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ABSTRACT

As the rate and scale of human activities increase throughout the world, the structure

and function of Earth systems are consequently altered. Human-induced direct and indirect

perturbations, such as changes in atmospheric temperature or the burning or logging of

vegetation, alter the thermodynamic environment in which ecosystems operate. Yet, the

ecosystem-level vegetation response is coupled to its thermodynamic regime, and changes

therein are still relatively unknown. Thus, a framework for characterizing and understanding

self-organization of ecosystem vegetation from the thermodynamic perspective is needed to

understand its emergent response to natural and human-induced perturbations.

The goals of this thesis are to (i) develop a thermodynamic framework to characterize

the existence of emergent vegetation structure at any given location, and (ii) utilize this

framework to gain insight about the thermodynamic response of ecosystem behavior to direct

alteration of vegetation structure through human activities. Vegetation structure, which

refers to the number and type of plant functional groups comprising an ecosystem, is the

result of self-organization, or the spontaneous emergence of order from random fluctuations.

By treating ecosystems as open thermodynamic systems, we use a multi-layer canopy-root-

soil model to calculate their thermodynamic properties – such as energy, entropy, and work

– for field sites across various climates, vegetation structures, and disturbance regimes.

We first ask the question: Why do ecosystems exhibit a prevalence of vegetation structure

consisting of multiple functional groups? In other words, does the coexistence of multiple

functional groups provide a thermodynamic advantage over the individual functional groups

that each ecosystem comprises. From this work, we conclude that ecosystems self-organize

towards the multiple functional group vegetation structure due to greater fluxes of entropy,

work, and work efficiency. Together, these characteristics comprise the concept of thermo-
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dynamic advantage.

Since multiple functional groups do not exist everywhere in nature, we study and ana-

lyze the thermodynamic basis for the existence of ecosystems with a single functional group

vegetation structure – in particular, the region beyond the treeline in alpine and Arctic

ecosystems. We therefore ask the question: Since the existence of multiple vegetation groups

provides a thermodynamic advantage, is the existence of only a single functional group a

result of a thermodynamic limitation? This analysis using counterfactual scenarios compris-

ing of hypothetical trees existing beyond the treeline identifies two conditions of thermo-

dynamic infeasibility. We find that existence of trees beyond the treeline would result in

negative work, and in some cases, net leaf carbon loss from the ecosystem, both comprising

a thermodynamic infeasibility condition.

Based on these two components, we conclude that an ecosystem will self-organize towards

the most advantageous vegetation structure made possible by thermodynamic feasibility.

These concepts of thermodynamic feasibility and thermodynamic advantage are then ap-

plied to study ecosystems perturbed by human activities through logging and fire. Find-

ings indicate that a forest that is consistently logged is held in a sub-optimal state with

lower fluxes of entropy and work efficiency than an undisturbed forest, meaning that human

activities prevent the ecosystem from reaching its most thermodynamically advantageous

vegetation structure. However, for controlled burns on a tallgrass prairie the advantageous

vegetation structure is dependent on the frequency of the burn. Overall, logging events

force forests into a disadvantageous vegetation structure while the frequency of burn events

determines and reinforces the resulting vegetation structure.

This thesis develops a novel framework for analyzing ecosystems as thermodynamic sys-

tems driven by thermodynamic feasibility and thermodynamic advantage. Further, by char-

acterizing the behavior of vegetation upon direct alterations to its structure, this work pro-

vides foundation for understanding and predicting the thermodynamic response of vegetation

structure to emergent climate scenarios that could impact the thermodynamic environment

in which ecosystems operate.
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CHAPTER 1

INTRODUCTION

Together, water and energy availability have been utilized for decades to study ecohy-

drologic response through concepts such as the Budyko curve to capture the influence of

various climates that exist throughout the world [1, 2]. However, vegetation itself has strong

feedbacks with climate, and many researchers have argued that vegetation properties, such

as above-ground biomass, rooting structure, and photosynthetic capacity, are vital in un-

derstanding the controls of the various climatic regimes [3–5]. Further, as the rate and

scale of human activities increase throughout the world, the structure and function of Earth

systems are being significantly altered. Human-induced perturbations, such as changes in

atmospheric temperature or the burning or logging of vegetation, alter the thermodynamic

environment in which ecosystems operate. Yet, the ecosystem-level vegetation response

to thermodynamic regime changes is still relatively unknown. This thesis focuses on the

thermodynamic behavior of ecosystems explicitly. We explore natural and human-induced

self-organization of vegetation using model-based computation of thermodynamic properties

of ecosystems at several field sites across the globe. By viewing ecosystems as open ther-

modynamic systems, we calculate their entropy produced and work performed, which can

allow us to characterize thermodynamic variations among ecosystems and document trends

of influence from human activities.

This thesis develops a novel framework for analyzing ecosystems as thermodynamic sys-

tems that self-organize to vegetation structure found in nature based on thermodynamic

advantage and thermodynamic feasibility, two concepts developed as an outcome of this

research. Here, we define vegetation structure in terms of the number and type of plant

functional groups, i.e., sets of species that perform similar functions in an ecosystem [6], ag-

gregated based on literature [7–10] to balance model accuracy with performance. Examples
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of functional groups include evergreen needleleaf trees, shrubs, and grasses.

The fields of ecology and biology have established how plants grow, but have yet to com-

prehensively answer the questions: What causes the spontaneous emergence of vegetation

structure? What drives the existence of different vegetation structures? The concepts of en-

tropy, work, and work efficiency provide an answer to these questions in the form of thermo-

dynamic advantage. We propose thermodynamic advantage and thermodynamic feasibility

as an additional but critical dimension – along with resource availability pertaining to water

and nutrients – to further our understanding of ecosystems with the goal that it will enable

us to better characterize the non-stationary trajectory and feedback between vegetation and

climate. Thermodynamic advantage indicates that a vegetation structure yields a thermal

environment that is more favorable than that of another vegetation structure, deeming it

more probable to exist through self-organized processes (see Section 1.2). On the other hand,

thermodynamic feasibility indicates which vegetation structures are able to be supported by

the thermal environment at a given location (see Section 1.3). Furthermore, this framework

provides insight into trends in ecosystem behavior as a result of human perturbations, such

as controlled burns or selective logging, which alter vegetation structure directly and thereby

its resulting thermodynamic environment. The ability to anticipate these trends could have

broad implications for the sustainability of ecosystems and their life-supporting services as

anthropogenic modifications to landscapes continue to increase.

The components of this thesis are, therefore, grounded in these three interrelated con-

cepts: open thermodynamic systems, thermodynamic advantage, and thermodynamic fea-

sibility. Research in open thermodynamic systems forms the basis for capturing ecosystem

response to external forcing and describing how ecosystems naturally self-organize into dif-

ferent structured forms, or stable states. The vegetation structure to which an ecosystem

will self-organize is then determined through thermodynamic advantage if all structures con-

sidered are feasible. Lastly, the concept of thermodynamic feasibility is vital for determining

the viable vegetation structure at a given location. These concepts lay the groundwork for

the research presented in Chapters 2-4.
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1.1 Ecosystem Thermodynamics

Ecosystems can be categorized as open thermodynamic systems held far from equilibrium.

Far-from-equilibrium systems are maintained by the spatial imbalance of energy due to inputs

and outputs of energy and mass from the external environment. The formation of internal

system order in the form of dissipative structures (e.g., vegetation structure that dissipates

the incident energy) enables energy to disperse more rapidly along gradients from high to

low temperature throughout the system control volume [11, 12]. The formation of dissipa-

tive structures is a self-organized outcome, meaning that this organization emerges without

external predetermination. The local emergence of order corresponds to establishment of

low local entropy which results in overall greater spatial balance of energy throughout the

control volume, and a higher release of entropy from the control volume to the surrounding

environment [11]. Entropy – a function of the associated energy flux and the temperature of

that energy flux’s source [13–18] – is a measure of thermodynamic disorder, but can also be a

measure of proximity to equilibrium in closed systems [12]. However, in far-from-equilibrium

open systems, entropy’s value has yet to be fully understood.

This thesis builds upon the work initiated by Quijano [18], who examined the entropy

produced by an ecosystem through model simulations with canopy, roots, and soil included

in the control volume. The entropy of multi-species ecosystems was compared through

simulated stages of evolutionary development, ultimately finding that the most developed

ecosystems resulted in the most entropy production. Rather than comparing the evolution

or stages of development of an ecosystem, the present work seeks to identify a framework

to understand to which preferred state an ecosystem will self-organize under different condi-

tions. In this work, the organized state considered is the ecosystem’s vegetation structure.

Yet, we found that entropy alone cannot succeed in answering this question. Thus, we look

to other thermodynamic properties to examine different developed vegetation structures and

additional determinants of vegetation self-organization.

The concept of identifying an ecosystem’s ‘optimal’ thermodynamic state has been stud-

ied in several different variations. Jørgensen approached the problem from the ecological

and biological perspectives [19, 20], utilizing concepts such as exergy and eco-exergy to cat-
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egorize the available free energy used by ecosystems such that an ecosystem will evolve to

optimize its eco-exergy [21, 22]. Exergy is defined as the ability of a system to perform work

upon returning to equilibrium, and eco-exergy is the equivalent of exergy with respect to

ecosystems, defined as the ability of the ecosystem to perform work relative to the same

ecosystem existing at thermodynamic equilibrium [21]. Thus, the estimation for eco-exergy

(Ex) is defined as a relative difference in chemical energy associated with the biomass of

components in the two ecosystems:

Ex =
∑
c

(µc − µc0)Ni (1.1)

where c represents all of the components in the ecosystem, Ni are the moles of chemical

compounds, and (µc−µc0) is the difference in chemical potential between the ecosystem and

its reference state in thermodynamic equilibrium [21]. The components included are those

being directly compared. In terms of ecosystem vegetation structure, use of this formulation

would only take into account the change in chemical energy associated with the total plant

biomass in the ecosystem rather than considering the interactions among functional groups

and their associated impact to the temperature profile or thermal environment within the

ecosystem. Further, this computation requires the knowledge of an equivalent ecosystem

in equilibrium – similar to an ‘inorganic soup’ [21] with no lifeforms – which is impossible

to estimate. Therefore, this perspective does not allow for estimation of the eco-exergy of

an ecosystem on a scale or level of detail beneficial for comparing changes in vegetation

structure.

Schneider and Kay [11] presented an alternative interpretation of optimality in far-from-

equilibrium systems, characterized by their ability to degrade their exergy. They presented

the concept that all self-organized systems are formed to deplete their “applied gradients”

of mass and energy from the external environment. Still, this perspective requires the quan-

tification of exergy, which similar to eco-exergy is not feasible beyond orders of magnitude,

deeming it not useful for the comparison of different vegetation structures [21, 22]. While

Jørgensen’s principle asserts that an ecosystem will evolve to increase its eco-exergy, or

ability to perform work, Schneider and Kay assert that ecosystems will evolve by quickly
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forming dissipative structures to rapidly and efficiently deplete their dominant gradients and

degrade their exergy. We take into consideration these interpretations of the second law of

thermodynamics but by quantifying the actual work performed by an ecosystem.

1.2 Thermodynamic Advantage

This work provides the first characterization of thermodynamic work performed by var-

ious ecosystems through site-specific model simulations. We present the concept of ther-

modynamic advantage to diagnose an ecosystem’s thermodynamic behavior based on the

self-organized structure and response to human-induced perturbations through calculations

enabled by modeled ecosystem fluxes of energy. The concept of thermodynamic advantage

– demonstrated through entropy, work, and work efficiency – is used as a means to diagnose

the most probable self-organized vegetation structure at a given location.

The dominant gradient driving ecosystems is associated with the vertical temperature

profile, which is a result of self-organized dynamics of vegetation and local environmental

conditions in response to incoming radiation, where vegetation itself is the dissipative struc-

ture that disperses heat [11]. The temperature gradient in this case corresponds to the

difference between the temperature of the earth surface and the temperature of the air just

above the canopy. During photosynthesis, vegetation releases heat from the ecosystem as

latent heat through evapotranspiration and temperature dependent sensible heat, decreas-

ing outgoing radiation and resulting in a weaker temperature gradient. Thus, presence of

vegetation results in a negative feedback between heat dissipation and temperature gradient

in which heat dissipation leads to a reduction in temperature gradient.

In classical thermodynamics, work is defined as the energy associated with motion. In

an ecosystem, the direct work from solar radiation is the energy used for photosynthesis,

but other forms of motion also take place (e.g., diffusion, convection, advection). Since

quantification of all internal motion within an ecosystem is infeasible, indicators of work

from the ecosystem as a whole are required. As a consequence of internal work in the

system, ecosystems transport and dissipate heat. Thus, in the context of ecosystems, we

define work as the flux of energy through heat transported along a temperature gradient,
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estimated as the net sum of latent and sensible heat fluxes throughout the ecosystem in the

direction of the resultant temperature gradient (Equation 3.2). Since the ecosystem heat

loss due to water infiltration below the root zone is negligible, it is ignored in calculations

of work.

In Chapter 2, we coin the term work efficiency as the ratio of work performed by an

ecosystem as a fraction of the incoming radiation. Greater work efficiency means that

an ecosystem is better able to dissipate the incoming energy into useful forms of work,

resulting in a weaker temperature gradient. Intuitively, we expect ecosystems with more

plant functional groups – corresponding to more complex dissipative structures with greater

capacity for latent and sensible heat transport – to produce more total entropy and perform

more work, resulting in a higher work efficiency than ecosystems having only one plant

functional group. However, we find that greater entropy or work efficiency does not always

correspond to the most advantageous structure. Thus, the concepts of entropy, work, and

work efficiency when analyzed altogether define a vegetation structure’s thermodynamic

advantage. Chapter 2 establishes thermodynamic advantage as a framework for vegetation

structure emergence and the coexistence of multiple plant functional groups.

1.3 Thermodynamic Feasibility

While thermodynamic advantage provides a framework to explain the widely prevalent

existence of multiple functional groups, there are some circumstances in which only one

functional group exists in nature. For example, in an Arctic tundra or an alpine meadow

above the treeline, trees are absent and shrubs or grasses dominate the landscape. The

concept of thermodynamic feasibility, or more, the thermodynamic infeasibility that hinders

the existence of multiple functional groups, arises. In Chapter 3, environments above and

below Arctic and alpine treelines are explored, and findings indicate that multiple functional

groups do not exist beyond a treeline due to thermodynamic infeasibility. These results

indicate that if trees were to exist, they would create a thermal environment that would

make their existence infeasible. Since vegetation consistently dissipates heat through evap-

otranspiration, these environments would result in negative work indicating that dissipative
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structures in the form of trees dissipate more heat than is needed for the incoming radiation

and create local imbalance of energy within the ecosystem. Thus, when trees are forced to

exist in an alpine ecosystem through model simulations, the resulting temperature gradient

becomes negative, such that (i) the vegetation would actually transport energy in the op-

posite direction of the vertical temperature gradient, and (ii) eventually there would be no

more heat to dissipate, and the vegetation would not have the ability to transpire (release

latent heat), both of which are thermodynamically infeasible.

Another way to capture this infeasibility is the concept of potential dissipation capacity

– “the maximum possible heat dissipation rate supported by the thermodynamic environ-

ment of an ecosystem, determined by its incoming radiation and other local environmental

conditions” (Chapter 4). A vegetation structure will only self-organize when its dissipation

rate is equivalent to or below the potential dissipation capacity of an ecosystem. When

the dissipation of the vegetation is larger than the potential dissipation capacity, due to

greater leaf area or higher photosynthesis rates, the vegetation structure is then thermody-

namically infeasible. Overall, we may conclude that the vegetation structure to which an

ecosystem will self-organize will: first, be thermodynamically feasible, and second, exhibit a

thermodynamic advantage over other feasible alternative vegetation structures.

1.4 Dissipation Deficit

Thermodynamic advantage and thermodynamic feasibility characterize how natural ecosys-

tems will self-organize. However, when human activities impact ecosystems, self-organization

is no longer the only determinant of vegetation structure. In particular, vegetation struc-

ture can be directly altered by removing vegetation through activities such as logging and

controlled burns. After such a disturbance event occurs, the ecosystem no longer exists in

a state governed by self-organization. Instead, it is forced to exist in a structure that may

perform significantly below its optimal thermodynamically advantageous state. Ecologists

have long asserted that natural ecosystems self-organize towards the state that optimizes

their thermodynamic exchanges with their environment [11, 20, 22–25]. Thus, we consider

a natural quasi-stable ecosystem as existing in an optimal thermodynamically advantageous
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state. We demonstrate a loss in optimality due to human perturbation as resulting in a dissi-

pation deficit. Presence of a one-time or recurring disturbance event can cause an ecosystem

to perform sub-optimally, meaning vegetation has been removed, decreasing the leaf area

and ability of the ecosystem to perform work and dissipate heat at its optimal rate (its

potential dissipation capacity, Dp). An ecosystem’s dissipation deficit (Dd) is defined as

the difference between its potential dissipation capacity and its actual dissipation rate (Da),

the net sum of ecosystem latent and sensible heat fluxes, such that Dd = Dp − Da (see

Section 4.2.3). Dissipation deficit allows for comparison and determination of how poorly a

disturbed ecosystem performs work relative to its natural thermodynamically advantageous

state, or vegetation structure.

Chapter 4 uses these concepts to explore the thermodynamic behavior of ecosystems that

incur direct alteration to vegetation structure in the form of recurring selective logging in

the Brazilian Amazon and varying frequencies of controlled burns in the Kansas Konza

Prairie. These studies highlight the important feedback loops among vegetation structure,

disturbance events, and the thermal environment that are useful for understanding the self-

organization of vegetation structure in ecosystems that experience direct human-induced

perturbations. Negative feedback loops among these components emerge in response to a

recurring burn cycle and reinforce the existing vegetation structure. Alternatively, a forest

experiencing recurring logging events yields significant dissipation deficits associated with

thermodynamically disadvantageous vegetation structure compared to an undisturbed site.

The forest is unable to recover from the disturbance event on the timescale equivalent its

recurrence. Therefore, the feedback loops are out of sync, and the logged forest is held in a

sub-optimal thermodynamic state.

1.5 Model Simulations

Throughout this thesis, a multi-layer canopy-root-soil model, MLCan [26–28], is used to

calculate thermodynamic properties – such as energy, entropy, and work – for field sites

across various climates, vegetation structures, and disturbance regimes. The use of this

sophisticated model with multiple layers above and below ground is necessary to accurately
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estimate the thermodynamic behavior throughout the ecosystem. As vegetation structure

varies, the radiation regime through the canopy is consequently altered, resulting in variable

temperatures throughout the canopy. Latent heat, sensible heat, work, and entropy are

calculated based on the temperature of each layer within the canopy and on the soil surface.

Therefore, resolving the thermal regime throughout the canopy in addition to the fluxes

produced by each layer, is necessary for accurately characterizing thermodynamic advantage

and feasibility of differing vegetation structures.

Additionally, MLCan is chosen because of its ability to capture multi-species or multiple

functional group interactions [28]. Taller vegetation casts shade upon the shorter understory

vegetation, thereby determining the understory’s thermodynamic environment. This model

enables characterization of the thermodynamic and mass balance interactions between func-

tional groups, such that we can accurately estimate changes in thermodynamic properties

for different vegetation structures. Since MLCan is a one-dimensional model that satisfies

the vertical profile of an ecosystem, we assume an ecosystem’s vegetation structure consists

of spatially uniform composition and pattern on the landscape at a given location.

To apply MLCan to ecosystems in cold regions, such as an Arctic tundra or alpine meadow,

additional parameterizations and formulations were incorporated. For example, soil thermal

conductivity is typically computed based on its percentages of sand and clay. However,

peat soils that are found above permafrost in Arctic regions do not behave as other soils

do with respect to thermal and hydraulic conductivity. Therefore, new parameterizations

were incorporated into the model for peat soil [29–31]. Extremely cold temperatures also

required a new formulation to prevent plant and soil water uptake when soils were considered

frozen. Furthermore, alpine and Arctic vegetation hibernate during winter months and do

not photosynthesize below certain temperatures, when the soil is completely frozen, or when

snowpack is deeper than the height of the canopy (as is the case in an Arctic tundra or

alpine meadow) [32–34]. Additional model adjustments were made to emulate this behavior.

Further information pertaining to model updates can be found in Appendix A.2.2. These

modeling advances enabled the comparisons of alpine and Arctic ecosystems with subalpine

and sub-Arctic ecosystems, such that the existence of trees beyond a treeline was identified

as thermodynamically infeasible.
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Through model simulations that enable comparisons of vegetation structure across the

globe, we accomplish the following goals of this thesis: (i) develop a thermodynamic frame-

work to characterize the existence of emergent vegetation structure at any given location, and

(ii) utilize this framework to gain insight about the thermodynamic response of ecosystem

behavior to direct alteration of vegetation structure through human activities.

1.6 Research Contributions

This thesis addresses the following questions related to the self-organization of vegetation

structure:

1. Does the existence of multiple functional groups offer a thermodynamic advantage?

2. Is the non-existence of trees beyond the region demarcated as a treeline a reflection of

thermodynamic infeasibility associated with the presence of trees?

3. How does the act and frequency of vegetation structural alteration from human activ-

ities affect ecosystem thermodynamic behavior?

Through these questions, this study presents the following original contributions:

1. This work provides the first characterization of thermodynamic work performed by

various ecosystems through site-specific model simulations for direct comparison of

vegetation structure.

2. Thermodynamic advantage is presented as a framework and explanation for the exis-

tence and prevalence of multiple functional groups in nature.

3. Thermodynamic feasibility is identified as a mechanism for understanding the existence

of individual functional groups (or non-existence of multiple functional groups) in

nature.

4. Thermodynamic feasibility is established as an important and complementary condi-

tion to resource availability for vegetation self-organization.
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5. Thermodynamic feasibility constraints, such as temperature inversions and sustained

negative work, are presented as examples of expressions that arise when modeling an

infeasible vegetation structure at a given site.

6. Modeling and observation of burned and logged ecosystems identify feedback loops

between disturbance events and vegetation as important expressions of thermodynamic

behavior following direct alteration to ecosystem vegetation structure.

7. Modeling advances are identified such that the multi-layer-canopy model, MLCan,

could be applied to cold region processes and ecosystems.

1.7 Organization

The chapters of this thesis are arranged as follows:

• In Chapter 2, the coexistence of multiple functional groups is explored. Thermody-

namic advantage is defined as a vegetation structure that produces larger fluxes of

entropy, performs more work, and yields higher work efficiency. From this work, we

conclude that ecosystems will self-organize towards the multiple functional group vege-

tation structure due to its thermodynamic advantage, given local availability of energy,

water, and nutrients.

• In Chapter 3, alpine and Arctic ecosystems in which only one functional group exists

are explored. Counterfactuals are constructed such that forest vegetation is modeled

on alpine and Arctic study sites. Two conditions of infeasibility are identified for

this counterfactual, both of which arise due to insufficient energy availability in the

lower canopy and earth surface through much of the year. This chapter portrays ther-

modynamic feasibility as an important constraint on vegetation structure that must

be considered amongst resource availability and thermodynamic advantage. Further,

the implications of negative work on thermodynamic advantage is discussed, and the

idea that a vegetation structure can be a stronger dissipator than needed by a given

ecosystem is introduced.

11



• In Chapter 4, we compare two cases in which vegetation structure is manually per-

turbed. These two cases impact the stability of the current vegetation structure of

their respective ecosystems very differently. Logging events force forests into a dis-

advantageous vegetation structure while the frequency of burn events determines and

reinforces the resulting vegetation structure. This chapter presents a novel analysis of

the thermodynamic response of ecosystem vegetation structure at the site level, pro-

viding a foundation for understanding ecosystem thermodynamic response in future

emergent climate scenarios.

• In the Appendix, supplementary information is provided for Chapters 2 and 3 per-

taining to model implementation, including additional results, validation, and model

parameters.
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CHAPTER 2

DISCERNING THE THERMODYNAMIC
FEASIBILITY OF THE SPONTANEOUS

COEXISTENCE OF MULTIPLE FUNCTIONAL
VEGETATION GROUPS

2.1 Introduction1

Presence of vegetation on our planetary surface, when resources of water and nutrients

are not limiting, is a ubiquitous feature. Often different plant species utilize niche space

to create a plurality of simultaneous existence through competitive and/or symbiotic shar-

ing of resources. The spontaneous emergence of such complexity across a range of climates

suggests that this self-organization should be thermodynamically viable. We propose that

thermodynamics can provide insights that can bolster scientific understanding of the coex-

istence of multiple vegetation species or functional groups within an ecosystem. By viewing

ecosystems as open thermodynamic systems, we are able to calculate their entropy, which

can allow us to identify possible thermodynamic drivers for the spontaneous emergence of

complex vegetation structure.

The concept of viewing organisms and other natural phenomena as webs of open thermo-

dynamic systems has been utilized across scientific disciplines for several decades. Prigogine

[36, 37] and other chemists, physicists, and biologists studied and developed the ideas of open

thermodynamic systems in the early twentieth century with the goal of conceptualizing the

growing complexity of organisms and other biological systems. They discovered that this

complexity comprises of a hierarchy of irreversible processes leading to systematic organi-

zation which maintains the system in a state far from thermodynamic equilibrium [36–41].

Soon the idea of system theory was extended to other natural systems including ecologi-

cal and earth systems [42–44]. It became understood that ecosystems can be categorized

as open thermodynamic systems existing far from thermodynamic equilibrium maintained

1This chapter is published as an article in Nature Scientific Reports: Richardson & Kumar, 2020 [35]
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by the spatial imbalance of energy in the form of state variables, such as temperature or

geopotential height [11, 45]. Energy and mass naturally flow along gradients from high to

low concentrations, and more rapid dissipation of these gradients is made possible by the

formation of structures [11, 25, 44]. These so-called dissipative structures give the system

a form of organization that emerges without external directive or predetermination, called

self-organization [12]. This local self-organization results in low local entropy and greater

overall system entropy due to the dissipation of the driving gradient and the decreasing

spatial heterogeneity of the associated state variables [11, 36]. Such dissipative structures

spontaneously emerge through self-organization, which can be exemplified in Earth systems

from convection cells on the global scale to vegetation on the local scale [11, 45].

Ecologists further expanded these ideas to understand the direction of ecosystem evolution

and quantify the distance of a system from equilibrium [46–48]. Concepts such as exergy and

eco-exergy have been fruitful for the understanding of relative stages of ecosystem develop-

ment and developing thermodynamic principles of ecology, such as the irreversible nature of

ecosystem processes and the increasing disequilibrium of ecosystems [19–21, 49–51]. How-

ever, exact quantifications of exergy are not feasible due to the requirement of the knowledge

of the equivalent ecosystem in equilibrium – similar to an ‘inorganic soup’ [21] with no life-

forms. Thus, when comparing differences in similar ecosystems based on the composition of

functional groups, a new framework must be developed.

While growth and development of ecosystems has been studied from the thermodynamic

perspective, the thermodynamic basis for the self-organization towards one dissipative struc-

ture over another remains unexplored. This chapter seeks to fill this gap in understanding

by comparing the thermodynamic behavior of different possible vegetation structures for a

given ecosystem to identify if one results in a thermodynamic advantage over others.

We characterize ecosystem composition and vegetation structure in terms of the number

and type of plant functional groups present. A plant functional group corresponds to a set of

species that perform similar functions [6]. We accept the existence of an observed vegetation

structure as a probabilistic, self-organized outcome. However, little has been done to com-

pare the prospects of other vegetation scenarios that do not emerge. The probabilistic set

of possible vegetation structures at a given site is based on the available energy, nutrients,
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and water. We seek clarity on this topic by adding an additional parameter – thermody-

namic advantage. We utilize work and entropy flux as metrics to compare thermodynamic

behavior and determine if a certain vegetation structure has a thermodynamic advantage

over others, thereby making it more probable. In classical mechanics, work is defined as the

energy required for motion or the “the flow of heat” for heat engines in particular [12]; for

ecosystems, we interpret this existing definition to estimate work as the sum of the latent

and sensible heat leaving the system (i.e., the energy leaving the system through molecular

motion of water vapor and air molecules). In these systems, self-organization in the form of

vegetation emerges as a result of the heat dissipation throughout the vertical temperature

gradient between the atmosphere at the top of the canopy and the soil-surface. Work is a

measure of the ability of an ecosystem (by way of vegetation) to diminish this temperature

gradient through the redistribution of heat. The entropy flux leaving an ecosystem – calcu-

lated from its temperature and outgoing energy flux – is a measure of the disorder of the

outgoing energy, or the inability of this energy to perform work. However, high outgoing

entropy flux does not always mean that more work has been performed. Longwave radiation

has high entropy, but it is not a component of work; it is a form of radiative energy that

is a passive response to the temperature state of its source and leaves the control volume

without directly affecting the distribution of heat throughout the vertical profile. Thus, it is

wasted energy. To distinguish between work and wasted energy, we introduce the concept of

work efficiency as the work performed for the amount of radiation entering the ecosystem.

Work efficiency measures an ecosystem’s ability to effectively dissipate the incoming energy

throughout the ecosystem through conversion of energy into alternate forms. Ecosystems

with greater work efficiency more effectively decrease the temperature gradient imposed

on the ecosystem, giving the ecosystem a thermodynamic advantage. Since entropy flux

and work efficiency are not equivalent, both metrics are important for the interpretation of

thermodynamic advantage.

Our premise is that ecosystems with more plant functional groups – corresponding to

more complex dissipative structures – produce more total entropy and perform more work,

resulting in a higher work efficiency than ecosystems having only one plant functional group.

This leads to our main research question: Does the existence of multiple functional groups
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offer a thermodynamic advantage?

To address this question, we model and compare the thermodynamic behavior of rep-

resentative ecosystems consisting of multiple functional groups with that of hypothetical

single-functional-group scenarios comprising of the individual native functional groups that

make up the coexisting multiple functional groups. This is with the acknowledgement that

the energy, water, and nutrients at each site support the existing functional groups. We

do not alter the biomass or any additional parameters of these individual functional groups

when modeled individually because we do not know how the energy, nutrients, and water of

the ecosystem would support additional growth of these species if the others did not exist.

Self-organization is non-linear, subject to chance outcomes to which we cannot predict how

the alternative ecosystem would be structured. Thus, we compare the multi-group scenario

with the known composition of the individual functional groups as they are observed to dis-

cern if there are advantages that promote the thermodynamic feasibility, or drivers towards

the existing multi-group scenario. Using an open thermodynamic system framework and a

1-dimensional multi-layer canopy model (MLCan) which has been widely used and validated

[26–28, 52–55], we simulate three climatologically-different natural ecosystems to determine

the energy and entropy fluxes across the ecosystem control volume consisting of the canopy,

roots, and soil (Fig. A.1). Energy fluxes considered are shortwave and longwave radiation,

and sensible and latent heat. The model calculates the energy and entropy fluxes in each

layer over a two-year study period, 2004-2005. These years were chosen based on continuous

data availability in order to use the same study period across all study sites. Entropy flux,

work, and work efficiency at each timestep (half-hourly or hourly) are then calculated as the

net sum over all 21 layers (20 canopy layers and 1 layer for the ground surface) to complete

the ecosystem level analysis, providing a description of thermodynamic behavior that is able

to capture the subtle differences among different simulation scenarios.

Three sites from the FLUXNET2015 dataset [56] are modeled: Santa Rita Mesquite

(SRM) in Arizona, Willow Creek (WCR) in Wisconsin, and Tapajos National Forest (TAP)

in Pará, Brazil (Fig. A.2) [57–59]. The SRM and WCR sites are modeled with two functional

groups based on the composition of their dominant vegetation, and the TAP vegetation is

divided into four functional groups (based on the details in Domingues et al. [7]). For sim-
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plicity, the functional groups are abbreviated as: understory (UN), mid-canopy trees (MT),

overstory trees (OT), and lianas (L). The scenario with multiple functional groups is ab-

breviated as MG. Site-specific classifications can be found in Table A.1 of Appendix A.1.

At each location we compare the existing scenario of vegetation consisting of multiple func-

tional groups with hypothetical scenarios of each one of the individual functional groups

present. For all scenarios, we calculate the entropy flux (Jeco; see Equation 2.7), work (W ;

see Equation 2.11), and work efficiency (WE; see Equation 2.13). We define thermodynamic

advantage as the production of larger entropy fluxes as well as greater work efficiency by the

ecosystem as a whole. We hypothesize that the multiple-functional-group systems are more

thermodynamically advantageous than or similar to their respective single-group scenarios.

2.2 Methods

2.2.1 Experimental design

A multi-layer canopy-root-soil model (MLCan) [27, 52, 53] is used to calculate the en-

ergy and entropy fluxes for three climatologically-different ecosystems containing multiple

functional groups: water-limited Santa Rita Mesquite (SRM), energy-limited Willow Creek

(WCR), and nutrient-limited Tapajos National Forest (TAP) [60].

MLCan takes site-specific parameters and weather forcing data and computes the energy

and entropy fluxes and temperatures for each of the ecosystem layers. Entropy calculations

are based on both the energy fluxes and temperature of soil, air, and leaves (see Entropy

Calculations). The model is run for a simulation period of two years (2004-2005) at a

half-hourly timescale for SRM and WCR and an hourly timescale for TAP due to data avail-

ability. Weather forcing data were downloaded from FLUXNET2015: air temperature, air

pressure, global radiation, precipitation, wind speed, friction velocity, and relative humidity

[57–59]. Additional model input parameters can be found in Table A.2 of the Supplementary

Information.

The initial soil moisture and temperature profiles for each of the sites – and snow properties

for WCR – were produced from a spin-up of the model. The WCR and TAP sites used 2004
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LAI with 2003 forcing data for a spin-up of two years to provide the initial conditions for

the beginning of the 2004 simulation. For the SRM site, the FLUXNET2015 data were not

available for 2003, so 2004 data were used instead.

At each site, the model splits up the vegetation into plant functional groups. Domingues

et al. [7] demonstrates the importance of modeling ecosystems based on functional groups.

For WCR and SRM, the vegetation is represented by understory herbaceous species and

overstory trees. For TAP, a high biodiversity ecosystem in Amazonia, the vegetation is

further divided and represented by four groups: understory tree, mid-canopy tree, upper-

canopy tree, and upper-canopy liana [7]. See Table A.1 of the Supplementary Information

for functional group abbreviations.

The LAI data for all sites are taken from MODIS [61] and calibrated based on site docu-

mentation (Fig. A.4 of the Supplementary Information). The LAI is then partitioned into

two or four components based on the number of functional groups at each site. Additional

LAI information can be found in Appendix A.1.

MLCan has been previously validated for each of the sites considered [55, 62]. Since

entropy cannot be directly measured, we provide a comparison of the model outputted

latent heat fluxes with the observed fluxes at each site in Fig. A.5 of the Supplementary

Information for additional validation.

2.2.2 Site descriptions

The SRM site is located on the Santa Rita Experimental Range in southern Arizona

(31.8214◦N, 110.8661◦W). SRM has a hot semi-arid climate and consists of woody savannas

with mesquite trees (Prosopis velutina Woot.) and C4 grasses and subshrubs [62, 63].

The WCR (Willow Creek) site is located within the Chequamegon-Nicolet National Forest

in northern Wisconsin (45.8059◦N, 90.0799◦W) with a northern continental climate. It is

a deciduous broadleaf forest dominated by sugar maple (Acer saccharum Marsh.) with

understory shrubs, including bracken ferns (Pteridium aquilinum), and overstory seedlings

and saplings [64–66].

The TAP (Tapajos National Forest) site data is taken from the Santarem Km 67 Primary
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Forest site located in Belterra, Pará, Brazil (2.8567◦S, 54.9589◦W). This evergreen broadleaf

forest in Amazonian Brazil has a tropical monsoon climate with vegetation consisting of

dozens of known tree species and lianas [7, 55].

2.2.3 Entropy calculations

Entropy calculations are based on model-simulated temperature and energy at each of

the 20 canopy layers and the soil-surface layer, and results are scaled up to the ecosystem

level. No lateral exchange of fluxes are considered. The net sum of energy fluxes from all

layers of the ecosystem is equivalent to the total flux of energy across the boundary of the

control volume (Fig. A.1 of the Supplementary Information). These energy fluxes include

shortwave radiation (SW ), longwave radiation (LW ), latent heat (LE), and sensible heat

(H). All results are categorized as the flux of energy at the boundary entering (SWin, LWin)

or leaving (SWout, LWout, LE, H) the ecosystem. Because the total energy flux across the

ecosystem boundary is equal to the sum across the canopy layers in the model, the total

entropy flux across the boundary can also be taken as the cumulative sum of the entropy

fluxes from all layers of the ecosystem.

Entropy flux calculations are summarized in Table 2.1. All energy variables have units of

W/m2, entropy variables are in W/m2K, and temperatures are in K.

Entropy for LE and H calculations are based on simple heat transfer. The change in

entropy is:

dS =
dQ

T
(2.1)

where dQ is change in heat and T is temperature [13]. Thus, the flux of entropy for a given

energy flux (E) across a boundary is:

J =
E

T
. (2.2)

However, thermal radiation (SW and LW ) cannot be treated this simply. The entropy flux

for blackbody radiation is:

JBR =
4

3
σT 3 =

4

3

EBR
T

(2.3)

where σ is the Stefan-Boltzmann constant, and EBR is the blackbody radiation flux defined
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Table 2.1: Entropy Calculations

Energy Category Symbol Entropy Equation

Latent Heat JLE
ELE
Teq,LE

Sensible Heat JH
EH
Teq,H

Direct Shortwave JSWdirect
4
3
ESWdirect
Tsun

Incoming Longwave JLWin
4
3
ELWin
Tatm

×X(ε)

Outgoing Longwave JLWout
4
3
ELWout
Teq,LWout

×X(ε)

Diffuse Shortwave JSWdiffuse
4
3
ESWdiffuse

Tsun
×X(ξ)

X: reflection factor as a function of ξ or ε from Landsberg
and Tongue [15] and Wright et al. [16].
ξ: dilution factor based on scattering [14, 15, 17, 18]
ε: emissivity
Tsun: temperature of the sun (5760K)
Tatm: observed atmospheric temperature
Teq,j : equivalent temperature of the system for energy
category j ∈ {LWout, LE,H}; see Equation 2.5
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as σT 4 from the Stefan-Boltzmann Law [13, 14].

SW is considered blackbody radiation, and entropy fluxes for direct shortwave radiation

(JSWdirect) can be obtained by Equation 2.3. However, LW is considered non-blackbody

radiation, also called ‘diluted blackbody radiation’, which must include an additional factor

X(ε) to account for the entropy produced during the ‘diluted emission’ of radiation given

by an object’s emissivity, ε. This factor is defined as [15, 16]:

X(ε) = 1−
[ 45

4π4
ln (ε)(2.336− 0.26ε)

]
. (2.4)

Although SWdiffuse is still a blackbody radiation, it has been demonstrated [17] that the

entropy flux due to SWdiffuse can be treated similarly to non-blackbody radiation with a

new variable, ξ, in place of emissivity. ξ is the ‘dilution factor’ of radiation due to scatter-

ing, meaning it is the ratio of diffuse solar radiance on Earth’s surface to solar radiance in

extraterrestrial space [17]. Since diluted blackbody radiation (SWdiffuse) is mathematically

equivalent to non-blackbody radiation (LW ) when the dilution factor is equal to the emis-

sivity, ξ can also be plugged into Equation 2.4 to solve for the amplifying factor of entropy

production due to scattering, X(ξ) [14–16, 18].

Each of the entropy calculations in Table 2.1 have a temperature value corresponding to

the temperature of the energy’s source. For instance, shortwave radiation originates from

the sun, so the source temperature in its equations is Tsun. Likewise, longwave radiation is

assumed to originate from the atmosphere, leading to a corresponding temperature of Tatm.

However, LWout, LE, and H do not have a single source location, so we must calculate an

equivalent temperature (Teq) for each energy category based on the modeled temperatures

and weighted contribution of each layer to the total energy flux at the ecosystem boundary.

The equivalent temperatures for these three energy categories are calculated as follows:

Teq,j =
21∑
k=1

[Tk × ωj,k] (2.5)

where Teq,j is the equivalent temperature of energy category j such that j ∈ {LWout, LE,H}.

k refers to the layer in the ecosystem such that layers 1-20 are the canopy layers, and layer
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21 refers to the ground surface. Tk is the temperature of layer k, and ωj,k is the weight of

energy category j coming from layer k given by:

ωj,k =
Ej,k
Ej,eco

(2.6)

where Ej,k is the energy j leaving layer k, and Ej,eco is the total energy j leaving the ecosys-

tem.

The total entropy flux of the ecosystem (Jeco) is calculated by summing the energy cate-

gories:

Jeco =
∑

Jj + JSWout (2.7)

where JSWout is the entropy flux of diffuse shortwave radiation leaving the ecosystem. The

entropy flux per unit energy (EUE) is another way to view the thermodynamic state of

ecosystem vegetation. EUE is calculated as:

EUEj =
Jj
Ej

(2.8)

where EUEj is the entropy per unit energy in 1/K of energy category j. It follows that the

corresponding EUESWout = JSWout/ESWout, and the total ecosystem EUE is:

EUEeco =

∑
Jj + JSWout∑
Ej + ESWout

(2.9)

2.2.4 Work calculations

Work in an ecosystem represents the energy required to directly perform motion in the form

of heat, effectively decreasing the temperature gradient within the ecosystem. We assume

that LE and H are the primary regulators of temperature within a natural ecosystem, and

LWout is wasted energy. Additionally, we assume that the bottom of the control volume is

sufficiently deep that at the boundary the temperature is consistent and there is no loss of

heat (i.e., ground heat flux is ignored). Thus, work is estimated and calculated directly from
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LE, H, and change in internal energy due to photosynthesis, ∆Q:

W = LE +H + ∆Q (2.10)

where ∆Q is significantly less than LE and H and can be ignored. So work can be simplified

to:

W = LE +H (2.11)

Since work represents the ability of an ecosystem’s vegetation to deplete the driving tem-

perature gradient imposed upon the ecosystem, our analysis compares work with tempera-

ture gradient. We define temperature gradient as:

∆T

∆z
=
Tsurf − Tair

he
(2.12)

where Tsurf is the temperature of the soil surface, Tair is the temperature of the air in the top

layer of the ecosystem, and he is the ecosystem height (see Table A.2 in the Supplementary

Information).

Work efficiency is the work performed for the amount of radiation entering the ecosystem

defined as:

WE =
LE +H

ESWin + ELWin

=
W

Ein
(2.13)

Since each vegetation functional group partitions energy differently among the energy cat-

egories, work efficiency is a good way to compare thermodynamic behavior across model

scenarios at each site in a normalized way.

2.3 Results

The distributions of entropy fluxes at each timestep and the distributions of daily work

efficiency for the two-year study period are shown in Fig. 2.1. The three sites have different

ranges of entropy fluxes and work efficiencies due to distinctions in the local availabili-

ties of water, energy, and nutrients. WCR, SRM, and TAP have relatively energy-limited,
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water-limited, and nutrient-limited environments, respectively. Thus, the entropy and work

efficiencies should not be directly compared across sites. However, within each site the ranges

gradually change as we look across the different functional group scenarios. SRM has the

least variability amongst its functional groups, and TAP has the most. Considering the en-

tropy fluxes and work efficiencies, the multi-group scenarios all appear to have distributions

similar to or consisting of larger values than the other scenarios for each site.

Using the Miller Jacknife and Kolmogorov-Smirnov tests, the distributions of entropy

fluxes and work efficiency for the multiple functional group scenarios at each site are com-

pared for statistical significant differences with each of their individual functional groups.

Overall, the results indicate that multiple-functional-groups either have a thermodynamic

advantage over single-groups or they are not at a disadvantage due to greater or similar val-

ues of entropy flux and work efficiency. There was a statistically significant difference in the

distributions of entropy and work efficiency between the MG scenarios and each of individual

functional groups except for WCR-OT. This case is unique since WCR-UN only contributes

to 3% of the total leaf area of WCR-MG, meaning that the WCR-OT and WCR-MG are

very similar in vegetation composition. For all other cases, the values of entropy and work

efficiency were significantly larger in the MG scenarios, indicating thermodynamic advan-

tage. The following section lays out the statistical tests and related analyses for comparing

these entropy flux and work efficiency distributions.

2.3.1 Statistical analysis

To determine if the differences of entropy flux and work efficiency among scenarios at

each site are statistically significant, we perform two separate tests for entropy flux and

work efficiency. Since entropy flux distributions are positively skewed (Fig. 2.1a), we use the

variance as an indicator of the difference between them. To this end we use the distribution-

free Miller Jackknife (MJ) significance test [67, 68] for variance that does not assume that the

distributions come from populations with the same median. However, the work efficiency

distributions exhibit no such pattern (Fig. 2.1b), and, therefore, we use the two-sample

Kolmogorov-Smirnov (KS) test, which measures the maximum absolute difference between
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Figure 2.1: Entropy and work efficiency flux distributions. Illustration of the variability of
(a) entropy flux, and (b) work efficiency associated with each functional group and
coexisting multi-functional vegetation groups (see Table A.1). The distributions of entropy
fluxes are developed based on each time step of simulation for the two-year study period,
and the distributions of work efficiency are calculated based on daily energy fluxes (see
Equation 2.13). Means are shown as black diamonds.
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two empirical cumulative distribution functions (CDF) [69–71].

First, the entropy flux variances are compared with the MJ test. Because functional

group scenarios at each site are bounded on the lower end by similar values, if a distribu-

tion has a larger variance than another, then the two populations cannot be considered as

coming from the same continuous distribution, and the distribution with a larger variance

generally consists of larger values. For each site we test the null hypothesis, H0, that the

distribution of multiple-functional-group entropy fluxes and the distribution for each of its

single-functional-groups have the same variance. This is done with each functional group

present at each site (Table A.1). The alternate hypothesis, HA1, states that the distribution

of entropy fluxes from the multiple-functional-group has a larger variance than that of the

corresponding single-functional-group, meaning that the two populations do not belong to

the same distribution and the multi-group scenario consists of larger values than the single-

group scenario. The results from this test, shown in Table 2.2, indicate that H0 is rejected

in favor of HA1 at the 5% level (p < 0.05) for all scenarios except for the WCR-OT scenario.

This indicates that for these ecosystems the distributions of entropy fluxes consist of larger

values when multiple functional groups are present.

Using the KS test to compare work efficiency distributions for each site, we test the null

hypothesis, H0, that the multiple-functional-group measures of work efficiency and those for

each of its single-functional-groups are from the same continuous distribution, or population.

The alternate hypothesis, HA3, states that the CDFs of the entropy flux from the multi-

group scenario are smaller than those from the corresponding single-groups, meaning that

the multi-group scenarios consist of values that are larger than their associated single-group

scenarios. The results from this test, shown in Table 2.2, indicate that H0 is rejected in

favor of HA3 at the 5% level (p < 0.05) for all scenarios except for the WCR-OT scenario.

This indicates that the distributions for work efficiency are indeed larger when multiple

functional groups are present in these ecosystems, as indicated by a smaller CDF (Fig. A.3

of the Supplementary Information).

However, the tests of comparison for the WCR-OT scenario for both work efficiency and

entropy flux distributions have p-values larger than 0.05 (i.e., H0 cannot be rejected at the 5%

level). This means that we cannot say that the WCR multi-group entropy flux distribution
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has a variance larger than the OT single-group distribution or the multi-group work efficiency

scenario comes from a larger distribution than the OT single-group scenario. This is not

entirely surprising, as there is very little difference in LAI between these two scenarios;

the maximum difference in LAI is about 0.2 (Fig. A.4 in the Supplementary Information),

only 3% compared to the total WCR-MG LAI. This small increase in LAI from the single

to the multi-group scenario provides less opportunity for increased energy dissipation and

hence entropy production due to the smaller understory. Thus for completeness, we also

perform the MJ and KS tests in the opposite direction for the WCR-OT scenario with the

following alternative hypotheses. For the MJ test on entropy flux variances, HA2 states that

the distribution of entropy fluxes from the WCR multiple-functional-group has a smaller

variance than that of the OT single-functional-group, meaning that the two populations do

not belong to the same distribution and the multi-group scenario consists of smaller values

than the single-group scenario. For the KS test on work efficiency, HA4 states that the CDF

of the entropy fluxes from the WCR multiple-functional-group is larger than the CDF from

the OT single-functional-group, meaning that the multi-group scenario consists of values

that are smaller than the single-group scenario. The results from both tests, shown in Table

2.2, indicate that we again cannot reject H0 at the 5% significance level for WCR-OT.

Thus, although the WCR multi-group scenario compared to the OT scenario does not have

a significantly greater entropy flux variance or a greater work efficiency distribution, it also

does not have less variance or a smaller distribution. Overall, the test results indicate that

multiple-functional-groups have either greater or similar values of entropy flux and work

efficiency than the modeled scenarios of their individual functional groups.

2.3.2 Factors impacting entropy flux

The behavior of an ecosystem’s entropy is determined by the combined variation of its

individual energy fluxes leaving the system, such as: shortwave radiation (SW ), longwave

radiation (LW ), latent heat (LE), and sensible heat (H). For each scenario at each site, an

entropy per unit energy (EUE) value is computed for all energy fluxes (see Equation 2.8)

and reported as an average over the simulation period in Fig. 2.2a. Each ecosystem has its
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own partitioning of energy among these categories, leading to differences in total entropy

per unit energy leaving the ecosystem (EUEeco), corresponding to “Total Out” in Fig. 2.2a.

The EUE for each energy category can be explained by the temperature of its source.

SW originates from the sun, so its EUE is based on the temperature of the sun. However,

outgoing longwave radiation (LWout), LE, and H originate from the leaves as well as the soil

surface. The total outgoing energy of the ecosystem is a resultant of the energy leaving each

of the canopy layers including the soil surface within MLCan, each with its own temperature.

Therefore, we calculate temperature equivalences (Teq) for each of these energy categories

based on the weighted average of the temperature of each leaf and soil layer contributing

to the overall energy flux of that category (Fig. 2.2b, Equation 2.5). Entropy is calculated

directly from temperature (Table 2.1), leading to an important inverse relationship between

EUE and Teq.

Figure 2.2b shows that for each of the sites, across almost all energy categories the UN

scenario has the highest Teq and the multi-group scenario has the lowest. Due to the inverse

relationship between Teq and EUE, all of the EUE averages for each category in Fig. 2.2a

are smallest for the UN scenarios and largest in the multi-group scenarios, though some of

these differences are marginal. From this pattern, one would expect that this would lead

to a clearly greater overall EUEeco for all multi-group scenarios (“Total Out” in Fig. 2.2a).

Yet, this is not the case for all sites, as TAP is the only one in which the average EUEeco

varies considerably among functional group scenarios.

Although EUE averages tend to increase with leaf area index (LAI) and when multiple

functional groups coexist, each energy category has different relative values of EUE. Further,

EUE can be interpreted as an indicator of how degraded a particular form of energy is and

the ability of that energy to perform additional work. SW has the least EUE across all

sites and scenarios (Fig. 2.2a), so it has the greatest capacity for work to be done; plants

are able to use this energy to perform work. Yet, SW is still radiative energy, so it does not

perform work itself. On the other end, LWout has the highest EUE of the energy categories

studied here, meaning it is the most degraded with little capacity for additional work to

be performed from it. In the middle, LE and H are more degraded than SW , but they

are still able to perform physical work in the ecosystem through convection and conduction
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Figure 2.2: Entropy per unit energy and temperature equivalences. (a) Entropy per unit
energy (EUE) by energy category for all sites (see Equation 2.8). Colors refer to
vegetation functional groups: understory (UN), mid-trees (MT), overstory trees (OT),
lianas (L), and multi-group consisting of all functional types observed in the ecosystem. In
general for each energy category, more EUE is associated with increasing leaf area index
(LAI). (b) Temperature equivalences (Teq) by energy category for all sites. In general for
each energy category, temperatures are cooler with increasing LAI. Despite similar
equivalent temperatures for emitted longwave radiation (LWout), latent heat (LE), and
sensible heat (H), LWout is by far the greatest contributor to EUEeco (see Equation 2.9).
[The weather forcing for all model simulations is the same across scenarios for each site.]
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and contribute to the redistribution of heat throughout the vertical profile of the ecosystem.

Since we are only considering the fluxes that enter and leave the ecosystem control volume in

this analysis and all irreversible work releases heat, LE and H are also proxies for the work

performed within the ecosystem internally (i.e., by the vegetation itself). Overall, when an

ecosystem has low thermodynamic efficiency and high LWout, it degrades the incoming SW

quickly without performing much work within the ecosystem and constitutes wasted energy.

However, higher values of LE and H leaving the ecosystem mean that more work has been

performed.

Since each scenario partitions the incoming energy differently throughout the ecosystem,

the considerably higher overall EUE for LWout has important implications for overall EUEeco

and entropy fluxes, yielding larger values when more outgoing energy is allocated towards

LWout. Figure 2.3a displays the average partitioning of incoming radiation among the var-

ious energy categories at TAP, and Fig. 2.3b indicates the corresponding entropy fluxes

presented as percentages of the incoming entropy flux and disaggregated into different en-

ergy categories. The energy and associated entropy entering the ecosystem are the same for

all functional groups, but the outgoing fluxes vary significantly among them. Due to conser-

vation of energy, the outgoing energy for all scenarios corresponds to 100% of the incoming

radiation. Alternatively for entropy, this percentage is greater than the 100%, indicating

entropy production (shaded in grey). At TAP and similarly at the other two sites, the

multi-group scenario produces more total entropy on average than the other two scenarios.

However, the contribution of each energy category towards the total entropy differs among

functional groups. As LAI increases from UN to OT and with the addition of multiple func-

tional groups, the proportion of LE and H, or work, increases while the outgoing radiation

decreases (Fig. 2.3). The UN scenario partitions more energy towards LWout than the OT

and multi-group scenarios. Since LW has the largest EUE of all the energy categories

(Fig. 2.2a), its percentages in Fig. 2.3b are larger than in Fig. 2.3a. This observation,

consistent across all sites, indicates that UN scenarios are able to make up for lower per-

forming EUE values by partitioning more energy towards the higher entropy-producing

energy category, LWout. Thus, even though the UN scenario has the lowest EUE for all

energy categories, its total EUEeco – and overall ability to degrade the incoming SW –
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and entropy production are similar to the other scenarios since it has more outgoing energy

partitioned towards the largest EUE category, LWout. However, EUEeco is an indication of

energy degradation, not work performed. Thus, the additional assessment of work and work

efficiency is necessary for the interpretation of thermodynamic advantage.

2.3.3 Work as an indicator of self-organization

As discussed in the previous section, partitioning of energy and entropy fluxes are impor-

tant for understanding the overall thermodynamic behavior of ecosystems. Energy fluxes

with large EUE values result in greater entropy production for an ecosystem but do not

always yield more work performed. Work – estimated as the sum of the ecosystem’s latent

and sensible heat fluxes (W ; Equation 2.11) – represents the ability of an ecosystem to

diminish the temperature gradient through the ecosystem. Despite having the largest EUE

value, LWout is not a component of work since it is a passive response to the temperature

state. Figure 2.4 displays the relationships of work versus temperature gradient between the

atmosphere and land surface (∆T/∆z; Equation 4.4) for the functional group scenarios at

each site. Work performed within an ecosystem has a positive nonlinear relationship with

temperature gradient across all scenarios. Further, each functional group scenario is fitted

to a power function: W = a(∆T/∆z)b. At each site a power law is observed; higher powers

(b) correspond to functional groups with larger LAI, and except for the SRM-UN scenario,

the highest power at each site corresponds to the multiple-functional-group scenario. This

means that the work performed by the ecosystems with multiple functional groups has an

exponentially greater response to marginal changes in temperature gradient as it increases.

To better understand the relationship between work and temperature gradients, we re-

fer to the 1994 paper in which Schneider and Kay [11] theoretically explored Silveston’s

[72] Bénard cell experiments of heating an enclosed fluid from below. They demonstrated

that without self-organization, a system’s work performed from conduction alone has a lin-

ear relationship with the temperature gradient. However, when self-organization in the

form of convection occurs at a critical point, Bénard cells form, the relationship becomes

nonlinear, and more work is performed for each additional unit increase in gradient [11].
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In this experiment, analysis of data in which no self-organization occurred at all demon-

strated a linear relationship between work and gradient. Alternatively, when Bénard cells

formed (i.e., self-organization occurred) power law relationships between work and gradi-

ent emerged with higher-degree powers corresponding to greater dissipation rates due to

increased convection. We give this example not to study the emergence of the phenomena,

but as a means of comparing the behavior of possible end states: with and without self-

organization. If we take the functional group scenarios as possible end states with various

levels of self-organization, the interpretation for each of our sites is consistent with those

of the Bénard cells: with self-organization, there is a nonlinear relationship between work

and gradient with larger exponents in the power law relationship corresponding to more

advanced levels of self-organization. This yields exponentially more work performed in the

more highly organized multiple-functional-group ecosystem scenarios. From the combined

results of Schneider and Kay and Fig. 2.4, we infer that self-organization is the leading driver

of the nonlinearity shown in work-gradient plots. This supports the proposition that the ex-

istence of multiple functional groups reflects a higher degree of self-organization that results

in nonlinear increases of work performed in response to marginal increases in temperature

gradient, reflecting thermodynamic advantage.

2.4 Discussion

Through the concepts of entropy and work efficiency, this chapter establishes a framework

for identifying thermodynamic advantage for the spontaneous self-organization of ecosys-

tems towards a vegetation structure that includes multiple functional groups. We identify

decreased canopy temperature, increased LAI, and greater partitioning of energy towards

LWout as important factors amplifying the entropy production of an ecosystem. From these

factors, one can deduce the relative changes in entropy flux and, thus, changes in thermo-

dynamic behavior of an ecosystem. Entropy provides insights into the total disorder of a

system. The second law of thermodynamics requires that closed systems yield increases in

entropy over time. Although, ecosystems are open thermodynamic systems, scientists have

correlated greater entropy production as a driver of self-organization [18, 45]. However, not
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all energy and hence entropy is productive in terms of thermodynamic advantage. Thus, we

provide work efficiency as another important component of thermodynamic advantage and

the directionality of self-organization.

Work efficiency captures the ability of an ecosystem to perform work based on the energy

throughflow of the system. Work without context of incoming radiation does not tell much

about the performance of an ecosystem relative to others. Since all functional group sce-

narios at each site receive the same incoming radiation in this study, either work or work

efficiency can be used as metrics of thermodynamic advantage. However, work efficiency is

a more attractive metric for further study as it normalizes an ecosystem based on its local

availability of energy, allowing for comparison of ecosystems across multiple climates. Thus,

work efficiency provides promise for future research to compare ecosystems with varying

energy availabilities and external environments directly.

Additionally, work efficiency measures an ecosystem’s ability to rapidly convert incoming

radiation into alternate forms of energy that disperse throughout the ecosystem control vol-

ume and diminish the imposed temperature gradient. Work efficiency helps us understand

the reorganization of available energy entering an ecosystem towards thermodynamically-

productive uses – meaning depleting the imposed temperature gradient. According to ther-

modynamic theory, all systems work to decrease gradients of their state variables, which in

turn drive the movement of the energy and mass from high concentrations to low concen-

trations (i.e., high to low temperatures) [12]. In this study, work exhibits a nonlinear power

law relationship with temperature gradient. This means that exponentially more work is

performed to combat the greater temperature differences from the earth surface to the at-

mosphere above the canopy. For the sites studied here, scenarios with multiple functional

groups exhibit the highest power law, meaning that the MG structure is more efficient at

depleting the driving temperature gradient. This is a demonstration of high work efficiency.

Since structures that perform more work for a given temperature gradient have a thermody-

namic advantage over those with lower efficiencies, ecosystems have a natural tendency to

self-organize to this MG structure.

Because ecosystems are formed and evolve through a process of random fluctuations, there

is a nonzero statistical probability for the existence of any possible vegetation structure or
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state. The state exhibiting thermodynamic advantage identifies the state with the highest

probability of occurrence. This does not mean that the advantageous structure will always

result. In all of our sites, the highest work efficiency corresponds to the existing MG scenario.

Thus, the ecosystems exist in the highest probability thermodynamically-advantageous state.

The outcomes of this work provide valuable insight into the self-organization of natu-

ral ecosystems. Thus far, we have identified that when multiple functional groups coexist

this structure exhibits a thermodynamic advantage over other possible individual functional

group scenarios. Thus, ecosystems will have a higher probability of self-organizing towards

this greater work efficiency state. Additionally, this work highlights new areas for further

study. The framework of thermodynamic advantage through greater entropy production and

work efficiency could be applied to other ecosystem structures, such as the existence of indi-

vidual functional groups in nature. Further, this framework could help scientists understand

how human-induced perturbations could impact the thermodynamic behavior and alter the

most advantageous state. Thus, we propose the concepts of entropy and work efficiency as

valuable contributions to the basic understanding of the existence of a particular vegetation

structure and present thermodynamic advantage as a tool for future use in understanding

and studying the stability and behavior of ecosystem self-organization.

2.5 Additional Information

Supplementary information is available for this chapter in Appendix A.1.
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CHAPTER 3

THERMODYNAMIC BASIS FOR THE
DEMARCATION OF ARCTIC AND ALPINE

TREELINES

3.1 Introduction

Explaining the heterogeneous organization of vegetation across landscapes has proved

both a puzzling and an inspiring concept as patterns have formed naturally across the world

– one such pattern being the existence of a treeline, i.e., the demarcation zone between

forestland and vegetation without trees [73, 74]. After decades of study, there is still debate

among ecologists and biologists over the mechanisms that limit the presence of trees beyond

treelines. Current explanations are rooted in, but not limited to, consideration of factors

such as excessive light and wind, limited CO2, and low temperatures [73, 75–77]. While these

explanations are based on ideas of limited resources, we instead examine the question of what

determines the existence of a treeline from the perspective of thermodynamic feasibility.

It is now generally accepted that observed patterns of vegetation composition and its

organization are a result of self-organization, or the spontaneous emergence of pattern with-

out external predetermination [78, 79]. By framing ecosystems as open thermodynamic

systems, we explore further the concept of thermodynamic feasibility and its role in the

self-organization of vegetation structure. Vegetation structure consists of composition (i.e.,

the number and type of functional groups) and organizational patterns on the landscape.

We refer to this generally as vegetation structure and utilize a one-dimensional model with

no lateral transport of energy or matter under the assumption that the composition and

pattern remain spatially uniform. To balance model performance and accuracy, standing

plant species are aggregated into functional groups (i.e., evergreen needleleaf trees, shrubs,

grasses; see Table 3.1) based on literature [7–10]. We present the case that observed orga-

nization reflected in the demarcation of differing vegetation structures on either side of a
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treeline is established in tandem with vertical thermodynamic gradients at a given location,

driven by the incoming energy into an ecosystem. In other words, we hypothesize that beyond

a treeline, the existence of trees is prevented by conditions of thermodynamic infeasibility.

The application of thermodynamic theory to ecology has been studied for the better part

of the last century through the introduction of theoretical thermodynamic properties, such

as entropy and exergy, into environmental systems. Exergy, similar to free energy, is defined

as the maximum work capacity of energy and has been used in the context of ecosystems

(eco-exergy) to define their thermodynamic efficiency, or the ability of an ecosystem to per-

form work through greater exergy storage [21, 22, 80]. Subsequently, the concept of exergy

degradation was developed, asserting that open thermodynamic systems will evolve based

on the strength of the applied gradient of exergy on the system and will undergo irreversible

processes to dissipate energy and destroy the gradient through all means available [11, 25].

As this theory applies to ecosystems, fluxes of mass or energy from the external environ-

ment (i.e., above the canopy) result in concentration gradients within the system itself.

State variables will transition along these gradients according to the second law of thermo-

dynamics. When the magnitude of incoming energy and consequent spatial imbalance of

energy becomes great enough, dissipative structures spontaneously emerge, or self-organize,

and establish temperature gradients consistent with the dissipative need of the ecosystem

[11, 12].

This work has been vital for establishing the applicability of thermodynamic theory to

ecological systems. However, a major challenge, as it applies to ecosystems, has been the

quantification of these thermodynamic properties. The calculation of exergy for an ecosystem

requires knowledge of the equivalent ecosystem in thermodynamic equilibrium, which is

currently infeasible to estimate [21]. Without this reference state, exergy estimates are not

possible beyond orders of magnitude for an ecosystem. Further, eco-exergy is calculated

solely based on the chemical energy of the biomass in the ecosystem [21]; thus, it does

not take into account interactions among functional groups. Therefore, these quantification

techniques are not applicable at the scale or level of detail needed to compare variations in

vegetation structure. Thus, in this chapter rather than quantifying an ecosystem’s exergy –

the ability of an ecosystem to perform work – we estimate the actual work performed by an

39



ecosystem. This is estimated as the 1-D transport of heat in the form of latent and sensible

heat, driven by the vertical imbalance of energy structured by both the incoming energy and

the vegetation structure.

Ecosystem functions are driven, in part, by vertical temperature gradients, from the earth

surface to the air above the canopy, resulting from the incoming solar radiation and sub-

sequent dissipation of this energy by the self-organized vegetation structure [11, 35]. This

creates a directionality of dissipation of incident radiation as heat out of the ecosystem from

higher surface temperatures to lower air temperatures. Throughout this chapter, we measure

work through the net sum of heat leaving the ecosystem as latent and sensible heat – which

can either be positive or negative depending on the direction of the resultant temperature

gradient. This temperature gradient (Equation 4.4) emerges as a result of self-organization

through feedback between the incoming radiation, both shortwave and longwave, and local

environmental conditions and the heat dissipation and work performed by the vegetation.

The presence of ground cover, such as snow, is impacted by vegetation structure and further

influences the thermal environment and temperature gradient.

A recent study concluded that at sites where multiple functional groups exist (e.g., forests),

the vegetation structure in which all groups co-exist and are modeled together with inter-

actions is more thermodynamically advantageous and, thus, more likely to occur than each

of the individual functional groups that the forest comprises modeled separately [35]. Ther-

modynamic advantage is defined by the production of larger fluxes of entropy, more work

performed, and higher work efficiency – a quantity that captures how much of the incoming

energy is converted into forms useful for actively dissipating heat. It is possible to envision

that under certain environmental conditions, the thermodynamic advantage, or the ther-

modynamic feasibility, offered by the existence of multiple functional groups is not tenable.

The demarcation exhibited by treelines presents an ideal case to explore this scenario, in

that there is a distinct transition from multiple functional groups below the treeline to a

single functional group above it. In this chapter, we examine vegetation above and below

Arctic and alpine treelines to determine whether the absence of trees in ecosystems above

treelines are thermodynamically infeasible. Simply, we seek to answer the following research

question: Is the non-existence of trees beyond the region demarcated as a treeline a reflection
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of thermodynamic infeasibility associated with the presence of trees, and if so, how is this

infeasibility exhibited?

To address this question, we use an extensively validated multi-layer 1-D physics-based

model, MLCan [27, 28, 35, 52–55, 62], consisting of 20 above-ground layers, 1 ground surface

layer, and 12 below-ground layers (see Supplementary Information). This model is chosen

because of its ability to capture interactions among functional groups, such as the impact of

shading on understory vegetation and the resulting thermal environment within the canopy

[28]. The model output is used to compare the thermodynamic work performed at paired

sites above and below the respective treelines for three different locations: the Italian Alps

(IT), the United States Rocky Mountains (US), and the Western Canadian Taiga-Tundra

(CA) (Fig. 3.1; see Site Descriptions). For each site pair, four scenarios are performed

(Table 3.1): 1) The subalpine/sub-Arctic forest ecosystems are modeled as they exist with

multiple functional groups (Fig. 3.2a, left). 2) The alpine/Arctic ecosystems are modeled as

they exist with one functional group (i.e., shrubs or grasses; Fig. 3.2a, right). 3) We construct

counterfactual scenarios above the treeline in which the vegetation of the subalpine or sub-

Arctic forest is simulated with the environmental conditions and parameters of the alpine

meadow or Arctic tundra (i.e., adding hypothetical trees where none exist; Fig. 3.2b). 4) As

a control, a final counterfactual scenario is constructed below the treeline in which we model

the understory of the subalpine/sub-Arctic forest individually (i.e., removing trees from the

existing ecosystem).

The simulation of these four scenarios facilitates comparison of the existing vegetation

structure of each site with the corresponding counterfactual scenarios. By varying the model

inputs of vegetation present at each site while holding the environmental conditions and site

specific-parameters consistent, we are able to directly compare thermodynamic outcomes as

a result of varying vegetation structure and determine whether the simulated forest coun-

terfactual scenario is thermodynamically feasible. The analysis supports the conclusion that

thermodynamic feasibility is an important and complementary condition to the usual consid-

erations of resource availability, such as water and nutrients, which determines the organizing

form and function of ecosystems.
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Table 3.1: Simulation scenarios with observed and hypothetical vegetation

Abbrev. UN FG OT FG Counterfactual? Site ID

Italian Alps
IT-Alp grasses – no MBo
IT-Tr suppr DT ENT yes MBo
IT-For suppr DT ENT no Lav
IT-Un suppr DT – yes Lav

United States
Rocky Mountains
US-Alp sedge – no T-Van
US-Tr shrubs ENT yes T-Van
US-For shrubs ENT no NR1
US-Un shrubs – yes NR1

Western Canadian
Taiga-Tundra
CA-Arc shrubs – no TVC
CA-Tr shrubs ENT yes TVC
CA-For shrubs ENT no HPC
CA-Un shrubs – yes HPC
‘
The simulation abbreviations are defined as ’location’-’scenario’, where
the locations are the Italian Alps (IT), United States Rocky Mountains
(US), and the Western Canadian Taiga-Tundra (CA); and the scenarios
are defined as follows: Alp – alpine meadow or fellfield, Arc – Arctic tun-
dra, Tr – alpine/Arctic site with simulated trees, For – subalpine/sub-
Arctic forest, Un – subalpine/sub-Arctic forest understory simulated
without overstory trees. Throughout this chapter, ‘X-’ is used to repre-
sent all locations (e.g., X-Un encompasses IT-Un, US-Un, and CA-Un).
The understory (UN) and overstory (OT) functional groups (FG) for
each modeled scenario are identified based on the Site IDs described
in the Site Descriptions section of the Materials and Methods. ‘suppr
DT’ refers to suppressed deciduous trees, and ‘ENT’ refers to evergreen
needleleaf trees. The ‘Counterfactual’ column indicates whether syn-
thetic vegetation was simulated.
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3.2 Materials and Methods

We use the extensively validated multi-layer canopy-root-soil model, MLCan [27, 28, 35,

52–55, 62], to simulate and study three pairs of sites, each pair corresponding to ecosystems

above and below the treeline. We vary the model inputs of vegetation present at each of the

sites while holding the environmental conditions and site specific-parameters consistent to

directly compare thermodynamic changes and determine the most advantageous scenario.

The site descriptions are documented below. Additional information on MLCan, includ-

ing model updates and site-specific validation and parameterization can be found in the

Supplementary Information (Appendix A.1).

3.2.1 Site Descriptions

The eddy covariance data for the IT sites are taken from the Lavarone (Lav) and Monte

Bondone (MBo) sites in the FLUXNET2015 network [81, 82], located in the Trento province

in the Eastern Italian Alps, with a 200m elevation difference. The LAV site is an evergreen

needle-leaf subalpine forest at 1300m above mean sea level (MSL) (45.95620◦N, 11.28132◦E),

consisting of predominantly European silver fir (Abies alba Mill.) with a suppressed beech

(Fagus sylvatica L.) understory [83]. The MBO site is an alpine meadow located on a moun-

tain karst plateau at 1500m above MSL (Viote del Monte Bondone; 46.01468◦N, 11.04583◦E),

dominated by perennial bunchgrass (Nardus stricta L.) [84, 85].

The eddy covariance data for the US sites are taken from the Niwot Ridge (NR1) site in

the AmeriFlux network [86] and the “T-Van” location in Knowles et al. [87, 88], located

5km apart in distance with a 430m elevation difference near the Continental Divide in the

United States Rocky Mountains in Colorado. The NR1 site (40.0329◦N, 105.5464◦W; 3050m

elevation) is an evergreen needleleaf forest dominated by subalpine fir (Abies lasiocarpa var.

bifolia) and Englemann spruce (Picea engelmannii) with sparse understory vegetation com-

prised of wild blueberry (Vaccinium myrtillus) [33, 89, 90]. The T-Van site (40.05305◦N;

105.58639◦W; 3480m above MSL) is an alpine fellfield consisting of curly sedge (Carex ru-

pestris) [87, 91].
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The eddy covariance data for the CA sites are taken from the Havikpak Creek (HPC)

and Trail Valley Creek (TVC) AmeriFlux sites [92, 93], located 50km apart on either side

of the Arctic treeline in Northwest Territories along the Western Canadian Taiga-Tundra

interface. The sites consist of peat soil above mineral soil and continuous permafrost [31].

HPC (68.32029◦N, 133.51878◦W; 80m above MSL) exists in the forest-tundra ecotone in the

Taiga. It is a sparse needleleaf boreal forest dominated by black spruce (Picea mariana)

with small shrub species (Ledum sp., Ledum groenlandicum) at 80m elevation [94]. TVC

(68.7462◦N, 133.5017◦W; 85m above MSL) is an Arctic tundra site consisting of short grasses

and berry species (Ledum groenlandicum) [95–97].

Additional information for all sites, including leaf area index and data pre-processing, can

be found in the Supplementary Information (Appendix A.1).

3.3 Results

Model simulations from the three site pairs highlight two primary conditions of thermo-

dynamic infeasibility that could help explain the non-existence of trees beyond a treeline.

The first thermodynamic infeasibility is associated with alpine/Arctic temperature inver-

sions (i.e., negative temperature gradients), which result in prolonged periods of negative

work for the counterfactual tree scenarios for all three locations. The second manifests in

the counterfactual alpine tree scenarios, (IT-Tr and US-Tr) as temperature-driven feedbacks

lead to a decrease in net carbon gain or unsustainable net carbon loss from the vegetation’s

leaves for the two alpine sites.

In this section, we elucidate the relationship of work with temperature gradient; highlight

the two conditions of thermodynamic infeasibility through site examples; and illustrate how

these conditions of infeasibility translate into thermodynamic limits that explain the self-

organization of differing vegetation structure on either side of a treeline.
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3.3.1 Thermodynamic Behavior

Temperature gradient and work are key concepts for understanding thermodynamic be-

havior and the self-organization of ecosystem vegetation. For our study we calculate the

resultant temperature gradient, arising as a result of self-organization of the thermal envi-

ronment surrounding the canopy, as:

∆T

∆z
=
Tsurf − Tair

he
(3.1)

where Tsurf is the temperature of the soil surface in Kelvin, Tair is the temperature of the

air above the canopy in Kelvin, and he is the ecosystem height determined by the height

of the subalpine or sub-Arctic trees at each location (see Table A.3 in the Supplementary

Information) [35].

In our 1-D model simulations, heat fluxes are assumed positive in the positive z direction,

leaving the ecosystem control volume into the atmosphere above the canopy. However, work

is defined based on the direction of the temperature gradient. When the work performed

by the ecosystem, as measured by the sum of latent and sensible heat, is consistent with

the temperature gradient it is designated as positive work, otherwise as negative work. To

demonstrate this relationship, work is augmented from a prior formulation [35] as follows:

Work = (LE +H)× sign(∆T ) (3.2)

in which work, latent heat (LE), and sensible heat (H) are in units of W/m2, and ∆T =

Tsurf−Tair. Since work considers total net fluxes of heat, internal ecosystem energy dynamics

are taken into account in this formulation through signatures, such as heat loss, across the

control volume. Further, the heat leaving the bottom of the control volume due to water

loss is negligible, and thus ignored.

Based on these calculations, an ecosystem’s ability to perform work manifests into four

distinct cases depending on the sign of the resultant temperature gradient and the net loss

or gain of heat driven by the thermal environment derived from present ground cover, such

as vegetation or snow: 1) First and most common during the day when photosynthesis is
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Figure 3.2: Conceptual diagram of temperature gradients. The W+ arrow indicates the
positive direction of work performed through heat transport. Although in different
directions, in both cases (a) and (b), the work performed is positive because heat moves
from high to low temperatures. (a) Typical summertime temperature gradients are positive
for the two real scenarios: subalpine/ sub-Arctic forest (left) and alpine tundra/Arctic
meadow (right). (b) A conceptual temperature inversion, or negative temperature
gradient, which arise when alpine/Arctic forest are simulated as counterfactuals.

occurring, the temperature of the earth surface is typically warmer than the air above the

canopy, and heat leaves the ecosystem upward along the temperature gradient, corresponding

to positive work (Fig. 3.2a). 2) The temperature of the earth surface is warmer than the air

above the canopy, but there is a net heat gain within the ecosystem, meaning that the heat

moves into the ecosystem against the direction of the temperature gradient. This case is

rare and corresponds to negative work. 3) Common during the night, a phenomena called a

temperature inversion emerges. In this case, the temperature gradient can become negative,

meaning that the temperature of the air above the canopy is greater than the temperature

of the earth surface. As heat enters the ecosystem to warm the surface, positive work is

performed since the heat is still moving along the temperature gradient (Fig. 3.2b). 4)

During snowmelt conditions, particularly for Arctic and alpine ecosystems, temperature

inversions also emerge [98, 99]. When this occurs and the ecosystem experiences a net heat

loss through latent and sensible heat from the canopy, the heat leaving the ecosystem travels

in the opposite direction of the temperature gradient. Thus, in this case, ecosystems perform

negative work. Our findings demonstrate how extended periods of time in this last case

of work lead to thermodynamic infeasibility for the alpine/Arctic ecosystem counterfactual
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vegetation scenarios; i.e., the ecosystems cannot be sustained in these conditions and, hence,

they do not occur in nature.

3.3.2 Negative Work

By visualizing the work performed through dissipation of heat for a resultant temperature

gradient, we are able to assess the thermodynamic feasibility of the various scenarios for

each ecosystem. Figure 3.3 displays the work performed versus the resultant temperature

gradient at each half-hourly timestep for all sites and scenarios. First considering the scenar-

ios below the treeline, the subalpine/sub-Arctic forest (green) is more thermodynamically

advantageous than the simulated understory alone (black) for each location. This advantage

is demonstrated by greater work performed by the X-For scenarios (i.e., IT-For, US-For, and

CA-For; see Table 3.1) for unit increases in resultant temperature gradient, indicating that

the existing forest vegetation self-organizes its thermal environment such that it more rapidly

dissipates heat from the ecosystem. This result is consistent with conclusions from previous

work [35] that the co-existence of multiple functional groups in natural forested ecosystems

is more thermodynamically advantageous than each of the individual groups comprising the

forest vegetation structure.

For the subalpine/sub-Arctic sites, resultant temperature gradients are generally positive,

and under all scenarios positive work is performed (i.e the ecosystems exhibit a net heat loss

away from the land surface consistent with the temperature gradient; Fig. 3.2a). Thus, there

is no indication that either of these vegetation scenarios should be considered infeasible since

they do not perform considerable negative work.

However, the alpine/Arctic sites with both counterfactual and existing vegetation struc-

tures exhibit both positive and negative temperature gradients (i.e., temperature inversions).

When no temperature inversion is present, the same trend is apparent as before in which

the simulated forests (red) at each site perform more work for the corresponding resultant

temperature gradient than the existing shrubs/grasses (blue). Considering merely the pos-

itive temperature gradient, the simulated forests at the alpine/Arctic sites actually seem

more advantageous. However, alpine/Arctic environmental conditions for all three locations
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have considerable time periods that exhibit temperature inversions and large magnitudes of

negative work (i.e the ecosystems exhibit a net heat loss upward in the opposite direction

of the temperature gradient; Fig. 3.2b). This large amount of negative work performed in-

dicates a thermodynamic infeasibility through unsustainable heat loss occurring due to the

counterfactual trees modeled at the alpine/Arctic sites.

In the three pairs of sites studied, the majority of temperature inversions occur during

snowmelt conditions (see Figs. 3.4 & A.10). Snowmelt temperature inversions occur when

the air temperature is warmer than the melting snow surface (Fig. 3.2b). Despite warmer air

temperatures, the phase transition associated with snowmelt keeps the surface temperature

low. Temperature inversions trap heat within the upper canopy, causing high temperatures

in the upper and mid-canopy layers while layers near the earth surface remain cool due to

shading. The shrub/grass (X-Alp/Arc), the simulated trees (X-Tr), and occasionally the

subalpine forest (X-For) scenarios exhibit inversions during snowmelt. However, excessive

shading from added leaf area, measured as leaf area index (LAI; see Fig. A.9), from the

simulated trees in the X-Tr scenarios extends the snow cover period and causes the snow to

take longer to melt and the ecosystem to remain in this inverted state significantly longer,

sometimes well into the summer (see Figs. 3.5a and A.11). The result is a net loss of heat

upward from the middle and upper layers of the canopy while the lower layers of the control

volume at and near the earth surface remain cooler. Thus, heat is lost in the opposite

direction of the resultant temperature gradient, corresponding to negative work. Since the

LAI of the trees at the sub-Arctic site only reaches around 0.5, the role of tree leaf area

on temperature inversions in the CA-Tr scenario is less pronounced, and the duration of

temperature inversions is shorter than the US-Tr and IT-Tr scenarios. Alternatively, the

existing vegetation scenarios (X-For, X-Un, and X-Alp/Arc) allow for sunlight and heat to

penetrate into the lower canopy and warm the melting snow to quickly revert the ecosystem

to positive temperature gradients (Fig. 3.2a).

To demonstrate the prevalence of temperature inversions and negative work performed by

the alpine counterfactual forest vegetation, Figure 3.4 displays the average daily work for the

scenarios in the United States Rocky Mountains. The US-Alp scenario (blue) experiences

negative work briefly during snowmelt (around day 140). The subalpine forest (green; US-
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Figure 3.4: Average daily time series of work for the entire study period (2008-2013) for
scenarios in the United States Rocky Mountains. The top panel demonstrates the
prolonged negative work (i.e., heat transport in the opposite direction of the temperature
gradient) associated with snowmelt and winter temperature inversions of the simulated
alpine forest (red; US-Tr), indicating that this counterfactual is thermodynamically
infeasible. The existing alpine and subalpine vegetation (US-Alp, blue & US-For, green)
generally only experience negative work during snowmelt conditions. The subalpine forest
(green; US-For) experiences negative work sporadically for short durations during the
winter; these instances are a function of snowmelt as well since the snowpack does not
persist throughout the winter at this site (see Fig. 3.5a).
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For) experiences negative work sporadically for short durations during the winter; these

instances are a function of snowmelt as well since the snowpack does not persist throughout

the winter at this site (see Fig. 3.5a). Alternatively, the US-Tr scenario (red) experiences long

durations of negative work during both snowmelt (approximately days 140-210) and winter

conditions (around day 300). The IT-Tr and CA-Tr sites experience similar persistence

of negative work behavior during snowmelt (see Appendix A.2). The long durations of

temperature inversions indicate a thermodynamic infeasibility since ecosystems would not

be able to sustain this rate of heat dissipation without energy reaching the lower canopy and

soil surface. Based on the analysis of the X-Tr scenarios for all three locations, extended

periods of unfavorable negative work demonstrates that the existence of trees beyond a

treeline would be thermodynamically infeasible.

3.3.3 Net Carbon Loss

In addition to the thermodynamic infeasibility associated with negative work, the extended

periods of negative work also lead to another infeasibility. In the alpine counterfactual trees

scenarios, these extended periods of negative work lead to excessive net leaf carbon loss at the

US-Tr alpine site and a carbon disadvantage at the IT-Tr alpine site. The additional shade

created by the greater leaf area of the simulated forest vegetation in the alpine environmental

conditions of the these two sites leads to an extended snowmelt season with temperature

inversions and negative work performed sometimes well into the summer. To illustrate

this behavior, Figure 3.5a displays the snow depth and average daily photosynthetic and

above-ground autotrophic respiration rates obtained from model simulations for each United

States Rocky Mountains scenario during 2009. The Italian Alps scenarios exhibit similar

(though less extreme) behavior (see Fig. A.11 in the Supplementary Information). Upon

comparing the snow depth trends in the top two panels, the simulated forest ecosystem (US-

Tr) accumulates more snow than the alpine fellfield (US-Alp) and has snowpack present well

into July, aided by increased shade from the trees. The extended presence of snow in the

US-Tr ecosystem prevents photosynthesis from switching on in April or May as it does in

the other scenarios [100]. The active photosynthetic period for US-Tr instead begins in July
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and ends in October, slightly earlier than the other scenarios as well. In contrast, respiration

continues to occur throughout the entirety of the summer for all scenarios [101]. Thus, the

shorter photosynthetic period leads to an overall net loss in CO2 from the vegetation for the

simulated forest scenario.

To demonstrate this carbon loss on a yearly basis, Figure 3.5b displays the total modeled

annual net leaf CO2 flux for all scenarios averaged over the years of each location’s study

period (see Supplementary Information, Appendix A.2). The Italian Alps counterfactual

trees scenario (IT-Tr; orange) exhibits a gain of CO2 lower than the other scenarios at

this location. Although this may not be an infeasibility, the lower net CO2 gain may not

be able to sustain the additional leaf area associated with the trees. Thus, we designate

this as a disadvantage for the IT-Tr scenario over the other scenarios in the Italian Alps.

Alternatively, the United States Rocky Mountain alpine simulated trees scenario (US-Tr;

orange) exhibits a net loss of CO2. This annual net loss of CO2 indicates that the existence

of trees under alpine environmental conditions is not sustainable in the long term. Thus, the

existence of the forest vegetation at the alpine site should be considered infeasible. Further,

this carbon loss is a result of a feedback loop initiated by the increased leaf area of the

simulated trees. The excess shade slows the melting of the snow. By the time the snow fully

melts, the delayed start of photosynthetic CO2 uptake results in a shortened photosynthesis

window such that the overall gain of carbon is unable to account for the loss of carbon from

respiration. For ecosystems to exist, their leaf carbon exchange (i.e., photosynthetic CO2

uptake minus above-ground autotrophic respiration) must be positive at minimum. Thus,

annual net carbon loss indicates another infeasibility. Although this infeasibility manifests

through excessive carbon loss, it is in fact also a consequence of changes in thermodynamic

behavior.

3.3.4 Thermodynamic Limits

The analyses described in the previous sections demonstrate how the alpine counterfac-

tual tree scenarios lead to thermodynamic infeasibilites expressed through extensive negative

work performed and annual net carbon loss. To better understand the role of additional LAI
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resulting from the incorporation of trees in the counterfactual alpine/Arctic scenarios, total

LAI is plotted alongside work and resultant temperature gradient (from Fig. 3.3) for the

Western Canadian Taiga-Tundra (Fig. 3.6a) and the Italian Alps (Fig. 3.6b). The top-left

panel for both locations demonstrates increasing magnitudes of work, both positive and neg-

ative, as LAI increases. In the top-right panel, the simulated trees scenarios (red; X-Tr) have

resultant temperature gradients hovering closer to zero in comparison to the other three sce-

narios across the entire range of annual LAI, indicating that this vegetation scenario is more

effective at dissipating heat throughout the year. The bottom panels show that the marginal

work performed for a positive temperature gradient is greatest for Arctic/alpine simulated

tree scenarios (red; X-Tr). However, the work performed under a negative temperature

gradient is largely negative due to the continued loss of heat from the ecosystem (against

the temperature gradient) during temperature inversions. The existing Arctic/alpine scenar-

ios (blue; X-Arc/Alp) exhibit negative work fluxes as well, but with much lower magnitude.

These two plots further demonstrate that as LAI increases, the work versus temperature gra-

dient relationship transitions from lower to higher magnitudes of work, yielding significant

negative work performed by the counterfactual forest vegetation structure (X-Tr), which

demonstrates thermodynamic infeasibility.

We use the Western Canadian Taiga-Tundra and the Italian Alps as examples here to

demonstrate that the infeasibility conditions do not need to manifest in terms of net carbon

loss for the counterfactual tree scenario (X-Tr) to become infeasible. The thermodynamic

infeasibility associated with prolonged negative work performance alone is enough to prevent

the existence of trees at the Arctic site. For additional context, the sub-Arctic site is located

within the forest-tundra ecotone, so the prevalence of trees is less dense than sites further

below the treeline. Because of this, the difference in leaf area is not as great between CA-Tr

and CA-Arc scenarios as the other sites. Thus, the snowmelt is not excessively prolonged,

and the photosynthesis window does not shorten substantially. Thus, the Arctic simulated

trees scenario (CA-Tr) does not exhibit the infeasibility or disadvantage from CO2 loss in

comparison with the other two regions. Even so, trees do not exist on the Arctic site, and

we attribute this to the thermodynamic infeasibility instituted from the negative work and

temperature inversions from the extended snowmelt and snow cover season.
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Overall, the results highlighted in Figure 3.6 demonstrate that marginal changes in work

have a positive relationship with LAI, yielding considerably larger magnitudes of work (both

positive and negative) with increases in LAI. Further, the persistence of resultant tempera-

ture gradients for the Arctic/alpine counterfactual trees scenarios (X-Tr) around and below

zero throughout the year indicates that the greater dissipation of heat by this vegetation

structure leads to feedbacks such that the resultant temperature gradient inverts and nega-

tive work becomes common. Thus, the vegetation for the X-Tr counterfactual scenarios is too

effective at dissipating heat for the given incoming radiation and environmental conditions.

This behavior is consistent for all three locations considered in this study (see Fig. A.12 in

the Supplementary Information, Appendix A.2). Based on these observations, we conclude

that the negative work demonstrated during temperature inversions in the simulated forest

scenarios (X-Tr) offsets the advantages (greater marginal work increases) exhibited during

positive resultant temperature gradients. Thus, for each of the three locations studied, trees

modeled beyond the treeline are thermodynamically infeasible.

3.4 Discussion

The counterfactual scenarios of trees simulated at alpine and Arctic sites resulted in ther-

modynamic conditions of infeasibility at all three locations modeled in this study: the Italian

Alps, the United States Rocky Mountains, and the Western Canadian Taiga-Tundra. Fur-

ther, the results from all three locations demonstrate how the relationship among LAI, work,

and temperature gradient reveals that the additional leaf area associated with trees at Arc-

tic/alpine sites leads to higher magnitudes of work throughout the year, forcing a negative

resulting temperature gradient. We, therefore, discuss and propose a new framework asso-

ciated with this phenomenon in terms of the thermodynamic behavior of ecosystems.

As previously mentioned, existence of vegetation is made thermodynamically feasible

through the establishment of a temperature gradient from the earth surface to the air above

the canopy that supports positive work associated with the net dissipation of heat. Based

on the results presented, we propose that the vegetation and associated leaf area present in

an ecosystem are directly related to the strength of the incoming radiation and its feedback
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with local environmental conditions, which we refer to as a location’s potential dissipation

capacity.

Similar to the concept of potential evapotranspiration or potential net ecosystem produc-

tion [102], potential dissipation capacity indicates the maximum possible dissipation of heat

that is thermodynamically feasible in a given ecosystem. In ecosystems, vegetation struc-

ture and temperature gradient self-organize concurrently based on the potential dissipation

capacity of a given ecosystem. The resultant temperature gradient is a consequence of the

net radiation, air temperature and other environmental conditions, and the dissipation of

heat performed by the vegetation itself, or the actual dissipation rate. This process can be

represented by either a positive or negative feedback loop (Fig. 3.7). Feasible vegetation

structures perform work equivalent to or below their ecosystem’s potential dissipation ca-

pacity, meaning heat dissipation and positive work lead to lower surface temperatures and

weaker resultant temperature gradients, indicating a negative feedback loop. When the leaf

area present dissipates heat beyond the potential dissipation capacity of an ecosystem (e.g.,

simulated trees at an alpine/Arctic site), the resultant temperature gradient becomes nega-

tive, leading to prolonged temperature inversions and thermodynamic infeasibility. In this

case, a positive feedback loop occurs such that additional heat dissipation further inverts the

temperature gradient leading to additional negative work performed. With a lower poten-

tial dissipation capacity, less leaf area is needed to dissipate heat throughout the ecosystem

on an annual basis, and the ecosystem will self-organize towards a less effective dissipative

structure (e.g., shrubs or grasses only) in response. Additional leaf area then becomes less

advantageous, or even infeasible. The inherent thermodynamic difference above and below

the treeline is the following: the potential dissipation capacity of the ecosystem is greater

below the treeline than above, resulting in the need for more effective dissipators, or trees.

Trees and their additional leaf area are too productive at performing work for the sites

beyond the treeline, and thus, they do not exist.

Figure 3.7 provides a conceptual model representing the thermodynamic behavior of the

subalpine/sub-Arctic and alpine/Arctic ecosystems. Both plots present three curves repre-

senting different vegetation scenarios for a given ecosystem with set environmental condi-

tions: bare soil (dotted line), understory only (orange, blue), and forest vegetation including
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Figure 3.7: Conceptual model for the existence of treelines as a result of self-organization
from the balance of positive or negative feedback between the work performed by various
vegetation structures and the resulting temperature gradient. The dotted line represents
an ecosystem without vegetation (i.e., bare soil). The colored solid lines represent
vegetation curves as defined in Table 3.1. Dissipation rates leading to negative (N1 or N2 )
or positive (P) feedback loops between temperature gradient and vegetation structure are
shown as the vertical distance from the bare soil curve to the vegetation scenarios. The
starred scenario on each plot represents the most advantageous viable vegetation structure
for the given ecosystem. The plot on the left represents ecosystems in which both
vegetation scenarios (X-For & X-Un) are viable options, and the X-For scenario is most
advantageous. The plot on the right represents ecosystems in which one of the vegetation
scenarios (X-Tr) is infeasible due to positive feedback loops that result in continued
dissipation of heat during temperature inversions. Instead, the X-Alp/Arc scenario is the
most advantageous viable vegetation structure.
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understory and overstory trees (green, red). The vertical distance from the dotted line to

any vegetation scenario curve at a given temperature gradient indicates the rate of work

performed as a result of self-organized vegetation structure. When the vegetation curve is

above the dotted line, then the vertical distance (N1 or N2 ) represents the energy dissipation

that results in a typical negative feedback loop between the vegetation and the temperature

gradient. When the vegetation curve is below the dotted line (X-Tr), then the vertical dis-

tance (P) represents the energy dissipation that results in a positive feedback loop between

vegetation and the temperature gradient, meaning that the ecosystem loses heat against the

resultant temperature gradient. When strong enough, this positive feedback results in pro-

longed temperature inversions and thermodynamic infeasibility. The subalpine/sub-Arctic

ecosystem diagram on the left represents ecosystems in which all vegetation scenarios are

viable options, and the X-For scenario is most advantageous. The alpine/Arctic ecosystem

diagram on the right represents ecosystems in which one of the vegetation scenarios (X-Tr)

is infeasible due to a strong positive feedback loop that results in continued dissipation dur-

ing temperature inversions. As a result, the X-Alp/Arc scenario is the most advantageous

viable vegetation structure.

N1 and N2 in Figure 3.7 indicate the additional work performed from dissipative struc-

tures (i.e., vegetation) for a given resultant temperature gradient. This represents the im-

proved ability of the ecosystem to export energy from the earth surface to the air above the

canopy rapidly and efficiently. However, this chapter demonstrates that more dissipation

does not always indicate the optimal or more probable state, such as in the case of trees

simulated beyond a treeline. In this case, the trees actually transport energy out of the

ecosystem more quickly than warranted by the ecosystem’s potential dissipation capacity,

resulting in considerable temperature inversions, as demonstrated by P in Figure 3.7. The

incoming radiation and environmental conditions of the alpine and Arctic sites do not yield

a strong enough potential dissipation capacity to warrant the dissipation of heat facilitated

by the X-Tr vegetation; thus, prolonged temperature inversions occur. Overall, trees cause

heat dissipation that is not needed or beneficial to the ecosystem under alpine or Arctic

conditions.

This research opens the door for further study defining the naturally-occurring transition
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of vegetation structures. We present potential dissipation capacity as a theoretical concept

for understanding the maximum dissipation rate for any given ecosystem, dependent on the

incoming radiation and environmental conditions at its location. We anticipate that there

is a relation among incoming radiation, temperature, and other local properties, such as

emissivity and reflectance, that could further define this concept into a measurable quantity.

The definition of such a relation would enable scientists to anticipate changes in vegetation

structure from human-induced perturbations as well as gradual alterations to environmental

conditions.

3.5 Conclusion

Based on the results of this study, we conclude that the trees do not exist beyond a tree-

line because they would be thermodynamically infeasible due to the considerable negative

work demonstrated by the counterfactual scenarios for all Arctic/alpine locations, X-Tr.

An additional condition of thermodynamic infeasibility limits trees from existing beyond

the treeline due to the annual net loss of carbon resulting from compounding accumulation

of snowpack and shortened photosynthesis windows exhibited at the United States Rocky

Mountains counterfactual alpine scenario, US-Tr. Overall, these two conditions of infeasi-

bility associated with this counterfactual elucidate the thermodynamic requirement for the

existence of vegetation structure. The thermodynamic basis for the demarcation of Arctic

and alpine treelines is determined by the location beyond which the dissipation rate of trees

is greater than what is needed for the ecosystem based on feedback loops among the local

environmental conditions and the concurrent self-organization of vegetation structure and

temperature gradient, or its potential dissipation capacity.

This research arrives at a thermodynamic theory for the directionality of ecosystem self-

organization towards the vegetation structure that most effectively dissipates heat without

resulting in a positive feedback loop leading to prolonged temperature inversions. This dis-

sipation rate will correlate to the magnitude of the potential dissipation capacity at a given

site. Therefore, greater potential dissipation capacity calls for higher dissipation rates en-

abled by multiple functional groups and increased LAI. When such vegetation structure with
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multiple functional groups produces higher dissipation rates than the ecosystem’s potential

dissipation capacity – as is the case for forest vegetation with trees beyond a treeline – the

vegetation structure is then thermodynamically infeasible and does not exist.

3.6 Additional Information

Supplementary information is available for this chapter in Appendix A.2.
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CHAPTER 4

ECOSYSTEM THERMODYNAMIC RESPONSE TO
ANTHROPOGENIC ALTERATION OF

VEGETATION STRUCTURE

4.1 Introduction

As human activities modify the architecture of Earth’s natural systems, researchers are

struggling to capture how these systems will respond over the next century [103–106]. As

ecosystem vegetation is altered through human activities, responses can impact the function

and stability of the entire ecosystem [105]. Furthermore, as plant and ecosystem functions

deviate from present conditions, the ecosystem-derived services will also change, creating a

feedback from human activities to life-sustaining services – such as those related to clean

air, and water and food availability – that last generations [107]. To better predict these

changes in services, we need methods to assess the holistic behavior of ecosystems as pertur-

bations increase. This chapter studies the ecosystem impacts of direct human alterations to

vegetation structure in the form of logging in the Brazilian Amazon and controlled burns in

the United States Great Plains by modeling ecosystems as open thermodynamic systems.

By viewing ecosystems as open thermodynamic systems, maintained far from equilibrium

by the spatial imbalance of energy, mass and energy fluxes in and out of the system control

volumes can be studied to assess the thermodynamic behavior and self-organization of nat-

ural ecosystems. Self-organization describes how ecosystems naturally evolve to develop dif-

ferent structured forms, or stable states, such as vegetation. In response to external forcing,

ecosystem vegetation will organize to dissipate heat from higher to lower temperatures along

a gradient. Recent work asserts that ecosystem organization is thermodynamically driven by

the concurrent self-organization of vegetation structure and temperature gradients based on

the strength of an ecosystem’s dissipation capacity – determined by the incoming radiation

and other site-specific environmental/weather conditions (e.g., wind, soil type, emissivity,
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etc.) (Chapter 3). We define vegetation structure as the composition of the number and

types of plant functional groups in an ecosystem. A plant functional group corresponds to

a set of species that perform the same ecosystem functions [6]. Due to the one-dimensional

functionality of the physics-based ecosystem model used, we assume a homogeneous spatial

organization at a given location. In previous chapters, the organization of vegetation struc-

ture for natural ecosystems has been characterized by both thermodynamic feasibility and

thermodynamic advantage, stating that ecosystems will evolve to the state with the greatest

thermodynamic advantage – defined by larger entropy fluxes, more work performed, and

higher work efficiency – which is thermodynamically feasible (Chapters 2 & 3) [35]. This

work developed a framework for understanding the self-organization and natural structure

of ecosystems. However, little has been done to study ecosystem thermodynamic behavior

in response to human-induced perturbations [22].

Similar to natural ecosystems, anthropogenically-altered ecosystems are driven by changes

in environmental forcing; yet, they also have an additional driver of change: human activi-

ties. Human activities can alter ecosystem structure and function both indirectly, by causing

changes to environmental forcing entering and/or leaving an ecosystem, and directly, by al-

tering the vegetation structure itself. In this chapter, we focus on the latter case in that

environmental conditions are relatively unchanged, but human activities directly alter vege-

tation structure. In looking at this type of manupulation, we seek to understand the impact

of these alterations on ecosystem thermodynamic behavior, which drives the overall stability

and organization of vegetation structure.

Former studies modeling the thermodynamic behavior of natural ecosystems assume a

quasi-stable state, meaning these ecosystems have maintained the same vegetation structure

over decades of observation (Chapters 2 & 3). Those ecosystems are assumed to have already

undergone self-organization such that they exist in a quasi-stable state with regard to vege-

tation structure (multiple functional groups or one functional group, grasses or shrubs, etc.).

However, when human activities alter vegetation structure, the ecosystem no longer exists

in a quasi-stable state. We consider these ecosystems as experiencing a phase transition.

Phase transitions are a conduit between varying levels of order and disorder which “imply

the change in internal symmetry of the components” [108]. In ecosystems, phase transitions
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correspond to changes in levels of order between vegetation structures, both spatially and

temporally. For this chapter, we study the latter to identify how human activities that

alter vegetation structure lead to changes in thermodynamic behavior. Following such an

event, the ecosystem incoming radiation and local environmental conditions remain relatively

unchanged (see potential dissipation capacity in Section 4.2.3), but the vegetation structure

undergoes self-organization to return to an optimal, quasi-stable vegetation structure. By

considering a perturbed ecosystem as undergoing a phase transition, we can diagnose changes

in the internal order of an ecosystem by observing ecosystem-level thermodynamics. In

particular, we ask the following question: How does the act and frequency of vegetation

structural alteration from human activities affect ecosystem thermodynamic behavior? To

address this question, we compare the thermodynamic behavior of forest ecosystems due to

logging in the Brazilian Amazon and tallgrass prairie ecosystems due to controlled burns in

the Kansas Konza Prairie. This work allows us to better understand ecosystem response to

human activities such that we can identify the degree to which thermodynamic advantage

is linked to ecosystem stability. We hypothesize that ecosystems experiencing alterations

to vegetation structure from human activities will be held in a sub-optimal and, therefore,

thermodynamically disadvantageous state.

4.2 Materials and Methods

In this study, we characterize two different types of ecosystems experiencing direct al-

terations to vegetation structure, each modeled based on data from two sites with varying

frequency or levels of disturbance.

First, we study and model two sites located in the Brazilian Amazon. The Santarem

Logged Forest (Sa3) experiences selective logging every two years on average. This site

is compared with the Santarem Primary Forest (Sa1; TAP in Chapter 2), which does not

experience logging and is considered for this study as the undisturbed site. These two sites

are modeled and compared over the duration of data availability for a common period (2002).

This analysis demonstrates the variation in thermodynamic behavior between logged and

undisturbed sites in the year following a logging event.
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Second, we compare two sites in the Konza Prairie Long-Term Ecological Research (LTER)

Program (http://lter.konza.ksu.edu/): KON, which is burned every year and consists

almost entirely of native tallgrass, and KFB, which is burned every four years and consists

of patches of dogwood and native tallgrass based on the burn cycle [109, 110]. The percent

landcover occupied by the dogwood is dependent on the time expired since a burn event, with

larger percentages prior to a burn and lower percentages directly following one (see Fig. 4.1a).

The first site is identified as KON by the AmeriFlux Network and 1D or KNZ by the Konza

Prairie LTER. The second site is identified as KFB by the AmeriFlux Network and 4B or

K4B by the Konza Prairie LTER. We model these sites over the duration of data availability

for a common period: mid-2016 through the end of 2018. We then compare the two sites

to determine how varying burn frequencies impact thermodynamic behavior. Further, we

compare the KON tallgrass site and the KFB site with transient behavior between grass

and dogwood with a counterfactual 100% dogwood vegetation scenario. For this scenario,

we use the environmental forcing and vegetation parameters of the KFB site, assuming that

it is 100% covered by dogwood. This allows us to compare the three different vegetation

structure scenarios on the Konza prairie: 100% shrubcover, 100% tallgrass, and a transient

vegetation structure between shrubs and grasses imposed by the burn frequency.

We model all four sites using a one-dimensional physics-based model that encompasses

the canopy, soil and root subsystem. The following sections provide in-depth model (Sec-

tion 4.2.2) and site (Section 4.2.1) descriptions as well as definitions of important thermo-

dynamic properties (Section 4.2.3).

4.2.1 Site Descriptions

Brazilian Amazon

The study sites used to model behavior with respect to logging events are the Santarem

Km 83 Logged Forest (Sa3; 3.0180◦S, 54.9714◦W) and the Santarem Km 67 Primary Forest

(Sa1; 2.8567◦S, 54.9589◦W) sites in the FLUXNET2015 network located 16 km apart in

the Tapajos National Forest in Pará, Brazil [59, 111]. This evergreen broadleaf forest in
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Amazonian Brazil has a tropical monsoon climate with vegetation consisting of dozens of

known tree species and lianas [7, 55]. Domingues et al. [7] demonstrated the importance

of modeling ecosystems based on functional groups to balance model performance with

accuracy. For this high biodiversity ecosystem in Amazonia, the vegetation is represented

by four groups within the MLCan model: understory tree (UN), mid-canopy tree (MT),

upper-canopy tree (OT), and upper-canopy liana (L) according to Domingues et al. [7] and

Quijano and Kumar [55].

The Sa3 logged site was selectively logged for tree diameters greater than 50cm in Septem-

ber 2001 and September through December 2003 [111–113]. On the other hand, the Sa1 site

has not experienced logging. The Sa3 logged site is compared with the neighboring Sa1

undisturbed site to the identify the differences in thermodynamic behavior for the year

following a logging event (2002).

Kansas Prairie

Two proximally located (less than one mile apart) native tallgrass prairie sites in the

Konza LTER in Kansas were used to study the thermodynamic impact of controlled burns

on a grassland (native tallgrass prairie) in a humid subtropical climate [109, 110]. The KON

site (39.0824◦N, 96.5603◦W) experienced controlled burns every year [109]. The KFB site

(39.0745◦N, 96.5951◦W) experienced burns every four years [110]. Both sites are dominated

by perennial C4 grasses, including switchgrass (Panicum virgatum), indiangrass (Sorghas-

trum nutans), and species of bluestem (Andropogon gerardii, Schizachyrium scoparium).

However, there has been recent rapid encroachment of dogwood (Cornus drummondii) over-

taking the prairie grass at the KFB site [114–116].

At the 4-year burned KFB site, woody vegetation has been encroaching into tallgrass

prairie in the form of shrub islands. These shrub islands are patches of land where shrubs

organize close together, and once large enough can protect the interior of the islands to fires,

allowing further growth and expansion of woody species [115, 116]. Since these shrub islands

take up distinct land area from the C4 grasses of the tallgrass prairie, we model the KFB site

as the aggregation of two separate vertical columns, creating a weighted average of the two
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with a linear increase in shrubcover after a burn event from 10% to 95% shrubcover based on

conversations with the site manager (Fig. 4.1a). Periods without burn events are necessary

for the establishment of woody species encroachment, such as dogwood [116]. Therefore,

this only occurs at the KFB and not the KON site.

Eddy covariance data from the US-KON and US-KFB sites in the AmeriFlux network

were used as model input [109, 110]. We analyze both sites for the extent of the available

data for running the model. For KON, the model was run for ten years (2009-2018). There

were significant gaps in relative humidity in 2015 and 2016 and air pressure and wind speed

in 2016. These data gaps were filled with a mean of the historical data for the date and time

for each timestep to create a consecutive 10-year run, but are excluded from analysis. For

KFB, the model was run for three years (2016-2018) due to limitation of data availability.

This time period allows us to analyze the behavior of the ecosystem for a year prior to

the burn in April 2017 and almost two years following. 2016 through 2018 are used for

comparison purposes directly between the KFB and KON sites.

4.2.2 Model Description

A multi-layer canopy-root-soil model (MLCan) [27, 28, 52, 53] summarized in Section 1.5

is used to calculate the energy and entropy fluxes and temperatures for each of the ecosystem

layers. Eddy covariance and additional weather forcing data at a half-hourly timescale for

KON, KFB, and Sa3 and an hourly timescale for Sa1 were downloaded from the AmeriFlux

and FLUXNET2015 networks, including air temperature, air pressure, global radiation, pre-

cipitation, wind speed, friction velocity, and relative humidity [59, 109–111]. The simulation

period for each site was chosen based on data availability, and direct comparisons between

sites were utilized only for time periods with data availability at both sites (see Section 4.2.1).

The initial soil moisture and temperature profiles were produced from a spin-up of the model

prior to the first year of simulation. Preparation of model input for leaf area index (LAI)

half-hourly forcing data for each functional group are described below. Additional model

input parameters can be found in Table 4.1.
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Figure 4.1: (a) Growth of woody vegetation by percent land area. The 4-year burn event
occurs in April 2017. (b) Leaf area index for the Konza Prairie.
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Table 4.1: List of Model Parameters

Ecosystem Tapajos Konza

Site Sa1 & Sa3 KON KFB
Functional Group UN MT OT L UN UN OT

Site Information
Percent Sanda 10 5f 7f

Percent Claya 80 50f 40f

Canopy Heighta (m) 38 1.4g 2.8j

Ecosystem Height (m) 38 2.8 2.8
Fluxtower Heighta (m) 64 3g 3g

Leaf Properties
V cmax (µmol/m2s) 31.6b 57.5b 81b 59.7b 40h 40h 35i

Jmax (µmol/m2s) 37.9b 81b 112b 87.5b 110h 110h 140i

Respiration Q10 (mol/m2s) 2c 2.02e 1.59e

Root Properties
Root Depth (m) 1 4 12 12 0.5l 0.5l 1.5k

z50
d 0.07 0.24 0.65 0.65 0.12k,l 0.12k,l 0.25k

z95
d 0.4 1.5 4 4 0.25k,l 0.25k,l 0.75k

a FLUXNET2015 Network [59, 111]
b Domingues et al. [7]
c Melton et al. [117]
d Schenk and Jackson [118]
e Zhou et al. [119]
f Wehmueller [120]

g Brunsell et al. [115]
h Nippert [121]
i Msanne et al. [122]
j Briggs et al. [116]
k Ratajczak et al. [123]
l Logan and Brunsell [114]

Leaf Area

LAI for the undisturbed primary forest (Km 67; Sa1) was taken from the MODIS network

[124, 125] and prepared in the same way as TAP in Chapter 2 (see Appendix A.1.2; Fig. 4.2).

Total LAI for the logged study site (Km 83; Sa3) was interpolated from MODIS data [124,

126] and scaled and partitioned as described above to Sa1 (Fig. 4.2). However, there is not

partitioning data after logging. Further, LAI interpolated from MODIS data indicates that

there is surprisingly not much difference in total LAI between the sites [124–126] (Multi-group

in Fig. 4.2). Thus, to simulate logging we alter the partitioning of LAI among the functional

groups. During logging, we assume the LAI of the overstory trees (OT) is decreased to half

of its natural LAI fraction while the understory shrubs and trees (UN) increase their LAI

fraction as they receive more sunlight. After logging, a growth function based on data from
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Figure 4.2: Leaf area index for the Brazilian Amazon. The shaded red area in the zoomed
view of the Sa3 logged site indicates the period of selective logging.
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Silva et al. [127] and Baker et al. [128] is implemented for the OT functional group.

LAI for the Konza Prairie (Fig. 4.1b) was prepared from the MODIS dataset at each site

[124, 129, 130]. The LAI at both sites were modeled using two separate polynomial functions

per year – a second-degree polynomial for the winter and a fourth-degree polynomial for the

growing season. For KON, the MODIS LAI was scaled to include peaks to match observations

in 2009 from Nippert et al. [131]. KFB is scaled by the same factor as KON for a consistent

comparison.

4.2.3 Thermodynamic Properties

Entropy flux can serve as a reflection of the internal order of an ecosystem. Entropy

enters into an ecosystem, is further generated by the ecosystem, and is consequently ex-

pelled to the environment. In this process, self-organization occurs within the ecosystem

in the form of vegetation. This self-organization leads to reduction in entropy inside the

system, but the overall outgoing entropy generally increases, consistent with the second law

of thermodynamics. Changes in entropy flux leaving the ecosystem can, therefore, help us

deduce alterations in the internal order of the ecosystem associated with phase transitions

of vegetation structure. Larger entropy fluxes correspond to greater internal order within

the ecosystem, while lower entropy fluxes indicate that an ecosystem is more homogeneous

in structure (e.g., grasses) [18, 35]. Thus, we anticipate presence of human perturbations

will correspond to fewer functional groups or decreases in leaf area, leading to decreases in

total ecosystem entropy flux.

Entropy is calculated from an ecosystem’s outgoing energy fluxes and the temperature of

their source location within the ecosystem (or for shortwave radiation, the sun) [35]. Fluxes

considered are shortwave radiation (SW ), longwave radiation (LW ), latent heat (LE), and

sensible heat (H). Since all analyses are performed on a yearly basis, ground heat is assumed

as net zero over the time periods studied, and is thus ignored. In its simplest form, entropy

flux (in W/m2-K) is estimated as:

J =
E

T
(4.1)

72



in which E is the energy flux in W/m2, and T is the temperature of the energy flux’s

source in K. Additional information on entropy calculations can be found in Quijano [18]

and Richardson and Kumar [35] (see Chapter 2, Section 2.2.3).

Within the context of ecosystems, work is a measure of an ecosystem’s ability to dissipate

heat and overcome the vertical imbalance of energy with the ecosystem. Work is an indicator

of the feedback of the vegetation structure with the incoming radiation and temperature

profile of the ecosystem. More work performed through heat dissipation from higher to

lower temperatures upwards out of the ecosystem results in a weaker resultant temperature

gradient between the earth surface and the air above the canopy. Work is thus defined for

ecosystems as heat transport along the temperature gradient:

Work = (LE +H)× sign(∆T ) (4.2)

in which work, LE, and H are in units of W/m2, and ∆T = Tsurf −Tair (Chapter 3), where

Tsurf is the temperature of the soil surface, Tair is the temperature of the air observed above

the canopy.

Work efficiency represents the ability of the ecosystem to perform work relative to the

incoming energy [35]. Work efficiency is thus calculated as:

WE =
Work

ESWin + ELWin

=
Work

Ein
(4.3)

in which ESWin and ELWin are the energy flux of incoming shortwave and longwave radiation,

respectively, that consist of the total incoming energy, Ein, in W/m2 (Chapter 2) [35]. Work

efficiency is useful for comparing ecosystems at separate sites to determine if an ecosystem is

performing more work because the vegetation is more productive at dissipating the incoming

energy or if it is performing more work because it merely has more incoming energy that is

available to convert into heat.

Each of the above thermodynamic properties are calculated from model output from each

layer (20 canopy layers and one layer at the soil surface) and aggregated at the ecosystem

level, resulting in an ecosystem’s net entropy flux, work performed, or work efficiency for
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each half-hourly or hourly timestep. Due to the different frequency of measurements (and

hence model calculations), all analyses are performed on at least an average daily level.

The temperature gradient within an ecosystem is a self-organized outcome with the vege-

tation structure based on the incoming radiation and local environmental conditions. Tem-

perature gradient is calculated at each timestep based on the modeled temperature of the

soil surface and the observed temperature of the air above the canopy, both in Kelvin:

∆T

∆z
=
Tsurf − Tair

he
(4.4)

where he is average the ecosystem height (Table 4.1) (Chapters 2 & 3) [35].

Lastly, we introduce the concepts of potential dissipation capacity and dissipation deficit.

Potential dissipation capacity is the maximum possible heat dissipation rate supported by

the thermodynamic environment of an ecosystem, determined by its incoming radiation and

other local environmental conditions (introduced in Section 3.4). A formulation for potential

dissipation capacity has not yet been developed. Yet, it is widely accepted among ecologists

that nature (if unperturbed) will self-organize to exist in a form that represents its optimal

state [11, 20, 22–25]. If we consider a natural ecosystem an indicator of the maximum

dissipation supported by the local environment, we can estimate the potential dissipation

capacity from its dissipation rate. In the context of this study, the undisturbed forest site,

Sa1, is assumed to exist in a quasi-stable self-organized vegetation structure that dissipates

heat that matches the potential dissipation capacity of the ecosystem (Dp), such that Dp

is estimated as the actual dissipation rate (Da) of the Sa1 ecosystem. Da is similar to

work performed, except it is not dependent on the sign of the temperature gradient. Thus,

Da = LE+H. For the sites studied using this analysis (Sa1 & Sa3), the temperature gradient

rarely drops below zero, so actual dissipation rates and work performed are assumed to be

the same.

When human activities directly alter vegetation structure, an ecosystem’s Da can be

adversely impacted. Here, we introduce dissipation deficit to measure the degree to which

such an ecosystem is impacted. A dissipation deficit occurs when the actual dissipation rate

of an ecosystem or vegetation structure is less than the potential dissipation capacity of the
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ecosystem. Thus, dissipation deficit is defined as:

Dd = Dp −Da (4.5)

in which Dp is estimated as the actual dissipation rate of an undisturbed site, and Da is

the actual dissipation rate of the site under consideration. For an undisturbed site, it is

assumed that Dp = Da and Dd = 0. Dissipation deficit is calculated only for the selective

logging analysis since the controlled burn study does not include an undisturbed ecosystem

for estimation of Dp.

4.3 Results

For the Brazilian Amazon, we compare a logged site with an undisturbed site nearby to

compare the transient state of the disturbed site with the undisturbed site for a year following

a logging event. For the Konza prairie, we compare the behavior over the entire study period

of two sites with consistent controlled burns of different frequencies. By analyzing both of

these sites, we can document the thermodynamic impact of a transient state vs. a stable

state (Amazon) and the impacts of varying frequency of disturbance events (Konza).

4.3.1 Logged Forest

For our first analysis, we compare the selectively logged Sa3 site with the undisturbed Sa1

site over the entire year following the 2001 logging event at Sa3. Figure 4.3a displays the av-

erage daily entropy flux, work performed, and work efficiency distributions for each site over

the year. To prove statistical significance, these distributions are compared using the two-

sample Kolmogorov-Smirnov (KS) test, which measures the maximum absolute difference

between two empirical cumulative distribution functions [69–71]. For each scenario, we test

the null hypotheses, H0, that the entropy flux, work performed, and work efficiency values

from the logged site are from the same continuous distribution as those from the undisturbed

site. The alternate hypothesis, HA1, states that the entropy flux, work performed, and work
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Figure 4.3: Average daily entropy flux, work, and work efficiency distributions for the
logged (Sa3) and undisturbed (Sa1) forests in the Brazilian Amazon in 2002. The mean of
each distribution is indicated by a black diamond. The undisturbed forest yields larger
distributions for all properties; statistical significance is indicated in Table 4.2.

efficiency values for the logged site come from distributions with larger empirical cumulative

distribution functions (with smaller values) than those from the undisturbed site. The re-

sults from these tests, shown in Table 4.2, indicate that H0 is rejected in favor of HA1 at the

5% significance level for all three properties. This demonstrates that the thermodynamic

fluxes at the logged site are statistically lower than the fluxes at the undisturbed site, indi-

cating that the logged site is held in a sub-optimal state than the undisturbed site after a

selective logging event. This state is characterized by lower internal organization (smaller

entropy fluxes), lower heat dissipation rates (less total work performed), as well as less work

performed for the incoming energy into the ecosystem (lower work efficiencies).

4.3.2 Prairie Controlled Burns

For the controlled burn scenarios, two variations in frequency are compared. Figure 4.4a

displays the distributions of entropy flux and work efficiency for the KON and KFB sites.

After comparison using the KS test (Table 4.2), we find that over the study period, the

two sites do not yield significantly different values of entropy flux, work, or work efficiency

(Fig. 4.4a). However, we do find that the KFB site has a weaker temperature gradient, and
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Table 4.2: Two-Sample Kolmogorov-Smirnov Test

Disturb. Alternate Entropy Work WE
Scenario Hypothesis p-value Result p-value Result p-value Result

Logging HA1 1.36e-20 Reject H0 3.55e-25 Reject H0 1.42e-26 Reject H0

Burns HA2 0.059 Accept H0 0.338 Accept H0 0.439 Accept H0

HA1: The empirical distributions of entropy flux, work performed, and work efficiency (WE)

for the logged site have larger cumulative distribution functions (with smaller values) than the

empirical distributions of entropy flux, work performed, and work efficiency for the undisturbed

site.

HA2: The empirical distributions of entropy flux, work performed, and work efficiency (WE) for

the KON (1-year burn) site have larger cumulative distribution functions (with smaller values)

than the empirical distributions of entropy flux, work performed, and work efficiency values for

the KFB (4-year burn) site.

H0 is rejected if p < 0.05 at the 5% significance level.

Figure 4.4: The (a) entropy flux and work efficiency distributions and (b) work versus
temperature gradient plot for the prairie sites with 1-year (KON) and 4-year (KFB) burns
over the entire study period. Distributions of entropy flux and work efficiency are not
significantly different in (a). However, when work is set alongside temperature gradient,
the difference in thermodynamic behavior is evident. (b) demonstrates that the KFB
(4-year burn) vegetation structure results in a weaker temperature gradient, meaning that
the presence of KFB vegetation leads to lesser vertical imbalance of energy throughout the
ecosystem despite performing similar amounts of work throughout the year.
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the work performed for each value of temperature gradient is greater (Fig. 4.4b). This means

that although the two sites perform similar magnitudes of work, the heat dissipation at the

site with the four-year burn cycle has a stronger negative feedback loop with the tempera-

ture gradient, resulting in lower surface temperatures and a weaker resultant temperature

gradient. This is not surprising as the KFB site has a considerable amount of dogwood

present, which could provide additional shade to the surface and strengthen the negative

feedback loop.

Further, we study whether a counterfactual ecosystem with 100% shrubcover would be

advantageous over either the 1-year burn cycle with 100% grasses or the 4-yr burn cycle with

transient vegetation between shrubs and grasses. Figure 4.5a (similar to Fig. 4.4b) displays

the work versus temperature gradient for each ecosystem. Additionally, Figure 4.5b displays

temperature gradient plotted against the energy entering into the control volume. In both

plots, we find that the 100% shrubcover scenario does not perform considerably differently

than the KFB 4-year burn scenario with transient vegetation. At the KFB site, there is a

spring-up of grasses when the dogwood has been diminished to 10% of land cover following

a controlled burn. We interpret the similarities between the actual KFB site and the 100%

shrubcover KFB scenario to indicate that this spring-up of grasses performs enough work

and provides enough shading benefit to result in a weaker temperature gradient (i.e., cooler

surface temperature) to make up for the loss of the dogwood.

Upon comparing the KFB and KON real vegetation scenarios in Figure 4.5, the KON

scenario has larger temperature gradients than KFB for the same magnitudes of incoming

energy as well as work performed. This indicates that tallgrass prairie vegetation has a

weaker feedback with temperature gradient even though it performs similar work. Both

ecosystems yield similar work performed for the energy entering into the ecosystem, but the

additional shade provided by the dogwood leads to a slight thermodynamic advantage for

the KFB site.
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Figure 4.5: The prairie sites with 1-year (KON) and 4-year (KFB) burns are compared
with a counterfactual 100% shrubcover scenario modeled at the KFB site over the entire
study period. (a) Work versus temperature gradient. (b) Total incoming energy (Ein from
Equation 4.3) versus temperature gradient. For both graphs, the 100% shrubcover scenario
performs similarly to the KFB transient vegetation structure scenario. The KON site has
larger resultant temperature gradients than the KFB existing and 100% shrubcover
scenarios for the same Ein as well as work performed.

4.4 Discussion

After a logging or controlled burn disturbance event, ecosystems immediately have a

different structure with a new dissipation rate than before. However, the potential dissipation

capacity of the ecosystem is the same before and after the disturbance event, meaning that

there is not a sudden change to ecosystem inputs, or environmental conditions, after the

direct structural alteration occurs. Because the potential dissipation capacity, Dp, is the

same, but the dissipation rate of the vegetation has changed, the ecosystem is performing

at a dissipation deficit (Equation 4.5).

Based on these analyses, we find that the logged ecosystem is held to a dissipation deficit

relative to the undisturbed forest ecosystem (Table 4.3), meaning that it is unable to dissipate

heat at its optimal rate, Dp. During dissipation deficits, spikes in work efficiency will occur

as ecosystems attempt through all means available to utilize this deficit. Schneider and Kay
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Table 4.3: Logged Ecosystem Dissipation Deficit

Disturbance Avg Dissipation Rate Dissipation Deficit
Scenario (W/m2) (MJ/m2-day)

Logged (Sa3) 106.1 2.14
Undisturbed (Sa1) 130.9 –

[11] anticipated this behavior by theorizing that dissipative structures (e.g., vegetation) will

respond to changes from the external environment to remain near their quasi-stable states.

To do this, when ecosystem leaf area is reduced by a disturbance event to an extent that

shade to the soil surface is diminished, understory grasses and similar vegetation will spring

up quickly. Trees and other woody species take longer to respond inherently since they take

longer to grow and mature. Because of this, forested ecosystems are more susceptible to

alterations if their species cannot regrow on timescales equivalent to or shorter than those

on which they are altered. For example, trees do not grow greater than 50cm in diameter over

the two-year period at which selective logging occurs. As a result, consistently selectively

logged forests will be held to a sub-optimal state in the long term, resulting in a dissipation

deficit, despite fluctuations in work efficiency and entropy fluxes in the short term in response

to structural alterations.

This point is further demonstrated by the fact that the burned ecosystems do not experi-

ence dissipation deficits relative to each other or the 100% dogwood counterfactual scenario.

Instead, the ecosystems with two different burn frequencies perform statistically similar

magnitudes of work. Since the vegetation in the burned ecosystems are able to respond

and mature on scales similar to the burn cycles, they are not held in a sub-optimal state.

Historically, the prairie is expected to have experienced wildfires every three to four years on

average prior to European settlement [116]. Thus, the viability of the vegetation structure

present at the sites experiencing the four-year burn cycle, in addition to the one-year burn

cycle that perpetuates the existence of the tallgrass species, is not surprising.

Since neither of these ecosystems on the Konza Prairie (with current environmental con-

ditions) has a clear thermodynamic advantage in terms of entropy and work efficiency, we

presume that either the one-year burn cycle with one functional group associated with the

traditional tallgrass prairie vegetation or the four-year burn cycle with multiple functional
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groups could be viable and advantageous based on the frequency of burn experienced. In

current environmental conditions, the yearly burn events at the KON site provide a self-

reinforcing feedback to the single functional group vegetation structure. Alternatively, the

four-year burns at the KFB site do not provide the reinforcing feedback needed for the tall-

grass vegetation under current environmental conditions. The extended duration of time

between burns at the KFB site does not provide the ecosystem with the yearly spring-up of

grasses that the KON site experiences after a burn. Instead, dogwood encroachment occurs,

resulting in a stronger negative feedback between the vegetation and the temperature gra-

dient leading to a weaker resultant temperature gradient (Fig. 4.5) and a slight advantage

when fires are kept at bay.

Since available data only cover one disturbance event for the logged and 4-year burn sites,

study of the changes in thermodynamic behavior directly before and after a disturbance

event are limited. Access to longer continuous datasets for site pairs experiencing disturbance

events will be necessary for further conclusions to be drawn as to the direct impact of human

activities on the thermodynamic stability of ecosystems.

4.5 Conclusions

In this work, we compare two cases in which vegetation structure is manually perturbed.

These two cases are opposite in terms of how they impact the thermodynamic stability of

their respective vegetation structures. The selective logging holds the logged ecosystem at

a sub-optimal state relative to the undisturbed site since the vegetation is unable to return

back to its original fully-developed forest vegetation structure on scales equivalent to the

frequency of disturbance (every two years on average). Alternatively, the controlled burns

on the Konza Prairie actually provide a reinforcing feedback such that the ecosystems with

both burn frequencies perform similar work throughout the course of the study period. The

yearly burns experienced at the KON site reinforce the single functional group vegetation

structure through rapid spring-up of grasses. The four-year burn cycle provides the benefit of

grass spring-up every four years, but the additional time between burns allows the additional

shading of the earth surface provided by the dogwood to benefit the ecosystem with lower
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temperature gradients until the burn. Both sites perform similar work, but the temperature

gradient of the KFB site is weaker, resulting in a slight advantage exhibited through the

4-year burn cycle.

Overall, our findings demonstrate that disturbance events from human activities can neg-

atively impact thermodynamic behavior as well as reinforce ecosystem vegetation structure.

The difference lies in the nature of the two disturbances. The logging in the Brazilian

Amazon is not similar to any naturally-occurring phenomenon. Instead, human activities

manually alter the organization of the forest by selectively choosing the largest trees to re-

move. On the other hand, the Konza Prairie has a long history of wildfires with an estimated

recurrence of four years. Since the controlled burns mimic the naturally-occurring wildfires,

the vegetation responds similarly, resulting in feedback between the disturbance and the

vegetation structure itself.
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CHAPTER 5

CONCLUSIONS

This thesis develops a thermodynamic framework for the self-organization of an ecosystem

towards a vegetation structure demonstrating both thermodynamic advantage and thermo-

dynamic feasibility. Additional methods are introduced to study ecosystems experiencing

direct alterations to vegetation structure through human activities. These methods cap-

ture the thermodynamic response of such ecosystems, providing insight into the reinforcing

feedback mechanisms of ecosystem processes and disturbance events and their associated

timescales at the site-specific level.

5.1 Thermodynamic Advantage and Thermodynamic Feasibility

Thermodynamic advantage is defined as a vegetation structure that produces larger fluxes

of entropy, performs more work, and yields higher work efficiency. Entropy is an indicator of

the internal order within an ecosystem, with larger fluxes indicating more complex internal

organization, typically associated with greater leaf area and multiple functional groups.

However, as demonstrated in Chapter 2, entropy cannot be the sole determinant of optimal

vegetation structure due to its weight given to longwave radiation. Longwave radiation

is a high producer of entropy; yet, it does not directly contribute to useful work for the

ecosystem. Since the outgoing longwave radiation and ground heat flux are passive loss of

heat and not contributors to work performed by the ecosystem, the concepts of work and

work efficiency are utilized to account for work-driven dissipation of incident energy involved

in self-organization. Work demonstrates the ability of an ecosystem’s vegetation structure to

weaken the resulting temperature gradient by dissipating heat rapidly out of the ecosystem.

This heat dissipation is an important mechanism characterizing the feedback of vegetation
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structure with its local environment and the ecosystem’s vertical imbalance of energy.

Thermodynamic advantage indicates that a given vegetation structure undergoes self-

organizing feedbacks such that it experiences a more favorable thermal environment than

another vegetation structure at a given location. Chapter 2 demonstrates that ecosystems

will naturally self-organize to a vegetation structure with multiple functional groups when

local availability of energy, water, and nutrients are not limiting. Through this analysis,

we identify a framework that explains the prevalence of this vegetation structure due to

its thermodynamic advantage over the existence of the individual functional groups that it

comprises.

However, a multiple functional group vegetation structure is not always feasible. Thermo-

dynamic feasibility, illustrated in Chapter 3, demonstrates why multiple functional groups

do not exist at all locations in nature. This infeasibility arises when the actual (modeled)

dissipation rate of an ecosystem is greater than the dissipation capacity of an ecosystem,

i.e., Da > Dp. This excess dissipation leads to positive feedback loops between the work

performed by the vegetation structure and the vertical temperature gradient from the earth

surface to the air above the canopy, leading to negative temperature gradients (temperature

inversions) and unsustainable periods of negative work performed (i.e., heat is dissipated out

of the ecosystem in the opposite direction of the temperature gradient). Sustained periods of

negative work demonstrate the infeasibility associated with vegetation structures with dissi-

pation rates exceeding the potential dissipation rates supported by the ecosystem’s thermal

environment. In the case of trees modeled beyond a treeline, this thermodynamic infeasi-

bility manifests through physical indicators as well, including extended periods of snowmelt

and annual net losses in leaf carbon.

This work provides a novel framework for characterizing the self-organization of natural

ecosystems driven by thermodynamic advantage and thermodynamic feasibility. To incorpo-

rate the strong feedback of vegetation with climate and resource availability, we conclude that

the vegetation structure to which an ecosystem will self-organize must: first, be thermody-

namically feasible; second, have adequate resource availability, such as water and nutrients;

and third, demonstrate a thermodynamic advantage.
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5.2 Ecosystem Response to Human Perturbations

In addition to developing a framework for the self-organization of natural ecosystem veg-

etation structure, this thesis characterizes the ecosystem-level thermodynamic response of

two types of human activities that directly alter ecosystem vegetation structure. Follow-

ing a disturbance event an ecosystem is given new initial conditions of vegetation structure

imposed by human activities and begins self-organization towards a feasible thermodynami-

cally advantageous state. The study and comparison of a logged forest with an undisturbed

forest demonstrates how a disturbed ecosystem could be held at a thermodynamically dis-

advantageous state, the degree to which is estimated as its dissipation deficit. Since forest

ecosystems take decades to mature, logging events occurring at frequencies shorter than the

time required for regrowth will not allow the ecosystem to self-organize to its most ther-

modynamically advantageous state, and thus, the ecosystem will be held at a sub-optimal

vegetation structure. On the other hand, the frequency of controlled burns results in self-

organization towards two different vegetation structures depending on the frequency of the

burn events. When longer time periods exist between burn events, the ecosystem is able

to self-organize into a more complex state with multiple functional groups. However, when

the time period between burns is shorter, the vegetation structure actually benefits from

the burn events, indicating a reinforcing feedback between the vegetation structure and the

controlled burn.

In disturbed ecosystems, vegetation structure is greatly determined by the recurrence

of the disturbance event and the feedback loops between the thermal environment, the

disturbance event, and the vegetation structure itself. Self-organization must then occur

within the confines of the disturbance events, the thermodynamically feasible vegetation

structures, thermodynamic advantage, and the effect of the disturbance on local resource

availability.
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5.3 Avenues for Future Research

This thesis develops a framework for characterizing the self-organization of the vegetation

structure of natural ecosystems and the response of vegetation structure to human activities

from a thermodynamic perspective. The framework presented opens up new opportunities

for future study, such as the following:

• Development of a mathematical estimation for potential dissipation capacity as a func-

tion of incoming radiation, temperature, and other local properties, such as emissivity

and reflectance, as discussed in Section 3.4. Rather than the current estimation based

on an undisturbed ecosystem, a direct estimation will enable more precise comparisons

of vegetation structure and enable better understanding of possible shifts in ecosystem

behavior as thermal environments change over time.

• An analysis of ecosystem thermodynamic behavior in response to additional types of

human-induced perturbations, such as agricultural cultivation, which forces an ecosys-

tem to sustain a specific vegetation structure, or long-term changes in environmental

forcing that may lead to emergent climate scenarios.

• Research into the site-specific thermodynamic behavior of ecosystems leading up to

and following a catastrophic shift in vegetation structure, or a regime shift, as a result

of both human activities and natural disasters.

The value of this work is demonstrated by the array of research opportunities enabled by

the framework proposed. As human activities increasingly affect ecosystems throughout the

world, it is important to understand the potential impacts to ecosystem structure and asso-

ciated function from human-induced as well as natural disturbance events. The site-specific

calculations and experimental design presented in this research enable analysis of impacts of

perturbations to local-scale vegetation structure, which can have important implications for

land-owners and decision-makers in addition to scientific researchers. This thesis provides a

foundation for deriving new insight with respect to self-organization of vegetation structure

in current and future climate and disturbance regimes.
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Sanchez-Cañete, Rebecca L. Minor, Tony Colella, and Russell L. Scott. Impact of
hydraulic redistribution on multispecies vegetation water use in a semiarid savanna
ecosystem: An experimental and modeling synthesis. Water Resources Research, 54
(6):4009–4027, 2018. doi: 10.1029/2017WR021006.

[63] Russell L. Scott, G. Darrel Jenerette, Daniel L. Potts, and Travis E. Huxman.
Effects of seasonal drought on net carbon dioxide exchange from a
woody-plant-encroached semiarid grassland. Journal of Geophysical Research:
Biogeosciences, 114(G4), 2009. doi: 10.1029/2008JG000900.

[64] Peter S. Curtis, P. J. Hanson, Paul Bolstad, Carol Barford, J. C. Randolph, H. P.
Schmid, and Kell B. Wilson. Biometric and eddy-covariance based estimates of
annual carbon storage in five eastern North American deciduous forests. Agricultural
and Forest Meteorology, 113(1):3–19, 2002. doi: 10.1016/S0168-1923(02)00099-0.

[65] Bruce D. Cook, Kenneth J. Davis, Weiguo Wang, Ankur Desai, Bradford W. Berger,
Ron M. Teclaw, Jonathan G. Martin, Paul V. Bolstad, Peter S. Bakwin, Chuixiang
Yi, et al. Carbon exchange and venting anomalies in an upland deciduous forest in
northern Wisconsin, USA. Agricultural and Forest Meteorology, 126(3-4):271–295,
2004. doi: 10.1016/j.agrformet.2004.06.008.

[66] B.E. Ewers, D.S. Mackay, J. Tang, P.V. Bolstad, and S. Samanta. Intercomparison of
sugar maple (Acer saccharum Marsh.) stand transpiration responses to environmental
conditions from the Western Great Lakes Region of the United States. Agricultural
and Forest Meteorology, 148(2):231–246, 2008. doi: 10.1016/j.agrformet.2007.08.003.

[67] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. The two-sample dispersion
problem and other two-sample problems. Nonparametric Statistical Methods, pages
151–201, 2015. doi: 10.1002/9781119196037.ch5.

[68] Rupert G. Miller. Jackknifing variances. The Annals of Mathematical Statistics, 39
(2):567–582, 1968. doi: 10.1214/aoms/1177698418.

[69] Donald A. Darling. The Kolmogorov-Smirnov, Cramer-von Mises Tests. The Annals
of Mathematical Statistics, 28(4):823–838, 1957. doi: 10.2307/2237048.

[70] Ian T. Young. Proof without prejudice: use of the Kolmogorov-Smirnov test for the
analysis of histograms from flow systems and other sources. Journal of
Histochemistry & Cytochemistry, 25(7):935–941, 1977. doi: 10.1177/25.7.894009.

[71] J.D. Gibbons and S. Chakraborti. Nonparametric Statistical Inference, Fifth Edition.
Taylor & Francis, 2010. ISBN 9781420077612.

92



[72] P. L. Silveston. Warmedurchange in horizontalen flassigkeitschichtem. Heat Changes
in Horizontal Silicon Oil, PhD thesis, Techn. Hochsch. Muenchen, Germany, 1957.

[73] Andrew D. Richardson and Andrew J. Friedland. A review of the theories to explain
arctic and alpine treelines around the world. Journal of Sustainable Forestry, 28(1-2):
218–242, 2009. doi: 10.1080/10549810802626456.

[74] Terry V. Callaghan, Ben R. Werkman, and Robert M.M. Crawford. The tundra-taiga
interface and its dynamics: Concepts and applications. Ambio, pages 6–14, 2002.

[75] Friedrich-Karl Holtmeier and Gabriele Broll. Treeline research—from the roots of the
past to present time. a review. Forests, 11(1):38, 2020. doi: 10.3390/f11010038.

[76] Peter Wardle. An explanation for alpine timberline. New Zealand journal of botany,
9(3):371–402, 1971. doi: 10.1080/0028825X.1971.10430192.

[77] Peili Shi, Christian Körner, and Günter Hoch. A test of the growth-limitation theory
for alpine tree line formation in evergreen and deciduous taxa of the eastern
himalayas. Functional Ecology, 22(2):213–220, 2008. doi:
10.1111/j.1365-2435.2007.01370.x.

[78] Stuart A. Kauffman et al. The origins of order: Self-organization and selection in
evolution. Oxford University Press, USA, 1993.

[79] Scott Camazine, Jean-Louis Deneubourg, Nigel R Franks, James Sneyd, Eric
Bonabeau, and Guy Theraula. Self-organization in biological systems. Princeton
university press, 2003.

[80] Henning Mejer and Sven Erik Jørgensen. Exergy and ecological buffer capacity. In
State-of-the-art in Ecological Modelling, pages 829–846. Elsevier, 1979. doi:
10.1016/B978-0-08-023443-4.50042-7.

[81] Damiano Gianelle, Roberto Zampedri, Mauro Cavagna, and Matteo Sottocornola.
FLUXNET2015 IT-Lav Lavarone, Dataset. 2003-2014. doi: 10.18140/FLX/1440169.

[82] Damiano Gianelle, Mauro Cavagna, Roberto Zampedri, and Barbara Marcolla.
FLUXNET2015 IT-MBo Monte Bondone. 2016. doi: 10.18140/FLX/1440170.

[83] Barbara Marcolla, A. Pitacco, and A. Cescatti. Canopy architecture and turbulence
structure in a coniferous forest. Boundary-layer meteorology, 108(1):39–59, 2003.

[84] Dario Papale, Mirco Migliavacca, Edoardo Cremonese, Alessandro Cescatti, Giorgio
Alberti, Manuela Balzarolo, Luca Belelli Marchesini, Eleonora Canfora, Raffaele
Casa, Pierpaolo Duce, Osvaldo Facini, Marta Galvagno, Lorenzo Genesio, Damiano
Gianelle, Vincenzo Magliulo, Giorgio Matteucci, Leonardo Montagnani, Fabio
Petrella, Andrea Pitacco, Guenther Seufert, Donatella Spano, Paolo Stefani,
Francesco P. Vaccari, and Riccardo Valentini. Carbon, Water and Energy Fluxes of
Terrestrial Ecosystems in Italy, pages 11–45. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015. ISBN 978-3-642-32424-6. doi: 10.1007/978-3-642-32424-6 2.

93



[85] M. Tudoroiu, E. Eccel, B. Gioli, D. Gianelle, H. Schume, L. Genesio, and
F. Miglietta. Negative elevation-dependent warming trend in the eastern alps.
Environmental Research Letters, 11(4):044021, 2016.

[86] Peter D. Blanken, Russel K. Monson, Sean P. Burns, David R. Bowling, and
Andrew A. Turnipseed. AmeriFlux US-NR1 Niwot Ridge Forest (LTER NWT1),
Dataset. 1998-. doi: 10.17190/AMF/1246088.

[87] John F. Knowles, Peter D. Blanken, Mark W. Williams, and Kurt M. Chowanski.
Energy and surface moisture seasonally limit evaporation and sublimation from
snow-free alpine tundra. Agricultural and Forest Meteorology, 157:106–115, 2012. doi:
10.1016/j.agrformet.2012.01.017.

[88] J. Knowles. Infilled climate and heat flux data for Tvan towers data loggers
(CR3000), 2008 - ongoing. ver 1. Environmental Data Initiative. 2018. doi:
10.6073/pasta/10fb65e51cd04631bb80c82288b5c51a.

[89] S.P. Burns, P.D. Blanken, A.A. Turnipseed, J. Hu, and R.K. Monson. The influence
of warm-season precipitation on the diel cycle of the surface energy balance and
carbon dioxide at a colorado subalpine forest site. Biogeosciences, 12(23):7349–7377,
2015. doi: 10.5194/bg-12-7349-2015.

[90] A.A. Turnipseed, P.D. Blanken, D.E. Anderson, and Russell K. Monson. Energy
budget above a high-elevation subalpine forest in complex topography. Agricultural
and Forest Meteorology, 110(3):177–201, 2002. doi: 10.1016/S0168-1923(01)00290-8.

[91] Peter D. Blanken, Mark W. Williams, Sean P. Burns, Russell K. Monson, John
Knowles, Kurt Chowanski, and Todd Ackerman. A comparison of water and carbon
dioxide exchange at a windy alpine tundra and subalpine forest site near niwot ridge,
colorado. Biogeochemistry, 95(1):61–76, 2009. doi: 10.1007/s10533-009-9325-9.

[92] O. Sonnentag and P. Marsh. AmeriFlux CA-HPC Havikpak Creek, Ver. 1-5,
AmeriFlux AMP, (Dataset). 2021. doi: 10.17190/AMF/1773392.

[93] O. Sonnentag and P. Marsh. AmeriFlux CA-TVC Trail Valley Creek, Ver. 1-5,
AmeriFlux AMP, (Dataset). 2021. doi: 10.17190/AMF/1767831.

[94] M. Helbig, K. Wischnewski, G.H. Gosselin, S.C. Biraud, I. Bogoev, W.S. Chan, E.S.
Euskirchen, A.J. Glenn, P.M. Marsh, W.L. Quinton, et al. Addressing a systematic
bias in carbon dioxide flux measurements with the ec150 and the irgason open-path
gas analyzers. Agricultural and Forest Meteorology, 228:349–359, 2016. doi:
10.1016/j.agrformet.2016.07.018.

[95] Andrea K. Eaton, Wayne R. Rouse, Peter M. Lafleur, Philip Marsh, and Peter D.
Blanken. Surface energy balance of the western and central canadian subarctic:
Variations in the energy balance among five major terrain types. Journal of Climate,
14(17):3692–3703, 2001. doi: 10.1175/1520-0442(2001)014〈3692:SEBOTW〉2.0.CO;2.

94



[96] Evan J. Wilcox, Dawn Keim, Tyler de Jong, Branden Walker, Oliver Sonnentag,
Anastasia E Sniderhan, Philip Mann, and Philip Marsh. Tundra shrub expansion
may amplify permafrost thaw by advancing snowmelt timing. Arctic Science, 5(4):
202–217, 2019. doi: 10.1139/as-2018-0028.

[97] Cory A. Wallace and Jennifer L. Baltzer. Tall shrubs mediate abiotic conditions and
plant communities at the taiga–tundra ecotone. Ecosystems, 23(4):828–841, 2020.
doi: 10.1007/s10021-019-00435-0.

[98] C. David Whiteman. Mountain meteorology: fundamentals and applications. Oxford
University Press, 2000.

[99] Jonathan D. Kahl, Mark C. Serreze, and Russell C. Schnell. Tropospheric low-level
temperature inversions in the canadian arctic. Atmosphere-Ocean, 30(4):511–529,
1992. doi: 10.1080/07055900.1992.9649453.

[100] John F. Knowles, Sean P. Burns, Peter D. Blanken, and Russell K. Monson. Fluxes
of energy, water, and carbon dioxide from mountain ecosystems at niwot ridge,
colorado. Plant Ecology & Diversity, 8(5-6):663–676, 2015. doi:
10.1080/17550874.2014.904950.

[101] Paul Grogan. Cold season respiration across a low arctic landscape: the influence of
vegetation type, snow depth, and interannual climatic variation. Arctic, antarctic,
and alpine research, 44(4):446–456, 2012. doi: 10.1657/1938-4246-44.4.446.

[102] Matthias Peichl, Oliver Sonnentag, Georg Wohlfahrt, Lawrence B. Flanagan,
Dennis D. Baldocchi, Gerard Kiely, Marta Galvagno, Damiano Gianelle, Barbara
Marcolla, Casimiro Pio, et al. Convergence of potential net ecosystem production
among contrasting c3 grasslands. Ecology letters, 16(4):502–512, 2013. doi:
10.1111/ele.12075.

[103] Paul J. Crutzen. The “anthropocene”. In Earth system science in the anthropocene,
pages 13–18. Springer, 2006.

[104] Johan Rockström, Will Steffen, Kevin Noone, Åsa Persson, F Stuart Chapin III,
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APPENDIX A

SUPPLEMENTARY INFORMATION

A.1 Supplementary Information for Chapter 2

Figure A.1 provides a conceptual diagram of the ecosystem control volume and fluxes

modeled in this study. Figure A.2 shows the locations overlaid upon the mean annual

precipitation of the study sites considered. Table A.1 outlines the abbreviations for the

vegetation considered within each of the functional groups for each site.

A.1.1 Further Results

The Two-sample Kolmogorov-Smirnov test measures the maximum absolute vertical dis-

tance between two cumulative distribution functions (CDF) [69–71]. Figure A.3 displays

the work efficiency CDF’s for all functional group scenarios at each site. This figure demon-

strates that the multiple-functional-group (MG) scenario at each site has the largest values

(aside from WCR-OT; see Table 2.2 in the main text) due to the smaller CDF’s indicated

by a significantly large vertical distance between MG and the other functional groups.

A.1.2 Additional Parameters and Calculations

All variables except friction velocity and relative humidity were already gap-filled in the

available Fluxnet2015 dataset [57–59]. In order to fill gaps in the relative humidity, variables

were run through REddyProc online tool [132]. The interpolation scheme fills gaps based on

other variables available at the same timestep. The vapor pressure deficit was then calculated

from relative humidity (RH) and air temperature (Ta) at each timestep.

Additional input parameters for MLCan are displayed in Table A.2.
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The leaf area index (LAI) data for all sites are taken from MODIS [61] and calibrated and

partitioned based on site documentation (Fig. A.4). The LAI for each site is also interpolated

for the appropriate timescale based on data fitted to one or composite polynomial functions

depending on the shape. Before fitting, outliers past two standard deviations were removed.

The LAI for Santa Rita mesquite (SRM) was calibrated to the site and partitioned based

on Lee et al. [62] for two years.

LAI for Willow Creek (WCR) is taken from the MODIS network and compared with field

measurements. The understory LAI was taken from a local shrubland near the WCR site,

given as 0.2 [133, 134]. This site, also located in the Chequamegon-Nicolett National Forest,

has been frequently used to compare vegetation responses with WCR and several other local

sites in the forest [133, 134]. This LAI of 0.2 is assumed as the maximum understory value

for the year, and the overstory LAI was extrapolated from the difference in the interpolated

total LAI curve from MODIS and this understory LAI value. Field measurements for total

LAI for 2000 to 2006 in WCR ranges from 0.0 to 5.3 [65, 135], similar to the MODIS range of

0.1 to 5.8. Thus, the curves were fitted to the original MODIS data. The LAI curve for WCR

was created from a composite of five different polynomial functions. The winters (low LAI)

are characterized by second degree curves, and the summers (high LAI) are characterized

by fourth degree curves.

LAI for Tapajos National Forest (TAP) is obtained from MODIS data and compared with

and partitioned based on Domingues et al. [7]. Quality issues with MODIS pixels existed

over this site due to the denser cloud cover in the wet season. Shabanov et al. [136] and

Myneni et al. [137] compare field measurements with MODIS algorithm performance; the

range of values observed at these field sites was 5.4 to 7.0. Alternatively, field studies by

Joetzjer et al. [138] and Brando et al. [139] indicate that the range of acceptable LAI for

2004 is from 4.7 to 5.7 and up to around 6.3 for 2005. The resulting LAI we use for TAP

is based on an interpolated scheme for the MODIS data scaled to the range of values that

satisfy a compilation of the field studies (4.7-6.3). A curve was fitted to the original MODIS

data and scaled up to fit within this published range. The resulting curve is a fifth-order

polynomial function over the entire two year period.

Leaf area density (LAD) (i.e., the normalized vertical distribution of LAI) was solved for
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Figure A.1: Schematic diagram of ecosystem control volume and energy fluxes considered
for a situation with two functional groups. The lower boundary corresponds to a constant
temperature with zero thermal gradient.

each functional group by different techniques based on data availability. LAD for WCR was

taken from Radtke and Bolstad [140], and Weibull distributions were fitted to this data for

each functional group [141, 142]. The same process was repeated for TAP, where the LAD

was taken from Stark et al. [143]. Understory was assumed to be 10% of the total LAD

distribution up to its maximum height, 2m. Lianas take up a smaller distribution of the

LAI than overstory and mid-canopy trees [144]; thus, the remaining LAD distribution was

then partitioned at each layer 2-parts MT, 2-parts OT, and 1-part up to the mean maximum

heights of each functional group described in Domingues et al. [7]. LAD for SRM was taken

from Lee et al. [62].

MLCan has been previously validated for each of these sites [55, 62]. For the present

study, model validation for latent heat is shown in Fig. A.5.
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Figure A.2: Map of site locations existing in Wisconsin and Arizona, United States, and
Pará, Brazil. Background map displaying mean annual precipitation was adapted from
Hijmans et al. [145].

Table A.1: Functional Group Abbreviations for All Sites

Abbrev. WCR SRM TAP

UN understory shrubs understory shrubs understory trees

MT – – mid-canopy trees

OT overstory trees overstory trees upper-canopy trees

L – – lianas

MG UN & OT UN & OT UN, MT, OT, & L
-
Sites: Willow Creek (WCR), Santa Rita Mesquite (SRM), and Tapajos
National Forest (TAP). Multi-group scenarios (MG) include simulations
for species interactions of all identified functional groups.
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Figure A.3: The cumulative distribution functions of work efficiency associated with each
functional group and coexisting multi-functional vegetation groups (see Table A.1).
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Figure A.4: Leaf area index for all Chapter 2 sites.
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Figure A.5: Latent heat validation for all Chapter 2 sites.
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Table A.2: Chapter 2 Model Parameters

Site WCR SRM TAP
Functional Group UN OT UN OT UN MT OT L

Site Information
Percent Sanda 63 75 10
Percent Claya 13 10 80
Ecosystem Heightb (m) 24 2.4375 32
Flux Tower Observation
Heighta (m) 30 7.82 64

Leaf Properties
V cmax (µmol/m2s) 26.9c 44.8d 39e 17.62e 31.6f 57.5f 81f 59.7f

Jmax (µmol/m2s) 47.c 100g 13.55e 37.9f 81f 112f 87.5f

Respiration Q10 (mol/m2s) 2.98h 3.36m 2n

Root Properties
Root Depth (m) 2.5 3 2.5 2.5 1 4 12 12
z50

p 0.19 0.2 0.24 0.28 0.07 0.24 0.65 0.65
z95

p 1.71 1 0.65 1.5 0.4 1.5 4 4
a FLUXNET2015 Network [57–59]
b Modified from Fluxnet2015 Network [57–
59] canopy heights based on leaf area density
c Nishida and Hanba [146]
d Racza et al. [147]
e Lee et al. [62]

f Domingues et al. [7]
g Inferred from Kubiske et al. [148]
h Bolstad et al. [149]
m Saito et al. [150]
n Melton et al. [117]
p Schenk and Jackson [118]
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A.2 Supplementary Information for Chapter 3

A.2.1 Model Inputs & Pre-processing

The multi-layer canopy model, MLCan, models the mass and energy fluxes occurring

within the canopy, roots, and soil system to resolve the energy and entropy fluxes, and asso-

ciated work efficiencies for each ecosystem [27, 28, 35, 52, 53]. Environmental meteorological

data (e.g. wind speed, air temperature, global radiation, precipitation, friction velocity, air

pressure, and relative humidity) from various sources [81, 82, 86, 87, 92, 93] were used as

forcing for the model. Site-specific meteorological data sources and pre-processing methods

are described by location below. Table A.3 documents additional input parameters for ML-

Can for all sites. Model outputs include soil and canopy layer temperatures, snow depth,

photosynthesis and respiration rates, and energy and entropy fluxes at each timestep. All

sites were run on a half-hourly time scale. The study period for each pair of sites was chosen

as the longest consecutive time series of available data for both sites: 2012-2013 for the Ital-

ian Alps, 2008-2013 for the United States Rocky Mountains, and 2016-2018 for the Western

Canadian Taiga-Tundra.

Italian Alps

Data for the Italian Alps sites were taken from the FLUXNET2015 Lavarone (Lav) and

Monte Bondone (MBo) sites [81, 82] and gap-filled using the REddyProc online tool [132].

Validation for the Lav and MBo sites is illustrated in Figure A.6.

Western Canadian Taiga-Tundra

The Western Canadian Taiga-Tundra site pair was composed of the Havikpak Creek

(HPC) and Trail Valley Creek (TVC) AmeriFlux sites [92, 93]. Precipitation data was

available at the daily timescale. This was disaggregated to a half-hourly timestep for model

simulation using the Bartlett-Lewis rectangular pulse method [151]. There were many gaps

in incoming shortwave radiation for the HPC site. These gaps were filled by linear regression
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with no intercept based on available observed data pairs with the TVC site. Validation for

the HPC and TVC sites is illustrated in Figure A.7.

United States Rocky Mountains

For the United States Rocky Mountains in Colorado, the alpine data is taken as the T-Van

site from Knowles et al. [87], and the subalpine data is taken from the Niwot Ridge (NR1)

site in the AmeriFlux network [86, 88]. Incoming shortwave radiation was taken from the

Subnivean lab site 500m from the T-Van site. The precipitation data is hourly data from the

the nearby Saddle site [152] that was disaggregated from hourly to evenly-distributed half-

hourly data. The NR1 site has subalpine firs (Abies lasiocarpa var. bifolia) and Englemann

spruce (Picea engelmannii) west of the tower, and lodgepole pine (Pinus contorta) east of the

tower [33, 89, 90]. We use the species located west of the tower as the dominant vegetation

in our simulations due to the direction of the prevailing winds [89]. Validation for NR1 and

T-Van is illustrated in Figure A.8.

Leaf Area

Time-series of leaf area index (LAI) for all sites (Fig. A.4) were interpolated from MODIS

[124, 153–158] and calibrated and partitioned as in Richardson and Kumar [35] based on

site documentation: Lav – Marcolla and Cescatti, 2003 [83] and Lemoine et al, 2002 [159],

MBo – Gianelle et al, 2009 [160], NR1 – Turnipseed et al, 2002 [90] and Knowles et al,

2015 [100], T-Van – Knowles et al, 2012 [87] and Blanken et al, 2009 [91], HPC & TVC

– Krogh et al, 2017 [31] and site measurements. HPC and TVC curves were scaled to fit

in-situ observations. LAI (LAI-2200 Plant Canopy Analyser, Li-COR Biosciences, Lincoln,

NE) at HPC and TVC were estimated using methods outlined in Ryu et al, 2010 [161] and

Sonnentag et al, 2007a and 2007b [162, 163]. For the HPC site on September 3, 2018, tree

LAI was measured at 0.34 ± 0.16 (n = 39) and shrub LAI was 0.51 ± 0.19 (n=39). We

assumed a constant partitioning percentage between trees and shrubs within HPC based on

the observed scale. For the TVC site on September 1, 2018, LAI was measured as 0.38 ±

0.26 (n = 27). Fifth degree polynomials were fitted to all forest LAI and scaled to include the
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peaks. All alpine/tundra sites were fitted with fifth degree (MBo & TVC) or fourth degree

(T-Van) curves during the time periods with vegetation present. During winter, minimum

LAI is assumed to be 0.1 – the minimum detectable LAI in MODIS. Data gaps in the winter

for the Western Canadian Taiga-Tundra sites were also assumed to be 0.1. Leaf area density

profiles were taken from literature [83, 164, 165] and fitted to Weibull distributions [141, 142].

A.2.2 MLCan Model Updates

MLCan has been validated for numerous sites across the Western Hemisphere [27, 28, 35,

52–55, 62]. To apply MLCan to the harsh winter conditions of Arctic and alpine ecosystems,

we included new parameterizations for peat soils and switches to start and stop photosynthe-

sis to simulate dormancy during winter. Cold temperatures, freezing soils, the hibernation

behavior of vegetation to not perform photosynthesis in the winter, and the varying behavior

of soils with permafrost conditions required updates to model formulation in order to apply

MLCan to this new region. The updates to MLCan are validated for all sites in Figures A.6

– A.8.

Soil

Soil properties, such as sand, clay, and organic material content and hydraulic and thermal

conductivity are parameterized and held constant throughout the model simulations. Due

to the presence of peat soils in the Arctic, we implemented formulations for the thermal

conductivity of arctic peat soils instead of basing them entirely off of sand/clay percentages.

The thermal conductivity model was based on equations from Zhao et al [29], and parame-

terizations for thermal and hydraulic conductivity were based on Wu et al [30] and Krogh

et al [31]. To further take into account the behavior of Arctic permafrost, the model was

altered to turn off plant-soil uptake when a given soil layer was frozen, specifically when the

soil temperature within the layer of the subsurface was determined to be below -1◦C.
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Canopy

We created dynamic switches to stop photosynthetic activity during winter when the mean

air temperature in the canopy over the previous 24 hours drops below a certain threshold

(-7◦C) and restart when it returns above a certain threshold (3◦C) [32]. Based on site-

specific literature, different photosynthesis stop (-3◦C) and start (5◦C) thresholds were used

for NR1 vegetation [33]. Additional constraints preventing photosynthesis from occurring

when the top layer of the soil is frozen or the snow depth is greater than the canopy height

are also included [34]. We do not close the stomata or change the respiration routine since

literature indicates that respiration can occur during winter, even when photosynthesis is

not occurring [101]. The periods of time when photosynthesis was active were validated

based on site-specific literature when available.

Further, due to the extended periods of snowpack in the regions studied, new parameters

were created to demonstrate the change in canopy reflectance with snow [166]. These new

snow reflection coefficients vary based on the surface (i.e., canopy, peat soil, sandy soil) and

the type of radiation (i.e., PAR, NIR) and are summarized in Table A.3.

Ecosystem-wide

Due to the sensitivity of latent heat of vaporization (Lv) in colder regions, we implemented

dynamic Lv based on air temperature [167] rather than keeping it as a static parameter.

We implemented a bi-directional formulation for estimating temperature and vapor pres-

sure values from observed fluxtower measurements. Since counterfactuals were constructed

at the alpine/Arctic sites, fluxtower measurements above alpine/Arctic shrubs were located

below the height of the simulated trees and, consequently, the ecosystem height (see Ta-

ble A.3). This ecosystem height was used as the upper bound of the control volume for

each site pair such that shorter canopy and flux tower heights (i.e., alpine/Arctic tundra

or meadow) could be compared directly with taller ecosystems (i.e., subalpine/subArctic

forest). Since fluxtower measurements were collected below the ecosystem height for the

alpine/Arctic sites and above the ecosystem height for the subalpine/sub-Arctic sites, the

new formulation calculates the estimated temperature and vapor pressure deficit at the
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ecosystem height from the observed values from either above or below using similarity the-

ory.

A.2.3 Additional Figures

The main text presents several figures (Figs. 3.4 – 3.6) with data or results from only

one or two of the locations studied. The data for the remaining sites are presented in

Figs. A.10 – A.12.
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Figure A.10: Annual time series of work, averaged daily, for the entire study period for
scenarios in the (a) Italian Alps (2012-2013) and (b) Western Canadian Taiga-Tundra
(2016-2018). Refer to Figure 3.4 of the main text for information on the United States
Rocky Mountains scenarios.
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Figure A.11: Average daily leaf CO2 flux and snow depth for representative years at the
Italian Alps and Western Canadian Taiga-Tundra. Refer to Figure 5 of the main text for
information on the United States Rocky Mountains scenarios. (a) 2013 daily timeseries of
snow depth (blue) and leaf CO2 flux – the averaged daily photosynthetic CO2 uptake
(orange solid line) and above-ground autotrophic respiration (orange dotted line) – for the
Italian Alps scenarios. (b) 2013 daily timeseries of snow depth (blue) and leaf CO2 flux –
the averaged daily photosynthetic CO2 uptake (orange solid line) and above-ground
autotrophic respiration (orange dotted line) – for the Italian Alps scenarios.
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Figure A.12: Four projected views of the work, temperature gradient, leaf area index (LAI)
3D plot for the (a) Italian Alps and (b) United States Rocky Mountains scenarios. Refer to
Figure 3.6 of the main text for information on the Western Canadian Taiga-Tundra
scenarios. The 3D views show the transition from flatter curves to greater marginal
increases in work with increases in temperature gradient as more LAI is modeled for each
set of environmental conditions (i.e., alpine, subalpine). The simulated alpine forest
scenario exhibits considerable negative work values since the LAI is beyond the supported
limit of the local environmental conditions.
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