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ABSTRACT 

 

The National Aeronautics and Space Administration (NASA) Multi-Angle Imager for 

Aerosols (MAIA) instrument is set to launch in 2022 with the mission of quantifying the 

epidemiological relationships between aerosols and human health. The MAIA instrument's 

primary product is a level 2 aerosol particulate matter concentration measurement collected over 

cloud free pixels. The quality of this product heavily depends on the validity of the cloud mask. In 

this project, we present a cloud masking algorithm for MAIA constrained to its hardware. It 

consists of 7 observables that are tested against predetermined static thresholds. Both observables 

and thresholds are a function of scene type, which is a unique combination of sun-view geometry, 

day of year and surface type, including a novel surface classification scheme derived from the 

Multi-Angle Implementation of Atmospheric Correction Bi-Directional Reflectance Distribution 

Function (MAIAC BRDF) data set. The cloud mask algorithm works by checking if an observation 

exceeds or falls short of a threshold for any of the 7 observables, resulting in a cloudy or clear 

classification. The thresholds are derived to match the performance of the Terra Moderate 

Resolution Imaging Spectro-Radiometer (MODIS) high-confidence-cloud cloud mask to achieve 

cloud conservative behavior. The algorithm allows tuning of the conservativeness by introducing 

the quantities of Distance-to-Threshold, Activation Value and number of tests to activate. These 

user specified parameters determine how much confidence is needed for a cloudy or clear 

classification. The results are presented for the Los Angeles primary target area. The overall 

agreement between the MODIS cloud mask and the MAIA cloud mask (MCM) is 92.9%. Of the 

7.1% disagreement, 60% of it was due to false positives by the MCM, considering MODIS as the 

truth. The MCM is in more than 90% in agreement with MODIS for deep non-sun-glint water and 

the first 11 of the 16 snow-free land surface types. It differs from the MODIS cloud mask the most 
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over bright desert, mountains and coastlines due to false cloudy flags. It agrees well with the 

MODIS cloud mask for cumulus, stratus and high cirrus, with greater disagreements over cloud 

edges, smoke plumes from wildfires, and very thin cirrus. The MCM agrees well with the MODIS 

cloud mask (>85%) for most solar zenith angles between 25 and 53 degrees, viewing zenith angles 

less than 60 degrees, and relative azimuth angles between 105 and 135 degrees. Several 

recommendations for improving the MCM are discussed, and its advantages over the MODIS 

cloud mask. 
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CHAPTER 1 :  INTRODUCTION 

 MAIA MISSION BACKGROUND 

The Global Burden of Disease found that in 2016, 4.09 million deaths could be attributed to air 

pollution, and that air pollution ranked 7th for disability adjusted life-years (DALYs), which is the 

sum of years of life lost due to severe disability and premature death (GBD, 2017). One reason air 

pollution is so detrimental to human health can be explained by its particulate matter (PM) 

component, which varies in size and chemical composition. PM consists of particles suspended in 

the air made from a mixture of liquids and/or solids (WHO, 2013). There are two size ranges of 

relevance to human health. PM 10 refers to particles 10 µm or less in diameter which can be inhaled 

by humans and PM 2.5 refers to particles 2.5 µm or less in diameter which are able to reach much 

deeper into the human respiratory system (WHO, 2013). Depending on composition and length of 

exposure to the PM, it can cause many health problems including acute respiratory infections, 

chronic obstructive pulmonary diseases, and it is strongly associated with cancer and 

cardiovascular issues such as strokes and ischaemic heart disease (WHO, 2013). 

 PM air pollution originates from sources such as car exhaust, factories, biomass burning, 

wildfires and desert dust (Chow, 1995). It may be released and inhaled directly or react with other 

gasses in the atmosphere causing harmful substances to form (WHO, 2013). Chow (1995) and 

citations within show the chemical composition of the PM of interest includes elemental carbon, 

organic carbon, sulfate, nitrate and ammonium and that tracking air pollution and knowing its 

composition is paramount to performing attribution to human health and later dealing with those 

pollution sources. Brimblecombe (1987) showed one of the earliest recorded air pollution 

regulations from 14th century England, which was due to a respiratory illness that was traced from 
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black dust deposits on buildings and reduced visibility to an increased burning of coal. The 

capability of measuring these relationships beyond crude observation has the ability to improve 

quality of life on much large scales. Satellite remote sensing missions like the Multi-Angle Imager 

for Aerosols (MAIA) are seminal to improving the understanding of the relationship between air 

pollution and human health.  

Diner et al. (2018) overviews the MAIA mission in great detail. They show the need for a 

passive remote sensing satellite to fill in the data gaps that expensive and sparse ground monitors 

leave, and the improvements the mission will have over MISR, the Multi-Angle Imaging Spectro-

Radiometer on board the Terra satellite (Diner et al., 1998). The Terra satellite will be 

decommissioned to a lower orbit over the next couple of years due to low fuel and the mission will 

come to end (Kelly et al., 2014). MAIA as the successor will offer many improvements over MISR, 

including 10 more channels, 3 of which are polarized, and 1km resolution compared to MISR’s 

1.1km resolution. This allows MAIA to observe more particle properties like speciation, particle 

size and spatial distribution (Diner et al., 2018). Table 1 shows MAIA’s spectral specifications. 

MAIA’s operational products are shown in Table 2. 
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Table 1: MAIA Band Specifications *This O2-A band is for research study use and excluded in 

operational aerosol retrieval. Table 2 from MAIA cloud mask algorithm theoretical thresholds 

document JPL-103722, Di Girolamo et al. (2019). 

Band 

number 

Band 

center 

(nm) 

Bandwidth 

(nm)  
Polarization Main purposes 

1 365 37  Aerosol absorption and height 

2 391 39  Aerosol absorption and height 

3 415 39  Aerosol absorption and height 

4 444 53 Yes 

Aerosol absorption and height, fine 

mode aerosol size, aerosol refractive 

index; cloud masking 

5 550 43  
Fine mode aerosol size; surface 

reflection; cloud masking 

6 646 72 Yes 
Fine mode aerosol size; aerosol 

refractive index; cloud masking  

7 750 18  
Fine mode aerosol size, bracket 

absorption bands 

8 763* 6  Aerosol and cloud height detection 

9 866 52  

Fine mode aerosol size, bracket 

absorption band; surface reflection; 

cloud masking 

10 943 46  Water vapor abundance 

11 1044 97 Yes 

Aerosol refractive index, bracket 

absorption bands, coarse mode 

aerosol size 

12 1610 73  
Coarse mode aerosol size; cloud 

masking 

13 1886 83  
Water vapor abundance; cloud 

masking 

14 2126 114  
Coarse mode aerosol size; surface 

reflection 
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Table 2: MAIA operational products. Figure from MAIA JPL website: 

https://maia.jpl.nasa.gov/resources/data-and-applications/  

 

 

The MAIA mission consists of a one instrument satellite to measure PM concentrations 

and speciation over predetermined primary target areas (PTAs) shown in Figure 1. The PTAs 

(blue dots) are chosen to be in highly populated regions all over the world that have low frequency 

of clouds in order to maximize the amount of cloud-free aerosol data. At each PTA there may be 

grounded aerosol speciation monitors and/or PM mass concentration monitors.  Additionally, there 

are secondary target areas (green dots) which are of scientific interest but not in the operational 

stream of the mission due to budget. The calibration target areas (orange dots) are chosen for 

“instrument calibration, stability monitoring and aerosol/PM validation” (Diner et al., 2018). All 

these components participate in 2 primary processes. MAIA has equipped one camera, in a step-

and-stare mode, to scan each PTA at multiple angles. Simultaneously, measurements are being 

https://maia.jpl.nasa.gov/resources/data-and-applications/
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taken by ground monitors. This provides a ground truth to back out the PM concentration and 

speciation from MAIA’s Aerosol Optical Depth (AOD) over the entire swath. This is done with 

the use of geostatistical regression models. The second process involves epidemiologists analyzing 

health records on the ground along with MAIA’s output to find a relationship between air pollution 

and human health. To execute this a cloud screening or cloud masking step is required, shown in 

Table 2 along with the rest of the MAIA operational products. 

 

 

Figure 1: MAIA Target Area Locations by City. Figure is taken from the MAIA JPL website: 

https://maia.jpl.nasa.gov/investigation/#target_areas  

https://maia.jpl.nasa.gov/investigation/#target_areas
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 WHAT IS A CLOUD MASK AND WHAT IS IT USED FOR? 

In satellite remote sensing a cloud mask classifies an image, pixel by pixel, as cloudy or not cloudy. 

It is an important step for most geophysical products since knowledge of what is being observed 

is required to back out its properties. This is because assumptions are made in the retrieval 

algorithms about the pixel’s contents that are used to calculate quantities dependent on the 

presence or absence of clouds. For example, some surface products that require an unobstructed 

view of the surface or products that are not interested in cloud properties would be best retrieved 

over non-cloudy pixels, such as sea surface temperature (SST) derived from infrared 

measurements. If taken over cloud contaminated pixels, the SST would be severely underestimated 

(Koner et al., 2016). Likewise, cloud properties such as cloud optical depth (COD) and cloud 

droplet effective radius would be low biased if taken over clear contaminated cloudy pixels 

(Werner et al., 2018). It is therefore important to recognize that cloud masks should be application 

driven, to best serve the mission of the instrument as discussed in Yang and Di Girolamo (2008). 

The MAIA mission is specifically interested in AOD to back out near ground PM concentration 

and speciation, so its hardware is tuned for aerosol retrievals, with the knowledge in mind that to 

produce quality AOD retrievals a quality cloud mask is needed. Because the hardware and data 

processing are so expensive to the mission, however, tradeoffs are made. For example, MAIA does 

not have any thermal bands which are essential for cloud masking (Ackerman et al., 1998). 

However, MAIA is better equipped than MISR for cloud masking with a water vapor absorption 

band for cirrus detection (band 13) and a snow absorption band (band 12) for cloud detection over 

snow (Diner et al., 2018). 
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 MAIA CLOUD MASKING OBJECTIVES 

To meet the objectives of the MAIA mission a cloud mask is required to pass cloud free pixels to 

the aerosol products. This is because MAIA uses AOD, among other variables, to retrieve PM 

concentration and PM speciation (Diner et al., 2018). If the pixel is cloud contaminated, MAIA 

will overestimate AOD and therefore bias aerosol properties since clouds have COD ranging from 

~0.4 to well over 100 (Chen et al., 2000), while aerosols have AOD on the order of 1 when very 

thick and hazardous to human health (Luo et al., 2014). The minimum delivery requirements to 

the NASA Jet Propulsion Laboratory (JPL) are 1) a day-time cloud mask for each PTA, 2) the 

cloud mask is generated independently for each step-and-stare view of MAIA, 3) cloud 

conservative behavior and 4) tunable thresholds to adjust its cloud/clear conservative behavior.  

The MCM’s default behavior is to be cloud conservative, which refers to the mask labeling 

a pixel cloudy only if it is statistically likely to be a cloud (Yang and Di Girolamo, 2008; Jones et 

al., 2012). This is at the detriment of potentially mistaking a low confidence cloudy pixel, like a 

cloud edge or a thin cirrus cloud, as clear. This would result in a cloud contaminated sample being 

sent to the aerosol product, which will bias the PM retrievals. However, aerosol filled data points 

could be lost for the epidemiological team, looking for a link between health and air pollution if 

all low confidence cloudy pixels are called cloudy, since heavy pollution can sometimes appear 

like clouds. Because it is not feasible to make a perfect cloud mask, low confidence cloudy pixels 

are preferably classified as clear based on epidemiologist’s expert opinion. By choosing this cloud 

conservative framework over a clear conservative one, the number of “cloud free” samples sent to 

the aerosol product is maximized. To address the potential cloud contamination, a confidence 

metric called “Distance to Threshold” (described in Chapter 2.4) was created to allow tuning of 

the cloud mask conservativeness, even after the thresholds are finalized. This way a scientist at a 
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later date can achieve a desired result based on the purpose of their study and the performance of 

the cloud mask.  

 CLOUD MASKING BACKGROUND 

1.4.1. INTRODUCTION 

The field of cloud detection started to mature in the 1980s with the simultaneous advancement of 

computers and an increase in satellite missions, which allowed the automatic classification of 

pixels to be possible (see review of cloud masking in Goodman and Henderson-Sellers, 1988). 

Cloud detection is done by examining observables, such as visible reflectance, to exploit the 

contrast between cloudy (bright) and non-cloudy (dark) signals. Choosing which observables to 

use is limited by the measurement capabilities of the satellite instrument. Once chosen, however, 

they are gathered into logical operations that classify the data. The logic can be black box, as is 

the case for deep learning algorithms, or it may employ the use of thresholds in a decision tree. 

The thresholding method is the most common. It divides data from an observable into cloudy and 

non-cloudy classes based on expert analysis or by automatic calculation. There are many ways to 

derive the thresholds, and while they are tuned to maximize performance, they must also take into 

account downstream products that will use its output. Presented next are several cloud detection 

algorithms to show the diversity of how this pattern recognition problem has been framed in the 

past. 

ISCCP, the International Satellite Cloud Climatology Project (Schiffer and Rossow, 1983), 

aimed for the first time to create a unified dataset of satellite radiances across numerous missions 

in order to infer the global distribution of cloud radiative properties. The project’s ultimate goal 

was to lead to an improved representation of clouds in climate models using that observational 
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data. To analyze the clouds, however, it first required a unified cloud mask that was very sensitive 

in order to detect low clouds and thin cirrus clouds thought to cause important climate feedbacks 

in global climate models (Rossow and Garder, 1993). The algorithm takes advantage of the 

differences in the space-time variability of visible and infra-red (IR) radiances in cloudy and non-

cloudy scenes. It uses the fact that cloudy radiances will be colder and brighter than the clear sky 

radiances to detect clouds. The scheme initially uses hand chosen thresholds to distinguish between 

the cloudy and non-cloudy data as a function of the surface type, defined as ocean, ice-covered 

ocean and land to create a reference high-confidence clear sky dataset based only off the IR 

channel. The radiance data is then grouped by intervals of (long- and short-term) time and by a 

more in-depth surface classification scheme to account for weaknesses in the first step caused by 

fluctuations of space-time variability on scales longer than days and across all regions of the globe. 

Then long- and short-term statistics (i.e. brightness temperature (BT) maximums, BT averages, 

visible radiance clear sky modes) from the radiances are extracted to modify the initial hand chosen 

thresholds for the IR and visible tests. The modifications are to allow more or less data to be 

classified as cloudy after learning about a region’s clear sky and cloudy characteristics. The exact 

modification of the thresholds is described in section 3, “Description of algorithm”, subsections c 

and d of Rossow and Garder (1993).   

Statistical techniques around that time were being developed to detect clouds as well, similar 

to Gaussian mixture models, detailed by Simmer et al. (1982) and Phulpin et al. (1983). In these 

methods, multi-dimensional histograms are built using radiance data from different bands, such as 

the visible and IR, to locate clusters corresponding to distinct elements like clouds and the surface. 

These clusters are defined by a fitted Gaussian curve. When new data falls into a particular cluster, 

it takes on that clusters class. Additionally, because the continuum of data is known over the entire 
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space, it is possible to calculate the probability that a pixel is cloudy. This type of algorithm is 

unsupervised, meaning it can be trained without prior knowledge of the pixel’s cloudiness, 

however, the Gaussian model will not necessarily fit the data perfectly and is a limitation of the 

method. Although, Phulpin et al. (1983) found that 87% of its cases classified by their model had 

comparable quality to manual analysis. 

Saunders and Kriebel (1988), with the Advanced Very High Resolution Radiometer 

(AVHRR), a predecessor to MODIS, formed the foundation for modern cloud detection with the 

histogram-threshold method detailed in Chapter 1.4.3 and 1.4.4. The Terra MISR cloud mask 

(Diner et al., 1999) and the Terra MODIS cloud mask (Ackerman et al., 1998 and 2010) build on 

this and ultimately lead to the main logic (Chapter 2) and threshold derivation (Chapter 4) used 

in the MCM. This class of cloud mask derives thresholds to fit the result of a pre-labeled dataset. 

This is therefore a fully supervised technique unlike the Gaussian models or the ISCCP cloud mask 

discussed.  

More recently in the past 5 or 10 years, large improvements in computing capabilities, data 

availability and open-source software has allowed a renewed interest in machine learning 

detailed by Jordan and Mitchell (2015). Machine learning offers the capability of forming 

complex non-linear relationships between variables and the desired output with automatically 

derived parameters. Furthermore, the rise of Python and open-source packages available for the 

public makes machine learning very accessible. There are community moderated libraries with 

every machine learning model imaginable written and debugged. Some notable libraries are 

Tensorflow developed by Google, pyTorch developed by the Facebook Artificial Intelligence 

(AI) Research Lab (FAIR), Sci-Kit Learn developed by the National Institute for Research in 

Computer Science and Automation (INRIA) and Caffe developed by Berkeley AI Research 
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(BAIR). Many of the models can run in minutes to hours on laptops (for simple datasets) and 

they can be trained with any data. The validation and testing procedures are standardized. What’s 

missing is the domain expertise in the cloud masking community. Recently (White et al., 2020 in 

preprint) developed a Visible-Infrared Imaging Radiometer Suite (VIIRS) neural network cloud 

mask outperforming the continuity MODIS-VIIRS cloud mask (MVCM) (Frey et al., 2020) and 

National Oceanic and Atmospheric Administration’s (NOAA) Enterprise Cloud Mask (ECM) as 

compared to collocated Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 

observations. Wang et al. (2020) shows comparable performance for cloud conservative cloud 

detection on Suomi NPP VIIRS collocated with CALIOP using random forest models. Despite 

neural networks having been around for decades, however, and the recent innovations, machine 

learning has still not proven to be useful in operational cloud masking as compared to their 

traditional counter parts. Thus, for mission viability, the decision tree histogram approach for the 

MCM is chosen based on the MISR and MODIS cloud masks. 

1.4.2. PASSIVE INSTRUMENT CLOUD MASKING 

Although active instruments are the gold standard in cloud detection (i.e. Holz et al., 2008; Frey 

2020 and citations within) because they can directly measure the backscatter of cloud particles and 

the retrieval height, they have very narrow swaths which reduces their ability to observe large 

regions of interest at one time, and subsequently have lower revisitation rates in orbit. For example, 

CALIOP, an active instrument, has a 70 meter wide footprint, versus Terra MODIS, a passive 

instrument, which has a 2030 km wide swath. Therefore, when wider swath missions are required, 

such as for MAIA’s aerosol studies, a passive instrument is better suited to the task. Passive 

instruments measure short wave (SW) and long wave (LW) radiation reflected and emitted, 

respectively, by the atmosphere, the surface, aerosols and clouds. The unit commonly used is 
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radiance, which is the power per unit area incident on the sensor from a particular direction defined 

by the solid angle or instantaneous field of view (IFOV) of the camera. The SW radiances (<5 µm) 

mostly originate from the Sun, which varies in power output according to the wavelength, the 

Earth-Sun distance and the solar zenith angel (SZA) of the observation. SW radiance measured at 

the sensor, 𝐿𝜆, at some wavelength, 𝜆, is often converted to the at-sensor bidirectional reflectance 

factor (BRF) by normalizing the radiance by the cos(SZA) and the power output from the sun, 𝐸𝜆, 

at a distance, d, from the sun as shown in eq. ( 1 ).  

 

 
𝐵𝑅𝐹(𝜆µ𝑚) =

𝜋 ∗ 𝐿𝜆 ∗ 𝑑2

𝑐𝑜𝑠(𝑆𝑍𝐴) ∗ 𝐸𝜆
   

eq. ( 1 ) 

 

 

The practical use of this specific definition of reflectance is that it is a directional point 

measurement from an infinitesimal solid angle, unlike albedo, which helps to capture the 

anisotropic characteristics of clouds and non-clouds, and it is normalized by the power output of 

the sun, unlike radiance. This definition follows from BRDF (bi-directional distribution function) 

as defined in Di Girolamo (2003), but is only different by a factor of pi when incident radiation 

comes from one direction at the altitude of the sensor. The LW radiances (>5µm) are emitted 

according to the wavelength, the temperature and the emittances of the elements in the pixel. For 

cloud masking these LW radiances are often converted to BT for thresholding, since clouds are 

typically colder than the surface. However, since MAIA does not have LW channels on board this 

is not further discussed. The SW BRFs are used to construct the observables for the MCM, detailed 

in Chapter 2.3, that are then thresholded to distinguish cloudy pixels from non-cloudy pixels. 
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1.4.3. CHOOSING THRESHOLDS FOR A CLOUD MASKING ALGORITHM 

Cloud masks generally use observed or modeled data to train or select the parameters for the 

algorithm. Although it is possible to use a radiative transfer model to create synthetic data, it is 

often more straight forward and more representative to use real data to craft the thresholds. Despite 

knowing the truth perfectly in modeled data, it would be hard to capture the real variance in cloud 

types, cloud distributions, surface types, atmospheric profiles and so on to produce valid thresholds 

for each test. Although, efforts have been made to do just this, such as the global synthetic dataset 

or GSD (Grano et al., 2004; Shoucri and Hauss, 2009), which was deemed useful and within the 

cloud masking requirements for the VIIRS pre-launch thresholds for Suomi NPP (Hutchison et al., 

2012). In both options, modeled or observed, a histogram can be built of the data for a particular 

observable to calculate the threshold at which a pixel is called cloudy. That data can either 1) be 

manually classified by an expert, 2) be previously classified by another algorithm, 3) be modeled 

synthetically so the absolute truth is known, or 4) a combination of the previous options. In any 

case, a high standard of ground truth is needed to serve as labels for the data. The quality of the 

cloud mask is function of the quality of the training data and its labels. First the data for one 

observable can be plotted on a histogram. If the tests are chosen correctly, a cloudy hump of data 

will appear distinct to the rest. Saunders and Kriebel (1988) first demonstrate the histogram 

approach in the most basic sense for one scene, shown in Figure 2. 

 

Figure 2: NOAA-9 AVHRR 50x50 pixel scene over the U.K. on April 15th, 1985. Figure from 

Saunders and Kriebel (1988). 
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Here a distinct signal in channel 1 visible reflectance for the NOAA-9 AVHRR is shown for 

a scene. On the left, or the dark reflectance, two peaks in the histogram correspond to sea and land. 

A threshold can be drawn to separate most of the observations with a level of certainty. To further 

distinguish the signal of cloudy pixels to non-cloudy pixels prior information about the 

measurement can also be incorporated. Meaning the histograms can be generated individually for 

unique combinations of sun-view geometries, surface types and seasons.  

The spectral properties of different surfaces exist on a spectrum that approaches and overlaps 

with the spectral properties of clouds. In the context of a single threshold, it is paramount to 

maximize the contrast between the cloudy and non-cloudy observations for a particular test. This 

is true for any classification problem. This way a threshold can be drawn to separate the 2 classes 

with the least amount of model training errors. The easiest scenes will have a threshold that is 

clearly able to separate the cloudy observations from the clear ones and the most difficult scenes 

will have strict thresholds that may let cloud contaminated pixels be called clear. By dividing the 

histograms by scene type, the performance of the thresholds can be maximized in all cases. For 

example, cloud detection over deep ocean will have a much smaller region of ambiguity where the 

surface and cloud spectral properties overlap since water (non-sun-glint) is generally very dark 

and clouds are bright in the visible channel, versus cloud detection over a desert pixel where both 

cloud and desert are very reflective in the visible channels. It follows that the threshold over deep 

ocean will be much lower than the threshold over desert for a visible channel test. Therefore, the 

histograms are divided by surface type (surface type map defined in Chapter 3). The data can be 

can further stratified by the sun-view geometry. Minnis (1989) and Zhao and Di Girolamo (2004) 

for example, show that as viewing zenith angle (VZA) gets larger, cloud amount increases due to 

longer path lengths intercepting more cloud and larger GIFOV (ground instantaneous field of 
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views). Loeb et al. (1997) shows that retrieved COD increases for near nadir VZA as the SZA 

increases, since more solar radiation intercepts the cloud edges and then leaves the cloud top 

therefore appearing brighter. Liang and Di Girolamo (2013) show that, relative to nadir VZA, 

retrieved COD increases with increasing VZA in the backscatter direction and retrieved COD 

strongly decreases with VZA for the forward scattering direction. Therefore, cloud reflectance is 

a function of SZA, VZA and relative azimuth angle (RAA). Furthermore, the histograms can be 

divided by season. Surface types are dependent on the meteorology which can turn vegetation into 

bare soil, desert mountains into snow topped peaks or dry lake beds into deep water. As the surface 

reflectance changes, so must the thresholds in order prevent calling the newly bright surfaces 

cloudy or mistaking cloud contaminated data for clear as the surface gets darker. Moreover, cloud 

thickness and distributions change with the seasons and with latitude (Zhang et al., 2005). By 

changing the thresholds as a function of time and target area (region), a cloud mask can better 

distinguish cloudy and clear pixels. Given enough data and the right tests, the histogram can be 

divided into cloudy and non-cloudy sections with a threshold to a degree of certainty. Terra MISR 

and Terra MODIS end up taking a similar approach with these histograms and are the fundamental 

base for the MCM logic and threshold development.  

1.4.4. TERRA MODIS MOD35 CLOUD MASK OVERVIEW  

Ackerman et al. (2010) documents the theoretical basis for the latest MOD35 collection, 6.1. Most 

of the tests for MOD35 depend on mid IR and thermal emissive bands, but because MAIA’s 

longest wavelength is 2126nm, these are not used in the MCM. Additionally, because the MCM 

is only operational during daytime, the MOD35 nighttime tests are not discussed. The like tests 

used in both MOD35 and the MCM reduce to the 0.65µm, 0.86µm and 1.38µm reflectance tests 

as well as a similar 3x3 windowed texture test, but instead of using the 11µm window channel, 
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MAIA will use the red band. Cloud reflectance is a weak function of wavelength in the visible and 

NIR part of the spectrum, giving clouds white color. Clouds are also generally brighter than the 

surface in the shortwave part of the spectrum. Over land the 0.65µm channel is used to detect 

clouds. Over water surfaces like the ocean, the 0.86µm channel is used instead, since water darkens 

into the NIR part of the spectrum, while clouds stay relatively bright (Ackerman et al., 1998). The 

1.38µm channel is used for cirrus detection. Cirrus is usually optically thin and therefore washed 

out by the strong contribution of surface reflectance in channels where atmosphere absorption is 

small. At 1.38µm however, the surface is obscured by low level water vapor, which is highly 

absorbent at this wavelength (Gao, 1993). The contribution of radiance to the sensor is therefore 

predominately from above the moist layer. Here, high cirrus clouds stand out in contrast to the 

dark and opaque moist layer. MOD35 does not apply this test above 2000m surface elevation since 

mountains can peak above the moist layer and contribute large radiances to the sensor. Finally, at 

1km resolution cloud tops and cloud edges are generally more textured than the surface except at 

surface boundaries like the coast and over mountains which are highly textured at 1km resolution. 

This test has heritage for MISR and MODIS over water, but it is also employed over land for the 

MCM since the MCM has a thorough thresholding calculation that takes into account surface 

types.  

All these tests use simple thresholds dependent on surface types like land, water, and sun-

glint water. The visible reflectance test however, used over land in collection 6.1 of the MOD35 

cloud masking product, uses the histogram approach to produce thresholds dependent on the 

normalized vegetation index (NDVI) and the scattering angle. Each histogram is built using clear-

sky/snow-free data from Aqua MODIS with one NDVI value, binned from 0 to 1 every 0.1 on 16-

day intervals (Moody et al., 2005), and a scattering angle range. Figure 3 shows the histogram for 
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Aqua MODIS visible reflectance band data from 2006 to 2007. The data all has NDVI between 

0.7 and 0.8 and scattering angles between 110 and 120 degrees. The labels for the histograms come 

from the Aqua MODIS cloud mask record. In this MOD35 method, three thresholds are chosen as 

a function of NDVI (10 bins total from 0 to 1) and scattering angle. One to minimize error for a 

cloud conservative mask (red vertical line on right), one to minimize error for a clear conservative 

mask (blue vertical line on left), and the third is simply an average of the previous two (Figure 3). 

Therefore, four confidence levels are given: cloudy, uncertain clear, probably clear, and clear. A 

similar approach is used for all of MAIA’s cloud masking observables (discussed in Chapter 1.5). 

 
Figure 3: Clear (blue) and cloudy (red) cumulative histograms of 0.65µm Aqua MODIS 

reflectances from which a confident clear threshold (vertical blue line) and a confident cloudy 

threshold (vertical red line) may be defined. This is figure 8 from Ackerman et al. (2010). 
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1.4.5. TERRA MISR RCCM CLOUD MASK OVERVIEW 

Terra MISR (Diner et al., 1998), the predecessor of MAIA (Diner et al., 2018), has a very similar 

cloud mask to the MCM described in Diner et al. (1999) called the radiometric camera-by-camera 

cloud mask (RCCM). Onboard, MISR has 4 channels: blue (446nm), green (558nm), red (672nm) 

and near IR (NIR) (867nm) with 9 cameras fixed at 9 different VZAs in the along-track direction. 

It borrows the histogram method and builds them for four observables and for different surface 

types, seasons and sun view geometries. This creates many thousands of thresholds that are 

automatically derived with the histogram technique, using semi manually classified scenes as the 

truth (Yang et al., 2007). The RCCM uses 4 observables, 2 over water and 2 over land. Over water 

RCCM uses the NIR BRF for high contrast with clouds and it uses a spatial variability index (SVI) 

since clouds are more textured than the ocean at 1.1km resolution. Over land the MISR RCCM 

builds histograms for each of the 1,580 surface types derived from the Cloud Screening Surface 

Classification (CSSC) dataset (NOAA-EPA Global Ecosystems Database Project) for 2 

observables, D dependent on the NDVI and the red band BRF and SVI. Where NDVI is high for 

vegetation but lower for clouds (Zhu and Woodcock, 2012). The histograms for the land type are 

divided into 16-day intervals, 9 VZA bins for each camera, 10 SZA bins and 12 RAA bins. For 

each histogram, MISR has 3 thresholds to produce 4 confidence levels of cloudiness just like 

MOD35 (see Figure 4). 
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Figure 4: Cartoon of MISR histogram approach. HC is high confidence, LC is low confidence. 

Figure 1 from Diner et al. (1999) 

1.4.6. CLASSICAL ISSUES IN CLOUD MASKING 

There are several common issues faced in cloud masking. Surface reflectance can be just as bright 

as clouds over snow and sun-glint water, surface temperatures can be just as cold as clouds for 

snow-ice or within a temperature inversion, and surface textures can be just as high as clouds for 

surface boundaries and over mountains (i.e., Platnick et al., 2003; Ackerman et al., 1998). 

Furthermore, optically thin clouds and sub-pixel clouds are difficult to detect because of the 

contributions of radiance measured at the sensor come from both the cloud and the underlying 

surface (i.e., Weilicki and Parker 1992; Zhao Di Girolamo 2006).  And finally, the presence of 

thick aerosol can contaminate the cloud mask due to the high reflectivity, similar to that of clouds 

(i.e., Lyapustin and Frey 2008). Thresholding these physical quantities as a function of the scene 

type is common to account for these exceptions. The surface types such as water, desert or snow 

present different backgrounds which change the detectability of clouds. The surface also tends to 

change with the seasons so thresholds can be dynamic over time (i.e., Ackerman et al., 1998; Diner 



20 

 

et al., 1999) and finally, the thresholds can be a function of sun-view geometry to take into account 

the angular scattering properties that distinguish clouds from the background (i.e., Minnis, 1989; 

Zhao and Di Girolamo, 2004).  

 CLOUD MASKING APPROACH FOR THE MCM 

The MCM functions on 7 observables used to distinguish cloudy pixels from non-cloudy pixels. 

They are 0.65µm BRF, 0.86µm BRF, 1.38µm BRF, a texture index, a whiteness index, the 

normalized difference vegetation index and the normalized difference snow index, all discussed in 

detail in Chapter 2.3. The MCM logic depends on the use of thresholds for each test to classify 

the pixel. To calculate the thresholds, a labeled dataset is a required to build the histograms. In this 

thesis, I chose a proxy instrument to MAIA with a robust cloud mask to build the labeled dataset. 

The instrument must have a 1km resolution or better cloud mask, sufficiently similar radiance 

bands and sun-view geometry to MAIA, and a long record of observations. The Terra MODIS 

instrument, which launched in 1999, matches all these requirements. The MCM thresholds were 

derived for all tests similar to MISR/MODIS/AVHRR except it will use a novel surface ID 

(Chapter 3), it will use the complete sun-view geometry (cos(SZA), VZA, RAA), including more 

VZA bins than MISR, it chooses one cloud conservative threshold unlike both MISR and MODIS, 

and it is binned at a finer 8-day temporal resolution vs 16 days for MISR and MODIS. The exact 

threshold development is discussed in Chapter 4 and in Chapter 2 the forward pass of the 

algorithm is described. 
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CHAPTER 2 :  MCM ALGORITHM 

  ALGORITHM OVERVIEW 

The MCM algorithm takes radiances, sun-view geometry, a snow-ice mask, a land-water mask, 

and the threshold database as inputs. The output is a pixel-level binary cloud mask (See Figure 6 

for algorithm flowchart). It uses 7 observables that are grouped into 5 tests according to the physics 

being exploited. The 5 tests are grouped as 1) the 0.65µm BRF (Vis) and 0.86µm BRF (NIR) tests, 

2) the 1.38µm BRF (Cirrus) test, 3) the spatial variability index (SVI) test, 4) the whiteness index 

(WI) test, and 5) the normalized difference index for snow (NDSI) and for vegetation (NDVI). The 

tests are applied according to the scene type. The scene type is defined by each unique combination 

of surface type, sun-view geometry and day of year (DOY) bins detailed in Table 3.  

 

Table 3: Binning of data used to select a threshold. *Scene ID contains land surface ID, coast, 

water, sun-glint water, and snow-ice masks. 

Observable Level 

Parameters 

Range # of bins Bin Interval Unit 

cos(SZA) [0,1] 10 0.1 [unitless] 

VZA [0,70] 14 5 [degrees] 

RAA [0,180] 12 15 [degrees] 

Scene ID* [0,19] 20 1 [unitless] 

DOY [1,365] 46 8  [days] 

 

Because the BRF of different surfaces can differ by an order of magnitude (Jedlovec, 2009) 

(Figure 5) the observables are not applied to all surface types (Table 4). The tests are however 
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applied to all bins of sun-view geometry and all DOY bins. For each test there is a unique threshold 

for each scene type observed. In Chapter 4 the threshold derivation is described. 

 

Figure 5: Typical reflectance values for snow (blue), bare soil (black), forest canopy (pink), cirrus 

(red), and stratus (green) clouds as a function of wavelength in µm. Figure from Jedlovec (2009). 

 

Table 4: When each test is applied as a function of surface type. Note, all tests are applied for all 

sun-view geometry and DOY bins but is not shown here. 

Test # Observable 16 Land surface types + 

coast 

water sun-glint 

water 

snow-ice 

1 Vis Ref yes    

1 NIR Ref  yes   

2 Cirrus yes yes yes yes 

3 SVI yes yes yes yes 

4 WI yes yes   

5 NDVI yes yes yes  

5 NDSI    yes 
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The Next section describes the forward pass of the algorithm assuming the thresholds are 

already derived. This will show the basic logic and code of the MCM without yet introducing the 

most complex procedure in creating the MCM. 

 ALGORITHM FUNCTIONS 

Figure 6 shows the input/output flow of the MCM code. On the left the inputs are color coated. 

The blue datasets are provided by the Di Girolamo group at the University of Illinois at Urbana-

Champaign for operational use, while the red datasets are provided for by the NASA JPL (Jet 

Propulsion Laboratory). Because MAIA launches in 2022, this thesis uses the Terra MODIS 

instrument data as a proxy data for its similar channels, orbit and VZAs. The right side shows the 

functions (black elongated rhombuses) and datasets produced by the MCM (green elongated 

ovals). The surface ID derivation is discussed in Chapter 3 and in Chapter 4 the threshold 

derivation is discussed. The config file is described in the MAIA Cloud Mask ATBD (Di Girolamo 

et al., 2019). The functions shown in Figure 6 are described in the rest of this section in the order 

from the top to the bottom of the flow chart.   
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Figure 6: MCM algorithm flow chart. Red boxes are dynamic inputs provided by JPL at processing 

time. Blue boxes are static pre-launch inputs provided by UIUC. Black rhombuses are functions. 

Green ovals are input/output data into and from functions. 

 

mark_bad_radiance() 

The MCM will have a Radiance Data Quality Indicator (RDQI) mask from the Level 1 radiance 

product. The mask contains the integers from 0 to 3, where 0 is a high-quality retrieval, 1 is a low-
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quality retrieval but still usable, 2 is a poor quality and unusable retrieval and 3 is no data. The 

MCM will only process the cloud mask when the required bands have 0 RDQI, although this can 

be changed in the configuration file. This function will mask the radiance data to -998 for RDQI 

> 0 and -999 for RDQI == 3. Data with RDQI == 0 will not be masked and contain the original 

radiance values. 

get_R() 

This function retrieves the Bi-Directional Reflectance Factor (BRF) for a given band. It uses the 

SZA, Earth-Sun distance and the band weighted solar irradiances. BRF for cos(SZA) <= 0.01 is 

assigned the fill value -998. Note that “R” is used interchangeably as a shorthand for BRF in 

equations. The equation for BRF is shown here again for convenience. 

 
𝐵𝑅𝐹(𝜆µ𝑚) =

𝜋 ∗ 𝐿𝜆 ∗ 𝑑2

𝑐𝑜𝑠(𝑆𝑍𝐴) ∗ 𝐸𝜆
   

eq. ( 2 ) 

 

get_obs() 

There are 7 observables which compose the 5 tests, which are all derived from 6 BRFs. For a 

scene, such as the 400km by 300km Los Angeles (LA) PTA, it would return the 7 observable 

values for each pixel. See Table 4 for tests and see Chapter 2.3 for more detail.  

get_sunglint_mask() 

𝛩 = 𝑎𝑟𝑐𝑜𝑠(𝑠𝑖𝑛(𝑉𝑍𝐴) ∗ 𝑠𝑖𝑛(𝑆𝑍𝐴) ∗ 𝑐𝑜𝑠(𝑉𝐴𝐴 − 𝑆𝐴𝐴 − 180°) + 𝑐𝑜𝑠(𝑉𝑍𝐴) ∗ 𝑐𝑜𝑠 (𝑆𝑍𝐴)) 

eq. ( 3 ) 
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eq. ( 3 ) calculates the scattering angle, Θ, using the SZA, VZA and RAA of the pixel, and then 

flags pixels with scattering angles between 0 and 40 degrees over water as sun-glint. 0 is sun-glint 

water, 1 is everything else. The range or cone of scattering angle, however, can be changed in the 

configuration file. The relative azimuth angle here is defined relative to Terra MODIS RAA = 

(VAA - SAA - 180) where the VAA and SAA are the viewing and solar azimuth angles. The 

forward scattering occurs at 0 degrees and back scattering occurs at 180 degrees. The sun-glint 

mask is integrated into the surface type mask. 

get_OLP() 

The observable level parameter (OLP) is the backbone of the MCM. It characterizes a pixel by its 

cos(SZA), VZA, RAA, Scene ID, DOY, and target area (TA). Each pixel has these prior 

knowledge data points that describe the scene in which a cloud may reside. The sun-view geometry 

is continuous from the data file while the Scene ID, DOY and TA are discrete values. The sun-

view geometry is binned in this function to retrieve a valid threshold. Table 3 shows how they are 

binned. The return of this function is an array the same length and width of the scene, and the depth 

has the binned values corresponding to each pixel. This will feed into get_test_determination() to 

pick out the thresholds for the scene. 

get_test_determination() 

Test determination serves two functions in 1. It masks the observables not used in the final MCM 

according to surface type (see Table 4). The second and primary function is to fetch the thresholds 

for the scene for each of the 7 observables. Each threshold is unique to the OLP of a pixel. An 

example of OLP for a pixel maybe [0,3,2,17,32,0]. This would represent cos(SZA) between 0 and 

0.1, VZA between 15 and 20 degrees, RAA between 36 and 48 degrees, water surface type, DOY 
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between 257 and 264 inclusive in the Julian calendar and PTA 0 which is the LA PTA. These exact 

numbers from OLP are used to query the threshold database to retrieve one threshold for that pixel. 

This is done 7 times for each observable and for all the pixels in the scene. Therefore, this function 

returns a 2D array of thresholds for the subject scene, for each of the seven observables. The 

thresholds are then used to calculate the distance to thresholds. 

get_DTT() 

DTT or distance to threshold returns a confidence metric of cloudy or clear based on the thresholds 

for each observable. Where the test is not performed a fill value is applied. The calculations and 

reasonings are discussed later in Chapter 2.4. The DTT maps for each observable are fed to the 

next function to get the final cloud mask. 

get_cloud_mask() 

The final step is to use the DTT maps to determine which pixels were cloudy and which were not. 

DTT values of 0 or greater are considered to be cloudy. If at least one of the 7 observables meets 

this criterion, the pixel is determined to be cloudy. Although, the cloud mask configuration file has 

some options to control how many observables must show cloud and at what confidence it should 

be called cloudy. This is discussed in greater detail in Chapter 2.4. 

On the Keeling cluster hosted at the University of Illinois’ School of Earth Society and the 

Environment, the MCM forward pass runs in about 1.5 seconds for a 400 by 300 pixel scene on 

one Intel(R) Xeon(R) CPU model E5-2660 v3, clocked at 2.6 GHz with 4 Giga Bytes (GB) of 

memory. The input and output file sizes are all subject to change, so they are not listed. The next 

2 sections describe the 5 tests and the logic used to determine if a pixel is cloudy or clear. 

Afterwards, the derivation of the thresholds is shown. 
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 DEFINITION AND PHYSICS OF 5 TESTS 

2.3.1. VISIBLE REFLECTANCE AND NIR REFLECTANCE TEST 

In the visible and NIR wavelengths, clouds are generally brighter than the underlying surface as 

shown in Figure 7, where the Terra MODIS visible BRF and NIR BRF images for the LA PTA 

on Dec. 31, 2018 are displayed in gray scale (this scene is used for the rest of Chapter 2.3). The 

red band BRF is used to distinguish clouds from snow-ice-free land, since vegetation in the NIR 

are much brighter than in the Vis (Figure 5) and cloud BRFs are about the same in both channels. 

Since water is darker and atmospheric molecular scattering is lower in the NIR compared to Vis, 

0.86µm BRF is used to distinguish clouds from sun-glint-free and ice-free water. The weaknesses 

for these tests are bright surfaces (other than water glint and snow-ice) like sandy coastlines, 

shallow water, arid soils and deserts. This is especially true for clear scenes and for optically thin 

clouds as they give strong contributions of reflectance from the surface to the sensor. If a cloud 

happens to escape detection by this test it is hoped to be found by the remaining tests as they 

exploit different cloud, atmosphere and surface properties. 
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Figure 7: Visible BRF on left. NIR BRF on right. Both on same scale for Terra MODIS scene 

2018365.1830 (<year><Julian day>.<UTC time>). 

2.3.2. CIRRUS TEST 

 

The cirrus test uses 1.38µm BRF to find clouds. This is a strong NIR water vapor absorption band. 

Since most water vapor in the atmosphere originates from the surface, and the boundary layer is 

usually no more than a few km deep, the surface is mostly opaque at this wavelength, and therefore 

very dark as seen in Figure 8, which shows visible (left) and cirrus (right) channels of Terra 

MODIS for the LA PTA on Dec. 31, 2018. The result is that the only contribution of reflectance 

comes from high clouds which generally exist in dryer environments giving stark contrast to the 

surface. Therefore, it has the potential ability to flag high thin cirrus that a visible band would not 

be as sensitive to as seen from comparing the visible (left) panel to the cirrus (right) panel in Figure 

8. This test is very powerful, but it has 2 key weaknesses. It is not sensitive to low clouds, and it 

has the potential to flag high terrain above the moist layer as cloud. Ackerman et al. (2010) does 

not use the cirrus test on terrain over 2000m and should be implemented into the MCM at some 
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point. Moreover, the absence of clouds in the test does not mean clouds are not present. It relies 

on other tests to detect low clouds and clouds in very moist environments. 

 
Figure 8: Visible BRF test on left. Cirrus test on right. Terra MODIS scene 2018365.1830 

(<year><Julian day>.<UTC time>). 

2.3.3. SPATIAL VARIABILITY INDEX (SVI) 

 

At 1km resolution, clouds tops and cloud edges tend to have more texture than the surface. This 

is especially true over water. The SVI is applied over all surface types. The texture is calculated 

as the standard deviation of the red band BRF values over a sliding 3x3 window with a stride of 

1 in all directions show in eq. ( 4 ).  

 

𝑆𝑉𝐼 =  
√∑ (𝑅̅0.65µ𝑚 −  𝑅0.65µ𝑚𝑖

)
29

𝑖=1

9
 

 

eq. ( 4 ) 

 

The standard deviation is then mapped onto the pixel over which the window was centered as 

shown in Error! Reference source not found., with the visible channel on the left and the SVI on 

the right. If the pixel is at the edge of the image, the test is not applied. Any other boundary 
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condition would cause fake textures at the edge of the PTA that may or may not be consistent with 

the cloudiness of those pixels. Additionally, if a full 3x3 pixel window is not possible due to bad 

or missing data, the test is not applied since the definition of texture would change scale. That 

would require a separate threshold derivation and would suffer from low sampling issues.    

This test has weaknesses over very textured terrain like mountains, which have large scale 

features similar to that of clouds. It also fails at surface boundaries, particularly at coastlines. 

Additionally, it is worth noting that some PTAs only have snow or ice in mountainous regions, 

which conflates the performance of this test over snow and ice with its performance over 

mountainous regions. 

 
Figure 9: Visible BRF on left. SVI on right for Terra MODIS scene 2018365.1830 

(<year><Julian day>.<UTC time>). 
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2.3.4. WHITENESS INDEX (WI) 

 

The BRF of clouds is a weak function of wavelength in the visible and NIR parts of the spectrum 

(Zhu and Woodcock, 2012). This makes them white in color and therefore unique from most 

surfaces and aerosols. WI works by comparing each of the red, blue and green (RGB) bands’ BRF 

(𝑅𝑖) to the average RGB BRF (𝑅𝑟𝑔𝑏
̅̅ ̅̅ ̅̅ ) for the pixel, summing the magnitude, and normalizing by 

the average BRF (𝑅𝑟𝑔𝑏
̅̅ ̅̅ ̅̅ ) of the 3 colors as show in eq. ( 5 ). The result is that a value of 0 

corresponds to a perfectly white pixel, and more positive values are less white. The normalization 

makes the WI independent of brightness. Its main weakness is light colored surfaces like deserts 

and sandy coastlines when the scene is predominantly clear. It is not applied over sun-glint water 

regions at all. 

 

 𝑊𝐼 =
∑ |𝑅𝑟𝑔𝑏̅̅ ̅̅ ̅̅ ̅−𝑅𝑖|3

𝑖=1

𝑅𝑟𝑔𝑏̅̅ ̅̅ ̅̅ ̅
 

    eq. ( 5 ) 

 

 
Figure 10: BRF RGB on left. WI on right. Terra MODIS scene 2018365.1830 (<year><Julian 

day>.<UTC time>). 
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2.3.5.  NORMALIZED DIFFERENCE INDEX FOR SNOW AND VEGETATION 

 

NDVI and NDSI take advantage of two things, the spectral properties of the subject, vegetation or 

snow, and the whiteness of clouds. They are defined below in eq. ( 6) and eq. ( 7). In Figure 11 

an RGB of the LA PTA taken from Terra MODIS on Dec. 31, 2018 is shown alongside the NDVI 

and NDSI for that scene. Vegetation is much more reflective at 0.86µm than in the visible  

 

 
𝑁𝐷𝑉𝐼 =  

𝑅0.86µ𝑚 − 𝑅0.65µ𝑚

𝑅0.86µ𝑚 + 𝑅0.65µ𝑚
 eq. ( 6 ) 

 

 
𝑁𝐷𝑆𝐼 =  

𝑅0.55µ𝑚 − 𝑅1.6µ𝑚

𝑅0.55µ𝑚 + 𝑅1.6µ𝑚
                  eq. ( 7 ) 

   

so it has high values, while clouds tend to lower the NDVI towards zero (Zhu and Woodcock, 

2012).  

 
Figure 11: From left to Right: BRF RGB, NDVI, NDSI. Terra MODIS scene 2018365.1830 

(<year><Julian day>.<UTC time>). 

 

In the MCM, the NDVI is applied over all surface types except for snow-ice, where NDSI 

is applied instead. Snow is highly absorbent of 1.6µm radiation and highly reflective in the visible 

part of the spectrum, so snow takes on positive values generally > 0.4 (Hall et al. 1995, Dozier 
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1989), whereas clouds tend to reduce NDSI towards zero (Choi and Bindschadler, 2004; Warren 

1982). Weaknesses of NDVI occur on coastlines and desert regions. These surface types share a 

very similar NDVI signature to clouds since they have very little vegetation and are close to white 

in color. NDSI and NDVI are also subject to at least the amount of error in the supporting snow-

ice mask, since NDVI will call snow-ice a cloud, and NDSI will mistake water and arid land for 

cloud.   

The next section uses the definition of the 5 tests to produce cloud confidence maps called 

distance to threshold that uses a simple logic to decide if each pixel is cloudy, clear or an invalid 

retrieval. 
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 DISTANCE TO THRESHOLD (DTT), ACTIVATION VALUE (AV) AND THE 

FINAL CLOUD MASK 

 

Distance to threshold or DTT is a metric used to quantify how much the threshold was exceeded 

by or fell short of an observable. This gives a proxy to confidence. There are 3 definitions of DTT, 

each one to accommodate the physical meaning of the different tests.  

 

Figure 12: Distance to Threshold for all 7 observables for Terra MODIS 2018365.1830 

(<Year><Julian DOY>.<UTC Time>). 

 𝐷𝑇𝑇 𝑅𝑒𝑓 =  (𝑅𝜆 − 𝑇)/𝑇 eq. ( 8 ) 

 

 𝐷𝑇𝑇 𝑊𝐼 =  (𝑇 − 𝑅𝜆)/𝑇 eq. ( 9 ) 

 

 𝐷𝑇𝑇 𝑁𝐷𝑥𝐼 =  (𝑇 − |𝑁𝐷𝑥𝐼|)/𝑇            eq. ( 10 ) 

 

Figure 12 shows the DTT for the 7 observables followed by an RGB image from the LA 

PTA taken from Terra MODIS on Dec. 31, 2018. The three definitions produce a map of the 
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original scene, where white blending into red (DTT>=0) denotes increasing cloudy confidence, 

while white blending into blue (DTT < 0) denotes increasing clear confidence. Black (DTT = fill 

values) denotes that the test is not applied over that surface type, bad data, or missing data to 

calculate the observable. Wherever any pixel has a value of DTT >= AV over at least N of the 5 

tests, a final classification of cloudy is given. In the configuration file, the AV is 0 and N is 1. This 

means only 1 out of the 5 tests needs to exceed an AV of 0 to call the pixel cloudy, otherwise it is 

assumed to be clear if at least 1 test says so. The 0.65µm, 0.86µm and 1.38µm observables use eq. 

( 8 ), the WI uses eq. ( 9 ), and NDSI and NDVI use eq. ( 10 ) to calculate the DTT. These 

definitions keep the definition of cloudy consistent for DTT >= AV. This is the last step before 

producing the final cloud mask shown in Figure 13. 

 

 
Figure 13: Final cloud mask and RGB BRF image. Terra MODIS 2018365.1830 

(<Year><Julian DOY>.<UTC Time>). 
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Figure 14: From right to left the AV decreases causing the cloudiness to increase denoted by the 

red arrow. Terra MODIS 2018365.1830 (<Year><Julian DOY>.<UTC Time>). 

 

In Figure 14 the cloud mask is shown again but with different AVs that can be changed in the 

configuration file. If the AV is changed from 0 to 40, the cloud fraction decreases, since the DTT 

must then be at least 40 for a pixel to be classified as cloudy. The DTT can also be lowered to 

negative 10 for example, and now the cloud fraction increases since a lower threshold for DTT is 

required for a pixel to be called cloudy. The biggest change occurs at the cloud edges and over the 

North East quadrant over the bright desert mountains. In other words, the areas of low confidence 

clouds can be masked out or reintroduced by the user according to the AV. This will allow 

flexibility for the downstream aerosol products. 

The final output of the MCM is a designation of cloud, clear or unclassified pixels (Table 

5). The projected output file datasets can be found in Table 6. 

 

 

AV = 40 AV = 0 AV = -10 

Less Cloudy More Cloudy 
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Table 5: MAIA Cloud Mask output 

Output Integer Representation 

Cloudy 0 

Clear 1 

Bad Data 2 

Missing Data 3 

 

Table 6: MCM Projected Output File Contents 

Data Set Name Description Data Type 

Scene Type Identifier sun-glint/snow-ice/land surface/water mask 32-bit integer 

Final Cloud Mask cloud mask 4-bit float 

Distance to Threshold confidence metric for each test 64-bit float 

Observable Data helps interpret DTT 64-bit float 

 

This is the final product of the forward pass of the MCM. The algorithm rests on the threshold 

parameters to distinguish cloud and clear for the 7 observables. In Chapter 3 the land surface ID 

generation is shown in support of the threshold generation shown in Chapter 4 and in Chapter 5 

and Chapter 6 the results and analysis are presented. 
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CHAPTER 3 :  CUSTOM SURFACE ID 

 MOTIVATION 

Due to the variability of the surface BRDF in space and time, a dynamic surface ID is crucial to 

having a good threshold dataset for a cloud mask. Many surface ID maps exist for cloud masking, 

but do not meet this higher standard. For example, MOD35 uses a 16-day interval map made from 

only a few years of NDVI data binned 10 time from 0 to 1 (Ackerman et al., 2010; Moody et al., 

2005). The International Geosphere-Biosphere Programme (IGBP) is one NDVI based map fixed 

for the whole year from a couple of years of data (Loveland et al., 1997). The CSSC for MISR is 

also a static map (Diner et al., 1999). For the MCM we use the Multi-Angle Implementation of 

Atmospheric Correction (MAIAC) (Lyapustin et al., 2018) data to generate surface IDs. MAIAC 

provides a way to leverage 8-day BRDF datasets from Terra MODIS to classify the clear land 

surface by maximum observed reflectance. The land surface ID presented is static from year to 

year, but dynamic on an 8-day interval and at 1 km resolution. It is derived from 18 years of data, 

from 2002 to 2019, such that the extremes of the inter-annual variability in the recent past can be 

captured.  

 DATA: MAIAC 

The MAIAC “MCD19A3” files contain three kernel coefficients for the Ross-Thick Li-Sparse 

(RTLS) equation to retrieve BRDF given the sun-view geometry (Lucht et al., 2000). The exact 

forms of the equations are given in Lucht et al. (2000) equation 37 for the final BRDF, equation 

38 for the Ross-Thick kernel and equations 39-44 for the Li-Sparse kernel. The RTLS kernels 

depend only on sun-view geometry and are scaled by the three coefficients given in the MCD19A3 

file. Retrievals of the three coefficients are only done over clear sky (no clouds or AOD0.47µm ≥ 
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1.5) and snow-free land. The coefficients are derived from only 3 observations of the same point 

belonging to one 8-day period as observed from Terra MODIS. These coefficients are provided 

for every pixel in a given MODIS tile (Figure 15) every 8-days starting Jan 8 at 1 km resolution 

and they vary from year to year for every year of the MODIS Terra mission. 

 

Figure 15: Map of MODIS sinusoidal tiles. Axis v and h are numbered and are used in MODIS 

products to select an area, i.e. “MCD19A3.A2019033.h12v04.006.2019042034207.hdf”. Tile 

h12v04 is bordered in red and tile h08v05 is bordered in yellow. Figure taken from website: 

https://modis-land.gsfc.nasa.gov/MODLAND_grid.html  

 

For the LA PTA the MCD19A3 RTLS kernels (Figure 16) from the h08v05 tile (bordered 

in yellow, Figure 15) is regridded to the PTA’s bounding box defined by JPL shown in Figure 

17, for years 2002 to 2019. 

 

https://modis-land.gsfc.nasa.gov/MODLAND_grid.html
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Figure 16: Example file containing 3 kernels for all pixels in tile h12v04 at 1km resolution 

viewed on HDFView. 

 

 

Figure 17: LA PTA bounding box from JPL KMZ file viewed on Google Earth. 
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 MAIAC DATA PRE-PROCESSESING AND ALGORITHM INPUT/OUTPUT 

 

 

1. Start with MCD19A3 files from 2002-2019 that overlap with the PTA 

a. They contain 3 kernels per pixel that are used to back out BRDF from the RTLS 

equation for 8 bands. Choose the red band to characterize surface by visible 

reflectance. 

2. Regrid data from step 1a to Albert’s Equal Area projection over the PTA grid using the 

JPL provided bounding boxes. (This is the projection MAIA will use) 

3. Retrieve the maximum BRF over 2002-2019 at each pixel for the subset of sun view 

geometry specified in  

4.  

5. Table 7. 

6. Use the maximum BRF data from every pixel in the PTA grid as input into K-Means 

clustering algorithm (discussed in Chapter 3.4). The sun view geometry information and 

BRDF over time is the feature vector for each pixel in the grid. 

a. Specify 16 clusters to map the data to. 

b. Specify land-water mask (from JPL MAIA AGP file) 

i. Assign water to 0 & coast to 1 manually before clustering (do not cluster 

this data) 

c. Run the algorithm which produces a classification for each land surface. 

i. If pixel had less than 5, 8-day periods of data from 2002-2019, mark as 

invalid (2) and assign it the nearest neighbor land surface ID 

ii. Order the classes by the mean BRDF of each of the 16 categories. 

iii. Class 3 is the darkest, class 18 is brightest 
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The reason max BRDF is chosen to represent the surface types is to record the brightest a surface 

can get under cloud free aerosol free conditions for a particular sun-view geometry. Anything 

brighter would imply a cloudy pixel or an aerosol filled pixel with AOD0.47µm ≥ 1.5 assuming the 

MAIAC snow, cloud and aerosol masks are accurate (Lyapustin et al., 2018). This is in line with 

the cloud conservative behavior by assuming the surface BRF is lower than that for clouds. The 

sun-view geometry space sampled is shown below in  

 

Table 7. A composite graph of what is stored for input to the clustering algorithm is in Figure 18 

below. In this example it is the maximum BRDF observed for one pixel in the old Toronto PTA 

for each year from 2001 to 2016 for SZA equal to 45 degrees and DOY 185 of 365 (left). Then the 

data is combined by taking the maximum BRDF for all years (right). This datasets is produced for 

each of the pixels for every PTA, for 10 cos(SZA) and for 46 DOY bins. 

 

Figure 18: Example BRF polar plot for cos(SZA=45 degrees), DOY 185, at the pixel in row 

510, column 500 in the fixed PTA grid. Figure produced by Dr. Yizhe Zhan. 
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Table 7: Sun View geometry values sampled for K-means cluster algorithm. 

Quantity Range Interval Unit 

cos(SZA) [0.05, 0.95]  0.10 [unitless] 

VZA [2.50, 72.5] 5 [degrees] 

RAA [7.50, 172.5] 15 [degrees] 

In the next section the main surface ID algorithm and the analysis of its results are given using 

the workflow presented in this last section.  

 K-MEANS CLUSTERING LAND SURFACE ID (KLID) 

This new database from the previous section is then used as input into the K-Means algorithm 

from the Sci-Kit Learn machine learning library in Python, implemented according to Arthur and 

Vassilvitskii (2007). This is an unsupervised clustering algorithm that assigns data points to 

randomly initiated cluster points in the feature space, and then iteratively moves the clusters until 

convergence. The feature space is the cos(SZA), VZA and RAA and the corresponding max BRDF 

for an 8 day interval. The input dataset is the BRDF at the sun-view geometry shown in  

 

Table 7 for a single 8-day period. The other input is the number of clusters or labels to assign the 

data to. K-Means Clustering will initialize n random cluster centers in the feature space. We chose 

n to be 16 because it had the lowest misclassification rate (using MOD35 as the truth) for the LA 

PTA when it was used to run the MCM on all 18 years of Terra MODIS data as shown in Figure 

19. It is worth noting though that the misclassification rate is a weak function of the number of 

land surface types used, but 16 was chosen because it resolved the surface features accurately. The 

algorithm then iteratively minimizes the distance between each randomly initiated cluster center 

and all the data points within the feature space by moving the cluster centers. 
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Figure 19: Misclassification rate in % of the MCM as the number of KLID surface types change, 

when MODIS is used as the true cloud mask. Red dashed line shows the global minimum of 

misclassification rate at 16 KLID surface types. 

 

When the algorithm converges, each data point is assigned the cluster center closest to it. The 

result is that all the original data points are assigned to 16 clusters. Each group contains so many 

BRDFs and is now represented by the mean BRDF of the cluster. The categories are then reordered 

by the mean BRDF and assigned a value between 3 and 18. Where 3 is the darkest and 18 is the 

brightest land type. A land-water mask provided by JPL allows us to assign water to 0 and coast 

to 1. Points which did not have at least 5 years of input data to the 8-day interval or if any of the 

kernels from MCD19A3 were less than -1 were assigned the nearest neighbor land surface ID. The 

algorithm is run for every 8-day interval which gives 46 land surface ID maps for the year. In 

Figure 20 2 KLID maps are shown (category 3-18 is mapped to 0-15), one valid for DOY 185-

192 and one valid for DOY 361-365. Because each cluster center is derived from one 8-day period 

of data (for years 2002-2019), each cluster, 0-15, will be a slightly different mean BRDF value 

from one DOY bin to another. This means that land surface category 4 on DOY 300 could have a 
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sufficiently different mean BRDF to category 4 on DOY 200 due to seasonal changes in albedo. 

Therefore, any one category is not equal to the same category in another 8-day period.  

 

Figure 20: K-Means Surface ID maps valid at 2 different times of the year. 0 to 15 is derived from 

the algorithm. Coast and water categories come from a static land water mask provided by JPL. 

NOTE: The BRDF representing category X is not necessarily equal to the same X for another 

DOY bin, since they are derived from independent data. 

 

Evaluation of KLID is done in two ways. 1) Compare it to a color image from a day within 

the DOY range to see if it is distinguishing the surfaces intuitively, and 2) see if the resulting cloud 

mask derived from KLID is any good. Currently KLID uses the nearest neighbor surface type to 

mask bad or missing data from the MAIAC dataset. In addition to this custom land surface ID, a 

water mask and snow-ice mask are needed, since precipitation and freezing can alter the surface 

properties. The threshold development uses the MOD35 snow-ice mask. The MAIA AGP file from 

JPL includes a static land-water mask that will be used for all processing. The MAIA science team 
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has decided to add the Global Multisensor Automated Snow and Ice Mapping System (GMASI) 

(Romanov, 2017) daily snow and ice mask to the cloud mask workflow since the MAIA mission 

is not producing its own snow-ice product. However, the current MCM threshold database is being 

developed with the MOD35 snow and ice product which is nothing more than a threshold of 0.4 

on the normalized difference snow index (NDSI) and a cross check in warmer regions to agree 

with the National Snow and Ice Data Center (NSIDC) or National Oceanic and Atmospheric 

Administration (NOAA) snow-ice masks.  

In the next chapter the threshold derivation using this surface ID, KLID, is shown. 
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CHAPTER 4 :  PRE-LAUNCH THRESHOLD DEVELOPMENT 

 DATA: TERRA MODIS  

The Terra MODIS instrument has a lot of characteristics similar and relevant to the MAIA mission. 

MODIS is a polar orbiting, wide swathed, multi-spectral imager, with a 1km resolution cloud mask 

with 4 confidence levels: cloud, uncertain clear, possibly clear, and clear. MAIA will also produce 

a 1km cloud mask in a similar orbit, with similar wavelengths and sun-view geometry. Terra 

launched in 1999 and at the time of this thesis it has been operational for 20 years – the longest 

NASA Earth Observing System (EOS) mission in history. Therefore, Terra MODIS provides the 

MCM with a long record of observations needed to produce robust thresholds. It should be noted 

that although MAIA is a multi-angle instrument like MISR, MISR lacks a lot of cloud masking 

hardware and VZA sampling that will be present on MAIA and is therefore not a good candidate 

to derive the thresholds with. 

The thresholds are derived using Terra MODIS radiances, cloud mask, snow-ice mask, 

sun-view geometry and geolocation data from January 1st 2002 to December 31st 2019 (see Table 

8). In Table 9 MODIS bands 1, 2, 3, 4, 6 and 26 are used as proxy to MAIA bands 6, 9, 4, 5, 12 

and 13, respectively. These will be the bands used for the cloud masking observables. Note that 

the band used for cirrus detection to derive the thresholds is 1.38 µm for MODIS while on MAIA 

it will actually be 1.88µm. Meaning that the thresholds would potentially need to be adjusted post-

launch. 
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Table 8: MODIS products used in MCM threshold derivation. 

MODIS Product File Data Fields Description 

MOD021KM EV_250_Aggr1km_RefSB Bands 1,2  

EV_500_Aggr1km_RefSB Bands 3,4,6  

EV_1KM_RefSB Band 26 

Radiance 

[W/m^2/µm/sr] 

MOD03 latitude/ longitude 

SolarZenith SolarAzimuth 

SensorZenith SensorAzimuth 

Angles [degrees] 

MOD35 Unobstructed_FOV_Quality_Flag cloud, uncertain 

clear, possibly clear, 

clear 

Snow_Ice_Background_Flag snow/ice, no 

snow/ice 

 

Table 9: Cloud masking bands. Tan background (MODIS), blue background (MAIA), white 

background (MODIS and MAIA). 

MODIS Band 1 2 3 4 6 26 

Bandwidth nm 620-670 841-876 459-

479 

545-565 1628-1652 1360-1390 

MAIA Band 6 9 4 5 12 13 

Band Center nm 646 866 444 550 1610 1886 

Description Red Water 

absorption 

Blue Green Snow/ice 

absorption 

Water vapor 

absorption 

 

 ALGORITHM FOR GENERATING THRESHOLDS 

 

The MCM thresholds are derived using the same cloud conservative cumulative histogram method 

that MOD35 uses for its collection 6.1 visible reflectance test. The cloud conservative threshold is 

chosen such that 99% of the clear observations are classified correctly according to the MOD35 

Unobstructed_FOV_Quality_Flag within a grouping of data known as scene type as seen in Figure 

21. For the NDVI, NDSI and WI observables a slightly different method is used, which is described 

later.  
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Figure 21: On the right is an example histogram of MODIS 0.64 µm BRF classified by its 

MOD35 cloud masking product used to create a threshold (green dashed line) for the data bins 

defined in the table on the left. Clear data is blue and cloudy data is red. The number of data 

points for each type is on the bottom left table. 

 

A scene type is defined as an observation that is associated with a particular cos(SZA), 

VZA, RAA, scene ID and DOY bin (see Table 11). Scene ID is the KLID surface ID overlaid with 

the coast, water, sun-glint water and snow-ice masks. To create a threshold the scene type must 

contain 5000 data points belonging to clear pixels for Vis Ref, NIR Ref, Cirrus, SVI, and WI. For 

NDSI and NDVI the bin must have at least 5000 cloudy pixels. This is so there is enough data to 

capture the variability of the observable. 

 

Table 10: Scene ID # along with meaning. Scene ID is subset of scene type. 

Scene ID  Darkest 

Land 

... Brightest 

Land 

Coast No-Glint 

Water 

Glint 

Water 

snow-ice 

# 0 ... 15 16 17 18 19 
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Table 11: Every pixel is placed into these discrete bins to group like data. 

Observable Level 

Parameters 

# of bins Bin Range Bin Interval Unit 

cos(SZA) 10 [0,1] 0.1 [unitless] 

VZA 14 [0,70] 5 [degrees] 

RAA 12 [0,180] 15 [degrees] 

Scene ID 15 [0,14] 1 [unitless] 

DOY 46 [1,365] 8  [days] 

 

This makes 10 cos(SZA)*12 RAA*14 VZA*20 Scene ID*46 DOY = 1,545,600 maximum 

possible scene types and therefore thresholds for each of the 11 PTAs and for each of the 7 

observables. Because the observations are limited by the Terra orbit, MODIS camera, and the 

geography of each PTA, only a small subset of the sun-view geometry bins will be observed. This 

means many bins will not have a threshold derived for them. However, since MAIA will have a 

similar orbit to Terra and similar sun-view geometry to Terra MODIS this is not an anticipated 

problem. Nevertheless, for sun-view geometry bins with no thresholds, the nearest neighbor 

threshold is chosen while keeping the scene ID and DOY bin the same to preserve their meaning. 

Therefore, the nearest neighbor search is done by looking for the closest sun-view geometry bin 

that is populated with a threshold. 

4.2.1. CODE STRUCTURE AND PERFORMANCE 

 

The derivation of the thresholds was the main focus of my research for the master’s degree. The 

code was developed to function in a highly parallelized environment that would not be possible 

without the resources of the University of Illinois at Urbana-Champaign’s Department of 
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Atmospheric Sciences. Their Keeling computer cluster was used to store 5 Terra Bytes (TB) of 

data per PTA using anywhere from 1 to 46 to 200 cores at a time to carry out the processing and 

data analysis. What resulted was a modular and optimized suite of code to produce and analyze 

the thresholds with little prior knowledge of the code. What is presented is the logic to derive the 

thresholds for any PTA starting with a description of the main codes and the configuration file to 

customize it and ending with the batch script that runs all the code automatically in one command. 

 

Figure 22: Flow chart showing the code and data used to produce the final threshold dataset. The 

red boxes on the left are the three Terra MODIS product files used (truncated to just the product 

name). The blue boxes are data files generated for the thresholds. Black rhombuses are individual 

scripts. Green ovals are datasets produced by the scripts. The red numbers indicate how many files 

were produced for that dataset. All file names slightly simplified for brevity. 

Figure 22 shows the 6 scripts along with their input and output used to create the final 

threshold dataset. The config.txt file, shown in blue, is a human readable file that defines the paths 

to all the data needed to produce the thresholds. It is also editable so that when the code is run on 

a different machine the paths can be customized as the coder sees fit. The three red boxes on the 

left of Figure 22 are the Terra MODIS 5-minute granules, described in Table 8. The 
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Grids_<XXX>_<city>.h5 files are defined for each PTA. The “XXX” is the country code, for 

example “USA” and the city could be “LosAngeles” to be Grids_USA_LosAngeles.h5 for the LA 

PTA. It contains the exact longitudes and latitudes that define the 400 by 300 km MAIA PTA at 1 

km resolution. Next the configuration file to run the code is described. 

 

Figure 23: This figure shows the configuration file formatted in order to be queried by the Python 

library configparser. It contains the definitions of file paths and the PTAs that can be accessed by 

any scripts. 
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Figure 23 shows the contents of the configuration file, config.txt, that allows the paths of 

all the data to be edited and accessed from one file. This allows the user to work agnostically from 

the main code, which improves efficiency and avoids introducing new bugs into the main code. 

This is formatted to be accessed inside the main codes using the Python library, configparser. The 

headings in brackets define a category. The subheadings, without brackets, define variables where 

strings are stored. The strings can be changed to match the correct paths of the data for the working 

machine. In this figure, I show the working paths on the Keeling cluster where the thresholds were 

originally derived. The main purpose of this file is to change the working PTA, so the subheading 

PTA can be changed to any one of the 11 PTAs. As shown in line 3 it is set to the “LosAngeles” 

PTA. Now that the configuration file is defined the 6 scripts can be described.  

 

Create_Dataset.py 

This script takes the three Terra MODIS files corresponding to one 5-minute granule, truncates 

them to only what is necessary and reprojects them onto the current PTA. The rest of the data is 

not further used. The PTA is specified in config.txt and the longitudes and latitudes are defined in 

Grids_USA_LosAngeles.h5 for the LA PTA for reprojection. The code is ran using 60 cores to 

reduce the run time from ~6.25 days to ~2.5 hours for one PTA. This results in 60 Database.h5 

files which contain a combined ~10,000 scenes from 2002 to 2019. Each scene is stored in a group 

named after the timestamp, <year><Julian day>.<UTC time> i.e. 2018365.1830. For each group, 

datasets are created for the radiances, reflectances, Earth-Sun distance, scale factors of radiance 

and reflectance, VZA, SZA, SAA, VAA, MOD35 cloud mask, latitude and longitude are stored in 

easy-to-read units ready for processing. The exact bands are listed in Table 9 
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Calc_Obs.py 

This script reads in each Database.h5 file and for each scene produces the 7 observables described 

in Chapter 2.3, the visible BRF, NIR BRF, Cirrus test, SVI, WI, NDVI and NDSI. The structure 

is identical to the 60 Database.h5 files, meaning all the granules are in the same order, except only 

the observables are stored as datasets. 

 

Calc_OLP.py 

This script reads in each Database.h5 file and the SurfaceID.nc file. For each scene, it produces 

the OLPs, or observable level parameters, as described in Chapter 2.2. The OLP defines the scene 

type of each pixel by its cos(SZA), VZA, RAA, DOY, surface type and PTA bin defined in Table 

3. The structure is identical to the 60 Database.h5 files, meaning all the granules are in the same 

order, except only the OLPs are stored. 

 

Group_by_OLP.py 

This is the most important script because it groups the data by its scene type which is defined by 

the OLP of each pixel. Along with the OLP of each pixel, the 7 observables and the cloud mask 

for that pixel are now known. That gives all the ingredients needed to calculate the thresholds. 

This script produces 60*46 or 2,760 files. This is because for each of the 60 Obs.h5 and OLPs.h5 

files, 46 files are written containing the unique scene types found in them. For example, all pixels 

belonging to DOY bin 0 are written to a file and so on to the 45th bin for one corresponding set of 

OLPs.h5 and Obs.h5, so therefore 60*46 files total. Inside each file are groups defined for each 

unique scene type observed. Inside each group, each pixel that belongs to it is stored as that 

datapoint’s 7 observables and its cloud mask as one row of data. Thus, a 2D array is created where 
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each row is one data point with 8 columns, the 7 observables plus the cloud mask. An example is 

shown in Figure 24. The group file in the green oval belongs to the LA PTA, with a timestamp in 

the first of the 60 OLP/Obs files and corresponds to DOY bin 0. Inside there can be n groups from 

0 to 33,600. If a possible group (scene type) is not observed over the 18 years of Terra MODIS 

data, no group is recorded. Inside each group is a 2D array of 64-bit floats (the cloud mask is stored 

as a 64 bit float, but has values 0,1,2,3). The number of pixels that belong to a group is not known 

until the script ends. 

 

  

Figure 24: Structure of group files. 

 

Therefore, the array has an unknown number of rows before the script is over. It could be 0 or 1 

or 5,000,000 pixels that belong to that scene type. After this step the 2,760 files must be combined 

into 46 files. At the time of calculating the thresholds, all the data belonging to one group must be 



57 

 

read into memory, since the threshold is a percentile of the observables for one particular scene 

type (discussed further in Chapters 4.2.2-4.2.4). This is all done to minimize the memory and the 

runtime, since the code must search through all 18 years of data which cannot fit on the max 128 

GB per node on the Keeling cluster. Moreover, this is to avoid redundant recalculations if a 

downstream script has bugs.  

 

Combine_Groups.py 

This script combines the 2,760 Group.h5 files into 46 files, one for each DOY bin. This sets up 

the next script, Calc_Thresh.py, to be able to calculate the thresholds for each scene type. The 

reason to combine it into 46 files and not 1 file, is to run it parallelized on 46 cores. This 

dramatically improves the Calc_Thresh.py runtime from ~5 hours to ~7 minutes. The threshold 

derivation for each test is discussed in detail in Chapters 4.2.2-4.2.4. 
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Figure 25: Batch script for the SLURM job manager used on the Keeling cluster. This shows 

how all codes are run in one central script using multiple cores. 

 

 Figure 25 shows the batch script to submit the codes to the SLURM job manager. This 

allows the 6 scripts to be run from one central location after debugging. Using this method, the 

wall time of 13 hours (line 4), 16 GB of memory per core (line 5), 60 cores (line 6), a notification 

system (line 9) and an error file (line 10) can be defined to run the scripts. Then the working 
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directory is defined (line 13) where all the code is stored. Afterwards, each code is run with the 

number of cores it requires using the mpi4py Python library to pass it to the scripts. After every 

script there is an “&” and in the line below the key word “wait”, which tells the SLURM job 

manager to run the codes linearly, so when one script’s final data is written onto the disk, then the 

next script can access those files after they have been fully populated. The first four scripts on lines 

16, 21, 27 and 35 get 60 cores and 16 GB of memory per core. This was chosen to split the 

processing work 60 ways, which results in 60 separate files per script. The 60 files from 

MPI_Create_Dataset.py feed into calc_observables.py, which produces 60 files that feed into 

calc_OLP.py and so on into group_data_by_OLP.py. This allows data to be written to disk without 

errors from multiple cores accessing the same file. However, these need to be combined to produce 

the thresholds, so on line 40, combine_grouped_files.py is ran to produce one file for each DOY 

bin, 46 in total. Finally, calc_threshold.py is ran to create 46 separate threshold files, one for each 

DOY bin. In the main MCM code from Chapter 2 the correct threshold file is chosen 

automatically based on the timestamp of the scene given.  

All the code was run on the Keeling cluster using the Intel(R) Xeon(R) CPU model E5-

2660 v3, clocked at 2.6 GHz with 1 thread per core and 10 cores per socket. Each node has 20 

cores and 128 GB of memory. The allocation of cores and memory used is shown in Figure 25. 

4.2.2. VISIBLE REFLECTANCE/ NIR REFLECTANCE/ CIRRUS TEST/ SVI 

THRESHOLD DERIVATION 

 

These observables have the same threshold derivation since they all correlate positively with 

clouds. In other words, higher values of these observables are associated with higher cloud 

confidence. Lower values are associated with higher clear confidence. The more reflective a pixel 

is in the NIR or visible channel, the more textured it is in a 3x3 pixel window, the more reflective 
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it is in the water vapor absorption channel the more likely it is that that pixel is cloudy. Therefore, 

exceeding the threshold should flag the pixel as cloudy. The threshold is chosen to be the value, 

such that 99% of the clear pixels for a group (scene type) are classified correctly according to the 

cloud confident MOD35 classification (Figure 21).  

In Figure 26, the pseudo code to calculate the threshold for these tests is shown. First it 

checks if there are clear data points for “obs_X” and for scene type “xyz”. If there are clear data 

points in that group, the threshold is chosen to be the 99th percentile of those values using the 

nanpercentile function from the Python library, numpy. 

 

Figure 26: Pseudo code of how to calculate threshold and where to store it in threshold array. 

bin_xyz is the scene type, obs_x is 1 of 7 observables. 

4.2.3. WHITENESS INDEX (WI) THRESHOLD DERIVATION 

 

The whiteness threshold is derived similarly to the above, but WI values are negatively correlated 

to cloudiness. In other words, a WI of 0 is perfectly white and higher values are less white. Since 

clouds are white in the visible spectrum, they are associated with values close to 0. So instead of 

exceeding a threshold to be cloudy, the pixel must fall below the threshold to be cloudy. The 

threshold is chosen to be the value, such that 99% of the clear pixels in a group (scene type) are 

classified correctly according to the cloud confident MOD35 classification.  

In Figure 27, the pseudo code to calculate the threshold for this test is shown. First it checks 

if there are clear data points for “obs_X” and for scene type “xyz”. If there are clear data points in 

that group, the threshold is chosen to be the 1st percentile of those values using the nanpercentile 

function from the Python library, numpy. 
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Figure 27: Pseudo code of how to calculate threshold and where to store it in threshold array. 

bin_xyz is the scene type, obs_x is 1 of 7 observables. 

4.2.4. NORMALIZED DIFFERENCE VEGETATION AND SNOW INDICES 

(NDxI) THRESHOLD DERIVATION 

 

These thresholds are derived differently. Values approaching zero from the negative and positive 

sides are associated with cloudy pixels, and values far from zero are associated with water, snow 

and vegetation. Therefore, we need to create a range centered around a threshold, and any pixel 

with NDxI that falls within that range is called cloudy. To understand why the threshold is 

calculated the way it is, the metric distance to threshold or DTT, must be understood. DTT is the 

Euclidean distance between the threshold and the observable value, normalized by the threshold. 

Because NDxI can be negative, the absolute value is taken. This gives the equation  

 (𝑇 −  |𝑁𝐷𝑥𝐼|) / 𝑇 eq. ( 11 ) 

The result is that for a given threshold, DTT creates a window or range around the threshold for 

which those NDxI values correspond to cloudy pixels. In other words, any NDxI value larger in 

magnitude than the threshold resulting in DTT < 0, is outside this range and therefore from a clear 

pixel, otherwise it falls within the range and is therefore from a cloudy pixel, corresponding to 

DTT >= 0.  

The threshold is chosen as the value corresponding to the most populated bin in an NDxI 

histogram of cloudy pixels, which is the peak of the histogram or mode of NDxI for cloudy pixels. 

The NDxI values are binned from -1 to 1 over 128 bins. A negative DTT then means the NDxI 

value is outside this range and therefore clear. Note that this method assumes the cloudy signal is 

symmetric about the threshold. This is rarely the case, however. The real range is always slightly 
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lopsided and is necessarily a limitation of this technique. Despite this, the results are still good. A 

possible improvement would be to independently choose two thresholds, one to bound each side 

of the range, instead of relying on DTT which is symmetric. 

 In Figure 28, the pseudo code to calculate the threshold for these tests is shown. First it 

checks if there are cloudy data points for “obs_X” and for scene type “xyz”. If there are cloudy 

data points in that group, a histogram of the data is built using the histogram function from the 

Python library, numpy. It is binned from -1 to 1 with 128 bins. Then the mode of the histogram is 

chosen as the threshold by finding the bin that has the maximum number of samples. Since the 

mode is not unique to one bin in a histogram, the minimum of all the modes is chosen as the 

threshold. This is because clouds tend to lower the NDVI, so the lowest mode is the most cloud 

conservative. 

 

Figure 28: Pseudo code of how to calculate threshold and where to store it in threshold array. 

bin_xyz is the scene type, obs_x is 1 of 7 observables. 

 

 

 

 

 

 

 

 



63 

 

CHAPTER 5 :  PRE-LAUNCH VERIFICATION OF MCM AND THRESHOLDS 

 THRESHOLD ANALYSIS AND ALGORITHM PERFORMANCE 

In Chapter 4 the thresholds are derived for the MCM. Analyzing the values of these thresholds 

gives insight into how the tests characterize clouds and the background for each scene type. The 

analysis that follows is for the LA PTA using the Terra MODIS dataset from 2002 to 2019. All 

accuracy referred to are training accuracies since the Terra MODIS data used to evaluate and to 

derive the thresholds are the same. The MOD35 cloud mask from Terra MODIS is assumed to be 

the truth where confident cloudy is “cloud” and uncertain clear, probably clear and clear are all 

“not cloud”. 

The histograms of the thresholds for each observable are shown in Figure 29 for the LA 

PTA. These histograms combine all surface ID, DOY, and sun-view geometries, and are derived 

from MODIS-Terra data collected between 2002 to 2019. The y-axis is plotted on a log scale to 

show the less full bins. The histograms show the wide range and frequency of thresholds derived 

to closely match the Terra MODIS MOD35 confident-cloud cloud mask. The range of thresholds 

come about from the binning used in Table 3. This binning was chosen to create independent scene 

types such that all the data in one scene type share similar physical attributes, as to derive a 

threshold that can best separate both classes of observations, cloud and not cloud. The WI 

histogram is bi-modal where most of the thresholds are near zero (the first hump), suggesting a 

split in the data where one group of scene types (e.g., vegetated surfaces) is much less white than 

the others (e.g., desert surfaces) given the observed clouds. The second hump could correspond to 

non-sun-glint water which is very black. This second hump can be seen in isolation in Figure 30 

for the WI water boxplot. NDVI has most of its thresholds between 0 and 0.4. NDVI greater than 

0.4 starts to become vegetated land and below zero is characteristic of water, while thick clouds 
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will tend the NDVI to just above zero (Zhu and Woodcock, 2012). The NDSI thresholds are all 

above 0.4. This is because the snow mask used to derive the MCM thresholds uses the condition 

of at least 0.4 NDSI for snow (Ackerman et al., 2010). The histogram suggests the observed clouds 

over snow according to the MCM occur at NDSI values between 0.4 and 0.7. The visible BRF 

threshold histogram peaks around 0.2 and extends to BRFs over 1. The NIR BRF thresholds are 

only applied over non-sun-glint water and thus tend to be a magnitude lower in value than the 

visible BRF thresholds, since water is very dark at 0.86 µm BRF but clouds are still relatively 

bright (Ackerman et al., 1998). The higher thresholds observed are due to shallow waters and 

sandy beaches classified as water in the land-water mask. The sun-glint mask tends to do a good 

job of masking out the glitter regions and is not considered as significant contributing factor to the 

high thresholds. The SVI thresholds peak around 0.05. The higher SVI values are due to the 

observable also being applied over land which has much higher texture than the ocean at 1km 

resolution. The cirrus threshold histogram has a global maximum between 0.025 and 0.05 then 

falls quickly with increasing BRF.  
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Figure 29: Histograms of the complete threshold dataset for each of the 7 observables for all 

surface ID, DOY and sun-view geometry bins. The x-axis is on a linear scale. The y-axis is on a 

log scale and denotes the number of thresholds in that bin. 

 

The box and whisker plots of the thresholds for each observable (Figure 30) show how the 

distribution of thresholds changes as a function of surface ID. This gives insight into how surface 

types contribute to the thresholds distributions and if each one gives a unique advantage to the 

MCM. The distributions of thresholds are only shown when the observable is applied to that 

surface ID. The thresholds are valid for the LA PTA, derived from years 2002 to 2019. The lines 

on the end of the whiskers are the range excluding outliers, the box is the 1st and 3rd interquartile 

ranges and the orange line in the middle is the median. The red line overlayed on the box and 

whisker plots show the percent change of the mean threshold from surface type n-1 to surface type 

n, from n=1 to n=16 which is the coast category. This is helpful to see how strong of a function 

the thresholds are of the surface type as the surface gets brighter. Water and NDSI are only used 

over one surface type, so no meaningful threshold analysis can be done with respect to changing 

surface type. 
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Figure 30: Box and whisker plot to show the distribution of thresholds for each surface type and 

for each observable independently. The x-axis is the surface type from KLID, 0 to 15, and the rest 

are from ancillary masks. The left y-axis shows the threshold values and the right y-axis (red line) 

is the percent change of the mean threshold from the previous surface type valid from 0 to coast. 

Box and whisker plots are only produced when that observable is applied over that surface type. 

 

For the WI, a perfectly white pixel has the value of 0, and the value becomes more positive 

for less white observations. The WI thresholds here decrease with the KLID surface types implying 

that the brighter surfaces like the deserts in the LA PTA are the whitest and therefore need the 

lowest WI thresholds to decern clouds from the background. This means cloud detection over the 

brighter surfaces is a more difficult than over darker surfaces for the WI since it will necessarily 

miss clouds with higher WI values. Non-sun-glint water is the blackest surface type the MCM 

recognizes and therefore has the largest WI thresholds. This indicates over this surface the WI has 
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highest contrast between clouds and the background, able to find thinner clouds than possible over 

bright desert.  

For the NDVI the threshold distributions vary relatively weakly with surface type around 

0.05. However, some surface types show more variability in thresholds than others. Notably for 

surface type 9, 15, coast, water and sun-glint water. 

For the visible reflectance test the thresholds increase with KLID surface types as expected 

since they are ordered by BRF from darkest to brightest. The largest threshold range is for the 

coast surface type which is likely due to the inherit errors in the land-water mask. This can be seen 

by inspection, where some coast pixels contain deep ocean, some shallow ocean, some sandy 

beaches, and some dark land. This suggests it maybe more useful to let KLID decide the surface 

type of the pixels belonging to the coast type instead of a static land-water mask. 

 For SVI the threshold distributions first decrease towards zero with surface type but then 

increase. Vegetated land tends to occur on flat terrain and vary smoothly in the LA PTA, whereas 

the brighter desert regions contain more boundaries and rough mountainous terrain. Coast has the 

highest snow-free land thresholds of SVI which is likely due to the coast type being a surface 

boundary by definition. Snow has the largest over all SVI thresholds which is consistent with the 

mountainous region that snow is found in for the LA PTA. The snow surface on mountains also 

have high SVI values because the perimeter of the snow fall is very irregular. Water has the lowest 

SVI thresholds followed by sun-glint water which is expected. At 1km resolution most waves 

cannot be resolved, but sun-glint causes texture associated with how sun-glint becomes visible. It 

also makes the banding in the MODIS images more obvious which can lead to higher texture 

values.  
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 The cirrus thresholds vary little with the KLID surface types, 0-15. Often the lower 

atmosphere has enough water vapor to obscure the surface from view (Gao et al., 1993) and make 

the surface type irrelevant. Despite this, the mean thresholds do change about 5% to 10% across 

the surface types indicating something about the detectability of clouds with respect to the KLID 

surface types, which may indicate spatial variations in the amount of water vapor that is closely 

tied to the surface type, such as dry deserts. The mean coast threshold is over 40% greater than the 

mean thresholds for surface type 15. No reason is apparent from the time of this thesis. The two 

water types have the lowest cirrus thresholds which is consistent with water’s high absorption in 

the NIR wavelengths (Jedlovec, 2009). This implies clouds above the moist layer have higher 

contrast over water than over land, particularly for a dry atmosphere.  

The half polar plots (Figure 31) show the training accuracy of the MCM (as compared to 

Terra MODIS) as a function of the sun-view geometry for the LA PTA from 2002 to 2019. There 

are 10 polar plots, one for each SZA bin. The azimuthal axis is the RAA with symmetry about the 

principal plane with the backscatter direction defined at 180 degrees and the forward scatter 

direction at 0 degrees. The zenith or radial axis is the VZA. Every grid cell represents a unique 

combination of SZA, RAA and VZA. The empty cells are where not enough data were observed 

belonging to that bin from Terra MODIS to produce a threshold (note that no nearest neighbor 

thresholds were used to occupy the empty cells, since no data from MODIS has sampled that sun-

view geometry over the LA PTA). The lowest accuracies are seen in the bins adjacent to empty 

cells in the direction of increasing VZA. This may suggest a sampling issue where there are not 

enough high VZA observations able to inform the threshold calculation before the cutoff of 5,000 

required to derive a threshold. The highest fraction of grid cells is filled for low SZA which is 

consistent with Terra’s 10:30am equator crossing time where the sun is near its max height, and 
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with the LA PTA’s latitude around 34 degrees North. As the SZA decreases the forward scatter 

direction performs better than the backscatter direction. In Figure 32 the exact same plot is shown, 

but for the number of samples used to compute the accuracies in the previous figure. The many 

low accuracy bins coincide with low sample numbers below 108 observations. This suggests the 

MCM has difficulty choosing a threshold for these bins due to sampling. However, sample number 

alone cannot explain why the MCM fails in certain bins, and this is not easily verified by image 

inspection since the sun-view geometry bins vary rapidly within a MODIS granule. Further 

analysis is required to determine the cloud and surface properties that would lead to low 

performance under these sun-view geometries. 
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Figure 31: Training accuracies plotted for each sun-view geometry bin observed in the dataset. 

Each plot is a SZA bin (left to right top to bottom the bins go from 9 to 0). The azimuthal axis is 

the RAA. The zenith or radius axis is the VZA. Note the VZA bins go every 5 degrees on the grid 

lines, but only every 10 degrees is labelled to make the plot readable. 
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Figure 32: Number of samples plotted for each sun-view geometry bin observed in the dataset. 

Plot is in log base 10 scale. Each plot is a SZA bin (left to right top to bottom the bins go from 9 

to 0). The azimuthal axis is the RAA. The zenith or radius axis is the VZA. Note the VZA bins go 

every 5 degrees on the grid lines, but only every 10 degrees is labelled to make the plot readable. 
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There are 16 KLID surface types plus coast, water, sun-glint water and snow-ice. Two 

important questions are 1) how is the MCM doing over land, water and snow, and 2) are the KLID 

surface types performing as expected. The pink line in Figure 33 shows the accuracy of the MCM 

(as compared to Terra MODIS, MOD35, for the LA PTA from 2002 to 2019) as a function of 

surface type and the cyan line shows the number of samples for the surface type in a log scale. 

Most notable is that the log scale of the number of samples line correlates well with the accuracy 

line implying low performing surface types could benefit from an increase in observations. In spite 

of this, the accuracies still reflect the relative difficulty of cloud detection over each surface type.  

Non-sun-glint water has 95% accuracy, snow performs the worst with 42% accuracy, and the 

accuracy decreases from ~97% to ~81% as the surface types get brighter from 0 to 15. The 

coastline often appears cloudy in clear scenes and is the worst performing after snow at 80%. 

 

Figure 33: Accuracy of the MCM over the LA PTA from 2002 to 2019 by the surface type. The 

left axis in pink shows the accuracy in percent and the right axis shows the number of samples in 

the surface type on a log scale. 
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Figure 34 shows the accuracy at a fixed location in the grid for the LA PTA by the four 

seasons from 2002 to 2019 (the accuracy is computed relative to the number of samples in a fixed 

location). The seasons are defined by DJF (Winter), MAM (Spring), JJA (Summer) and SON (Fall) 

which are the months December, January, February, March, April, May, June, July, August, 

September, October, and November. For reference, Figure 35 shows a KLID map valid for the 

DJF period. Although the map varies every 8 days, the basic patterns are the same. The highest 

accuracies (above 95%) observed in all panels coincide with the green surface types from category 

0 to 3. These are the 4 darkest land surface types and give the most contrast to cloud cover. The 

red areas in Figure 35 corresponding to the coast and have some of the poorest performance, near 

40% to 60%. The coast is bright and contains a mixture of land and water types that use the same 

thresholds which makes it an inherently difficult region for the MCM. The Sierra Nevada 

mountains have KLID values greater than 7 and also exhibit low accuracies around 60% to 70%. 

These two figures show well how the brightness of the surface type correlates negatively with the 

performance of the MCM. This suggests and is later supported by the confusion matrix (Table 12) 

that the dominant error is due to false cloudy flags caused by bright surfaces. The seasonal 

variation in performance is less dramatic. The dominant signals from the coast, the mountains, and 

the bright surfaces still hold up, however, the Sierra Nevada mountain area performs worst in the 

summer (JJA). JJA has the lowest snow amount of all the season and is the driest and hottest time 

of the year for this region. Further investigation would be needed to find out what in the MCM or 

observations caused the drop in performance.  
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Figure 34: Training accuracy of the MCM of the LA PTA by season as compared to MOD35 

confident cloudy class. Accuracy in each pixel is valid for that fixed location from 2002 to 2019. 

DJF, MAM, JJA and SON are the months December, January, February, March, April, May, June, 

July, August, September, October, November. 
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Figure 35: The KLID map of the LA PTA valid for DOY 361-365 which are the last 6 days of 

December. 

 

Figure 36 shows the accuracy of the MCM and the number of samples as a function of the 

46 DOY bins for the LA PTA from 2002 to 2019. The DOY on the x-axis represents that Julian 

day and the previous 7 days of data. The performance is good throughout the year and both lines 

are somewhat in phase. The DOY 24, 48, 88, 232, 288, and 344 accuracy local minima have 

coincident local minima with the sample number suggesting these DOY bins could improve 

accuracy if they had more observations, although that does not seem to explain all the minima in 

accuracy, so further investigation is required. And lastly, the worst performing DOY bins are later 

in the year and get worst as the year ends. 
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Figure 36: Training accuracy as compared to MOD35 confident cloudy class over the LA PTA 

from 2002 to 2019 by Julian DOY. The pink line shows the accuracy, and the cyan line shows the 

number of samples used to calculate the accuracy. The sample number is scaled by 10 to the power 

of 11. 

 

The confusion matrix for the MCM (Table 12) shows for how many pixels the MCM and 

MOD35 cloud-confident cloud mask agreed and disagreed on for the cloudy and clear classes. The 

total training accuracy of the MCM (as compared to MOD35) is 92.94% and the training 

misclassification rate is 7.06% for the LA PTA from 2002 to 2019. The false positives make up 

60.06% of the MCM misclassifications which means the MCM has a higher probability of calling 

a clear pixel cloudy than a cloudy pixel clear. This is consistent with the lowest performing areas 

namely snow, bright surfaces, high terrain and sharp surface boundaries such as coastline that are 

causing false cloudy flags as seen in Figure 34. 
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Table 12: Confusion matrix of the MCM and MOD35 product. Note that the last 6 digits of the 

numbers have been dropped for readability but still show the relative magnitudes well. 

LA PTA 2002-2019 MOD35 Cloudy MOD35 Clear 

MCM Cloudy 28.36% 
5.27*10^12 

(True Positive) 

4.24% 
7.89*10^11 

(False Positive) 

MCM Clear 2.82% 
5.24*10^11 

(False Negative) 

64.58% 
1.20*10^13  

(True Negative) 

 

In the next section individual scenes are inspected by eye to give a practical understanding 

of the performance and behavior of the MCM in a wide range of cases. This will show the 

limitations of the mask and how to interpret it for use in the downstream products. 

 MCM CLOSER LOOK AND LIMITATIONS 

 

The summary statistics of the MCM show promising performance but the most important aspect 

of the mask is if it is practically useful when aerosol is present. In this section, individual scenes 

are inspected showing the MCM, MOD35, a color image, the surface type map and the Distant to 

Thresholds (DTTs) for each observable. In order to gather the following cases thousands of 

randomly chosen scenes were inspected by eye to pick representative and extreme examples. The 

scenes are chosen to highlight the good and the bad parts of the MCM that should be addressed to 

be able to further improve it and understand its limitations.  

 

 Figure 37 is a representative example of the MCM for a cloudy day over the LA PTA, 

taken Oct. 18th 2015 from Terra MODIS. The color image in the first panel is followed by the 

MCM, the MOD35 product (Terra MODIS cloud mask) and the surface type map. Following that 

are the DTT plots of the 7 observables. A description of the color bars is available in the figure 

caption. On this summer morning there are only a few pixels of snow in the mountains and no sun-
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glint water. The first thing to note is the close match between the MCM and the confident-cloudy 

class for MOD35 both shown in white. This is the target behavior of the thresholds. The DTT for 

each observable is shown to illustrate the confidence each test has for the cloudy class. Deep red 

is confident cloudy and deep blue is confident clear. Colors closer to white mean the observation 

is closer in value to the threshold and therefore less confident. Recall the default cutoff for cloud 

and not cloud is DTT equal to 0. The 0.65µm BRF DTT shows well defined areas of deep red 

color over land to denote cloud. It can detect the stratus and the lower cumulus but has a harder 

time with the thin low clouds in the South East section near LA. Over the desert on the East side 

the test can distinguish the bright surface from the clouds. Over water the 0.86µm BRF easily 

detects the bright stratus. Without looking at the rest of the panels these two observables have 

already detected most of the clouds. The Cirrus DTT does not show much new information. There 

is not much cirrus present so it’s redundantly detecting high, optically thick clouds. The WI is 

choppy over land suggesting very strict thresholds that allow very little cloud through. However, 

where it is firing as cloudy, it gets it right. Over water, the WI answer matches closely with the 

NIR result, however, the cloud edges are less defined as denoted by the red blending into white at 

the cloud perimeters. The SVI test captures the rich texture of the cloud tops, particularly of the 

smaller cumulus clouds which are mostly made up of edges at 1km resolution. The NDVI DTT 

shows how cloud conservative the test is, only calling pixels cloudy over the most optically thick 

regions. Given many optically thick clouds, the lack of snow, and the lack of sun-glint this would 

be considered an easy case. A more difficult situation is a mostly clear scene which allows the 

high texture and reflectance of certain surface types to be falsely flagged as cloudy. 
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Figure 37: Terra MODIS scene time stamped 2015291.1845 (<year><Julian day>.<UTC time>). 

The first color bar belongs to the MOD35 panel, where CR is clear, PCR is probably clear, UCR 

is uncertain clear, and CD is cloudy. The next colorbar is for the SID panel. where SI is snow-ice, 

SGW is sun-glint water, W is water, C is coast, and 0-15 are the KLID surface types. The last 

colorbar is the DTT for each observable. In the first three panels, red means no retrival from 

MODIS. For the last seven panels (DTT), black corresponds to no retrieval from MODIS and/or 

observable not used over that surface type and/or bad data. 
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Figure 38 is taken from Terra MODIS over the LA PTA on Dec. 15th, 2018. It is a mostly 

clear scene with snow in the mountains, no sun-glint and low aerosol loading. Comparing the 

MCM and MOD35 panels shows how difficult this scene is for cloud masking. Many regions are 

falsely flagged as cloudy in the MCM including the coastline, the mountain perimeter coincident 

with the snow edge, and the many bright patches of desert. It should also be noted, however, that 

MOD35 also has similar issues, and these mistakes will propagate into the MCM’s thresholds.  

The coastline is clear for all the observables except for the NDVI and for the NIR BRF, which 

both share the 0.86µm band. These errors maybe due to errors in the surface type map. Because 

the thresholds are derived independently for each surface type, a surface type misclassification, 

even a small one, will 1) taint the histogram with outlier data and thus skew the threshold 

calculation and 2) result in situations where the outlier data has the same threshold as the non-

outlier data for the same scene type. In this case, parts all along the coastline, including shallow 

water and land, are effectively labeled as deep ocean. Thus, the thresholds will be tuned for water’s 

weak reflectance in the NIR but the thresholds will not be relevant for the misclassified shallow 

water and land pixels. A similar story is told by the snow mask. There is an outline of “cloudy” 

pixels around the snowy Sierra Nevada mountains where snow and ice are labeled as land. This 

triggers the visible reflectance test which is not designed to be used over snow and ice. Instead, a 

threshold for a snow-ice free surface types will be applied, causing a false cloudy classification. 

The NDVI and the WI output lots of false cloudy flags. NDVI tends to mark the most reflective 

and white desert regions cloudy, mostly found in the North East quadrant of the LA PTA. This 

suggests the NDVI signature of these surface types is too close to that of clouds, and the histogram 

threshold method is failing. Thus, for the brightest surface types, the NDVI observable should not 

be used. The static pattern the WI sprays on the MCM suggests its use over land may not be 
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practical in clear cases. Finally, the SVI shows false cloud as compared to MOD35 over the 

mountains, which are highly textured, suggesting that SVI is not a good test for the region. The 

large areas of blue and green in the MOD35 panel show the uncertainty despite having equipped 

several thermal channel tests, yet the MCM still offers a close match. The next scene is mostly 

thin cirrus to illustrate the effects the surface has on thin cloud detection.  

 

Figure 38: Same as Figure 37 but for timestamp, 2018349.1830. 
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 Figure 39 shows a predominantly thin cirrus case over the LA PTA on March 25th, 2015, 

taken from Terra MODIS. Thin cirrus clouds allow a lot of visible radiation reflected off the 

surface to pass through the cloud and into the sensor. Moreover, the cloud edges are less defined. 

This makes cloud masking very challenging for this cloud type. The 1.38µm channel can be used 

to find cirrus clouds more easily (as discussed in Chapter 2.3.2) but as seen in the DTT Cirrus 

panel, a very thin case over desert still allows cloud contaminated pixels to pass as clear. The 

MCM is able to reproduce most of the cirrus that MOD35 shows with the 1.38µm channel. The 

missed cloudy pixels can be attributed to the lack of mid IR channels onboard MAIA that MODIS 

uses to detect thin cirrus in support of the 1.38µm channel (Ackerman et al., 2010). The next case 

shows the MCM performance over water when strong sun-glint is present. 
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Figure 39:  Same as Figure 37 but for timestamp, 2015084.1820. 

 

Figure 40 is a clear sky case over the LA PTA from Terra MODIS taken on May 13th, 

2014. In the South East corner of the LA PTA there is very bright sun-glint. In fact, the whole 

region is within the 40º scattering angle cone of sun-glint as defined by the MCM. Although 

MOD35 has trouble classifying this region, it is mostly correct in calling it probably clear (blue 

shading). The MCM however is calling most of this region cloudy because of the NDVI 
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observable. In cases of very bright sun-glint it is typical for the NDVI to flag the water as such. 

Therefore, the NDVI observable should not be used over sun-glint. 

 

 

Figure 40:  Same as Figure 37 but for timestamp, 2014133.1900. 
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The most critical case the MCM can be used for is when there are aerosols present. The 

cloud conservative thresholds of the MCM will serve to provide as many potentially cloud free 

pixels to the downstream products as possible. In Figure 41 there is aerosol present over the LA 

region and Southern California due to multiple wildfires on the 16th of Dec. 2017. Thick plumes 

of smoke are visible as well as haze over much of the region. The MCM and MOD35 classifies 

the thickest plume over water as cloud due to the NIR BRF, the WI, the NDVI and the cirrus 

observables. This is further evidence that either the WI is not suited for cloud masking, or the 

thresholds are of poor quality. Because the ocean is very “not white” in the visible wavelengths, 

the thresholds can be set super high. Meaning that the WI over deep ocean has super high contrast 

between clouds and the surface. However, that contrast is not strong at all between smoke and 

clouds. Moreover, it doesn’t detect any more cloud than any of the other tests. Similarly, for the 

NIR BRF, the deep ocean is very dark at this wavelength while clouds remain bright. The 

thresholds therefore are easily exceeded by the smoke. The NDVI also fails due to the close 

signature between the smoke and clouds versus the ocean surface. A potential fix for this would 

be a clear sky restoral operation for smoke, although that is beyond the scope of this thesis. In the 

North West portion of the PTA, the visible BRF observable is detecting 3 clouds within a layer of 

smoke. The DTT suggests these clouds, shown in red, have a strong signal against the smoke which 

is much whiter in color. This is a scenario where the activation value for the visible BRF observable 

can be increased to mask out the aerosol but preserve the clouds. In fact, the MCM performs quite 

well outside the main plume of smoke and outperforms MOD35 overall. MOD35 is classifying all 

the haze as confident-cloud where the MCM is calling it not-cloudy. This illustrates that while the 

MCM cannot classify the thickest aerosols as clear, it can distinguish between clouds and aerosol 

haze. The result will be more useful data points for the downstream products vs MOD35. 
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Figure 41:  Same as Figure 37 but for timestamp, 2017350.1805. 

 

In the next and last Chapter, a summary of the algorithm is given followed by the final 

conclusions about the MCM. Then recommendations are given to improve the mask and to 

communicate a proper interpretation of the MCM output. 
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CHAPTER 6 :  MCM SUMMARY AND FUTURE WORK 

 

In this thesis the MCM algorithm, its thresholds and its performance are presented in support of 

MAIA’s primary objective, a PM concentration and speciation product. In Chapter 1 the MAIA 

mission was presented explaining the need for a day-time cloud conservative cloud mask with 

tunable thresholds for each of the 11 PTAs. Then the historical framework for cloud detection was 

laid out to show the MCM’s heritage, namely in the Terra MISR RCCM and the Terra MODIS 

MOD35 cloud masks. In Chapter 2 the forward pass of the MCM was described with detailed 

explanations of each function and their purposes, followed by the physical interpretation and utility 

of each of the 7 observables. They measure brightness and texture, and exploit the absorption 

properties of water vapor, snow-ice and vegetation relative to clouds. Then the final output of the 

MCM was shown after the 5 tests are combined using the DTT and AV to define cloudy pixels. 

Where a pixel is cloudy if the DTT for at least one of the 7 observables is greater than the AV in 

the configuration file. It was also seen that increasing the AV reduced the cloud fraction at cloud 

edges and in low confidence areas like coastlines, mountains and snowy terrain. In Chapter 3 the 

KLID was defined in support of the thresholds, to classify the surface by maximum BRF. The 

method used the K-Means clustering algorithm and the max surface BRF from 18 years of MAIAC 

data to classify the surfaces. Categories 0-15 were assigned to snow-free-land pixels in the PTA 

grid every 8 days of the Julian calendar at 1 km resolution. The water and coast surface types come 

from a static land-water mask supplied by the NASA JPL MAIA science team, and the sun-glint 

mask over water is calculated dynamically for each scene using a scattering angle cone between 0 

and 40 degrees. 46 KLID maps, one for every 8-day interval of the year are supplied for each of 

the 11 PTAs. In Chapter 4 the pre-launch thresholds were defined for each observable using 18 

years of Terra MODIS over passes of the LA PTA. The thresholds were derived to match the 



88 

 

cloud-confident label of MOD35 to by taking the 99th percentile of the combined low middle and 

high confidence clear values for each observable as the threshold for each scene type. For NDSI 

and NDVI the mode of the observable for confident cloudy pixels was chosen as the threshold for 

each scene type. Additionally, the code to produce the thresholds was outlined. Finally, in Chapter 

5 the thresholds were verified and the MCM performance was reviewed. The MCM matched the 

cloud-confident performance of MODIS over the LA PTA with over 92% accuracy. The MCM is 

more than 90% accurate over deep non-sun-glint water and land surface types 0-10. The most 

common mistake was false positives coincident with bright and textured surfaces including the 

snowy Sierra Nevada mountain tops and the adjacent desert to the east and the coastline. The MCM 

performs best (>85% accurate) for SZAs between 25 and 53 degrees, VZAs less than 60 degrees 

and RAAs between 105 and 135 degrees.  On a scene-by-scene basis the MCM performed well 

for optically thick clouds in general, cumulus, stratus and high cirrus and performed poorly for 

low thin cirrus, thick wildfire smoke, undefined cloud edges and for predominantly clear scenes 

showing false positives over very bright or textured surfaces. 

From the above it is evident that the MCM has several known issues that should be 

addressed before MAIA launches. 1) The NDVI observable frequently classifies sun-glint water 

as cloud (as does MOD35). It also falsely classifies bright desert regions and coastlines as cloud. 

NDVI should therefore not be applied over these surfaces. 2) The cirrus test should not be applied 

over 2000m above ground level (AGL). Terrain above this level frequently peaks above the moist 

layer of the atmosphere and is very reflective at 1.38µm BRF and is therefore falsely flagged as 

cloudy. 3) Moreover, the SVI should not be used over 2000m AGL. Mountains often have SVI on 

par or greater than clouds causing lots of false cloud flags. 4) The NDSI is only used to detect 

clouds over snow and snow generally takes on NDSI values of at least 0.4 (Hall et al., 1995), so 
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therefore all clear scenes will have at least NDSI of 0.4. Clouds will tend to decrease the NDSI 

therefore the NDSI thresholds should be derived such that the observed value must be less than 

the threshold to be called cloudy (like the WI) for better performance. 5) Using the Kolmogorov-

Smirnov (KS) statistical test, it is shown (APPENDIX C:) that the distributions of NDSI 

thresholds are similar no matter what DOY bin they belong to. This suggests that NDSI thresholds 

should not be binned by DOY; moreover, the KS technique should be repeated for all observables 

and for all the dimensions of the threshold dataset to justify the necessity of the threshold binning. 

This will reduce computation expenses and make the threshold dataset more human interpretable. 

It will also potentially increase the number of samples in each threshold bin, which could improve 

the baseline performance of the mask. 6) The WI seems to be superfluous. When clouds are 

detected by the other observables, WI will also catch them. However, when the scene is mostly 

clear over land, the WI will flag lots of random pixels as cloud and appear as static across the 

scene. I recommend the WI not be used over land and potentially not at all, although it requires 

further investigation to quantify its impact on the MCM. 7) Extremely thick aerosols from 

wildfires, such as in Figure 41, will get flagged as cloudy and it is shown that MOD35 also makes 

this mistake. Future work needs to reexamine the threshold development with this MOD35 error 

in mind, since thick aerosols are a critical component of the MAIA mission. Despite these MCM 

issue, however, it is a great cloud mask as compared to MOD35 and it will serve MAIA’s 

downstream aerosol products well. 
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APPENDIX A: ACRONYMS AND ABBREVIATIONS 

 

 

AI Artificial Intelligence 

AOD Aerosol Optical Depth 

AV Activation Value 

AVHRR Advanced Very High Resolution Radiometer 

 

BAIR Berkeley AI Research 

BRDF Bi-Directional Reflectance Distribution Function 

BRF Bi-Directional Reflectance Factor 

BT Brightness Temperature 

 

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization 

COD Cloud Optical Depth 

CSSC Cloud Screened Surface Classification 

 

DALYs Disability-Adjusted Life Years 

DOY Day of Year (Julian calendar) 

DTT Distance to Threshold 

 

ECM Enterprise Cloud Mask 

 

FAIR Facebook AI Research 

 

GBD Global Burden of Diseases 

GB Giga Byte 

GIFOV Ground Instantaneous Field of View 

GMASI  Global Multisensor Automated Snow and Ice Mapping System 

 

IFOV Instantaneous Field of View 

IGBP International Geosphere-Biosphere Programme 

INRIA National Institute for Research in Computer Science and Automation 

IR Infra-red 

 

JPL Jet Propulsion Laboratory 

 

km kilometers 

KS Kolmogorov-Smirnov 

 

LA Los Angeles 

LW Long-Wave 

 

MAIA Multi-Angle Imager for Aerosols 

MAIAC Multi-Angle Implementation of Atmospheric Correction 

MCM MAIA Cloud Mask 
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MISR Multi-Angle Imaging Spectro-Radiometer 

µm Micron or micrometer 

MODIS Moderate Resolution Imaging Spectro-Radiometer 

MVCM MODIS-VIIRS cloud mask 

 

NASA National Aeronautics and Space Administration 

NDVI Normalized Difference Vegetation Index 

NDSI Normalized Difference Snow Index 

NIR Near Infra-red 

NIR Ref Near Infra-red Reflectance 

NOAA National Oceanic and Atmospheric Administration 

NSIDC National Snow and Ice Data Center 

 

OLP Observable Level Parameter  

 

PM Particulate Matter 

PTA Primary Target Area 

 

RAA Relative Azimuth Angle 

RCCM Radiometric Camera-by-Camera Cloud Mask 

RDQI Radiance Data Quality Indicator 

RGB Red, Green, Green 

RTLS Ross-Thick Li-Sparse 

 

SAA Solar Azimuth Angle 

SST Sea Surface Temperature 

STA Secondary Target Area 

SVI Spatial Variability Index 

SW Short-Wave 

SZA Solar Zenith Angle 

 

TA Target Area 

TB Terra Byte 

TOO Targets of Opportunity 

 

VAA Viewing Azimuth Angle 

VIIRS Visible-Infrared Imaging Radiometer Suite 

Vis Ref Visible Reflectance Test 

VZA Viewing Zenith Angle 

 

WI Whiteness Index 

WHO World Health Organization 
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APPENDIX B: CUSTOM VOCABULARY FOR MCM 

 

Observable calculated metric for each pixel used to determine clear or cloudy 

 

Observable Level Parameters/ Bins/ groups/ Scene Type information about the scene type 

consisting of cos(SZA), VZA, RAA, surface type, and DOY. All quantities discretely binned 

 

Test Determination Step in which the thresholds belonging to a pixel based on its group is 

retrieved. 

 

Activation Value The confidence a test must give in order to call a pixel cloudy. 
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APPENDIX C: JUSTIFYING THE BINNING FOR THE 

THRESHOLD DATASET 

 

The binning of the threshold dataset was mostly based off the MISR RCCM from Diner et 

al. (1999), but no study was done for the MCM to justify this binning. The binning is used to 

separate data points by their physical properties in order to optimize thresholds that can 

distinguish between cloud and not cloud. It is not known if the current resolutions of the bins are 

optimal for the MCM. This is important to look into because it is 1) computationally expensive 

to have more bins than needed for processing, 2) if the bins can be combined, the number of 

samples in the bin will increase, which can lead to an increase in its performance and 3) if more 

bins are needed to differentiate scene types, that knowledge can be used to expand the threshold 

dataset. One way to study the first two points is to compare how the distribution of thresholds 

change from one group of bins to another group of bins. If the change is negligible, then having 

two different sets of thresholds cannot be justified because they give no new information. For 

example, if the distribution of thresholds for the NDSI observable are a weak function of the 

DOY, then why are the NDSI thresholds binned by DOY. This analysis is possible with the use 

of the Kolmogorov-Smirnov (KS) test which compares 2 empirical distributions of random 

variables (Darling, 1957). The null hypothesis states that one distribution was sampled from the 

other and therefore is not unique. If the null hypothesis can be rejected with a p-value lower than 

0.05, then the two sets of thresholds must be different and therefore justified. This was done for 

the NDSI observable, where the distribution of thresholds belonging to DOY bin 0 was 

compared to DOY bins 1-45 and so on until all unique combinations of DOY bin threshold 

distributions were compared. The result was that 93.33% of these KS tests could not reject the 

null hypothesis, meaning the thresholds were in fact a weak function of DOY and therefore the 

NDSI thresholds should be stratified by much less than 46 DOY bins. This exercise can be  



100 

 

APPENDIX C (Cont.) 

carried out for the sun-view geometry as well. Ideally, that would be done for all 7 observables 

to cut down the threshold binning to a minimum. This would increase the samples in several bins 

which can potentially lead to increased performance, and it would cut down on the processing 

time for the MCM when querying the threshold look up table. 
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APPENDIX D: MCM CODES 

 

The MCM algorithm code, the threshold derivation code and the threshold analysis code can be 

found on GitHub here: vllgsbr2/MAIA_CloudMask_Threshold_Development at PTA_agnostic 

(github.com) 

 The code for the threshold development is in the “scripts” folder, the code that was 

delivered to NASA JPL for operational use in the “deliver2JPL” folder and the code use to test 

and analyze the MCM is in the “test_thresholds” folder. The latest code is in the PTA_Agnostic 

branch and it is up to date with the data files stored on Keeling. The “test_config.txt” file shows 

the path to all the data stored on keeling used to create the results shown in this thesis. The 

operational data sets were reproduced using this code with slight modification form Dr. Guangyu 

Zhao and are stored in his own directories in Keeling, including the code used to produce KLID. 

 

 

 

 

 

https://github.com/vllgsbr2/MAIA_CloudMask_Threshold_Development/tree/PTA_agnostic
https://github.com/vllgsbr2/MAIA_CloudMask_Threshold_Development/tree/PTA_agnostic

