
c© 2021 Yun Hao

TOWARDS A BETTER UNDERSTANDING OF MUSIC PLAYLIST
TITLES AND DESCRIPTIONS

BY

YUN HAO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Information Sciences

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor J. Stephen Downie, Chair
Associate Professor Xiao Hu, The University of Hong Kong
Associate Professor Vetle Torvik
Doctor Andreas Ehmann, Pandora Inc.
Assistant Professor Nigel Bosch

ABSTRACT

Music playlists, either user-generated or curated by music streaming services,

often come with titles and descriptions. Although informative, these titles

and descriptions make up a sparse and noisy semantic space that is challeng-

ing to be leveraged for tasks such as making music recommendations. This

dissertation is dedicated to developing a better understanding of playlist ti-

tles and descriptions by leveraging track sequences in playlists. Specifically,

work has been done to capture latent patterns in tracks by an embedding

approach, and the latent patterns are found to be well aligned with the orga-

nizing principles of mix tapes identified more than a decade ago. Effective-

ness of the latent patterns is evaluated by the task of generating descriptive

keywords/tags for playlists given tracks, indicating that the latent patterns

learned from tracks in playlists are able to provide a good understanding

of playlist titles and descriptions. The identified latent patterns are further

leveraged to improve model performance on the task of predicting missing

tracks given playlist titles and descriptions. Experimental results show that

the proposed models yield improvements to the task, especially when playlist

descriptions are provided as model input in addition to titles. Main contri-

butions of this work include (1) providing a better solution to dealing with

“cold-start” playlists in music recommender systems, and (2) proposing an

effective approach to automatically generating descriptive keywords/tags for

playlists using track sequences.

ii

ACKNOWLEDGMENTS

The completion of this dissertation is one of the most important milestones

in my life. I am truly grateful for the many great people I have met on this

journey, and I simply cannot be where I am without them.

First of all, I would like to express my gratitude to my advisor, Professor

J. Stephen Downie, for providing me unlimited trust, freedom, guidance, and

support which is everything a Ph.D. student could hope for in an advisor.

DocD is an enthusiastic researcher, presenter, and visionary and charismatic

leader; working with him has always been inspirational and fun. I am also

thankful to DocD for providing me with great research opportunities and

introducing me to wonderful people, especially my committee members, Pro-

fessor Xiao Hu, Professor Vetle Torvik, Professor Nigel Bosch, and Doctor

Andreas Ehmann. I am incredibly thankful for their guidance and support.

I would also like to thank my academic sisters and brothers at the iSchool:

Kahyun Choi, Ming Jiang, Yuerong Hu, and Jinlong Guo. Kahyun has

always been meticulous about her work and I have learned a lot from her.

I also enjoyed every conversation we had during lunch breaks and over the

phone. I extend my thanks to Ming and Yuerong, for always being optimistic

and bringing warmth to my life. Thank you to Jinlong for being such an

encouraging office mate and offering me his guestroom when I was back in

town to visit.

I also owe a debt of gratitude to my dear friends: Zichao Ye, Guangyuan

Wang, Mengyao Zhu, Shibin Qin, Xiaokang Tang, and Lingzi Liu for keeping

me accompanied and filling my life with laughter and joy. A special thank

you goes to Guangyuan for offering me his desktop computer to support my

research.

I am deeply grateful to my parents, Hao Chengwen and Wang Shuqing,

for giving me as much love and support as they can. I feel so blessed to have

grown up in such a caring family, and to have been equipped with optimism

iii

and positive attitude necessary to face life challenges. It is because of their

belief in me that I have been able to start and finish this long journey to the

completion of my Ph.D. My gratitude to them is simply beyond words.

Finally, I would like to express my gratitude to my husband and my best

buddy Zitao Liao. Zitao and I met and got married while we were both

graduate students at Illinois, and I feel incredibly lucky to have him onboard

with me along this journey. He has been there for me throughout the many

highs and lows of graduate school, and I cannot wait to start our new chapter

of life after we both graduate in 2021.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Motivations behind Music Playlist Generation 1
1.2 Understanding Playlist Titles and Descriptions as an IR Task 3
1.3 Research Questions . 8
1.4 Data and Observations . 8
1.5 Chapter Outline . 13

CHAPTER 2 LITERATURE REVIEW 14
2.1 Capturing Latent Factors behind Music Playlist Generation . 14
2.2 Approaches to Handling Cold-start Playlists 22

CHAPTER 3 CAPTURING LATENT PATTERNS USING TRACKS 31
3.1 Learning Latent Track Embeddings 31
3.2 Finding Patterns in Track Embeddings 39
3.3 Summary . 56

CHAPTER 4 TAGGING PLAYLISTS WITH KEYWORDS 58
4.1 From Image Description to Playlist Tagging 58
4.2 Experimental Details . 60
4.3 Evaluation Results and Discussion 64
4.4 Summary . 68

CHAPTER 5 PREDICTING MISSING TRACKS GIVEN PLAYLIST
TITLES AND DESCRIPTIONS . 71
5.1 Experimental Details . 72
5.2 Evaluation Results . 75
5.3 Discussion . 76
5.4 Summary . 92

v

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 94
6.1 Conclusions and Contributions 94
6.2 Limitations and Future Work 97
6.3 Implications for Music Recommender Systems 99

REFERENCES . 101

APPENDIX A ADDITIONAL EVALUATION RESULTS OF CHAP-
TER 5 . 113

APPENDIX B EQUATIONS . 118

vi

LIST OF TABLES

1.1 Summary of the datasets . 9
1.2 Statistics about lengths of playlist titles, descriptions, and

tracks from D1 + D3 . 9

3.1 Hyperparameters of word2vec model 35
3.2 Nearest neighbors of three seed tracks in the latent embed-

ding space . 37
3.3 Nearest neighbors of three seed tracks in the latent embed-

ding space . 38
3.4 Top-10 largest clusters of similar playlists, presented by

top-10 frequent words from each cluster 43
3.5 Overview of audio features . 51
3.6 Example clusters that mostly contain tracks from old times . . 54

4.1 Subtasks defined for tagging playlists 62
4.2 Evaluation results of tagging playlists with keywords (pro-

posed models shown in italic; best scores per metric shown
in bold) . 65

5.1 Evaluation results with C = 1 and S = 11 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 77

5.2 Evaluation results with C = 2 and S = 22 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 78

5.3 Evaluation results with C = 3 and S = 33 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 79

5.4 Evaluation results with C = 4 and S = 44 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 80

5.5 Evaluation results with C = 5 and S = 55 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 81

A.1 Evaluation results with C = 6 and S = 66 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 113

A.2 Evaluation results with C = 7 and S = 77 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 114

vii

A.3 Evaluation results with C = 8 and S = 88 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 115

A.4 Evaluation results with C = 9 and S = 99 (proposed mod-
els shown in italic; best scores per metric shown in bold) . . . 116

A.5 Evaluation results with C = 10 and S = 110 (proposed
models shown in italic; best scores per metric shown in bold) . 117

viii

LIST OF FIGURES

1.1 Spotify user interface for creating a new playlist. 10
1.2 Example playlists from the datasets. 11

2.1 Matrix factorization in vl6. 24

3.1 Learning track embedding using word2vec. 34
3.2 t-SNE visualizations of playlist embeddings using different

distance measures. Standardized cosine distances (right-
most) yields more recognizable clusters. 41

3.3 Number of singletons, number of clusters, and size of the
largest cluster for each distance threshold (x values). Dis-
tances are standardized cosine distances. 42

3.4 Neighboring clusters examples. 45
3.5 Workflow of identifying latent factors behind clusters using

top words from titles and descriptions. 46
3.6 Tagging result of the Spotify categories. 48
3.7 Numbers of clusters assigned to each of the principle labels. . 50
3.8 Consensus levels of numeric audio features. 52
3.9 Number of common neighbors found from the track em-

bedding space and other views. 56

4.1 Cluster-based and similarity-based tagging strategies. 63
4.2 Outputs from the two w2v-track-50d based approaches. 69

5.1 Cluster-based and similarity-based recommending strategies. . 73
5.2 CNN model architecture and hyperparameters. 74
5.3 R-RecSys scores of each model when C changes from 1 to 10 . 82
5.4 (a) Top-five most likely clusters from which word study is

generated. (b) Neighboring clusters of Christmas. Edge
lengths indicate distances in the latent space. 84

5.5 Top-5 clusters returned for two playlists both titled stuDY-
ING. A shorter edge length indicates a higher probability
that the query belongs to the cluster. 89

ix

CHAPTER 1

INTRODUCTION

1.1 Motivations behind Music Playlist Generation

Starting from mix CDs and mix tapes in the old days, listening to music

through organized playlists has always been an important way for people

to appreciate music. Nowadays, online music streaming platforms such as

Spotify1, Pandora2, YouTube Music3, and Apple Music4 make it a lot eas-

ier for people to create and manage playlists, and millions of playlists have

been created on these platforms. There is a variety of reasons why cer-

tain tracks are put together into a list for listening, and efforts have been

made by researchers to uncover the latent factors. By analyzing interviews

of users who put requests online seeking help when making a mix, Cunning-

ham, Bainbridge, and Falconer (2006) identified nine organizing principles

of mixes: artist/genre/style, event or activity (party, travel, holiday, other

such as working out at the gym, enjoying “sparkling afternoons”), romance,

message or story, challenge or puzzle, orchestration, characteristics of mix re-

cipient, cultural references, and other. Although these factors were identified

from mix help requests and mixes are usually theme-oriented, most of the

organizing principles are still applicable to the playlists on music streaming

1https://www.spotify.com/us/
2https://www.pandora.com/
3https://music.youtube.com/
4https://www.apple.com/apple-music/

1

platforms nowadays. In fact, playlists that are curated by music streaming

platforms to better serve browsing functionality on the platforms fit better

as mixes because these playlists are highly curated to be focused on specific

categories such as genres, events, and activities.

According to Cunningham, Bainbridge, and Falconer (2006), the mix cre-

ation process usually starts with some intents that fall under the organizing

principle categories, as well as some anchor tracks; the process then contin-

ues with the user searching their personal collection for relevant items to add

to the mix. In the case of creating playlists on online streaming platforms,

users follow similar steps. Oftentimes, users start with some purpose, and

provide a title or even some description for the playlist either for explain-

ing the content to others or for organizing purpose on their own. Next, to

populate the playlists, users may (a) add tracks that they are already fa-

miliar with; (b) add several seed tracks first and choose more from track

recommendations provided by the platform using the seed tracks; or, (c)

rely entirely on the platform to provide recommendations. During this pro-

cess, the user-generated playlist titles and descriptions become the “mix help

requests” that users post to seek recommendations from the streaming plat-

form, as well as the manifestation of the underlying organizing principles of

the playlists. Therefore, it is crucial for the music platforms to develop a

good understanding of the playlist titles and descriptions. Especially in the

case of (c) where no other information is available, music platforms will have

to handle such “cold-start” playlists by making the most of titles and/or

descriptions for making track recommendations. Furthermore, being able

to provide quality recommendations has become more and more important

for streaming platforms. According to Netflix in 2012, 75% of what people

watch is from some sort of recommendation. Therefore, it can be concluded

2

that on music streaming platforms, relying on recommendations is one of the

most important ways for users to discover new music and overcome infor-

mation overload (Benselin and Ragsdell 2016) and choice overload (Bollen,

Knijnenburg, Willemsen, and Graus 2010) brought by the gigantic online

music collection.

1.2 Understanding Playlist Titles and Descriptions as

an IR Task

In the theory of Information Retrieval (IR), users formulate queries using

natural language to express information needs to IR systems (Baeza-Yates

and Ribeiro-Neto 1999), and IR systems in turn fulfill users’ information

needs by returning relevant documents. The task of understanding playlist

titles and descriptions can be formulated as an IR problem, where given a

playlist title and/or description, the goal is to retrieve relevant tracks from

the entire collection of music. Music systems that take textual input as query

and return track recommendations are one of the many kinds of music rec-

ommender systems, and for the rest of this work, unless otherwise specified,

the term music recommender systems is used to indicate this specific kind of

music systems. In this section, overlap and differences between traditional

text IR systems and music recommender systems will be discussed in terms of

several basic components of text IR system; challenges and opportunities for

gaining a better understanding of playlist titles and descriptions to improve

music recommender systems will also be discussed.

3

1.2.1 Representations

In traditional IR settings, query and collection are all text data, and bag-

of-words representations are usually used to vectorize data. In the field of

Music Information Retrieval (MIR), music information is multifaceted, con-

sisting of pitch, temporal, harmonic, timbral, editorial, textual, as well as

bibliographic facets (Downie 2003). For music recommender systems in par-

ticular, playlists can have multiple views. On one hand, playlists may have

titles and descriptions and natural language processing techniques can be

applied to yield proper representations for playlists; and on the other hand,

playlists are sequences of tracks and sequential information can be leveraged

for representation (McFee and Lanckriet 2012; Schmeier, Chisari, Garrett,

and Vintch 2019; Chen, Moore, Turnbull, and Joachims 2012). Furthermore,

tracks are multimedia objects and content features extracted from audio such

as pitch-class profile, MFCC (Mel-Frequency Cepstral Coefficients) can be

aggregated to form representation of playlists. Multi-modal representations

that combine two or more views may also be helpful (Pichl and Zangerle

2018). That playlists can have multiple views brings the opportunities to

represent playlists in a more effective way so that music recommender sys-

tems can more accurately grasp the underlying listening intents or organizing

principles of playlists for making better recommendations.

1.2.2 Relevance

Relevance is a notion that is at the heart of IR. In traditional text IR, rel-

evance is mostly simplified to be a binary relation between a document and

a query – a document is considered relevant to a query if there is a substan-

tial semantic overlap between the representations of the document and the

4

query. This is often called system or algorithmic relevance (Lavrenko 2008).

Similarly for music recommender systems, system relevance can be simplified

as a binary relation between a track and a playlist – a track is considered

relevant to a playlist if a user has added the track to the playlist. Although

simplified, this notion of relevance implicitly takes into account other notions

of relevance that are applicable in the context of music recommender systems

at the same time: user relevance (Vickery 1959) which accounts for the task

in which the user is engaged and the documents the user has seen to measure

how much the user likes the document; pertinence (Lancaster 1979) that de-

fines relevance as the relevance judgement made by the user rather than by

external experts or others in general; situational relevance (Wilson 1973) that

takes into account the situation where the search is performed, user’s goal

and user’s prior knowledge; affective relevance (Saracevic 2007) as a relation

between information objects and intents, goals, motivations, frustrations of a

user. That a track ends up being added in a playlist is the ultimate outcome

no matter under which of the notions of relevance. Furthermore, adopting

this notion of relevance, test collections for evaluation of music recommender

systems become readily available – test collections can be made by holding

out some or all of the tracks from user-created playlists. Adopting this ver-

sion of relevance also has disadvantages, one of which is that relevancy in

terms of personalization is not reflected in this definition. Whether a spe-

cific track should be added to a playlist can be disputable across different

users with different musical preferences or tastes, and relevance defined based

solely on track occurrences in playlists may not be perfect.

5

1.2.3 Models

In text IR setting, queries and collections are all text data, so most IR sys-

tems rely on query words matching to rank documents in terms of relevancy

(Robertson and Jones 1976; Ponte and Croft 1998). When the mechanism

of query words matching struggles to capture deeper semantics, topic mod-

els (Blei, Ng, and Jordan 2003) and latent semantic models (Deerwester et

al. 1990) are used. For music recommender systems, when playlists are rep-

resented by titles and descriptions, or other text data, query words matching

can be applied to retrieve playlists with similar descriptive text. However,

such mechanism may also suffer from insufficiency in capturing deeper se-

mantics, and topic models and latent semantic models may not be applicable

to playlist titles and descriptions because titles and descriptions can be too

short and sparse (as opposed to text documents) to provide helpful contexts

for the models to learn from. An illustrative example would be two playlists

both titled study, one of which contains only dance music, and the other with

all classical music. The one-word titles present a challenge for topic-oriented

models to distinguish between the two playlists because no other context

is provided. This predicament indicates that music recommender systems

may still reply on keyword matching, but a probabilistic model aware of the

possible contexts around the keywords may be helpful. Furthermore, when

playlists are represented in non-textual forms as mentioned in the last sub-

section, it takes extra efforts to render text query and non-textual objects

into a form in which relevance of the two can be quantitized. Potential im-

provements may be brought by finding connections between text queries and

non-textual objects.

6

1.2.4 Evaluation

Evaluation of text IR systems usually follows the Cranfield evaluation paradigm

(Cleverdon, Mills, and Keen 1966), where the three basic components are in-

formation needs, test collections, and relevance judgements. By adopting the

definition of algorithmic relevance, evaluation is reduced to comparing the

returned ordered list of documents with ground-truth, and metrics such as

precision, recall, F1 and NDCG (Normalized Discounted Cumulative Gain)

(Järvelin and Kekäläinen 2002) can be calculated (the formal definitions of

these metrics are presented in Appendix B). For music recommender systems,

by treating user-generated playlists as ground-truths as mentioned in Section

1.2.2, evaluation can be done by the task of predicting held-out tracks from

playlists, and similar list-wise evaluation metrics can be applied. Using user-

generated playlists as ground-truths automatically takes into account user

preferences, and according to Casey et al. (2008) when relevance judgements

differ among different sources, user preference data is favored over others

such as acoustic similarity data. Because there are millions of user-generated

playlists online, such mechanism makes millions of test collections readily

available for model testing without the need for expensive human annota-

tions. But taking a look back at the information needs component of the

Cranfield evaluation paradigm, such mechanism is not perfect because it over-

looks end users’ needs for diverse, transparent, serendipitous, and novel track

recommendations (Schedl, Gómez Gutiérrez, and Urbano 2014; Kaminskas

and Bridge 2016; Zhang, Séaghdha, Quercia, and Jambor 2012).

7

1.3 Research Questions

Inspired by the multi-view property of music playlists, this dissertation is

dedicated to leveraging the track view of playlists for a better understanding

of music playlist titles and descriptions. Specifically, the following research

questions will be investigated and answered:

• Q1: What latent patterns can be captured using tracks in playlists?

How informative are the latent patterns?

• Q2: How well can the latent patterns identified from track view under-

stand playlist titles and descriptions?

• Q3: How can the latent patterns provide a better understanding of

playlist titles and descriptions in terms of predicting missing tracks

given playlist titles and descriptions?

1.4 Data and Observations

The dataset used in this work consists of two subsets. The first subset is

the Million Playlist Dataset (MPD) released by Spotify for ACM RecSys

Challenge 20185, and is further divided into two parts: one with playlists

with descriptions (D1), and one with playlists without descriptions (D2).

Because user-generated playlist titles and descriptions can be very noise, in

order to get more quality titles and descriptions data, 1,417 playlists curated

by Spotify (D3) were also collected via Spotify API6. Table 1.1 shows the

summary of the dataset, and Table 1.2 shows more statistics about lengths

5https://www.recsyschallenge.com/2018/
6https://developer.spotify.com/documentation/web-api/

8

Dataset Size
D1 MPD w/ Descriptions 18,760
D2 MPD w/o Descriptions 981,240
D3 Spotify Curated Playlists 1,417

Table 1.1: Summary of the datasets

Type of length Min Max Mean Q1 Q2 Q3 Std
Titles 1 26 1.71 1 1 2 1.02
Descriptions 1 103 8.81 3 6 11 8.47
Titles + Descriptions 1 106 10.43 5 8 13 8.63
Tracks 5 250 72.15 31 56 99 53.73

Table 1.2: Statistics about lengths of playlist titles, descriptions, and tracks
from D1 + D3

of playlists in terms of titles, descriptions, and tracks from D1 + D3. Usage

of each subset in this work will be detailed in later sections.

Five selected playlists from the datasets are shown as examples in Fig-

ure 1.2. Of the five playlists, playlist #1 is a curated playlist from D1,

playlist #2 is a user-generated playlist with no description from D2, and

playlists #3, #4 and #5 are all user-generated playlists with descriptions

from D3. In Figure 1.1, the user interface for creating a new playlist on Spo-

tify is shown to provide a better idea of the playlist creation process. Note

that both title and description are optional fields, and if no title is provided,

the system will automatically assign a name to the playlist (“My playlist #8”

in this example). As can be seen from the example playlists in Figure 1.2,

the data is very unique and worth exploring. Below several key observations

about the data are summarized to provide more insights.

Users prefer keywords to express music listening needs. From Table 1.2,

it can be seen that over half of the playlists in D1 and D3 have one-word

titles, and more than 75% have titles that are no longer than two words. It

is also shown from Table 1.1 that only a very small portion of playlists in

9

Figure 1.1: Spotify user interface for creating a new playlist.

MPD (2%) has descriptions. All of these findings indicate that most users

do not bother inputting long text as titles or descriptions; rather, they use

keywords to concisely describe the music they desire for the playlists in titles

and descriptions. For example, a lot of playlists from the MPD have short

titles like happy, workout, party, and study to specify the kind of music in

the playlists. These titles and descriptions, although short, can be very

informative of the underlying music listening needs of the users, and thus

need to be carefully analyzed.

Users sometimes provide irrelevant context in playlist descriptions. From

the example playlist #3, it can be shown that the description provided by

the user is not relevant to the musical content of the playlists – it is likely

that the description would be used as a “timestamp” of the playlist rather

than for specifying the kind of music in the playlist. Although such descrip-

tions can be easily identified by humans, it will be difficult for machines to

tell and determine which descriptions are less useful and need to be paid

10

“Car Chill”
“Senior Year @ HTPA”

“stuDYING”
“you know, like when you’re studying but you’re also dying”

“stuDYING”
“instrumental music (mostly from harry potter) to listen to while stuDYING”

“Peaceful Piano”
“Relax and indulge with some profoundly beautiful piano pieces.”

#1

#3

#4

#5

“Yep”
“”

#2

Figure 1.2: Example playlists from the datasets.

less attention to. Unable to detect such descriptions may bring confusion,

presenting challenges to machine learning models.

Playlists with similar titles may not necessarily have similar contents. As

illustrated by the example playlist #4 and playlist #5 in Figure 1.2, al-

though the two playlists have exactly the same title as stuDYING, from the

descriptions it can be told that the music from the two playlists is very dif-

ferent in genres. In fact, playlist #4 contains a lot of electronic dance music,

while playlist #5 is full of instrumental pieces. Therefore, having exactly the

same or similar titles does not guarantee that the two playlists are similar in

content, and other information, when available, should always be leveraged.

This is analogous to the challenge presented by polysemy in natural language

processing where one word can have multiple meanings and understanding

the true meaning of the word has to rely on more context; similarly, more

context such as playlist descriptions needs to be accounted for to better grasp

the underlying music preference of the playlist.

Capturing keywords can be crucial to accurately understanding playlist ti-

11

tles and descriptions. Although playlist titles and descriptions are user-

generated using natural languages and thoroughly understanding natural lan-

guages usually requires complex models such as The Transformer (Vaswani

et al. 2017) to pay attention to the context, in most of the cases titles and de-

scriptions are very short and only several keywords in the text are indicative

of the music contents of the playlists. Indeed, from the observations made on

the data, users tend to use a small vocabulary to directly describe the kind

of music they need, and such words are usually related to activities, music

genres, and certain moods. It is also interesting to observe that users tend to

use similar vocabularies to describe specific kinds of music. For example, the

word cozy is often used to describe acoustic music; the fire emoji often shows

up in title or description of hip hop playlists. Therefore, capturing keywords

from playlist titles and descriptions and properly interpreting them can be

crucial, while sentence- or even paragraph-level understanding of the titles

and descriptions may not be necessary.

Playlists are digital mix tapes to some extent. It is found that some of

the playlists from the datasets were created for someone else other than the

creator him/herself, just like mix tapes that are usually created for specific

recipients. Such playlists would have descriptions as for you, my love. these

little love songs have been hand-picked for your ears. i hope you enjoy [heart],

and contents of such playlists would be very different and reflecting the char-

acteristics of the recipients. This observation signals that the latent factors

behind music playlist generation may have not changed much from those

identified from mix creation.

12

1.5 Chapter Outline

The rest of the dissertation is organized as follows: in Chapter 2, related

literature regarding capturing latent factors behind music playlist generation

and approaches to predicting missing tracks using playlist titles are reviewed;

Chapter 3 elaborates on capturing and interpreting latent patterns in tracks

by an embedding approach as the answer to research question Q1; Chapter 4

provides the answers to research question Q2 and is focused on evaluation of

the identified patterns by the task of predicting keywords/tags for playlists;

Chapter 5 answers research question Q3 and elaborates on how identified

patterns can help to improve predicting missing tracks given playlist titles

and descriptions; in Chapter 6, conclusions, limitations of this work and

future work are discussed and summarized.

13

CHAPTER 2

LITERATURE REVIEW

2.1 Capturing Latent Factors behind Music Playlist

Generation

Works have been done to capture hidden semantics from playlist titles for

music recommendation. Pichl, Zangerle, and Specht (2015) formed clus-

ters of playlist titles and interpreted each cluster as a latent music listening

context for making music recommendations. The authors expanded the cor-

pus by adding synonyms and hypernyms using WordNet (Miller 1995) to

deal with sparsity. The same authors later built on this work and formed

situational clusters using selected playlist titles that contain activities and

other descriptors (e.g., season, events) to improve music recommender sys-

tems (Pichl and Zangerle 2018). One of the ACM RecSys Challenge 20181

tasks is to predict tracks in playlists given titles only. Approaches adopted

by the top-performing teams include matrix factorization on (Playlist, track)

- Title co-occurrence matrix (Volkovs et al. 2018), character-level convolu-

tional neural network to embed playlist titles (Yang, Jeong, Choi, and Lee

2018), and using playlist titles as queries to pseudo-documents generated for

each track by concatenating all the titles of the playlists that contained a

particular track (Kallumadi, Mitra, and Iofciu 2018).

Starting from the intuition that interpreting playlist titles and descriptions

1http://www.recsyschallenge.com/2018/

14

as plain text is not effective enough, we propose to fit a language model on

titles and descriptions based on some “intermediate” information so that the

“intermediate” information can guide us towards a better understanding of

the language behind playlist generation.

In this section, a comprehensive review of the literature relevant to explor-

ing latent factors behind music playlist generation is presented. As mentioned

in Section 1.1, latent factors in this work is used to broadly refer to anything

that can be used to infer the desired characteristics of the playlist to be gen-

erated, and thus including and not limited to intended use, and organizing

principles of a playlist. Works that have been focused on exploring such

latent factors are grouped and presented in the following sub-sections.

2.1.1 Functions or intents as latent factor

Among all the potential latent factors, functions or intents of music listen-

ing may be the most obvious and most discussed one. According to Huron

(2000), music’s preeminent functions are social and psychological. In a follow-

up study, Schäfer, Sedlmeier, Städtler, and Huron (2013) identified more than

500 purported functions for music from both the theoretical and empirical

research literature from the past 50 years. By distilling the comprehensive

list of over 500 musical functions, 129 non-redundant ones were identified in

the work. The authors further reduced the dimensions by applying Principle

Component Analysis on the 129 musical functions, and concluded that the

three fundamental functions of music are: self-awareness, arousal and mood

regulation, and social-relatedness. Of the three functions, arousal and mood

regulation is proved to be the most important dimension of music listening,

which includes using music as background entertainment and diversion, or

15

as a means for regulating mood and arousal. Self-awareness is proved to

be the second important dimension and reveals a very private relationship

with music listening. The dimension of social-relatedness is less important of

the three, and reflects a sense of social bonding and affiliation. These find-

ings are fundamental and each of the related findings mentioned later in this

work might be reconciled with them. A more recent work by Volokhin and

Agichtein (2018b) started from the hypotheses that there may be multiple

music listening intents associated with each activity, and that a small group

of intents cover a vast majority of music listening needs for each activity,

and arrived at identifying seven common intents from a list of activities us-

ing a survey-based methodology. By asking the respondents to provide up to

three intents for each activity, they identified mood and emotion control, re-

laxation, distraction, filtering background noise, inspiration, motivation, and

concentration as the seven most common intents, with the first three in-

tents the most dominant and covering 54% of all reported music listening

instances. The activity-intent associations found were later validated by the

authors in another work (Volokhin and Agichtein 2018a) using music video

playlist titles, descriptions, and tags. Cunningham, Bainbridge, and Falconer

(2006) tackled the problem of understanding latent factors of music listen-

ing by analyzing how people construct playlists and mixes, and extracted

categorization of the “organizing principles” of personal playlists and mixes.

By analyzing interviews with practitioners and mix help requests posted on

the Internet, nine organizing principles were identified in the work, includ-

ing artist/genre/style, event or activity, romance, message or story, mood,

challenge or puzzle, orchestration, characteristics of mix recipient, cultural

references, and other, sorted by decreasing importance.

16

2.1.2 User tastes or preferences as latent factor

Another important factor behind playlist generation is user tastes or user

preferences. Yoshii et al. (2006) adapted the three-way aspect model for

document recommendation system and modeled music taste of a user as a

mixture of latent conceptual genres, as analogous to information need of a

user as a mixture of latent topics. The latent conceptual genres each was

a component of the GMM (Gaussian Mixture Model) trained on “bag-of-

timbres” – frame-wise MFCCs extracted from tracks – and each latent con-

ceptual genre could also be interpreted as a polyphonic timbre. With the

learned user preference model, the process of generating a music piece for a

given user would be to first select a genre, and let the selected genre generate

polyphonic timbres. The proposed user preference model was evaluated by

conducting music recommendation experiments, and results showed that the

proposed model outperformed collaborative and content-based methods in

recommendation accuracy. Zheleva, Guiver, Mendes Rodrigues, and Milić-

Frayling (2010) adapted another statistical topic model – the Latent Dirichlet

Allocation (LDA) model – and derived the user taste model where each in-

stance of song listening was represented as a finite mixture of the underlying

tastes. The underlying tastes were discovered through statistical modeling,

without using any content features. The authors also proposed a session

model in the same work, which takes into account the latent mood guiding

the listening session. The latent mood guiding a listening session can be

interpreted as a short-time user preference since it reflects a user’s current

preferences to certain types of music, and is more suitable for fitting the data

used in their work—listening sessions instead of music playlists. Specifically,

in the session model each instance of song listening within a session is mod-

17

eled with respect to the latent moods that the session model generates. The

models were evaluated by the task of playlist generation for a song-listening

session, and it was found that the session model was better in terms of per-

plexity than the taste model and the baseline model that did not use latent

groupings of songs. Zangerle and Pichl (2018) modeled latent user preferences

by aggregating track-level audio features for each user. They proposed sev-

eral different user models based on the way audio features were aggregated:

taking the arithmetic mean and/or standard deviations over audio features of

tracks that a user had listened to; or, making use of the K-means clustering

result or the fitted GMM model to represent a user. The proposed models

were evaluated by making music recommendations and the model using both

GMM and average and standard deviation of audio features was reported to

have the best performance. The authors concluded that it was because the

GMM model was able to capture a user’s preference regarding the detected

components (i.e. specific types of music), while the average and standard

deviation of audio features captured a user’s general preference. Bogdanov

et al. (2013) also used audio features to model user preference. Instead of

using track-level audio features directly for representing a user, they used

62 semantic descriptors inferred from audio features to represent each user.

The semantic descriptors were classes such as relaxed, non-relaxed, acoustic,

non-acoustic, bright (timbre) and dark (timbre), gathered from ground truth

of 17 music collections. For each music collection, a classifier was trained to

infer a certain type of semantic descriptors (e.g., relaxed and non-relaxed)

from audio features. In this way, user preferences can be modeled semanti-

cally from lower-level audio features, and thus become more interpretable and

can be described by higher-level musical characteristics (e.g. user u prefers

relaxed and acoustic music). A preliminary evaluation involving 12 human

18

judges was conducted in the context of making music recommendations. The

results showed that the recommendations were close to those coming from

state-of-the-art metadata-based systems.

2.1.3 Semantic meaning underlying related text as latent
factor

Related text such as playlist titles and social tags associated with tracks can

contain useful information for playlist generation and is often analyzed for

its underlying semantics. Pichl, Zangerle, and Specht (2015) tried to cap-

ture hidden semantics behind playlist titles by forming clusters of playlist

titles. Each cluster was interpreted as a latent music listening context and

was further used for making music recommendations. Because playlist titles

made up a very sparse semantic space, the authors expanded the corpus by

adding synonyms and hypernyms using WordNet. It was found that not all

clusters were helpful with making track recommendations, and the proposed

approach delivered better performance than the collaborative filtering based

baseline model when selected top-clusters were used. The same authors later

built on this work and formed situational clusters using selected playlist titles

(Pichl and Zangerle 2018). The selected playlist titles were those containing

activities and other descriptors (e.g., season, events). Stop-words and non-

contextual terms such as genres, artist names and track names were removed

from the titles. The situational cluster information was then used alone or in

combination with audio features for making music recommendations. It was

found that the models leveraging situational clusters outperformed all other

models, and additionally incorporating the situational context brought im-

provement for making both short and long lists of recommendations. Fields,

Rhodes, and d’Inverno (2010) explored latent topics underlying the social

19

tags associated with tracks and represented playlists using the latent topics.

To be specific, the authors applied the LDA topic model on social tags and

identified 10 latent topics; each track was then represented as a distribution of

topics (i.e., a 10-dimensional vector) and each playlist as an ordered sequence

of the track vectors. The effectiveness of the representation was evaluated

by two preliminary retrieval tasks on playlists taken from radio station logs,

and it was found that such representation was helpful with retrieving playlists

from the same radio station.

2.1.4 Implicit latent factors

According to McFee and Lanckriet (2011), neither audio-signal similarity

nor social-tag-based similarity naturally reflects user-generated playlists un-

der a model where a coherent playlist is defined by a Markov chain with

transition probabilities reflecting similarity of songs. To tackle this problem,

approaches have been proposed to avoid interpreting “something coherent”

about a playlist explicitly and at the same time better represent the coher-

ence by making use of the fact that certain tracks have been put together as

playlists. In other words, these approaches make use of track co-occurrence

counts or other features that reflect the sequential nature of music playlists

to better represent playlists. McFee and Lanckriet (2012) built a hypergraph

of songs and modeled playlists each as a random walk on the graph. Because

a hypergraph is undirected and allows an edge to be an arbitrary subset of

vertices rather than a pair, subsets of songs can be defined based on different

feature sets (e.g., mood, genre, artist, era) and transitions between subsets

are possible as long as there is overlap between the two subsets. For exam-

ple, a song with genre label jazz have a chance to transition to a song with

20

era label 1977, if there is at least one song that is labeled by both jazz and

1977. In this way, some latent factor that results in the categories of jazz and

1977 to be “transitionable” is captured and utilized in playlist generation. A

variety of feature sets were explored by the authors in their work, including

audio features, taste profile data, era, artist familiarity, lyrics, social tags,

as well as some feature conjunctions, showing the model’s capability of cap-

turing complex latent factors. Chen, Moore, Turnbull, and Joachims (2012)

proposed a sophisticated model called Latent Markov Embedding (LME) to

embed tracks as single points or dual points in a latent space where Eu-

clidean distance between tracks reflects transition probabilities. By avoiding

explicitly specifying the kind of latent factors considered and making use of

a likelihood maximization heuristic for learning the latent embedding space,

the proposed generative model can assign meaningful transition probabilities

even to those transitions that were not seen in the training data. Kallumadi,

Mitra, and Iofciu (2018) learned a track embedding space by employing a

word embedding approach. Considering tracks as terms and playlists as doc-

uments, they applied word2vec (Mikolov et al. 2013), a popular method for

learning word embeddings, on playlists and learned track embeddings. Em-

bedding tracks in this way makes it possible to capture any latent factors

or even combinations of latent factors that result in some tracks appearing

in the same playlist, and thus is a more informative representation of tracks

that can be helpful for predicting tracks in the task of automatic playlist

generation.

21

2.2 Approaches to Handling Cold-start Playlists

When creating a playlist, the most straightforward way for a user to ex-

press his/her music listening needs is to provide title or even description for

the playlist. Therefore, playlist titles and descriptions can be informative

of the desired music the user needs in the playlist, and capturing useful la-

tent semantics from these text signals becomes crucial. It becomes especially

important to have a better understanding of playlist titles and descriptions

when they are the only signal that is available for making music recommen-

dations. This is the cold-start scenario defined in the RecSys Challenge 2018,

where a playlist is created with only title and no tracks in it. The RecSys

Challenge 2018 has a subtask that is specifically targeted on dealing with such

cold-start scenario. In the subtask, participating models are asked to predict

missing tracks from playlists given playlist titles only. Performance of the

participating models was evaluated using a test set of 1,000 playlists. Three

different evaluation metrics were reported: R-precision, NDCG, and recom-

mended songs clicks. Because the evaluation scores follow similar trends,

only R-precision is reiterated here. Note that the R-precision used in the

Challenge is calculated on both the track and the artist level, and the formal

definition of the metric can be found in Appendix B. Most of the participat-

ing teams adopt either a collaborative/content filtering approach, a neural

network model, or both for the task, and the following subsections provide

an overview of these top-performing approaches in the Challenge.

22

2.2.1 Best performing approach from RecSys 2018

The approach that achieved the highest R-precision score of 0.0978 is vl62

(Volkovs et al. 2018). It is a latent collaborative filtering based approach that

performs matrix factorization on Playlist/Track - Name matrix where each

column represents a playlist title and each row represents either a playlist

or a track. Specifically, each playlist row represents a one-hot encoding of

the playlist title, and each track row represents title counts from all playlists

containing the track. By applying matrix factorization on the matrix, each

playlist and track is represented by a latent vector and similarity between

a playlist and a track is measured by dot product. Basically, the approach

is similar to applying matrix factorization on Playlist - Track co-occurrence

matrix except (a) that now tracks are embedded into the same latent space as

playlists and (b) that playlists with exactly the same title will be treated as

the same playlist (i.e., represented by the same column in the matrix, as well

as having the same one-hot encoded row). The way the Playlist/Track - Name

matrix is constructed brings the advantages of fast computation and efficient

retrieval of candidates; and at the same time, requires heavy preprocessing

of the playlist titles to reduce sparseness as well as to group similar titles

together. However, excessive preprocessing may result in smaller vocabulary

that is not able to handle rare titles well; and same playlist titles may not

necessarily contain similar tracks as showed in the example of two playlists

both titled stuDYING in Figure 1.2 from Chapter 1.

2https://github.com/layer6ai-labs/vl6 recsys2018

23

0 0 0 1 0 … 0 0
1 0 0 0 0 … 0 0
0 0 1 0 0 … 0 0
0 0 0 0 0 … 0 0

……
1 0 0 0 0 … 5 0
0 0 50 0 0 … 0 26
0 0 30 0 0 … 0 6
0 0 5 0 0 … 0 0

……

playlist rows

track rows

one-hot vectors

title counts

𝑷 +𝑻 	×	𝑵𝒕𝒊𝒕𝒍𝒆𝒔 𝑷 + 𝑻 	×	𝒅

𝒅	×	𝑵𝒕𝒊𝒕𝒍𝒆𝒔

Latent
playlist
vectors

Latent
track

vectors

playlist title columns

X Latent title vectorsT

Figure 2.1: Matrix factorization in vl6.

2.2.2 Collaborative filtering and content filtering based
approaches

IN3PD3 (Faggioli, Polato, and Aiolli 2018) is the second best performing

approach from RecSys 2018 Challenge to deal with the cold-start scenario

and achieved an R-precision score of 0.0963. This approach constructs a Title

- Track matrix to keep record of the number of times a track appears in a

title, with a title being a group of playlists with the same title. Using the

matrix, pairwise title similarities are measured by dot product of two rows.

When making recommendations, given a query playlist title tu, each track is

assigned a score calculated by summing over title similarity scores between

all titles (t) and tu to the power of q (10), weighted by track frequencies in

playlists with title t. Similar to vl6, this approach also relies on normalization

of playlist titles to group playlists with same or similar titles together, and

in cases where titles are not in the training set or titles being empty after

preprocessing, popular tracks in the dataset are recommended.

KAENEN4 (Ludewig, Kamehkhosh, Landia, and Jannach 2018) adopts

the strategy of recommending top tracks from candidate playlists with sim-

ilar title(s), and proposes two different ways to retrieve candidate playlists.

3https://github.com/guglielmof/recsys spt2018MI
4https://github.com/rn5l/rsc18

24

One way is to find playlists with the same title by string matching (after

NLTK5 (Natural Language Toolkit) tokenizer, Porter stemming6). When

no exact string match can be found, the target playlist title is replaced by

the title with the most similar title from the dataset based on Levenshtein

distance. The other way to retrieve candidate playlists with similar titles is

by measuring playlist titles similarities. Specifically, by constructing a Title

- Track matrix that keeps track of track occurrences in the titles and ap-

plying matrix factorization on the matrix, title similarities can be measured

using latent title vectors; then top tracks (i.e., ranked by track frequencies

weighted by title similarities) from playlists with the k most similar titles will

be recommended. According to the authors, the matrix factorization based

method is better than string matching in retrieving proper candidates, and

yields an R-precision score of 0.0953 in the RecSys 2018 Challenge.

Creamy Fireflies7 (Antenucci et al. 2018) constructs two matrices to

represent playlists: the Playlist - Token matrix and the Playlist - Title ma-

trix. The former represents playlists using tokens extracted from titles, and

the latter represents playlists by exact match of titles. To handle situations

where playlist titles are not tokenizable (e.g., titles with only emojis), the

final model uses an ensemble of the two mechanisms to find similar playlists

from which tracks are selected to be recommended. This approach achieves

an R-precision score of 0.0949 in the challenge.

HAIR8 (Zhu et al. 2018) extracts n-gram text features from playlist titles

and constructs a Track - N-gram matrix to keep track of their co-occurrence

counts in the playlists as (track, n-gram) similarity scores. When making

5https://www.nltk.org/
6https://tartarus.org/martin/PorterStemmer/
7https://github.com/tmscarla/spotify-recsys-challenge
8https://github.com/LauraBowenHe/Recsys-Spotify-2018-challenge

25

recommendations based on a given query playlist title, each track is assigned

a score calculated by averaging over similarities between the track and all

n-grams in the given title. This approach got an R-precision score of 0.0829

in the challenge.

Avito9 (Rubtsov et al. 2018) encodes each playlist using top-2000 words

extracted from the titles, and constructs a Track - Top Word matrix to record

playlist-track co-occurrence information. By applying matrix factorization

using the LightFM package on the matrix, a bias vector as well as a latent

content vector are learned for each track and each top word. The bias vector

and latent content vector for a playlist can then be calculated by summing

over the corresponding vectors of the top words it contains. Similarity score

of a (playlist, track) pair can then be calculated as dot product of the playlist

and track vector plus playlist bias and track bias. Using this approach, the

team achieves an R-precision score of 0.0845 on the challenge set.

2.2.3 Neural network based approaches

hello world!10 (Yang, Jeong, Choi, and Lee 2018) features the use of

character-level convolutional neural network (charCNN) for the task. Character-

level analysis of text can be particularly applicable to this task because char-

CNN can handle out-of-vocabulary words easily and user-generated text may

contain rare words and typos. The charCNN model built by the team takes

a sequence of title tokens as input, and outputs probabilities of each track

being in the playlist. The submitted model achieved an R-precision score of

0.087 in the challenge.

Spotifi.ai11 (Kim, Won, Liem, and Hanjalic 2018) proposes a model that

9https://github.com/VasiliyRubtsov/recsys2018
10https://github.com/hojinYang/spotify recSys challenge 2018
11https://github.com/eldrin/recsys18-spotify-spotif-ai

26

particularly focuses on dealing with cold-start scenarios. The approach lever-

ages both playlist-track co-occurrence information and playlist titles to learn

latent representations for playlists and tracks. More specifically, the work

mainly consists of two components: (1) learning latent vectors for both

playlists (u) and tracks (v) using matrix factorization on Playlist - Track

co-occurrence matrix; (2) constructing a recurrent neural network (RNN)

model with a single long short term memory (LSTM) layer to learn latent

vector representations for playlists (ũ) using character-level n-grams from

playlist titles as input. For learning the RNN model, the team takes a multi-

objective approach in which the objective function takes into account both

how close the learned playlist vectors ũ are to the u pre-trained in (1), and

how well ũ are for making track recommendations. The former objective is

measured by mean square errors of ũ and u, while the latter is measured

by negative sampling loss of (playlist, track) pairs (i.e., (ũ, v+), and (ũ,

v−)). When making track recommendations based on a given playlist title,

the approach works by first encoding the title into a latent vector and then

calculating similarity scores (i.e., dot products) for all tracks with respect to

the query. Tracks with highest scores are recommended. The team achieves

an R-precision of 0.072 in the RecSys Challenge.

D2KLab (Monti et al. 2018) proposes to learn title embeddings using

fastText (Mikolov et al. 2018) from pseudo-documents created by groups of

playlist titles so that title similarities can be better measured. To be more

specific, the approach first groups similar playlists together by applying K-

means clustering on three types of playlist embeddings learned using the

word2vec model on track-, album-, and artist-level, respectively; next, a

pseudo-document is created for each cluster by concatenating all titles of the

playlists in the cluster; fastText algorithm is then applied on the pseudo-

27

documents to learn title embeddings. When making recommendations based

on a query playlist title, the query title is first encoded into a title embedding

and cosine similarity between the query embedding and each playlist title in

the dataset is calculated. Playlists with most similar titles are retrieved,

from which top tracks are recommended. The performance statistics of this

approach to the subtask of dealing with cold-start scenario were not reported

in the overall challenge results paper since it was not one of the top-10 teams

that achieved the best overall scores for all the subtasks.

2.2.4 Other approaches

Definitive Turtles12 (Kelen, Berecz, Béres, and Benczúr 2018) adopts a

simple but effective strategy of retrieving playlists with the same normalized

title and recommending top frequent tracks from the similar playlists. This

approach is claimed by the authors to outperform other approaches that they

have experimented with and it achieves an R-precision score of 0.096 on the

RecSys 2018 test set.

BachPropagate13 (Kallumadi, Mitra, and Iofciu 2018) takes a traditional

text IR view at the cold-start scenario and turns it into a classic IR task where

a system needs to return relevant documents given an input query. Specifi-

cally, each track is represented as a pseudo-document created by concatenat-

ing playlist titles where the track appears. The problem is then converted

into finding relevant pseudo-documents given a playlist title as query. The

team used a classic IR model (the BM25 model) for the IR task and achieved

an R-precision score of 0.0751.

12https://github.com/proto-n/recsys-challenge-2018
13https://bachpropagate.weebly.com/

28

2.2.5 Summary

Roughly, the above mentioned approaches can be categorized into three types

based on the way in which playlist titles are represented: (a) titles as they

are; (b) titles as tokens; and, (c) titles as embeddings. The first two types

are less complex than the third, but can raise concerns when used directly

for finding playlists with similar titles. Due to being very simple, searches

for similar titles based on (a) or (b) rely entirely on exact match of either the

entire title or some of the tokens, thus not being able to capture semantic

relationships. For example, a playlist titled study may be similar to a playlist

titled sleep, but using (a) or (b) to represent playlist titles, there is no way for

the model to know that the two playlists are likely to be similar. However,

still a lot of approaches from the Challenge represented playlist titles using

either (a) or (b) and achieved top performances; this is because playlist titles

are usually very short (there are many one-word titles) and do not need more

complex models to gain a sentence-level understanding, and that only a small

portion of vocabularies used by users in the titles are helpful for the task of

music recommendation and thus capturing exact matches of the important

vocabularies is fair enough.

Representing titles as embeddings is much more complex, and brings the

opportunities to either capture semantic relationships of the titles, or mea-

sure how match a track is to a given title directly in an embedding space.

Training title embeddings relies on additional information that needs to be

carefully selected and leveraged so that the learned embeddings can serve a

specific purpose (i.e., learning objective). However, according to the results

of the Challenge, approaches that work by learning title embeddings never

outperform those using simpler representations for titles, which on one hand

29

ascertains the conclusion that due to the nature of user-created playlist titles,

simple representations can achieve fair performance, and on the other hand,

indicates that there is still room for improvement by learning more effective

title embeddings.

30

CHAPTER 3

CAPTURING LATENT PATTERNS USING
TRACKS

This chapter provides answers to research question Q1 specified in Section

1.5: What latent patterns can be captured using tracks in playlists? and

How informative are the latent patterns? To uncover the latent patterns

that can be captured using tracks in playlists, the first step in this part is

to find an effective representation for playlists (playlist embeddings) using

track co-occurrence information. Next, patterns are explored and captured

by clustering algorithms using the playlist embeddings. In order to investi-

gate how informative the latent patterns are, efforts are made to provide an

understanding of the patterns using playlist titles and descriptions, as well

as track features. The following sub-sections provide details on each of the

topics mentioned above.

3.1 Learning Latent Track Embeddings

3.1.1 Word embedding approaches and word2vec model

Word embedding approaches, such as word2vec (Mikolov, Chen, Corrado,

and Dean 2013) and GloVe (Pennington, Socher, and Manning 2014), pro-

vide a way to learn dense vector representations of words which capture

deeper semantic meanings. These approaches are unsupervised ones, and are

proved to be very effective for downstream tasks such as sentiment analysis,

31

question answering, etc. In these approaches, word embeddings are learned

as parameter weights of some optimization problems. Our preliminary work

shows that the word2vec model is more effective in learning track embeddings

compared with other models, so this work is focused on using the word2vec

model. Below we provide a brief introduction of the word2vec model.

There are two flavors of the word2vec model: the skip-gram model and

the continuous bag-of-word (CBOW) model. The skip-gram model uses each

pair of (target word, context word) within a certain window and tries to

predict the context word using the target word. The CBOW model, on the

other hand, uses all of the context words within the window altogether to

predict the target word. Due to the difference in the model architecture, the

skip-gram model converges slower and works better with rare words and small

datasets, while the CBOW model trains faster and works well in representing

frequent words. The authors of the word2vec model also introduced two ways

to speed up the training process: one is using hierarchical softmax (Mikolov,

Chen, Corrado, and Dean 2013) to model the probability space, and the

other is using negative sampling (Mikolov et al. 2013) to add noise samples

and transform the word prediction problem into binary classification problem

(i.e., predict whether a sample of a pair of words is a true or noise sample).

Hyperparameters that need to be tuned during training for the word2vec

model are summarized below:

1. Learning algorithm: Skip-gram or CBOW

2. Training algorithm: Hierarchical softmax or negative sampling

3. Vector size: Dimension of the dense word vectors to be learned

4. Window size: Size of the context window within which all pairs of

words are considered to have co-occurred

32

5. Subsampling parameter: Controls the probability of a sampled word

to be discarded in order to balance rare and frequent words during

sampling

6. Number of negative samples: If using negative sampling, how many

negative samples to add

7. Number of iterations: Number of iterations to perform during op-

timization

8. Minimum word count: Minimum number of occurrences of a word

to be included into the vocabulary

3.1.2 Learning track embeddings using word2vec

Inspired by word embedding approaches, this work proposes that track em-

beddings can be learned in a similar way so that each unique track can be

represented by a dense vector which captures richer information. To be more

specific, by treating playlists as the equivalent of sentences, and tracks as

the equivalent of words, word2vec model can be applied to learn a dense

vector representation for each of the unique track IDs and represent each

playlist by aggregating its track embedding vectors. Figure 3.1 illustrates

the idea. Note that only track sequence information is needed as input to

the word2vec model, which is very convenient when no content features such

as audio features or track metadata is available.

For learning the track embedding vectors, the word2vec and the GloVe

models were under consideration. The word2vec model was finally chosen

mainly for the following three reasons:

1. With the implementation of CBOW learning algorithm, ordering in-

33

𝑤𝑜𝑟𝑑%

Train a track embedding space

𝑤𝑜𝑟𝑑& 𝑤𝑜𝑟𝑑' 𝑤𝑜𝑟𝑑(𝑤𝑜𝑟𝑑)

word2vec applied to playlists

3bH4HzoZZFq8UpZmI2AMgV

𝑡𝑟𝑎𝑐𝑘& 𝑡𝑟𝑎𝑐𝑘% 𝑡𝑟𝑎𝑐𝑘'

New Light, Attention, Light on,

5cF0dROlMOK5uNZtivgu50
6UnCGAEmrbGIOSmGRZQ1M2

𝒕𝒓𝒂𝒄𝒌𝟏: (𝟎. 𝟎𝟎𝟑𝟓,−𝟎. 𝟑𝟖𝟐𝟎,… ,−𝟎. 𝟏𝟔𝟒𝟑,−𝟏. 𝟏𝟏𝟔𝟔)

𝒕𝒓𝒂𝒄𝒌𝟑: (−𝟏. 𝟏𝟑𝟖, 𝟐. 𝟑𝟏𝟓𝟐,… , 𝟎. 𝟖𝟗𝟑𝟎, 𝟏. 𝟏𝟗𝟎𝟖)

𝒕𝒓𝒂𝒄𝒌𝟐: (𝟏. 𝟔𝟒𝟏𝟗, 𝟐. 𝟎𝟒𝟔𝟎,… ,−𝟏. 𝟑𝟒𝟓𝟒,−𝟎. 𝟔𝟒𝟖𝟕)

𝒘𝒐𝒓𝒅𝟏: (𝟎. 𝟎𝟎𝟑𝟓,−𝟎. 𝟑𝟖𝟐𝟎, …, −𝟎. 𝟏𝟔𝟒𝟑,−𝟏. 𝟏𝟏𝟔𝟔)

𝒘𝒐𝒓𝒅𝟐: (𝟏. 𝟔𝟒𝟏𝟗, 𝟐. 𝟎𝟒𝟔𝟎,… ,−𝟏. 𝟑𝟒𝟓𝟒,−𝟎. 𝟔𝟒𝟖𝟕)

𝒘𝒐𝒓𝒅𝟑: (−𝟏. 𝟏𝟑𝟖, 𝟐. 𝟑𝟏𝟓𝟐, … , 𝟎. 𝟖𝟗𝟑𝟎, 𝟏. 𝟏𝟗𝟎𝟖)

𝒘𝒐𝒓𝒅𝟒: (𝟏. 𝟔𝟒𝟏𝟗, 𝟐. 𝟎𝟒𝟔𝟎,… ,−𝟏. 𝟑𝟒𝟓𝟒,−𝟎. 𝟔𝟒𝟖𝟕)

𝒘𝒐𝒓𝒅𝟓: (−𝟏. 𝟏𝟑𝟖, 𝟐. 𝟑𝟏𝟓𝟐, … , 𝟎. 𝟖𝟗𝟑𝟎, 𝟏. 𝟏𝟗𝟎𝟖)

word2vec

word2vec

word2vec applied to documents

Figure 3.1: Learning track embedding using word2vec.

formation is discarded and is more preferred in the setting of making

static music recommendations, as opposed to dynamic tasks such as

automatic playlist continuation in live music listening session.

2. The linearity of the vector operations is claimed to weakly hold for

the addition of several vectors by word2vec, so it is possible to add

several word or phrase vectors to form representation of short sentences

(Mikolov, Yih, and Zweig 2013). The example given by the authors well

illustrates this property: adding the vectors of Russian and River will

find a vector that is very close to Volga River. Therefore, we believe

that aggregating track vectors should yield a meaningful representation

of playlists as well.

3. Distance between a playlist and a track can be measured directly in the

latent embedding space by vector distance measures, as convenient as

the best performing approach vl6 from the RecSys Challenge mentioned

in Section 2.2.1.

Tunning the subsampling parameter allows to deal with rare and frequent

34

words (tracks), which is very important because popular tracks tend to ap-

pear very frequently in the dataset and frequent words/tracks can have large

vector norms that dominate the vector space. A simple empirical measure-

ment of the quality of the learned track embedding vectors will be provided

in Section 3.1.4.

3.1.3 Implementation details

Table 3.1 summarizes the hyperparameters that have been tuned in this work.

Through the process of hyperparameter tuning, it is found that window size,

the number of negative samples, as well as the number of iterations had the

most impact on model performance for the particular use in this work. It is

worth noting that a particularly large window size (100) was set so that all

the co-occurring pairs of tracks in playlists containing no greater than 100

tracks can be accounted for.

Hyperparameter Value
vector size 50
window size 100
of negative samples 25
subsampling parameter t 10−5

of iterations 100
minimum word count 5

Table 3.1: Hyperparameters of word2vec model

All of the 1,001,417 playlists in the dataset were used for learning the la-

tent representations of playlists so that the learning process can make the

most of the available data. In total, over 2 million unique tracks were fed to

the word2vec model, and after subsampling (Mikolov et al. 2013) latent rep-

resentations (i.e., track embeddings) of 600,501 unique tracks were learned.

With the learned track embedding vectors, each playlist in D1 and D3

35

(20,177 playlists in total) is represented as the average of its track vectors.

Because of the use of subsampling to deal with rare and frequent words,

not all tracks in the dataset has a dense vector. 112 playlists whose tracks

are all absent from the latent embedding space are discarded, leaving 20,065

playlists with descriptions in the dataset. The 20,065 playlists are further

divided into a training set of 19,061 playlists (95%), and a test set of 1,004

playlists (5%). The train/test split ratio is chosen so that the test size is of a

comparable size of the challenge set used in RecSys Challenge 2018 for each

subtask.

3.1.4 Measuring the quality of the track embeddings

To measure the quality of the learned track embeddings, ten nearest neigh-

bors of nine seed tracks are retrieved from the latent embedding space using

cosine similarities. Table 3.2 and 3.3 present the nine neighborhoods in lists,

with the seed track highlighted in bold and similarity scores provided in each

sub-table.

It can be shown from the tables that the latent embedding space is able

to capture similarities in terms of genre, artist, language, and mood. Specif-

ically, in sub-table (a), the seed track performed by acclaimed jazz figures

Duke Ellington and John Coltrane is close to other influential jazz music

works, of which one is also from Ellington and Coltrane and the others not.

Sub-tables (b), (g) and (i) all illustrate that the latent space is effective in

grouping tracks of the same genre together – (b) is all about hip hop music,

(g) contains christian worship music, and (i) only has classical pieces. As

genre-based recommending strategy is a common strategy adopted by music

recommender systems, the latent space can be helpful if used by music rec-

36

D
uk

e
El

lin
gt

on
, J

oh
n

Co
ltr

an
e

-I
n

A
Se

nt
im

en
ta

l M
oo

d
1M

ile
s

Da
vi

s
Bl

ue
 in

 G
re

en
0.

82
2J

oh
n

Co
ltr

an
e

N
ai

m
a

0.
71

3D
uk

e
El

lin
gt

on
, J

oh
n

Co
ltr

an
e

M
y

Li
tt

le
 B

ro
w

n
Bo

ok
0.

70
4E

rik
 S

at
ie

, A
le

xa
nd

re
 T

ha
ra

ud
Pr

em
iè

re
 G

ym
no

pé
di

e
0.

69
5M

ile
s

Da
vi

s
So

W
ha

t
0.

68
6C

ha
rle

s M
in

gu
s

G
oo

db
ye

 Po
rk

 P
ie

 H
at

0.
68

7L
ou

is
Ar

m
st

ro
ng

, E
lla

 F
itz

ge
ra

ld
Su

m
m

er
tim

e
0.

68
8C

he
t B

ak
er

Al
on

e
To

ge
th

er
0.

67
9M

ile
s

Da
vi

s
Fl

am
en

co
 S

ke
tc

he
s

0.
66

10
Do

nn
y

Ha
th

aw
ay

I L
ov

e
Yo

u
M

or
e

Th
an

 Y
ou

'll
 E

ve
r K

no
w

0.
66

Po
st

 M
al

on
e,

 2
1

Sa
va

ge
 -

ro
ck

st
ar

1G
uc

ci
 M

an
e,

 M
ig

os
I G

et
 th

e
Ba

g
(fe

at
. M

ig
os

)
0.

80
22

1
Sa

va
ge

Ba
nk

 A
cc

ou
nt

0.
80

3A
$A

P
Fe

rg
Pl

ai
n

Ja
ne

0.
78

4T
ra

vi
s S

co
tt

BU
TT

ER
FL

Y
EF

FE
CT

0.
75

5b
la

ck
be

ar
, G

uc
ci

 M
an

e
do

 re
 m

i (
fe

at
. G

uc
ci

 M
an

e)
0.

75
6L

il
Pu

m
p

Gu
cc

i G
an

g
0.

73
7L

il
U

zi
Ve

rt
, O

h
W

on
de

r
Th

e
W

ay
 L

ife
 G

oe
s (

fe
at

. O
h

W
on

de
r)

0.
72

8C
ar

di
 B

Bo
da

k
Ye

llo
w

0.
70

9P
os

t M
al

on
e

Ca
nd

y
Pa

in
t

0.
70

10
G-

Ea
zy

, A
$A

P
Ro

ck
y,

Ca
rd

i B
N

o
Li

m
it

0.
70

A
G

re
at

 B
ig

 W
or

ld
, C

hr
ist

in
a

Ag
ui

le
ra

 -
Sa

y
So

m
et

hi
ng

1A
 G

re
at

 B
ig

 W
or

ld
Sa

y
So

m
et

hi
ng

0.
77

2P
as

se
ng

er
Le

t H
er

 G
o

0.
73

3S
am

 S
m

ith
St

ay
 W

ith
 M

e
0.

71
4J

oh
n

Le
ge

nd
Al

l o
f M

e
0.

71
5C

hr
ist

in
a

Pe
rr

i
hu

m
an

0.
67

6C
hr

ist
in

a
Pe

rr
i

Ja
r o

f H
ea

rt
s

0.
66

7P
!n

k,
 N

at
e

Ru
es

s
Ju

st
 G

iv
e

M
e

a
Re

as
on

 (f
ea

t.
N

at
e

Ru
es

s)
0.

66
8T

he
 Lo

w
 A

nt
he

m
To

 th
e

Gh
os

ts
 W

ho
 W

rit
e

Hi
st

or
y

Bo
ok

s
0.

61
9M

ile
y

Cy
ru

s
W

re
ck

in
g

Ba
ll

0.
61

10
Sa

m
 S

m
ith

I'm
 N

ot
 T

he
 O

nl
y

O
ne

0.
60

M
ar

vi
n

G
ay

e,
 Ta

m
m

i T
er

re
ll

-A
in

't
N

o
M

ou
nt

ai
n

Hi
gh

 E
no

ug
h

1T
he

 Ja
ck

so
n

5
I W

an
t Y

ou
 B

ac
k

0.
81

2T
he

 Ja
ck

so
n

5
AB

C
0.

77
3T

he
 Te

m
pt

at
io

ns
M

y
Gi

rl
0.

76
4E

ar
th

, W
in

d
&

 F
ire

Se
pt

em
be

r
0.

74
5B

en
 E

. K
in

g
St

an
d

by
 M

e
0.

67
6T

he
 F

ou
nd

at
io

ns
Bu

ild
 M

e
U

p
Bu

tt
er

cu
p

0.
66

7S
te

vi
e

W
on

de
r

Si
gn

ed
, S

ea
le

d,
 D

el
iv

er
ed

 (I
'm

 Yo
ur

s)
0.

65
8S

te
vi

e
W

on
de

r
Su

pe
rs

tit
io

n
-S

in
gl

e
Ve

rs
io

n
0.

64
9N

or
m

an
 G

re
en

ba
um

Sp
iri

t I
n

Th
e

Sk
y

0.
62

10
Th

e
De

ce
m

be
ris

ts
O

 N
ew

 E
ng

la
nd

0.
62

BI
G

BA
N

G
 -

BA
N

G
 B

AN
G

 B
AN

G
 -

KR
 V

er
.

1B
IG

BA
N

G
Fa

nt
as

tic
 B

oy
0.

76
2P

SY
, C

L
DA

DD
Y

0.
73

3B
IG

BA
N

G
SO

BE
R

-K
R

Ve
r.

0.
71

4M
IN

O,
 Z

IC
O

O
ke

y
Do

ke
y

0.
71

5C
L

He
llo

 B
itc

he
s

0.
70

6B
TS

Do
pe

0.
69

7E
XO

CA
LL

 M
E

BA
BY

0.
69

8P
SY

N
AP

AL
 B

AJ
I

0.
67

9H
it-

Bo
y,

Ja
m

es
 F

au
nt

le
ro

y
Th

at
's

W
ha

t I
 G

et
0.

67
10

Ja
y

Pa
rk

, U
gl

y
Du

ck
몸
매

M
om

m
ae

 (f
ea

t.
U

gl
y

Du
ck

)
0.

66

Ro
ng

ha
o

Li
 -
不
将
就

1T
ia

 L
ee

是
我
不
够
好

0.
89

2S
ho

w
 Lu

o
幸
福
不
减

0.
88

3A
nd

re
w

 Ta
n

好
爱
好
散

0.
87

4H
eb

e
Ti

en
Fo

re
ve

r L
ov

e
0.

87
5C

hr
ist

in
e

Fa
n

可
不
可
以
不
勇
敢

0.
86

6A
-M

ei
 C

ha
ng

, J
er

ry
 L

in
, P

re
m

iu
m

 S
tu

di
o

真
实

0.
86

7F
ish

 L
eo

ng
如
果
有
一
天

0.
86

8P
hi

l C
ha

ng
趁
早

0.
86

9N
ic

ho
la

s T
eo

寂
寞
边
界

0.
86

10
Ra

in
ie

 Y
an

g
想
幸
福
的
人

0.
85

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

T
ab

le
3.

2:
N

ea
re

st
n
ei

gh
b

or
s

of
th

re
e

se
ed

tr
ac

k
s

in
th

e
la

te
n
t

em
b

ed
d
in

g
sp

ac
e

37

Fr
éd

ér
ic

 C
ho

pi
n,

 B
rig

itt
e

En
ge

re
r-

N
oc

tu
rn

e,
 O

p.
 p

os
th

. i
n

C-
Sh

ar
p

M
in

or
: L

en
to

1R
em

o
Gi

az
ot

to
, T

om
as

o
Al

bi
no

ni
, M

us
ic

 L
ab

 C
ol

le
ct

iv
e

Ad
ag

io
 In

 G
 M

in
or

0.
68

2G
eo

rg
e

Fr
id

er
ic

 H
an

de
l,

M
us

ic
 L

ab
 C

ol
le

ct
iv

e
Sa

ra
ba

nd
e

0.
67

3L
ud

w
ig

 v
an

 B
ee

th
ov

en
, L

on
do

n
Ph

ilh
ar

m
on

ic
 O

rc
he

st
ra

, K
la

us
 T

en
ns

te
dt

Eg
m

on
t,

O
p.

 8
4:

 O
ve

rt
ur

e
0.

66
4C

la
ud

e
De

bu
ss

y,
M

ar
tin

 Jo
ne

s
Cl

ai
r d

e
Lu

ne
, L

. 3
2

0.
65

5O
liv

ie
r M

es
sia

en
, Y

o-
Yo

 M
a,

 K
at

hr
yn

 St
ot

t
Lo

ua
ng

e
à

l'É
te

rn
ité

 d
e

Jé
su

s (
Fr

om
 "Q

ua
rt

et
 fo

r t
he

 E
nd

 o
f T

im
e"

)
0.

65
6S

ilv
er

w
oo

d
Q

ua
rt

et
Vi

va
ld

i:
W

in
te

r F
ro

m
 T

he
 F

ou
r S

ea
so

ns
 1

. A
lle

gr
o

N
on

 M
ol

to
0.

62
7J

BM
, J

ua
n

Ba
ut

ist
a

M
at

ie
nz

o
O

p.
16

8
so

na
ta

 e
n

do
 m

ay
or

 'L
a

Bo
ca

-S
an

 Is
id

ro
'

0.
62

8G
ab

rie
l F

au
ré

, M
us

ic
 L

ab
 C

ol
le

ct
iv

e
Si

ci
lie

nn
e,

 O
p.

78
0.

62

9Te
n

Gr
an

ds
, T

om
 G

ra
nt

, M
ic

ha
el

 A
lla

n
Ha

rr
iso

n,
 D

av
id

 La
nz

, J
an

ic
e

Sc
ro

gg
in

s,
Be

nj
am

in
 K

im
,

Al
ex

x
Ca

rn
at

ha
n,

 D
ar

re
ll

Gr
an

t,
M

ic
ha

el
 K

ae
sh

am
m

er
, A

dr
ia

n
Bo

rc
ea

, J
oh

n
N

ils
en

He
r S

ol
itu

de
0.

62
10

An
to

ni
o

Vi
va

ld
i,

Dm
itr

y
Si

nk
ov

sk
y,

La
 V

oc
e

St
ru

m
en

ta
le

Th
e

Fo
ur

 S
ea

so
ns

, V
io

lin
 C

on
ce

rt
o

N
o.

 4
 in

 F
 M

in
or

, R
V

29
7

"W
in

te
r"

: I
I.

La
rg

o
0.

61

Ch
ris

 T
om

lin
-G

oo
d

G
oo

d
Fa

th
er

1M
at

t R
ed

m
an

10
,0

00
 R

ea
so

ns
 (B

le
ss

 T
he

 Lo
rd

) [
Ra

di
o

Ve
rs

io
n]

 -
Ra

di
o

Ve
rs

io
n/

Li
ve

0.
76

2F
ra

nc
es

ca
 B

at
tis

te
lli

Ho
ly

 S
pi

rit
0.

74
3C

hr
is

To
m

lin
Ho

w
 G

re
at

 Is
 O

ur
 G

od
0.

73
4K

at
hr

yn
 Sc

ot
t,

In
te

gr
ity

's
Ho

sa
nn

a!
 M

us
ic

Yo
u

Ga
ve

 Y
ou

r L
ife

 A
w

ay
0.

72
5M

ar
an

at
ha

! G
os

pe
l

Be
ca

us
e

O
f W

ho
Yo

u
Ar

e
0.

71
6E

sp
er

an
za

 d
e

Vi
da

M
i ú

ni
co

 a
m

or
0.

70
7A

ar
on

 S
hu

st
Ev

er
 B

e
0.

69
8H

ill
so

ng
 U

N
IT

ED
O

ce
an

s (
W

he
re

 F
ee

t M
ay

 F
ai

l)
-R

ad
io

 V
er

sio
n

0.
69

9E
le

va
tio

n
W

or
sh

ip
O

 C
om

e
to

 th
e

Al
ta

r (
Li

ve
)

0.
69

10
Al

l S
on

s &
 D

au
gh

te
rs

Gr
ea

t A
re

 Yo
u

Lo
rd

0.
69

Th
e

Be
at

le
s -

Ye
llo

w
 S

ub
m

ar
in

e
-R

em
as

te
re

d
20

09
1T

he
 B

ea
tle

s
O

ct
op

us
's

Ga
rd

en
 -

Re
m

as
te

re
d

20
09

0.
77

2T
he

 B
ea

tle
s

I A
m

 T
he

 W
al

ru
s -

Re
m

as
te

re
d

20
09

0.
76

3T
he

 B
ea

tle
s

Lu
cy

 In
 T

he
 S

ky
 W

ith
 D

ia
m

on
ds

 -
Re

m
as

te
re

d
20

09
0.

76
4T

he
 B

ea
tle

s
Al

l Y
ou

 N
ee

d
Is

 Lo
ve

 -
Re

m
as

te
re

d
0.

75
5T

he
 B

ea
tle

s
O

b-
La

-D
i,

O
b-

La
-D

a
-R

em
as

te
re

d
20

09
0.

74
6T

he
 B

ea
tle

s
A

Ha
rd

 D
ay

's
N

ig
ht

 -
Re

m
as

te
re

d
0.

74
7T

he
 B

ea
tle

s
El

ea
no

r R
ig

by
 -

Re
m

as
te

re
d

20
09

0.
74

8T
he

 B
ea

tle
s

Pe
nn

y
La

ne
 -

St
er

eo
 M

ix
 2

01
7

0.
74

9T
he

 B
ea

tle
s

W
ith

 A
 L

itt
le

 H
el

p
Fr

om
 M

y
Fr

ie
nd

s -
Re

m
as

te
re

d
20

09
0.

73
10

Th
e

Be
at

le
s

Da
y

Tr
ip

pe
r -

Re
m

as
er

ed
 2

01
5

0.
73

(g
)

(h
)

(i)

T
ab

le
3.

3:
N

ea
re

st
n
ei

gh
b

or
s

of
th

re
e

se
ed

tr
ac

k
s

in
th

e
la

te
n
t

em
b

ed
d
in

g
sp

ac
e

38

ommender systems. In sub-table (h), the most similar ten tracks to the song

Yellow Submarine from The Beatles are all from The Beatles, indicating that

the latent space is able to capture artist similarity. Because recommending

tracks from the same or similar artists to users remains a simple but very

effective strategy in music recommender systems, the latent space is again

proved to be helpful for music recommender systems. Sub-tables (e) and (f)

also show that the latent space is language-aware and language is another

important factor in music recommendation tasks. Another interesting find-

ing is presented in sub-table (c) where old songs released in the 50s to the

90s are retrieved as nearest neighbors of the seed song Ain’t No Mountain

High Enough. The returned neighbors are all old songs from the same era

as the seed track, indicating that the latent space is aware of the impact of

release year – a descriptive feature that mix help requests may bring up to

specify the kind of music desired (Cunningham, Bainbridge, and Falconer

2006). The example shown in sub-table (d) illustrates another interesting

finding that the latent space is aware of certain emotions. By looking closely

at the neighbors returned in the sub-table, it can be told that all the songs

are sad love songs. That the latent space can also capture similarity in terms

of moods further confirms the effectiveness of the learned track embeddings.

3.2 Finding Patterns in Track Embeddings

Now that each track is embedded in the learned latent space, in order to

discover patterns in playlists, work needs to be done to embed playlists into

the latent space, properly measure distance/similarity between playlists in

the space, as well as to group similar playlists together using the distance

measurement. This section provides details of each of the tasks: Section

39

3.2.1 explains how track embeddings are aggregated to represent playlists;

Section 3.2.2 elaborates on how similar playlists are grouped together using

hierarchical clustering. In the last subsection, analyses of the clustering result

and discussion on the patterns found in the result are provided.

3.2.1 Aggregating track embeddings to represent playlists

As mentioned in Section 3.1, in word2vec model, representation of short

sentences can be formed by adding several word or phrase vectors since the

linearity of the vector operations seems to weakly hold. Similarly, it is reason-

able to assume that aggregating several track vectors should yield meaningful

representation of playlists. As lengths of playlists can be varied as shown in

Table 1.2, instead of taking the sum of track vectors, the average of track

vectors are calculated to form representations of playlists so that magnitudes

of playlist vectors will not change much with length.

3.2.2 Hierarchical clustering

With latent vector representations of playlists, groups of similar playlists can

be formed using clustering algorithms. There is a variety of clustering algo-

rithms, such as hierarchical clustering, K-means clustering and modularity-

based clustering (Clauset, Newman, and Moore 2004). Because clustering

algorithms are sensitive to the choice of distance measure, several combina-

tions of clustering algorithms and distance measures were tried. In the end,

agglomerative clustering (bottom-up hierarchical clustering) using standard-

ized cosine distances yields the most satisfying result to form clusters of

similar playlists. Specifically, standardized cosine distances are calculated

by standardizing, for each playlist, the pairwise cosine distances between

40

the playlist and all other playlists in the dataset. The standardized dis-

tance matrix is converted into a symmetric matrix by taking the elementwise

minimum of the original matrix and its transpose. It is worth noting that

using standardized cosine distances is very effective in handling the situation

where popular tracks become “hubs” and form dense clouds in the latent

space. Figure 3.2 shows the impact of distance measures on two-dimensional

visualization of the playlist embeddings using t-SNE (t-distributed stochastic

neighbor embedding) (Maaten and Hinton 2008). It can be seen that using

standardized cosine distances yields more recognizable clusters in the data

than using euclidean and cosine distances.

60 40 20 0 20 40 60

60

40

20

0

20

40

60

Euclidean

80 60 40 20 0 20 40 60

60

40

20

0

20

40

60

Cosine

80 60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

Standardized Cosine

Figure 3.2: t-SNE visualizations of playlist embeddings using different
distance measures. Standardized cosine distances (rightmost) yields more
recognizable clusters.

In addition to the choice of distance measure, clustering algorithms also

depend on pre-determined number of clusters or pre-determined distance

threshold (i.e., maximum distance for two clusters to be merged). Ideally,

clusters formed would have balanced sizes. So when determining the dis-

tance threshold for this work, the goal is to select the threshold that yields

relatively fewer large clusters as well as fewer singletons (clusters with only

one playlist). Several distance thresholds were tried and Figure 3.3 plots the

number of singletons, the number of clusters, and the maximum cluster size

41

against different distance thresholds. With the principle of having as few

large clusters and singletons as possible in mind, it is not difficult to pick the

threshold of 7.7 from the figure as the best distance threshold among several

different values.

6.5 7.0 7.5 8.0 8.5

0

2000

4000

6000

8000
number of singletons
number of clusters
size of the largest cluster

Figure 3.3: Number of singletons, number of clusters, and size of the largest
cluster for each distance threshold (x values). Distances are standardized
cosine distances.

Applying agglomerative clustering on the training set mentioned in Section

3.1.3 results in 581 clusters in total, including 18 singletons. The singletons

are removed to uncover general patterns in the data, leaving 563 clusters of

similar playlists. Table 3.4 shows a summary of the top-10 largest clusters.

From the table, it can be shown that playlists in the same cluster share

something similar – genre, event, mood, etc.. In the next subsection, further

analyses are made to investigate the quality of the clusters.

42

Size Top-10 words with highest binary term frequency from the cluster
1 628 oldies, 80s, goodies, classics, soul, love, school, 70s, dad, vol
2 597 rap, fire, hype, litty, chill, af, bangers, gang, trap, party
3 509 rap, hype, party, litty, fire, hop, trap, bangerz, hip, hip hop
4 458 throwback, throwbacks, childhood, nostalgia, disney, 2000s, school, tbt, middle school, bops
5 457 rock, classic, classics, classic rock, oldies, dad, roll, 70s, 80s, school
6 433 edm, house, electronic, dance, dubstep, chill, trap, gaming, bass, drops
7 382 worship, jesus, christian, god, praise, lord, church, gospel, love, faith
8 373 classical, piano, instrumental, study, soundtracks, studying, movie, scores, focus, orchestra
9 331 rock, punk, metal, angst, emo, teen, pop punk, hard, pop, punk rock
10 314 christmas, season, holiday, merry, wonderful, merry christmas, xmas, holidays, festive, classics

Table 3.4: Top-10 largest clusters of similar playlists, presented by top-10
frequent words from each cluster

3.2.3 Clustering results analyses

Neighboring clusters

In Figure 3.4, six groups of neighboring clusters are presented by top words

of the clusters to illustrate how the latent space of clusters look like. The

visualization is created using the Tensorflow Embedding Projector1. The

data and metadata used for creating the visuals have been made public so

that the interactive visualization can be reproduced2. Taking a close look

at each of the six neighborhoods in the figure, one can easily tell that each

of the clusters can be well represented by the top words – some clusters are

about Christmas, some about jazzy music, some cluster contains acoustic

covers, some clusters are made to create ambient atmosphere. It can also be

found that there are proper reasons for the neighboring clusters to be close

to each other. For example, clusters about Christmas, jazz, and a cappella

in neighborhood (a) are close probably because these types of music are

generally enjoyed during holiday seasons. In neighborhood (b), the cluster

about jazz music has neighbors that contain soul and bossa nova music, and

it is indeed highly possible for people who like jazz music to also find soul

1https://projector.tensorflow.org/
2https://bit.ly/3eaDDWp

43

and bossa nova enjoyable. Neighborhood (c) seems to be about sad love

songs, and it is of no surprise that Ed Sheeran and Adele as mentioned in

the top words since both of them are very popular singers for this genre.

Neighborhood (e) indicates that classical and instrumental music may be

preferred for sleep, study, and dinner, which is reasonable since people may

like instrumental, relaxing, and ambient music in these situations.

It is also worth noting that in both neighborhood (d) and neighborhood

(e) did the word study appear, and the two neighborhoods seem to be slightly

different – neighborhood (d) is about covers and acoustic covers, while neigh-

borhood (e) is about classical and instrumental music. If given the word study

as the query and clusters whose top-five words contain the query word are se-

lected as the candidate clusters that are believed to be more likely to contain

proper songs for studying, both neighborhood (d) and (e) would be selected.

This can be a preferred behavior for music recommender systems because

when no other information is available and the query word is ambiguous in

terms of which types of music is desired, it is a good strategy to consider

more diverse candidates.

Understanding the clusters by top words

This subsection focuses on understanding what each cluster is about by the

top words from the clusters extracted from titles and descriptions. As is

observed from the top words of the ten largest clusters in Table 3.4, top words

from the clusters are generally categories by which people browse online music

collections. Ideally, if each cluster were assigned a proper category label, it

would be easier to have a better grasp of the clusters; and work in this

subsection is focused on assigning proper labels to the clusters.

First of all, a taxonomy of related music categories is retrieved via Spotify

44

ch
ris

tm
as

, s
ea

so
n,

 m
er

ry
, h

ol
id

ay
,

m
er

ry
 ch

ris
tm

as
, w

on
de

rfu
l, c

la
ss

ics
,

ch
ee

r,
cla

ss
ic,

 xm
as

gr
ou

ps
, c

ap
el

la
, in

st
ru

m
en

ta
l,

in
st

ru
m

en
t,

fu
ll,

 a
ca

pe
lla

, h
ym

ns
,

in
st

ru
m

en
ta

l w
or

sh
ip

, w
or

sh
ip

, v
oi

ce

ja
zz

, s
m

oo
th

, j
az

zy
,

cla
ss

ics
, f

us
io

n,

ba
nd

, s
w

in
g,

 ca
,

re
la

xin
g,

 st
an

da
rd

s

m
ag

ic,
 se

as
on

, t
ra

nc
e,

 tr
ip

, n
ig

ht
,

m
iss

io
n,

 fi
ll,

 re
la

te
d,

 p
ro

gr
es

siv
e,

ch

ris
tm

as
ja

zz
, s

m
oo

th
, j

az
zy

, c
la

ss
ics

, f
us

io
n,

ba

nd
, s

w
in

g,
 ca

, r
el

ax
in

g,
 st

an
da

rd
s

cu
ba

, j
az

z,
br

az
ilia

n,
 S

pa
ni

sh
, g

en
re

s,
sa

lsa
, n

ov
a,

 b
os

sa
, b

os
sa

no
va

, s
ip

fri
en

d,
 su

gg
es

tio
ns

, d
ad

s,
m

ul
tip

le
, s

e,

er
as

, h
om

es
ick

, f
an

s,
ev

en
t,

w
op

ol
di

es
,s

ou
l,6

0s
,g

oo
di

es
,

50
s,

lo
ve

,c
la

ss
ic,

ro
ck

,j
az

z,
cla

ss
ics

sa
d,

 lo
ve

, c
ry

, f
ee

lin
gs

, s
ad

 sa
d,

 sl
ow

,
de

pr
es

sio
n,

 h
ea

rt
m

oo
d,

 em
ot

io
ns

ed
, lo

ve
, s

he
er

an
, e

d
Sh

ee
ra

n,
 ch

ill,

lif
e,

 a
co

us
tic

, s
lo

w
, s

tre
ss

ed
, c

ry
in

g

sa
d,

 lo
ve

, c
ry

, r
ai

ny
, s

le
ep

,
slo

w
, c

hi
ll,

 sa
d

sa
d,

 ca
lm

, m
in

d

cr
y,

 si
ng

le
, a

de
le

, e
xt

re
m

e,
 e

m
o,

sh

ow
er

, c
al

m
, a

ss
ig

nm
en

ts
, y

e,

ho
m

ew
or

k

co
ve

rs
, a

co
us

tic
, c

ov
er

, li
ve

, a
co

us
tic

co

ve
rs

, c
hi

ll,
 p

er
fo

rm
an

ce
s,

ve
rs

io
ns

,
se

ss
io

ns
, u

np
lu

gg
ed

lo
ve

, c
hi

ll,
 sa

d,
 lif

e,
 w

ed
di

ng
,

ra
in

y,
 re

la
x,

 so
ft,

 h
ap

py
, s

ta
rs

co
ve

rs
, c

ov
er

, c
hi

ll,
 o

rig
in

al
, l

yr
ics

,
cla

ss
ic,

 h
ur

ry
, c

la
ss

ir
oc

k,
 st

ud
y,

 w
or

k

sle
ep

, s
ou

nd
s,

st
ud

y,

in
st

ru
m

en
ta

l,
am

bi
en

t,
fo

cu
s,

re
la

x,
 c

hi
ll,

 w
or

ds
, c

al
m

sle
ep

, n
ap

, c
la

ss
ica

l,
m

om
, s

tu
dy

,
gu

ita
r,

w
in

e,
 sl

ow
, b

ro
od

in
g,

 d
in

ne
r

cla
ss

ica
l,

pi
an

o,
 st

ud
y,

in

st
ru

m
en

ta
l,

m
ov

ie
, s

ou
nd

tra
ck

s,
sc

or
es

, w
or

ks
, w

or
ld

, f
oc

us

be
at

le
s,

pa
ul

, o
ld

ie
s,

be
at

le
m

an
ia

,
ha

pp
y,

 w
al

lfl
ow

er
, p

er
ks

, G
eo

rg
e,

sir

, r
oc

k b
an

d

lo
ve

, r
oc

k,
 sp

rin
g,

 h
ou

rs
, e

ar
ly

, b
ow

ie
,

m
ad

 m
en

, w
es

, r
oa

d,
 co

m
pl

ica
te

d

ro
ck

, c
la

ss
ic,

 cl
as

sic
 ro

ck
, c

la
ss

ics
,

ol
di

es
, d

ad
, lo

ve
, r

ol
l,

70
s,

60
s

(a
)

(b
)

(d
)

(e
)

(f
)

(c
)

F
ig

u
re

3.
4:

N
ei

gh
b

or
in

g
cl

u
st

er
s

ex
am

p
le

s.

45

Top Words from Clusters
1

2

3

…

sleep, nap, classical, mom, study, guitar, dinner, …

sad, love, cry, rainy, sleep, slow, chill, sad sad, …

classical, piano, study, instrumental, movie, soundtracks, …

…

cid top 50 words

mood
hiphop
in_the_car
edm_dance
dinner
…

Mood
Hip Hop
In the car
Dance/Electronic
Cooking & Dining
…

id name

mood, sad, happy, mellow, angry
hiphop, hip hop, hip, hop
car, cars, roadtrip, roadtrips, road trip
edm, electronic
dinner, cooking, dining
…

extended keywords

artist, genre/style, activity/event, mood, romance, chill, othersPrinciple Labels

Spotify Categories

Artist Categories

Step 1

Step 2

katy perry
lady gaga
imagine dragons
maroon 5
sam smith
…

artist names

Figure 3.5: Workflow of identifying latent factors behind clusters using top
words from titles and descriptions.

API. These pre-defined categories by Spotify, referred to as the Spotify cate-

gories for short hereafter in this section, are used to tag items in Spotify to

support other functions such as search and browsing on the platform. Each

Spotify category has an ID and a name; the ID is a unique string identifier

for the category, while the name is usually a one- or two-word description

of the category and for most of the time is the same as the ID. These cate-

gories cover a wide range of descriptive words that are often used to browse

and search music collections, which include music genres, common events or

activities, as well as adjectives describing moods and vibes. Examples are

given in Figure 3.5. Because of the limit on maximum number of categories

to be returned each time (i.e., 50) from the API, the API was called ten

times to get as more categories as possible since it is not known how many

categories in total are used on the platform. In total, a list of 48 categories

was obtained.

Because the Spotify categories do not include artists, popular artists are

collected from The Billboard so that artists can also be under considera-

tion as related music categories. Specifically, six charts were collected from

46

The Billboard : Billboard Greatest Artists of All Time3, Billboard Year-End

Top Artists of 2010, 2014, 2015, 2016 and 20174. After de-duplicating, 568

distinct artists were collected as a taxonomy of artist categories.

Because it is also within the interest of this work as for how the clusters

reflect the organizing principles identified by Cunningham, Bainbridge, and

Falconer 2006 from mix help requests, a set of six principle labels is derived.

The six principle labels are artist, genre/style, activity/event, mood, romance,

and others. Now that the labels are defined, work remains to be done to

assign proper labels to the clusters. Because the Spotify categories and the

principle labels are different in granularity, it is decided that the assignment

will be done in two steps. Figure 3.5 illustrates the workflow.

In Step 1, each cluster is assigned to one or more Spotify/artist categories

by matching top words to category/artist names (Step 1 in Figure 3.5). In

order to increase the coverage of each category, the Spotify category names

are manually expanded to include variations of the category name and more

words that are representative of the category. For example, the category

named hiphop is expanded to also include hip hop, hip, and hop; the category

of roots that already has folk & acoustic as its name is expanded to also

include folk and bluegrass. Figure 3.6 shows all the Spotify categories and

the number of clusters that have been assigned to each category at the end

of Step 1.

In Step 2, each of the artist categories is assigned to the principle label

artist and each of the Spotify categories is assigned to one of the principle

labels by hand (Step 2 in Figure 3.5). The main challenge with this part is

to deal with ambiguity. For example, the Spotify category indie alternative

3https://www.billboard.com/charts/greatest-of-all-time-artists
4https://www.billboard.com/charts/year-end/2017/top-artists

47

0 20 40 60 80 100
number of clusters

chill
romance

mood
in_the_car

pop
edm_dance
popculture

indie_alt
party
rock

hiphop
alternative

travel
roots

workout
sleep
study

gaming
soul
funk

at_home
dinner
focus

inspirational
jazz

instrumental
pride

classical
punk
blues

wedding
metal

brazilian
french_variety

country
shows_with_music

sessions
kpop

comedy
family

language

Figure 3.6: Tagging result of the Spotify categories.

48

can not be easily assigned to one of the principle labels. To handle such

cases, playlists tagged by the category on Spotify were retrieved via API

and examining the retrieved playlists helped with determining which label

to assign. In fact, for most of such cases, the category ended up classified

as others because such cases usually fit multiple principle labels. Note that

because the word chill is very frequent as cluster top words and can not be

easily assigned to one of the principle labels either, a separate principle label

chill was created.

With the Spotify and artist categories working as a bridge, each cluster

now has one or more principle labels assigned. Figure 3.7 shows the sum-

mary of the clusters in terms of the principle labels. Similar to the organizing

principles identified by Cunningham, Bainbridge, and Falconer (2006), artist,

genre and activity, are still the top three categories that the top words of

clusters are about. This is evidence that artist, genre and activity are the

three main factors behind the formation of the clusters. In fact, some clus-

ters are formed so that activities that are similar in terms of the kind of

music usually desired are grouped together. For example, party and workout

frequently co-occur as top words of some clusters, while beach and roadtrip

often appear together. Furthermore, some clusters are formed in a way that

certain activities are connected with certain genres. For example, reggae and

beach both appear in one of the clusters, defining the connection of the two,

which can be further leveraged for making more accurate or more diverse

recommendations – recommend reggae music to playlists created for listen-

ing on the beach or creating a beach vibe; recommend other kinds of beach

music to users who enjoy reggae. Interestingly, it can be found that most

of the clusters about mood are associated with activities and genres, and

the clusters are good at distinguishing different mood for the same activ-

49

ity or genre. For example, there are clusters that have wedding and sad as

top words, as well as clusters represented by wedding and happy. This is

reasonable result because for wedding ceremonies, slow and beautiful mu-

sic (usually “sad” music) is usually preferred, while for wedding receptions,

fast and energetic music (felt as “happy”) is desired. The clusters formed

using track information implicitly find connections between mood and other

categories, and can be very useful to narrow down the proper set of track

recommendations.

artist genre
activity chill

romance
mood

other
0

20

40

60

80

100

120

nu
m

be
r o

f c
lu

st
er

s

Figure 3.7: Numbers of clusters assigned to each of the principle labels.

Understanding the clusters by track features

In addition to playlist titles and descriptions, audio features extracted from

tracks can provide another view of the characteristics of the clusters. The

Spotify API supports downloading of audio features extracted from tracks.

On the platform, there are nine numeric audio features available for down-

loading, including acousticness, danceability, energy, instrumentalness, live-

50

ness, loudness, speechiness, tempo, and valence. Table 3.5 presents a brief

summary of the audio features and full descriptions of the audio features are

available on the website5.

Audio feature Range Explanation
Acousticness 0.0 - 1.0 least acoustic - most acoustic
Danceability 0.0 - 1.0 least danceable - most danceable
Energy 0.0 - 1.0 least energetic - most energetic
Instrumentalness 0.0 - 0.5 - 1.0 ≥ 0.5 indicates no vocal
Liveness 0.0 - 1.0 ≥ 0.8 indicates live music
Loudness -60dB - 0dB in decibels
Speechiness 0.0 - 0.33 - 0.66 - 1.0 no - some - all spoken words
Tempo positive float numbers beats per minute (BPM)
Valence 0.0 - 1.0 musically negative - positive

Table 3.5: Overview of audio features

Using the audio features, firstly the consensus levels of each of the numeric

features are measured. Specifically, for each numeric audio feature, the global

standard deviation is calculated for all the unique tracks in the dataset, and

the standard deviations for each of the clusters are also calculated. The

consensus level of an audio feature is then measured by the percentage of

the clusters whose standard deviations are below the global one. Figure 3.8

shows the consensus levels of the audio features. The audio features in the

figure are ranked by consensus level from high to low.

It can be shown from the figure that for each of the numeric audio fea-

tures, a large portion of the clusters has below average standard deviations,

meaning that most of the clusters have high consensus level in terms of their

audio features. Specifically, danceability and energy are the two audio fea-

tures that have the top consensus levels, implying that it is not very often for

users to put tracks that are danceable, intense and active, together with those

5https://developer.spotify.com/documentation/web-api/reference/#object-
audiofeaturesobject

51

that are less so. Therefore, when a playlist contains mostly highly danceable

and intense tracks, tracks that are calming may not be the best to be rec-

ommended and need to be down voted. Interestingly, tempo has the least

consensus levels of all the audio features, but was mentioned by Cunningham,

Bainbridge, and Falconer (2006) as a possible factor to playlist creations. In

fact, the two conclusions are not conflicting because faster tempo can also be

reflected by high danceability and high energy. Furthermore, it is more often

for users to give vague requirements on tempo than strict requirements on

BPM, for example, Cunningham, Bainbridge, and Falconer (2006) reported

that one interviewee stated that he/she preferred “songs that are not ‘ter-

ribly sloooww’”. Valence, as a measure of musical positiveness conveyed by

a track, has the third highest consensus level. This can be interpreted as

when users spend time creating “thematic” playlists, mood can be one of the

themes and can affect their choices of tracks to add to the playlists. More

often than not, people do not mix tracks that sound happy and cheerful with

those that make people feel sad and depressed, especially if the playlist is

created for certain activities to enhance a certain atmosphere.

danceabilityenergy
valence

loudness
instrumentalness

acousticness
liveness

speechiness tempo
0%

20%

40%

50%

80%

100%

below average std
above average std

Figure 3.8: Consensus levels of numeric audio features.

52

In addition to audio features, another metadata that is available via Spotify

API is the release date of albums, which records the earliest date an album

was released. Because it was mentioned by Cunningham, Bainbridge, and

Falconer (2006) that about 9.6% of the mix requests referenced the preferred

date of the first release for a candidate song for a mix in order to recover

the “feel” of that period, it is worth investigating whether the clusters reflect

the finding as well. Because a lot of tracks get to digitally remastered from

old versions, the release dates obtained via the API may not be the earliest

release dates of the original version. Therefore, consensus level of the release

dates can not be measured by difference in standard deviations. Instead,

simple count of the number of clusters that have mostly all old-time tracks

is used. In order to correctly identify such clusters, the median release year

of a cluster is used because the distribution of the release years of the entire

dataset is highly skewed towards recent years, with the first, second and

third quantile being 2007, 2013, 2016, and a lot of outliers on the very low

end. It was decided that clusters whose median release year is smaller than

2007 (i.e., the first quantile) should be considered eligible, which ended in 60

clusters selected. Table 3.6 shows examples of selected clusters represented

by their top words. Indeed, the top words reflect that one of the key factors

behind the formation of these clusters is the release year – rock bands from

old times, classic and beautiful old tunes for weddings. The fact that about

10.66% of the clusters contain mostly tracks from old times confirms the

finding by Cunningham, Bainbridge, and Falconer (2006) that release date is

one of the important factors affecting playlist creation and that the clusters

are effective in capturing this.

53

Year (median) Top-10 words with highest BiTF from the cluster
1974 beatles,paul,oldies,beatlemania,happy,wallflower,perks,george,sir,rock band
1986 classics,folk,chill,acoustic,rock,bob dylan,dylan,oldies,bob,autumn
1990 love,rock,spring,hours,early,bowie,mad men,wes,road,complicated
1990 rock,classic,classic rock,classics,oldies,dad,love,roll,70s,60s
1992 prince,funk,timeless,attitude,original,happy birthday,hope,hear,michael,birthday
1993 oldies,80s,classics,love,70s,rock,vol,goodies,school,guardians
1994 oldies,soul,60s,goodies,50s,love,classic,rock,jazz,classics
1994 petty,classic,george,roots,celebrating,legendary,air,sweaters,sons,happy birthday
1995 band,women,married,wine,cheese,left,exist,add,taste,party
1997 wedding,road,home,school,city,party,spirit,south,kate,drop

Table 3.6: Example clusters that mostly contain tracks from old times

Understanding the clusters by nearest neighbors

Now that each of the clusters can be represented by either aggregated playlist

embeddings, aggregated track features, or top words, each representation

yields a different vector space, in other words, a different view of the clusters.

By comparing the different views, a further understanding of the clusters

can be reached regarding which view the formed clusters reflect the most.

Specifically, five different views are considered: track, artist, track + artist,

audio features, and top words; overlap of the nearest neighbors of each cluster

returned by the five views are measured and compared with the ones found

in the track embedding space. Details of how nearest neighbors are retrieved

from each view follow below.

In the views of track and artist, similarity of two clusters is measured by

the number of tracks/artists they have in common. Specifically, each cluster

is represented by a binary track/artist occurrence vector, and dot product is

used as the similarity measure of the vectors. In the view of track + artist,

similarity scores are calculated as a weighted sum of track similarity and artist

similarity, with the track view given a weight of 0.75 and the artist view 0.25.

The weights are selected to reflect the R-precision measure used in the RecSys

Challenge 2018, which will be detailed in Chapter 5. Nearest neighbors for

each cluster are then retrieved by the similarity scores. Similarly in the

54

view of top words, similarity of two clusters is also measured by the number

of words they have in common, and the similarity score can be calculated

using dot product of two binary term frequency vectors. In the view of

audio features, distance of two clusters is measured by the numeric audio

features mentioned in Section 3.2.3. Specifically, each cluster is represented

by averaging the audio features of all the tracks in it, and euclidean distances

are used on standardized cluster centroid vectors to measure dissimilarity of

two clusters. Nearest neighbors of each cluster are retrieved by finding the

closest clusters.

The lists of nearest neighbors returned by different views of the clusters

are compared by calculating the overlap of the lists in the first n nearest

neighbors, with n in 1, 5, 10, 20, 30, 40, and 50. Figure 3.9 presents the

results. It can be concluded from the results that the formed clusters align

the most with the track + artist view and the track view, indicating that the

clusters are informative in track similarities and can be leveraged for making

track recommendations. It can also be seen from the results that the view of

top words aligns the least with the formed clusters. In fact, this is already

illustrated in Figure 3.4 where it is shown that neighboring clusters may not

have similar top words. It can be further concluded that semantic similarity

in playlist titles and descriptions does not well reflect similarity in tracks, thus

making track recommendations given playlist titles and descriptions needs to

go beyond semantic similarity and find connections between text and tracks.

In fact, the formed clusters can be leveraged for bridging the text view and

the track view of playlists, and next two chapters will be focused on this.

55

0 10 20 30 40 50

First n neighbors to compare

0

5

10

15

20

25

Nu
m

be
r o

f c
om

m
on

 n
ei

gh
bo

rs

tracks + artists
tracks
artists
audio features
top words

Figure 3.9: Number of common neighbors found from the track embedding
space and other views.

3.3 Summary

This chapter presents how track embeddings are learned as effective dense

vector representations for tracks using word2vec model, and how track em-

beddings are aggregated to represent playlists. It is shown that the latent

embedding space is able to capture similarities in terms of genre, artist, lan-

guage, mood, and other categories. It is also presented how patterns can

be captured by applying agglomerative clustering algorithm on the playlists

embeddings. By investigating the clusters in terms of the neighborhoods

formed inside, the representative top words extracted from playlist titles and

descriptions, as well as the track features, it is concluded that genre, activity,

and mood are the top reasons why certain clusters are formed; the conclu-

sion is supported by the similar pattern found using track audio features that

danceability, energy level, and valence are the top-three features that have

the highest consensus levels across the clusters.

To summarize, this chapter answers the question of What latent patterns

56

can be captured using tracks in playlists? by an embedding approach, and the

latent patterns of the track embeddings and the formed clusters well align

with the organizing principles of mix tapes identified more than a decade ago.

The formed clusters are also shown to be implicitly representing connections

of the organizing principles, demonstrating that they are informative in de-

mystifying the listening intents behind playlists. It is also found that the

formed clusters can well reflect similarity in tracks, indicating that the clus-

ters can be leveraged to go beyond semantic similarity in playlist titles and

descriptions for a better understanding of the text, and the following two

chapters are focused on the topic.

57

CHAPTER 4

TAGGING PLAYLISTS WITH KEYWORDS

In this chapter, effectiveness of the learned embedding space and the clusters

formed using the embedding vectors is quantitatively evaluated to investigate

how the latent patterns from the track view can understand playlist titles and

descriptions. The evaluation is done by the task of retrieving keywords in

titles and/or descriptions given tracks in playlists, and the idea of adopting

a retrieval-based evaluation framework is derived from the ranking-based

evaluation framework proposed by Hodosh, Young, and Hockenmaier (2013)

for sentence-based image description task. In the remaining of the chapter,

justification for framing the task as a retrieval-based task is first provided,

followed by details on experimental setup and evaluation results. Discussion

on the experimental results is provided at the end of the chapter.

4.1 From Image Description to Playlist Tagging

Describing images or captioning images using natural language has been an

active research topic, which usually involves visual content representation

and natural language generation. The part of visual content representation

is mostly done by extracting activations from pre-trained deep neural net-

works (Krizhevsky, Sutskever, and Hinton 2017; Simonyan and Zisserman

2015), and the part of natural language generation involves efforts made to

generating sentences that are grammatically correct and appropriate for the

58

image (Mao et al. 2014). Despite that deep neural networks have advanced

the former part substantially, the latter part of generating captions or de-

scriptions for images using natural language remains challenging because it

introduces syntactic and pragmatic difficulties (Hodosh, Young, and Hock-

enmaier 2013). In fact, framing image description as a natural language

generation task is fundamentally problematic because it distracts from the

underlying semantic question to be answered, as argued by Hodosh, Young,

and Hockenmaier (2013). Furthermore, evaluation of the machine-generated

sentences has to rely either on repeated collection of human judgements,

which is expensive and presenting challenges with comparing across exper-

iments, or on automatic scores such as BLEU (bilingual evaluation under-

study) (Papineni, Roukos, Ward, and Zhu 2002) which is proved to poorly

correlated with human judgements. To provide a remedy for the predica-

ment, Hodosh, Young, and Hockenmaier (2013) proposed the ranking-based

evaluation framework, where a system is evaluated by how well it ranks the

caption of a given image over the captions of all other test images in the pool.

The framework has been widely adopted in related works (Gong et al. 2014;

Gong, Ke, Isard, and Lazebnik 2014; Sun, Gan, and Nevatia 2015; Socher

et al. 2014).

For music recommender systems, being able to accurately describe the

musical contents of the playlists using natural language can be very benefi-

cial because the description can be used as browsing and searching indexes

and thus reducing the workload of in-house human annotators. Similar to

the task of image description, describing playlists involves musical content

representation of playlists, and natural language generation. For the part

of musical content representation, a variety of audio content features can be

used. Casey et al. (2008) provided a summary of the audio features commonly

59

used in MIR). However, the audio features are extracted on frame-level, and

have to be effectively aggregated to yield representation for playlists. To this

end, the track embeddings learned in Chapter 3 provide a better alternative,

because it has been proved in the chapter that the track embeddings can

be effectively aggregated to form playlist representations, and that the em-

beddings can implicitly capture collaborative aspects that content features

may not. For the part of natural language generation, it is also true for mu-

sic playlists that generating appropriate and grammatically correct sentence

descriptions brings unnecessary distraction from solving the real question.

Furthermore, it is believed that for music playlists, keywords or tags are

more common and helpful than sentence descriptions because as previously

discussed, users tend to using very concise text to express their music lis-

tening needs, and that tags can be used for categorizing playlists, creating

helpful indexes for browsing and searching. Therefore, instead of framing

the evaluation as a ranking-based task, evaluation will be implemented as a

keyword retrieval task (or playlist tagging task) where tokens from playlist

titles and descriptions are held out as ground truth keywords and the learned

track embeddings and the formed clusters are evaluated by how they help

with retrieving proper keywords for playlists. Note that keywords and tags

will be used interchangeably hereafter.

4.2 Experimental Details

4.2.1 Test data and preprocessing

The subset of 1,004 playlists (i.e., 5% of D1 + D3) that has been held out

from clustering in Section 3.1.3 is used for testing. Specifically, tokens from

60

playlist titles and descriptions are used as ground truth keywords, and tracks

from the test playlists are given as model input. In the following, details of

preprocessing the playlist titles and descriptions are provided.

Similar to other types of user-generated text on social media, music playlist

titles and descriptions can be short and noisy. For example, emojis and

hashtags are very common in titles and descriptions; users tend to type

words or sentences in all uppercase letters to emphasize; certain letters in

words are repeated multiple times to exaggerate (e.g., “sooooooo happy”),

etc. Therefore, special care is needed when preprocessing the data, and a

customized recipe is created based on the preprocessing work done in GloVe

for preprocessing tweets1. Below are the several steps that were taken to

clean and preprocess the text data.

• URLs and HTML tags removal: URLs and HTML tags such as “... <\a>” need to be removed

• Stopwords removal: common stopwords as well as dataset specific stop-

words need to be removed, e.g., “my”, “playlist”

• Emojis normalization: emojis need to be converted to plain text inside

brackets, e.g., “<grimacing face>”

• Hashtag normalization: hashtags are converted into plain text

After cleaning and preprocessing, Stanford PTBTokenizer2 was used to

tokenize each title and description. Binary term frequencies (BiTF) that

reflect occurrence of a word in a document (i.e., 1 if a word occurs in a

document; otherwise 0) were then extracted as text features. Bigrams are

1https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
2https://nlp.stanford.edu/software/tokenizer.shtml

61

Subtask Extract keywords from To predict keywords from
(a) Titles Titles
(b) Descriptions Descriptions
(c) Titles + Descriptions Titles + Descriptions
(d) Titles + Descriptions Titles

Table 4.1: Subtasks defined for tagging playlists

also included so that frequently mentioned artist names such as Ed Sheeran

can be preserved. The vocabulary was further pruned with a minimum term

frequency of 3, yielding a vocabulary of 5,195 tokens.

4.2.2 Subtasks and tagging strategies

The evaluation is implemented with four subtasks, and Table 4.1 summa-

rizes the subtasks. Basically, the subtasks differ in where the keywords are

extracted and in which text (titles, descriptions, or both) to predict. Partic-

ularly, subtask (d) is included to investigate whether the inclusion of playlist

descriptions will expand the vocabulary in a helpful way that more informa-

tive words from titles can be retrieved.

Two tagging strategies are employed and compared: cluster-based, and

similarity-based strategies. Given tracks in a playlist, the cluster-based strat-

egy first predicts which cluster the input playlist belongs to, and then select

top words from the cluster; while similarity-based strategy first finds the

most similar playlists to the input playlist, and then selects top words from

the candidate playlists’ titles and/or descriptions. Figure 4.1 illustrates the

two strategies.

For the cluster-based approach, predicting cluster membership for a playlist

is done by finding the nearest neighboring cluster whose centroid is the closest

to the playlist embedding (i.e., aggregated track embeddings) in the embed-

62

cluster of similar playlists

cluster of similar playlists

cluster of similar playlists

…
 …

q top word 1
q top word 2
q…

similar playlist

similar playlist

…
 …

similar playlist

q top word 1
q top word 2
q…

similar playlist

tracks in playlists nearest neighbor
assignment

tracks in playlists vector
similarity

cluster-based

similarity-based

cluster of similar playlists

Figure 4.1: Cluster-based and similarity-based tagging strategies.

ding space learned by word2vec. The centroid of a cluster in this work is the

anchor playlist whose median pairwise cosine distances to all other playlists

in the cluster is smallest. It is believed that choosing anchor playlists as

the centroids instead of calculating aggregated centers has the advantage of

being more robust to outliers in the data.

For similarity-based approaches, similar playlists can be found by mea-

suring vector similarities once playlists are represented in the same vector

space. To represent playlists using tracks, the playlist embeddings learned

by word2vec in this work can be used. A matrix factorization based ap-

proach is also included as a proper baseline since matrix factorization can

also capture collaborative information from the data. Specifically, we applied

matrix factorization on Playlist - Track co-occurrence matrix to get latent

playlist vectors. Dimension of the latent vectors is set to 50, the same as the

track embedding vectors; randomized SVD (singular value decomposition) is

used to factorize the matrix. In these approaches, cosine similarity is used to

63

measure vector similarities and top words are selected from S most similar

playlists to the query playlist, ranked by sum of normalized similarities be-

tween the query playlist and the similar playlist where the top word is from.

S is set to be 11, the median size of clusters.

4.2.3 Evaluation metrics

F1 scores (formal definition presented in Appendix B) are used as the evalu-

ation metrics for the keyword retrieval task. Specifically, F1@1, F1@3, F1@5,

F1@10, F1@50 are reported for the three approaches to be compared.

4.3 Evaluation Results and Discussion

Table 4.2 presents the evaluation results of the four subtasks. From the re-

sults, it can be seen that the two track embeddings based approaches (cluster-

based w2v-track-50d and similarity-based w2v-track-50d) always outperform

the matrix factorization based baseline (MF-50d), providing evidence that

the learned track embeddings are effective as musical content representations

of playlists. Interestingly, the two track embeddings based approaches work

similarly well, with no consistent pattern of one outperforming the other.

This is reasonable because both approaches are based on the word2vec track

embeddings, and thus will give similar candidate playlists to select top words

from. However, in subtask (b) where the models only deal with playlist de-

scriptions, the cluster-based w2v-track-50d model consistently outperforms

the similarity-based one. This is an indication that even if two playlists are

similar in musical content, their descriptions can be very different. Indeed,

as observed in Chapter 1, users may put random text that is irrelevant to

the musical content of the playlist as descriptions; in such cases, correctly

64

Model F1@1 F1@3 F1@5 F1@10 F1@50

(a) Titles

Cluster-based

w2v-track-50d 0.1494 0.1235 0.0985 0.0669 0.0213
Similarity-based

w2v-track-50d 0.1548 0.1239 0.1019 0.0666 0.0150
MF-50d 0.1298 0.0947 0.0777 0.0528 0.0121

(b) Descriptions

Cluster-based

w2v-track-50d 0.0584 0.0685 0.0659 0.0537 0.0220
Similarity-based

w2v-track-50d 0.0559 0.0597 0.0520 0.0400 0.0149
MF-50d 0.0460 0.0487 0.0451 0.0349 0.0130

(c) Titles + Descriptions

Cluster-based

w2v-track-50d 0.0863 0.1004 0.0906 0.0757 0.0306
Similarity-based

w2v-track-50d 0.0886 0.0989 0.0882 0.0651 0.025
MF-50d 0.0834 0.0797 0.0731 0.0543 0.0208

(d) Titles + Descriptions predicts Titles

Cluster-based

w2v-track-50d 0.1463 0.1177 0.0919 0.0625 0.0215
Similarity-based

w2v-track-50d 0.1545 0.1282 0.1009 0.0636 0.0188
MF-50d 0.1326 0.0968 0.0775 0.0512 0.0165

Table 4.2: Evaluation results of tagging playlists with keywords (proposed
models shown in italic; best scores per metric shown in bold)

65

predicting keywords from descriptions can be extremely difficult.

Another interesting finding is that all models work the best when the tar-

get keywords to predict are from titles (i.e., subtasks (a)(d)), and work the

worst (in subtask (b)) when the targets are keywords from descriptions. This

is an indication that titles are the most predictable, while descriptions are

the most difficult to predict. Despite the fact that titles are usually shorter

than descriptions and may yield higher recall scores, in subtask (c) – where

titles and descriptions are concatenated and longer than descriptions alone

– all models still perform better than in subtask (b) where models only deal

with descriptions. Comparing results from subtasks (a) and (d) where the

target keywords to predict are both from titles, it is found that in most cases

the inclusion of descriptions did not bring any improvement. Therefore, it

can be concluded that the language people use for writing playlist descrip-

tions is slightly different from the one used for composing titles. This again

aligns with the observation made in Chapter 1 that titles are more likely

to contain useful (and predictable) keywords than descriptions; whereas de-

scriptions can be noisy, more diverse in topics and wording, and thus become

less predictable. Recall the example playlist #3 presented in Chapter 1 in

Figure 1.2. The playlist title reveals that the playlist is likely created for

driving while chilling, while the description is simply some remarks that the

user put probably for remembering the creation time of the playlist. In such

cases, predicting keywords in descriptions becomes impossible and mean-

ingless. Therefore, information provided by playlist descriptions should be

utilized selectively so that important signals can be picked up while noisy

ones can be discarded.

In order to illustrate the effectiveness of the track embeddings and the

formed clusters in tagging playlists with keywords, example outputs from

66

the two w2v-track-50d models are provided in Figure 4.2. In both sub-

figures, the input query playlists are on the left, and the output keyword

predictions are on the right. The green dialog boxes contain the original

playlist titles and descriptions, which is used as ground truth. In sub-figure

(a), from the tracks the playlist contains it can told that the playlist is all

about funky and groovy music. Without knowing anything about the title or

the description, both of the two models are able to come up with reasonable

keywords using the tracks in the playlist – funk, groovy, oldies – each of which

properly describes the playlist. Such keywords/tags range from names of

activities and music genres, to adjectives describing certain mood, and can be

very helpful for indexing huge music collections automatically and improving

browsing and searching functionalities of music streaming platforms. In fact,

these keywords can play a similar role as uncontrolled vocabularies in library

science and greatly complement metadata as indexes of music collections

because the keywords generated in this way all come from users, and thus

are more likely to be used again by users in formulating queries to search

the music collection. Even in the case when the output keywords from the

models are not exactly the ones in titles and/or descriptions, they can still be

helpful. Sub-figure (b) gives an example of this case. Although none of the

words from the title or the description is correctly predicted, it can be told

from the tracks as well as the title and the description that the playlist is

created for enhancing lively, energetic atmosphere probably for some pregame

party; and the keywords provided by the models – party, dance, workout –

are all possible categories to which the playlist may belong. In such cases, the

output keywords from the model serve as proper annotation suggestions and

can be provided to human annotators hired by music streaming platforms

so that more accurate annotations can be made/chosen from the suggested

67

ones.

4.4 Summary

In this chapter, the track embeddings learned using word2vec model and the

clusters of similar playlists formed in the previous chapter are quantitatively

evaluated by the task of tagging playlists with keywords. It was argued that

framing such a retrieval-based evaluation task is more meaningful than a

natural language generation task because capturing and understanding key-

words is more important than generating appropriate and grammatically

correct descriptive sentences in the case of music playlists. It was also pre-

sented in the chapter that the proposed approaches to predicting keywords

in playlist titles and descriptions outperform the matrix factorization based

baseline model, showing that the latent patterns identified from the track

view of playlists provide a good understanding of playlist titles and descrip-

tions. Two example outputs from the proposed models were showcased to

illustrate that the keyword predictions are accurate and suitable as indexes

of music collections. It was further argued that the keyword predictions can

play a similar role as uncontrolled vocabularies in library science and greatly

complement metadata as indexes of music collections because the keywords

are generated by users, and users are more likely to use similar keywords

again in formulating queries to search the music collection.

Based on the findings from this chapter, several implications for using the

track embeddings and the formed clusters for better understanding playlist

titles and descriptions are as follows. First, because keywords/tags can be

effective enough to describe musical content of playlists, when making music

recommendations given titles and descriptions, capturing the keywords and

68

- Do It Like You Do
Nigel Hall, Lettuce

- The Birdwatcher
Vulfpeck

……
- Flash Light

Parliament
- Give Me the Night - Edit

George Benson
- Breezin’

George Benson
- Back Pocket

Vulfpeck
- Outro

Vulfpeck

“Funky Fresh”
“Move & Groove to these Funk jams!!”

Cluster-based
w2v-track-50d

Similarity-based
w2v-track-50d

“funk”, “samples”, “soul”, “sampled”, “funky”,
“jazz”, “band”, “oldies”, “sunday morning”,
“rock”, “groovy”, …

“funk”, “soul”, “oldies”, “groovy”, “uptown’,
“butter”, “peanut”, “peanut butter”, “morning”,
“sunday”, “sunday morning”, “disco”, …

- Wicked Ones
Dorothy

- Famous
Charli XCX

……
- 7/11

Beyonce
- Seven Nation Army

The White Stripes
- Work It

Missy Elliott
- Cover Girl

RuPaul
- Supermodel (You Better Work)

RuPaul

“pump up”
“pregame anthems”

Cluster-based
w2v-track-50d

Similarity-based

w2v-track-50d

“party”, “dance”, “happy”, “room”, “car”, “dance
party”, “birthday”, “alongs”, “wedding”, “classic”,
“sing”, “edm”, “drunk”, …

“workout”, “hype”, “love”, “follow”, “love love”,
“gifts”, “rage”, “stress”, “core”, “pumping”, “iron”,
“strictly”, “pumping iron”, “rap”, …

(a)

(b)

Figure 4.2: Outputs from the two w2v-track-50d based approaches.

69

properly interpreting them is the key. In other words, developing an under-

standing of titles and descriptions beyond word level by using complex fea-

tures and models may not be necessary or beneficial, similar to what Ludewig

and Jannach (2019) and Ludewig, Mauro, Latifi, and Jannach (2019) con-

cluded. Second, as playlist descriptions are found to be less “reasonable” in

the sense that the keywords from descriptions can be irrelevant to the musi-

cal content of playlists, music recommender systems may need to be able to

pick up useful signals from descriptions and leave the noise behind.

70

CHAPTER 5

PREDICTING MISSING TRACKS GIVEN
PLAYLIST TITLES AND DESCRIPTIONS

This chapter is dedicated to leveraging the latent patterns identified using

track embeddings to improve music recommendations when only playlist ti-

tles and descriptions are provided. Predicting missing tracks given playlist

titles and descriptions is a common use case for music recommender sys-

tems. In RecSys Challenge 2018 (Zamani, Schedl, Lamere, and Chen 2019),

playlists with only titles available as input data to make recommendations

are called cold-start playlists. To deal with cold-start playlists, playlist titles

and/or descriptions need to be leveraged for a better understanding of the po-

tential tracks of interest. For example, given a playlist titled study, classical

music and EDM (electronic dance music) may be more relevant than other

genres. The formed clusters in Chapter 3 can provide a way to help with bet-

ter understanding the latent music listening intents underlying playlist titles

and descriptions. Specifically, with playlist titles and descriptions as input

(e.g., study), a multi-class classification model can be fit to predict cluster

memberships of each playlist; the predicted cluster memberships (e.g., edm,

classical music) can point to “the right directions” following which relevant

tracks are more likely to be found.

71

5.1 Experimental Details

5.1.1 Test data

The same subset of 1,004 playlists as used in Chapter 4 is used for testing.

It is of a similar size as the challenge set from RecSys Challenge 2018 where

1,000 playlists were used for evaluating algorithms dealing with cold-start

playlists, so that numerical evaluation metrics may be relatively comparable.

In total, there are 36,798 unique tracks in the test set, and 8,158 (22%) of

them are not in the training set (i.e., there will be no way to recommend those

tracks correctly in this setting). All the tracks were held out as ground truth

for the evaluation. Playlists in the test set vary in length, with the longest

containing 248 tracks and the shortest with 5 tracks. Artists information was

also collected via the Spotify API for each track so that it can be used for

evaluation.

5.1.2 Recommending approaches and strategies

Two recommending strategies are going to be employed and compared in

this work: cluster-based, and similarity-based. Given text input of a playlist

(i.e., playlist title and/or description), proposed approaches that take on the

cluster-based strategy first predict which clusters the input playlist is most

likely to belong to, and then recommend popular tracks from the clusters;

while approaches that are similarity-based first find most similar playlists to

the input playlist, and then recommend popular tracks from the candidate

playlists. Figure 5.1 illustrates the two strategies.

For cluster-based approaches, any multi-class classification model can be

used to predict cluster memberships. In this work, a multinomial Naive

72

𝒕𝒊𝒕𝒍𝒆 + 	𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏
multi-class

classification

cluster of similar playlists

cluster of similar playlists

cluster of similar playlists

cluster of similar playlists

…
 …

q top track 1
q top track 2
q…

q top track 1
q top track 2
q…

𝒕𝒊𝒕𝒍𝒆 + 	𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏
finding

similar playlists

similar playlist

similar playlist

…
 …

similar playlist

q top track 1
q top track 2
q…

cluster-based

similarity-based

similar playlist

Figure 5.1: Cluster-based and similarity-based recommending strategies.

Bayes (NB) model and a convolutional neural network model (CNN) are

implemented and compared. NB model was chosen because it is fast and

accurate enough to serve as a proper baseline for text classification, and that

its probabilistic nature makes it a natural choice as a language model which

outputs probabilistic predictions. Three different types of text input were fed

to a NB model respectively: (a) playlist titles only; (b) playlist descriptions

only; and, (c) both titles and descriptions. CNN was implemented as a more

complex text classification model that may achieve better accuracy. Details

of the CNN model architecture as well as the hyperparameters can be found in

Figure 5.2. The model was trained using both playlist titles and descriptions

since titles and descriptions alone can be too short and sparse to require

a more complex model than NB. For both NB and CNN, C clusters that

the input playlist is most likely to belong to are predicted, and top tracks

are selected from the C clusters according to their weighted frequencies.

The weighted frequencies are calculated as track frequencies in the clusters

73

weighted by normalized cosine similarities between the query playlist and

the predicted clusters centroids. Note that the BiTF representations that

were preprocessed as detailed in Section 4.2.1 are used for the NB model and

the model is called BiTF + NB hereafter. While for the CNN model, little

preprocessing was done since it is believed that lightweight preprocessing

to the input text tokens is better for neural network models; therefore, the

only preprocessing step for the CNN model was to turn all text tokens into

lowercase.

𝒕𝒊𝒕𝒍𝒆 + 	𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏

Global Max Pooling

Embedding Layer
256

Dropout
0.3

Conv1D
f x k x s = 256 x 3 x 1

relu

…
 …

Fully Connected
n_units = 563

sigmoid

Last Layer
Activations

Figure 5.2: CNN model architecture and hyperparameters.

For similarity-based approaches, similar playlists can be found by measur-

ing vector similarities once playlists are represented in the same vector space.

To represent playlists using titles and/or descriptions, either simpler repre-

sentation like BiTF or more complex representations such as word embedding

vectors, representations learned using neural network model can be used. In

this work, the following representations are included and compared: BiTF

extracted from titles, BiTF extracted from descriptions, BiTF extracted from

both titles and descriptions, aggregated 50- and 200-dimensional word2vec

word embedding vectors trained on the training set (w2v-50d, w2v-200d),

pre-trained 50- and 200-dimensional GloVe word embedding vectors trained

74

on two billion tweets1 (GloVe-50d, GloVe-200d), as well as last-layer activa-

tion vectors extracted from the CNN model mentioned earlier (CNN-last). In

these approaches, cosine similarity is used to measure vector similarities and

top tracks are selected from S most similar playlists to the query playlist,

ranked by track frequencies in these similar playlists weighted by normal-

ized similarities between the query playlist and the similar playlists. The

top-performing approach based on matrix factorization to dealing with cold-

start playlists from the RecSys Challenge 2018 (vl6, as detailed in Section

2.2.1) is also included and compared.

Two naive approaches that recommend popular tracks or random tracks

respectively are also included as baselines. We experimented with C ∈

1, 2, 3, ..., 9, 10 and S = C× 11, where 11 is the median size of clusters in the

training set, for fair comparison. Each model will return 500 candidates for

evaluation.

5.1.3 Evaluation metrics

F1 scores, NDCG, R-precision, and R-RecSys are reported as evaluation met-

rics. Formal definitions of the evaluation metrics are presented in Appendix

B. The R-RecSys is the same R-precision metric used for RecSys Challenge

2018 (Zamani, Schedl, Lamere, and Chen 2019), where artist matches were

partially rewarded (by 0.25) even if the predicted track was incorrect.

5.2 Evaluation Results

Table 5.1, 5.2, 5.3, 5.4, and 5.5 present the evaluation results with C ∈

1, 2, 3, 4, 5. Results with C greater than 5 are attached in the Appendix A.

1https://nlp.stanford.edu/projects/glove/

75

Note that results from RecSys Challenge 2018 were not included as baselines

because the validation set used in the challenge was different. Below are

several key observations that can be made from the results.

As the number of candidate playlists increases (i.e., C and S increase), it

can be seen that the cluster-based models improve faster than the similarity-

based models. Figure 5.3 further illustrates this trend by showing changes

of R-RecSys when C increases from 1 to 10. When the number of candidate

clusters to consider (i.e., C) is small, similarity-based models are better than

the cluster-based models, especially for the case of using titles as input. This

is expected because playlists with exactly the same or similar title are likely

to contain similar tracks, and the similarity-based approaches work well in

finding playlists with similar titles especially when the titles are very short.

However, when C becomes larger, the cluster-based models start to take

the lead and improve faster than the similarity-based ones. This is because

in the cases where playlists have the same or similar title but contain very

different types of music, the similarity-based model can fail to take multiple

possibilities into consideration, while the cluster-based models can provide

probabilistic answers to the request. In the following subsection, detailed

discussion of the results, together with examples that show how the clusters

may have helped with making more accurate recommendations are provided.

5.3 Discussion

5.3.1 Effectiveness of the clusters

That the cluster-based models outperform others when allowed to consider

more than 4 clusters is good evidence that the proposed cluster-based recom-

76

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0572 0.0389 0.0498 0.0517 0.0531 0.0557

Similarity-based
BiTF 0.0444 0.0305 0.0414 0.0423 0.0424 0.0453
w2v-50d 0.0550 0.0334 0.0512 0.0518 0.0526 0.0555
w2v-200d 0.0501 0.0320 0.0467 0.0475 0.0480 0.0507
GloVe-50d 0.0496 0.0315 0.0460 0.0465 0.0474 0.0503
GloVe-200d 0.0497 0.0318 0.0456 0.0465 0.0476 0.0507
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0455 0.0316 0.0372 0.0388 0.0408 0.0429

Similarity-based
BiTF 0.0306 0.0231 0.0263 0.0273 0.0285 0.0304
w2v-50d 0.025 0.0183 0.0239 0.0244 0.0248 0.0261
w2v-200d 0.022 0.0168 0.0208 0.0214 0.0214 0.0227
GloVe-50d 0.0218 0.017 0.019 0.0198 0.0206 0.0217
GloVe-200d 0.0226 0.018 0.0201 0.0208 0.0215 0.0227

Titles + Descriptions

Cluster-based
BiTF+NB 0.0691 0.0467 0.0594 0.0616 0.0640 0.0676
CNN 0.0644 0.0454 0.0545 0.0568 0.0596 0.0628

Similarity-based
CNN-last 0.0561 0.0367 0.0513 0.0525 0.0538 0.0569
BiTF 0.0536 0.0347 0.0472 0.0485 0.0512 0.0554
w2v-50d 0.0409 0.0271 0.0361 0.0366 0.0374 0.0393
w2v-200d 0.0358 0.0248 0.0331 0.0335 0.0332 0.0350
GloVe-50d 0.0315 0.0219 0.0295 0.0299 0.0310 0.0328
GloVe-200d 0.0362 0.0250 0.0333 0.0339 0.0334 0.0351

Table 5.1: Evaluation results with C = 1 and S = 11 (proposed models
shown in italic; best scores per metric shown in bold)

77

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0609 0.0442 0.0525 0.0548 0.0563 0.0592

Similarity-based
BiTF 0.0526 0.0357 0.0478 0.0492 0.0507 0.0539
w2v-50d 0.0636 0.0383 0.0569 0.0578 0.0595 0.0623
w2v-200d 0.0592 0.0369 0.0535 0.0549 0.0561 0.0590
GloVe-50d 0.0590 0.0358 0.0535 0.0545 0.0548 0.0575
GloVe-200d 0.0592 0.0362 0.0517 0.0531 0.0552 0.0581
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0503 0.0378 0.0413 0.0433 0.0458 0.0480

Similarity-based
BiTF 0.0347 0.0243 0.0284 0.0297 0.0318 0.0336
w2v-50d 0.0330 0.0208 0.0295 0.0301 0.0306 0.0322
w2v-200d 0.0305 0.0193 0.0268 0.0273 0.0282 0.0296
GloVe-50d 0.0297 0.0193 0.0264 0.0269 0.0275 0.0287
GloVe-200d 0.0309 0.0200 0.0265 0.0271 0.0283 0.0297

Titles + Descriptions

Cluster-based
BiTF+NB 0.0736 0.0510 0.0646 0.0672 0.0688 0.0722
CNN 0.0691 0.0491 0.0578 0.0602 0.0634 0.0665

Similarity-based
CNN-last 0.0675 0.0415 0.0588 0.0605 0.0622 0.0650
BiTF 0.0632 0.0392 0.0550 0.0567 0.0600 0.0642
w2v-50d 0.0504 0.0309 0.0435 0.0442 0.0454 0.0473
w2v-200d 0.0468 0.0280 0.0414 0.0418 0.0419 0.0440
GloVe-50d 0.0411 0.0243 0.0353 0.0356 0.0371 0.0390
GloVe-200d 0.0447 0.0275 0.0402 0.0406 0.0410 0.0427

Table 5.2: Evaluation results with C = 2 and S = 22 (proposed models
shown in italic; best scores per metric shown in bold)

78

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0653 0.0464 0.0571 0.0593 0.0605 0.0636

Similarity-based
BiTF 0.0565 0.0383 0.0513 0.0526 0.0537 0.0571
w2v-50d 0.0678 0.0421 0.0597 0.0614 0.0629 0.0657
w2v-200d 0.0640 0.0406 0.0564 0.0582 0.0598 0.0627
GloVe-50d 0.0596 0.0388 0.0526 0.0543 0.0558 0.0584
GloVe-200d 0.0618 0.0397 0.0543 0.0562 0.0581 0.0609
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0529 0.0397 0.0443 0.0464 0.0486 0.0508

Similarity-based
BiTF 0.0369 0.0269 0.0307 0.0319 0.0338 0.0356
w2v-50d 0.0377 0.0245 0.0331 0.0341 0.0343 0.0358
w2v-200d 0.0349 0.0224 0.0305 0.0313 0.0324 0.0340
GloVe-50d 0.0332 0.0222 0.0295 0.0303 0.0306 0.0320
GloVe-200d 0.0338 0.0228 0.0291 0.0299 0.0308 0.0322

Titles + Descriptions

Cluster-based
BiTF+NB 0.0767 0.0535 0.0673 0.0698 0.0713 0.0747
CNN 0.0720 0.0512 0.0606 0.0631 0.0664 0.0693

Similarity-based
CNN-last 0.0712 0.0461 0.0621 0.0643 0.0660 0.0689
BiTF 0.0666 0.0427 0.0575 0.0597 0.0632 0.0677
w2v-50d 0.0537 0.0347 0.0455 0.0467 0.0481 0.0505
w2v-200d 0.0510 0.0317 0.0439 0.0448 0.0458 0.0477
GloVe-50d 0.0455 0.0277 0.0382 0.0388 0.0402 0.0418
GloVe-200d 0.0478 0.0304 0.0421 0.0432 0.0444 0.0461

Table 5.3: Evaluation results with C = 3 and S = 33 (proposed models
shown in italic; best scores per metric shown in bold)

79

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0686 0.0477 0.0599 0.0620 0.0629 0.0660

Similarity-based
BiTF 0.0572 0.0389 0.0530 0.0544 0.0546 0.0579
w2v-50d 0.0686 0.0443 0.0609 0.0628 0.0636 0.0664
w2v-200d 0.0661 0.0434 0.0576 0.0595 0.0609 0.0637
GloVe-50d 0.0609 0.0413 0.0527 0.0547 0.0567 0.0592
GloVe-200d 0.0642 0.0426 0.0564 0.0584 0.0603 0.0632
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0545 0.0412 0.0456 0.0478 0.0503 0.0525

Similarity-based
BiTF 0.039 0.0289 0.0327 0.0337 0.0352 0.0370
w2v-50d 0.0402 0.0273 0.0347 0.0358 0.0371 0.0386
w2v-200d 0.0363 0.0253 0.0322 0.0333 0.0344 0.0358
GloVe-50d 0.0359 0.0246 0.0312 0.0322 0.0337 0.0352
GloVe-200d 0.0360 0.0256 0.0312 0.0321 0.0330 0.0342

Titles + Descriptions

Cluster-based
BiTF+NB 0.0784 0.0549 0.0685 0.0711 0.0730 0.0765
CNN 0.0734 0.0527 0.0619 0.0645 0.0677 0.0708

Similarity-based
CNN-last 0.0736 0.0494 0.0636 0.0657 0.0677 0.0705
BiTF 0.0688 0.0446 0.0591 0.0613 0.0650 0.0695
w2v-50d 0.0560 0.0379 0.0475 0.0490 0.0507 0.0529
w2v-200d 0.0527 0.0352 0.0448 0.0462 0.0479 0.0498
GloVe-50d 0.0465 0.0309 0.0396 0.0407 0.0427 0.0444
GloVe-200d 0.0498 0.0333 0.0443 0.0455 0.0465 0.0485

Table 5.4: Evaluation results with C = 4 and S = 44 (proposed models
shown in italic; best scores per metric shown in bold)

80

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0707 0.0493 0.0615 0.0638 0.0659 0.0692

Similarity-based
BiTF 0.0581 0.0391 0.0531 0.0546 0.0550 0.0584
w2v-50d 0.0696 0.0457 0.0608 0.0628 0.0639 0.0668
w2v-200d 0.0666 0.0449 0.0576 0.0596 0.0613 0.0643
GloVe-50d 0.0621 0.0431 0.0531 0.0550 0.0565 0.0587
GloVe-200d 0.066 0.0443 0.0569 0.0588 0.0607 0.0636
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0563 0.0424 0.0466 0.0490 0.0523 0.0547

Similarity-based
BiTF 0.0400 0.0299 0.0332 0.0344 0.0362 0.0380
w2v-50d 0.0421 0.0302 0.0359 0.0369 0.0381 0.0395
w2v-200d 0.0385 0.0283 0.0342 0.0350 0.0366 0.0381
GloVe-50d 0.0372 0.0273 0.0324 0.0333 0.0343 0.0359
GloVe-200d 0.0376 0.0277 0.0315 0.0327 0.0336 0.0350

Titles + Descriptions

Cluster-based
BiTF+NB 0.0795 0.0561 0.0691 0.0720 0.0736 0.077
CNN 0.0746 0.0533 0.0633 0.0658 0.0688 0.0719

Similarity-based
CNN-last 0.0750 0.0516 0.0651 0.0671 0.0687 0.0714
BiTF 0.0699 0.0465 0.0605 0.0628 0.0667 0.0710
w2v-50d 0.0578 0.0403 0.0492 0.0508 0.0525 0.0544
w2v-200d 0.0545 0.0378 0.0465 0.0477 0.0494 0.0514
GloVe-50d 0.0479 0.0339 0.0402 0.0414 0.0430 0.0447
GloVe-200d 0.0515 0.0359 0.0440 0.0453 0.0469 0.0488

Table 5.5: Evaluation results with C = 5 and S = 55 (proposed models
shown in italic; best scores per metric shown in bold)

81

1
2

3
4

5
6

7
8

9
10

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Ti
tle

s

Bi
TF

 +
 N

B
Bi

TF
w2

v-
50

d
w2

v-
20

0d
Gl

oV
e-

50
d

Gl
oV

e-
20

0d
vl

6-
50

d
vl

6-
20

0d

1
2

3
4

5
6

7
8

9
10

De
sc

rip
tio

ns

1
2

3
4

5
6

7
8

9
10

Ti
tle

s +
 D

es
cr

ip
tio

ns

CN
N

CN
N-

la
st

F
ig

u
re

5.
3:

R
-R

ec
S
y
s

sc
or

es
of

ea
ch

m
o
d
el

w
h
en

C
ch

an
ge

s
fr

om
1

to
10

82

mending strategy is effective in coming up with good candidates, and it can

be attributed to two factors: the clusters help to retrieve diverse candidates

to reflect different user needs, and the clusters are effective in putting more

similar candidate playlists together.

The Naive Bayes model basically works by checking for each word in the

given query (i.e., title and/or description) how likely the word belongs to

each of the clusters, and aggregating the information to provide probabilis-

tic answers to how likely the query belongs to each of the clusters. The

cluster-based CNN works in a roughly similar way to output probabilities

of the query belonging to each of the clusters. Because the text query can

be very short and sparse, when no additional information is provided, the

cluster-based probabilistic models can recall more diverse potential candi-

dates, so that more than one possibilities can be taken into consideration.

For example, in Figure 5.4 (a) we show the top-five most likely clusters from

which word study is generated. Of the five candidate clusters, each indicates

a different “group” or “genre” and each can be relevant to the query word

study according to different user tastes or preferences – some people may pre-

fer classical music or movie soundtracks when study, while some may prefer

electronic dance music (EDM) to stay energetic. When there is no additional

knowledge about the user’s preference, it may be a better strategy to take

all possibilities into consideration.

The fact that the cluster-based models achieve improvement when the

number of clusters to consider increases indicates that the clusters are ef-

fective to group similar playlists together so that more accurate track rec-

ommendations can be selected from the candidates. Although finding sim-

ilar playlists based on titles is very effective, it can still be difficult for the

similarity-based models to integrate domain specific semantic information.

83

(a
)

(b
)

F
ig

u
re

5.
4:

(a
)

T
op

-fi
ve

m
os

t
li
ke

ly
cl

u
st

er
s

fr
om

w
h
ic

h
w

or
d

st
u

dy
is

ge
n
er

at
ed

.
(b

)
N

ei
gh

b
or

in
g

cl
u
st

er
s

of
C

hr
is

tm
as

.
E

d
ge

le
n
gt

h
s

in
d
ic

at
e

d
is

ta
n
ce

s
in

th
e

la
te

n
t

sp
ac

e.

84

Figure 5.4 (b) gives an example where domain specific information can be

helpful. In the figure, the five nearest neighboring clusters of the query clus-

ter about Christmas (shown in bold) are shown. It can be easily understood

that all the five neighbors seem to be relevant to Christmas because people

tend to listen to specific types such as a ccappela, relaxing jazz piano pieces

during Christmas, thus it is very likely that tracks from the neighboring clus-

ters are good candidates to recommend given a query playlist comes from the

Christmas cluster. On the other hand, finding similar playlists by relying on

measuring title similarities, or even exact match of titles will not find these

relevant playlists, and thus may neglect these good candidates.

5.3.2 Cluster-based vs. similarity-based models

In general, the cluster-based models (i.e., BiTF+NB, CNN) outperformed

the similarity-based ones, especially when the number of clusters to consider

is greater than four. In the cases of using descriptions, and using both ti-

tles and descriptions as model input, the cluster-based model outperformed

the similarity-based ones by a large margin. This well illustrates that the

similarity-based approaches are limited in retrieving good candidates. The

limitation is rooted in the mechanism that only makes use of textual simi-

larity, mostly token matches. This is also the reason why the baseline model

vl6 which only considers entire title matches achieved fair results. Although

the word embedding approaches, w2v- and GloVe- models, were able to go

beyond exact token matches and account for semantic meanings behind the

tokens, the improvement brought by these models was marginal. This is be-

cause playlist titles and descriptions can be too short and sparse to provide

rich contexts for the word embedding approaches to learn from, and in the

85

end calculation of similarities between two documents is still dominated by

exact token matches. While on the other hand, the cluster-based models

make the breakthrough by making use of the track view of the playlists and

properly “infusing” the knowledge to understanding the text view. Knowl-

edge learned from the track view allows the cluster-based models to gain

an understanding of the titles and descriptions beyond token matches and

shallow semantic meanings – now that it can be told by the cluster-based

models that study may have similar meaning as EDM or classical music in

the context of online music streaming – some latent music-related factors

behind the text.

5.3.3 BiTF vs. dense vector representations

In the case of using both playlist titles and descriptions as model input, the

models can be roughly divided into three groups based on their performances:

(a) the BiTF+NB model; (b) the CNN, CNN-last and BiTF models; as well

as, (c) the four word embedding approaches. The BiTF+NB model achieves

the best result, while the four word embedding approaches did not differ

much and seemed to have reached the ceiling starting from C larger than 5.

Interestingly, the four word embedding based models in group (c) were not

even close to the similarity-based model using BiTF as word representations,

confirming the conclusion from last paragraph that without proper context to

learn from, the word embedding approaches are no better than binary token

matches, and may even have deteriorated performance since user-generated

playlist descriptions can be irrelevant to the underlying music preference and

trying to understand it as in other natural language understanding task could

bring confusion. It is also interesting to see that, in group (b) the similarity-

86

based model using BiTF as word representations worked almost as well as

the CNN-last model, and only slightly worse than the cluster-based CNN

model. Although the cluster-based model (i.e., CNN) is still the best within

this group, the dense vector representations learned by the CNN model (in

other words, the CNN-last model) is not much better than the simple BiTF

representations. This is great evidence that understanding playlist titles and

descriptions for making music recommendations does not necessarily need to

go beyond word level to have sentence- or even paragraph-level understand-

ings of the text, and that finding keywords and properly interpreting them is

the most effective. Although word embedding approaches provide a way to

disentangle complicated semantics in natural languages and do a great job

in higher-level natural language processing tasks such as question answering,

they are not the most suitable models for the task of interpreting playlist

titles and descriptions for making music recommendations.

5.3.4 Titles vs. descriptions

By inspecting the experimental results, there are two interesting observa-

tions regarding the different model input. First, when using either titles

or descriptions alone as the model input, titles always outperform descrip-

tions by a large margin. This well indicates that in general, user-generated

playlist descriptions can be more noisy than titles in terms of providing use-

ful information for the model to learn from. The fact that titles are the

more informative source between the two also provides evidence that users

prefer expressing their music listening needs using concise language as in

playlist titles than lengthy text as in playlist descriptions. This also aligns

with the finding mentioned in Chapter 1 that only a very small portion of

87

user-generated playlists in MPD has descriptions, which well illustrates that

most users express their music listening needs only through playlist titles.

It is now more clear that even users choose to input descriptions for their

playlists, these text signals may not necessarily be indicative of the type of

music they would like in the playlists.

The other interesting observation regarding the model input is that using

both titles and descriptions as model input brings a performance boost to all

models except the word embedding based models (i.e., w2v-50d, w2v-200d,

GloVe-50d and GloVe-200d). The reason why using both text signals can

improve model performance may be that in some cases descriptions are good

complement to titles in the task of predicting missing tracks. In fact, the

two example playlists both titled stuDYING from MPD provided in Figure

1.2 well illustrates this conclusion. To better understand the cluster-based

models’ behavior, the top-five clusters returned for the two playlists titled

stuDYING are shown in Figure 5.5. In the example of playlist #5, the de-

scription would help narrow down the target genre to instrumental, while

for playlist #4 where not much additional information is provided from the

description, the cluster-based models manage to account for all possibilities

with different probabilities. Recall that playlist #4 is actually full of EDM

music, and the clusters returned by the cluster-based models shown in Figure

5.5 seem to be able to better grasp the user’s listening intent. In the cases of

the word embedding based models, the reason why these models did not ben-

efit from the additional information provided by descriptions may be traced

back to the context that these models learn from. The word embeddings pro-

duced by word2vec and GloVe are contextual, meaning that they learn word

representations by accounting for each word’s context. The GloVe word em-

beddings used in this work are pre-trained on tweets; although both tweets

88

“s
tu

DY
IN

G
”

“y
ou

 k
no

w
, l

ik
e

w
he

n
yo

u’
re

 s
tu

dy
in

g
bu

t y
ou

’re
 a

ls
o

dy
in

g”
“s

tu
DY

IN
G

”
“i

ns
tr

um
en

ta
l m

us
ic

 (m
os

tly
 fr

om
 h

ar
ry

 p
ot

te
r)

 to
 li

st
en

 to
 w

hi
le

 s
tu

DY
IN

G
”

(a
)

(b
)

F
ig

u
re

5.
5:

T
op

-5
cl

u
st

er
s

re
tu

rn
ed

fo
r

tw
o

p
la

y
li
st

s
b

ot
h

ti
tl

ed
st

u
D

Y
IN

G
.

A
sh

or
te

r
ed

ge
le

n
gt

h
in

d
ic

at
es

a
h
ig

h
er

p
ro

b
ab

il
it

y
th

at
th

e
q
u
er

y
b

el
on

gs
to

th
e

cl
u
st

er
.

89

and playlist titles and descriptions are online user-generated text, tweets may

have more diverse topics and thus having different context than playlist ti-

tles and descriptions even for the same word. Therefore, word embeddings

learned in different context may not be well applied to this case. As for

the word2vec word embeddings that are trained on playlist titles and de-

scriptions, the reason may be that the title and the description of a playlist

can have very different context, and simply concatenating the two for the

word2vec model to learn may mislead the model and result in less effective

word embeddings.

5.3.5 Naive Bayes vs. Neural Network model

When using both playlist titles and descriptions for the task, among the two

cluster-based approaches – BiTF+NB and CNN – the simpler BiTF+NB

always outperforms the more complex CNN model. This is a very interesting

finding and three factors may have contributed to this: Firstly, the model

input – titles and descriptions – may be too short and sparse to require

a more complex model than the Naive Bayes model. As concluded in the

last subsection, users tend to use concise language to express their music

listening needs. The fact that the pruned vocabulary used for the Naive

Bayes model only has 5,195 distinct words further implies that the language

that users use for coming up with titles and descriptions may be limited to a

relatively fixed set of vocabularies. Given such text input, simple models may

be advantageous to converge faster and have better performance, whereas

neural network models may even overfit the dataset and be less powerful.

Secondly, as discussed previously, simple concatenation of playlist titles and

descriptions may have brought two different contexts together; and because

90

the CNN model also accounts for surrounding words in the context, such

mixed contexts can be misleading and negatively affect model performance.

The Naive Bayes model on the other hand, is fundamentally built on the

assumption that words are independent from each other, and therefore has

a better chance of picking out the more “representative” words and leaving

those that are less helpful behind. Thirdly, the neural network model may

not have learned the probabilistic word distributions of each cluster, thus

becoming less powerful in this specific task where same input word may end

up with different cluster assignments. On the contrary, the Naive Bayes

model directly learns the probabilities of a word belonging to each of the

candidate clusters and thus can handle the situation well (as seen in the

examples of two playlists titled stuDYING in Figure 5.5).

5.3.6 False negatives and false positives

Although the validity of casting the music recommendation task as an IR task

has been justified in previous chapters, such mechanism is still not perfect,

especially when it comes to evaluating the track recommendations in terms

of factors other than predicting accuracy. Because track recommendations

that are not in the held out list are treated as incorrect, there would be a lot

of false negatives that the owner of the playlist may actually enjoy. Such false

negatives may include tracks that the user forgot to add, as well as tracks

that the user had never listened to but had a good chance to enjoy. The latter

case is often referred to as unexpected but pleasant serendipitous discoveries.

In user-centered evaluation, serendipity is one of the very important factors

that have an impact on user satisfaction; however, without consulting the

exact owner of a playlist regarding how he/she likes a track recommendation,

91

evaluation of serendipitous recommendations is intangible. In a similar sense,

there would be issues with false positives because tracks in the held out list

are only “correct” subject to the playlist’s owner’s musical preference; in

other words, the held out tracks that are considered ground truth may not

be necessarily “true” for other users. Recall the two stuDYING playlists.

Apparently, the two users do not have agreement in what kind of music best

accompanies study, and tracks from one playlist would all be false positives

to the owner of the other playlist. The correctness of such false negatives

and false positives can not be easily measured in a quantitative way, and

will have to rely on online metrics such as skip rate specifically developed for

real-world user interaction data.

5.4 Summary

In this chapter, we answered research question Q3: How can the latent

patterns provide a better understanding of playlist titles and descriptions

in terms of predicting missing tracks given playlist titles and descriptions?.

Specifically, the clusters of playlists formed in Chapter 3 are leveraged for

dealing with cold-start playlists and experimental results show that the cluster-

based models yield improvements to the task, especially when playlist de-

scriptions are provided as model input in addition to titles. Examples that

showcase the convincing output from the cluster-based models are also pre-

sented.

Although it is found from previous chapters that playlist descriptions can

be noisy and may be of less use for revealing the underlying listening intents

of the playlists, it is found in this chapter that they can still complement

titles and bring improvement to recommendation accuracy when used in

92

cluster-based models. Therefore, it is concluded that when both titles and

descriptions are available, the best strategy would be to leverage both to

better understand users’ listening needs. And in such cases, the cluster-

based approaches are the most advantageous because the models are able

to pick up useful signals from playlist descriptions. Furthermore, because

playlist descriptions have been hardly studied, existing approaches such as

the best performing approach to dealing with cold-start playlists from the

RecSys Challenge 2018, can only be applied to playlist titles and can not be

extended to handle playlist descriptions.

Another key finding from this chapter is that sentence- or paragraph level

understanding of playlist titles and descriptions may not be necessary for

the two tasks, and instead, the combination of simpler features and less

complex models achieves better performance. Similar conclusions were also

reached by Ludewig and Jannach (2019) and Ludewig, Mauro, Latifi, and

Jannach (2019). This also aligns with the observation made on the data

in Chapter 1 as well as the inference made in Chapter 4 that keywords/tags

can be effective enough to describe musical content of playlists and capturing

the keywords from titles and descriptions and properly interpreting them is

the key to making better music recommendations. As simpler features and

models can be a lot less computationally expensive, such combination can be

highly scalable and of great practical use.

Issues with the evaluation framework regarding false negatives and false

positives are also identified and briefly discussed in this chapter, pointing out

the part of the limitation of this work.

93

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions and Contributions

This work is dedicated to leveraging the track view of playlists for a better

understanding of music playlist titles and descriptions. In Chapter 3, efforts

were made to capture and interpret latent patterns of playlists using tracks.

In Chapter 4, the latent patterns identified from the track view of playlists

were evaluated by how well they could understand playlist titles and descrip-

tions. In Chapter 5, the identified patterns were further evaluated in terms

of whether they could provide a better understanding of playlist titles and

descriptions for improving model performance on predicting missing tracks

given playlist titles and descriptions.

Chapter 3 introduces the use of word2vec model, a word embedding ap-

proach that is typically applied to natural language processing tasks, for

learning dense vector representations for tracks. The track embeddings learned

in this way can be aggregated to represent playlists as embedding vectors,

such that tracks and playlists are embedded in the same vector space where

distances (i.e., track-to-track distances, playlist-to-playlist distances, and

track-to-playlist distances) can be directly measured. The learned embed-

ding space is proved to be effective in placing similar items close to each

other, while keeping different items distant from each other. Patterns in the

learned embedding space are further explored by forming clusters of similar

94

playlists using agglomerative clustering algorithm, and the clusters formed

are validated in terms of neighboring clusters, track-level audio features and

metadata, as well as top words extracted from playlist titles and descriptions

to represent the clusters. It is concluded that the latent patterns of the track

embeddings and the formed clusters well align with the organizing princi-

ples of mix tapes identified more than a decade ago. The formed clusters

are also shown to be implicitly representing connections of the organizing

principles, indicating that they are informative in demystifying the listening

intents behind playlists.

Another contribution of this work is made to automatically generating key-

words or tags for playlists using tracks. This is achievable because the latent

patterns identified are so informative that given a playlist, “helpful” neigh-

bors can be found and by exploring the titles and descriptions of the neigh-

bors, proper keywords can be retrieved to properly describe the playlist. The

effectiveness of the proposed tagging mechanism is evaluated both quantita-

tively as an IR task, and empirically by analyzing individual cases. Because

these keywords or tags can naturally serve as browsing categories or indexes

for searching, such auto-tagging mechanism can be helpful for suggesting

possible categories that a playlist is likely to belong to. Especially when

playlist titles and descriptions are missing, classification of user generated

playlists can still be automated, reducing the workload of or even replacing

costly in-house annotators. Furthermore, because the keywords generated

in this way all come from users, they are more likely to be used again by

users in formulating keywords to browse or search the music collection, or

as keywords in playlist titles and descriptions. In fact, such keywords can

play a similar role as the uncontrolled vocabularies used in library science,

and as the new types of metadata mentioned by Lee and Downie (2004)

95

that take into account the extra-musical and associative kinds of information

which contextualize users’ real-world searches, in providing additional access

points to huge digital music collections.

The last contribution of this work is leveraging user generated playlist de-

scriptions for making track recommendations, which serves as an alternative

and better solution to dealing with cold-start playlists encountered by music

recommender systems. To the best of the author’s knowledge, this is the first

work that utilizes playlist descriptions in addition to playlist titles for music

recommender systems. To make music recommendations given a playlist’s

title and description, the proposed approaches of this work are built on the

clusters formed in Chapter 3 and first predict cluster memberships as an at-

tempt to figure out listening intents underlying the playlist using the title

and description; the models then recommend top tracks based on the pre-

dicted cluster memberships. It is demonstrated that the proposed cluster-

based framework is able to retrieve more accurate and diverse candidates

and thus achieves better results. The usefulness of playlist descriptions is

also investigated in this work, and it is concluded that although descriptions

can be noisy and provide little relevant information for music recommender

systems, they may as well complement titles and bring improvement to rec-

ommendation accuracy. Further conclusion is made that when both titles

and descriptions are available, the best strategy would be to leverage both to

better understand users’ listening needs. Another key finding regarding pre-

dicting missing tracks using playlist titles and descriptions is that sentence-

or paragraph level understanding of playlist titles and descriptions is not

necessary, and instead, the combination of simpler features and less complex

models achieves better performance. As music recommender systems usually

deal with huge collections of data, lightweight features and models are almost

96

always preferred, and such less computationally expensive combination can

be of great practical use.

6.2 Limitations and Future Work

6.2.1 Issues with evaluation revisited

In Section 5.3.6, issues with false negative and false positive recommenda-

tions were briefly mentioned, and this subsection is dedicated to continuing

the discussion and elaborating on more issues with evaluating models in

the task of making music recommendations using held out tracks as ground

truth. The core issue that lies in evaluation of music recommender systems is

how well the algorithmic relevance (Saracevic 2007) correlates with the user

relevance (Vickery 1959). The core issue can be further divided into two:

the issue regarding false negative recommendations, and the one related to

false positives. By definition, false negatives are relevant items that are not

retrieved by the IR system. In the case of evaluating music recommender

systems as an IR task, relevant items are the held out tracks; however, the

held out tracks are by no means the only relevant items. Therefore, in such

situations it may be more suitable to ask the question of how wrong a nega-

tive item is, and user interactions such as skip, delete a recommended track

can be used as online metrics for evaluation. The issue with false positives

is centered on different music preferences across users. Strictly speaking, the

held out tracks are only relevant subject to the music tastes of the creator(s)

of the playlists, and thus the ground truth may not be “true” for users with

different tastes. This is again an issue that can only be remedied by involv-

ing user interaction data for evaluation. For example, using positive user

97

interactions such as liked a recommended track, added a recommendation

to his/her library, to determine relevance of a recommendation to a certain

user.

Another set of issues with evaluation lies in how algorithmic relevance cor-

relates with real-world user satisfaction. Hu and Kando (2012) found that

there were weak correlations between user-centered measures and system

performances, indicating that statistically significant improvement made to

systems may not be effectively translated to user satisfaction. On the other

hand, Garcia-Gathright et al. (2018) concluded that just one proper track rec-

ommendation can be enough for a user to feel satisfied. Schedl et al. (2018)

further proposed that music recommender systems should be evaluated in

terms of accuracy, diversity, transparency, serendipity, and novelty. There-

fore, algorithmic relevance in general should not be directly interpreted as

real-world user satisfaction, and this work would benefit a lot from datasets

annotated with real-world user interactions, if available.

6.2.2 Sequential information

In this work, playlists are treated as bags of tracks where playlist embeddings

are aggregated from tracks independent of ordering and held out tracks are

treated as sets instead of sequences. Although this is perfectly justifiable

when the tasks at hand are static, the proposed framework can not be easily

adapted to handle dynamic tasks, such as automatic playlist continuation,

where ordering information is important. Therefore, one of the future di-

rection towards which this work can be extended is to modeling playlists

as sequences of tracks using sequential models such as recurrent neural net-

works so that track and text signals can be leveraged at the same time for

98

the related tasks.

6.3 Implications for Music Recommender Systems

As discussed at the beginning of this dissertation, the user-generated playlist

titles and descriptions can be regarded as the “help requests” that users post

to seek recommendations from the music streaming platform. Upon gaining

a better understanding of playlist titles and descriptions in this work, several

implications are derived for further improving music recommender systems.

Developing mechanisms tailored to collect specific data needed by machine

learning models. The interactive feature of online music streaming platforms

brings huge opportunities for machine learning models to be trained using

user-centered data, and platforms need to develop mechanisms to collect

what exactly is needed for specific models. For example, the work in this

dissertation can benefit from ground truth tags assigned to the playlists by

the creator(s), and collection of such data may be possible if the platform

suggested tags for users to choose from during the creation process. Such

ground truth data can better reflect user preference, and provide a user-

centered way to evaluate trained models.

More ways for users to interact with the system. This is mainly for two

folds. Firstly, allowing for more user interaction with the system gives a bet-

ter chance of collecting more interaction data. As is concluded from this work

that despite that playlist descriptions can be noisy, they can still complement

playlist titles in providing additional information regarding the musical con-

tent of playlists, it is certain that music recommender systems will benefit

from more information collected from users. Although users can be reluctant

to provide more information with additional effort, platforms may develop

99

more encouraging and user-friendly interfaces for users to more easily express

their needs. Secondly, users may provide useful implicit feedback during their

interaction with the system, of which the negative signals are especially im-

portant for music recommender systems because the systems need to react

on them accordingly. As reported by Cunningham, Bainbridge, and Falconer

(2006), that 10.4% of the mix help requests included information about what

they did not wish to include in the mix, such negative constraints should be

captured and used for tuning personalization models preferably in real-time.

100

REFERENCES

Antenucci, Sebastiano, Simone Boglio, Emanuele Chioso, Ervin Dervishaj,

Shuwen Kang, Tommaso Scarlatti, and Maurizio Ferrari Dacrema. 2018.

“Artist-driven layering and user’s behaviour impact on recommendations

in a playlist continuation scenario”. In Proceedings of the ACM Recom-

mender Systems Challenge 2018. Article No. 4. Vancouver, BC, Canada.

doi:10.1145/3267471.3267475.

Baeza-Yates, Ricardo A., and Berthier Ribeiro-Neto. 1999. Modern informa-

tion retrieval. USA: Addison-Wesley Longman Publishing Co., Inc.

Benselin, Jennifer C, and Gillian Ragsdell. 2016. “Information overload: The

differences that age makes”. Journal of Librarianship and Information

Science 48 (3): 284–297. doi:10.1177/0961000614566341.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. “Latent Dirichlet

Allocation”. Journal of Machine Learning Research 3 (4/5): 993–1022.

doi:10.5555/944919.944937.

Bogdanov, Dmitry, Mart́ın Haro, Ferdinand Fuhrmann, Anna Xambó, Emilia

Gómez, and Perfecto Herrera. 2013. “Semantic audio content-based music

recommendation and visualization based on user preference examples”.

Information Processing & Management 49 (1): 13–33. doi:10.1016/j.

ipm.2012.06.004.

101

http://dx.doi.org/10.1145/3267471.3267475
http://dx.doi.org/10.1177/0961000614566341
http://dx.doi.org/10.5555/944919.944937
http://dx.doi.org/10.1016/j.ipm.2012.06.004
http://dx.doi.org/10.1016/j.ipm.2012.06.004

Bollen, Dirk, Bart P. Knijnenburg, Martijn C. Willemsen, and Mark Graus.

2010. “Understanding choice overload in recommender systems”. In Pro-

ceedings of the 4th ACM Conference on Recommender Systems, 63–70.

Barcelona, Spain. doi:10.1145/1864708.1864724.

Casey, Michael A, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe

Rhodes, and Malcolm Slaney. 2008. “Content-based music information

retrieval: Current directions and future challenges”. Proceedings of the

IEEE 96 (4): 668–696. doi:10.1109/JPROC.2008.916370.

Chen, Shuo, Josh L Moore, Douglas Turnbull, and Thorsten Joachims. 2012.

“Playlist prediction via metric embedding”. In Proceedings of the 18th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 714–722. Beijing, China. doi:10.1145/2339530.2339643.

Clauset, Aaron, M. E. J. Newman, and Cristopher Moore. 2004. “Finding

community structure in very large networks”. Physical Review E 70 (6):

066111. doi:10.1103/PhysRevE.70.066111.

Cleverdon, Cyril W., Jack Mills, and E. Michael Keen. 1966. Factors deter-

mining the performance of indexing systems. Tech. rep. https://dspace.

lib.cranfield.ac.uk/handle/1826/861.

Cunningham, Sally Jo, David Bainbridge, and Annette Falconer. 2006. “‘More

of an art than a science’: supporting the creation of playlists and mixes”.

In Proceedings of the 7th International Conference on Music Information

Retrieval (ISMIR), 240–245. Victoria, Canada. doi:10.5281/zenodo.

1415662.

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Lan-

dauer, and Richard Harshman. 1990. “Indexing by latent semantic anal-

ysis”. Journal of the American Society for Information Science 41 (6):

102

http://dx.doi.org/10.1145/1864708.1864724
http://dx.doi.org/10.1109/JPROC.2008.916370
http://dx.doi.org/10.1145/2339530.2339643
http://dx.doi.org/10.1103/PhysRevE.70.066111
https://dspace.lib.cranfield.ac.uk/handle/1826/861
https://dspace.lib.cranfield.ac.uk/handle/1826/861
http://dx.doi.org/10.5281/zenodo.1415662
http://dx.doi.org/10.5281/zenodo.1415662

391–407. doi:10.1002/(SICI)1097- 4571(199009)41:6<391::AID-

ASI1>3.0.CO;2-9.

Downie, J. Stephen. 2003. “Music information retrieval”. Annual Review of

Information Science and Technology 37 (1): 295–340. doi:10.1002/aris.

1440370108.

Faggioli, Guglielmo, Mirko Polato, and Fabio Aiolli. 2018. “Efficient similar-

ity based methods for the playlist continuation task”. In Proceedings of

the ACM Recommender Systems Challenge 2018. Article No. 15. Vancou-

ver, BC, Canada. doi:10.1145/3267471.3267486.

Fields, Ben, Christophe Rhodes, and Mark d’Inverno. 2010. “Using song so-

cial tags and topic models to describe and compare playlists”. In 1st

Workshop On Music Recommendation And Discovery. Barcelona, Spain.

http://research.gold.ac.uk/id/eprint/8793.

Garcia-Gathright, Jean, Brian St. Thomas, Christine Hosey, Zahra Nazari,

and Fernando Diaz. 2018. “Understanding and evaluating user satisfac-

tion with music discovery”. In Proceedings of the 41st International ACM

SIGIR Conference on Research & Development in Information Retrieval,

55–64. Ann Arbor, MI, USA. doi:10.1145/3209978.3210049.

Gong, Yunchao, Qifa Ke, Michael Isard, and Svetlana Lazebnik. 2014. “A

multi-view embedding space for modeling internet images, tags, and their

semantics”. International Journal of Computer Vision 106 (2): 210–233.

doi:10.1007/s11263-013-0658-4.

Gong, Yunchao, Liwei Wang, Micah Hodosh, Julia Hockenmaier, and Svet-

lana Lazebnik. 2014. “Improving image-sentence embeddings using large

weakly annotated photo collections”. In European Conference on Com-

puter Vision, 529–545. doi:10.1007/978-3-319-10593-2_35.

103

http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1002/aris.1440370108
http://dx.doi.org/10.1002/aris.1440370108
http://dx.doi.org/10.1145/3267471.3267486
http://research.gold.ac.uk/id/eprint/8793
http://dx.doi.org/10.1145/3209978.3210049
http://dx.doi.org/10.1007/s11263-013-0658-4
http://dx.doi.org/10.1007/978-3-319-10593-2_35

Hodosh, Micah, Peter Young, and Julia Hockenmaier. 2013. “Framing image

description as a ranking task: Data, models and evaluation metrics”. Jour-

nal of Artificial Intelligence Research 47:853–899. doi:10.1613/jair.

3994.

Hu, Xiao, and Noriko Kando. 2012. “User-centered measures vs. system effec-

tiveness in finding similar songs”. In Proceedings of the 13th International

Society for Music Information Retrieval Conference (ISMIR), 331–336.

Porto, Portugal. doi:10.5281/zenodo.1416868.

Huron, David. 2000. “Perceptual and cognitive applications in music infor-

mation retrieval”. In Proceedings of the 1st International Symposium on

Music Information Retrieval (ISMIR). Plymouth, USA. doi:10.5281/

zenodo.1414794.

Järvelin, Kalervo, and Jaana Kekäläinen. 2002. “Cumulated gain-based eval-

uation of IR techniques”. ACM Transactions on Information Systems 20

(4): 422–446. doi:10.1145/582415.582418.

Kallumadi, Surya, Bhaskar Mitra, and Tereza Iofciu. 2018. “A line in the

sand: Recommendation or ad-hoc retrieval? Overview of recsys challenge

2018 submission by team bachpropagate”. In Proceedings of the ACM

Recommender Systems Challenge 2018. Article No. 7. Vancouver, BC,

Canada. doi:10.1145/3267471.3267478.

Kaminskas, Marius, and Derek Bridge. 2016. “Diversity, serendipity, nov-

elty, and coverage: A survey and empirical analysis of beyond-accuracy

objectives in recommender systems”. ACM Transactions on Interactive

Intelligent Systems (TiiS) 7 (1): 1–42. doi:10.1145/2926720.

Kelen, Domokos M, Dániel Berecz, Ferenc Béres, and András A Benczúr.

2018. “Efficient K-NN for playlist continuation”. In Proceedings of the

104

http://dx.doi.org/10.1613/jair.3994
http://dx.doi.org/10.1613/jair.3994
http://dx.doi.org/10.5281/zenodo.1416868
http://dx.doi.org/10.5281/zenodo.1414794
http://dx.doi.org/10.5281/zenodo.1414794
http://dx.doi.org/10.1145/582415.582418
http://dx.doi.org/10.1145/3267471.3267478
http://dx.doi.org/10.1145/2926720

ACM Recommender Systems Challenge 2018. Article No. 6. Vancouver,

BC, Canada. doi:10.1145/3267471.3267477.

Kim, Jaehun, Minz Won, Cynthia CS Liem, and Alan Hanjalic. 2018. “To-

wards seed-free music playlist generation: Enhancing collaborative filter-

ing with playlist title information”. In Proceedings of the ACM Recom-

mender Systems Challenge 2018. Article No. 14. Vancouver, BC, Canada.

doi:10.1145/3267471.3267485.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. “ImageNet

classification with deep convolutional neural networks”. Communications

of the ACM 60 (6): 84–90. doi:10.1145/3065386.

Lancaster, F. Wilfrid. 1979. Information retrieval systems-characteristics,

testing and evaluation. 2nd ed. New York: Wiley.

Lavrenko, Victor. 2008. “A generative theory of relevance”. PhD thesis, Uni-

versity of Massachusetts Amherst. https://scholarworks.umass.edu/

dissertations/AAI3152722.

Lee, Jin Ha, and J. Stephen Downie. 2004. “Survey of music information

needs, uses, and seeking behaviours: Preliminary findings”. In Proceed-

ings of the 5th International Conference on Music Information Retrieval

(ISMIR). Barcelona, Spain. doi:10.5281/zenodo.1417637.

Ludewig, Malte, and Dietmar Jannach. 2019. “User-centric evaluation of

session-based recommendations for an automated radio station”. In Pro-

ceedings of the 13th ACM Conference on Recommender Systems, 516–520.

Copenhagen, Denmark. doi:10.1145/3298689.3347046.

Ludewig, Malte, Iman Kamehkhosh, Nick Landia, and Dietmar Jannach.

2018. “Effective nearest-neighbor music recommendations”. In Proceed-

105

http://dx.doi.org/10.1145/3267471.3267477
http://dx.doi.org/10.1145/3267471.3267485
http://dx.doi.org/10.1145/3065386
https://scholarworks.umass.edu/dissertations/AAI3152722
https://scholarworks.umass.edu/dissertations/AAI3152722
http://dx.doi.org/10.5281/zenodo.1417637
http://dx.doi.org/10.1145/3298689.3347046

ings of the ACM Recommender Systems Challenge 2018. Article No. 3.

Vancouver, BC, Canada. doi:10.1145/3267471.3267474.

Ludewig, Malte, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019.

“Performance comparison of neural and non-neural approaches to session-

based recommendation”. In Proceedings of the 13th ACM Conference on

Recommender Systems, 462–466. Copenhagen, Denmark. doi:10.1145/

3298689.3347041.

Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing data using

t-SNE”. Journal of Machine Learning Research 9 (86): 2579–2605. http:

//jmlr.org/papers/v9/vandermaaten08a.html.

Mao, Junhua, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan

Yuille. 2014. “Deep captioning with multimodal recurrent neural networks

(m-rnn)”. arXiv: 1412.6632.

McFee, Brian, and Gert R. G. Lanckriet. 2012. “Hypergraph models of playlist

dialects”. In Proceedings of the 13th International Society for Music Infor-

mation Retrieval Conference (ISMIR), 343–348. Porto, Portugal. doi:10.

5281/zenodo.1415618.

McFee, Brian, and Gert R. G. Lanckriet. 2011. “The natural language of

playlists.” In Proceedings of the 12th International Society for Music

Information Retrieval Conference (ISMIR), 537–542. Miami, FL, USA.

doi:10.5281/zenodo.1418119.

Mikolov, Tomás, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv: 1301.3781

[cs.CL].

106

http://dx.doi.org/10.1145/3267471.3267474
http://dx.doi.org/10.1145/3298689.3347041
http://dx.doi.org/10.1145/3298689.3347041
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1412.6632
http://dx.doi.org/10.5281/zenodo.1415618
http://dx.doi.org/10.5281/zenodo.1415618
http://dx.doi.org/10.5281/zenodo.1418119
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

Mikolov, Tomas, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and

Armand Joulin. 2018. “Advances in pre-training distributed word rep-

resentations”. In Proceedings of the 11th International Conference on

Language Resources and Evaluation (LREC). Miyazaki, Japan. https:

//www.aclweb.org/anthology/L18-1008.

Mikolov, Tomás, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean.

2013. “Distributed representations of words and phrases and their compo-

sitionality”. In Proceedings of the 26th International Conference on Neu-

ral Information Processing Systems - Volume 2, 3111–3119. Lake Tahoe,

Nevada, USA. https://proceedings.neurips.cc/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Mikolov, Tomás, Wen-tau Yih, and Geoffrey Zweig. 2013. “Linguistic regular-

ities in continuous space word representations”. In Proceedings of Human

Language Technologies: Conference of the North American Chapter of the

Association of Computational Linguistics, 746–751. Atlanta, GA, USA.

https://www.aclweb.org/anthology/N13-1090/.

Miller, George A. 1995. “WordNet: A lexical database for English”. Commu-

nications of the ACM 38 (11): 39–41. doi:10.1145/219717.219748.

Monti, Diego, Enrico Palumbo, Giuseppe Rizzo, Pasquale Lisena, Raphaël

Troncy, Michael Fell, Elena Cabrio, and Maurizio Morisio. 2018. “An

ensemble approach of recurrent neural networks using pre-trained em-

beddings for playlist completion”. In Proceedings of the ACM Recom-

mender Systems Challenge 2018. Article No. 13. Vancouver, BC, Canada.

doi:10.1145/3267471.3267484.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. “Bleu:

a method for automatic evaluation of machine translation”. In Proceedings

107

https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.aclweb.org/anthology/N13-1090/
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1145/3267471.3267484

of the 40th Annual Meeting of the Association for Computational Linguis-

tics, 311–318. Philadelphia, PA, USA. doi:10.3115/1073083.1073135.

Pennington, Jeffrey, Richard Socher, and Christopher Manning. 2014. “GloVe:

Global vectors for word representation”. In Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP),

1532–1543. doi:10.3115/v1/D14-1162.

Pichl, Martin, and Eva Zangerle. 2018. “Latent feature combination for multi-

context music recommendation”. In 2018 International Conference on

Content-Based Multimedia Indexing (CBMI), 1–6. La Rochelle, France.

doi:10.1109/CBMI.2018.8516495.

Pichl, Martin, Eva Zangerle, and Günther Specht. 2015. “Towards a context-

aware music recommendation approach: What is hidden in the playlist

name?” In 2015 IEEE International Conference on Data Mining Work-

shop (ICDMW), 1360–1365. Atlantic City, NJ, USA. doi:10.1109/ICDMW.

2015.145.

Ponte, Jay M, and W Bruce Croft. 1998. “A language modeling approach

to information retrieval”. In Proceedings of the 21st Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, 275–281. Melbourne, Australia. doi:10.1145/290941.291008.

Robertson, Stephen E, and K Sparck Jones. 1976. “Relevance weighting of

search terms”. Journal of the American Society for Information Science

27 (3): 129–146. doi:10.1002/asi.4630270302.

Rubtsov, Vasiliy, Mikhail Kamenshchikov, Ilya Valyaev, Vasiliy Leksin, and

Dmitry I Ignatov. 2018. “A hybrid two-stage recommender system for au-

tomatic playlist continuation”. In Proceedings of the ACM Recommender

108

http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.1109/CBMI.2018.8516495
http://dx.doi.org/10.1109/ICDMW.2015.145
http://dx.doi.org/10.1109/ICDMW.2015.145
http://dx.doi.org/10.1145/290941.291008
http://dx.doi.org/10.1002/asi.4630270302

Systems Challenge 2018. Article No. 16. Vancouver, BC, Canada. doi:10.

1145/3267471.3267488.

Saracevic, Tefko. 2007. “Relevance: A review of the literature and a frame-

work for thinking on the notion in information science. Part II: Nature

and manifestations of relevance”. Journal of the American Society for In-

formation Science and Technology 58 (13): 1915–1933. doi:10.1002/asi.

20682.

Schäfer, Thomas, Peter Sedlmeier, Christine Städtler, and David Huron.

2013. “The psychological functions of music listening”. Frontiers in Psy-

chology 4:511. doi:10.3389/fpsyg.2013.00511.

Schedl, Markus, Emilia Gómez Gutiérrez, and Julián Urbano. 2014. “Music

information retrieval: Recent developments and applications”. Founda-

tions and Trends in Information Retrieval 8 (2-3): 127–261. doi:10.1561/

1500000042.

Schedl, Markus, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi

Elahi. 2018. “Current challenges and visions in music recommender sys-

tems research”. International Journal of Multimedia Information Retrieval

7 (2): 95–116. doi:10.1007/s13735-018-0154-2.

Schmeier, Timothy, Joeseph Chisari, Sam Garrett, and Brett Vintch. 2019.

“Music recommendations in hyperbolic space: an application of empiri-

cal bayes and hierarchical poincaré embeddings”. In Proceedings of the

13th ACM Conference on Recommender Systems, 437–441. Copenhagen,

Denmark. doi:10.1145/3298689.3347029.

Simonyan, Karen, and Andrew Zisserman. 2015. Very deep convolutional net-

works for large-scale image recognition. arXiv: 1409.1556 [cs.CV].

109

http://dx.doi.org/10.1145/3267471.3267488
http://dx.doi.org/10.1145/3267471.3267488
http://dx.doi.org/10.1002/asi.20682
http://dx.doi.org/10.1002/asi.20682
http://dx.doi.org/10.3389/fpsyg.2013.00511
http://dx.doi.org/10.1561/1500000042
http://dx.doi.org/10.1561/1500000042
http://dx.doi.org/10.1007/s13735-018-0154-2
http://dx.doi.org/10.1145/3298689.3347029
https://arxiv.org/abs/1409.1556

Socher, Richard, Andrej Karpathy, Quoc V. Le, Christopher D. Manning,

and Andrew Y. Ng. 2014. “Grounded compositional semantics for finding

and describing images with sentences”. Transactions of the Association

for Computational Linguistics 2:207–218. doi:10.1162/tacl_a_00177.

Sun, Chen, Chuang Gan, and Ram Nevatia. 2015. “Automatic concept dis-

covery from parallel text and visual corpora”. In Proceedings of the 2015

IEEE International Conference on Computer Vision (ICCV), 2596–2604.

Santiago, Chile. doi:10.1109/ICCV.2015.298.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is

all you need. arXiv: 1706.03762 [cs.CL].

Vickery, Brian C. 1959. “The structure of information retrieval systems”.

In Proceedings of the International Conference on Scientific Information,

2:1275–1290. doi:10.17226/10866.

Volkovs, Maksims, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and

Scott Sanner. 2018. “Two-stage model for automatic playlist continuation

at scale”. In Proceedings of the ACM Recommender Systems Challenge

2018. Article No. 9. Vancouver, BC, Canada. doi:10.1145/3267471.

3267480.

Volokhin, Sergey, and Eugene Agichtein. 2018a. “Towards intent-aware con-

textual music recommendation: Initial experiments”. In Proceedings of

the 41st International ACM SIGIR Conference on Research & Develop-

ment in Information Retrieval, 1045–1048. Ann Arbor, MI, USA. doi:10.

1145/3209978.3210154.

Volokhin, Sergey, and Eugene Agichtein. 2018b. “Understanding music listen-

ing intents during daily activities with implications for contextual music

110

http://dx.doi.org/10.1162/tacl_a_00177
http://dx.doi.org/10.1109/ICCV.2015.298
https://arxiv.org/abs/1706.03762
http://dx.doi.org/10.17226/10866
http://dx.doi.org/10.1145/3267471.3267480
http://dx.doi.org/10.1145/3267471.3267480
http://dx.doi.org/10.1145/3209978.3210154
http://dx.doi.org/10.1145/3209978.3210154

recommendation”. In Proceedings of the 2018 Conference on Human In-

formation Interaction & Retrieval, 313–316. New Brunswick, NJ, USA.

doi:10.1145/3176349.3176885.

Wilson, Patrick. 1973. “Situational relevance”. Information Storage and Re-

trieval 9 (8): 457–471. doi:10.1016/0020-0271(73)90096-X.

Yang, Hojin, Yoonki Jeong, Minjin Choi, and Jongwuk Lee. 2018. “MMCF:

Multimodal collaborative filtering for automatic playlist continuation”. In

Proceedings of the ACM Recommender Systems Challenge 2018. Article

No. 11. Vancouver, BC, Canada. doi:10.1145/3267471.3267482.

Yoshii, Kazuyoshi, Masataka Goto, Kazunori Komatani, Tetsuya Ogata, and

Hiroshi G Okuno. 2006. “Hybrid collaborative and content-based music

recommendation using probabilistic model with latent user preferences”.

In Proceedings of the 7th International Conference on Music Information

Retrieval (ISMIR), 296–301. Victoria, Canada. doi:10.5281/zenodo.

1416826.

Zamani, Hamed, Markus Schedl, Paul Lamere, and Ching-Wei Chen. 2019.

“An analysis of approaches taken in the ACM RecSys Challenge 2018 for

automatic music playlist continuation”. ACM Transactions on Intelligent

Systems and Technology 10 (5): Article No. 57. doi:10.1145/3344257.

Zangerle, Eva, and Martin Pichl. 2018. “The many faces of users: Model-

ing musical preference”. In Proceedings of the 19th International Soci-

ety for Music Information Retrieval Conference (ISMIR), 709–716. Paris,

France. doi:10.5281/zenodo.1492515.

Zhang, Yuan Cao, Diarmuid Ó Séaghdha, Daniele Quercia, and Tamas Jam-

bor. 2012. “Auralist: Introducing serendipity into music recommenda-

tion”. In Proceedings of the 5th ACM International Conference on Web

111

http://dx.doi.org/10.1145/3176349.3176885
http://dx.doi.org/10.1016/0020-0271(73)90096-X
http://dx.doi.org/10.1145/3267471.3267482
http://dx.doi.org/10.5281/zenodo.1416826
http://dx.doi.org/10.5281/zenodo.1416826
http://dx.doi.org/10.1145/3344257
http://dx.doi.org/10.5281/zenodo.1492515

Search and Data Mining, 13–22. Seattle, WA, USA. doi:10.1145/2124295.

2124300.

Zheleva, Elena, John Guiver, Eduarda Mendes Rodrigues, and Nataša Milić-

Frayling. 2010. “Statistical models of music-listening sessions in social me-

dia”. In Proceedings of the 19th International Conference on World Wide

Web, 1019–1028. Raleigh, NC, USA. doi:10.1145/1772690.1772794.

Zhu, Lin, Bowen He, Mengxin Ji, Cheng Ju, and Yihong Chen. 2018. “Au-

tomatic music playlist continuation via neighbor-based collaborative fil-

tering and discriminative reweighting/reranking”. In Proceedings of the

ACM Recommender Systems Challenge 2018. Article No. 10. Vancouver,

BC, Canada. doi:10.1145/3267471.3267481.

112

http://dx.doi.org/10.1145/2124295.2124300
http://dx.doi.org/10.1145/2124295.2124300
http://dx.doi.org/10.1145/1772690.1772794
http://dx.doi.org/10.1145/3267471.3267481

APPENDIX A

ADDITIONAL EVALUATION RESULTS OF
CHAPTER 5

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0710 0.0497 0.0615 0.0639 0.0662 0.0693

Similarity-based
BiTF 0.0580 0.0399 0.0530 0.0544 0.0550 0.0582
w2v-50d 0.0693 0.0470 0.0607 0.0628 0.0643 0.0669
w2v-200d 0.0678 0.0466 0.0583 0.0606 0.0625 0.0652
GloVe-50d 0.0622 0.0442 0.0530 0.0550 0.0565 0.0588
GloVe-200d 0.0663 0.0453 0.0574 0.0593 0.0610 0.0638
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0567 0.0430 0.0471 0.0495 0.0525 0.0549

Similarity-based
BiTF 0.0407 0.0307 0.0335 0.0347 0.0368 0.0385
w2v-50d 0.0438 0.0320 0.0372 0.0384 0.0398 0.0412
w2v-200d 0.0401 0.0302 0.0350 0.0362 0.0380 0.0397
GloVe-50d 0.0397 0.0293 0.0339 0.0349 0.0357 0.0372
GloVe-200d 0.0388 0.0297 0.0329 0.0341 0.0352 0.0366

Titles + Descriptions

Cluster-based
BiTF+NB 0.0806 0.0569 0.0702 0.0729 0.0748 0.0781
CNN 0.0753 0.0538 0.0643 0.0668 0.0698 0.0729

Similarity-based
CNN-last 0.0761 0.0530 0.0656 0.0680 0.0699 0.0725
BiTF 0.0716 0.0476 0.0615 0.0639 0.0673 0.0715
w2v-50d 0.0577 0.0419 0.0486 0.0504 0.0524 0.0544
w2v-200d 0.0553 0.0398 0.0471 0.0486 0.0501 0.0520
GloVe-50d 0.0487 0.0352 0.0410 0.0421 0.0438 0.0457
GloVe-200d 0.0517 0.0376 0.0439 0.0455 0.0472 0.0491

Table A.1: Evaluation results with C = 6 and S = 66 (proposed models
shown in italic; best scores per metric shown in bold)

113

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0712 0.0502 0.0619 0.0644 0.0665 0.0697

Similarity-based
BiTF 0.0625 0.0414 0.0567 0.0582 0.0598 0.0632
w2v-50d 0.0696 0.0478 0.0613 0.0634 0.0643 0.0669
w2v-200d 0.0678 0.0472 0.0587 0.0609 0.0629 0.0657
GloVe-50d 0.062 0.0445 0.0527 0.0545 0.0564 0.0588
GloVe-200d 0.0662 0.0459 0.0570 0.0591 0.0607 0.0635
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0578 0.0437 0.0479 0.0502 0.0535 0.0558

Similarity-based
BiTF 0.0411 0.0307 0.0336 0.0351 0.0372 0.0389
w2v-50d 0.0443 0.0334 0.0375 0.0387 0.0401 0.0417
w2v-200d 0.0414 0.0319 0.0357 0.0371 0.0390 0.0407
GloVe-50d 0.0399 0.0306 0.0337 0.0349 0.0362 0.0378
GloVe-200d 0.0396 0.0309 0.0336 0.0349 0.0364 0.0379

Titles + Descriptions

Cluster-based
BiTF+NB 0.0811 0.0574 0.0701 0.0729 0.0752 0.0785
CNN 0.0761 0.0543 0.0652 0.0677 0.0708 0.0739

Similarity-based
CNN-last 0.0767 0.0538 0.0652 0.0679 0.0701 0.0727
BiTF 0.0719 0.0483 0.0625 0.0652 0.0683 0.0724
w2v-50d 0.0576 0.0427 0.0491 0.0510 0.0530 0.0550
w2v-200d 0.0568 0.0410 0.0475 0.0491 0.0514 0.0532
GloVe-50d 0.0500 0.0363 0.0413 0.0427 0.0437 0.0453
GloVe-200d 0.0525 0.0380 0.0437 0.0451 0.0472 0.0491

Table A.2: Evaluation results with C = 7 and S = 77 (proposed models
shown in italic; best scores per metric shown in bold)

114

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0720 0.0507 0.0630 0.0653 0.0668 0.0698

Similarity-based
BiTF 0.0625 0.0415 0.0569 0.0582 0.0596 0.0630
w2v-50d 0.0697 0.0484 0.0612 0.0633 0.0644 0.0670
w2v-200d 0.0677 0.0477 0.0584 0.0606 0.0628 0.0655
GloVe-50d 0.0624 0.0448 0.0528 0.0546 0.0566 0.0586
GloVe-200d 0.0674 0.0466 0.0578 0.0598 0.0615 0.0643
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0587 0.0442 0.0491 0.0515 0.0543 0.0566

Similarity-based
BiTF 0.0413 0.0308 0.0337 0.0353 0.0376 0.0394
w2v-50d 0.0443 0.0339 0.0378 0.0392 0.0399 0.0413
w2v-200d 0.0419 0.0326 0.0363 0.0376 0.0397 0.0411
GloVe-50d 0.0402 0.0311 0.0337 0.0351 0.0363 0.0377
GloVe-200d 0.0400 0.0312 0.0340 0.0353 0.0368 0.0380

Titles + Descriptions

Cluster-based
BiTF+NB 0.0815 0.0578 0.0705 0.0733 0.0759 0.0793
CNN 0.0766 0.0547 0.0651 0.0678 0.0708 0.0738

Similarity-based
CNN-last 0.0770 0.0545 0.0658 0.0682 0.0705 0.0731
BiTF 0.0725 0.0490 0.0629 0.0654 0.0682 0.0723
w2v-50d 0.0582 0.0435 0.0492 0.0512 0.0531 0.0549
w2v-200d 0.0566 0.0418 0.0481 0.0501 0.0524 0.0542
GloVe-50d 0.0499 0.0373 0.0414 0.0428 0.0442 0.0456
GloVe-200d 0.0535 0.0389 0.0448 0.0464 0.0482 0.0500

Table A.3: Evaluation results with C = 8 and S = 88 (proposed models
shown in italic; best scores per metric shown in bold)

115

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0724 0.0510 0.0629 0.0653 0.0670 0.0701

Similarity-based
BiTF 0.0626 0.0417 0.0570 0.0584 0.0596 0.0630
w2v-50d 0.0704 0.0489 0.0612 0.0632 0.0646 0.0671
w2v-200d 0.0682 0.0479 0.0584 0.0605 0.0624 0.0652
GloVe-50d 0.0618 0.0452 0.0521 0.0541 0.0563 0.0585
GloVe-200d 0.0675 0.0471 0.0572 0.0594 0.0611 0.0637
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0594 0.0448 0.0491 0.0515 0.0547 0.0569

Similarity-based
BiTF 0.0415 0.0311 0.0340 0.0357 0.0380 0.0398
w2v-50d 0.0454 0.0346 0.0382 0.0395 0.0407 0.0423
w2v-200d 0.0427 0.0331 0.0362 0.0376 0.0398 0.0412
GloVe-50d 0.0414 0.0318 0.0339 0.0352 0.0361 0.0375
GloVe-200d 0.0403 0.0320 0.0340 0.0354 0.0369 0.0382

Titles + Descriptions

Cluster-based
BiTF+NB 0.0822 0.0583 0.0708 0.0737 0.0762 0.0798
CNN 0.0771 0.0551 0.0656 0.0681 0.0711 0.0741

Similarity-based
CNN-last 0.0771 0.0549 0.0657 0.0682 0.0705 0.0731
BiTF 0.0730 0.0493 0.0633 0.0659 0.0688 0.0728
w2v-50d 0.0580 0.0440 0.0489 0.0508 0.0526 0.0544
w2v-200d 0.0568 0.0422 0.0476 0.0494 0.0515 0.0534
GloVe-50d 0.0491 0.0379 0.0417 0.0432 0.0441 0.0455
GloVe-200d 0.0530 0.0393 0.0444 0.0459 0.0478 0.0497

Table A.4: Evaluation results with C = 9 and S = 99 (proposed models
shown in italic; best scores per metric shown in bold)

116

Model F1@100 F1@500 NDCG@100 NDCG@500 R-precision R-RecSys
Popular 0.0403 0.0366 0.0327 0.0341 0.0351 0.0364
Random 0.0003 0.0005 0.0002 0.0003 0.0003 0.0004

Titles

Cluster-based
BiTF+NB 0.0723 0.0514 0.0634 0.0658 0.0671 0.0703

Similarity-based
BiTF 0.0626 0.0416 0.0569 0.0582 0.0595 0.0629
w2v-50d 0.0698 0.0491 0.060 0.0621 0.0640 0.0666
w2v-200d 0.0680 0.0483 0.0585 0.0606 0.0626 0.0652
GloVe-50d 0.0621 0.0455 0.0518 0.0538 0.0559 0.058
GloVe-200d 0.0670 0.0473 0.0572 0.0594 0.0612 0.0637
vl6-50d 0.0691 0.0490 0.0604 0.0626 0.0638 0.0663
vl6-200d 0.0686 0.0460 0.0601 0.0621 0.0635 0.0666

Descriptions

Cluster-based
BiTF+NB 0.0596 0.0451 0.0493 0.0517 0.0547 0.0568

Similarity-based
BiTF 0.0418 0.0313 0.0345 0.0361 0.0384 0.0401
w2v-50d 0.0458 0.0348 0.0386 0.0399 0.0412 0.0428
w2v-200d 0.0442 0.0338 0.0365 0.0379 0.0400 0.0416
GloVe-50d 0.0411 0.0325 0.0341 0.0353 0.0362 0.0377
GloVe-200d 0.0406 0.0325 0.0341 0.0356 0.0371 0.0384

Titles + Descriptions

Cluster-based
BiTF+NB 0.0820 0.0584 0.0706 0.0735 0.0756 0.0791
CNN 0.0772 0.0552 0.0659 0.0685 0.0714 0.0744

Similarity-based
CNN-last 0.0772 0.0554 0.0661 0.0687 0.0709 0.0735
BiTF 0.0731 0.0496 0.0635 0.0661 0.0688 0.0727
w2v-50d 0.0580 0.0447 0.0493 0.0513 0.0528 0.0547
w2v-200d 0.0571 0.0427 0.0476 0.0494 0.0512 0.0530
GloVe-50d 0.0492 0.0385 0.0417 0.0433 0.0447 0.0463
GloVe-200d 0.0531 0.0398 0.0440 0.0454 0.0473 0.0490

Table A.5: Evaluation results with C = 10 and S = 110 (proposed models
shown in italic; best scores per metric shown in bold)

117

APPENDIX B

EQUATIONS

• Precision is defined in the context of IR. It measures how many of the

retrieved documents are relevant to the query:

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(B.1)

• Recall is also defined in the context of IR and measures how many of

the relevant documents are retrieved:

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(B.2)

• F1 score has been widely used in IR because it takes both precision

and recall into consideration. It is calculated as the harmonic mean of

precision and recall:

F1 = 2 · precision · recall

precision + recall
(B.3)

• NDCG (Nomralized Discounted Cumulative Gain) (Järvelin and Kekäläinen

2002) is a metric that takes ranking of the returned tracks into con-

sideration. Assuming that each returned list of tracks is sorted based

on their recommendation score in descending order, the Discounted

118

Cumulative Gain (DCG) is then defined as

DCG =
N∑
i=1

ri
log2(i + 1)

(B.4)

where ri is the ground truth label for the item ranked at position i in

the returned list, and N is the number of tracks returned as recom-

mendations. NDCG is then calculated by normalizing DCG by Ideal

Discounted Cumulative Gain (IDCG), which is the DCG obtained by

the ideal ranking of the returned list.

• R-precision is a metric that is invariant of the order in which tracks

are retrieved. Let R be the set of ground truth tracks for a playlist,

and T be the set of first |R| tracks returned by the system, R-precision

is defined as:

R-precision =
|T ∩R|
|R|

(B.5)

• R-RecSys is the same R-precision metric used for RecSys Challenge

2018 (Zamani, Schedl, Lamere, and Chen 2019), where artist matches

were partially rewarded (by 0.25) even if the predicted track was incor-

rect. Let R be the set of ground truth tracks for a playlist, T be the

set of first |R| tracks returned by the system, RA be the set of ground

truth artists, TA be the set of artists in the first |R| tracks returned,

R-RecSys is defined as:

R-RecSys =
|T ∩R|+ 0.25× |TA ∩RA|

|R|
(B.6)

119

	List of Tables
	List of Figures
	CHAPTER 1 Introduction
	Motivations behind Music Playlist Generation
	Understanding Playlist Titles and Descriptions as an IR Task
	Representations
	Relevance
	Models
	Evaluation

	Research Questions
	Data and Observations
	Chapter Outline

	CHAPTER 2 Literature Review
	Capturing Latent Factors behind Music Playlist Generation
	Functions or intents as latent factor
	User tastes or preferences as latent factor
	Semantic meaning underlying related text as latent factor
	Implicit latent factors

	Approaches to Handling Cold-start Playlists
	Best performing approach from RecSys 2018
	Collaborative filtering and content filtering based approaches
	Neural network based approaches
	Other approaches
	Summary

	CHAPTER 3 Capturing Latent Patterns using Tracks
	Learning Latent Track Embeddings
	Word embedding approaches and word2vec model
	Learning track embeddings using word2vec
	Implementation details
	Measuring the quality of the track embeddings

	Finding Patterns in Track Embeddings
	Aggregating track embeddings to represent playlists
	Hierarchical clustering
	Clustering results analyses

	Summary

	CHAPTER 4 Tagging playlists with keywords
	From Image Description to Playlist Tagging
	Experimental Details
	Test data and preprocessing
	Subtasks and tagging strategies
	Evaluation metrics

	Evaluation Results and Discussion
	Summary

	CHAPTER 5 Predicting missing tracks given playlist titles and descriptions
	Experimental Details
	Test data
	Recommending approaches and strategies
	Evaluation metrics

	Evaluation Results
	Discussion
	Effectiveness of the clusters
	Cluster-based vs. similarity-based models
	BiTF vs. dense vector representations
	Titles vs. descriptions
	Naive Bayes vs. Neural Network model
	False negatives and false positives

	Summary

	CHAPTER 6 Conclusions and Future Work
	Conclusions and Contributions
	Limitations and Future Work
	Issues with evaluation revisited
	Sequential information

	Implications for Music Recommender Systems

	REFERENCES
	APPENDIX A Additional evaluation results of Chapter 5
	APPENDIX B Equations

