
c© 2021 Zengming Shen

LEARNING TO MAP BETWEEN DOMAINS

BY

ZENGMING SHEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Nuclear, Plasma and Radiological Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Rizwan Uddin, Chair
Professor Emeritus Thomas S. Huang, Director of Research
Professor Zhi-Pei Liang
Doctor Bogdan Georgescu, Siemens Healthineers
Assistant Professor Shiva Abbaszadeh
Assistant Professor Angela Di Fulvio

ABSTRACT

Humans consume visual content avidly. We are in the midst of an imaging revolution

enabled by inexpensive digital cameras and the internet. Almost everyone’s cell phone has a

camera. The photos taken by these cameras are shared massively and rapidly on the internet.

However, there is an asymmetry: Each individual can consume only limited visual content

in his limited lifetime, such that only a chosen few are talented enough to both express

and understand something unseen visually and effectively. The rest of us try to understand

and express something unseen by translating them to something seen before. Similarly, in

the medical image field and radiological science, tens of thousands of medical images (MRI,

CT etc) of patients are taken. These medical images need to be studied and interpreted.

In this dissertation, we investigate a number of data-driven approaches for mapping from

an ’unseen’ or hard to understand domain to a ’seen’ or easy to understand domain. Our

work includes mapping between two image domains and mapping from an image domain

to a language domain, which in computer vision are called, respectively, image-to-image

translation and image captioning. The presented methods not only help users to easily

and accurately synthesize useful photos, but also enable new visual and linguistic effects

not possible before this work. In the clinical diagnosis, these approaches can improve the

accuracy and efficiency of the diagnosis process for the experienced radiologist. What’s

ii

more, the approach of mapping from image domain to text domain can mimic the work of

the experienced radiologist for automatic medical report generation.

Part I: This part describes image segmentation, which can be treated as a special case

of image-to-image translation. This part includes two works. The first work solves the

anisotropic resolution problem for 3D medical image semantic segmentation in the Appendix

A. The second work describes our US patented cross-domain medical image segmentation.

The first domain has labels while the second domain has no labels; by designing a special

domain mapping, we enable image semantic segmentation on the second domain. Both of

these works can improve computer aided medical image interpretation and help the radiol-

ogist read the medical images more efficiently and accurately.

Part II: In the clinical diagnosis, in order to combine the advantages of multiple medical

imaging modalities together, medical image registrations or cross domain image translation

is needed. A crucial requirement for both is one to one correspondence. Because the medical

images from multiple image modalities (such as MRI, CT) are from the same patients. This

part presents learning a self-inverse network to realize one-to-one mapping for both paired

and unpaired image-to-image translation.

Part III: In the clinical diagnosis, the final output of the diagnosis is in text domain(such

as medical report, medical prescriptions etc). Since medical report writing based on medical

image can be error-prone for inexperienced physicians, and time-consuming and tedious for

experienced physicians, automatic generation of medical image report can make this tedious

and difficult task efficient. This part expands to learn the mapping from the image domain to

the language domain. Specifically, the mapping is done by learning a language representation

iii

to form the language domain.

iv

To my advisor,parents,lover and colleagues and friends for their love and support.

v

ACKNOWLEDGMENTS

First, let me express my deep sorrow over the recent passing of my adviser Thomas S. Huang

and his wife Margret Huang. I still feel they are with me and I will always remember having

dinner or lunch with them. May they rest in peach together.

Alyosha sometimes says, ”If you wait until the last minute, it will only take a minute.”

I think he might have got it wrong this time. It actually took me more than one minute

to write these acknowledgments. Nevertheless, I would like to thank Professor Thomas

S. Huang for his guidance, inspiration, enthusiasm, and support throughout my years at

UIUC. If a student is a generator and an advisor a discriminator, he is probably the best

discriminator a student could have. First, he uses all the researchers, mentors, and students

with whom he has interacted as valuable training data. Second, during each optimization

step, he not only tells me the difference between those scholars and myself, but also provides

helpful suggestions on how to close the gap. Third, his guidance is always encouraging and

constructive, preventing me from crashing due to gradient explosion. Perhaps this adversarial

mentorship sounds a bit complicated. In the end, it is probably just some nearest neighbor

mumbo jumbo. I hope I have become closer to one of his training points throughout the

years.

As we all know, initialization matters in learning a non-convex function. For that, I would

vi

like to thank Honghui Shi, Jianping Wang and Thomas Paine for bringing a sophomore to the

wonderful world of computer vision and computer graphics. Without their fantastic work, I

would not have been attracted to these fields in the first place. BE I have had the privilege

of conducting and discussing my research with many UIUC faculty members, including my

doctoral committee members—Profs. Rizwan Uddin, Zhi-Pei Liang, Shiva Abbaszadeh, and

Angela Di Fulvio. It has also been a privilege to work with committee member Dr. Bogdan

Georgescu of Siemens. Over the summers, I have had the good fortune to intern with many

researchers at Siemens, including Dr. Georgescu, S. Kevin Zhou, Siqi Liu, Haofu Liao, and

Zizhao Zhang. I would especially like to thank Dr. Georgescu, who has shared not only

his view of vision and graphics, but also invaluable practical knowledge. His daily support

helped push me through the ups and downs during my PhD, especially when experiments

were not working out. I was extremely fortunate to be able to treat him as a second advisor.

I would like thank Becky Meline for her advice and help throughout my PhD years.

For my final exam scheduling and writing and endorsement, I would like to thank Prof.

Yang Zhang and Prof Honghui Shi.

Finally, I am grateful to my parents for their love and support during this wonderful

journey. The unbroken bonds between us made me the person I am today.

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xv

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 LEARNING A SELF-INVERSE NETWORK FOR BIDIRECTIONAL
MRI IMAGE SYNTHESIS . 7
2.1 Introduction . 7
2.2 Benefits of Learning A Self-inverse Network 9
2.3 Related Work . 12
2.4 Method . 15
2.5 Experimental Results . 18
2.6 Model Sensitivity Analysis . 21
2.7 Conclusion . 23

CHAPTER 3 ONE-TO-ONE MAPPING FOR UNPAIRED IMAGE-TO-IMAGE
TRANSLATION . 29
3.1 Introduction . 29
3.2 Literature Review . 33
3.3 Unsupervised Learning of One-to-one Mappings between Domains 35
3.4 Self-inverse Learning for Unpaired Image-to-image Translation 37
3.5 Experiments . 42
3.6 Conclusions . 45
3.7 Acknowledgment . 46

CHAPTER 4 TEXT EMBEDDING BANK MODULE FOR DETAILED IMAGE
PARAGRAPH CAPTIONING . 52
4.1 Introduction . 52
4.2 Related Works . 53
4.3 Approach . 59
4.4 Implementation . 59
4.5 Experiments . 60
4.6 Conclusion . 65

viii

CHAPTER 5 FUTURE WORK: TOWARDS EXTRACTING AND LEARNING
VECTOR SPACE REPRESENTATIONS OF WORDS FOR IMAGE CAPTIONING 68
5.1 Introduction . 68
5.2 Problem Description . 69
5.3 Data . 69
5.4 Models and Algorithms . 70
5.5 Experiments and Results . 75
5.6 Conclusion . 82

APPENDIX A DC-DENSEUNET: 2D-3D DENSELY COUPLED, DENSELY CON-
NECTED UNET FOR AUTOMATIC LIVER LESION SEGMENTATION FROM
CT VOLUMES . 84
A.1 Introduction . 84
A.2 Related Work . 87
A.3 Method . 88
A.4 Experiments and Results . 95
A.5 Conclusions . 98

REFERENCES . 99

ix

LIST OF TABLES

2.1 Quantitative performance of labels↔photo on cityscapes dataset. 11
2.2 Quantitative performance of map↔aerial on google maps. 13
2.3 Model sensitivity performance of labels↔photo on cityscapes. 15
2.4 Model sensitivity performance of aerial↔map on Maps dataset. 17
2.5 (a) Image synthesis performance and (b) model sensitive analysis on MRI

T1 and T2 images from BraTs dataset [1]. Smaller L1 is better than larger.
The difference between PSNR and SSIM increases with sensitivity. All the
metrics are averaged on 10230 1-channel 2D images. 20

3.1 Results of Photo ↔ Label translation on the Cityscapes dataset. 42
3.2 Results of user study on the horse to zebra dataset. 43
3.3 Evaluation of cross-modal medical image synthesis on the BRATS database. 44
3.4 Results of user study on the summer to winter Yosemite dataset. 45

4.1 Our result compared with prior results on Stanford Visual Genome dataset . 61

5.1 Model validation loss and BLEU scores on the validation dataset 77
5.2 Leaderboard of various methods on the online MS-COCO test server 77

A.1 DC-DenseUNet architecture . 90
A.2 Segmentation results on the test dataset (from LiTS 2017 leaderaboard

and publications)(Dice: %). 96
A.3 Segmentation results by ablation study of our methods on the test dataset.(Dice:

%). 97

x

LIST OF FIGURES

2.1 Our self-inverse network learns a bijective mapping f : xi ↔ yi. Here
we illustrate the concept using the CityScapes dataset [2] for bidirectional
photo-to-label translation. 8

2.2 Comparison of our self-inverse network and other CNNs for image-to-image
translation. The f and f−1 are the two generator networks for the tasks
A and B, respectively. The DY and the DX are the associated adversarial
discriminators. (a) Pix2pix [3]: Two separate generator networks f and
f−1 for the tasks A and B, respectively. (b) Cycle GAN [4]: Two jointly
trained but different generator networks f and f−1 for the tasks A and
B, respectively. (c) Self-inverse network: Only one generator network for
both tasks. 9

2.3 Function space. Blue area: the whole function space; White area: the
function space of a CNN; Purple area: the function space of f ; Green
area: the function space of f−1; and Overlap area: the function space of
f = f−1. 10

2.4 Illustrations of the self-inverse network using the U-Net architecture [5].
Each block represents the Convolution-BatchNorm-LeakyReLU layers in
the encoder part and the Convolution-BatchNorm-ReLU layers in the de-
coder. Alternative training: In the training stage, for a batch of image
pairs (xi, yi), at the step j, the input and label are xi and yi, respectively,
and at the step j + 1, the input and label are yi and xi, respectively. 12

2.5 Qualitative result on labels↔photo bidirectional image-to-image transla-
tion on cityscapes dataset. Upper: photo → label. Bottom: label →
photo. 24

2.6 Qualitative result on Google maps. Upper: earial→map. Bottom: map
→ aerial. 25

2.7 Model sensitivity performance of labels↔photo on cityscapes. Upper:
photo → labels. The input is generated by inputting the groudtruth to
pix2pixB. Bottom: labels → photo. The input is generated by inputting
the groudtruth to pix2pixA. 26

2.8 Model sensitivity performance of aerial↔map on google maps. Upper:
aerial → map. The input is generated by inputting the groundtruth to
pix2pixB. Bottom: map → aerial. The input is generated by inputting
the groundtruth to pix2pixA. 27

xi

2.9 Examples of generated images. Column 1 depicts the original images for
T1. Column 2 depicts the original images for T2. Generated T2 images
from T1 with pix2pix and one2one models are in columns 3 and 4 respec-
tively. Generated T1 images from T2 with pix2pix and one2one models
are in columns 5 and 6 respectively. Generated T2 images from column
5 with pix2pix and one2one models are in columns 7 and 8, respectively.
Generated T1 images from column 3 with pix2pix and one2one models are
in columns 9 and 10, respectively. In columns 3-6, the score under each
image is its PSNR and SSIM score compared with the original image. In
column 7-10, the scores under each image are the PSNR and SSIM score
differences between input x and x + dx for both models. For example, to
compare model sensitivity in the T1 → T2 direction, x is column 1 and
x + dx is column 5. The model sensitivity for the pix2pix model is the
score difference between columns 3 and 7. The model sensitivity for the
one2one model is the score difference between columns 4 and 8. 28

3.1 Comparison of our one2one CycleGAN with the original CycleGAN [4]
for the mapping between two domains X and Y. (a) Original CycleGAN
model. It contains two separate mapping functions G : X → Y and
F : Y → X. (b) Our one2one CycleGAN. We propose to realize one-to-
one mapping by learning ONLY one self-inverse function G for the map-
ping between two domains bidirectionally. It contains only one mapping
function G : X ↔ Y . 30

xii

3.2 (a) The mapping routes of CycleGAN. The limitation of the CycleGAN
model is that it allows biased and non-unique unpaired image translation.
For the mapping route x → x′, the mapping G : x → y′ is a one-to-many
mapping with the result that x can be mapped to infinity possible y′. Let
us denote the unique target as y′t and the actually mapped result as y′k;
the mapping F : y′k → x′ is a many-to-one mapping. As a result, there
is allowable bias between the target y′t and the prediction y′k. Similarly,
for the mapping route y → y′, the mapping F : y → x′ is a one-to-many
mapping with the result that y can be mapped to infinity possible x′.
Let us denote the unique target as x′t and the actually mapped result as
x′k; the mapping G : x′k → y′ is a many-to-one mapping. As a result,
there is allowable bias between the target x′t and the prediction x′k. (b)
The mapping routes of one2one CycleGAN. The motivation of one2one
CycleGAN is to realize unique and accurate unpaired image translation.
The mapping function G is a self-inverse function with the one-to-one
mapping property. For the mapping route x→ x′, the mapping G : x→ y′

is a one-to-one mapping with the result that x is only mapped to the unique
target y′t. The mapping F : y′t → x′ is also a one-to-one mapping. As a
result, there is no bias between the target and the prediction. Similarly,
for the mapping route y → y′, the mapping F : y → x′ is a one-to-one
mapping with the result that y can only be mapped to the unique target
x′t. The mapping G : x′t → y′ is also a one-to-one mapping. As a result,
there is no bias between the target and the prediction. 47

3.3 Visual comparison for horse↔zebra. 48
3.4 Visual comparison for summer↔winter on yosemite. 49
3.5 Visual comparison for apple↔orange. 50
3.6 Visual comparison for photo↔label on the Cityscapes. 51
3.7 Qualitative comparison for T1↔T2 on BRATS datasets. 51

xiii

4.1 Integration of the paragraph vector framework as a TEB module to an
existing deep learning-based image captioning model. There are three in-
terconnected components divided into three dashed rectangular boxes. In
the green box on the top left, the image encoder extracts visual features
through a CNN model. In the yellow box on the bottom, an RNN-based
language model decoder is used to generate paragraphs. Existing deep
learning-based models only contain these two components. The red box
on the top right box is the TEB module: In the training stage, for a image,
paragraph pair, the varied-length paragraph is mapped to a fixed-length
vector which is called TEB through the paragraph vector framework. The
visual features from the image encoder are converted to the predicted TEB
(called TEB’) through several fully connected layers. The TEB’ is super-
vised by the TEB through an L1 loss, which acts as global deep supervision
to regularize the visual feature extraction for the image encoder. The vi-
sual features and TEB’ are concatenated and fed into the RNN as input.
The generated paragraph is supervised by the ground truth paragraph
through a word-level loss. In the inference stage, the TEB is not available
and the TEB’ acts as the distributed memory to provide the semantic
features of the whole paragraph to alleviate the long-term dependency
problem for the language model. 66

4.2 Qualitative result comparison of paragraph outputs of our model (Diversity
with TEB) and the baseline Diversity model [6] 67

5.1 (left) Successful hypothesis from the baseline model. (right) Incorrect
hypothesis from the baseline model. 78

5.2 (left) Decent hypothesis from the GloVe model. (right) Incorrect hypoth-
esis from the GloVe model. 78

5.3 Accurate captions by the BERT model. 79
5.4 Direct comparison of the three main models proposed. 81
5.5 Failed attempt to visualizing attention. 83

A.1 Example of contrast-enhanced CT scans showing the large variations of
shape, size, and location of liver lesions. The red regions denote the liver
and the green ones denote the tumors. 86

A.2 DC-DenseUNet pipeline . 91
A.3 Examples of liver and tumor segmentation results of DC-DenseUNet from

the test dataset. The red regions denote the liver and the green ones
denote the tumors. 93

xiv

LIST OF ABBREVIATIONS

ML Machine Learning

MTL Multi-Task Learning

CT Computed Tomography

3D 3-dimention

xv

CHAPTER 1

INTRODUCTION

In our daily life, we consume many natural images. Similarly, the hospital ’consume ’

medical images, such as radiology and pathology images, for the diagnosis and treatment of

many diseases, such as pneumonia and pheumothorax etc. The reading, interpretation and

understanding of medical images are usually conducted by specialized medical professionals.

For example, radiology images are read by radiologist. In this process of interpretation and

understanding, they examine each area of body, determine whether each ares was found to

be normal, abnormal or potentially abnormal. Finally they write their findings to a medical

report.

Due to the limited resources and manpower, there is a huge gap between the patient

demand and the medical image diagnosis quality. Especially for the radiologist and patholo-

gist who are working in the rural area the resources of healthcare is limited, computer aided

diagnosis and writing medical imaging reports is demanding. For instances, to efficiently

and correctly diagnoise a chest X-ray image, these key skills are necessary: 1. the ability

to examine the normal and abnormal of the thorax and the necessary physiology of chest

diseases; 2. ability of interpreting the radiograph through a fixed pattern; 3. skills of eval-

uating the development over time; 4. experience in understanding the clinical history and

records; 5. skills of comprehensive diagnosis by correlating with other diagnosis results such

1

as electrocardiogram, respiratory function tests and laboratory results etc.

On the other hand, for experienced radiologists and pathologists, examining abnormality

correctly and efficiently is challenging and writing imaging reports are tedious and time-

consuming. Especially, in countries such as India, China which have high population density,

the number of radiologist per capita is very low. Hundreds of radiology images need to be

read by a radiologist per day. It is hard to maintain a high diagnosis accuracy without

computer aided tool. Besides, reading and typing the findings of every image into computers

typically takes the radiologist about 10 minutes. This accounts for a large portion of the

diagnosis process.

In sum, no matter whether the medical professionals are experienced or inexperienced,

an automatic computer aided medical image interpretation and automatic medical report

generation are needed.

I investigate the learning of mapping between domains for the specific problem of medical

image segmentation. Image segmentation is the process of pixel-wisely labelling a digital

image. We call the processed image a mask of the original image. So to map an image to

its mask is an instance of mapping between domains. Here, the two domains are the image

domain and its mask domain.

To explore more general problems of the mapping between domains, more tasks are ex-

plored. In Appendix A, image segmentation is treated as a special case of image-to-image

translation. This work solves the anisotropic resolution problem for 3D image semantic seg-

mentation. Chapters 2 and 3 address learning a self-inverse network to realize one-to-one

mapping for both paired and unpaired image-to-image translation. Chapters 4 and 5 ad-

2

dress learning the mapping from the image domain to the language domain. Specifically,

this mapping is done by learning a language representation to form the language domain.

• Appendix A: 3D Anisotropic Resolution Medical Image Segmentation

To address the anisotropic resolution issue in the 3D medical image, a novel cou-

pled densely connected UNet(C-DenseUNet) is proposed. This model consists of a

2D DenseUNet for intra-slice feature extraction and a 3D counterpart for inter-slices

feature extraction. These two DenseUNets are coupled by concatenating the encoding

features of the 2D DenseUNet to the decoding features of its 3D counterpart. The

following convolution fuses these 2D and 3D features in a learnable way. We designed

the C-DenseUNet architecture and learning process in an end-to-end manner, where

the intra-slice and inter-slices features are jointly optimized through this concatenation

fusion layer. We evaluate our method on the dataset of the MICCAI 2017 Liver Tumor

Segmentation (LiTS) Challenge. Our method achieved very competitive performance

for liver and tumor segmentation even with a single model.

• Chapter 2: Learning a Self-Inverse Network for Bidirectional MRI Image Synthesis

The one-to-one mapping is necessary for MRI image synthesis as MRI images are

unique to the patient. State-of-the-art approaches for image synthesis from domain

X to domain Y learn a convolutional neural network that meticulously maps between

the domains. A different network is typically implemented to map along the opposite

direction, from Y to X. In this chapter, we explore the possibility of only wielding

one network for bi-directional image synthesis. In other words, such an autonomous

learning network implements a self-inverse function. A self-inverse network shares

3

several distinct advantages: only one network instead of two, better generalization and

more restricted parameter space. Most importantly, a self-inverse function guarantees

a one-to-one mapping, a property that cannot be guaranteed by earlier approaches that

are not self-inverse. The experiments on MRI T1 and T2 images show that, compared

with the baseline approaches that use two separate models for the image synthesis

along two directions, our self-inverse network achieves better synthesis results in terms

of standard metrics. Finally, our sensitivity analysis confirms the feasibility of learning

a one-to-one mapping function for MRI image synthesis.

• Chapter 3: One-to-one Mapping for Unpaired Image-to-image Translation

Recently image-to-image translation has attracted significant interest, starting from

the successful use of the generative adversarial network (GAN), to the introduction of

cyclic constraint, to extensions to multiple domains. However, in existing approaches,

there is no guarantee that the mapping between two image domains is unique or

one-to-one. Here we propose a self-inverse network learning approach for unpaired

image-to-image translation. Building on CycleGAN, we learn a self-inverse function

by simply augmenting the training samples by swapping inputs and outputs during

training and with separated cycle consistency loss for each mapping direction. The

outcome of such learning is a proven one-to-one mapping function. Our extensive

experiments on a variety of datasets, including cross-modal medical image synthesis,

object transfiguration, and semantic labeling, consistently demonstrate clear improve-

ment over the CycleGAN method both qualitatively and quantitatively. In particular,

our proposed method reaches the state-of-the-art result on the cityscapes benchmark

4

dataset for the label-to-photo unpaired directional image translation.

• Chapter 4: Text Embedding Bank Module for Detailed Image Paragraph Captioning

Image paragraph captioning is the task of automatically generating multiple sentences

for describing images through coherent text. Existing deep learning-based models for

image captioning typically consist of an image encoder to extract visual features and

a language model decoder, an architecture that has shown promising results in single

high-level sentence generation. However, only the word-level guiding signal is available

when the image encoder is optimized to extract visual features. The inconsistency

between the parallel extraction of visual features and sequential text supervision limits

its success when the generated text is long (more than 50 words). In this chapter, we

propose a new module, called the Text Embedding Bank (TEB) module, to address

this problem for image paragraph captioning. This module uses the paragraph vector

model to learn fixed-length feature representations from a variable-length paragraph.

We refer to the fixed-length feature as the TEB. This TEB module plays two roles

to benefit paragraph captioning performance. First, it acts as a form of global and

coherent deep supervision to regularize visual feature extraction in the image encoder.

Second, it acts as a distributed memory to provide features of the whole paragraph to

the language model, which alleviates the long-term dependency problem. Adding this

module to two existing state-of-the-art methods achieves a new state-of-the-art result

on the paragraph captioning Stanford Visual Genome dataset.

• Chapter 5: Learning Vector Space Representations of Words for Image Captioning

5

Image captioning is the task of automatically generating a sentence for describing im-

ages through coherent text. Existing deep learning-based models for image captioning

typically consist of an image encoder to extract visual features and a language model

decoder, an architecture that has shown promising results in single high-level sentence

generation. However, only the word-level guiding signal is available when the image

encoder is optimized to extract visual features. The inconsistency between the paral-

lel extraction of visual features and sequential text supervision limits its success. In

this chapter, we propose extracting and learning vector space representations of words

for image captioning. This vector space representation of words acts as a form of

global and coherent deep supervision to regularize visual feature extraction in the im-

age encoder. Second, it acts as a distributed memory to provide features of the whole

sentence to the language model, which alleviates the long-term dependency problem.

By integrating the BERT embedding to the caption, we achieve a new state-of-the-art

result on the MS COCO Image Captioning Challenge.

6

CHAPTER 2

LEARNING A SELF-INVERSE NETWORK FOR
BIDIRECTIONAL MRI IMAGE SYNTHESIS

2.1 Introduction

Magnetic resonance imaging (MRI) is one of the widely used medical image modalities due

to its non-invasiveness and its ability to clearly capture soft tissue structures using multiple

acquisition sequences. However, its disadvantage lies in its long acquisition time and high

cost. Therefore, there is a lack of large scale MRI image databases needed for learning-based

image analysis. MRI image synthesis or image-to-image translation [7, 8] is able to fill such

a gap by generating more images for training purpose. Also, a generated MRI image can be

helpful to cross-sequence image registration, in which an image is first synthesized for the

target sequence and then used for registration [9].

In language translation, if we treat the translation from one language A to another lan-

guage B as a forward process f , then the translation from language B to A is its inverse

problem f−1. Similarly, in computer vision, there is a concept of image-to-image transla-

tion [3, 4, 10, 11] that converts an image to another one. In medical imaging, there are image

reconstruction problems. Traditionally, each of these problems uses two different functions,

one for the forward task f and the other for its inverse f−1. In this chapter, our goal is to

demonstrate that, for MRI image synthesis and other tasks, we are able to learn the above

7

input xi

input yi

output yi

output xi

Figure 2.1: Our self-inverse network learns a bijective mapping f : xi ↔ yi. Here we
illustrate the concept using the CityScapes dataset [2] for bidirectional photo-to-label
translation.

two tasks simultaneously using only one function (see Figure 2.1), that is, f = f−1.

Many problems found in computer visioning, computer graphics, image processing, and

natural language processing stem from the inverse problem. In language translation, if we

treat the translation from one language A to another language B as a forward process, then

the translation from language B to A is its inverse problem. Similarly, in computer visioning,

there is a concept of image-to-image translation [3, 4] that converts an image to another one.

In medical imaging, there are image reconstruction problems. Traditionally, each of these

problems uses two different functions, one for the forward task and the other one its inverse.

In this chapter, our goal is to demonstrate that, in the context of image-to-image translation,

only one function is able to learn the above two tasks simultaneously, as shown in Figure

2.1.

The community has explored the power of CNN in various tasks in computer visioning,

8

X

Figure 2.2: Comparison of our self-inverse network and other CNNs for image-to-image
translation. The f and f−1 are the two generator networks for the tasks A and B,
respectively. The DY and the DX are the associated adversarial discriminators. (a)
Pix2pix [3]: Two separate generator networks f and f−1 for the tasks A and B,
respectively. (b) Cycle GAN [4]: Two jointly trained but different generator networks f
and f−1 for the tasks A and B, respectively. (c) Self-inverse network: Only one generator
network for both tasks.

as well as within several other fields. But so far, to the best of our knowledge, no one has

explored the learning capability of a self-inverse function using CNN, and its potential use

in applications. Our aim in this chapter is to bridge this gap. We refer to the mapping from

a domain X to a domain Y as task A and the mapping from the domain Y to X as task

B. Additionally, the proposed CNN that learns a self-inverse function is referred to as the

self-inverse or one-to-one network.

2.2 Benefits of Learning A Self-inverse Network

There are several advantages in learning a self-inverse network in addition to the one-to-one

mapping property.

(1) From the perspective of the application, only one self-inverse function can model both

tasks A and B and it is a novel way of multi-task learning. As shown in Figure 2.4, the

9

The whole function space

Figure 2.3: Function space. Blue area: the whole function space; White area: the function
space of a CNN; Purple area: the function space of f ; Green area: the function space of
f−1; and Overlap area: the function space of f = f−1.

self-inverse network generates an output given an input, and vice versa, with only one CNN

and without knowing the mapping direction. It is capable of doing both tasks within the

same network, simultaneously. Rather than separately assigning two CNNs for tasks A and

B, the self-inverse network halves the necessary parameters, assuming that the self-inverse

network and the two CNNs share the same network architecture as shown in Figure 2.2.

(2) It automatically doubles the sample size, a great feature for any data-driven model,

thus becoming less likely to over-fit the model. The self-inverse function f has the co-domain

Z = X∪Y . If the sample size of either domain X or Y is N , then the sample size for domain

Z is 2N . As a result, the sample sizes for both tasks A and B are doubled, making this a

novel method for data augmentation to mitigate the over-fitting problem.

(3) It implicitly shrinks the target function space. As shown in Figure 2.3, the blue area

is the whole function space, which is unlimited. Given a CNN with its architecture fixed,

10

Table 2.1: Quantitative performance of labels↔photo on cityscapes dataset.

Direction Method p. acc.↑ c. acc.↑ IOU↑
photo→label pix2pix 0.80 0.35 0.29
photo→label one2one 0.83 0.35 0.29

label→photo pix2pix 0.73 0.25 0.19
label→photo one2one 0.74 0.25 0.20

labels→photo GT 0.80 0.26 0.21

its function space (Figure 2.3, white area) is enormous, with millions of parameters. When

the CNN is trained for the task A, the target function space f is the purple area. When the

CNN is trained for the task B, the target function space f−1 is the green area. When it is

trained to learn a self-inverse function for both tasks A and B, the target function space is

the overlapping area, which is a subset of the function space of f and f−1. For a fixed neural

network architecture, its function space is large enough to have the overlapping area in Figure

2.3. For a fixed data set, the trained model is a function within the blue area or the purple

area for each direction, since the overlap area is always the subset of the blue or purple areas.

If the network is trained as a self-inverse network, the trained model is a function within the

overlapping area, which is always smaller than that of the network trained separately in each

direction. A smaller function space means a smaller bias between the true function and the

trained model, so the self-inverse network likely generalizes better. Another interpretation

of this shrinking behavior is to regard the inverse f−1 as a regularization condition when

learning the function f , and vice versa.

11

Figure 2.4: Illustrations of the self-inverse network using the U-Net architecture [5]. Each
block represents the Convolution-BatchNorm-LeakyReLU layers in the encoder part and
the Convolution-BatchNorm-ReLU layers in the decoder. Alternative training: In the
training stage, for a batch of image pairs (xi, yi), at the step j, the input and label are xi
and yi, respectively, and at the step j + 1, the input and label are yi and xi, respectively.

2.3 Related Work

Inverse problem with neural networks The loss of information is a big problem that

affects the performance of CNNs in various tasks. Several works such as [12, 13] show that

essential information concerning the input image is lost as the network traverses to deeper

layers in well-known ImageNet-based CNN classifiers. To recover and understand the loss

of information, the above works use learned or hand-crafted methods prior to inverting

the representation. An example of ’compensating’ the lost information for performance

improvement involves the segmentation task approach [14], which proposes the use of prior

anatomical information from the latent space within a pre-trained decoder.

Building an invertible architecture is difficult due to the local inversion being ill-conditioned.

Several works demonstrate that building an invertible CNN is a difficult challenge, hence

not much progress has been made in solving it. Multiple works only allow invertible repre-

12

Table 2.2: Quantitative performance of map↔aerial on google maps.

Direction Method L1↓ PSNR↑ SSIM ↑
aerial→map pix2pix 0.0696 19.36 0.505
aerial→map one2one 0.0635 19.93 0.558
map→aerial pix2pix 0.270 9.091 0.144
map→aerial one2one 0.270 9.101 0.148

sentation learning under certain conditions. Parseval network [15] increases the robustness

of learned representation with respect to adversarial attacks. In this work, the linear op-

erator is bijective under the condition that the spectrum of the convolutional operator is

constrained to norm 1 during learning. [16] introduces a signal recovery method conditioned

on pooling representation to design invertible neural network layers. [17] makes the CNN

architecture invertible by providing an explicit inverse. In this work, the reconstruction of

the linear interpolations between natural image representations is achieved. This gives em-

pirical evidence to the notion that it is possible to learn invertible representations that do not

discard any information concerning their input on large-scale supervised problems. But the

work from [17] cannot provide bi-directional mapping and is not self-invertible. Ardizzone

et al. [18] prove the invertibility of nerual network theoretically and verify experimentally

for artificial data and real data in inverse problems using invertible neural networks. More

specifically, Kingma [19] uses the invertible 1X1 convolution for the generative flow. Fol-

lowing this previous work, our self-inverse network realizes the inevitability between two

domains by learning a self-inverse function.

Image-to-image translation The concept of image-to-image translation is broad, in-

cluding image style transfer, translation between image and semantic labels, gray-scale to

13

color, edge-map to photograph, super-resolution [20] and many other types of image manip-

ulations. It dates back to image analogies by [21], which employs a non-parametric texture

model [22] from a single input-output training image pair. More recent approaches use a

data set of input-output examples to learn a parametric translation function using CNN [23].

Our approach builds on the pix2pix framework of [3], which uses a conditional generative

adversarial network [24] to learn a mapping from input to output images. CycleGAN [4]

contributes to the unpaired image-to-image translation with a cycle consistency loss. In

this framework, CycleGAN addresses exactly the same issue of learning a bijective mapping,

albeit without the self-inverse property. CycleGAN can be seen as BiGAN [25] where the

latent variable is like an image in the co-domain and the loss is augmented with an L1

loss. Similar ideas have been applied to various tasks such as generating photographs from

sketches [26] or from attribute and semantic layouts[27]. Recently, [28] used multi-scale loss

and conditional GAN to realize high-resolution image synthesis and semantic manipulation.

One direction toward diversifying image translation is to allow many-to-many mapping, like

augmented CycleGAN [29, 30, 31, 32, 10, 33]. The other direction towards accurate image

translation is to restrict output image variance,like instance-level image translation [34]. Our

method falls into the latter case and learns both tasks A and B with one generator network

in a bidirectional way instead of using two generator networks (see Figure 2.2). Unlike [10],

we encourage the invertibility of our model as a self-inverse function to realize bijection.

Neural style transfer Neural style transfer can be treated as a special category of image-

to-image translation as well. [35] proposes to use image representation derived from CNN,

optimized for object recognition, to make high-level image information explicit. [36] intro-

14

Table 2.3: Model sensitivity performance of labels↔photo on cityscapes.

Direction Method d(Class IOU)↑
labels→photo pix2pix 0.0168
labels→photo one2one 0.0178

photo→labels pix2pix 0.0199
photo→labels one2one 0.0190

duced a cascade refinement network for photographic image synthesis. [37] highlights the

power and flexibility of generative feed-forward models trained with complex and expressive

loss functions for style transfer. [38] contributes the perceptual losses, which works very

well.

2.4 Method

Our goal is to learn a self-inverse mapping function or bidirectional mapping function f

for pairs (xi, yi). This means f : xi ↔ yi. It also can be illustrated in this way: The

function f : xi → yi and its inverse function f−1 : yi → xi satisfy f = f−1, where samples

{xi}Ni=1 ∈ X and {yi}Ni=1 ∈ Y , the symbol ‘↔’ means bijection, the symbol ‘→’ means one-

directional mapping, and the symbol ‘=’ means the two functions on both sides are exactly

the same function.

Mathematically, it boils down to solving the following minimization problem:

min
W

N∑
i=1

lA(fW (xi), yi) + lB(xi, fW (yi)) + λ r(W), (2.1)

where W denotes the neural network parameters, lA and lB the loss function for tasks A and

15

B, respectively, and r(W) is the regularizer. In this work, we use L1 norm as the loss and

GAN discriminator as the regularizer. The model pipeline is illustrated in Figure 2.2(c). It

consists of two networks. The generator network f and the discriminator network Dx or

Dy. Here Dx and Dy are the same network, while the Dx and Dy are two different networks

for the baseline pix2pix model (see Figure 2.2(a)). The generator f is trained to translate

the image as realistically as possible to fool the discriminator network Dx or Dy, which is

trained to detect as well as possible the ‘fake’ examples generated by f .

Detailed network architecture. We adopt the architecture from [3] for our self-inverse

network implementation. Let Ck denote a Convolution-BatchNorm-LeakyReLU layer with k

filters in the encoder and Convolution-BatchNorm-ReLU layer with k filters in the decoder.

All convolutions are 4× 4 spatial filters applied with a stride 2. Convolutions in the encoder

are down-sampled by a factor of 2. Convolutions in the decoder are up-sampled by a factor

of 2.

The encoder-decoder architecture consists of an encoder, C64−C128−C256−C512−C512−

C512−C512−C512, and an decoder, C512−C512−C512−C512−C512−C256−C128−C64. After

the last layer in the decoder, a convolution is applied to map according to the number of

output channels, which is 1, followed by a Tanh function. Following the convention, the C64

is not applied with batch-normalization. All LeakyReLUs in the encoder are with a slope of

0.2. For the U-Net skip connection, the skip connection is to concatenate feature maps from

layer i to layer n−i, where i is the layer index and n is the total number of layers. Compared

to the decoder above without skip connection, the number of feature maps doubles due to

the use of a U-Net decoder, C512 − C1024 − C1024 − C1024 − C1024 − C512 − C256 − C128. It

16

Table 2.4: Model sensitivity performance of aerial↔map on Maps dataset.

Direction Method dL1↓ dPSNR↑ dSSIM↑
aerial→map pix2pix .0007 0.87 0.029
aerial→map one2one .0008 0.89 0.029

map→aerial pix2pix 0.0140 0.447 0.023
map→aerial one2one 0.0144 0.458 0.024

is C64 − C128 − C256 − C512. Following the C512 layer is a convolution layer to map the

feature map channel number to 1. Then a sigmoid function follows the above layers to

generate the output. Similar to the generator, the first convolution layer C64 is without

batch normalization. All LeakyReLU are with a slope of 0.2.

Loss function. The objective of a conditional GAN [39] can be expressed as

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (2.2)

We use L1 distance rather than L2 as L1 encourages less blurring:

LL1(G) = E
x,y,z

[||y −G(x, z)||1] (2.3)

Our final objective is

(G∗, D∗) = arg min
G

max
D
LcGAN(G,D) + λLL1(G) (2.4)

With z, the net could learn a mapping from x to y in terms of any distribution instead of

just a delta function.

Bi-directional Training To train a CNN as a self-inverse network, we randomly sample

17

a certain-sized batch of pairs (xi, yi) and (yi, xi) alternatively and iteratively. This is shown

in Figure 2.4) The baseline is without alternative training, which means that we are training

two separated generator networks for the tasks A and B, respectively (see Figure 2.4). For

a fair comparison with the baseline, with the same data set, we use the same batch size and

the same number of epochs. In other words, except for the alternative part, everything is

the same as the baseline. We resize the 256× 256 input images to 286× 286, add a random

jitter, and then randomly crop them back to size 256× 256. All networks are trained from

scratch. The weights are initialized from a Gaussian distribution with mean 0 and standard

deviation of 0.02.

2.5 Experimental Results

The term ‘pix2pix’ refers to the result obtained by the model we retrained from scratch

following exactly the same training details as in the pix2pix paper [3]. The term ‘one2one’

refers to our results by training the same networks as a self-inverse function. In all the

tables, all of the results are averaged across the whole validation partition which follows the

same dataset split in [3]. In Figure 2.5-2.8, the number below each image corresponds to

the image above it individually.

We conducted the experiments using three paired image data sets:

Semantic label ↔ photo, trained on the Cityscapes dataset [2]. Our model is one2one

and the baseline is pix2pix.

Table 2.1 and Figure 2.5 show the model performance comparison between one2one model

and pix2pix model on bidirectional label and photo image translation. The evaluation met-

18

rics are pixel accuracy (p.acc.), class accuracy(c.acc.) and class IOU(IOU). In the direction

photo → labels, our one2one model performs better than pix2pix model by 3.75% in pixel

accuracy. In the direction labels → photo, the evaluation metric is ”FCN score”. Our

one2one model increases the class IOU by 5.3% compared with the pix2pix model. Note

that the FCN score for ground truth is 0.21. The FCN score of the one2one model is 0.20

which is very close to the score of the ground truth.

Map ↔ aerial photo, trained on data scraped from Google Maps [3].

Table 2.2 and Figure 2.6 show the model performance comparison between one2one model

and pix2pix model on bidirectional aerial and map image translation.

In the direction aerial photo→ map image translation is a many-to-one mapping. As

shown in Table 2.2 and the upper part of Figure 2.6, pix2pix produces a better result than

one2one by 3%, 10.5%, 9,6% in PSNR, SSIM and L1, respectively.

In the direction map→ aerial photo, as shown in Table 2.2 and the bottom part of Figure

2.6, one2one model outperforms the pix2pix model by 3% in SSIM and 2% in PSNR.

MRI image synthesis on BRATS We conducted the experiments based on the BraTS

2018 dataset [1], which contains ample multi-institutional routine clinically-acquired pre-

operative multimodal MRI scans of glioblastoma (GBM/HGG) and lower-grade glioma

(LGG). There are 285 3D volumes for training and 66 3D volumes for testing. The T1

and T2 images are selected for our bi-directional image synthesis. All the 3D volumes are

preprocessed to one channel image of size 256 x 256 x 1.

In all tables, all results are averaged across all splits as in [1].

As shown in Table 2.5(a), in the T1 → T2 image synthesis direction, our one2one model

19

Table 2.5: (a) Image synthesis performance and (b) model sensitive analysis on MRI T1
and T2 images from BraTs dataset [1]. Smaller L1 is better than larger. The difference
between PSNR and SSIM increases with sensitivity. All the metrics are averaged on 10230
1-channel 2D images.

Direction Method (a) L1↓ PSNR↑ SSIM↑ (b) d‖PSNR‖ ↑ d‖SSIM‖ ↑
T1 → T2 pix2pix 0.042 26.53 0.871 2.17 0.018
T1 → T2 one2one 0.039 29.23 0.875 3.01 0.020
T2 → T1 pix2pix 0.051 27.78 0.872 4.51 0.034
T2 → T1 one2one 0.048 30.99 0.876 4.93 0.036

outperforms the pix2pix model on PSNR by 13.6%. The qualitative result is shown in

columns 3 and 4 in Figure 2.9. In the T2 → T1 image synthesis direction, our one2one

model outperforms the pix2pix model on PSNR by 11.6%. The qualitative result is shown

in columns 5 and 6 in Figure 2.9.

2.5.1 Evaluation metrics

• Cityscapes data set[2].

For fair comparison with the baseline, which is pix2pix [3], we follow the same evalua-

tion metric as that in the tpix2pix [3] paper. We use the released public evaluation code

from the pix2pix GitHub repository https://github.com/phillipi/pix2pix/tree/master/scripts/evalcityscapes.

For the photo→labels direction, we use IOU as the evaluation metric. For the labels→photo

direction, we use the ”FCN score” [40, 23, 41, 42, 43].

• Map data scraped from Google Maps [3] and Brats [1]

To quantify the image quality distance between the generated image and the ground

truth objectively and to have a metric to do the model sensitivity analysis, we use the

20

SSIM[44], PSNR[45], and L1 distance as the evaluation metric for both directions.

2.6 Model Sensitivity Analysis

To measure the model sensitivity, we add a perturbation dx to the input image x, then

measure the change of the output, dy. In our experiment on the BraTs dataset shown

in Figure 2.9, in the T1 → T2 direction, the input image with perturbation x + dx is the

generated T1 images from T2 with the pix2pix model (see column 5 in Figure 2.9). In the

T2 → T1 direction, the input image with perturbation x + dx is the generated T2 images

from T1 with the pix2pix model (see column 3 in Figure 2.9).

In order to compare the performance of pix2pix and one2one on both tasks A and B, we

need to train 3 models in total: pix2pix for task A (pix2pixA), pix2pix for task B (pix2pixB)

and a one2one model for both tasks A and B (one2one). To compare the model sensitivity

between pix2pixA and one2one for task A, we follow four steps.

1. For an image pair (xi, yi)/(T1, T2), we pass yi/T2 to pix2pixB as input to generate

xi + dxi/T
′
1(pix2pix), which adds a perturbation to xi/T1.

2. We input xi/T1 to the pix2pixA and one2one models, obtaining the corresponding

outputs y′i/T
′
2(pix2pix) and y′i/T

′
2(one2one), respectively.

3. We input xi + dxi to the pix2pixA and one2one models obtaining the corresponding

outputs (yi + dyi)
′/T ′′2 (pix2pix) and (yi + dyi)

′/T ′′2 (one2one), respectively.

4. For both models, we use a predefined evaluation metric E (for example PSNR and

SSIM) to evaluate y
′
i and (yi + dyi)

′
and get the scores Ey

′
i and E(yi + dyi)

′
, respec-

21

tively. So, the change of the output is measured by d‖E‖ = |E(yi + dyi)
′ − Ey′

i|.

The model with a larger change of the output due to perturbation dxi is more sensitive,

and vice versa. Similarly, we can compare the model sensitivity between pix2pixB and

one2one for task B by swapping the xi and yi in the above steps.

As shown in Table 2.5(b) on the T1 → T2 image synthesis direction, our one2one model

is more sensitive than pix2pix model, improving PSNR by 38.7%! The qualitative result

is shown in columns 7 and 8 in Figure 2.9. In the T2 → T1 image synthesis direction, our

one2one model is more sensitive than pix2pix, improving PSNR by 9.3%. The qualitative

results are shown in columns 9 and 10 in Figure 2.9.

For the cityscapes dataset, we use the mean class IOU to measure the change of output

for the photo → labels direction and ”FCN score” to measure the change of output for

the labels → photo direction. In Table 2.3 and Figure 2.7, D(CLASS IOU) is the absolute

value difference between the IOU score for the photo→labels direction and FCN score for

label→photo direction between one2one and pix2pix.

For the Google Maps data set, we use the structural similarity index (SSIM), peak signal to

noise ratio (PSNR) and L1 distance to measure the change of output from both directions.

In Table 2.4 and Figure 2.8, the dL1, dPSNR and dSSIM are the absolute value of the

difference between one2one and pix2pix.

For the cityscapes dataset, according to Table 2.3, one2one model is more sensitive than

pix2pix by 6% in the label → photo direction and by 5% in the photo → label direction,

and Figure 2.8 illustrates qualitative sensitivity analysis.

For the maps dataset, according Table 2.4, one2one model is more sensitive than pix2pix

22

by 2% in PSNR and 14% in L1 for the aerial → map direction. The one2one model is more

sensitive than pix2pix by 3% in L1, 2% in PSNR and 4.3% in SSIM in the map → aerial

direction. Figure 2.8 illustrates qualitative sensitivity analysis.

In summary, one2one model is more sensitive than pix2pix on all the three datasets.

2.7 Conclusion

We have presented an approach for learning one U-Net for both forward and inverse image-

to-image translation. The experiment results and model sensitivity analysis results are

consistent to verify the one-to-one mapping property of the self-inverse network.

23

Figure 2.5: Qualitative result on labels↔photo bidirectional image-to-image translation on
cityscapes dataset. Upper: photo → label. Bottom: label → photo.

24

Input Ground truth Pix2pix One2one

SSIM, PSNR, L1

SSIM, PSNR, L1

SSIM, PSNR, L1

0.447, 11.878, 0.111 0.448, 11.809, 0.107

0.464, 16.448. 0.091 0.440, 16.212, 0.094

0.754, 17.397, 0.064 0.775, 17.410, 0.062

SSIM, PSNR, L1 0.475, 21.877, 0.054 0.452, 21.562, 0.057

Input Ground truth Pix2pix One2one

SSIM, PSNR, L1

SSIM, PSNR, L1

SSIM, PSNR, L1

SSIM, PSNR, L1

0.133, 9.100, 0.260 0.125, 8.742, 0.274

0.145, 9.592, 0.239 0.154, 9.950, 0.233

0.426, 13.827, 0.159 0.480, 14.383, 0.143

0.111, 7.935, 0.307 0.115, 8.005, 0.304

Figure 2.6: Qualitative result on Google maps. Upper: earial→map. Bottom: map →
aerial.

25

Figure 2.7: Model sensitivity performance of labels↔photo on cityscapes. Upper: photo →
labels. The input is generated by inputting the groudtruth to pix2pixB. Bottom: labels →
photo. The input is generated by inputting the groudtruth to pix2pixA.

26

Input Ground truth Pix2pix One2one

0.053, 2.052, 0.0143

0.023, 1.791, 0.0178

0.025, 0.342, 0.0038

0.019, 0.936, 0.0038

0.007, 1.995, 0.0163

0.005, 0.169, 0.0075

0.002, 0.088, 0.0001

0.044, 1.421, 0.0098

|dSSIM|, |dPSNR|, |dL1|

|dSSIM|, |dPSNR|, |dL1|

|dSSIM|, |dPSNR|, |dL1|

|dSSIM|, |dPSNR|, |dL1|

Input Ground truth Pix2pix One2one

0.029, 0.366, 0.0149

0.012, 0.536, 0.0122

0.072, 1.346, 0.0318

0.024, 0.015, 0.0186

0.003, 0.440, 0.0125

0.022, 0.342, 0.0160

0.003, 3.131, 0.0682

0.018, 1.265, 0.0276

|dSSIM|, |dPSNR|, |dL1|

|dSSIM|, |dPSNR|, |dL1|

|dSSIM|, |dPSNR|, |dL1|

|dSSIM|, |dPSNR|, |dL1|

Figure 2.8: Model sensitivity performance of aerial↔map on google maps. Upper: aerial
→ map. The input is generated by inputting the groundtruth to pix2pixB. Bottom: map
→ aerial. The input is generated by inputting the groundtruth to pix2pixA.

27

f

SSIM, PSNR, L1

SSIM, PSNR, L1

SSIM, PSNR, L1 24.247, 0.013, 0.866

19.665, 0.033, 0.881

22.017, 0.015, 0.907

21.259, 0.019, 0.883

0.866, 17.521, 0.051

0.881, 17.759, 0.046

0.907, 17.754, 0.036

0.883, 18.403, 0.038

T1 T2 T2'(Pix2pix) T2'(One2one)T1'(Pix2pix) T1'(One2one) T2"(Pix2pix)T2"(One2one) T1"(Pix2pix) T1"(One2one)

SSIM, PSNR, L1

0.856, 19.030, 0.036

0.938, 30.025, 0.011

0.947, 30.089, 0.008

0.960, 32.605, 0.007

0.836, 17.312, 0.052

0.924, 20.910, 0.035

0.944, 25.015, 0.016

0.962, 30.271, 0.011

0.024, 1.878, 0.008

0.024, 1.341, 0.010

0.0002, 0.190, 0.001

0.006, 1.001, 0.003

0.032, 10.001, 0.055

0.032, 2.473, 0.015

0.022, 4.006, 0.015

0.013, 1.696, 0.003

0.010, 0.428, 0.001

0.011, 5.135, 0.017

0.013, 5.853, 0.008

0.020, 6.500, 0.012

0.021, 0.690, 0.003

0.016, 6.021, 0.013

0.004, 6.500, 0.011

0.044, 14.535, 0.039

Figure 2.9: Examples of generated images. Column 1 depicts the original images for T1.
Column 2 depicts the original images for T2. Generated T2 images from T1 with pix2pix
and one2one models are in columns 3 and 4 respectively. Generated T1 images from T2
with pix2pix and one2one models are in columns 5 and 6 respectively. Generated T2
images from column 5 with pix2pix and one2one models are in columns 7 and 8,
respectively. Generated T1 images from column 3 with pix2pix and one2one models are in
columns 9 and 10, respectively. In columns 3-6, the score under each image is its PSNR
and SSIM score compared with the original image. In column 7-10, the scores under each
image are the PSNR and SSIM score differences between input x and x+ dx for both
models. For example, to compare model sensitivity in the T1 → T2 direction, x is column 1
and x+ dx is column 5. The model sensitivity for the pix2pix model is the score difference
between columns 3 and 7. The model sensitivity for the one2one model is the score
difference between columns 4 and 8.

28

CHAPTER 3

ONE-TO-ONE MAPPING FOR UNPAIRED
IMAGE-TO-IMAGE TRANSLATION

3.1 Introduction

Image-to-image translation (or cross-domain image synthesis) learns a mapping function

from an input image to an output image or vice versa. It can be grouped into two categories:

supervised [46] vs unsupervised (or unpaired) [47].

The task of learning mappings between two domains from unpaired data has attracted a

lot of attention, especially in the form of unpaired image-to-image translation [4, 10, 48, 30].

Thanks to the pioneering work of GAN[24] and cycleGAN [47], recent works [49, 50, 51, 52,

11, 32, 31, 29, 53, 34] have shown promising results for unpaired image-to-image translation.

This task is very important because paired data are not available in many cases and the

paired information is difficult or time-consuming to get. For example, in the medical field of

cross-domain medical image segmentation [52, 51], with the brain CT image semantic label

and without the brain MRI semantic label, the goal is to generate the semantic label for the

brain MRI image. Impressive works [52, 51] like this cross-domain image segmentation task

in the medical image application could be further improved if unpaired image translation

can be unique and more accurate. In many cases the information source, such as a patient,

is unique. For example, there is only a brain MRI image for a patient, but there should

29

X Y

DY

X

DY

Y

G

(b)

Dx

X'

DY

x Y' x'

Dx

X'Y'

DY

F

Dx

G

DX

x x'

G

F

G

G

y y'

y y'

F

G

G

G

(a)

G

Figure 3.1: Comparison of our one2one CycleGAN with the original CycleGAN [4] for the
mapping between two domains X and Y. (a) Original CycleGAN model. It contains two
separate mapping functions G : X → Y and F : Y → X. (b) Our one2one CycleGAN. We
propose to realize one-to-one mapping by learning ONLY one self-inverse function G for
the mapping between two domains bidirectionally. It contains only one mapping function
G : X ↔ Y .

be a unique CT brain image for the same patient. This uniqueness requirement can be

called one-to-one mapping of the brain CT and the brain MRI image from the same patient.

If the unpaired image-to-image translation can achieve this one-to-one mapping, the cross-

domain medical image segmentation performance can be further improved. However, existing

methods cannot meet this requirement.

As mentioned above, the major limitation of existing methods for unpaired image-to-

image translation, like CycleGAN, is that they cannot realize one-to-one mapping, which

is necessary in many cases such as when the information source of the unpaired image is

unique. Without the pairing information, CycleGAN using the distribution constraint allows

many-to-many mappings. To reduce the space of possible mappings and improve in finding

a more unique mapping, their models add an essential cycle-consistency constraint. The

30

cycle-consistency constraint enforces a stronger connection across domains by requiring the

input image and the output image to be close. The output image is generated by first

mapping from source domain to target domain, then mapping back to the source domain.

But this only reduces the many-to-many mapping to many-to-one mapping or one-to-many

across-domain mapping, which will be illustrated in detail in Sections 3.2 and 3.3.

With the success of image generation [24, 54] model generative adversarial networks(GANs)

and unsupervised mapping methods like CycleGAN [47], and motivated by the recent works

[55, 17] of exploring invertibility of convolutional neural networks (CNNs), we propose to

learn a one-to-one mapping between domains from unpaired data to compensate for the

limitation of the existing methods such us CycleGAN.

Specifically, we enforce the generator of the CycleGAN as a self-inverse function to realize a

one-to-one mapping. So we call our proposed method One2one CycleGAN. When a function

G is self-inverse, illustrated as

G = G−1, (3.1)

it guarantees a one-to-one mapping. We use the CycleGAN [47] as the baseline framework

for image-to-image translation. To impose the self-inverse property, we implement a simple

idea of augmenting the training samples by switching inputs and outputs during training.

However, as we will demonstrate empirically, this seemingly simple idea makes a genuinely

big difference!

The distinct feature of our self-inverse network is that it learns one network to perform

both forward (X → Y : from X to Y) and backward (Y → X: from Y to X) translation

tasks. It differs from the state-of-the-art approaches which typically learn two separate

31

networks, one for forwarding translation and the other for backward translation. As a

result, it enjoys several benefits. First, it halves the necessary parameters, assuming that

the self-inverse network and the two separate networks share the same network architecture.

Second, it automatically doubles the sample size, a great feature for any data-driven model,

thus becoming less likely to over-fit the model.

One key question arises: Is it feasible to learn such a self-inverse network for image-to-

image translation? We cannot theoretically prove this existence; however, we experimentally

demonstrate it. Intuitively, such an existence is related to the redundancy in the expressive

power of the deep neural network. Even given a fixed network architecture, the function

space for a network that translates an image from A to B is large enough; that is, there are

many neural networks with different parameters capable of doing the same translation job.

The same holds for the inversion network. Therefore, the overlap between these two spaces,

in which the self-inverse network resides, does exist.

Our contributions are as follows: (i) We introduce the one2one CycleGAN model for learn-

ing one-to-one mappings across domains in an unsupervised way. (ii) We show that our model

can learn mappings that generate a more accurate output for each input. (iii) We evaluate

our method in extensive experiments on a variety of datasets, including cross-modal medical

image synthesis, object transfiguration, and semantic labeling, consistently demonstrating

clear improvement over the CycleGAN method both qualitatively and quantitatively. Espe-

cially, our proposed method reaches the state-of-the-art result on the Cityscapes benchmark

dataset for the label-to-photo unpaired directional image translation.

32

3.2 Literature Review

Iosla et al. [46] presented the seminar work of image-to-image translation that offered a

general-purpose solution, and Goodfellow et al. proposed to use the generative adversarial

network (GAN) [24] for the first time in the literature. While paired data are assumed

in [46], later Zhu et al. [47] proposed the CycleGAN approach for addressing the unpaired

setting using the so-called cyclic constraints. There are many recent advances that use

guidance information [49, 50], impose different constraints [56, 57, 58], or deal with multiple

domains[10, 11, 32, 31], etc. In this chapter, we study unpaired image-to-image translation.

In addition to using the GAN that essentially enforces similarity in image distribution,

other guidance information is used such as landmark points [49], contours [59], sketches [60],

anatomical information [50], etc. In addition to cyclic constraint [47], other constraints like

ternary discriminative function [56], optimal transport function [57], and smoothness over

the sample graph [58] are used as well.

Also, extensions were proposed to deal with video inputs [61, 62], to synthesize images in

high resolution [63], to seek for diversity [64] and to handle more than two image domains [10,

11, 32, 31]. Furthermore, there are methods that leverage attention mechanism [65, 66, 67]

and mask guidance [68]. Finally, disentangling is a new emerging direction [32, 31].

In terms of works about inverse problems with neural networks, [17] makes the CNN

architecture invertible by providing an explicit inverse. Ardizzone et al. [18] prove the

invertibility theoretically. More specifically, Kingma [19] shows the benefit of an invertible

1× 1 convolution.

Different from a one-to-one mapping function are one-to-many, many-to-one, and many-

33

to-many [29]1 mapping functions. In [46], the well-studied scenarios of labels-to-scenes and

edge-to-photo are more likely one-to-many mapping as it is possible that multiple photos

(scenes) have the same edge (label) information. The colorization example is also one-to-

many. From an information theory perspective, the entropy of the edge map (label) is low

while that of the photo is high. When an image translation goes in an information-gaining

direction, that is, from low-entropy to high-entropy, its mapping leans toward one-to-many.

Similarly, if it goes in an information-losing direction, then its mapping leans toward many-

to-one. If the information level of both domains is close (or information-similar), then the

mapping is close to one-to-one. In [46], the examples of Monet-to-photo and summer-to-

winter are closer to one-to-one mapping as the underlying contents of both images before and

after translation are regarded the same but the styles are different, which does not change

the image entropy significantly. For image-to-image translation, much work has been done

to diversify the output [29, 30, 31, 32, 10, 33], while relatively little work has been done to

make the output unique [34]. Our work goes in the latter direction.

Although there are many research works on image-to-image translation, the perspective of

learning a one-to-one mapping network has not been fully investigated, with the exception

of [57]. In [57], Lu et al. show that CycleGAN cannot theoretically guarantee the one-

to-one mapping property and propose to use an optimal transport mechanism to mitigate

this issue. However, like GAN, the optimal transport method also measures the similarity

in image distribution; hence the one-to-one issue is not fully resolved. By contrast, our

self-inverse learning comes with a guarantee that the learned network realizes a one-to-one

1It is worth noting that recently there are quite a few works focusing on addressing image-to-image
translation among many domains, also the so-called one-to-many.

34

mapping.

3.3 Unsupervised Learning of One-to-one Mappings between

Domains

3.3.1 Problem setting

For any two domains X and Y with only unpaired elements available, we assume there exists

a mapping, potentially a one-to-one mapping, between the elements of each domain. The

goal is to make sure there is a unique target element in the target domain to match an

element in the source domain. The objective is to recover this mapping. Since there are

only unpaired samples available, this goal is realized by matching the distributions pd(x)

and pd(y) of each domain. This can be treated as a conditional generating task. The true

conditionals p(x|y) and p(x|y) are estimated from the true marginals. To be able to uncover

this mapping, the elements in both domain X and domain Y are highly dependent.

3.3.2 CycleGAN model

As shown in Figure 3.1, the CycleGAN model [47] solves this problem by estimating these

two conditionals with two separated mappings functions G : X → Y and F : Y → X. Both

of the mapping functions are parameterized with identical neural networks and constrained

by the following:

• Distribution matching: The distribution of each mapping output should match the

distribution of the target domain. This constraint allows many-to-many mappings

between the source domain X and the target domain Y and vice versa.

35

• Cycle-consistency: Each element is mapped from the source domain to the target

domain, then mapped back to source domain. The output should be close to the input

element. This constrains one-to-many mapping from source domain and many-to-one

mapping from target domain to source domain.

3.3.3 Limitations of CycleGAN for one-to-one mapping

The main weakness of the CycleGAN model is that it cannot realize one-to-one mapping for

accurate and unique unpaired image translation. Based on the above constraints and the

illustration in Figure 3.2, the CycleGAN model cannot meet our goal of one-to-one mapping.

Next, we show how to modify CycleGAN to meet the goal.

The distribution matching is implemented by GAN[24]. The two mapping functions G

and F implemented by neural networks are trained to fool the discriminators DY and DX

respectively. The adversarial loss [24] for mapping function G is

LGAN(G,DX , X, Y) = Ex∼pdata(x)[logDY (x)]

+Ey∼pdata(y)[log(1−Dx(G(y)))]. (3.2)

The cycle consistency loss is

Lcyc(G,F) = Ex∼pdata(x)[||F (G(x))− x||1]

+Ey∼pdata(y)[||G(F (y))− y||1]. (3.3)

36

The final objective for the mapping functions G and F is

L(G,F,DX , DY) = LGAN(G,DY , X, Y)

+LGAN(F,DX , Y,X) + λLcyc(G,F) (3.4)

and we aim to solve

(G∗, F ∗) = arg min
G,F

max
DX,DY

L(G,F,DX , DY). (3.5)

3.4 Self-inverse Learning for Unpaired Image-to-image Translation

In the section, we first show the property that the self-inverse function guarantees one-to-

one (one2one) mapping. Then we discuss how to train a self-inverse CycleGAN network for

image-to-image translation

3.4.1 One-to-one property

In image-to-image translation, we define a forward function as Y = fX→B(X) that maps an

image X on domain A to another image Y on domain B and, similarly, an inverse function

as X = f−1B→A(Y). When there is no confusion, we will skip the subscript (e.g., A→ B).

Property: If a function Y = f(X) is self-inverse, that is f = f−1, then the function f

defines a one-to-one mapping, that is, Y1 = Y2 if and only if X1 = X2.

Proof:

[⇒] If X1 = X2, then Y1 = f(X1) = f(X2) = Y2.

37

[⇐] If Y1 = Y2, then X1 = f−1(Y1) = f−1(Y2) = X2 as long as the inverse function exists,

which is the case for a self-inverse function as f−1 = f . #

3.4.2 One-to-one benefits

There are several advantages in learning a self-inverse network to have the one-to-one map-

ping property.

(1) From the perspective of the application, only one self-inverse function can model both

tasks A and B, and it is a novel way of multi-task learning. As shown in Figure 3.1, the self-

inverse network generates an output given an input, and vice versa, with only one CNN and

without knowing the mapping direction. It is capable of doing both tasks within the same

network simultaneously. In comparison to separately assigning two CNNs for tasks A and

B, the self-inverse network halves the necessary parameters, assuming that the self-inverse

network and the two CNNs share the same network architecture as shown in Figure 3.1.

(2) It automatically doubles the sample size, an important feature for any data-driven

models, thus it is less likely to over-fit the model. The self-inverse function f has the co-

domain Z = X ∪ Y . If the sample size of either domain X or Y is N , then the sample size

of domain Z is 2N . As a result, the sample sizes of both tasks A and B is doubled, making

this a novel method for data augmentation to mitigate the over-fitting problem.

(3) As shown in Figure 3.2, in the unpaired image-to-image translation setting, the goal is

to minimize the distribution gap between the two domains. The state-of-the-art methods can

realize this but cannot guarantee an ordered mapping or bijection between the two domains.

This results in variations for the generated images.

38

(4) The one-to-one mapping is a strict constraint. Therefore, forcing a CNN model as a

self-inverse function can shrink the target function space.

3.4.3 One-to-one CycleGAN

We are inspired by the basic formulation of CycleGAN [47]. In CycleGAN, there are two

generators Y = F (X) and X = G(Y), two discriminators Dx and Dy, and one joint object

function. In our one2one CycleGAN, we have one shared generator G and still two discrim-

inators Dx and Dy. Instead of having a joint objective for the dual-mappings, our proposed

method has two separate objective functions, one for each of two mapping directions.

Separated loss functions

Compared to CycleGAN that uses a joint loss for both image transfer directions, our method

has two separate losses, one for each image transfer direction. For the mapping function

G : X → Y and its discriminator DY , the adversarial loss is

LGAN(G,DY , X, Y) = Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x)))]. (3.6)

The cycle consistency loss is

Lx
cyc(G) = Ex∼pdata(x)[||G(G(x))− x||1]. (3.7)

39

For the mapping function G : Y → X and its discriminator DX , the adversarial loss is

LGAN(G,DX , X, Y) = Ex∼pdata(x)[logDY (x)]

+Ey∼pdata(y)[log(1−Dx(G(y)))]. (3.8)

The cycle consistency loss is

Ly
cyc(G) = Ey∼pdata(y)[||G(G(y))− y||1]. (3.9)

So, the final objective for the mapping function X → Y is

L(G,DY) = LGAN(G,DY , X, Y) + λxLx
cyc(G), (3.10)

and the minimax optimization solves

(G∗, D∗Y) = arg min
G

max
DY

L(G,DY). (3.11)

Similarly, the final objective for the mapping function Y → X is

L(G,DX) = LGAN(G,DX , X, Y) + λyLy
cyc(G), (3.12)

and the minimax optimization solves

(G∗, D∗X) = arg min
G

max
DX

L(G,DX). (3.13)

40

3.4.4 Self-inverse implementation

We apply the proposed method based on the framework of CycleGAN [47]. To have a fair

comparison with CycleGAN, we adopt the architecture of (Johnson et al., 2016) as the

generator and the PatchGAN [46] as the discriminator. The log likelihood objective in the

original GAN is replaced with a least-squared loss [38] for more stable training. We resize the

input images to 256× 256. The loss weights are set as λx = λy = 10. Following CycleGAN,

we adopt the Adam optimizer [69] with a learning rate of 0.0002. Similarly, we use a pool

size of 50. The learning rate is fixed for the first 100 epochs and linearly decays to zero over

the next 100 epochs on Yosemite and apple2orange datasets. The learning rate is fixed for

the first 4 epochs and linearly decays to zero over the next 3 epochs on the BRATS dataset.

The learning rate is fixed for the first 90 epochs and linearly decays to zero over the next 30

epochs on the Cityscapes dataset.

3.4.5 Training details and optimization

In our experiments, we use a batch size of 1. At each iteration, we randomly sample a batch

of pair (xi, yi), where samples {xi}Ni=1 ∈ X and {yi}Mi=1 ∈ Y . At any iteration j, we perform

the following three steps:

• First, we feed xi as the input and yi as the target, then forward G and back-propagate

G.

• Second, we feed yi as the input and xi as the target, then forward G and back-propagate

G.

41

Table 3.1: Results of Photo ↔ Label translation on the Cityscapes dataset.

Label → Photo Photo → Label

Method Pixel Acc.↑ Class Acc. ↑ Class IoU ↑ Pixel Acc.↑ Class Acc. ↑ Class IoU ↑
CycleGAN 52.7 15.2 11.0 57.2 21.0 15.7
DiscoGAN 45.0 11.1 7.0 45.2 10.9 6.3

DistanceGAN 48.5 10.9 7.3 20.5 8.2 3.4
UNIT 48.5 12.9 7.9 56.0 20.5 14.3

One2one(ours) 58.2 18.9 14.3 52.7 18.1 13.0

• Finally, we back-propagate DY and DX individually.

3.5 Experiments

In order to test the effect of the proposed method, we evaluate it on an array of applica-

tions: cross-modal medical image synthesis, object transfiguration, and style transfer. Also

we compare against several unpaired image-to-image translation methods: CycleGAN [47],

DiscoGAN [48], DistanceGAN [70], and UNIT [30]. We conduct a user study when the

ground truth images are unknown and perform quantitative evaluation when the ground

truth images are present.

3.5.1 Datasets and results

Object transfiguration. We test our method on the horse ↔ zebra task used in the

CycleGAN paper [47] with 2401 training images (939 horses and 1177 zebras) and 260 test

images (120 horses and 140 zebras). This task has no ground truth for generated images and

hence no quantitative evaluation is feasible. So we provide the qualitative results obtained

in a user study. In the user study, we ask a user to rate his/her preferred image out of three

42

Table 3.2: Results of user study on the horse to zebra dataset.

Direction Metric Cycle Distance One2one

horse2zebra Prefer pct. ↑ 25% 0 75%
zebra2horse Prefer pct. ↑ 23% 0 77%

randomly positioned images, one obtained from CycleGAN, one from DistanceGAN, and the

other from one2one CycleGAN. Figure 3.4 shows examples of input and synthesized images

and Table 3.1 summarizes the use study results.

Figure 3.4 shows that one2one CycleGAN likely generates better quality images in an

unsupervised fashion, especially in terms of the quality of zebra synthesis from the horse

(refer to the first four rows). Our method generated more real and complete zebra con-

tent. From Table 3.1, it is clear that our one2one CycleGAN is the most favorable with a

75% (77%) preference percentage for the horse2zebra (zebra2horse) mapping direction, and

DistanceGAN is the least favorable.

We test our method on the apple ↔ orange task [47] with 2014 training images (995

apples and 1019 orange) and 514 test images (248 apples and 266 oranges). This task has no

ground truth for generated images and hence no quantitative evaluation is feasible. Figure

3.5 shows examples of input and synthesized images. There are failure cases in rows 1, 2,

and 4 from CycleGAN while our model generates normal images.

Cross-modal medical image synthesis. This task evaluates cross-modal medical image

synthesis. The models are trained on the BRATS dataset [71] which contains paired MRI

data to allow quantitative evaluation. It contains ample multi-institutional routine clinically-

acquired pre-operative multi-modal MRI scans of glioblastoma (GBM/HGG) and lower-

43

Table 3.3: Evaluation of cross-modal medical image synthesis on the BRATS database.

Direction Method PSNR ↑ SSIM ↑
T1 → T2 CycleGAN 20.79 0.85
T1 → T2 One2one CycleGAN 22.03 0.86
T2 → T1 CycleGAN 17.47 0.81
T2 → T1 One2one CycleGAN 18.31 0.82

grade glioma (LGG). There are 285 3D volumes for training and 66 3D volumes for the test.

The T1 and T2 images are selected for our bi-directional image synthesis. All the 3D volumes

are preprocessed to one channel image of size 256 x 256 x 1. We use the Peak signal-to-noise

ratio (PSNR) and Structural Similarity Index Measure (SSIM) to evaluate the quality of

generated images.

As shown in Table 3.2, in the T1 → T2 image synthesis direction, our one2one model

outperforms the CycleGAN model on PSNR by 6.0%. The qualitative result is shown in

columns 3 and 4 in Figure 3.7. In the T2 → T1 image synthesis direction, our one2one model

outperforms the CycleGAN model on PSNR by 5.0%. The qualitative result is shown in

columns 7 and 8 in Figure 3.7.

Semantic labeling. We also test our method on the labels ↔ photos task using the

Cityscapes dataset [2] under the unpaired setting as in the original CycleGAN paper. For

quantitative evaluation, in line with previous work, for labels → photos we adopt the “FCN

score” [46], which evaluates how interpretable the generated photos are according to a se-

mantic segmentation algorithm. For photos ← labels, we use the standard segmentation

metrics, including per-pixel accuracy, per-class accuracy, and mean class Intersection-Over-

Union (class IoU). The quantitative result is shown in Table 3.3. Our model reaches the

44

Table 3.4: Results of user study on the summer to winter Yosemite dataset.

Direction Metric Cycle One2one

summer2winter Prefer pct. ↑ 34% 66%
winter2summer Prefer pct. ↑ 41% 59%

state-of-the-art on the label → photo direction image synthesis under this unpaired setting.

The pixel accuracy outperforms the second best result by 10.4 %. The class accuracy out-

performs the second best result by 24.3 %. The class IoU outperforms the second best result

by 30.0 %. In the photo → label direction, our model achieves comparable results.

The qualitative result is shown in Figure 3.6. Compared with CycleGAN which is the

second best result in the label→ photo direction, our model has clearly better visual results.

In the photo → label direction, our model also achieves a comparable or better result.

Style Transfer. We also test our method on the summer ↔ winter style transfer task

using the Yosemite dataset under the unpaired setting as in the original CycleGAN paper.

As shown in Figure 3.4 for the qualitative result, our method has a better visual result in

both directions of style transfer. We also do a similar user study by providing the generated

image from the test set by our model and the CyecleGAN to users. The result is in Table

3.4. The user study results show that our model has a higher preference than CycleGAN.

3.6 Conclusions

We have presented an approach for enforcing the learning of a one-to-one mapping function

for unpaired image-to-image translation. The idea is to take advantage of representative

redundancy in deep networks and realize self-inverse learning. The implementation is as

45

simple as augmenting the training samples by switching inputs and outputs. However, this

seemingly simple idea brings a genuinely big difference, which has been confirmed by our ex-

tensive experiments on multiple applications including cross-modal medical image synthesis,

object transfiguration, style transfer, etc. Using the CycleGAN as the base framework, the

CycleGAN model learned using the one-to-one training strategy, which is one network only,

has consistently outperformed the baseline models, consisting of two networks, in terms of

various qualitative and quantitative metrics. In the future, we plan to investigate the effect

of applying the self-inverse learning to natural language translation.

3.7 Acknowledgment

The work was supported by grants from Siemens Healthineers (Siemens 082387).

46

X Y

DY

X

DY

Y

G

(b)

x x'

F

Dx

G

DX

x x'

G

F

G

G

y y'

G

G

(a)

G

y'

G

y

F

Figure 3.2: (a) The mapping routes of CycleGAN. The limitation of the CycleGAN model
is that it allows biased and non-unique unpaired image translation. For the mapping route
x→ x′, the mapping G : x→ y′ is a one-to-many mapping with the result that x can be
mapped to infinity possible y′. Let us denote the unique target as y′t and the actually
mapped result as y′k; the mapping F : y′k → x′ is a many-to-one mapping. As a result,
there is allowable bias between the target y′t and the prediction y′k. Similarly, for the
mapping route y → y′, the mapping F : y → x′ is a one-to-many mapping with the result
that y can be mapped to infinity possible x′. Let us denote the unique target as x′t and the
actually mapped result as x′k; the mapping G : x′k → y′ is a many-to-one mapping. As a
result, there is allowable bias between the target x′t and the prediction x′k. (b) The
mapping routes of one2one CycleGAN. The motivation of one2one CycleGAN is to realize
unique and accurate unpaired image translation. The mapping function G is a self-inverse
function with the one-to-one mapping property. For the mapping route x→ x′, the
mapping G : x→ y′ is a one-to-one mapping with the result that x is only mapped to the
unique target y′t. The mapping F : y′t → x′ is also a one-to-one mapping. As a result, there
is no bias between the target and the prediction. Similarly, for the mapping route y → y′,
the mapping F : y → x′ is a one-to-one mapping with the result that y can only be
mapped to the unique target x′t. The mapping G : x′t → y′ is also a one-to-one mapping.
As a result, there is no bias between the target and the prediction.

47

Figure 3.3: Visual comparison for horse↔zebra.

48

Generated
CycleGAN

Generated
One2one
(Ours)

Recycled
CycleGAN

Recycled
One2one
(Ours)

Input

winter summer

Figure 3.4: Visual comparison for summer↔winter on yosemite.

49

Figure 3.5: Visual comparison for apple↔orange.

50

Figure 3.6: Visual comparison for photo↔label on the Cityscapes.

(Source)
Real T2
(Target) CycleGAN

One2one
GAN(ours)

Real T2
(Source)

Real T1
(Target) CycleGAN

One2one
GAN(ours)

Real T1

Figure 3.7: Qualitative comparison for T1↔T2 on BRATS datasets.

51

CHAPTER 4

TEXT EMBEDDING BANK MODULE FOR
DETAILED IMAGE PARAGRAPH CAPTIONING

4.1 Introduction

Image paragraph captioning is the task of generating logical and detailed descriptions by cap-

turing subtle details of the visual input. Thanks to the advent of large datasets [72, 73, 74],

many recent works [75, 76, 77] have shown promising results in generating a single high-level

description for images and videos. A few works [78, 79, 6] have pushed the performance to

new heights with the standard paragraph captioning dataset, the Stanford Visual Genome

corpus, a dataset introduced by Krause et al. [78]. However, the coarse, scene-level captions

that these models produce cannot meet the needs of real-world applications such as video

retrieval, automatic medical report generation [80, 81, 82, 83], blind navigation, and auto-

matic video subtitling, all of which require the model to capture fine-grained entities and

produce a coherent description.

Relative to the performance of single-sentence caption generating models, the performance

paragraph-length caption generating models are lower by a large margin. Paragraph cap-

tioning on images, and especially video, is a challenging task due to the requirement of both

nuanced visual understanding and long-term language reasoning. Existing deep learning-

based models typically consist of an image encoder to extract visual features in parallel with

52

a recurrent neural network (RNN) language model decoder to generate the sentences word

by word sequentially. In the training stage, only a tiny scalar from the word level loss is

available to optimize the image encoding training. This makes the visual feature extraction

insufficiently detailed. To overcome this challenge, we propose the Text Embedding Bank

(TEB) module. This module maps varied-length paragraphs to a fixed-length vector which

we call TEB. Each unique vector in the TEB has similarity based on Euclidean distance and

is indexed by the order of the word in the vocabulary. The TEB also has distributed memory.

The TEB module, which holds the entire paragraph in a distributed memory model, can

provide global supervision to better regularize the image encoder in the training stage. Ad-

ditionally, RNNs are known to have a long-term dependency problem because of vanishing

and exploding gradients which make it unable to meet long-term language reasoning. Since

the TEB module has distributed memory and can provide order, it is better with long-term

language reasoning.

We integrated our TEB module with the state-of-the-art methods on the only available

paragraph captioning dataset, the Stanford Visual Genome corpus, and achieved a new

state-of-the-art by a large margin.

4.2 Related Works

4.2.1 Image Captioning

This image-to-text problem is a classic in computer vision and natural language processing.

The first work to use deep neural networks to solve this problem was the Neural Image

Caption (NIC) in [84], which used a pre-trained convolutional neural network (CNN) as the

53

visual model and an RNN as the language model. The visual model extracted the visual

features, which were then fed to the first time step of the RNN. The language model would

take the visual features produced by the visual model at the first time step and predict the

first word, before feeding the predicted word into the next time step and so on. At each time

step, the difference between the predicted word and the ground truth word was optimized

by a softmax with cross-entropy loss. Such a model could only predict one short simple

sentence for each natural image. The performance of this one-sentence captioning task was

improved in [85] by introducing an attention mechanism that focuses on related regions

when generating a word per time step in the RNN model. In order to give a description for

every object in an image, DenseCap[86] proposed a fully convolutional localization network

which upgraded the region proposal network from Faster R-CNN[87] to localize the salient

regions. The RNN model then took the corresponding visual features for each localized

region to generate a sentence. However, simply joining all generated sentences together does

not produce a coherent paragraph, which is a shortcoming of the DenseCap model.

Recently, the RNN/LSTM language model was replaced by a CNN in [88, 89] with compa-

rable performance and the potential for parallel computing, which is a drawback of sequential

models. In the inference process, however, this CNN model also needs to be computed se-

quentially. Since computation cost is a big issue for video captioning, [90] introduced a

new method to find the most important frames, discarding redundant information and thus

reducing computation cost.

54

4.2.2 Paragraph Captioning

Standard image captioning is the task of generating a single high-level sentence per image.

Dense captioning is the task of generating a description for each salient object in an incoher-

ent way. Paragraph captioning, however, overcomes the weaknesses of both of these tasks

by generating fine-grained and coherent natural language descriptions, like a story. To meet

the long-term language reasoning needs and the requirement of various topics in various

sentences, a hierarchical recurrent neural network architecture [91, 92, 93, 78, 94] is widely

used in paragraph captioning. For example, the model proposed in [93] generates multiple

sentences for video captioning by capturing strong temporal dependencies. The model pro-

posed in [78] uses a hierarchical recurrent network to build relationships between sentences.

Regional features are passed to a sentence RNN to generate topic vectors with a halting

distribution used to control the termination of a topic. The generated topic vectors are then

consumed by a word RNN to generate sentences. In this way, this hierarchical RNN and

DenseCap offer two ways of generating new topics, which is essential for multiple sentence

generation. RTT-GAN [79] extends the hierarchical RNN by involving multi-level adversar-

ial discriminators for paragraph generation. The paragraph generator is thus enforced to

produce realistic paragraphs with a smooth logical transition between sentence topics. Fur-

thermore, CapG-RevG [95] augments the hierarchical RNN with coherence vectors, global

topic vectors, and a formulation of Variational Auto-Encoders [96] to further model the

inherent ambiguity of associating paragraphs with images. CAE-LSTM [97] Convolutional

Auto-Encoding (CAE) purely employs a convolutional and deconvolutional auto-encoding

framework for topic modeling on the region-level features of an image. The IU Chest X-ray

55

dataset is used for automatic report generation on this unstructured report [94] by using

co-attention and the hierarchical LSTM. The Diversity model [6] improves sentence diver-

sity by introducing a repetitive penalty in the sequence-level training. However, all of these

methods suffer from the fact that only a tiny partial scalar from the word-level loss can be

used as guiding information to optimize the image encoding in training. Our TEB module

can overcome this shortcoming and provides an alternative for the hierarchical recurrent

neural network architecture. With our TEB module, a one-level recurrent neural network is

enough to generate multiple sentences with a diverse range of topics.

4.2.3 Long-term dependency

GANs have been shown to improve real text generation in [98]. SeqGAN [99] was proposed

to deal with the sequential and discrete property of text for text generation. LeakGAN [100]

solves the sparse signal from the generator problem by leaking features from the generator

to the discriminator for long sentence generation. MaskGan [101] introduced a way to fill

in the blank using a GAN. Similarly, [102] uses long-term feature banks for detailed video

understanding.

The proposed TEB module improves paragraph captioning by describing the rich content

of a given image. Figure 4.1 shows an example of how the TEB module can be integrated

with an existing image captioning pipeline.

56

4.2.4 Learning Vector Representation of words

The paragraph vector is based on word vectors, which are based on the idea of using a

distributed vector representation of words. The basic idea is to predict a word given the

other words in a context. The framework is shown in Figure 4.2.

In this framework, each word is mapped to a unique vector which is a column of a matrix

. The column is indexed by the order of the word in the vocabulary. The features to predict

the next word are the sum or concatenation of the vectors.

To express this in a mathematical equation, let 1,2 ,3 , ...,T represent the vectors of a se-

quence of training words. The objective function of the framework is to maximize the average

log probability

1

T

T−k∑
t=k

log p(t|t−k, ...,t+k) (4.1)

Typically, a multi-class classifier such as softmax is used for the prediction task. So, we have

p(t|t−k, ...,t+k) =
eywt∑
i e

yi
(4.2)

where yi is the un-normalized log-probability for each output word i, which is computed as

y = b+ Uh(t−k, ...,t+k ;) (4.3)

This framework is implemented in a neural network and trained using stochastic gradient de-

scent through back-propagation [103]. This type of model is the well known neural language

model [104].

57

Compared to existing image captioning models, which only use recurrent neural networks,

after training converges, this framework can map words with similar meaning to a similar

position in the vector space. For example, ”wind” and ”beautiful” are far away from each

other in the vector space, while ”beautiful” and ”pretty” are closer. Additionally, the dis-

tance between each unique word vector also carries meaning. This means that it can be

used for analogy questions answering in a simple vector algebra manipulation: ”waiter” -

”man” + ”woman” = ”waitress”. This makes it easy to learn a linear matrix, such as a fully

connected layer, to translate between visual features and these word vectors.

4.2.5 Paragraph Vector: A distributed memory model

Inspired by the word vector framework which can capture the semantics as a result of a

prediction task, the paragraph vector also contributes to the prediction of the next word. In

this paragraph vector framework (see Figure 4.3), similarly to the word vector framework,

each word is still mapped to a unique vector which is a column of a matrix , while each

paragraph is mapped to a unique vector which is a column of a matrix . Then, both the

word vector and paragraph vector are fused (either summed or concatenated) as features to

predict the next word. We use concatenation in our implementation.

The paragraph vector can be treated as a super word (or the topic of the paragraph)

which acts as memory of the missing information from the current context. Hence, this

framework is known as a distributed memory model. This property can compensate for

the recurrent neural network’s lack of generating logical connections between sentences in

paragraph generation.

58

4.3 Approach

4.3.1 Integration of the paragraph vector as a TEB module for Image
Paragraph Captioning

The integration of the paragraph vector as a TEB module for image paragraph captioning

is illustrated in Figure 4.1. To show the generalizability of this TEB module, we integrated

it with a typical deep learning-based image captioning model which consists of an image

encoder (in the green box) and a language model decoder (in the yellow box). The TEB

model can be integrated into any model with an image encoder language decoder structure

by adding the module and concatenating the TEB’ semantic features to the existing visual

features extracted by the image encoder. In this paper, two models are used which will be

detailed in the next section.

4.4 Implementation

4.4.1 TEB module

For the paragraph vector framework[105], we adapted an implementation of [106]. The

hyper-parameters are as follows: The vector size (TEB size) is 512, the sliding window size

is 50, the sampling threshold is 1e − 5, the negative size is 5. The paragraph vector model

is trained for 1000 epochs before performing the inference to generate the TEB. Regardless

of the dimensionality of the visual features from the image encoder, the visual features are

converted to the same dimension of the TEB by several fully connected layers.

59

4.4.2 Integrating TEB on Diversity model [6]

As shown in Figure 4.1, we integrate our TEB module with the Diversity model [6] which

is the current state-of-the-art model on the Stanford Visual Genome dataset. We used the

model architecture and the entire training procedure from the Diversity model [6], except

for the TEB module, for a fair comparison. This model uses the Bottom-Up and Top-Down

model [107] as its backbone; self-critical sequence training (SCST) and a repetition penalty

are also used.

4.4.3 Integrating TEB on Transformer model

We also integrate the TEB module into a transformer model. The transformer model is

adapted from the Bottom-Up and Top-Down model [107] with the following modification:

The LSTM-based language model is replaced by the transformer model [108]. We used both

cross-entropy and SCST training, without the repetition penalty, and beam search instead

of a greedy search.

4.5 Experiments

4.5.1 Datasets and Experiment Settings

Dataset. We conducted the experiments and evaluated our TEB module on the Stanford

Visual Genome image paragraph dataset [78], a benchmark in the field of image paragraph

captioning. The dataset contains 19,551 images and there is one human-annotated paragraph

per image. On average, each paragraph has 67.5 words and each sentence consists of 11.91

60

Table 4.1: Our result compared with prior results on Stanford Visual Genome dataset

Methods METEOR CIDEr BLEU-1 BLEU-2 BLUE-3 BLEU-4
Image-Flat [109] 12.82 11.06 34.04 19.95 12.20 7.71
Regions-Hierarchical [78] 15.95 13.52 41.90 24.11 14.23 8.69
RTT-GAN [79] 17.12 16.87 41.99 24.86 14.89 9.03
RTT-GAN(Plus) [79] 18.39 20.36 42.06 25.35 14.92 9.21
CapG-RevG [95] 18.62 20.93 42.38 25.52 15.15 9.43
CAE-LSTM [97] 18.82 25.15 - - - 9.67
Diversity [6] 17.86 30.63 43.54 27.44 17.33 10.58
Ours (Transformer) 15.45 23.38 41.49 23.38 11.96 6.00
Ours (Transformer + TEB) 15.88 24.84 41.86 24.64 13.97 6.40
Ours (Diversity + TEB) 18.93 32.53 45.24 28.44 17.93 10.98
Human 19.22 28.55 42.88 25.68 15.55 9.66

words. In our experiments, we follow the widely used train-val-test split in [78], taking

14,575 images for training, 2,487 for validation and 2,489 for testing.

Compared Methods. We compare the proposed method with the following state-of-

the-art methods: (1) Image-Flat[109] is a standard image captioning model which di-

rectly decodes an image into a paragraph word by word, via a single LSTM. (2) Regions-

Hierarchical [78] adopts a hierarchical LSTM to generate a paragraph, sentence by sen-

tence. (3) RTT-GAN [79] integrates sentence attention and word attention into the hierar-

chical LSTM, coupled with an adversarial training strategy. (4) CapG-RevG [95] leverages

coherence vectors and global topic vectors to generate coherent paragraphs and maintains

the diversity of the paragraphs by a variational auto-encoder formulation. (5) CAE-LSTM

[97] purely employs a convolutional and deconvolutional auto-encoding framework for topic

modeling on the region-level features of an image. (6) Diversity [6] uses integrated penalty

on trigram repetition to produce much more diverse paragraphs. (7) Ours(TEB) is the

method in this dissertation. We add the TEB module on baseline methods for ablation

61

studies. There are three models: The ”Diversity + TEB” model is the Diversity model [6]

with SCST training [110], repetition penalty and TEB module. The ”Transformer” model

is the Bottom-UP and Top-Down model [107] with the LSTM replaced by the Transformer

[108]. The ”Transformer + TEB” is the ”Transformer” model with our TEB module.

Evaluation Metrics. We adapted the most used metrics: METEOR [111], CIDEr [112],

and BLEU1-4 [113]. We used the code released from the Microsoft COCO Evaluation server

[114] to calculate the metric score.

4.5.2 Performance Comparison and Analysis

Quantitative Analysis. The performances of different models on the Stanford Visual

Genome dataset are shown in Table 4.1. Overall, the results across three evaluation metrics

consistently indicate that our proposed TEB module added to the diversity model achieves

better performance than other state-of-the-art techniques including non-attention models

(Image-Flat, Regions-Hierarchical, and CapG-RevG, CAE-LSTM, Diversity) and attention-

based approaches (LSTM-ATT and RTT-GAN). Specifically, the CIDEr and BLEU-4 scores

of our Diversity + TEB can achieve 7.57 % and 29.%, making a 6.2% and 3.8% relative im-

provement over the next best model (Diversity), respectively. As expected, by additionally

modeling topics/gists in an image via an LSTM-based architecture, the Regions-Hierarchical

model exhibits better performance than Image-Flat, which ignores inter-sentence depen-

dency. Moreover, LSTM-ATT leads to a performance boost over Regions-Hierarchical, which

directly encodes an image as a global representation by performing mean pooling over all

region-level features. The results indicate that the advantage of region-level attention mech-

62

anisms in the two-level LSTM networks by learning to focus on the image regions are most

indicative to infer the next word. More specifically, RTT-GAN and CapG-RevG do this

by modeling reality and diversity of paragraphs with Generative Adversarial Networks and

Variational Auto-Encoders, outperforming LSTM-ATT. However, the performance of both

RTT-GAN and CapG-RevG is not as good as our CAE-LSTM, which exploits the inherent

structure among all image regions for topic modeling in a convolutional and deconvolutional

auto-encoding framework.

Qualitative Analysis. Figure 4.2 shows several paragraph examples generated by Di-

versity+TEB, Diversity and one human-annotated Ground Truth (GT) paragraph. From

these exemplar results, it is easy to see that all of these paragraph generation models can

produce somewhat relevant paragraphs, while our Diveristy+TEB model generates the most

coherent and detailed paragraphs with the aid of the TEB module which provides global

supervision and remembers the whole text embedding. Compared to the Diversity model,

which fails to capture part of the objects and lacks detail in its description of the captured

objects, our Diveristy+TEB model can capture many more objects in much more detail.

For example, in the first row, the Diversity model only captures boats, water, and the pier,

while our Diveristy+TEB model captures the sky and the clouds beside the boats, beach,

and water. In terms of detail, the Diversity model does not have the color description of

the water, while our Diveristy+TEB model has a color description for water, matching the

ground truth. In general, Our Diveristy+TEB model generates more human-like and coher-

ent paragraphs, while the Diversity model tends to generate multiple sentences which are

similar in meaning: The two sentences, ”There are a large while boat in the water” and

63

”There is a large blue and white boat on the water”, provide very similar content. The com-

parisons in the remaining three rows further demonstrate that our Diveristy+TEB model

can generate more coherent and detailed paragraphs than the Diversity model.

Ablation study To demonstrate the robustness and generalizability of the TEB module,

we do an ablation study on two baseline models: (1) Diversity with and without the TEB

module and (2) Transformer with and without the TEB module. The diversity model uses

an LSTM-based architecture as the decoder to generate paragraphs. The Transformer model

uses the Bottom-Up and Top-Down model [107] as its backbone, but the decoder LSTM is

replaced by the transformer model [108]. As shown in Table 4.1, the Transformer with the

TEB module model achieves better performance than the Transformer model across all the

three evaluation metrics. As mentioned in the above quantitative analysis and qualitative

analysis sections, between the Diversity with the TEB module and the Diversity without the

TEB module, the TEB does play an important role in improving the paragraph generation.

In conclusion, these two ablation studies demonstrate that the TEB module is robust and can

be applied to other existing image paragraph captioning models to improve the performance

of the paragraph captioning.

Human Evaluation. To better understand and verify how the TEB module improves

the image paragraph caption performance, a Turing test is performed to evaluate our Di-

veristy+TEB against the baseline Diversity. In this Turning test, five well-educated eval-

uators are selected for human evaluation on 800 randomly chosen images from the testing

set. The test procedure is as follows: The paragraphs that are generated by three methods

(human annotation, Diversity, and Diversity+TEB) and the corresponding image are shown

64

one-by-one to the evaluators, who are then asked: Can you tell whether the given paragraph

has been generated by a model or by a human being? According to the evaluators responses,

the percentage of paragraphs that passed the Turing test is calculated. The results of the

Turing test for Human, Diversity+TEB, and Diversity were 78.4 %, 43.2 %, and 19.1 %,

clearly indicating that our Diversity+TEB outperforms the Diversity model.

4.6 Conclusion

In this chapter, we propose the Text Embedding Bank (TEB) module for image paragraph

captioning, a task that requires capturing the fine-grained entities to generate a detailed and

coherent paragraph. Our TEB module provides global and parallel deep supervision and

distributed memory for nuanced image understanding and long-term language reasoning.

Integrating the TEB module to existing state-of-the-art methods achieves new state-of-the-

art results.

65

C
N

N

F
c
s

concatenation

 RNN

paragraph

vector

TEB'

L
o
s
s

Ground truth paragraph

input image

visual
features

TEB

Generated paragraph

Figure 4.1: Integration of the paragraph vector framework as a TEB module to an existing
deep learning-based image captioning model. There are three interconnected components
divided into three dashed rectangular boxes. In the green box on the top left, the image
encoder extracts visual features through a CNN model. In the yellow box on the bottom,
an RNN-based language model decoder is used to generate paragraphs. Existing deep
learning-based models only contain these two components. The red box on the top right
box is the TEB module: In the training stage, for a image, paragraph pair, the
varied-length paragraph is mapped to a fixed-length vector which is called TEB through
the paragraph vector framework. The visual features from the image encoder are converted
to the predicted TEB (called TEB’) through several fully connected layers. The TEB’ is
supervised by the TEB through an L1 loss, which acts as global deep supervision to
regularize the visual feature extraction for the image encoder. The visual features and
TEB’ are concatenated and fed into the RNN as input. The generated paragraph is
supervised by the ground truth paragraph through a word-level loss. In the inference stage,
the TEB is not available and the TEB’ acts as the distributed memory to provide the
semantic features of the whole paragraph to alleviate the long-term dependency problem
for the language model.

66

Input Image Ours (Diversity + TEB) Diversity Ground truth

A bunch of boats are
sitting on a beach. The
water is calm and blue.
There are a lot of boats in
the water. The boats are
white. There is a yellow

umbrella on the boat. The
sky is blue. The clouds are
white and white.

A bunch of boats are on a
pier. There are a large
white boat in the water.
There is a large blue and
white boat on the water.

This is an image of a
harbor. The harbor has
many small boats in it.
The water is blue. The
water is reflecting the sky.
The sky is partly cloudy.

The clouds are white and
fluffy. The sky is light
blue. There are white
buoys on the dock with
small cloth sails in them.
The sails are light brown
and white.

A man is standing in a of a

man. The man is wearing a
white shirt. The man has a
black shirt on. The man is
holding a hot dog. The
sandwich is wearing a
black. The men are
wearing a blue shirt. There
are people standing behind

the man. There is a man in
a blue shirt standing in the
background. There are
trees behind the man.

A man is standing in a

white basket. He is
wearing a black shirt and a
black hat. The man is
holding a hot dog in his
hand. There is a man in a
black shirt standing
behind the man.

There is a man. The man

is wearing a yellow shirt.
The man is standing at a
park. There are more
people in the park. There
are people sitting under
the threes. There are
people walking in the
paths. The man is holding

a sandwich. The sandwich
is a hot dog. The sandwich
has a sausage. The
sandwich has onions.

A large elephant is
standing in the grass. The
elephant is a baby

elephant. The elephant has
a long trunk. The baby
elephant is walking. The
grass is green. The
elephants are standing on
the grass. The water is
calm. The elephants are
white. The tusks are white.
They are a few trees in the

water.

A large elephant is
standing in the water. The
elephant is walking in the

water. There is a large
body of water behind the
elephant. There are a
small rock behind the
elephant.

The elephant stands in the
grass. The elephant is
small. The elephant has

tusks. The tusks are little.
The elephant is grey. The
elephant is standing by the
water. The water is like a
river. The grass is mostly
yellow. There is a hill on
the other side of the water.
The water is still. there is
wood in the water. The

grass is short. There are
trees on the other side of
the river.

A white toilet is in the
bathroom. The toilet is
white. The lid is white.
There is a white toilet in

the toilet. The toilet lid is
up. The floor is made of
white. The tiles are white.
There is a white wall
behind the toilet.

A white toilet is sitting on
the ground. There is a
white toilet in the toilet.
There is a toilet in front of

the toilet.

The toilet lid is up. The
toilet bowl is cleaning.
The toilet is a very light
beige color. There's a

white bar between the
toilet lid and the toilet
seat. The toilet is encased
in a cubby space. The
water in the toilet is low.
The floor around the toilet
is made of tiles. There are
wires on the bottom left

side of the toilet bowl.

Figure 4.2: Qualitative result comparison of paragraph outputs of our model (Diversity
with TEB) and the baseline Diversity model [6]

67

CHAPTER 5

FUTURE WORK: TOWARDS EXTRACTING AND
LEARNING VECTOR SPACE REPRESENTATIONS

OF WORDS FOR IMAGE CAPTIONING

5.1 Introduction

Recent developments in Image Captioning have been inspired by advancements in object de-

tection and machine translation in the past few years. The task of image captioning involves

two main aspects: (1) resolving the object detection problem in computer vision and (2)

creating a language model that can accurately generate a sentence describing the detected

objects.

Seeing the success of encoder-decoder models with soft attention in the task of image

caption [85], we use soft alignment [115] and modern approaches to object detection [116] as

our baseline model. To extend this work, we investigate the effect of pre-trained embeddings

on the task of image captioning by integrating GloVe embeddings [117] and BERT context

vectors (Vaswani et al., 2017) to enhance the models performance and reduce training time.

The contributions of this chapter are the following:

• We provide an enhanced pyTorch implementation of the ”soft” deterministic attention

mechanism with an encoder-decoder architecture for image captioning as described in

68

[85].

• We integrate BERT context vectors and GloVe embeddings into our baseline model

and enhance its performance.

• Finally, we visualize our results and quantitatively validate our models with the MS

COCO validation dataset. We show that our BERT model integration outperforms

the baseline model described in [85], while taking less time to train. We submit our

results on the Microsoft COCO Image Captioning Challenge CodaLab test server. We

show that our BERT model integration achieves the state of-the-art result by a large

margin.

5.2 Problem Description

Given a single raw image, our goal is to generate a caption y encoded as a one-hot vector

corresponding to our vocabulary.

y = {y1, ..., yC}, yi ∈ RV

where V is the size of the vocabulary and C is the length of the caption.

5.3 Data

There are several easily accessible datasets for training and validating models on the task

of image captioning such as MS COCO, Flickr8k, and Flickr30k. In this paper, we use the

MS COCO 2014 dataset for both training and validation. We utilized readily available MS

69

COCO cleaning and structuring scripts [118] to parse the captions, extract the vocabulary,

and batch the images to optimize the training process for our models.

After re-sizing and normalizing all the images to 224x224 pixels, we extracted the captions

and tokenized them with the NLTK tokenizer. Following that, we built a vocabulary with

all the training dataset words, which came to be a list of 8,856 words.

5.4 Models and Algorithms

We use an encoder-decoder architecture to generate captions. The encoder is a Convolu-

tional Neural Network (CNN) that takes in a single image and generates a vector describing

the detected objects. This vector of objects is then passed to the decoder, which is a Long

Short-Term Memory Network (LSTM) that attends to the image and outputs a descriptive

caption one word at each time step.

In this section, we describe the encoder used in all our models and three variants of the

attention-based decoder from [85]. The first decoder is an exact replica of the soft attention

model described in [85] with optimized hyper-parameters. This initial model will act as our

baseline. The second and third decoders are extensions on the baseline model that integrate

GloVe embeddings and BERT’s pre-trained context vectors to the captions to enhance the

model’s performance and reduce its training time.

70

5.4.1 Encoder

Similar to the encoder described in [85], we use a CNN to extract feature vectors from images.

The Encoder produces L vectors, where each vector has D-dimensions that represent part

of the image.

a = {a1, ...aL} ∈ RD

Although it is possible to create and train our own CNN for this task, we used the pre-

trained ResNet-101 CNN as our encoder to reduce our training time and focus on enhancing

the performance of the decoder. To use ResNet-101, we discard the pooling and linear

layers—the last two layers—as we only need the image encoding, rather than the image

classification. Then, we pass the output of the modified ResNet onto an adaptive pooling

layer to create a fixed size output vector—fixed L—that can be easily passed to the decoder.

We do not perform any fine-tuning to ResNet-101.

5.4.2 Decoder: Baseline Attention Model

We use a Long Short-Term Memory network to generate caption words one step at a time

by conditioning on the previous step’s hidden state, the context vector, and the previously

71

generated words. Our implementation directly follows that of [85]

i

f

o

g

=

σ

σ

σ

tanh

TD+m+n,n

Eyt−1

ht−1

zt

ct = f � ct−1 + i� g

ht = o� tanh(ct)

where i, f , o, and g are the input, forget, memory, and output states of the LSTM; h is the

hidden state; c is the cell state (that keeps long term memory); and ht denotes the hidden

state at timestep t. Additionally, Tn,m defines an affine transformation from dimension n to

m. � is an element-wise multiplication.

E represents an embedding matrix that is used and zt denotes the context vectors of the

relevant part of the image at time step t that is generated through soft-attention. To perform

soft-attention in generating zt, we use the ”soft” attention mechanism detailed in Xu et al.

(2016). In this baseline model, the caption embedding, E, is learned alongside training the

model to generate captions.

In the next two decoder descriptions, we will explain how we optimize E to enhance the

models performance.

72

5.4.3 Decoder: GloVe Attention Model

Recent methods for extracting and learning vector space representations for words have

proven successful in capturing fine-grained semantic and syntactic regularities in words.

In particular, GloVe word vectors [117] created a global log-bilinear regression model that

generates word vector representations that enable Machine learning models to utilize these

pre-trained embeddings. These embeddings are helpful because they can be pre-trained on

vast amounts of text data instead of being trained alongside the task specific model, which

usually has a much smaller dataset.

As an extension to the baseline decoder explained in the previous section, we integrate

GloVe embeddings into our decoder by applying them to the images captions. However, we

fine-tuned the embeddings alongside training our model to increase its accuracy and make

it better fit the MS COCO dataset.

We downloaded the gloev.6b 300-dimensions pre-trained embeddings introduced in Pen-

nington et al., (2014) and built a weights matrix that has a GloVe embedding for every word

in our vocabulary. We then initialized the decoder embeddings with this weights matrix and

fine-tuned it as we trained our model by propagating back the gradients.

5.4.4 Decoder: BERT Attention Model

In using the GloVe vector representations, each word is represented by a single unique vec-

tor no matter what context the word is used in. This raised concerns for several researchers

73

[119] as they realized that each word could have multiple meanings depending on where

the word is used. Rather than having one representation for each word, BERT [119] uses a

Transformer to generate a bi-directional contextualized word embedding conditioned on the

context of the word in a sentence.

BERT has two distinct models: BERT base and BERT large. The base version has 12

encoder layers in its Trasnformer, 768 hidden units in its feedforward-network, and 12 atten-

tion heads. On the other hand, the large version has 24 encoder layers in its Transformer,

1024 hidden unites in its feedforward-network, and 16 attention heads. Throughout our

implementation, we use BERT base to generate the caption’s contextualized word vectors

due to the increase in training time the large model introduces.

In the decoder, we take a batch of captions as our input c = {c1, ..., cB}, where B is the

size of the batch and ci is a full text representation of the caption. Then we iteratively take

each caption ci and perform the following steps on it:

1. Tokenize each caption with BERT’s wordPiece tokenizer to enable BERT to digest the

caption and add the special ’[CLS]’ BERT token to the beginning of the caption.

2. Pass the wordPieces into BERT base.

3. Retrieve the output of the 12th layer (last layer) and discard the embedding of the

special ’[CLS]’ token.

4. Detokenize the embeddings by summing the BERT context vectors of wordPieces that

74

belong to the same original word.

After doing the steps above to each caption in the batch we will have caption embeddings

b = {b1, ..., bB}, where bi is a tensor of size (caption size x 768) as each word has a vector of

size 768 as its contextualized embedding. b can then directly replace the GloVe embeddings

and the trained embeddings used in the baseline model and the GloVe model respectively.

5.5 Experiments and Results

The Baseline, GloVe, and BERT models were trained and validated using the MS COCO

2014 dataset with the following optimized hyper-parameters obtained from [85]: (1) gradient

clip = 5 (avoid gradient explosion), (2) number of epochs = 4 (limited to 4 epochs due to

GPU accessibility), (3) batch size = 32, (4) decoder learning rate = 0.0004, (5) dropout

rate = 0.5, (6) vocab size = 8856, (7) encoder dimension = 2,048 (based on RESNET-101’s

output size), (8) attention dimension = 512, and (9) all weights initialized using a uniform

distribution with range = [-0.1,0.1].

To implement the embedding extensions, we used embedding dimension of 512 for the

baseline model, 300 for GloVe, and 768 for BERT. All the models were trained and vali-

dated on the same dataset splits with the same vocabulary to enable an accurate performance

comparison.

Each epoch in the baseline and GloVe model took around 3.5 hours to train on a GTX

1070 Ti GPU, while the BERT model’s epoch took around 4.2 hours.

75

5.5.1 Baseline Attention Model

Figure 1 shows sample results obtained from the baseline model. Qualitatively analyzing

the results, we see that the left image of Figure 1 has an accurate, grammatically correct

hypothesis although the animal classifications are incorrect. Additionally, we see that the

model used the word ”herd” where it should have been ”flock” due to its limited language

model. The right image of Figure 1 shows a hypothesis that is more similar to the average

hypotheses generated by the baseline model where many word repetitions occur. This means

that the model correctly learned some representations, but did not yet finish training.

We have additionally noticed that this model is unable to generate sentences that have

the same meaning as the reference sentences while using different words; it seems that the

model is attempting to copy the reference sentence word by word. This can be explained by

the fact that no pre-trained embeddings were used in this model. Therefore, it was difficult

for the model to learn accurate word representations that would allow it to switch similar

words.

5.5.2 GloVe Attention Model

Although the Glove model has quantitative results similar to those of the baseline model in

validation loss and BLEU scores, the GloVe model proved to be able to generate captions

that use a different style of writing than the reference captions by using different words that

are similar in meaning. This change can be explained by the fact that Glove embeddings

offer the model the ability to pick and choose the best possible word from a cluster of sim-

ilar words. The left image in Figure 5.2 shows an example where the words ’Asian people’

76

were translated to ’children’ in the generated caption. However, this model has repetition

problems similar to those of the baseline model due to the limited training we did.

Table 5.1: Model validation loss and BLEU scores on the validation dataset

Model Val (loss) BLEU-1 BLEU-2 BLEU-3 BLEU-4

Baseline Model 3.091 51.79 22.41 10.03 4.81
GloVe Model 3.101 51.66 22.30 10.00 4.80
BERT Model 1.548 84.76 70.77 59.89 51.19

5.5.3 BERT Attention Model

Although we expected the BERT model to outperform both the baseline and GloVe models

because of its reliance on contextualized word embbedings, we were surprised by the extent

of increase in BLEU score it obtained. The validation loss (Cross Entropy) decreased much

faster in the BERT model, which shows that the BERT embeddings are very accurate in

representing contextualized words. Additionally, this shows that context is very important

in generating image captions, which makes a lot of sense because captions are supposed to

relate objects in an image together and make sense of them.

Figure 5.3 shows two examples of the BERT model predicting captions; both captions

Table 5.2: Leaderboard of various methods on the online MS-COCO test server

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
Metric c4 c40 c4 c40 c4 c40 c4 c40 c4 c40 c4 c40 c4 c40

SCST [110] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.0
LSTM-A[120] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0
Up-Down[107] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

RFNet[121] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
GCN-LSTM[122] - - 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

SGAE[123] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoANet[124] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
EMB(ours) 84.6 96.1 70.6 92.6 59.8 90.4 51.2 83.4 29.4 39.1 59.3 75.1 136.5 141.7

77

Figure 5.1: (left) Successful hypothesis from the baseline model. (right) Incorrect
hypothesis from the baseline model.

Figure 5.2: (left) Decent hypothesis from the GloVe model. (right) Incorrect hypothesis
from the GloVe model.

78

Figure 5.3: Accurate captions by the BERT model.

79

make sense and are grammatically correct. Interestingly, the predicted captions (hypothe-

ses) predict similar sentences to the reference caption but use different word variants to

explain similar things. In Figure 5.3, we see that ’back window’ was translated to ’back’

and ’holidays’ was translated to ’Christmas’. This is interesting as it shows that the model

offers correct captions that are not exactly the same as the reference captions, which is the

goal of this task. BERT captions had few repetitions and were generally very well written.

5.5.4 Summary of findings

Table 5.1 shows a full summary of our results. We validated our dataset by running a full

single epoch on the MS COCO 2014 validation data and compared each hypotheses to 5

reference captions. Table 5.1 reports the validation loss, BLEU-1, BLEU-2, BLEU-3, and

BLEU-4 which gives an accurate indication of how well each model performs.

Baseline and GloVe yielded very similar results, having only a slight improvement with

Glove due to the introduction of pre-trained embeddings that were trained on vast amounts

of data. BERT, on the other hand, had much better results in all aspects as shown in Table

5.1. Our BERT model results outperformed the results obtained by Xu et al. (2016) while

being trained on fewer epochs [118].

The performances of different models on the Microsoft COCO Image Captioning Challenge

CodaLab test server are shown in Table 5.2. Overall, the results across three evaluation

metrics consistently indicate that our proposed BERT model integration achieves better

performance. Specifically, the CIDEr and BLEU-4 scores of our BERT model integration

achieve 7.57 % and 29.95%, for a 9.6% and 11.8% relative improvement over the next best

80

model (AOANet[124]), respectively.

Figure 5.4: Direct comparison of the three main models proposed.

Figure 5.4 shows a direct a comparison between the three models we implemented. The

results clearly show that Baseline and GloVe yield similar results, while BERT outperforms

them by large margins.

Figure 5.5 shows a failed attempt at implementing a program that visualizes the attention

and maps it onto the image so that we can see what the model is attending to while predicting

a specific word. The issue is how to map the attention values onto the image.

81

5.6 Conclusion

We proposed two extensions to the attention based approach to image captioning introduced

in [85] that enhanced the performance of the model and reduced training time. Our BERT

approach surpasses the MS COCO validation scores obtained by [85] while being trained

on fewer epochs with the same hyper-parameters. Our experiments outline the importance

of word embeddings in natural language processing and offer a new method in integrating

BERT with already developed models to enhance their performance. We submit our results

on the Microsoft COCO Image Captioning Challenge CodaLab test server. We show that

our BERT model integration achieves the state-of-the-art result by a large margin.

Possible extensions to our work would be to train a new model with BERT large as apposed

to BERT base, utilize beam search in validation, and train the models until the training loss

converges.

82

Figure 5.5: Failed attempt to visualizing attention.

83

APPENDIX A

DC-DENSEUNET: 2D-3D DENSELY COUPLED,
DENSELY CONNECTED UNET FOR AUTOMATIC

LIVER LESION SEGMENTATION FROM CT
VOLUMES

A.1 Introduction

Among cancers, that of the liver cancer is one of the most common and deadly [125, 126].

The accurate assessment of liver tumor volume, shape, location and texture can assist doctors

in making diagnoses and in planning and evaluating treatments. 3D volumetric images

exist widely in the medical imaging field; CT and MRI, for example, are the main imaging

modalities for clinical diagnosis. Therefore, automatic liver and liver tumor segmentation

methods are in high demand in clinical practice.

Automatic segmentation of liver and liver tumor in CT images is more challenging than

that in natural images. First, the CT volume images are 3D volumes with anisotropic

resolution. The resolution varies intra-slice between different CT images and the resolution

is several times lower in the inter-slice dimension than that in the intra-slice dimension in

the same CT image. Second, even in the contrast-enhanced CT volumes, there is a very low-

intensity contrast between liver and its neighboring tissues and organs. Tumors, especially,

vary greatly in location, shape and size (see Figure A.1). So due the heterogeneous and diffuse

shape of the lesion, automatic segmentation of the lesion is very challenging. On the other

hand, as manual segmentation of tumors by a radiologist is tedious and time-consuming,

84

many published methods utilize datasets containing less than 20 segmented tumors.

For a 3D volume image, it might be intuitive to just replace the 2D convolution with

the 3D convolution in the state-of-the-art 2D fully convolutional neural networks (FCNNs)

model. But there are several drawbacks to this approach: (1) With the same architecture, the

memory of the 3D counterpart is too large to fit in the GPU memory limit, which constrains

it from going deeper and wider to have the same performance as its 2D counterpart. (2)

Since the resolution of the inter-slice is several times lower than that of intra-slice, it might

be hard for a 3D kernel to learn stably in an anisotropic volume. The current solution is to

resample the volume with a new resolution to make it isotropic. But the problem is that if

the new resolution is too low—near the resolution of the inter-slice—then the small tumor

will disappear and the whole new volume will be blurry and lacking in detail. On the other

hand, if the new resolution is too high—close to the resolution of the intra-slice—then the

dimension of the new volume will be huge, resulting in excessive computational load and

memory issues. (3) The 3D networks lack both a pre-trained model and sufficient 3D data for

generalization. On the other hand, directly applying a 2D FCNN on a 3D volume image has

a severe theoretical limitation: 2D convolution cannot take into account the spatial feature

in the intra-slice dimension.

In order to tackle the limitations of both 2D FCNs and 3D FCNs mentioned above, an

efficient way of combining them seems in order. In this chapter, we propose a novel 2D-3D

densely coupled, densely connected UNet (DC-DenseUNet) to jointly learn hybrid features

from volume images with anisotropic resolution. The detailed pipeline and architecture of

DC-DenseUNet are presented in Section 2.3. In general, the novelty and contributions of

85

Raw image Ground Truth 3D display

Figure A.1: Example of contrast-enhanced CT scans showing the large variations of shape,
size, and location of liver lesions. The red regions denote the liver and the green ones
denote the tumors.

this chapter are as follows:

1 We propose a novel densely coupled layer-wise feature fusion operation between 2D

features and 3D features, where the 2D features and 3D features are from the corre-

sponding layer of the 2D DenseUNet and 3D DenseUNet respectively. In this way, the

performance can take the advantage of both 2D DenseUNet and 3D DenseUNet. The

advantage of 2D DenseUNet is that there is no boundary for it to go deeper and wider.

The advantage of 3D DenseUNet is that its 3D convolution can take into account the

spatial feature in the inter-slice dimension.

2 DC-DenseUNet is designed to jointly learn to 2D and 3D features in an efficient manner.

This densely coupled layer-wise feature fusion operation adds no new parameters or

new FLOPs.This dense fusion has three types which will be described in detail in

Section 2.3.

86

A.2 Related Work

A.2.1 Non-deep Learning Methods

Before deep learning was used for semantic image segmentation, the traditional non-learning-

based approaches usually relied on hand-crafted features, including atlas-based[127], active

shape model (ASM)-based [128], levelset-based [129], graph-cut-based[130]methods, etc.

A.2.2 Deep Learning Methods

Semantic segmentation assigns pixel-wise labels for a given image. The application of deep

neural networks for image segmentation dates back to [131]. It can be treated as a dense

classification problem. So the application of the deep neural network starts with replacing

the last fully connected layer with the fully convolutional layer in the classification model. By

convention, this model is called a fully convolutional network (FCNs)[132, 23]. FCNs have

been dominant and proven successful on several segmentation benchmarks [133, 134, 2, 135,

136]. Following this trend, SegNet[137] adds deconvolution to form an encoder-decocoder

network. UNet[138] adds skip connection between the same level layers of an encoder-decoder

network and has demonstrated big improvement for medical image segmentation. And V-

net[139] used a similar strategy on volume image segmentation. PSPNet[140]. In order

to resolve the anisotropic resolution in the 3D volume image, the methods have tried to re-

sample the volume images with isotropic resolution [141, 142]. DeepEM3D-Net composes 3D

convolutions in the early stage layers and 2D convolutions in the latter stage layers. DI2IN

network [143, 144] treats the the CT image and its segmentation image as two domains and

applies GAN[24] to map the image from one to the other. H-DenseUNet [145] concatenates

87

the pixel-wise prediction from 2D networks to the input of 3D networks and fuses the 2D

features and 3D features from the last layer. PSPNet [140] uses different pool sizes and the

fuses the multi-scale features together, but the limitation is that the pool size variation is

limited and hard-defined. It lacks flexibility to fit the continuous resolution variation.

Recently, during the 2017 ISBI LiTS challenge, Han [146], proposed a 2.5D ResUNet

which uses 5 adjacent slices as input to attain more z dimension spatial information. Liu

[147] designed the architecture to transfer 2D features to 3D features in ResUNet and LSTM,

and used focal loss, but the 2D and 3D features are not learned jointly and effectively. BDC-

LSTM [148] treats slices as a time series in a bidirectional convolutional LSTM to explore the

3D contexts, an approach which still suffers from anisotropic features. Compared with all

this related work, our method densely couples the 2D features from 2D DenseUNet and 3D

features from 3D DenseUNet in an efficient way and improves the performance. Compared

to the H-DenseUNet [145], this operation fuses the 2D features and 3D features not only at

the last layer but at every layer; therefore, the well-learned 2D feature can be involved and

help with the training of the 3D feature. This results in an effect similar to that of DenseNet,

which fuses the features from the lower layer to the higher layer. Then the features from the

lower layers can be involved and help the training of the 3D features.

A.3 Method

A.3.1 Pipeline

There are two stages in the pipeline:

88

Stage I: Coarse Segmentation of the Liver to Get the Region of Interest (ROI)

In this stage, we use the same method as in [142]. First, the whole CT image is resampled

to 1mm × 1mm × 1mm. Second, a 2.5D training method is used here, where the input is

3 adjacent slices and the mask of the corresponding center slice is the ground truth. We

follow the same ResNet architecture as that in [142]. Finally, the trained ResNet model can

generate a mask with label 1 for the liver region and 0 for background for each CT image

in the training and testing datasets. Then each CT volume and its corresponding mask are

cropped to contain only the liver area based on this generated mask. We call this cropped

CT volume and its mask the ROI pair.

Stage II: Fine Segmentation of the Liver and Tumor

In this stage, there are two inputs: the 3D-input for the 3D DenseUNet and the 2D-input for

the 2D DenseUNet. The ROI pair from the stage I is resampled to the original resolution.

Then the 3D-input is randomly cropped from the ROI pair. The input pipeline is as follows:

A 224× 224×12 volume patch is randomly cropped. This volume patch is passed to the 2D

DenseUNet and 3D DenseUNet with batch sizes of 12 and 1, respectively. The dimension

and batch size of the 3D-input are 224 × 224 × 12 and 1 respectively. The dimension and

batch size of the 2D-input are 224× 224 and 12 respectively. The relationship between the

2D-input and 3D-input is as follows: Each of the 12 slices and its two adjacent slices from

the volume patch are put together as the 2D-input with a batch size of 12. And the order

of samples in the 2D-input batch follows the same slice order as in the 3D-input batch. The

batch 12 slices are all from the same region. In the inference, the DC-DenseUNet outputs

89

Table A.1: DC-DenseUNet architecture

Feature size 2D DenseUNet-165(k = 24) Feature size 3D DenseUNet-63 (k = 16)
input 224× 224 - 224× 224× 12 -

convolution 1 112× 112 7× 7,48,stride 2 112× 112× 6 7× 7× 7,48,stride 2
pooling 56× 56 3× 3 max pool,stride 2 56× 56× 3 2× 2× 2 max pool,stride 2

dense block 1 56× 56

[
1× 1, 96 conv
3× 3 24 conv

]
× 6 56× 56× 3

[
1× 1× 1, 64 conv
3× 3× 3 16 conv

]
× 3

transition layer 1 56× 56 1× 1 conv 56× 56× 3 1× 1× 1 conv
28× 28 2× 2 average pool 28× 28× 3 2× 2× 1 average pool

dense block 2 28× 28

[
1× 1, 96 conv
3× 3 24 conv

]
× 12 28× 28× 3

[
1× 1× 1, 64 conv
3× 3× 3 16 conv

]
× 4

transition layer 2 28× 28 1× 1 conv 28× 28× 3 1× 1× 1 conv
14× 14 2× 2 average pool 14× 14× 3 2× 2× 1 average pool

dense block 3 14× 14

[
1× 1, 96 conv
3× 3 24 conv

]
× 36 14× 14× 3

[
1× 1× 1, 64 conv
3× 3× 3 16 conv

]
× 12

transition layer 3 14× 14 1× 1 conv 14× 14× 3 1× 1× 1 conv
7× 7 2× 2 average pool 7× 7× 3 2× 2× 1 average pool

dense block 4 7× 7

[
1× 1, 96 conv
3× 3 24 conv

]
× 24 7× 7× 3

[
1× 1× 1, 64 conv
3× 3× 3 16 conv

]
× 8

upsampling layer 1 14× 14 2× 2 upsampling [dense block 3,2D],384,conv 14× 14× 3 2× 2× 1 upsampling [dense block 3,2D,3D],252,conv
upsampling layer 2 28× 28 2× 2 upsampling [dense block 2,2D],192,conv 28× 28× 3 2× 2× 1 upsampling [dense block 2,2D,3D],112,conv
upsampling layer 3 56× 56 2× 2 upsampling [dense block 1,2D],96,conv 56× 56× 3 2× 2× 1 upsampling [dense block 1,2D,3D],48,conv
upsampling layer 4 112× 112 2× 2 upsampling [convolution 1,2D],48,conv 112× 112× 6 2× 2× 2 upsampling [convolution 1,2D,3D],48,conv
upsampling layer 5 224× 224 2× 2 upsampling,32,conv 224× 224× 12 2× 2× 2 upsampling [upsampling layer 5,2D],32,conv

convolution 2 224× 224 1× 1, 3,conv 224× 224× 12 1× 1× 1[convolution 2,2D], 3,conv
output 224× 224 softmax,1 224× 224× 12 softmax,1

a cropped fine segmentation of the liver and tumor. We call this the fine mask. In the fine

mask, the tumors that are outside of the liver region are removed first, then it is padding

back to the whole size, and finally it is re-sampled to the original resolution.

A.3.2 DenseUNet Architecture

The 2D DenseUNet architecture is modified from the structure of DenseNet-161 [149], which

is composed of several dense blocks and BC layers between them to change the feature map

channel number between two consecutive dense blocks. In each dense block, there are direct

connections from any layer to all subsequent layers. Each layer produces k feature maps and

k is called the growth rate.

90

2.5D R sUNet

2
8

x
2

8
x
3

1
4

x
1

4
x
3

dense block 4

d
e
n
s
e
 b

lo
c
k
 3

d
e
n
s
e
 b

lo
c
k
2

5
6

x
5

6
x
3

p
o
o
lin

g

p
o
o
lin

g

1
1
2
x
1
1
2
x
6

c
o
n
v
o
lu

tio
n
 1

c
o
n
v
o
lu

tio
n
 1

7x7x3

1
4

x
1

4
x
3

u
p
s
a
m

p
lin

g
 1

2
8

x
2

8
x
3

5
6

x
5

6
x
3

u
p
s
a
m

p
lin

g
 2

u
p
s
a
m

p
lin

g
 3

1
1
2
x
1
1
2
x
6

u
p
s
a
m

p
lin

g
 4

u
p
s
a
m

p
lin

g
 5

2
2
4
x
2
2
4
x
1
2

2
2
4
x
2
2
4
x
1
2

v
o
lu

m
e
 in

p
u
t

2
2
4
x
2
2
4

u
p
s
a
m

p
lin

g
 4

5
6

x
5

6
1
1
2
X

1
1
2

2
8

x
2

8

u
p
s
a
m

p
lin

g
 2

1
4

x
1

4

1
4

x
1

4

u
p
s
a
m

p
lin

g
 1

7x7

dense block 4

d
e
n
s
e
 b

lo
c
k
 3

2
8

x
2

8

d
e
n
s
e
 b

lo
c
k
2

5
6

x
5

6
1
1
2
X

1
1
2

u
p
s
a
m

p
lin

g
 5

2
2
4
x
2
2
4
x
3

p
ix

e
lw

is
e
 p

re
d
ic

tio
n

c
o
n
v
o
lu

tio
n
 2

c
o
n
v
o
lu

tio
n
 2

2
2
4
x
2
2
4
x
1
2

3
 s

lic
e
s
 in

p
u
t

2
2
4
x
2
2
4
X

3

2
2
4
x
2
2
4
x
3

Conv-BN-ReLU

Upsampling

Concatenation

Transformation

Softmax

Softmax with loss

3D Dens UNe

2D DenseUNet

Figure A.2: DC-DenseUNet pipeline

91

A.3.3 Densely Coupled Fusion of The 2D and 3D Feature

As shown in Figure A.2 and Table A.1, there are two U-shaped parts coupled with the

vertical red blocks.

3D DenseUNet

The left U-shaped part is the 3D DenseUNet: The blocks in deep blue color are the 3D

feature map from the encoder,;in the encoder part, each block is followed by a Convolution-

Batch normalization-ReLU operation. At the same time, the block in deep blue color is

concatenated to the same level feature map in the decoder. The blocks in light blue color

are the feature maps in the decoder; each block in this part is followed by the upsampling

operation.

2D DenseUNet

The right U-shaped part is the 2D DenseUNet: The blocks in deep yellow are the 2D feature

map from the encoder, and each block is followed by a Convolution-Batch normalization-

ReLU operation. At the same time, the block in light yellow color is concatenated to the

same level feature map in the decoder.

Densely Coupled Fusion of The 2D and 3D Feature

The fusion process consists of two steps: As shown in Figure A.2 and Table A.1, here we use

the fusion at the dense block 2 as an example, the 2D feature (the block in deep yellow color)

dimension is 12× 28×28× 24 (B× H×W× C); this 2D feature is reshaped to the transition

feature (the block in red) with dimension 1× 28×28× 3× 96 (B× H×W × D× C).Then

92

axial view coronal view sagittal view

ra
w

 in
p
u
t

p
re

d
ic

tio
n

Figure A.3: Examples of liver and tumor segmentation results of DC-DenseUNet from the
test dataset. The red regions denote the liver and the green ones denote the tumors.

this transition feature is concatenated with the 3D feature (the block in light blue color)

with dimension 1× 28×28× 3× 16 (B× H×W × D× C). (Note: B denotes batch size; H

denotes height; W denotes width; D denotes depth; C denotes channel number.) This fusion

is followed by a 2x2x1 convolution and the output channel is 224. There are three types of

fusion based on where the fusion takes place. Type I is the fusion between the four dense

blocks X from 2D DenseUNet and the four upsampling layers from 3D DenseUNet, where X

is 1,2,3,4. Type II is the fusion between the layer upsampling 5 of the 3D DenseUNet and

2D DenseUNet. Type III is the pixel-wise probability map from 2D DenseUNet to the layer

of the convolution 2 from 3D DenseUNet.

93

A.3.4 Loss Function, Training and Inference Schemes

In this section, we present more details regarding the loss function, training and the inference

schemes.

1) Loss Function: To train the networks, we employed weighted cross-entropy function as

the loss function, which is described as:

L (y, ŷ) = − 1

N

N∑
i=1

N∑
c=1

wc
iy

c
i logŷ

c
i

where y, i, c denotes the probability of voxel i belongs to class c (background, liver or lesion),

wic denotes the weight and yic indicates the ground truth label for voxel i.

The total loss is:

Ltotal = λL (y2d, ŷ2d) + L (y3d, ŷ3d)

where (y2d, ŷ2d) and L (y3d, ŷ3d) are the cross-entropy loss for the 2D DenseUNet and 3D

DenseUNet respectively. λ is the balanced weight and is set empirically as 0.5 in our exper-

iments.

2) Training Scheme: We first train the 2.5D ResUNet in the same way as Han [142]

to get the coarse liver segmentation results. Then a liver region cropped dataset is fed to

DC-DenseUNet, and the whole network is jointly fine-tuned with the above total loss.

3) Inference Scheme: In the test stage, we first get the coarse liver segmentation result.

Then DC-DenseUNet can generate accurate liver and tumor predicted probabilities within

the ROI. After that, the final lesion segmentation result is obtained by removing lesions

outside the final liver region.

94

A.4 Experiments and Results

A.4.1 Dataset, Pre-processing and Evaluation Metrics

A.4.2 DataSet

This Dataset is from MICCAI 2017 LiTS - Liver Tumor Segmentation Challenge (lits-

challenge.com). The training dataset contains 130 CT scans, and the testing dataset contains

70 CT scans. All these CT scans are contrast enhanced. The in-plain resolution varies form

0.55 mm to 1.00 mm and the inter-slice resolution varies form 0.45 mm to 6.00 mm.

A.4.3 Pre-processing

In stage I, for the coarse segmentation of the liver, no special pre-processing was performed

except that we truncated the image intensity value of all scans to the range of [-200,200]

HU to remove the irrelevant details. And all the training images were resampled to a fixed

resolution of 1 × 1 × 2.5mm3 . In the second stage of fine segmentation of liver and liver

tumor, the cropped liver region volume uses the original resolution. This is to avoid possible

blurring from image resampling and to avoid missing very small lesions.

A.4.4 Evaluation Metrics

We employed DICE per case and global DICE as the evaluation metrics. The global Dice

score combines all data sets into one, and the DICE per case averages the Dice per volume

score over all the test cases. The qualitative result is shown in Figure A.3. As shown in

Figure A.3, comparing the raw image and our prediction, even very small tumors are well

95

Table A.2: Segmentation results on the test dataset (from LiTS 2017 leaderaboard and
publications)(Dice: %).

Model Lesion Liver
Dice per case Dice global Dice per case Dice global

3D DenseUNet without pre-trained model [145] 59.4 78.8 96.3 92.9
UNet [146] 65 - - -

ResNet [142] 67 - - -
2D DenseUNet without pre-trained model [145] 67.7 80.1 94.7 94.7

2D DenseNet with pre-trained model [145] 68.3 81.8 95.3 95.9
hchen 68.6 82.9 96.1 96.5

2D DenseUNet with pre-trained model [145] 70.2 82.1 95.8 96.3
leHealth 70.2 79.4 96.1 96.7

AH-Net [147] 63.4 83,4 96.3 97.0
H-DenseUNet [145] 72.2 82.4 96.1 96.5

DC-DenseUNet(ours) 72.6 82.6 96.1 96.5

segmented. The quantitative result is in Table A.2. Our result achieved the best performance

for lesion segmentation in DICE per case.

A.4.5 Ablation Study

We conducted comprehensive experiments to gauge the effectiveness of our approach. We

provide an ablation study of our proposed approach on the segmentation results on the

test dataset (see Table A.3). As stated in Section 2.3, the DC-DenseUNet consists of two

sub-DenseUNets: 2D DenseUNet and 3D DenseUNet. As shown in Table A.3, we do the

ablation study on the 2D DenseUNet and the 3D DenseUNet individually. To validate the

effectiveness of confusion of 2D features and 3D features to solve the anisotropic resolution

issues in the segmentation of volume data, we carry out the following comparisons:

(1). Compared with the 2D DenseUNet, our method provides gains for both the liver and

lesion segmentation. This indicates that the 3D features extracted from the 3D DenseUNet

can help extract more intra-plane features.

(2). Comparison between the 3D DenseUNet (same architecture as the 2D DenseUNet)

96

Table A.3: Segmentation results by ablation study of our methods on the test
dataset.(Dice: %).

Model Lesion Liver
Dice per case Dice global Dice per case Dice global

3D DenseUNet without pre-trained model 60.2 79.7 93.4 92.8
3D DenseUNet(same architecure as the 2D DenseUNer) without pre-trained model 63.4 79.8 93.9 93.2

2D DenseUNet without pre-trained model 67.5 79.9 94.6 94.7
2D DenseNet with pre-trained model 68.6 81.7 95.4 95.8

DC-DenseUNet(ours) 72.6 82.6 96.1 96.5

without pre-trained model and 2D DenseUNet without pre-trained model: The latter per-

formancs better. This indicates that only 3D kernel cannot learn stably in this anisotropic

volume. Because this dataset has the same in-slice resolution while the resolution of the

inter-slice is several times lower than the in-slice resolution. While for the 2D denseUNet,

its 2D kernel can learn stably because the in-slice resolution is the same.

(3). Comparison between our method (DC-DenseUNet) and the 3D DenseUNet without pre-

trained model: Our method provides gains both for the liver and lesion segmentation. This

indicates that transforming and fusing the 2D in-slice features and 3D intra-slice features

solve this anisotropic resolution issue effectively.

A.4.6 Implementation Details

This model is implemented using Tensorflow package [150]. The initial learning rate was

0.001 and decayed according to the equation lr = lr×
(
1− Iteration

TotalIteration

)0.9
. We used stochas-

tic gradient descent with momentum. For data augmentation, we adopted random mirror

and scaling between 0.8 and 1.2 for all training data for data augmentation to alleviate the

over-fitting problem. In the training phase, our model takes 25 hours to converge, while in

the test phase, depending on the slice number of each volume, our model takes 60 to 260

seconds.

97

A.5 Conclusions

Proper segmentation of liver and liver tumors is a prerequisite for any accurate CAD system

utilized in liver cancer treatment planning and monitoring as accurate volume calculation

and location estimation are the keys to accurate prognosis. In this chapter, we propose

the 2D-3D densely coupled DenseUNet network which is capable of fusing 2D features from

2D DenseUNet to 3D features and concatenating to 3D feature maps from 3D DenseUNet.

After concatenation, the following convolution parameter is trained to optimize these two-

dimensional features. By virtue of its concatenated fusion design and improved lesion seg-

mentation, this method solves the anisotropic resolution in 3D volume images in learnable

way.

98

REFERENCES

[1] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Bur-
ren, N. Porz, J. Slotboom, R. Wiest et al., “The multimodal brain tumor image seg-
mentation benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10,
pp. 1993–2024, 2014.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understand-
ing,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 3213–3223.

[3] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with condi-
tional adversarial networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1125–1134.

[4] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2223–2232.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image computing
and computer-assisted intervention. Springer, 2015, pp. 234–241.

[6] L. Melas-Kyriazi, A. Rush, and G. Han, “Training for diversity in image paragraph
captioning,” in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018, pp. 757–761.

[7] L. Xiang, Y. Chen, W. Chang, Y. Zhan, W. Lin, Q. Wang, and D. Shen, “Ultra-
fast t2-weighted mr reconstruction using complementary t1-weighted information,” in
International Conference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2018, pp. 215–223.

[8] Y. Huang, L. Shao, and A. F. Frangi, “Simultaneous super-resolution and cross-
modality synthesis of 3d medical images using weakly-supervised joint convolutional
sparse coding,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2017, pp. 6070–6079.

99

[9] M. Chen, A. Jog, A. Carass, and J. L. Prince, “Using image synthesis for multi-channel
registration of different image modalities,” in Medical Imaging 2015: Image Processing,
vol. 9413. International Society for Optics and Photonics, 2015, p. 94131Q.

[10] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman,
“Toward multimodal image-to-image translation,” in Advances in Neural Information
Processing Systems, 2017, pp. 465–476.

[11] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image translation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8789–
8797.

[12] A. Dosovitskiy and T. Brox, “Inverting visual representations with convolutional net-
works,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016, pp. 4829–4837.

[13] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural networks using
natural pre-images,” International Journal of Computer Vision, vol. 120, no. 3, pp.
233–255, 2016.

[14] A. V. Dalca, J. Guttag, and M. R. Sabuncu, “Anatomical priors in convolutional
networks for unsupervised biomedical segmentation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 9290–9299.

[15] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval networks:
Improving robustness to adversarial examples,” arXiv preprint arXiv:1704.08847,
2017.

[16] J. Bruna, A. Szlam, and Y. LeCun, “Signal recovery from pooling representations,”
arXiv preprint arXiv:1311.4025, 2013.

[17] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-revnet: Deep invertible networks,”
arXiv preprint arXiv:1802.07088, 2018.

[18] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen,
L. Maier-Hein, C. Rother, and U. Köthe, “Analyzing inverse problems with invert-
ible neural networks,” arXiv preprint arXiv:1808.04730, 2018.

[19] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolu-
tions,” in Advances in Neural Information Processing Systems, 2018, pp. 10 215–10 224.

[20] D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang, “Robust single image
super-resolution via deep networks with sparse prior,” IEEE Transactions on Image
Processing, vol. 25, no. 7, pp. 3194–3207, 2016.

[21] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, “Image analo-
gies,” in Proceedings of the 28th annual conference on Computer graphics and inter-
active techniques. ACM, 2001, pp. 327–340.

100

[22] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,” in
Computer Vision, 1999. The Proceedings of the Seventh IEEE International Confer-
ence on, vol. 2. IEEE, 1999, pp. 1033–1038.

[23] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[25] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” arXiv
preprint arXiv:1605.09782, 2016.

[26] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays, “Scribbler: Controlling deep image
synthesis with sketch and color,” arXiv preprint arXiv:1612.00835, 2016.

[27] L. Karacan, Z. Akata, A. Erdem, and E. Erdem, “Learning to generate images of out-
door scenes from attributes and semantic layouts,” arXiv preprint arXiv:1612.00215,
2016.

[28] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-
resolution image synthesis and semantic manipulation with conditional gans,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[29] A. Almahairi, S. Rajeswar, A. Sordoni, P. Bachman, and A. Courville, “Augmented
cyclegan: Learning many-to-many mappings from unpaired data,” arXiv preprint
arXiv:1802.10151, 2018.

[30] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation net-
works,” in Advances in neural information processing systems, 2017, pp. 700–708.

[31] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang, “Diverse image-to-
image translation via disentangled representations,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 35–51.

[32] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised image-to-
image translation,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 172–189.

[33] H.-Y. Lee, H.-Y. Tseng, Q. Mao, J.-B. Huang, Y.-D. Lu, M. Singh, and M.-H. Yang,
“Drit++: Diverse image-to-image translation via disentangled representations,” arXiv
preprint arXiv:1905.01270, 2019.

[34] Z. Shen, M. Huang, J. Shi, X. Xue, and T. Huang, “Towards instance-level image-to-
image translation,” arXiv preprint arXiv:1905.01744, 2019.

101

[35] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional
neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 2414–2423.

[36] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded refinement
networks,” in IEEE International Conference on Computer Vision (ICCV), vol. 1,
no. 2, 2017, p. 3.

[37] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture networks: Feed-
forward synthesis of textures and stylized images.” in ICML, 2016, pp. 1349–1357.

[38] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and
super-resolution,” in European Conference on Computer Vision. Springer, 2016, pp.
694–711.

[39] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[40] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training gans,” in Advances in Neural Information Processing
Systems, 2016, pp. 2234–2242.

[41] X. Wang and A. Gupta, “Generative image modeling using style and structure adver-
sarial networks,” in European Conference on Computer Vision. Springer, 2016, pp.
318–335.

[42] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in European Con-
ference on Computer Vision. Springer, 2016, pp. 649–666.

[43] A. Owens, P. Isola, J. McDermott, A. Torralba, E. H. Adelson, and W. T. Freeman,
“Visually indicated sounds,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2405–2413.

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE transactions on image processing,
vol. 13, no. 4, pp. 600–612, 2004.

[45] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in Pattern recognition
(icpr), 2010 20th international conference on. IEEE, 2010, pp. 2366–2369.

[46] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with condi-
tional adversarial networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1125–1134.

[47] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2223–2232.

102

[48] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain re-
lations with generative adversarial networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 1857–1865.

[49] L. Song, Z. Lu, R. He, Z. Sun, and T. Tan, “Geometry guided adversarial facial
expression synthesis,” in 2018 ACM Multimedia Conference on Multimedia Conference.
ACM, 2018, pp. 627–635.

[50] A. Pumarola, A. Agudo, A. M. Martinez, A. Sanfeliu, and F. Moreno-Noguer, “Gani-
mation: Anatomically-aware facial animation from a single image,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 818–833.

[51] Z. Zhang, L. Yang, and Y. Zheng, “Translating and segmenting multimodal medical
volumes with cycle-and shape-consistency generative adversarial network,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
9242–9251.

[52] Y. Zhang, S. Miao, T. Mansi, and R. Liao, “Task driven generative modeling for un-
supervised domain adaptation: Application to x-ray image segmentation,” in Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2018, pp. 599–607.

[53] R. Zhang, T. Pfister, and J. Li, “Harmonic unpaired image-to-image translation,”
arXiv preprint arXiv:1902.09727, 2019.

[54] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434,
2015.

[55] Z. Shen, Y. Chen, S. K. Zhou, B. Georgescu, X. Liu, and T. S. Huang, “Towards
learning a self-inverse network for bidirectional image-to-image translation,” arXiv
preprint arXiv:1909.04104, 2019.

[56] Z. Gan, L. Chen, W. Wang, Y. Pu, Y. Zhang, H. Liu, C. Li, and L. Carin, “Trian-
gle generative adversarial networks,” in Advances in Neural Information Processing
Systems, 2017, pp. 5247–5256.

[57] G. Lu, Z. Zhou, Y. Song, K. Ren, and Y. Yu, “Guiding the one-to-one mapping in
cyclegan via optimal transport,” arXiv preprint arXiv:1811.06284, 2018.

[58] R. Zhang, T. Pfister, and J. Li, “Harmonic unpaired image-to-
image translation,” CoRR, vol. abs/1902.09727, 2019. [Online]. Available:
http://arxiv.org/abs/1902.09727

[59] T. Dekel, C. Gan, D. Krishnan, C. Liu, and W. T. Freeman, “Smart, sparse contours
to represent and edit images,” arXiv preprint arXiv:1712.08232, 2017.

103

[60] Y. Lu, S. Wu, Y.-W. Tai, and C.-K. Tang, “Image generation from sketch constraint
using contextual gan,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 205–220.

[61] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro, “Video-
to-video synthesis,” in Advances in Neural Information Processing Systems (NeurIPS),
2018.

[62] A. Bansal, S. Ma, D. Ramanan, and Y. Sheikh, “Recycle-gan: Unsupervised video
retargeting,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 119–135.

[63] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-
resolution image synthesis and semantic manipulation with conditional gans,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 8798–8807.

[64] Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, and M.-H. Yang, “Mode seeking generative
adversarial networks for diverse image synthesis,” arXiv preprint arXiv:1903.05628,
2019.

[65] S. Ma, J. Fu, C. Wen Chen, and T. Mei, “Da-gan: Instance-level image translation by
deep attention generative adversarial networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 5657–5666.

[66] X. Chen, C. Xu, X. Yang, and D. Tao, “Attention-gan for object transfiguration in
wild images,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 164–180.

[67] Y. A. Mejjati, C. Richardt, J. Tompkin, D. Cosker, and K. I. Kim, “Unsupervised
attention-guided image-to-image translation,” in Advances in Neural Information Pro-
cessing Systems, 2018, pp. 3693–3703.

[68] X. Liang, H. Zhang, L. Lin, and E. Xing, “Generative semantic manipulation with
mask-contrasting gan,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 558–573.

[69] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[70] S. Benaim and L. Wolf, “One-sided unsupervised domain mapping,” in Advances in
neural information processing systems, 2017, pp. 752–762.

[71] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Bur-
ren, N. Porz, J. Slotboom, R. Wiest et al., “The multimodal brain tumor image seg-
mentation benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10,
pp. 1993–2024, 2015.

104

[72] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

[73] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions,”
Transactions of the Association for Computational Linguistics, vol. 2, pp. 67–78, 2014.

[74] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis,
L.-J. Li, D. A. Shamma et al., “Visual genome: Connecting language and vision using
crowdsourced dense image annotations,” International Journal of Computer Vision,
vol. 123, no. 1, pp. 32–73, 2017.

[75] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep captioning with
multimodal recurrent neural networks (m-rnn),” arXiv preprint arXiv:1412.6632, 2014.

[76] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with semantic
attention,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4651–4659.

[77] Z. Shen, J. Li, Z. Su, M. Li, Y. Chen, Y.-G. Jiang, and X. Xue, “Weakly supervised
dense video captioning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 1916–1924.

[78] J. Krause, J. Johnson, R. Krishna, and L. Fei-Fei, “A hierarchical approach for gen-
erating descriptive image paragraphs,” in Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on. IEEE, 2017, pp. 3337–3345.

[79] X. Liang, Z. Hu, H. Zhang, C. Gan, and E. P. Xing, “Recurrent topic-transition gan
for visual paragraph generation,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 3362–3371.

[80] H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest editorial deep learning
in medical imaging: Overview and future promise of an exciting new technique,” IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016.

[81] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised classifica-
tion and localization of common thorax diseases,” in Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017, pp. 3462–3471.

[82] X. Wang, Y. Peng, L. Lu, Z. Lu, and R. M. Summers, “Tienet: Text-image embedding
network for common thorax disease classification and reporting in chest x-rays,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9049–9058.

[83] C. Y. Li, X. Liang, Z. Hu, and E. P. Xing, “Hybrid retrieval-generation reinforced
agent for medical image report generation,” arXiv preprint arXiv:1805.08298, 2018.

105

[84] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image
caption generator,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 3156–3164.

[85] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Ben-
gio, “Show, attend and tell: Neural image caption generation with visual attention,”
in International conference on machine learning, 2015, pp. 2048–2057.

[86] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully convolutional localization
networks for dense captioning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4565–4574.

[87] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information processing
systems, 2015, pp. 91–99.

[88] J. Aneja, A. Deshpande, and A. G. Schwing, “Convolutional image captioning,” arXiv
preprint arXiv:1711.09151, 2017.

[89] Q. Wang and A. B. Chan, “Cnn+ cnn: Convolutional decoders for image captioning,”
arXiv preprint arXiv:1805.09019, 2018.

[90] Y. Chen, S. Wang, W. Zhang, and Q. Huang, “Less is more: Picking informative
frames for video captioning,” arXiv preprint arXiv:1803.01457, 2018.

[91] J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder for paragraphs
and documents,” arXiv preprint arXiv:1506.01057, 2015.

[92] R. Lin, S. Liu, M. Yang, M. Li, M. Zhou, and S. Li, “Hierarchical recurrent neural
network for document modeling,” in Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 899–907.

[93] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video paragraph captioning using
hierarchical recurrent neural networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 4584–4593.

[94] B. Jing, P. Xie, and E. Xing, “On the automatic generation of medical imaging re-
ports,” arXiv preprint arXiv:1711.08195, 2017.

[95] M. Chatterjee and A. G. Schwing, “Diverse and coherent paragraph generation from
images,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 729–744.

[96] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[97] J. Wang, Y. Pan, T. Yao, J. Tang, and T. Mei, “Convolutional auto-encoding of
sentence topics for image paragraph generation,” arXiv preprint arXiv:1908.00249,
2019.

106

[98] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin, “Adversarial
feature matching for text generation,” arXiv preprint arXiv:1706.03850, 2017.

[99] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets
with policy gradient.” in AAAI, 2017, pp. 2852–2858.

[100] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text generation via
adversarial training with leaked information,” arXiv preprint arXiv:1709.08624, 2017.

[101] W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: Better text generation via filling
in the ,” arXiv preprint arXiv:1801.07736, 2018.

[102] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl, and R. Girshick, “Long-
term feature banks for detailed video understanding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 284–293.

[103] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning representations by
back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[104] Y. Bengio, H. Schwenk, J.-S. Senécal, and F. Morin, “Gauvain, jean-luc. neural prob-
abilistic language models,” Innovations in Machine Learning, pp. 137–186.

[105] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in
International Conference on Machine Learning, 2014, pp. 1188–1196.

[106] J. H. Lau and T. Baldwin, “An empirical evaluation of doc2vec with practical insights
into document embedding generation,” arXiv preprint arXiv:1607.05368, 2016.

[107] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,
“Bottom-up and top-down attention for image captioning and visual question an-
swering,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6077–6086.

[108] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[109] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image
descriptions,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3128–3137.

[110] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-critical sequence
training for image captioning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 7008–7024.

[111] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with im-
proved correlation with human judgments,” in Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summa-
rization, 2005, pp. 65–72.

107

[112] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-based image
description evaluation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 4566–4575.

[113] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic
evaluation of machine translation,” in Proceedings of the 40th annual meeting on as-
sociation for computational linguistics. Association for Computational Linguistics,
2002, pp. 311–318.

[114] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zit-
nick, “Microsoft coco captions: Data collection and evaluation server,” arXiv preprint
arXiv:1504.00325, 2015.

[115] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[116] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with visual atten-
tion,” arXiv preprint arXiv:1412.7755, 2014.

[117] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word represen-
tation,” in Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), 2014, pp. 1532–1543.

[118] “ A PyTorch Tutorial to Image Captioning , howpublished =
https://github.com/sgrvinod/a-pytorch-tutorial-to-image-captioning, note = Ac-
cessed: 2019-12-07.”

[119] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[120] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting image captioning with at-
tributes,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 4894–4902.

[121] W. Jiang, L. Ma, Y.-G. Jiang, W. Liu, and T. Zhang, “Recurrent fusion network for
image captioning,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 499–515.

[122] T. Yao, Y. Pan, Y. Li, and T. Mei, “Exploring visual relationship for image caption-
ing,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 684–699.

[123] X. Yang, K. Tang, H. Zhang, and J. Cai, “Auto-encoding scene graphs for image
captioning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 10 685–10 694.

108

[124] L. Huang, W. Wang, J. Chen, and X.-Y. Wei, “Attention on attention for image
captioning,” in Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 4634–4643.

[125] J. Ferlay, H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of
worldwide burden of cancer in 2008: Globocan 2008,” International journal of cancer,
vol. 127, no. 12, pp. 2893–2917, 2010.

[126] R. Lu, P. Marziliano, and C. H. Thng, “Liver tumor volume estimation by semi-
automatic segmentation method,” in Engineering in Medicine and Biology Society,
2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006,
pp. 3296–3299.

[127] M. G. Linguraru, J. K. Sandberg, Z. Li, J. A. Pura, and R. M. Summers, “Atlas-based
automated segmentation of spleen and liver using adaptive enhancement estimation,”
in International Conference on Medical Image Computing and Computer-Assisted In-
tervention. Springer, 2009, pp. 1001–1008.

[128] D. Kainmüller, T. Lange, and H. Lamecker, “Shape constrained automatic segmenta-
tion of the liver based on a heuristic intensity model,” in Proc. MICCAI Workshop 3D
Segmentation in the Clinic: A Grand Challenge, 2007, pp. 109–116.

[129] J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, Y. G. Shin, and S.-H. Kim,
“Efficient liver segmentation using a level-set method with optimal detection of the
initial liver boundary from level-set speed images,” Computer methods and programs
in biomedicine, vol. 88, no. 1, pp. 26–38, 2007.

[130] L. Massoptier and S. Casciaro, “Fully automatic liver segmentation through graph-cut
technique,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th
Annual International Conference of the IEEE. IEEE, 2007, pp. 5243–5246.

[131] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[132] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,” arXiv
preprint arXiv:1312.6229, 2013.

[133] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes challenge: A retrospective,” International journal of
computer vision, vol. 111, no. 1, pp. 98–136, 2015.

[134] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and
A. Yuille, “The role of context for object detection and semantic segmentation in
the wild,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 891–898.

109

[135] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing
through ade20k dataset,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. 1, no. 2. IEEE, 2017, p. 4.

[136] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff classes in context,”
CoRR, abs/1612.03716, vol. 5, p. 8, 2016.

[137] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image computing
and computer-assisted intervention. Springer, 2015, pp. 234–241.

[138] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[139] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural net-
works for volumetric medical image segmentation,” in 3D Vision (3DV), 2016 Fourth
International Conference on. IEEE, 2016, pp. 565–571.

[140] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2881–2890.

[141] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. de Vries, M. J. Benders, and
I. Išgum, “Automatic segmentation of mr brain images with a convolutional neural
network,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1252–1261, 2016.

[142] X. Han, “Automatic liver lesion segmentation using a deep convolutional neural net-
work method,” arXiv preprint arXiv:1704.07239, 2017.

[143] D. Yang, D. Xu, S. K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, and
D. Comaniciu, “Automatic liver segmentation using an adversarial image-to-image
network,” in International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2017, pp. 507–515.

[144] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using adver-
sarial networks,” arXiv preprint arXiv:1611.08408, 2016.

[145] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P. A. Heng, “H-denseunet: Hybrid
densely connected unet for liver and liver tumor segmentation from ct volumes,” arXiv
preprint arXiv:1709.07330, 2017.

[146] G. Chlebus, H. Meine, J. H. Moltz, and A. Schenk, “Neural network-based automatic
liver tumor segmentation with random forest-based candidate filtering,” arXiv preprint
arXiv:1706.00842, 2017.

[147] S. Liu, D. Xu, S. K. Zhou, T. Mertelmeier, J. Wicklein, A. Jerebko, S. Grbic, O. Pauly,
W. Cai, and D. Comaniciu, “3d anisotropic hybrid network: Transferring convolutional
features from 2d images to 3d anisotropic volumes,” arXiv preprint arXiv:1711.08580,
2017.

110

[148] J. Chen, L. Yang, Y. Zhang, M. Alber, and D. Z. Chen, “Combining fully convolutional
and recurrent neural networks for 3d biomedical image segmentation,” in Advances in
Neural Information Processing Systems, 2016, pp. 3036–3044.

[149] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, vol. 1, no. 2, 2017, p. 3.

[150] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

111

