∨ φJ∗ 6=⇒ ϕ∗i

Therefore, when we include

– all ϕi such that [ϕi ∈ {Φk−1}](πk) true

– all ϕ∗i := ϕi ∨ φ∗j such that [ϕi ∈ {Φk−1}](πk) false and [φ∗j 6∈
({ϕi} ∈ {Φk−1})](πk) true

we produce a strict Φk as desired.

• Φk concise? Conciseness requires that, for any ϕi ∈ {Φ}, there may

not exist another ϕ′i ∈ {Φ} such that ϕi is satisfied if and only if ϕ′i is

satisfied. We have already shown in our proof of strictness that we do

not add any ϕ′i ⊆ ϕi, so Φk will remain concise.

Therefore, by induction, Φn will be valid, strict, and concise.
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CHAPTER 4

TEST IN SIMULATION

4.1 Introduction

This work was motivated in large part by an existing work of Kim et al. [2],

on which we build. Kim et al. generate contrastive explanations by inferring

LTL constraints on MLD systems through a Bayesian approach, summarized

in Section 4.2.

The BayesLTL algorithm was implemented in a publicly-accessible Python

script. In the simulation that follows, the DHSG algorithm was implemented

in Python, and the general framework from BayesLTL (i.e., classes, input for-

mat, and LTL formula-trace checker functions) was reused. As implemented,

the DHSG algorithm generates a full hypothesis space for a set of good traces;

this full space can then be pared down by filtering it for the best contrastive

formulas, as sought by BayesLTL. From here, it is possible to compare the

outputs on the same input.

The following sections first describe the approach taken by BayesLTL,

give a more detailed explanation of the simulation setup for DHSG, define

performance and comparison metrics for the two approaches, and finally

analyze the simulation results.

4.2 Existing work: Bayes LTL

4.2.1 Contrastive explanation

The BayesLTL approach begins by considering two sets of prelabeled traces,

A (good) and B (bad). The good and bad sets are denoted as πA and πB

respectively. Based on these traces, the algorithm attempts to infer the LTL
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formulas ϕ which best serve as behavior classifiers; that is, ϕ should hold for

the good traces πi ∈ πA while being violated on the bad traces πi ∈ πB as

consistently as possible. Fittingly, they define the accuracy of any ϕ as

|{π : π |= ϕ, π ∈ πA}|+ |{π : π 6|= ϕ, π ∈ πB}|
|πA|+ |πB|

(4.1)

where π |= ϕ means that π satisfies ϕ (equivalent to “ϕ(π) true” in our

previous notation). By this definition, an accuracy of 1 would mean that the

corresponding ϕ is satisfied on all good trajectories and is violated on all bad

trajectories.

These inferred contrastive constraints {ϕ} now serve as explanations for

the goodness and badness of the traces, illustrating the requirements for

goodness based on the differences between the sets. This approach operates

on the principle that the most relevant system rules lie in the distinctions

between acceptable and unacceptable system. This is in response to the

hypothesis that contrastive explanations offer valuable insight to humans

[10].

4.2.2 Hypothesis space generation

Kim et al. define each trace πi on a set of boolean propositions V, called

the vocabulary. A trace consists of a sequence of time steps; at each time

step, there is a subset of the propositions which are true, as in the example

in Table 4.1.

Table 4.1: Example of a trace over vocabulary V = {p, q, r, s, t, u, v}.

Time State

t = 1 v

t = 2 q, v

t = 3 p, r, v

t = 4 u, r, s

t = 5 r

When inferring LTL constraints to describe the behavior of the traces,

Kim et al. restrict hypotheses to a finite set of predetermined templates for
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Figure 4.1: Selected LTL formula templates (Reproduced from [2]).

basic LTL formulas, such as those in Figure 4.1. These templates T can then

be instantiated with the appropriate number of arguments nT , where each

argument is an atomic proposition from the vocabulary. For instantiation,

the set of selected propositions are denoted by p ∈ VnT .

The BayesLTL approach builds hypotheses by generating candidate formu-

las which are conjunctions of a finite number of these instantiated formulas,

as in Eq. 4.2. It is important to note here that the template T is the same

for all arguments of the conjunction; it is only the set of propositions p which

differs between each argument T (p).

ϕT =
∧

p∈{p}

T (p) (4.2)

By this method, the number of possible candidate ϕ for a single LTL template

is 2|V|
nT . For k different templates, the hypothesis space grows with O(k ·

2|V|
nT ), which becomes intractable as V increases.

Once an initial guess is made, it is time to identify the best classifiers ϕ

such that

ϕ∗ = argmaxΦP (ϕ|X)

where X = (πA, πB) and

P (ϕ|X) =
P (ϕ)P (X|ϕ)∑
ϕ∈Φ P (ϕ)P (X|ϕ)

(4.3)

(4.3) is an application of Bayes’ theorem. In words, ϕ∗ is the ϕ which max-

imizes the conditional probability that, given the good and bad traces πA

and πB as evidence, the formula ϕ will hold on some πA or fail on some πB.

P (ϕ) is the prior distribution over the hypothesis space, and P (X|ϕ) is the

likelihood of observing X given ϕ.

It is clear that the hypothesis space of candidate ϕ depends heavily on the
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prior function, which acts as a tuneable “preference module” that uses an

adjustably-weighted cost function to favor certain features in hypotheses. In

other words, the search for optimally contrastive candidates is directed by

the prior, and the result has the potential to vary depending on the prior

parameters.

The prior function is constructed such that template type T , number of

conjunctions N (see (4.2)), and proposition type p can be tuned. Symboli-

cally,

T ∼ Categorical(wT )

where wT ∈ Rk is a scalar weight assigned to a given template type;

N ∼ Geometric(λ)

where N = |{p}| is the number of conjunctions, which follows a geomet-

ric distribution that decays at rate λ and thus penalizes longer strings of

template conjunctions; and

p ∼ Categorical(wp)

where wp ∈ R|V| is a scalar weight assigned to each proposition in V, which

allows some propositions to be favored in instantiations of ϕ over others. The

full prior function is then

P (ϕ) = P (T )P (N)P ({p}) (4.4)

where

P ({p}) =

∑
p∈{p}

∑
p∈pwp

N |p|
(4.5)

is the average categorical weight wp over all propositions.

This prior function relies on the anticipated “saliency” of different tem-

plates and propositions in the context of the specific system under consider-

ation. A human designer chooses appropriate weights for the function based

on contextual knowledge of what sorts of formulas we may expect to infer.

Finally, to complete the formulation for P (ϕ|X), the likelihood function
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for X given ϕ is

P (X|ϕ) =

|πA|∏
i=1

P (πi|ϕ)

|πB|∏
j=1

P (πj|ϕ) (4.6)

where tolerance for imperfect classifiers and noise is introduced via slack

variables, so that:

P (πi|ϕ) =

{
1− α if πi |= ϕ

α otherwise

P (πj|ϕ) =

{
1− β if πj 6|= ϕ

β otherwise

For its sampling at each iteration, this approach employs a Markov Chain

Monte Carlo method, the Metropolis-Hastings algorithm [11], to draw sam-

ples for candidate ϕ and infer the ϕ∗ which maximize argmaxΦP (ϕ|X).

The number of iterations allowed can be manually set, and the optimal

ϕ∗ are returned as the contrastive explanation candidates at the end of the

iteration.

4.3 Source code and hardware

The simulation for DHSG was implemented in a Python script which was

designed to utilize the basic functions from BayesLTL, in particular the trace

checkers. The BayesLTL source code was pulled from GitHub

(see https://github.com/IBM/BayesLTL commit 379924d).

The simulation was run in Spyder for Python 3.8 on an AMD Ryzen 5

4600H.

4.4 Test cases

The following sections define comparison metrics and step through a number

of test cases. Each test case was run on distinct sets of good- and bad-labeled

traces which were analyzed using both DHSG and BayesLTL. The number

of traces, as well as the length of the trace vocabulary, varies between test

cases. Unless otherwise specified, the templates and weights shown in Table
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4.2 were used for the BayesLTL prior.

Table 4.2: BayesLTL default templates and prior weights

Template Weight

eventual 2.0

global 1.0

until 1.0

response 2.0

stability 1.0

atmostonce 1.0

sometime before 1.0

4.4.1 Comparison metrics and interpretation

BayesLTL seeks the best-fitting contrastive explanations, returning its top 10

optimally-contrastive, optimally-“interesting” LTL rules. It includes built-

in flexibility that allows for consideration of rules which are not perfectly

contrastive, including rules which are not satisfied by all good traces. We

omit these rules in the comparison because they do not meet the validity

criterion and would suggest that the set of good traces is not uniformly

good. However, we do allow for imperfect contrast (i.e., recovered rules may

fail to be invalid on every single bad trace).

The DHSG algorithm produces the full hypothesis space which satisfies

validity, strictness, and conciseness. The hypothesis space is represented as

a list of every individual ϕi as defined in (2.1). (The conjunction of these is

implicit, since if every individual ϕi is valid on the good traces, their conjunc-

tion is also valid.) However, for comparison to BayesLTL and in the interest

of a contrastive explanation, we can filter the elements of the full hypothesis

space to output only those which produce the best contrast through viola-

tion on negative traces. This contrastive subset of the hypothesis space is

the focus for the comparisons.

The result metrics are as follows:

• Accuracy: Fraction of traces for which ϕi is a valid contrastive expla-

nation. For example, given 4 good traces and 3 bad traces, a ϕi which
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is valid on all good traces and invalid on 2 out of 3 bad traces would

have accuracy (4 + 2)/(4 + 3) = 6/7 = .857.

• c-score: Fraction of negative traces which violate ϕi. For the example

with 4 good traces and 3 bad, the ϕi violated by 2 of 3 bad traces would

have a c-score of 2/3 = .667.

• Recovery advantage: number of contrastive explanations with c-score

at least 0.75 which are recovered by DHSG and could not be recovered

by BayesLTL. This includes any applicable explanations consisting of

disjunctions, as BayesLTL recovers only conjunctions of φj. Candidate

ϕ that make up the recovery advantage for DHSG are colored green .

Of these, the ϕ which were within the BayesLTL search space, and thus

theoretically recoverable by BayesLTL, are a darker green .

• Runtime: time taken to run the inference, in seconds.

4.4.2 Test Case 1 (Simple)

This test case is designed to produce relatively simple hypothesis spaces and

demonstrate the recovery advantage of DHSG. The distinguishing parameters

of this test case are

• 4 good traces, 4 bad traces

• Vocabulary length: 7

The metrics for the case are given in Table 4.5. The full DHSG and adjusted

BayesLTL contrastive outputs are given in Tables 4.6 and 4.7, respectively. In

this case, all ϕ in the DHSG recovery advantage are categorically impossible

for recovery by BayesLTL, as they are disjuncts. However, all ϕ found by

DHSG within the search space of BayesLTL were successfully recovered by

the latter. To observe this, compare entries 1, 2, 5, and 6 in Table 4.6 with

entries 1, 2, 5, and 10 in Table 4.7.

In all, Case 1 demonstrates DHSG potential for high recovery advantage

accomplished within a much shorter runtime than BayesLTL (though more

complex cases will be shown to increase DHSG runtime significantly).
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Table 4.3: Case 1 good (A) traces.

Time πA1 πA2 πA3 πA4

t = 1 v v r, v r, p, v

t = 2 q, v r, v r, v r, v

t = 3 p, r, v p, r, v p, r r, p

t = 4 - - u, r, s -

t = 5 - - r -

Table 4.4: Case 1 bad (B) traces.

Time πB1 πB2 πB3 πB4

t = 1 p, u q, r p, u q, r

t = 2 s, r u, p s q, r, u

t = 3 r p, u r, p p, u

t = 4 s, t, p q, u, v p, v, r u, v

Table 4.5: Case 1 metrics summary.

DHSG |{Φ}| = 103, 13 contrastive ϕi

Metric BayesLTL DHSG

Runtime (s) 0.560 0.037

# of ϕ with c-score ≥ .75
(non-redundant)

8 13

Recovery advantage - 9
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Table 4.6: Case 1 DHSG contrastive output (minimum c-score =.75)

i ϕi in words c-score Accuracy

1
(v) has to be true until (p) eventually becomes
true

1 1

2
(v) has to be true until (r) eventually becomes
true

1 1

3
(r) has to be true until (v) eventually becomes
true,
OR (v) is true throughout the entire trace

1 1

4

(p) has to be true until (v) eventually becomes
true,
OR (r) has to be true until (s) eventually be-
comes true,
OR (v) is true throughout the entire trace

1 1

5 If (p) occurs, (r) eventually follows .75 .875

6 (r) eventually occurs and stays true forever .75 .875

7
(r) has to be true until (s) eventually becomes
true,
OR If (u) occurs, (q) eventually follows

.75 .875

8
(r) has to be true until (v) eventually becomes
true,
OR If (u) occurs, (q) eventually follows

.75 .875

9

(p) has to be true until (r) eventually becomes
true,
OR (r) has to be true until (s) eventually be-
comes true,
OR (v) is true throughout the entire trace

.75 .875

10

(p) has to be true until (r) eventually becomes
true,
OR If (p) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .875

11

(p) has to be true until (r) eventually becomes
true,
OR If (v) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .875

12

(p) has to be true until (v) eventually becomes
true,
OR If (p) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .875

13

(p) has to be true until (v) eventually becomes
true,
OR If (v) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .875
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Table 4.7: Case 1 BayesLTL output (minimum c-score =.75)

# Rule in words c-score Accuracy

1
(v) has to be true until (r) eventually becomes
true

1 1

2
(v) has to be true until (p) eventually becomes
true

1 1

3∗

(v) has to be true until (p) eventually becomes
true
AND (v) has to be true until (r) eventually
becomes true

1 1

4
If (s) occurs, (r) eventually follows
AND If (v) occurs, (p) eventually follows

1 1

5∗ If (p) occurs, (r) eventually follows .75 .875

6
If (p) occurs, (r) eventually follows
AND If (v) occurs, (r) eventually follows

.75 .875

7
If (p) occurs, (r) eventually follows
AND If (q) occurs, (v) eventually follows

.75 .875

8
If (p) occurs, (r) eventually follows
AND If (q) occurs, (p) eventually follows

.75 .875

9
If (p) occurs, (r) eventually follows
AND If (u) occurs, (r) eventually follows

.75 .875

10 (r) eventually occurs and stays true forever .75 .875

* denotes a candidate formula which is logically redundant when taken together
with the other candidates.
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4.4.3 Test Case 2 (Many traces)

This test case is designed to show the effect of a larger quantity of good

traces on algorithm performance. The distinguishing parameters of this test

case are

• 8 good traces, 4 bad traces

• Vocabulary length: 7

The traces are the same as in Test Case 1 except for the addition of 4 more

good traces, given in Table 4.8.

As summarized in Table 4.9, the doubling of the number of traces slowed

DHSG significantly, though it remained under the BayesLTL benchmark.

The contrastive output also noticeably outperformed BayesLTL, recovering

3 more perfectly-contrastive ϕi, including one which is within the search

space for BayesLTL. This can be observed by comparing the first four entries

of Table 4.10 with Table 4.11.

Table 4.8: Case 2 good traces (additional).

Time πA5 πA6 πA7 πA8

t = 1 p, q, s, v r, t, v p, q, v p, q, r, v

t = 2 q, r, u, v r, v q, v, s q, r, u, s, v

t = 3 p, r, v p, r, v p, q, v, u p, s, v

t = 4 - u, v, s q, r, s, v u, v

t = 5 - u, v - s, v

Table 4.9: Case 2 metrics summary.

DHSG |{Φ}| = 487, 12 contrastive ϕi

Metric BayesLTL DHSG

Runtime (s) 0.528 0.280

# of ϕ with c-score ≥ .75
(non-redundant)

1 12

Recovery advantage - 11
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Table 4.10: Case 2 DHSG contrastive output (minimum c-score =.75)

i ϕi in words c-score Accuracy

1
(v) has to be true until (p) eventually becomes
true

1 1

2
(v) has to be true until (r) eventually becomes
true

1 1

3
(r) has to be true until (v) eventually becomes
true,
OR (v) is true throughout the entire trace

1 1

4

(p) has to be true until (v) eventually becomes
true,
OR (r) has to be true until (s) eventually be-
comes true,
OR (v) is true throughout the entire trace

1 1

5 If (p) occurs, (r) eventually follows .75 .917

6
(r) has to be true until (v) eventually becomes
true,
OR If (u) occurs, (q) eventually follows

.75 .917

7
(r) has to be true until (s) eventually becomes
true,
OR If (u) occurs, (q) eventually follows

.75 .917

8

(p) has to be true until (v) eventually becomes
true,
OR If (v) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .917

9

(p) has to be true until (v) eventually becomes
true,
OR If (p) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .917

10

(p) has to be true until (r) eventually becomes
true,
OR (r) has to be true until (s) eventually be-
comes true,
OR (v) is true throughout the entire trace

.75 .917

11

(p) has to be true until (r) eventually becomes
true,
OR If (v) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .917

12

(p) has to be true until (r) eventually becomes
true,
OR If (p) occurs, (s) eventually follows,
OR (v) is true throughout the entire trace

.75 .917
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Table 4.11: Case 2 BayesLTL output (minimum c-score =.75)

# Rule in words c-score Accuracy

1
(v) has to be true until (r) eventually becomes
true

1 1
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4.4.4 Test Case 3 (Large vocabulary)

This test case is designed to show the effect of a larger vocabulary on algo-

rithm performance. The distinguishing parameters of this test case are

• 8 good traces, 4 bad traces

• Vocabulary length: 14

As shown in Table 4.12, the large vocabulary caused a significant slowdown

in DHSG runtime, while BayesLTL saw little change.

Table 4.12: Case 3 metrics summary.

DHSG |{Φ}| = 19385, 2318 contrastive ϕi

Metric BayesLTL DHSG

Runtime (s) 0.546 26.123

# of ϕ with c-score ≥ .75
(non-redundant)

1 2318

Recovery advantage - 2317

4.4.5 Test Case 4 (Perturbed BayesLTL Prior)

This test case focuses on BayesLTL inference. It is designed to show the

effect of varying the prior weights for the same traces as given in Test Case

1. The distinguishing parameters of this test case are

• 4 good traces, 4 bad traces (see Tables 4.3 and 4.4)

• Vocabulary length: 7

• Altered prior weights as in Table 4.13. Note that Case 4.2 is the

uniform-weight case.

The metrics in Table 4.14 confirm that the adjustment of prior weights,

as expected, has an effect on the hypotheses output by BayesLTL. Choice of

weights had a sufficient influence on the search space to alter which formulas

were ultimately recovered, influencing the number of accurate hypotheses

returned.
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Table 4.13: BayesLTL templates and prior weights

Template Case 1 Case 4.1 Case 4.2

eventual 2.0 1.0 1.0

global 1.0 1.0 1.0

until 1.0 2.0 1.0

response 2.0 2.0 1.0

stability 1.0 1.0 1.0

atmostonce 1.0 1.0 1.0

sometime before 1.0 2.0 1.0

Table 4.14: Case 4 metrics summary.

DHSG |{Φ}| = 103, 13 contrastive ϕi

Metric Case 1 Case 4.1 Case 4.2

Runtime (s) 0.560 0.497 0.485

# of ϕ with c-score ≥ .75
(non-redundant)

8 10 9

DHSG recovery advantage 9 7 8

4.5 Practicality considerations

DHSG has the potential to produce very large hypothesis spaces. Very large

hypothesis spaces can occur due to

• large vocabulary size resulting in many permutations to be checked for

each LTL template

• potential for long disjunctive formulas (up to n disjuncts for n good

traces)

Large hypothesis spaces present two distinct challenges, one in interpreta-

tion and one in computation. To ease the interpretive burden of processing

so many candidate contrastive formulas in the output, the simulation output

may be adjusted by

1. increasing the accuracy requirement: only output candidate ϕi which

have very high or perfect accuracy
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2. limiting the acceptable length for disjunctive formulas: only output ϕi

which have less than a given number of disjuncts

While item (1) can significantly decrease the size of the output, particularly

in the case of few or simple bad traces, there may remain a very large number

of highly accurate ϕi candidates. On the other hand, item (2) offers a useful

reduction in the output size; however, the retroactive reduction of the output

does not improve computational burden. To simultaneously limit the output

size and improve computation time, then, the algorithm may be adapted

not to consider any further disjunctions in a ϕi beyond a set length. While

this reduces the strictness of the hypothesis space, in the case where long

disjunctive (and potentially “overfitted”) hypotheses are not of interest, it is

a reasonable change to make.

For example, consider Case 3. If we require a perfect c-score and the length

of disjunctions is limited, the hypothesis space size, contrastive output size,

and computation time can be greatly reduced, as in Table 4.15.

Table 4.15: Case 3, limited disjunction length.

No limit |{ϕi}| ≤ 3 |{ϕi}| ≤ 2

|{Φ}| 19385 3503 658

# contrastive ϕi 792 192 48

Runtime (s) 26.083 7.549 1.719
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Results and discussion

The simulation suggests that there are different appropriate use cases for

BayesLTL and DHSG. Depending on the size and complexity of the traces,

prior knowledge of the expected LTL formula structures, and preference be-

tween speed and accuracy, each approach offers distinct advantages.

In general, we note that DHSG

• offers the full, strict hypothesis space of all ϕi which perfectly describe

the good traces (+)

• does not require a guess for a prior distribution (+)

• requires a much longer runtime for large vocabularies (-)

• produces a large number of long disjunctive formulas unless limited

(+/-)

Meanwhile, BayesLTL

• may be limited to a short runtime (+)

• cannot return all valid formulas for the good traces (-)

• is dependent on the weighting of the prior (-)

• allows for adjustment of the prior if sufficient knowledge of the expected

formula structure is known (+/-)

Section 4.5 offers methods to partly alleviate the long runtime and large

hypothesis space complications of DHSG, at the cost of complete strictness.
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5.2 Application: Inference of unknown regions

Figure 5.1: Unit regions A-F are found to comprise two larger true regions,
P1 and P2.

Figure 5.2: Example of region inference on the tabletop from [1].

A major application of this inference method is to determine the true size

and shape of state-space regions as understood by the unfamiliar system. To

clarify the distinction between a “true” and a guessed region, consider the

tabletop robot example from Section 2.1.

For the tabletop robot, we are given the relevant regions a priori; the size

and locations of parking lots and roads, the relevant regions, are labeled.

However, when observing an unfamiliar system, we cannot expect to be pro-

vided with bounded, labeled regions as in this example. Instead, states such

as position would need to be collected and post-processed to determine ap-

parent region boundaries. Consider Figure 5.1. Here, the larger, true regions

P1 and P2 are initially unknown, and the state space is discretized into units

A through F. When inference is performed on such a discretized state space,

LTL rules that appear to be distinct rules may in fact all be manifestations
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of a single true rule. For instance, the true rule

If P1, then eventually P2 (5.1)

may appear as

(If A, eventually D) ∨ (If B, eventually E) ∨ (If A, eventually E) (5.2)

A sketch of such a region reconciliation for the tabletop robot is given in

Figure 5.2.

An approach such as BayesLTL, which assumes the state-space regions

are known, does not lend itself to inference of true regions. The purely-

conjunctive rule format, operating on the A− E domain, would not be able

to recover (5.2) and would thus return no representation of the true rule

given by (5.1).

DHSG, in allowing for hypotheses of disjunctions, offers a method to build

true regions through comparison of disjuncts. DHSG would guarantee recov-

ery of (5.2). From the full hypothesis space, it would be possible to filter all

recovered disjunctive rules such that

1. every disjunct contains the same LTL template type

2. the set of atomic propositions across the same argument in the template

are in a similar region of the state space

If (2) is true, it suggests that the propositions actually represent a sample of

a larger, true region–in our example, that A and B make up P1, and that D

and E make up P2. From here, a new formula of the form in (5.1) may be

hypothesized.

Moreover, this process may be performed first on a subset of the good

traces:

1. Select a subset of the good traces in ΠA

2. Perform DHSG

3. Filter output for disjunctions of like templates

4. Group propositions by argument
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5. Propose new “true” regions for inference and rewrite the disjunctive

hypothesis accordingly

6. Check new hypothesis for accuracy and contrast across entire set of

traces

An algorithm which allows for inference of state space regions further re-

moves us from reliance on prior knowledge of the system we aim to under-

stand. This provides a method of approach to less-understood problems,

where we are forced to guess the state variables.

5.3 Towards explainable AI

As we near the end, we return to the beginning. Section 1.1 outlined a

three-step approach to explanation construction for explainable AI; this work

rooted itself in the first step, model construction. In approaching the next

two steps, when the model is distilled for relevance and clarity, it is fruitful

to look to the fields of translation and pragmatics (Figure 5.3).

Figure 5.3: Bridging the gap. Future research could combine principles of
optimization and pragmatics.

These fields recognize that any participant in a communication act brings

with him a set of assumptions, and a successful communication act only

takes place when the participants can understand each other within their

own frameworks [12]. While xAI has considered framework comparison as a

model-reconciliation problem [13], little has been done to investigate the vari-

ation in human “models” [14]; approaches generally seek a single “optimal”

explanation, despite the fact that the field of pragmatics has long recognized
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significant differences between individual humans’ frameworks [15]. What’s

more, psychological factors such as confirmation bias and motivated reason-

ing threaten to blur the directly-factual explanations favored by xAI ap-

proaches [16]. Oversights in these areas present hefty obstacles in aerospace,

where explanations need not only be relevant and clear, but immediately so;

a split-second decision can make the difference in missile evasion or collision

avoidance, and the cockpit environment is already very taxing on a pilot’s

attention [17]. In light of these complications, optimal relevance and clarity

seem only achievable via an approach which accounts for individual frames

and biases.

Pragmatics and translation theory indeed offer a lens for frames and bias.

Relevance and frame theory from pragmatics, as well as translation’s exten-

sive body of work on major communicative issues such as “translation loss”,

cohesion and coherence [18], and skopos theory [19] explore the nature of hu-

man communication and understanding. Moreover, these concepts may be

combined with mathematical structures such as the association matrix model

[20] to build a framework in which an AI can express human expectations and

associations. Optimization-focused studies of goal-oriented communication

provide statistical approaches to account for human bias when formulating

messages [21]. A reconciliation of these areas promises an interdisciplinary

route towards individualized explanation.

In short, an effective explanation must be both humanized and personal-

ized, to a degree far beyond the current scope of xAI work. The pursuit of

such a human-oriented explanation certainly makes for a long road, but the

destination is a whole new world of human-AI harmony.
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