
c○ 2021 Yanran Ding

OPTIMIZATION-BASED CONTROL AND PLANNING FOR HIGHLY DYNAMIC
LEGGED LOCOMOTION IN COMPLEX ENVIRONMENTS

BY

YANRAN DING

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Assistant Professor Jo𝑎̃o Ramos, Chair
Professor Geir Dullerud, Chair
Assistant Professor Hae-Won Park, Director of Research
Professor Kris Hauser

Abstract

Legged animals can dynamically traverse unstructured environments in an elegant and effi-

cient manner, whether it be running down steep hill or leaping between branches. To harness

part of the animal agility to legged robot would unlock potential applications such as dis-

aster response and planetary exploration. The unique challenge of these tasks is that the

robot has to produce highly dynamic maneuvers in complex environments with minimum

human guidance. This thesis explores how optimization-based method can be applied in the

control and planning of highly dynamic legged motions to address the locomotion problem in

complex environments. Specifically, this work first describes the design synthesis of a small

and agile quadrupedal robot Panther. Based on the quadruped platform, we developed a

model predictive control (MPC) control framework to realize complex 3D acrobatic motions

without resorting to switching among controllers. We present the MPC formulation that

directly uses the rotation matrix, which avoids the singularity issue associated with Euler

angles. Motion planning algorithms are developed for planar legged robot traversing chal-

lenging terrains. Dynamic trajectories that simultaneously reason about contact, centroidal

dynamics, and joint torque limit are obtained by solving mixed-integer convex programs

(MICP) without requiring any initial guess from the operator. We further reduce the com-

putational expense of long-horizon planning by leveraging the benefits of both optimization

and sampling-based approaches for a simple legged robot. Finally, we present experiment

results for each topic on legged robot hardwares to validate the proposed method. It is our

hope that the results presented in this thesis will eventually enable legged robots to achieve

mobility autonomy at the level of biological systems.

ii

To my family.

iii

Acknowledgments

I would like to express gratitude to my supervisor Dr. Hae-Won Park for giving me the

opportunity to pursue a Ph.D. in robotics. Thank you for the personal investment in my

academic journey and constantly pushing me towards a higher level. I was able to pursue my

ideas while receiving continuous guidance and inspirations. I would also like to thank Dr.

Jo𝑎̃o Ramos, whose encouragement helped me through many ups and downs of research.

I find myself very fortunate to have him as a mentor and as a friend during my time at

UIUC. I am also grateful to two professors that I respect very much. Dr. Kris Hauser

supported my research by providing his valuable advice through weekly research meetings.

Dr. Patrick Wensing often makes insightful remarks that shed light on my research. It is

my great fortune and honor to receive mentorship from these outstanding professors.

The work in this thesis would not have been possible without the collaborative work from

all the great colleagues that I have the pleasure to work with. I want to thank Abhishek

Pandala, Chuanzheng Li and Mengchao Zhang for their close collaborations that crystallized

many inspiring ideas into fruitful results. Many thanks to Jaejun Park, Won Dong Shin,

Jason Jeong, Yinai Fan, Jifei Xu, Young-Ha Shin and members of the HUBO lab during

summer 2019. Thank you for making my graduate school life meaningful and memorable.

I extend my gratitude to Dr. Zherong Pan for his helpful advice, and special thanks Dr.

Jonathan Hoff for his being an incredible role model to academic survivors including myself.

Thank you also to the MechSE staff and Professors, specially Gary Sedberry for his many

advice on machining, Prof. Geir Dullerud for his course on convex method in control.

Finally, I want to thank my friends that I met along the way, Yiliang, Yichuan, Mihary,

Ben, Nick, Ophelia, Mengwei, Gang, aunt Shuqin, uncle Lianghu and others. You have

made this journey unforgettable and special. Most importantly, I want to thank my family

for their bountiful love and support. My caring parents Binliang Ding and Jian Ye, my

nourishing grandparents, my loving wife Xian who always has unshakable belief in me.

iv

Contents

List of Figures . viii

List of Tables . xi

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Related Work . 3

1.2.1 Reactive Control for Locomotion . 3
1.2.2 Model Predictive Control (MPC) . 4
1.2.3 Motion Planning for Locomotion . 5

1.3 Organization and Contributions . 6

Chapter 2 Robotic System Synthesis . 9
2.1 Panther - a Small and Agile Quadruped Robot 9

2.1.1 Dimension . 11
2.1.2 Main Body Design . 12
2.1.3 Leg Module Synthesis . 13

2.2 Actuator Design . 14
2.2.1 Motor Selection . 14
2.2.2 Determining Gear Ratio . 15
2.2.3 Planetary Gearbox Design . 18

2.3 Electronic System . 23
2.4 Software . 23

2.4.1 State Estimation . 24
2.4.2 Swing Leg Control . 26
2.4.3 Contact Detection . 27

2.5 Implementation Details . 28
2.5.1 Center of Mass Location . 28
2.5.2 Mass Moment of Inertia . 28
2.5.3 Friction Compensation . 29
2.5.4 Force Calibration . 29

2.6 Squat Jumping as Capability Test . 30
2.6.1 Quadratic Program-based Controller 31
2.6.2 Experiment Results . 34

2.7 Summary . 35

v

Chapter 3 Representation-Free Model Predictive Control 37
3.1 Introduction . 37

3.1.1 Euler Angles . 38
3.1.2 Quaternion . 40

3.2 Representation-Free MPC Formulation . 41
3.2.1 3D Single Rigid Body Model . 42
3.2.2 Variation-based Linearization . 45
3.2.3 Vectorization . 47
3.2.4 Discrete-time Affine Dynamics . 50
3.2.5 Cost Function . 50
3.2.6 Force Constraints . 52
3.2.7 Quadratic Program Formulation . 53

3.3 Numerical Implementation . 55
3.3.1 Walking Trot . 55
3.3.2 Bounding . 55
3.3.3 Aperiodic Complex Dynamic Maneuver 57
3.3.4 Comparison of Linearization Schemes 60
3.3.5 Reference Trajectory Generation . 62

3.4 Control Framework . 64
3.4.1 Finite State Machine . 65
3.4.2 Computation Setup . 66

3.5 Experiment Results . 67
3.5.1 Pose and Balancing Control . 67
3.5.2 Walking Trot . 68
3.5.3 Running Trot and Bounding . 69
3.5.4 Controlled Backflip . 71

3.6 Summary . 74

Chapter 4 Kinodynamic Motion Planning via Mixed-Integer Convex Pro-
gram . 77
4.1 Introduction . 77

4.1.1 Motivation . 78
4.1.2 Problem Statement . 79

4.2 Common Formulations for R1 and R2 . 81
4.2.1 Reduced Model . 81
4.2.2 Configuration Space . 83
4.2.3 Aerial Phase Kinematics . 83
4.2.4 Bilinear Terms . 84
4.2.5 Foothold Position Choices . 84

4.3 Planar Single-Legged Robot R1 . 85
4.3.1 C-Space Discretization . 85
4.3.2 Mixed-Integer Convex Torque Constraint 86
4.3.3 MIQCP Formulation . 89
4.3.4 Results . 91

vi

4.4 Planar Two-Legged Robot R2 . 93
4.4.1 C-Space Discretization . 94
4.4.2 Feasible Wrench Polytope . 95
4.4.3 Mixed-Integer Wrench Constraint . 98
4.4.4 MICP Formulation . 98
4.4.5 Results . 100

4.5 Summary . 102

Chapter 5 Hybrid Sample/Optimization - based Planning for Jumping
Robots . 105
5.1 Introduction . 105
5.2 Hybrid Planning Pre-requisites . 108

5.2.1 Stance Trajectory Existence . 109
5.2.2 Velocity Reachability Map . 109

5.3 Hybrid Sampling/Optimization-based Plannng Algorithms 111
5.3.1 Sampling-Based Planning . 111
5.3.2 Reachability-Informed Control Sampling 112
5.3.3 Path Shortcut . 113
5.3.4 Trajectory Optimization . 114

5.4 Results . 116
5.4.1 Computation Setup . 116
5.4.2 Performance on Various Terrains . 116
5.4.3 Benchmark . 119
5.4.4 Experiment Setup . 120
5.4.5 Experiment Result . 121

5.5 Summary . 121

Chapter 6 Summary and Conclusion . 123
6.1 Summary . 123
6.2 Future Work . 124
6.3 Conclusion . 125

Bibliography . 127

Appendix A Integration of Bézier Polynomial 140

Appendix B Gain values for RF-MPC . 141

vii

List of Figures

1.1 A squirrel jumping from a tree branch . 2

1.2 Pictures of the Panther robot . 7

2.1 CAD drawsing of the quadruped robot Panther 10

2.2 CAD rendering of the leg module and the planetary gearbox 13

2.3 Specifications of BLDC motors . 15

2.4 Schematics of the compound planetary gearbox with three planet gears . . . 19

2.5 The electronic architecture for the robot Panther 23

2.6 The electronic hardware used on the robot Panther 24

2.7 The kinematic structure of Panther . 25

2.8 Experimental setup and result of force calibration 30

2.9 The friction cone and friction pyramid . 32

2.10 Snapshots of the squat jumping experiment 33

2.11 Vertial GRF and velocity profiles of the squat jumping experiment 33

2.12 QP-based controller performance in x-y plane during landing 34

3.1 Illustration on the singularity of Euler angles using pose control example . . 40

3.2 Illustration of coordinate systems and the 3D single rigid-body model 43

3.3 Simulation results of walking trot . 56

3.4 Simulation results of bounding . 57

3.5 Simulation results of a complex aperiodic 3D maneuver 59

viii

3.6 Comparison between two linearization schemes 61

3.7 Control system overview of the RF-MPC implementation 65

3.8 Schematics of the Finite State Machine (FSM) 66

3.9 Pose control experiment data . 68

3.10 The balancing control experiment . 69

3.11 Walking trot experiment data . 70

3.12 Running trot experiment data . 71

3.13 Bounding experiment results . 72

3.14 Quadruped robot Panther performing a controlled tumble timelapse 74

3.15 Snapshots of Panther performing a controlled tumble 75

3.16 Experimental data from 10 controlled tumble trials 76

4.1 Kinodynamic motion planning problem setup 79

4.2 C-space discretization of the single-legged robot 86

4.3 Illustrations of the ellipsoidal torque constraint 88

4.4 The change of minimal outer ellipsoid versus the number of samples 89

4.5 Snapshots of the single-legged robot Parkour 92

4.6 Single-legged robot Parkour Sim and Exp . 93

4.7 The schematics and C-space segmentation of the two-legged robot 95

4.8 𝐹𝑊𝑃 visualization of the two-legged robot 96

4.9 Snapshots of the jumping-forward experiment 101

4.10 Snapshots of the jumping-backward experiment 101

4.11 Simulation result of the Parkour motion . 103

5.1 Snapshots of the three-jump motion produced by the hybrid planner 106

5.2 The motion primitive and workspace for single-legged robot 108

5.3 The illustration of the reachability map ℛ 110

5.4 Example terrains solved by the proposed hybrid motion planner 117

ix

5.5 The hybrid planning algorithm solving a complex terrain 118

5.6 The solve time and tree node number of the example terrains 118

5.7 Benchmark result of the hybrid planner and other two methods 120

5.8 The joint torque recording for the three-jump experiment 122

x

List of Tables

2.1 System Parameters of Panther . 11

2.2 Physical Parameters of the Gearbox . 22

4.1 Term definition for the simple dynamics . 82

4.2 Bézier coefficient for the jumping on platform experiments 102

B.1 Cost function weights for the simulations . 142

B.2 Cost function weights for the experiments 143

xi

Chapter 1

Introduction

1.1 Motivation

Legged animals possess extraordinary competence in negotiating complex unstructured en-

vironments by executing well-coordinated movements. Whether it be mountain goats scal-

ing steep cliffs, brown bears climbing trees or dogs trained to perform Parkour motions,

quadrupedal animals display remarkable capabilities well beyond those of current legged

machines. In particular, nimble animals such as squirrels are extremely adept at dynamic

maneuvers such as climbing up a tree and leaping between the branches, as shown in Fig.

1.1. To transfer part of the agility of these animals to legged robots would open up numerous

applications including disaster response, transportation and space exploration.

The remarkable mobility of agile animals inspired the development of novel actuation

schemes that gave birth to a new generation of legged robot hardware [11, 47, 60, 67, 70,

107,120,125]. These platforms possess actuation capabilities comparable to or even exceed-

ing their animal counterparts. In addition, the advancements in numerical algorithms and

machine learning have empowered the implementation of increasingly dynamic legged loco-

motions [29,44,72,108,147,148,150,154]. One of the goals shared by many researchers is to

deploy the robots in environments that are too dangerous for humans, such as disaster re-

sponse scenarios and planetary exploration missions. Situations such as destroyed buildings

and rocky cliffs present challenging problems for robots that rely on quasi-static locomotion

strategy or a limited set of pre-computed motions. In particular, these situations require

the robot to carry on a task while the human operator has limited information about the

1

Figure 1.1: A squirrel jumping from a tree branch [96]

environment with considerable transmission delay. Hence, the robot has to produce highly

dynamic maneuvers for complex path planning problems (semi-)autonomously. Currently,

robot systems that can rival the capabilities of biological systems in these unstructured en-

vironments have not yet been developed. The major challenges that hinder the endeavor

to reproduce these capabilities in robotic systems include (1) model complexities that are

fundamental to legged locomotion, such as high degrees of freedom (DoF), under-actuation,

and hybrid/nonlinear dynamics; (2) challenges in the design of a motion planning framework

that simultaneously exploits the complex dynamic properties of legged robot systems and

the combinatorial richness in the contact with environment; and (3) lack of understanding

of the physical system design essential for the execution of dynamic motions. In particular,

state-of-the-art motion planning algorithms for legged robots are not well suited for such

an application because (a) many works focus on stabilizing dynamic periodic locomotion,

which is not applicable to complex environments; (b) algorithms tailored for complex envi-

ronments often require a good initial guess of the robot trajectory from the heuristics of a

human operator; (c) many algorithms involve long computational time due to the expensive

operations in a high-dimensional search space.

The objective of this thesis is to make contributions to address some of the critical

problems in these challenges. Particularly, connection will be established among the control

of legged robot systems, motion planning strategies, and the hardware system synthesis

2

principles to create a systematic solution that enables legged robots to negotiate complex

environments.

1.2 Related Work

The area of dynamic legged locomotion has progressed rapidly thanks to the enormous

amount of research on motion control and planning for an arsenal of robots. A rough

categorization of the related work in these areas is presented in this section. Reactive

control regulates system dynamics at the current moment while the model predictive control

approach plans motion within a short prediction horizon. The optimization- and sample-

based motion planning approaches have longer behavior horizon foresight and have been

often applied with reactive controllers for successful locomotion.

1.2.1 Reactive Control for Locomotion

The reactive control regulates the instantaneous system dynamics around a reference tra-

jectory which is computed a priori. Two of the widely adopted reactive control approaches

in legged locomotion are inverse dynamics control and operational-space control. Inverse

dynamics control can calculate the joint torque of a high degree-of-freedom (DoF) robot at

runtime [41, 58, 92, 115]. The disadvantage of this approach is that it has no authority to

alter the pre-designed trajectory, which can result in failure due to torque limit or violation

of the friction-cone constraint.

Operational-space control [71,121] or task-space control focuses on regulating the motion

in the operational-space instead of the joint space as in inverse dynamics control. The switch-

ing contact and under-actuation inherent to legged systems can be resolved [61,93,116,141]

and system redundancy can be exploited to achieve multiple objectives in a hierarchical man-

ner [61, 122, 123, 140]. The myopic nature of the reactive controller requires high-level con-

trollers with longer behavior horizon foresight for successful locomotion. Chapter 2 presents

3

an application of a Quadratic Program (QP)-based reactive controller and trajectory opti-

mization for dynamic squat jumping on a quadrupedal robot.

1.2.2 Model Predictive Control (MPC)

Enabling agile locomotion capability in legged robot systems requires the control to utilize in-

herent dynamics while handling constraints from hardware limitations and interactions with

the environment. Model Predictive Control (MPC) recently became a widespread control

method due to recent advancements in computing hardware and optimization algorithms,

which enabled real-time execution of the MPC controller in embedded systems. The major

difference between reactive control and MPC is that the former applies control in a myopic

manner while the latter plans control within the span of a prediction horizon, which ex-

ploits system dynamics in a more graceful manner. Based on a model prediction, the MPC

framework easily incorporates various constraints by transcribing the control law as an opti-

mization problem. Recent applications of MPC on humanoids [54], [51] and quadrupeds [100]

have shown the capability of MPC in planning and controlling complex dynamic motions

while embracing system dynamics and constraints arising from friction and motor saturation.

Despite the widespread adaptation of MPC, its direct implementation on a high degree-

of-freedom (DoF) system requires heavy computational resources, hindering the application

on embedded platforms. To tackle this problem, simpler models or templates [43] that

capture the dominant system dynamics were used to predict the behavior of the system.

Previous MPC schemes [54], [55] worked on simplified dynamics models such as Linear

Inverted Pendulum [65] (LIPM) to facilitate online execution. The planar single rigid body

model is used in [109] to plan online jumping trajectories for MIT Cheetah 2 with different

obstacle heights. The spring-mass model is used in [150] to achieve jumping and landing.

Thes centroidal dynamics [103] model links the linear and angular momentum of the robot

with the external wrench. This model is used in [75], [26] to capture the major dynamic effect

of the complex full-body dynamics model of the humanoid robot Atlas. Recent work [10,12,

4

29] use centroidal dynamics in the MPC to achieve various dynamic gaits in quadrupedal

robots.

1.2.3 Motion Planning for Locomotion

The two dominant methods in motion planning for locomotion are the optimization-based

approach and the sample-based approach. A brief overview of these two approaches is

provided here.

Optimization-based Motion Planning

The optimization-based motion planning, or trajectory optimization, uses optimization to

generate dynamically feasible trajectories, as originally introduced by Witkin and Kass [144].

The decision variables are finite number of robot motion parameters; the optimization con-

straints enforces collision avoidance and physical law (e.g. system dynamics, kinematics,

actuation limit). The objective function rewards desirable behaviors and sometimes penal-

ize undesirable ones. There are many methods to formulate a trajectory optimization prob-

lem [6, 7, 57, 95, 98, 112, 137] including single shooting, multiple shooting, direct collocation,

differential dynamic programming and through-contact methods. Most of these transcrip-

tions result in a nonlinear program, which can be solved by numerical solvers [3,9,18,138] to

synthesize smooth dynamical motions. Trajectory optimization has been widely applied to

humanoids [23,26,56,59,131] and quadrupeds [67,86,99,108,143]. For simple robot models,

the optimization problems can be convex and solved efficiently [15]. However, complicated

robot model can introduce nonlinearity and non-convexity and cause the optimization to give

local minima or infeasibility [4]. To tackle this problem, Chapter 4 proposes a mixed-integer

program-based method to solve the non-convex problem and generate certificates for global

optimality or infeasibility.

5

Sample-based Motion Planning

The sample-based motion planning method [78] draws a random sample and then determines

if the sample is feasible. A path is found when the connected feasible samples include start

and goal. Popular sample-based motion planning techniques such as Probabilistic Roadmap

(PRM) [14, 68] and Rapidly-exploring Random Trees (RRT) [77, 79] can guarantee proba-

bilistic completeness. The sample-based method has been widely used to solve large planning

problems in humanoid [49, 50, 73, 74] and multi-legged robots [16, 118, 126]. However, most

of these methods are based on quasi-static assumption, and require custom post-processing

to improve the quality of the motion. Inspired by [126], Chapter 5 introduces a hybrid

sample/optimization-based planning framework for agile jumping robots.

1.3 Organization and Contributions

This thesis contributes to the advancement of dynamic legged locomotion, with more specific

contributions including high-power actuator design, model predictive control, and kinody-

namic motion planning for legged robots to traverse complex terrains by executing dynamic

maneuvers. The chapters in this thesis are organized in a bottom-up order, where hardware

design is first introduced, then the real-time controller before the high-level motion planning

algorithms.

Chapter 2 describes the hardware synthesis of the legged robot platforms used in Chapters

3-5. A small yet agile quadrupedal robot called Panther as shown in Fig. 1.2 is developed

because platforms capable of the dynamic motions we want to achieve were not available at

that time. Details about actuator design and the electronic system are also presented since

they enable the various hardware experiments in this thesis. To showcase the legged robot

hardware capabilities, a dynamic squat jumping experiment on Panther is presented.

Chapter 3 presents a novel Representation-Free Model Predictive Control (RF-MPC)

framework for controlling various dynamic motions of quadrupedal robots in three-dimensional

6

(a) (b)

Figure 1.2: Pictures of Panther, a small and agile quadrupedal robot platform used in this thesis.
(a) The isometric view of Panther with a soda can for scale (b) The front view of Panther.

(3D) space. Our formulation directly represents the rotational dynamics using the rotation

matrix, which eliminates the issues associated with the use of Euler angles and quaternion as

the orientation representations. With a variation-based linearization scheme and a carefully

constructed cost function, the MPC control law is transcribed to the standard Quadratic

Program (QP) form. Operating at a real-time rates of 250 Hz on the quadruped robot

Panther, the MPC controller enables dynamic motions with arbitrary orientation using a

single control framework without resorting to switching among controllers. Having a uni-

fied framework is beneficial because switching between controllers is either slow or prone to

edge case failure. Experimental results including periodic gaits and a controlled tumble are

presented to validate that RF-MPC can stabilize dynamic motions that involve singularity

in 3D maneuvers.

Chapter 4 introduces a novel mixed-integer convex programming (MICP) formulation for

kinodynamic motion planning of dynamic legged robots. The proposed MICP-based planner

can produce motions that exploit the environment by simultaneously reasoning about the

centroidal dynamics, actuator torque limit, contact position, and gait sequence. Specifically,

the non-convex torque limit constraint is reformulated as a piece-wise convex constraint over

a discretization of the configuration space (C-space) of the robot. Compared with nonlinear

7

program-based methods, the MICP formulation provides a globally optimal solution using

off-the-shelf numerical solvers without requiring initial guesses. Simulation and experiment

results on multiple-legged robots are presented to validate the proposed method.

Chapter 5 presents a hybrid sampling/optimization - based motion planning algorithm

for dynamic single-legged robots to overcome challenging terrains. The kinodynamic motion

planning problem is decoupled into two stages, where the sampling stage searches for a

kinematically feasible path as a sequence of parabolas, and the optimization stage solves

for the dynamically feasible trajectory. The performance of the proposed hybrid motion

planning algorithm is shown on various example terrains, and the advantage of this method

is highlighted through benchmarking with two other methods. A trajectory generated by the

proposed method is applied on a physical robot, which successfully traversed a challenging

terrain by executing 3 consecutive jumps.

Chapter 6 provides the concluding remarks and introduces the possible future research

directions from this thesis.

8

Chapter 2

Robotic System Synthesis

The design guidelines for dynamic legged robots can be acquired by observing nimble an-

imals such as squirrels. For example, leg inertia should be reduced by using light-weight

components, and heavy parts such as actuators should be placed close to the body. This

design strategy allows for fast swing leg motion and reduces dynamic coupling between swing

legs and the body, therefore admits a simple model for control and planning. In addition,

the actuators should be power-dense and compliant so that they can propel the robot to

perform dynamic maneuvers while frequently interacting with the environment.

This chapter outlines how the design guidelines are embodied in the synthesis process of

a quadrupedal robot Panther as shown in Fig. 1.2. The overall description and mechanical

properties of Panther are presented as well as the actuator design process. Details about

the electronic framework, essential robot software, and practical implementation are also

provided for completeness. The capability of Panther is demonstrated in a power squat

jump experiment where the robot reached a maximum jumping height of 0.7 m (2.25 ×

body length) and landed safely.

2.1 Panther - a Small and Agile Quadruped Robot

This section presents Panther, a 5.5 kg fully torque controllable, electrical quadruped robot.

With a body length of 0.3 m and link length of 0.14 m, this robot has the overall dimension

of a slightly oversized domestic cat. Compared with other state-of-the-art quadruped robot

platforms in the same category, Panther is the smallest in size and the lightest in weight.

9

𝑒𝑥
𝐵

𝑒𝑦
𝐵

𝑒𝑧
𝐵

301 mm

8
8
 m

m
5
0
 m

m
1
4
5
 m

m

405 mm

2
3
5

m
m

(a)

(b)

(c)

(d)

Figure 2.1: The quadruped robot platform Panther has four proprioceptive leg modules with high
specific power capability. Each leg module consists of one ABAD, HIP and KNEE motor modules.
The dimensions and weight of Panther resembles that of a large domestic cat. (a) top view (b) side
view (c) isometric view (d) back view.

10

Table 2.1: System Parameters of Panther

Parameter Value Unit
total mass 5.500 kg
body length (motor2motor) 0.301 m
linkage length (thigh&shin) 0.140 m
enclosing dim. (L×W×H) 0.405×0.235×0.145 m
𝐼𝑥𝑥 0.026 kg·m2

𝐼𝑦𝑦 0.112 kg·m2

𝐼𝑧𝑧 0.075 kg·m2

max. ABAD torque 8.410 N·m
max. HIP/KNEE torque 9.811 N·m
max. ABAD speed 79.800 rad/s
max. HIP/KNEE speed 33.400 rad/s

The small-dimension and light-weight design grants the robot inherent robustness and agility.

The downside of a small-scaled robot is its lower payload capacity. Specifically, the operating

time that the on-board battery can sustain is lower than larger robots (around 20 minute).

Nevertheless, since the main focus of this thesis is on dynamic motions, agility and robustness

are the most important performance metrics.

2.1.1 Dimension

The size and dimensions of Panther are chosen to resemble that of a domestic cat. Fig.2.1

presents a CAD drawing of the robot with important dimensions. Four leg modules with

proprioceptive actuation design [142] are arranged in a left-right symmetric manner, knees

bending backward. The proprioceptive motor design paradigm provides high torque density

and high-bandwidth force control that is suitable for dynamic locomotion. With carbon fiber

tubes providing structural rigidity, the electronic components are enclosed in the middle

of the body. To achieve dynamic locomotion capability, Panther is designed to have a

high strength-to-weight ratio. For example, carbon fiber reinforced 3D printed parts are

extensively used in body assembly. To provide the basic specifications of the Panther robot,

important system parameters are presented in Table 2.1.

11

The main enabler for Panther to perform highly dynamic motions is the proprioceptive

actuator design and light-weight leg design. The high specific-torque actuator is designed

based on the proprioceptive actuation paradigm [124], whose detailed design procedure is

presented in Section 2.2. The light-weight linkage design is another factor that ensures

that the robot can interact with the environment in a compliant manner. The leg module

synthesis is detailed in Section 2.1.3.

2.1.2 Main Body Design

The main body of Panther is designed to provide structural integrity and storage for the

electronic components. As shown in Fig. 2.1, four carbon tubes run along the longitu-

dinal direction of the robot to provide structural stiffness. Many parts used in the main

body assembly are 3D printed Nylon with carbon fiber reinforcement (Onyx) for its high

strength-to-weight ratio. These parts are manufactured using the Mark TwoTM 3D printer.

In addition, water-jetted carbon fiber panels are installed on the two sides to shield the

electronics and provide extra stiffness. The body design allows the robot to be placed ver-

tically, which makes it easy to access the electronic components for repair purposes. The

body frame {𝐵} is located at the center of mass (CoM) of the robot, which is shown in Fig.

2.1(c).

The main body is also carefully designed to accommodate the electronics. The main

computer, power distribution board, and an inertia measuring unit (IMU) are mounted on a

3D printed part with plastic spacers in between for shock isolation, and the whole assembly

is installed in the cavity of the body. The ElmoTM amplifiers are arranged into groups of

three, and they are mounted symmetrically in an up-down / front-back fashion, where each

ElmoTM amplifier group is in charge of controlling one leg module. This arrangement makes

the ports on the ElmoTM boards more accessible for the calibration process. The ElmoTM

heat sink is attached via thermal tape to the other aluminum parts, which serve as heat sinks

for heat dissipation. Furthermore, a fan is attached to each end of the robot for active heat

12

KNEE motor
HIP motor

Upper link

Carbon

fiber tube

Knee joint

Thigh

ABAD motorPlanetary gearbox

Encoder

mount

Upper link KNEE carrierHip cap

(a) (b) (c)

Figure 2.2: CAD rendering of the leg module and the planetary gearbox (a) The motor configuration
and the linkage design (b) Cross-section view of the HIP-KNEE module, showing the planetary
gearbox and motor (c) A zoom-in view on the curved upper link and the KNEE carrier.

exchange, which is necessary because Elmo generates a considerable amount of heat when

the robot is executing dynamic motions. More details about the electronic components can

be found in Section 2.3.

2.1.3 Leg Module Synthesis

Each leg module is composed of three brushless direct-current (BLDC) motor modules,

namely, HIP, KNEE, and ABAD (abduction/adduction) motors. An illustration of the leg

module is presented in Fig. 2.2. The ABAD motor axis is aligned with the x-axis of the

body frame {𝐵}, and the HIP and KNEE motor modules are placed coaxially. It is worth

noting that the hip cap in Fig. 2.2 (b) connects the KNEE motor to the HIP motor via a

large diameter bearing. This design allows the hip joint to rotate 360∘, permitting Panther

to walk even when the body is up-side-down.

The torque from the KNEE motor is transmitted to the knee joint via a curved upper

link, which is made of hardened A2 tool steel for extra strength. As shown in Fig. 2.2 (c),

the top part of the upper link is curved so that the knee carrier can rotate an extra 30∘

compared with straight link design. The hollow design of the 3D printed thigh link allows

the upper link to go through, providing protection from external impact. The thin-wall thigh

13

link and the carbon fiber tube shank link constitute a light-weight articulated leg, whose

weight is less than 10% of the total weight of the leg module. This design feature allows

the subsequent motion planning and control design to adopt the mass-less leg assumption.

This is a key assumption since it facilitates the employment of a simple model, which greatly

alleviates the computational burden in the corresponding optimizations.

The point foot of the leg module shown in Fig. 2.2 (a) is made of a Nylon 3D printed

part cushioned with Sorbothane for its shock absorption capability.

2.2 Actuator Design

Dynamic maneuvers such as jumping require the actuator to output large torque at a high

angular speed. To design an actuator that is suitable for dynamic locomotion application,

torque density [125] was proposed to be the deciding metric because it reflects the ratio

of torque-producing capability versus the weight of an actuator. This design strategy is

successful in MIT Cheetah I, II, III [124], [107], [11]. However, as the scale of the quadrupedal

robot decreases, motor speed becomes more of a limiting factor since higher angular velocity

is needed to produce the same end-effector speed. Based on this observation, the major

design consideration is set to be the balance between motor torque and speed for small

dynamic quadruped robots.

2.2.1 Motor Selection

The motor selection strategy adopted here is to strike a balance between torque and speed

requirements. The maximal specific power 𝜏𝑚𝑎𝑥 · 𝜔𝑚𝑎𝑥/𝑚 takes into account both torque

and speed-producing capabilities of the motor. It also indicates the power delivery ability

per unit weight in jumping applications. Moreover, since the maximal specific power is

independent of the gear ratio, it can be used to select the motor before determining the

gear ratio. Although simultaneously considering the motor selection and gear ratio can be

14

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Gap radius [m]

0

0.1

0.2

0.3

0.4

0.5
[N

m
/k

g]
Specific Torque = τ

max
/m

Parker
Allied
Maxon

(a)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Gap radius [m]

0

2000

4000

6000

8000

10000

12000

[W
/k

g]

Max Specific Power = τ
peak

*ω
max

/m

Parker
Allied
Maxon

(b)

Figure 2.3: Specifications of BLDC motors from Parker, Allied Motion, and Maxon Group [88].
(a) Maximum specific torque versus gap radius. (b) Maximum specific power versus gap radius.

an interesting problem, here we adopt the sequential design approach, where the motor is

chosen before the gear ratio is determined for the lower computational cost. Nevertheless,

the motor module is validated experimentally to be competent as shown in Section 2.6. In

conclusion, the maximal specific power is chosen as the metric for motor selection.

The maximal specific torque data of commercial motor are plotted in Fig.2.3(a) against

gap radius. The gap radius is the “distance from the rotating axis to the center of the gap

between permanent magnets and the stator” [124]. The maximum specific power data are

plotted against gap radius in Fig.2.3(b). While specific torque is close among motors with

similar gap radius, ParkerTM motors have the highest maximal specific power value under

the same gap radius. Taking into account the dimensional limit of motor installation on a

small-sized targeting robot platform (OD<50 mm; stack length<50 mm), ParkerTM motor

K044050 was chosen for HIP and KNEE joints and K044025 was chosen for the ABAD joint.

2.2.2 Determining Gear Ratio

To determine the gear ratio of the gearbox, we presented in [34] a sequential design procedure

with the assistance of nonlinear program (NLP). Here we briefly go over the major steps

15

and formulations for completeness. Further details can be found in the companion design

paper [34].

At stage one, an NLP is formulated where the robot is simplified as a point-mass moving

along a vertical linear rail. Joint torque and other constraints are imposed and the maximal

jumping height is maximized. The gear ratio of stage one (𝐺𝑅1) is used as an initial guess

in stage two, where a more realistic model is used.

At stage two, approximate joint inertia (as a function of gear ratio) is incorporated in

the model so that impact force is present. The optimization variable 𝑥𝑜𝑝𝑡 is

𝑥𝑜𝑝𝑡 := [𝑝0,𝛼𝐹 , 𝑇𝑠𝑡, 𝐺𝑅, 𝑞, 𝑞̇, 𝜏 , 𝑞
−], (2.1)

where 𝑝0 is the intial CoM position; 𝛼𝐹 is the coefficient for the Bézier polynomials that

parametrize the GRF; 𝐺𝑅 is the gear ratio; 𝑞, 𝑞̇, 𝜏 are the joint position, velocity and torque

trajectories, respectively; 𝑞− is the joint angle at touchdown. The variables 𝑝0,𝛼𝐹 , 𝑇𝑠𝑡 char-

acterize the jumping trajectories, 𝐺𝑅 modulates the actuator box constraints, and 𝑞, 𝑞̇, 𝜏 , 𝑞−

are slack variables for imposing path constraints.

The NLP formulation at stage two is

minimize
𝑥𝑜𝑝𝑡

− ℎ𝑚𝑎𝑥

||𝐹 ||
(2.2a)

subject to 𝐶𝑖𝑚𝑝𝑎𝑐𝑡(𝑥𝑜𝑝𝑡) = 0 (2.2b)

𝐶𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠(𝑥𝑜𝑝𝑡) = 0 (2.2c)

𝐶𝑏𝑜𝑥(𝑥𝑜𝑝𝑡) ≤ 0, (2.2d)

where the objective of the second NLP is to maximize the ratio of maximum jumping height

and impact force norm ℎ𝑚𝑎𝑥

||𝐹 || because it is desirable to have a large maximal reachable height

and smaller impact force. The impact constraint 𝐶𝑖𝑚𝑝𝑎𝑐𝑡 is imposed to reveal the impact

16

force

𝐶𝑖𝑚𝑝𝑎𝑐𝑡 = 𝐷(𝑞̇+ − 𝑞̇−)− 𝐽𝑇 (𝑞−)𝐹 + 𝐽𝑇
𝑥 (𝑞−)𝐹𝑥, (2.3)

where 𝐷(𝐺𝑅) ∈ R4×4 is the inertia tensor; 𝑞− ∈ R4 is the joint angle at impact; 𝑞̇−, 𝑞̇+ ∈ R4

are the joint velocity before and after impact, respectively. 𝐹 ∈ R2 is the impact force vector

from ground to the foot; 𝐹𝑥 ∈ R is the horizontal impact force from the linear rail to the

leg base; 𝐽 ∈ R2×4 is the foot Jacobian; 𝐽𝑥 ∈ R1×4 is the Jacobian of the base horizontal

position. The constraint 𝐽 · 𝑞̇+ = 0 ensures that the foot maintains contact with the ground;

the constraint 𝐽𝑥 · 𝑞̇+ = 0 makes sure the base does not break away from the linear rail. By

solving the equations simultaneously, 𝑞̇+,𝐹 , and 𝐹𝑥 can be expressed as

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞̇+

𝐹

𝐹𝑥

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐷 −𝐽𝑇 −𝐽𝑇

𝑥

𝐽 0 0

𝐽𝑥 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎣
𝐷𝑞̇−

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.4)

𝐶𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠 is the constraint that ensures consistency in forward kinematics and differential

kinematics, and 𝐶𝑏𝑜𝑥 ≤ 0 represents the box constraints on 𝑞, 𝑞̇, 𝜏

𝑞𝑚𝑖𝑛 ≤𝑞𝑘 ≤ 𝑞𝑚𝑎𝑥

𝑞𝑚𝑖𝑛(𝐺𝑅) ≤𝑞̇𝑘 ≤ 𝑞𝑚𝑎𝑥(𝐺𝑅)

𝜏𝑚𝑖𝑛(𝐺𝑅) ≤𝜏𝑘 ≤ 𝜏𝑚𝑎𝑥(𝐺𝑅), ∀𝑘

(2.5)

where the subscripts (·)𝑚𝑖𝑛 and (·)𝑚𝑎𝑥 stand for the lower and upper bounds, respectively.

The trajectory optimization (TO) transcription is a polynomial-parametrized single-shooting

with path constraints at sampled points. Compared with other transcription methods such

as direct collocation, this method was adopted for its simplicity to implement. Since this

problem is relatively easy to solve, the presented TO formulation can find solutions by using

the 𝐺𝑅1 from the stage one to warm-start the search. Specifically, the value of the stage

two gear ratio is obtained 𝐺𝑅2=23.36:1 by solving the NLP using 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 in MATLAB.

17

In the first two stages, the gear ratio is assumed to be a continuous variable, which is not

realistic since the discrete gear teeth number choices result in a discrete gear ratio. Section

2.2.3 presents the more practical aspect of the gearbox design.

2.2.3 Planetary Gearbox Design

Speed reduction systems widely used in the robotics community include harmonic drive,

cycloidal gearbox, and planetary gearbox. The planetary gearbox design is adopted here

because its nominal gear ratio is lower than the other two designs and its efficiency is higher.

Lower gear ratio is desirable here because it provides better transmission transparency or

back-drivability, which is essential in the proprioceptive actuator design. A planetary gearbox

consists of sun gear, a ring gear, a carrier, and typically multiple planet gears. This section

presents the design of a two-stage compound planetary gearbox, which provides the desired

gear ratio while maintaining a compact design.

Gear Ratio

In this section, the gear ratio (𝐺𝑅) of a compound planetary gearbox is derived as a func-

tion of the gear teeth number. To facilitate the derivation, the schematics of a compound

planetary gearbox are presented in Fig. 2.4. The pitch radius of each component is denoted

as 𝑟, the gear teeth number as 𝑁 , and the angular velocity as 𝜔. The subscripts and their

referred components are: 𝑠 (sun), 𝑝 (planet), 𝑟 (ring), 𝑐 (carrier). The gear ratio is

𝐺𝑅 = 𝜔𝑠

𝜔𝑐

= 𝑟𝑐

𝑟𝑠

· 𝑟𝑝1 + 𝑟𝑝2

𝑟𝑝2
= 𝑁𝑐

𝑁𝑠

· 𝑁𝑝1 +𝑁𝑝2

𝑁𝑝2
, (2.6)

where the subscripts 𝑝1, 𝑝2 refer to the two stages of the planet gear. As shown in Fig. 2.4,

𝑝1 is green and 𝑝2 blue. The ratio of pitch radius is the same as that of teeth number because

the module number of all of the gears are the same.

The expression of gear ratio is deduced from the velocity matching conditions at the two

18

𝑟𝑝2

𝑟𝑝1

Subscripts:
s: sun

p: planet

r: ring

c: carrier

𝑟𝑟

𝑟𝑠

𝑟𝑐 𝑇𝑠 𝑓𝑠𝑝

𝑓𝑝𝑐

𝑓𝑝𝑟

𝑓𝑠𝑝

𝑓𝑝𝑐

𝑇𝑐

Ring gear Sun gear

Planet gear

Carrier

Figure 2.4: Schematics of the compound planetary gearbox with three planet gears. The sun gear is
colored red; the planet gear is green (p1) and blue (p2); the carrier is represented by the transparent
triangle. The ring gear is colored orange and assumed to be fixed. The free-body-diagrams of the
sun gear, planet gear, and carrier is shown on the right for the derivation of the rotary inertia.

gear meshing points. One between the sun gear and the planet gear 𝑝1, the other between

the planet gear 𝑝2 and the ring gear.

𝜔𝑠 · 𝑟𝑠 = 𝜔𝑝(𝑟𝑝1 + 𝑟𝑝2)

𝜔𝑐 · 𝑟𝑐 = 𝜔𝑝𝑟𝑝2,

(2.7)

where 𝑟𝑐 = 𝑟𝑠 + 𝑟𝑝1.

Gear Teeth Number

In Section 2.2.2, the gear ratio is assumed to be a continuous variable in the NLP. This

is not realistic because gear teeth number can only take discrete values, hence, the desired

gear ratio usually can not be achieved exactly. Therefore, given the desired gear ratio, the

gear teeth number should be chosen such that the resulting gear ratio is as close to the

desired gear ratio as possible. In addition, other design requirements such as dimension

constraints should be taken into consideration. The problem of choosing the optimal set

of gear teeth can be solved by the brutal-force method. This method is time-consuming

because it enumerates all of the possible combinations of gear teeth numbers.

19

To find the optimal gear teeth combination faster, an integer program formulation is

proposed. The optimization variables are 𝑁𝑠, 𝑁𝑝1, 𝑁𝑝2 ∈ Z+, which refer to the gear teeth

number of the sun gear and planet gear (stage 1 and 2), respectively. The gear ratio 𝐺𝑅

is a function of the optimization variables, the expression of the function is shown in (2.6).

The optimization problem is formulated as an integer program as follows

minimize
𝑁𝑠,𝑁𝑝1,𝑁𝑝2

|𝐺𝑅−𝐺𝑅𝑑|

subject to 𝑁𝑠, 𝑁𝑝1, 𝑁𝑝2 ∈ Z+

𝑟𝑖 ∈ [r𝑖, 𝑟𝑖], 𝑖 ∈ {𝑠, 𝑝1, 𝑝2}

𝑟𝑠 + 2𝑟𝑝1 ≤ 𝑟𝑚𝑎𝑥

(2.8)

where 𝐺𝑅𝑑 is the desired gear ratio; r𝑖 and 𝑟𝑖 denote the lower and upper bound on the gear

radius, respectively; the distance from the center of the gearbox to the farthest point of the

planet gear is 𝑟𝑠 + 2𝑟𝑝1; 𝑟𝑚𝑎𝑥 is the maximum radius constraint imposed by the dimension of

the gearbox cover. This integer program is formulated using YALMIP [83], and solved using

the branch-and-bound (B&B) algorithm. Compared with the brutal-force enumeration, the

integer program approach is much more computationally efficient and easier to implement.

For a small problem, like the one presented here, the optimal gear teeth combination can be

solved in a few seconds, whereas the brutal-force method may take up to several minutes. In

addition, the integer program approach makes it easy to incorporate additional parameters

and constraints. For example, the gear module number can be incorporated as part of the

integer optimization variables.

By solving the integer program (2.8), the optimal gear teeth choice emerged (GR = 23.36;

sun gear: 12; planet gear: 16/53; ring gear: 81). It is worth noting that the planet gear

teeth combination is chosen to be 16/53, which only shares the common factor of 1. Since

the gear manufacturer cannot guarantee fixed teeth alignment between the two stages of the

planet gear, the choice of planet gear teeth combination allows a tunable backlash with a

20

2.1∘ increment in the gearbox assembly. This design uses the principle of alignment, which

is similar to the working principle of a Vernier caliper.

Gearbox Rotary Inertia

The rotary inertia of the gearbox is one of the key physical parameters of motor dynamics

that need to be obtained to achieve better control performance. This section presents the

derivation and the final expression for the lumped rotary inertia of the compound planetary

gearbox design as shown in Fig. 2.4.

As a one DoF mechanical system, the gearbox inertia is derived using the Euler-Lagrangian

equation. The mechanical energy consists only of the kinetic energy

𝐾𝐸𝑠 = 1
2𝐽𝑠 · 𝜔2

𝑠

𝐾𝐸𝑐 = 1
2𝐽𝑐 · 𝜔2

𝑐

𝐾𝐸𝑝 = 1
2𝐽𝑝 · 𝜔2

𝑝 + 1
2𝑚𝑝 · 𝑣2

𝑝,

(2.9)

where 𝐾𝐸 denotes the kinetic energy; 𝐽 represents the moment of inertia about the CoM;

𝑚𝑝 is the mass of the planet gear; the linear velocity of the planet gear 𝑣𝑝 is 𝑣𝑝 = 𝜔𝑝 · 𝑟𝑝2.

The Lagrangian of the gearbox is

ℒ = 𝒦 − 𝒫 = 𝐾𝐸𝑠 +𝐾𝐸𝑐 + 𝑛𝑝 ·𝐾𝐸𝑝, (2.10)

where 𝑛𝑝 is the number of planet gear. The equation of motion can be expressed in terms

of the Lagrangian

𝑇𝑠 = 𝑑

𝑑𝑡

𝜕ℒ
𝜕𝑞
− 𝜕ℒ
𝜕𝑞
, (2.11)

where 𝑇𝑠 is the input torque to the sun gear; 𝑞 is the sun gear rotation angle 𝜃𝑠. The rotary

inertia felt on the input side 𝐽𝑖𝑛 = 𝑇𝑠/𝜃𝑠, and the reflected inertia on the output side is

21

𝐽𝑜𝑢𝑡 = 𝐺𝑅2 · 𝐽𝑖𝑛, where the expression of 𝐺𝑅 is in (2.6) and

𝐽𝑖𝑛 = 𝐽𝑠 +
𝑛𝑝 · 𝑟2

𝑠(𝑚𝑝 · 𝑟2
𝑝2 + 𝐽𝑝)

(𝑟𝑝1 + 𝑟𝑝2)2 +
𝐽𝑐 · 𝑟2

𝑝2 · 𝑟2
𝑠

(𝑟𝑝1 + 𝑟𝑝2)2 · 𝑟2
𝑐

. (2.12)

The physical parameters of the gearbox are summarized in Table 2.2. The 𝐽𝑠, 𝐽𝑐, 𝐽𝑜𝑢𝑡

for the ABAD (A), HIP (H), and KNEE (K) motor modules are different. The inertia

parameters of each individual part are obtained from the CAD models, and then the lumped

gearbox rotary inertia is calculated using (2.12) and (2.6).

Table 2.2: Physical Parameters of the Gearbox

Parameter Value Unit

𝑟𝑠 2.40e-3 m

𝑟𝑝1 1.06e-2 m

𝑟𝑝2 3.20e-3 m

𝑟𝑐 1.30e-2 m

𝑛𝑝 3 N/A

𝑚𝑝 4.94e-3 kg

𝐽𝑝 2.63e-7 kg m2

𝐽𝑠 A: 1.17e-6; H: 1.81e-6; K: 1.81e-6 kg m2

𝐽𝑐 A: 7.43e-4; H: 1.87e-4; K: 5.86e-5 kg m2

𝐽𝑜𝑢𝑡 A: 1.40e-3; H: 1.19e-3; K: 1.06e-3 kg m2

The inertia values as shown in Table 2.2 are used in Section 2.4.2 for swing leg control,

and in Section 2.4.3 for contact detection.

22

Simulink Real-Time
Sample rate: 4kHz

On-board Computer
ADLQM67PC-3517UE

SPI to EtherCAT
Sample rate: 4kHz

Signal Converter
Infineon XMC4800

Sampling rate: 4kHz
Internal rate: 20kHz

Motor Driver
Elmo Gold Twitter

Encoder
RLS RMB20SC

BLDC Motor
Parker K044

IMU
VN-100

EtherCAT

SPI/SSI

Current

Sensors/Actuator Middle-ware Computer

1 2

3

4

5

6

Figure 2.5: The electronic architecture for the quadrupedal robot Panther. The onboard SBC
computer runs Simulink Real-Time and communicates via EtherCAT with a) ElmoTM motor driver
and b) Signal converter. The ElmoTM motor driver controls torque commands to the BLDC
motor and reads encoder readings. The signal converter consists of a custom PCB board and an
InfineonTM board, which collects IMU data.

2.3 Electronic System

The electronic system of Panther as shown in Fig. 2.5 centers around a single-board-

computer (SBC) which runs the main control loop in Simulink Real-Time at 4kHz. The

on-board computer PC104 with Intel i7-3517UE at 1.70 GHz communicates with the signal

converter and motor drivers via EtherCAT at 4 kHz. The signal converter consists of a

customized PCB and the InfineonTM XMC4800 microcontroller and is used to collect the

inertial measuring unit (IMU) readings in Serial Peripheral Interface (SPI) at 1 kHz. The

ElmoTM Gold Twitter motor drivers control the BLDC motors by running a torque control

loop at 20 kHz. The 13 bit magnetic absolute encoder RLS-RMB20 is mounted on the input

rotary shaft of each motor. Photos of the electronic parts are presented and in Fig. 2.6.

2.4 Software

This section presents some of the most important software modules of the quadrupedal robot

control infrastructure. Section 2.4.1 introduces the state estimation using the complementary

23

1

2

3

4

5

6

Figure 2.6: Photo of the electronic hardware components mentioned in Fig.2.5 (1) The on-board
computer that runs SLRT (2) InfineonTM XMC that interfaces with the IMU (3) The ElmoTM

Gold Twitter motor driver (4) The IMU unit (5) The ParkerTM K044 BLDC motor (6) The RLSTM

encoder

filter; Section 2.4.2 details the swing leg control; Section 2.4.3 presents the contact detection

algorithm.

2.4.1 State Estimation

In the context of legged robot control, the goal of state estimation is to recover CoM posi-

tion/velocity and torso orientation/angular velocity. The sensor readings from joint encoders

and the IMU are used for the state estimation.

Kalman Filter [66] have been applied for a wide range of applications in legged robots.

Meanwhile, simple linear single-input single-output (SISO) complementary filters [105] have

been proven to work robustly in practice [21] [117]. The complementary filter performs low-

pass filtering on a low-frequency estimation and high-pass filtering on a biased high-frequency

estimation.

Considering the CoM velocity 𝑝̇ as an example. Based on the kinematic model shown

in Fig. 2.7, a velocity estimate could be obtained from leg kinematics data 𝑝̇𝑒𝑛𝑐. The

accelerometer readings 𝑎𝑎𝑐𝑐 from the on-board IMU provides another sensor data. The CoM

24

{𝐵}

{𝑆}

ABAD
HIP

KNEE

GRF

Figure 2.7: The kinematic structure of the Panther robot is a floating base system with actuated
joints and unactuated base coordinates. The GRFs occur when a foot is in contact with the ground.

velocity estimate is obtained by combining both readings,

𝑝̇𝑘+1 = 𝑝̇𝑘 + 𝑎𝑘 ·Δ𝑡

𝑎𝑘 = 𝑎𝑎𝑐𝑐
𝑘 −𝐾𝑣

𝑝 (𝑝̇𝑘 − 𝑝̇𝑒𝑛𝑐
𝑘),

(2.13)

where 𝑝̇𝑘 is the estimated velocity from the previous iteration; the subscript (·)𝑘 is the

discrete time index; Δ𝑡 is the IMU sampling period; 𝐾𝑣
𝑝 is a tunable positive-definite diagonal

gain matrix; 𝑎𝑎𝑐𝑐
𝑘 is the accelerometer reading; 𝑝̇𝑒𝑛𝑐

𝑘 is the average of all the velocities from

contact feet to CoM based on kinematic calculations. Similarly, the CoM position 𝑝 ∈ R3

is estimated by fusing the CoM position estimate from leg position kinematics 𝑝𝑒𝑛𝑐 and the

estimated CoM velocity 𝑝̇. The torso orientation and angular velocity are directly measured

using the IMU data.

25

2.4.2 Swing Leg Control

Although the motor and linkage inertia effect of the legs can be neglected during stance

phases thanks to the light-weight design, it is considered in the swing leg controller for

improved tracking performance. Each swing leg is modeled as a 3-link serial manipulator

attached to the torso, which is considered as a stationary base. A schematics of the swing

leg model is presented in Fig. 2.7. The swing leg controller includes both feed-forward and

feedback terms, where the former is based on the workspace inverse dynamics control,

𝜏 𝑓𝑓
𝑠𝑤 = 𝐷(𝑞)𝐽−1(𝑎𝑓

𝑥 − 𝐽𝑞̇) + ℎ(𝑞, 𝑞̇). (2.14)

The feed-forward torque is denoted as 𝜏 𝑓𝑓
𝑠𝑤 ; 𝐷(𝑞) is the Inertia matrix and ℎ(𝑞, 𝑞̇) includes

the centrifugal, Corolis and gravitational terms of the swing leg; 𝑞, 𝑞̇ are the joint angle and

velocity vectors; 𝐽 is the foot velocity Jacobian matrix and 𝐽 is its time derivative; 𝑎𝑓
𝑥 is

workspace acceleration vector, which is defined as

𝑎𝑓
𝑥 = 𝑝𝑓

𝑑 + 𝐾𝑓𝑓
𝑝 (𝑝𝑓

𝑑 − 𝑝𝑓) + 𝐾𝑓𝑓
𝑑 (𝑝̇𝑓

𝑑 − 𝑝̇𝑓), (2.15)

where 𝑝𝑓
𝑑 is the desired foot workspace acceleration; 𝑝𝑓

𝑑 , 𝑝̇
𝑓
𝑑 are the desired foot position and

velocity; 𝐾𝑓𝑓
𝑝 , 𝐾𝑓𝑓

𝑑 are the position and velocity gain matrices. The full swing leg controller

consists of both feed-forward and feedback terms,

𝜏𝑠𝑤 = 𝜏 𝑓𝑓
𝑠𝑤 + 𝐾𝑓𝑏

𝑝 (𝑝𝑓
𝑑 − 𝑝𝑓) + 𝐾𝑓𝑏

𝑑 (𝑝̇𝑓
𝑑 − 𝑝̇𝑓), (2.16)

where 𝐾𝑓𝑏
𝑝 and 𝐾𝑓𝑏

𝑑 are the position and velocity gain matrices for the feedback term of the

swing leg controller.

The desired foot placement policy for Panther is a linear combination of a velocity-based

26

feed-forward term and a capture-point [113] based feedback term.

𝑝𝑓
𝑠𝑡𝑒𝑝 = 𝑝ℎ + 𝑇𝑠𝑡

2 𝑝̇ℎ
𝑑 +

⎯⎸⎸⎷𝑧ℎ
0
𝑔

(𝑝̇ℎ − 𝑝̇ℎ
𝑑), (2.17)

where 𝑝𝑓
𝑠𝑡𝑒𝑝 is the desired step location on the ground plane; 𝑝ℎ is the projection of the hip

joint on the ground plane and 𝑝̇ℎ is the corresponding velocity; 𝑝̇ℎ
𝑑 is the desired hip velocity

projected on the ground plane; 𝑇𝑠𝑡 is the prescribed stance time; 𝑔 is the gravitational

acceleration constant; 𝑧ℎ
0 is the nominal hip height.

2.4.3 Contact Detection

Contact sensing plays a crucial role in legged locomotion. Proprioceptive sensing [142] is uti-

lized in this work thanks to the highly-transparent actuation design. Specifically, the impact

mitigation factor (IMF) [142] of the leg module is higher than other actuator designs that

use harmonic gears or cycloidal gears. The contact detection algorithm uses the generalized

momenta based disturbance observer [27], which only requires proprioceptive measurements

𝑞, 𝑞̇ and the commanded torque 𝜏 . Here, only the knee joints are considered in contact

detection based on the assumption that the knee joint momentum is changed the most by

the contact impact. The residual vector 𝑟𝑘 quantifies the discrepancy between expected and

measured knee joint momentum, and it is defined as,

𝑟𝑘 = 𝐾𝐼 · [𝐼𝑘𝑛𝑞̇𝑘𝑛
𝑘 −

𝑘∑︁
𝑖=1

(𝜏 𝑘𝑛
𝑖 + 𝑟𝑖−1)Δ𝑡], 𝑟0 = 0, (2.18)

where 𝑟𝑘 ∈ R4 is the residual vector for the four legs. 𝑘 is the index for the current instance;

𝐾𝐼 is a diagonal gain matrix; 𝐼𝑘𝑛 is the diagonal inertia matrix for all the knee joints; 𝑞̇𝑘𝑛
𝑘

is the vector of knee joint velocity; 𝜏 𝑘𝑛
𝑘 is the commanded knee torque; 𝑟0 is the initial value

of the residual. The summation accumulates all the previous residuals and the commanded

torque. Contact is declared when the residual vector 𝑟𝑘 exceeds a threshold value 𝑟𝑡ℎ.

27

2.5 Implementation Details

This section presents the implementation details that are required for successful controller

implementation on the robot hardware platform. The CoM position in the body frame

(Section 2.5.1) and mass moment of inertia (Section 2.5.2) are measured experimentally.

In addition, friction compensation (Section 2.5.3) and force calibration (Section 2.5.4) are

performed for more accurate force control.

2.5.1 Center of Mass Location

The CoM location of a robot is usually obtained from the CAD model. However, for small

robots, a large portion of the body mass is occupied by electronics, whose mass distribution

cannot be exactly captured by the CAD model. Therefore, the CoM location of Panther

is measured by suspending the robot by a string on multiple known locations. When the

robot is stationary, the accelerometer reading is recorded. This procedure is repeated for

several known attachment points on the robot. A bundle of lines can be constructed from

the readings of the accelerometer and the position of the attachment points obtained from

the CAD model. The CoM location can be obtained by solving a least-squares problem,

argmin
𝑝𝐶𝑜𝑀

∑︁
𝑖

||𝑝𝐶𝑜𝑀 − 𝑙𝑖||22, (2.19)

where 𝑝𝐶𝑜𝑀 is the CoM location; {𝑙𝑖} is the bundle of lines constructed from the accelerom-

eter readings. The 2-norm takes the shortest Euclidean distance from 𝑝𝐶𝑜𝑀 to the line. The

legs are commanded to a stationary nominal position throughout the experiment.

2.5.2 Mass Moment of Inertia

Mass moment of inertia 𝐵𝐼 is an important parameter for the dynamic modeling of the

robot. However, the value directly obtained from the CAD model for a small robot may not

28

be accurate due to the same reason for CoM location estimation in Section 2.5.1. Therefore,

a linear version of the bifilar (two-wire) torsional pendulum [64] is used to obtain the mass

moment of inertia.

2.5.3 Friction Compensation

The relatively high gear ratio of Panther induces higher joint friction, which is compensated

for high-fidelity force control. Following [67], the friction is modeled as

𝜏𝑓 = 𝑐1 · sat(𝜔) + 𝑐2 · 𝜏𝑚𝑜𝑡𝑜𝑟 · sat(𝜔), (2.20)

where 𝜔 is the output angular velocity; 𝜏𝑚𝑜𝑡𝑜𝑟 is the commanded motor torque; 𝑐1, 𝑐2 are

tunable constants that are motor-specific. 𝜏𝑓 is the friction compensation term and the

output torque 𝜏𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜏𝑚𝑜𝑡𝑜𝑟 + 𝜏𝑓 . The saturation function is defined as

sat(𝜔) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 𝜔 ≤ −𝜔𝑡ℎ𝑟

1/𝜔𝑡ℎ𝑟 −𝜔𝑡ℎ𝑟 < 𝜔 ≤ 𝜔𝑡ℎ𝑟

1 𝜔𝑡ℎ𝑟 < 𝜔,

(2.21)

which serves as a relaxed version of the sign function. The threshold value 𝜔𝑡ℎ𝑟 can be tuned

to prevent chattering around the equilibrium point.

2.5.4 Force Calibration

In addition to friction, transmission backlash, nonlinear motor behavior and structural com-

pliance also cause the end-effector forces to deviate from desired values. To compensate

for these factors, a force calibration process is introduced. As shown in Fig. 2.8 (a), the

robot leg is mounted on an ATI force-torque sensor to get the force measurement data as

the ground truth. The robot leg is commanded to execute foot position control at a set-

29

Force Sensor

𝐹𝑒𝑥𝑡

Interface PCB

Motor

(a)
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Displacement [m]

-80

-60

-40

-20

0

20

40

M
ea

su
re

d
F
o
rc

e
[N

]

v > vth

v < !vth

!vth < v < vth

Fd

(b)

Figure 2.8: Experimental setup and result of force calibration. (a) The experiment is set up
such that a leg module is rigidly mounted on a force sensor. (b) Measured vertical force versus
displacement. The yellow line indicates the desired force; the red and blue points correspond to
measured force with positive and negative velocities, respectively. The gray points correspond to
the measured force when the velocity direction changes

point with high proportional gain (700 N/m). The experimenter applies external force 𝐹𝑒𝑥𝑡

to deviate the foot from the set-point, in a way such that the motions suffice to cover the

operational range of forces and velocities during a jumping motion. Fig. 2.8 (b) presents

the generated force error curve, where the yellow line is the desired force 𝐹𝑑, the orange

curves correspond to the measured forces with positive velocity, and the blue curves for the

negative velocity. The force error curve combined with the friction model (2.20) improves

the force control capability of the robot.

2.6 Squat Jumping as Capability Test

The section presents the squat jumping experiment, which serves as a capability test on

the robot Panther. The Quadratic Program-based controller introduced in Section 2.6.1 is

implemented on the robot hardware for the squat jumping experiment. Section 2.6.2 presents

the experiment data, which validates that Panther can perform highly dynamic maneuvers

30

such as a 0.7 m high squat jump and land sequence1.

2.6.1 Quadratic Program-based Controller

Squat jumping can be decomposed into three phases, namely, the jumping phase, the aerial

phase, and the landing phase. During the jumping and landing phases, the robot is over-

actuated since all four feet are in contact with the ground. Hence, there are infinitely many

combinations of GRF that produce the desired net wrench [𝑓⊤
𝑑 , 𝜏

⊤
𝑑]⊤, which is defined at the

CoM. During the instance when the robot is over-actuated, a Quadratic Program (QP) is

formulated and solved for the GRF while complying with the constraints such as the friction

cone constraint.

minimize 𝑒⊤
𝑓 𝑄𝑓𝑒𝑓 + 𝑒⊤

𝜏 𝑄𝜏 𝑒𝜏

subject to 𝑓𝑚𝑖𝑛 ≤ 𝑓𝑖 ≤ 𝑓𝑚𝑎𝑥

𝑓𝑖 ∈ 𝒦,∀𝑖 ∈ {1, 2, 3, 4}

(2.22)

where 𝑒𝑓 = 𝑓 − 𝑓𝑑 and 𝑒𝜏 = 𝜏 − 𝜏𝑑 are the error terms for total body wrench applied

around the CoM, and 𝑄𝑓 ,𝑄𝜏 ⪰ 0 are weighting matrices. The GRF 𝑓𝑖 is bounded by 𝑓𝑚𝑖𝑛

and 𝑓𝑚𝑎𝑥. The friction cone constraint is approximated by the more conservative friction

pyramid 𝒦 := {𝑓𝑖 ∈ R3| 𝑓𝑧 ≥ 0, ||𝑓𝑥/𝑦|| ≤ 𝜇||𝑓𝑧||} to prevent the contact foot from slipping.

The desired body wrench is defined as the sum of feed-forward and feedback terms,

𝑓𝑑 = 𝑓𝑓𝑓 −𝐾𝑝𝑒𝑝 −𝐾𝑝̇𝑒𝑝̇

𝜏𝑑 = 𝜏𝑓𝑓 −𝐾𝑅𝑒𝑅 −𝐾𝜔𝑒𝜔

(2.23)

where 𝑓𝑓𝑓 , 𝜏𝑓𝑓 are the feed-forward wrench terms; 𝐾𝑝,𝐾𝑝̇, 𝐾𝑅,𝐾𝜔 ⪰ 0 are the diagonal

weighting matrices for CoM position, velocity, orientation and angular velocity, respectively.

The feedback term of (2.23) is in proportional-derivative (PD) form, which mimics the
1Video clips of the squat jumping experiment is available here

31

https://www.youtube.com/watch?v=S0SeyM7_fH4

𝑥

𝑦

𝑧

Figure 2.9: The friction cone constraint for the GRF is replaced by the more conservative friction
pyramid constraint. The GRF shown as the red arrow is bounded within the friction pyramid to
prevent slipping.

spring-damper behavior. The error terms in orientation and angular velocity are defined as

in [80]

𝑒𝑅 = 1
2(𝑅⊤

𝑑 𝑅−𝑅⊤𝑅𝑑)∨

𝑒𝜔 = 𝐵𝜔 −𝑅𝑅𝑑
𝐵𝜔𝑑

(2.24)

where 𝑅𝑑,
𝐵𝜔𝑑 are the desired orientation and angular velocity, and 𝑅, 𝐵𝜔 are the current

measurement. The vee map is defined as (·)∨ : so(3)→ R3.

The feed-forward wrench trajectory in (2.23) is designed using off-line trajectory opti-

mization (TO), where the desired state and control trajectories of a squat jumping motion

are obtained. The robot is modeled as a point-mass moving in the vertical direction, since

the torso is assumed to remain at the nominal orientation throughout the squat jump. The

TO is formulated using the direct-collocation transcription method [136], and The solver

fmincon is used to solve the NLP. The QP-based controller is expected to regulate the

position and orientation deviation from the reference trajectory.

32

70 cm

Figure 2.10: Sequential snapshots of the squat jumping experiment. The robot started from a
static pose and achieved a maximum jumping height of 0.7 m before landing safely on the ground.

(a) (b)

Figure 2.11: Experimental data of the squat jumping experiment. (a) commanded and desired
vertical GRF (b) vertical CoM velocity. Shaded area (1) indicates the jumping phase; unshaded
area (2) represents the aerial phase; shaded area (3) is the landing phase.

33

0

444.3

444.2

444.1

444

443.9

0.5

T
im

e
[s
]

443.8

vy [m/s]

0.5

vx [m/s]
0-0.5

-0.5

0

10444.3

ωx [rad/s]

444.2

4

444.1

444

T
im

e
[s
] 443.9

ωy [rad/s]

2

443.8

0 -10-2

(a) (b)

Figure 2.12: Stabilizing performance on the x-y plane during the landing phase. The completion
percentile of landing is indicated by the color, where red indicates the beginning of landing and
green the end. (a) The x-y liner velocities are stabilized (b) the x-y angular velocities are stabilized.

2.6.2 Experiment Results

The QP-based controller is implemented on Panther, and the squat jumping experiment

is conducted. Sequential snapshots can be found in Fig. 2.10, where the robot reached a

maximal jumping height of 0.7 m and landed on the ground safely.

As shown in Fig. 2.10, the robot started with a crouched position to maximize its jumping

stroke, and then it applied a large jumping force while maintaining the body attitude. It

is crucial to regulate the angular velocity to zero since residual angular velocity at take-off

will result in a tilted landing pose due to the extended aerial time. During the aerial phase,

the swing leg controller described in Section 2.4.2 tracks the desired foot trajectory. After

reaching a maximum height of 0.7 m, the robot fell down and detected the touchdown using

the contact detection algorithm (Section 2.4.3) and initiated the landing phase. The torso of

the robot is stabilized by solving QP problems at 4 kHz using the solver qpOASES [42] in the

on-board computer. The QP solver qpOASES is chosen here because it uses the active-set

method [145], and is efficient in solving QP with a small number of decision variables.

Fig. 2.11 (a) shows the feed-forward and commanded vertical GRF in the squat jumping

34

experiment, and Fig. 2.11 (b) presents the vertical velocity of the CoM. During the jumping

phase (1), commanded GRF closely follow the feed-forward value and the velocity of the

robot rapidly accelerates, as shown in Fig. 2.11 (b). During the aerial phase (2), the robot

experiences free fall. The oscillatory force in aerial phase (2) is due to the inertia effect of the

swing leg tracking the set-point. During the landing phase (3), the robot handles the impact

and decelerates the body in a compliant manner. Fig. 2.12 demonstrates the capability of

the QP-based controller to regulate horizontal motion. Fig. 2.12 (a) shows that the x-y

linear velocities are controlled to zero, and Fig. 2.12 (a) shows the roll (x) and pitch (y)

angular velocities are modulated to zero at the end of the landing phase.

The lessons learned from this experiment are that the landing phase is more difficult to

stabilize compared with jumping phase. That is because the robot has to handle the landing

impact and regulate the state, which deviates from the desired state due to the extended

aerial phase. Another lesson learned is that high control frequency is crucial in the landing

phase because it allows high task-space damping gain 𝐾𝑝̇ = 𝑑𝑖𝑎𝑔(30, 30, 50)[𝑁𝑠/𝑚], which

is responsible for absorbing the impulse upon impact and dissipate the kinetic energy. Due

to the small size of decision variable (12 variables), the QPs can be solved by the active-set

method in qpOASES efficiently. It might be counter-intuitive that too high of a proportional

gain may destabilize landing since the robot tends to bounce up and lose contact with the

ground.

2.7 Summary

This chapter presents the design synthesis of a small and agile quadruped robot -Panther. An

overview of the robot platform is presented and the leg module design features are described.

Details about the actuator design in Section 2.2 can be considered as complementary ma-

terial to our design paper [34]. In addition, the electronic system, software framework, and

implementation details are exhibited. The capability of the Panther robot is showcased in a

35

squat jumping experiment, where a maximal jumping height of 0.7 m is reached before the

robot landed safely.

36

Chapter 3

Representation-Free Model Predictive
Control

This chapter presents a model predictive control (MPC) framework for controlling various

dynamic motions of Panther in 3D space. This formulation directly represents the rotational

dynamics using the rotation matrix, which eliminates the issues associated with the use of

Euler angles and quaternions as the orientation representations. With a variation-based

linearization scheme and a carefully constructed cost function, the MPC control law is tran-

scribed to a standard quadratic program (QP). This representation-free MPC (RF-MPC) can

stabilize dynamic motions with large orientation excursion using a single controller, which

was previously achieved by switching among candidate controllers. RF-MPC operated at a

real-time rate of 250 Hz on Panther, enabling experimental results including periodic gaits

and a controlled tumble, which involves singularity in the 3D maneuvers1 2. This content of

this chapter is based on our work in [33] and [32].

3.1 Introduction

The ability to represent the orientation of the object of interest is one of the fundamental

elements in robotics research, whether it be manipulation, vision, navigation, or locomo-

tion. The orientation of a single rigid body in 3D space is defined by a rotation matrix

𝑅 ∈ 𝑆𝑂(3), where 𝑆𝑂(3) is the special orthogonal group. Due to the complex manifold

dynamics associated with the rotation matrix, orientation representations such as Euler

angles and quaternion [22] are more widely adopted in the legged robot community. This
1Video clips of the simulation and experiment is available here
2Simulation code is open-sourced and available in the GitHub repo here

37

https://www.youtube.com/watch?v=iMacEwQisoQ
https://github.com/YanranDing/RF-MPC

section investigates these two commonly-used orientation representations, and motivates the

proposition of the representation-free framework, which directly use the rotation matrix for

orientation.

3.1.1 Euler Angles

Euler angles consist of three consecutive rotation angles along three mutually orthogonal

axes for orientation representation. Due to its intuitive definition and ease of visualization,

the Euler angle representation is frequently used in robotics applications. However, the

singularity issue [128] (also known as Gimbal lock) inherent to Euler angles prohibits the

motion design from passing the singular configurations, which are commonly placed at pitch

angle = ±𝜋
2 . Although this defect of Euler angles will not affect locomotion tasks that do

not involve large orientation excursion, it restricts the quadrupedal robot from executing

motions such as climbing up trees or walls. Furthermore, this issue manifests itself within

the “vicinity” of singularity and can destabilize the system. A simple pose control simulation

is performed to illustrate this point. Specifically, two MPC controllers are implemented and

benchmarked in a pose control task with (a) the proposed representation-free model predic-

tive control (RF-MPC) and (b) an MPC that uses Euler angle for orientation representation

(EA-MPC). The EA-MPC is implemented based on the convex MPC [29] with parameters

from [94].

Assuming EA-MPC adopts the Z-Y-X sequence in body frame {𝐵}, which is equivalent

to the X-Y-Z sequence in stationary inertial frame {𝑆}. The Euler angles Θ = [𝜑 𝜃 𝜓]⊤,

where 𝜑 is the roll, 𝜃 is the pitch, and 𝜓 is the yaw. The attitude of frame {𝐵} is expressed

by a sequence of rotations in frame {𝑆} as

𝑅 = 𝑅𝑧(𝜓)𝑅𝑦(𝜃)𝑅𝑥(𝜑), (3.1)

where 𝑅𝑥(𝜑) means a positive rotation of angle 𝜑 around the 𝑥-axis of frame {𝑆}.

38

We define 𝒯Θ : R3 → R3×3 to be the matrix that converts Θ̇ to the angular velocity

expressed in {𝑆} as

𝜔 = 𝒯Θ · Θ̇ =

⎡⎢⎢⎢⎢⎢⎢⎣
cos(𝜃) cos(𝜓) − sin(𝜓) 0

cos(𝜃) sin(𝜓) cos(𝜓) 0

− sin(𝜃) 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ Θ̇. (3.2)

The matrix 𝒯Θ in equation (3.2) is invertible when 𝜃 ̸= ±𝜋
2 , and Θ̇ can be calculated using

the following equation

Θ̇ =

⎡⎢⎢⎢⎢⎢⎢⎣
cos(𝜓)/ cos(𝜃) sin(𝜓)/ cos(𝜃) 0

− sin(𝜓) cos(𝜓) 0

cos(𝜓) tan(𝜃) sin(𝜓) tan(𝜃) 1

⎤⎥⎥⎥⎥⎥⎥⎦ 𝜔. (3.3)

In this work, we use the following metric

𝜅−1(𝒯Θ) ∈ (0, 1] (3.4)

to quantify the distance to the singularity of Euler angles, where 𝜅(·) calculates the condition

number of a matrix. When the robot approaches singular poses, the condition number 𝜅(𝒯Θ)

increases rapidly, and its inverse 𝜅−1(𝒯Θ) tends to 0.

Here, a pose control simulation is conducted to investigate the singularity of Euler angles.

As shown in Fig. 3.1(a), the singular pose 𝑅𝑠 is shown as the shadowed box; the desired pose

𝑅𝑑 is shown as the solid box. All feet of the robot are assumed to be fixed in this simulation

so that the GRF can be in any direction. The desired poses are varied from the singular

pose to the pose rotated 1 rad around the +y axis. A 0.5 s simulation is conducted in each

desired pose and the CoM deviation at the end of the simulation is plotted for both RF-MPC

and EA-MPC. As can be observed in Fig. 3.1(b), while RF-MPC remains stable, EA-MPC

is significantly affected by singularity once |𝑙𝑜𝑔(𝑅⊤
𝑠 𝑅𝑑)∨| < 0.3 rad, which corresponds to

39

10 0 .----.--------.---------.---------r-------r-----,-------r-----,--,---, 0. 7

-EA-MPC

- - RF-MPC

-

0.6

0.5

0.4 �
-.._,

�

I
0.3 !c

0.2

0.1

10-4 --�-�-�-�-�-�-�-�--�� 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

llog(R; Rd) v l [rad]

(a) (b)

Figure 3.1: The pose control simulation result of a investigation on the singularity of Euler angles.
(a) The schematics of the pose control, where the shaded box represents the singular pose; the
solid box represents the commanded pose; the red lines represent the GRF. (b) The CoM position
deviations (log scale) after a 0.5 s simulation of both RF-MPC and EA-MPC are plotted against
|𝑙𝑜𝑔(𝑅⊤

𝑠 𝑅𝑑)∨|. The metric for distance from singularity 𝜅−1 is the red line.

𝜅−1(𝒯Θ) < 0.15.

3.1.2 Quaternion

Quaternion [129] is a singularity-free orientation representation. However, as mentioned

in [8], quaternions have two local charts that cover the special orthogonal group 𝑆𝑂(3)

twice. This ambiguity can cause the unwinding phenomenon [8], where the body may start

arbitrarily close to the desired attitude and yet rotate large angles before reaching the desired

orientation. Widely adopted by the unmanned aerial vehicle (UAV) community, quaternions

are often used in reactive controllers which instantaneously respond to the state of the vehicle.

Sign function has been used in the reactive controller [152] to eliminate the ambiguity of the

quaternion representation. In [89], hybrid dynamic algorithm has been introduced to solve

the ambiguity of the quaternion representation. However, for predictive controllers such as

model predictive control (MPC), switching local charts is undesirable.

The orientation of a rigid body is originally parameterized by the rotation matrix, which

evolves on 𝑆𝑂(3) [17]. Although other orientation representations can be re-aligned to avoid

40

their corresponding issues in a specific motion, the rotation matrix possesses advantages as

global parametrization that is compact and singularity-free. However, an extensive formu-

lation is required, as is introduced in Section 3.2.

3.2 Representation-Free MPC Formulation

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC), considers

a model of the system to be controlled and repeatedly solves for the optimal control input

subject to the state and control constraints. At each sampling time, a finite horizon optimal

control problem is solved and the control signal for the first time-step is applied to the system

during the following sampling interval. After that, the same process is repeated with the

updated measurements. MPC-based controllers have the capability to incorporate various

constraints that are essential to legged locomotion, including unilateral ground reaction

force (GRF) and friction cone constraints. Besides, MPC can provide control laws that are

discontinuous [91], which can not be easily achieved by conventional control techniques.

The MPC control law can be obtained by solving the following constrained optimization

problem

minimize ℓ𝑇 (𝑥𝑡+𝑁 |𝑡) +
𝑁−1∑︁
𝑘=0

ℓ(𝑥𝑡+𝑘|𝑡,𝑢𝑡+𝑘|𝑡) (3.5a)

subject to 𝑥𝑡+𝑘+1|𝑡 = 𝑓(𝑥𝑡+𝑘|𝑡) + 𝑔(𝑥𝑡+𝑘|𝑡)𝑢𝑡+𝑘|𝑡 (3.5b)

𝑘 = 0, · · · , 𝑁 − 1 (3.5c)

𝑥𝑡+𝑘|𝑡 ∈ X, 𝑘 = 0, · · · , 𝑁 − 1 (3.5d)

𝑢𝑡+𝑘|𝑡 ∈ U, 𝑘 = 0, · · · , 𝑁 − 1 (3.5e)

𝑥𝑡|𝑡 = 𝑥(𝑡) = 𝑥𝑜𝑝 (3.5f)

𝑥𝑡+𝑁 |𝑡 ∈ X𝑓 (3.5g)

41

where 𝑥 ∈ R𝑛,𝑢 ∈ R𝑚 are the state and input vectors, respectively; ℓ𝑇 : R𝑛 → R is the

terminal cost function; ℓ : R𝑛 × R𝑚 → R is the stage cost function; 𝑁 is the prediction

horizon; 𝑓(𝑥) + 𝑔(𝑥)𝑢 is the control affine dynamic update equation; X ⊆ R𝑛,U ⊆ R𝑚 are

the feasible polyhedral sets for the state and control; X𝑓 is the final state set; 𝑥𝑡+𝑘|𝑡 denotes

the state vector at time 𝑡 + 𝑘 predicted at time 𝑡, using the current state measurement

𝑥𝑡|𝑡 = 𝑥𝑜𝑝, where the subscript (·)𝑜𝑝 denotes the variables at the current operating point.

The operating point in this manuscript is defined as the current state 𝑥𝑜𝑝 and control 𝑢𝑜𝑝.

In the case that the dynamic update equation 𝑓(𝑥) + 𝑔(𝑥)𝑢 is a nonlinear function,

a nonlinear MPC (NMPC) can be formulated and solved as a general nonlinear program

(NLP) by utilizing trajectory optimization (TO) techniques such as multiple shooting [13]

or direct collocation [136].

Our main objective is to formulate a real-time executable MPC scheme for controlling

quadruped robotics to perform a variety of dynamic motions. To meet the real-time require-

ment, the optimization problem posed by the MPC has to be solved robustly at a high rate

on the mobile embedded computer, which has limited computational resources. Hence, a

simplified model is adopted to reduce the dimensionality of the optimization problem. Since

the mass of all legs combined is less than 10% of the total body mass, a single rigid body

model serves as a reasonable approximation.

3.2.1 3D Single Rigid Body Model

To mitigate the issue of demanding computational requirement of MPC for high Degrees of

Freedom (DoF) system models, simple models or templates [43] that capture the dominant

system dynamics are used instead. Templates such as the Linear Inverted Pendulum [65]

(LIP) is widely used in humanoid robots [114, 149, 151]. Centroidal dynamics [103] model

is used in [26] [140] [81] to capture the major dynamic effect of the complex full-body

dynamics model. The quadrupedal robot community has seen an increasing number of work

that utilizes the SRB model in three-dimensional (3D) space, which assumes that the entire

42

𝑥𝑆
𝑦𝑆

𝑧𝑆

{𝑆}
𝒖2

𝒖3

𝑥𝐵

𝑧𝐵

𝑦𝐵

{𝐵}𝒑𝐶𝑜𝑀

𝒓2 𝒓3

𝒑1
𝑓𝒑2

𝑓

𝒑3
𝑓

𝒑4
𝑓

1-FL
2-FR
3-HL
4-HR

Figure 3.2: Illustration of coordinate systems and the 3D single rigid-body model. {𝑆} is the
inertia frame and {𝐵} is the body attached frame. 𝑟𝑖 is the position vector from CoM to each foot
in {𝑆} and 𝑢𝑖 is the GRF of 𝑖𝑡ℎ contact foot expressed in {𝑆}. The convention for the numbering
of feet is such that FL stands for front-left leg, and HR stands for the hind-right leg.

mass of the robot is lumped into a single rigid body (SRB). The simplicity of the SRB model

is enabled by the light leg design, whose inertial effect is negligible compared with the body.

Let the state of the single rigid body model be

𝑥 := [𝑝 𝑝̇ 𝑅 𝐵𝜔] ∈ R18, (3.6)

where 𝑝 ∈ R3 is the position of the body Center of Mass (CoM); 𝑝̇ ∈ R3 is the CoM velocity;

𝑅 ∈ 𝑆𝑂(3) = {𝑅 ∈ R3×3|𝑅⊤𝑅 = I, det(𝑅) = +1} is the rotation matrix of the body frame

{𝐵} expressed in the inertial frame {𝑆}; det(·) calculates the determinant of a matrix and

I is the 3-by-3 identity matrix. Here, the rotation matrix 𝑅 is reshaped into vector form.
𝐵𝜔 ∈ R3 indicates the angular velocity vector expressed in the body frame {𝐵}. Variables

without superscript on the upper-left corner can be assumed to be expressed in the inertial

frame. The illustration of the coordinate system can be found in Fig. 3.2.

The input to the dynamical system is the GRF 𝑢𝑖 ∈ R3 at contact foot locations 𝑝𝑓
𝑖 ∈ R3.

The GRFs create the external wrench to the rigid body, where 𝑖 ∈ {1, 2, 3, 4} is the index

for the front left (FL), front right (FR), hind left (HL) and hind right (HR), respectively,

as shown in Fig. 3.2. The foot positions 𝑝𝑓
𝑖 relative to CoM are denoted as 𝑟𝑖 = 𝑝𝑓

𝑖 − 𝑝.

43

Therefore, the net external wrench ℱ ∈ R6 exerted on the body is:

ℱ =

⎡⎢⎢⎣𝐹

𝜏

⎤⎥⎥⎦ =
4∑︁

𝑖=1

⎡⎢⎢⎣ I

𝑟𝑖

⎤⎥⎥⎦ 𝑢𝑖, (3.7)

where 𝐹 and 𝜏 are the total force and torque applied at the CoM; the hat map (̂·) :

R3 → so(3) maps an element from R3 to the space of skew-symmetric matrices so(3), which

represents the cross-product under multiplication as 𝛼̂𝛽 = 𝛼 × 𝛽, for all 𝛼,𝛽 ∈ R3. The

inverse of the hat map is the vee map (·)∨ : so(3)→ R3. The full dynamics of the rigid body

can be written as

𝑥̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝̇

𝑝

𝑅̇

𝐵𝜔̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝̇

1
𝑀

𝐹 + 𝑎𝑔

𝑅 · 𝐵𝜔̂

𝐵𝐼−1(𝑅⊤𝜏 − 𝐵𝜔̂𝐵𝐼𝐵𝜔)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

where 𝑢 = [𝑢⊤
1 ,𝑢

⊤
2 ,𝑢

⊤
3 ,𝑢

⊤
4]⊤ ∈ R12 is the control vector; 𝑀 is the mass of the rigid body;

𝑎𝑔 = [0, 0,−𝑔]⊤ is the gravitational acceleration vector; 𝐵𝐼 ∈ R3×3 is the fixed moment of

inertia tensor in the body frame {𝐵}. The inertia properties of the robot can be found in

Table 2.1.

To develop a representation-free control approach, we decided to directly parameterize

orientation using the rotation matrix. This completely avoids the singularities and complexi-

ties when using local coordinates such as Euler angles. It also avoids ambiguities when using

quaternions to represent attitude dynamics. As the quaternion double covers the special

orthogonal group 𝑆𝑂(3), the control design needs to switch between the local charts.

The rotational dynamics of (3.8) is nonlinear for it involves the rotation matrix 𝑅, which

evolves on the 𝑆𝑂(3) manifold. In Section 3.2.2 we present a variation-based linearization

scheme for linearizing the rotational dynamics.

44

3.2.2 Variation-based Linearization

Although the nonlinear MPC (3.5) can be solved to obtain the control input, the presence

of local optimum resulting from the nonlinear dynamics complicates the solution process.

Furthermore, convoluted nonlinear optimization does not lend itself well to embedded imple-

mentations. To meet the real-time constraint, we strive to formulate the MPC as a Quadratic

Program (QP) that can be efficiently solved on embedded systems. A variation-based lin-

earization scheme for the rotation matrix is proposed to linearize the nonlinear rotational

dynamics. The error on the non-Euclidean 𝑆𝑂(3) manifold is approximated by the corre-

sponding variation [85] with respect to the operating point. Then the variational dynamics

is derived based on the system model (3.8) in the manner of [146]. Recent work [20] achieved

underactuated two-leg balancing on MIT Mini Cheetah using variational-based linearization

on the 𝑆𝑂(3) manifold.

Assuming that the predicted variables are close to the operating point, the variation of

the rotation matrix on so(3) can be approximated by 𝛿𝑅 using the derivative of the error

function on 𝑆𝑂(3) as in [80]. The variation 𝛿𝑅 ∈ so(3) is a local approximation of the

displacement between two points on the 𝑆𝑂(3) manifold. The rotation matrix at the 𝑘𝑡ℎ

prediction step is approximated using the first-order Taylor expansion of matrix exponential

map,

𝑅𝑘 ≈ 𝑅𝑜𝑝exp(𝛿𝑅𝑘) ≈ 𝑅𝑜𝑝(I + 𝛿𝑅𝑘), (3.9)

where we use the commutativity of small rotations based on the assumption of 𝛿𝑅 being

small.

The nonlinear dynamics of the rotation matrix is given as

𝑅̇ = 𝑅𝐵𝜔̂, (3.10)

where the first-order approximation of rotation matrix 𝑅𝑘 is presented in (3.9). To get a

45

linear approximation for 𝑅̇, we define the variation of angular velocity 𝛿𝜔𝑘 as

𝛿𝜔𝑘 = 𝜔𝑘 −𝑅⊤
𝑘 𝑅𝑜𝑝𝜔𝑜𝑝, (3.11)

where the transport map 𝜔𝑜𝑝 → 𝑅⊤
𝑘 𝑅𝑜𝑝𝜔𝑜𝑝 enables comparison between tangent vectors at

different points. This procedure is required because the tangent vectors 𝑅̇𝑘 ∈ 𝑇𝑅𝑘
𝑆𝑂(3)

and 𝑅̇𝑜𝑝 ∈ 𝑇𝑅𝑜𝑝𝑆𝑂(3) lie in different tangent spaces and cannot be compared directly, where

𝑇𝑅𝑜𝑝𝑆𝑂(3) refers to the tangent space of 𝑆𝑂(3) at 𝑅𝑜𝑝. Hence, the angular velocity 𝜔 can

be deducted from (3.11) as

𝜔𝑘 =𝑅⊤
𝑘 𝑅𝑜𝑝𝜔𝑜𝑝 + 𝛿𝜔𝑘

=(I + 𝛿𝑅𝑘)⊤𝜔𝑜𝑝 + 𝛿𝜔𝑘

=𝜔𝑜𝑝 + 𝛿𝜔𝑘 − 𝛿𝑅𝑘𝜔𝑜𝑝,

(3.12)

where 𝑅𝑘 is replaced by the expression in (3.9). The last step in (3.12) is due to the fact

that 𝛿𝑅𝑘 is a skew-symmetric matrix by construction. Applying the hat map (̂·) to 𝜔𝑘 and

substituting (3.12) into (3.10) yields

𝑅̇𝑘 = 𝑅𝑘𝜔̂𝑘 = 𝑅𝑜𝑝(I + 𝛿𝑅𝑘)(𝜔̂𝑜𝑝 + ̂︂𝛿𝜔𝑘 − ̂𝛿𝑅𝑘𝜔𝑜𝑝)

= 𝑅𝑜𝑝𝜔̂𝑜𝑝 + 𝑅𝑜𝑝
̂︂𝛿𝜔𝑘 −𝑅𝑜𝑝

̂𝛿𝑅𝑘𝜔𝑜𝑝 + 𝑅𝑜𝑝𝛿𝑅𝑘𝜔̂𝑜𝑝,

(3.13)

where the higher order variation terms are neglected. Using the properties of cross product

in [40] Table 2.1, the following equality

̂𝛿𝑅𝑘𝜔𝑜𝑝 = 𝛿𝑅𝑘𝜔̂𝑜𝑝 − 𝜔̂𝑜𝑝𝛿𝑅𝑘, (3.14)

is used to derive the expression of 𝑅̇𝑘

𝑅̇𝑘 = 𝑅𝑜𝑝𝜔̂𝑜𝑝 + 𝑅𝑜𝑝𝜔̂𝑜𝑝𝛿𝑅𝑘 + 𝑅𝑜𝑝
̂︂𝛿𝜔𝑘. (3.15)

46

The dynamics of angular velocity 𝜔̇𝑘 is linearized as

𝐵𝐼𝜔̇𝑘 =𝑅⊤
𝑜𝑝𝜏𝑜𝑝 + 𝛿𝑅⊤

𝑘 𝜏𝑜𝑝 + 𝑅⊤
𝑜𝑝𝛿𝜏𝑘+

− 𝜔̂𝑜𝑝
𝐵𝐼𝜔𝑜𝑝 − ^𝛿𝜔𝑘

𝐵𝐼𝜔𝑜𝑝 − 𝜔̂𝑜𝑝
𝐵𝐼𝛿𝜔𝑘,

(3.16)

in which 𝛿𝜏𝑘 is the variation of the net torque,

𝛿𝜏𝑘 = (
4∑︁

𝑖=1
𝑢̂𝑖,𝑜𝑝)𝛿𝑝𝑘 + (

4∑︁
𝑖=1

𝑟𝑖,𝑜𝑝 · 𝛿𝑢𝑖,𝑘), (3.17)

where 𝑢𝑜𝑝 is GRF applied at the current step, 𝛿𝑢 is the variation of GRF from 𝑢𝑜𝑝. Note

that the GRF applied at the next time step is 𝑢𝑜𝑝 + 𝛿𝑢1.

The linearized dynamics will be used as affine dynamics as well as in the construction of

objective function in the MPC formulation.

3.2.3 Vectorization

After the dynamics of rotation matrix 𝑅 and angular velocity 𝜔 are linearized, the matrix

variables in (3.15) and (3.16) are still difficult to be formulated into the standard QP form.

This section proposes a vectorization technique that uses the Kronecker product [45] to

transform matrix-matrix products into matrix-vector products.

Let us define a vector 𝜉 ∈ R3 be such that the skew-symmetric matrix 𝜉 = 𝛿𝑅 ∈ so(3)

is an element in the tangent space at the operating point. Let 𝑁 ∈ R9×3 be a constant

matrix such that 𝑣𝑒𝑐(𝑣) = 𝑁𝑣,∀𝑣 ∈ R3, where 𝑣𝑒𝑐(·) is the vectorization function. Then

𝑣𝑒𝑐(𝛿𝑅) = 𝑁 · 𝜉. The second and third terms of (3.15) can be vectorized as:

𝑣𝑒𝑐(𝑅𝑜𝑝𝜔̂𝑜𝑝𝛿𝑅𝑘) = (I⊗𝑅𝑜𝑝𝜔̂𝑜𝑝)𝑁𝜉𝑘

𝑣𝑒𝑐(𝑅𝑜𝑝
̂︂𝛿𝜔𝑘) = (I⊗𝑅𝑜𝑝)𝑣𝑒𝑐(̂︂𝛿𝜔𝑘),

(3.18)

where ⊗ is the Kronecker tensor operator. To derive the expression for 𝑣𝑒𝑐(̂︂𝛿𝜔𝑘), one plugs

47

(3.9) into (3.11)

𝑣𝑒𝑐(̂︂𝛿𝜔𝑘) = 𝑁 (𝜔𝑘 − 𝜔𝑜𝑝 + 𝜔̂𝑜𝑝𝜉𝑘). (3.19)

The vectorized version of (3.15) is

𝑣𝑒𝑐(𝑅̇𝑘) = 𝐶𝑐
𝜉 + 𝐶𝜉

𝜉 𝜉𝑘 + 𝐶𝜔
𝜉 𝜔𝑘, (3.20)

where the constants are defined as

𝐶𝑐
𝜉 = 𝑣𝑒𝑐(𝑅𝑜𝑝𝜔̂𝑜𝑝)− (I⊗𝑅𝑜𝑝)𝑁𝜔𝑜𝑝

𝐶𝜉
𝜉 = (I⊗𝑅𝑜𝑝𝜔̂𝑜𝑝)𝑁 − (I⊗𝑅𝑜𝑝)𝑁𝜔̂𝑜𝑝

𝐶𝜔
𝜉 = (I⊗𝑅𝑜𝑝)𝑁 .

(3.21)

The discrete orientation dynamics in terms of 𝜉 is derived by propagating the rotation matrix

using the forward Euler integration scheme,

𝑅𝑘+1 = 𝑅𝑘 + 𝑅̇𝑘𝑑𝑡, (3.22)

where 𝑑𝑡 is the MPC sampling time. When the rotation matrix is approximated by the

first-order expansion in (3.9), the above expression can be simplified to the following form,

𝛿𝑅𝑘+1 = 𝛿𝑅𝑘 + 𝑅⊤
𝑜𝑝𝑅̇𝑘𝑑𝑡. (3.23)

Vectorizing (3.23) gives

𝑁𝜉𝑘+1 = 𝑁𝜉𝑘 + 𝑑𝑡(I⊗𝑅⊤
𝑜𝑝)𝑣𝑒𝑐(𝑅̇𝑘). (3.24)

The discrete dynamics in 𝜉 is obtained by putting in (3.20) and pre-multiply with 𝑁 *, the

48

left pseudo-inverse of 𝑁

𝜉𝑘+1 = 𝜉𝑘 + 𝑑𝑡𝑁 *(I⊗𝑅⊤
𝑜𝑝)(𝐶𝑐

𝜉 + 𝐶𝜉
𝜉 𝜉𝑘 + 𝐶𝜔

𝜉 𝜔𝑘). (3.25)

The angular velocity dynamics in (3.16) is also vectorized. The second term in (3.16)

is 𝛿𝑅⊤
𝑘 𝜏𝑜𝑝 = (I ⊗ 𝜏 ⊤

𝑜𝑝)𝑁𝜉𝑘 and 𝛿𝜏𝑘 is defined in (3.17). The last two terms can be further

derived,

− ^𝛿𝜔𝑘
𝐵𝐼𝜔𝑜𝑝 − 𝜔̂𝑜𝑝

𝐵𝐼𝛿𝜔𝑘

= (𝐵𝐼𝜔𝑜𝑝 − 𝜔̂𝑜𝑝
𝐵𝐼)𝛿𝜔

= (𝐵𝐼𝜔𝑜𝑝 − 𝜔̂𝑜𝑝
𝐵𝐼)(𝜔𝑘 − 𝜔𝑜𝑝 − 𝜔̂𝑜𝑝𝜉𝑘).

(3.26)

Assembling these expressions into (3.16) and rearranging the corresponding terms gives the

vectorization of 𝐵𝐼𝜔̇𝑘

𝐵𝐼𝜔̇𝑘 = 𝐶𝜔̇ + 𝐶𝛿𝑝
𝜔̇ 𝑝𝑘 + 𝐶𝜉

𝜔̇𝜉𝑘 + 𝐶𝜔
𝜔̇ 𝜔𝑘 + 𝐶𝛿𝑢

𝜔̇ 𝛿𝑢𝑘, (3.27)

where

𝐶𝑐
𝜔̇ =− 𝜔̂𝑜𝑝

𝐵𝐼𝜔𝑜𝑝 + 𝑅𝑇
𝑜𝑝𝜏𝑜𝑝 − (𝐵𝐼𝜔𝑜𝑝 − 𝜔̂𝑜𝑝

𝐵𝐼)𝜔𝑜𝑝

−𝑅⊤
𝑜𝑝(

∑︁
𝑢̂𝑜𝑝)𝑝𝑜𝑝

𝐶𝛿𝑝
𝜔̇ = 𝑅⊤

𝑜𝑝(
∑︁

𝑖

𝑢̂𝑖
𝑜𝑝)

𝐶𝜉
𝜔̇ = (I⊗ 𝜏 ⊤

𝑜𝑝)𝑁 − (𝐵𝐼𝜔𝑜𝑝 − 𝜔̂𝑜𝑝
𝐵𝐼)𝜔̂𝑜𝑝

𝐶𝜔
𝜔̇ = 𝐵𝐼𝜔𝑜𝑝 − 𝜔̂𝑜𝑝

𝐵𝐼

𝐶𝛿𝑢
𝜔̇ = 𝑅⊤

𝑜𝑝[𝑟1
𝑜𝑝, 𝑟

2
𝑜𝑝, 𝑟

3
𝑜𝑝, 𝑟

4
𝑜𝑝].

(3.28)

The discrete dynamics of 𝜔 is propagated using forward Euler scheme 𝜔𝑘+1 = 𝜔𝑘 +𝑑𝑡𝜔̇𝑘.

49

3.2.4 Discrete-time Affine Dynamics

The single rigid body model introduced in Section 3.2.1 has nonlinear dynamics in 𝑅 and

𝜔. Hence, a variation-based linearization scheme is proposed in Section 3.2.2 to linearize

the nonlinear dynamics. Section 3.2.3 presents a vectorization method to reformulate the

matrix variables into the vector form. Based on the aforementioned procedures, the new set

of state and control vectors are defined as,

𝑥𝑘 := [𝑝⊤
𝑘 𝑝̇⊤

𝑘 𝜉⊤
𝑘

𝐵𝜔⊤
𝑘]⊤ ∈ R12

𝛿𝑢𝑘 := [𝛿𝑢⊤
1,𝑘 𝛿𝑢⊤

2,𝑘 𝛿𝑢⊤
3,𝑘 𝛿𝑢⊤

4,𝑘]⊤ ∈ R12,

(3.29)

where the new control input 𝛿𝑢𝑖 ∈ R3 is the variation of GRF from the operating point 𝑢𝑖,𝑜𝑝

for the 𝑖𝑡ℎ leg.

By assembling the corresponding terms from (3.25), (3.27) into matrix form, the discrete-

time affine dynamics can be expressed in the state-space form:

𝑥𝑡+𝑘+1|𝑡 = 𝐴|𝑜𝑝 · 𝑥𝑡+𝑘|𝑡 + 𝐵|𝑜𝑝 · 𝛿𝑢𝑡+𝑘|𝑡 + 𝑑|𝑜𝑝, (3.30)

where 𝐴|𝑜𝑝 ∈ R𝑛×𝑛,𝐵|𝑜𝑝 ∈ R𝑛×𝑚, and 𝑑|𝑜𝑝 ∈ R𝑛 are matrices constructed by the measure-

ments at the operating point. Therefore, nonlinear dynamics have been linearized about the

operating point to result in a locally-valid linear time-varying (LTV) system. This system

can be stabilized to track reference trajectories.

The discrete-time affine dynamics are imposed as equality constraints as in (3.5b).

3.2.5 Cost Function

The cost function in the nonlinear MPC formulation (3.5) includes both terminal and stage

costs. In this work, the cost is set as a quadratic function that penalizes deviation from the

50

reference trajectories. The stage cost is

ℓ(𝑥𝑘,𝑢𝑘) = ||𝑥𝑘 − 𝑥𝑑,𝑘||2𝑄𝑥
+ ||𝑢𝑘 − 𝑢𝑑,𝑘||2𝑅𝑢

, (3.31)

where ||𝑥||2𝑄 is a shorthand notation of the matrix norm 𝑥⊤𝑄𝑥 where 𝑄 is a positive definite

matrix; 𝑥𝑑,𝑘 and 𝑢𝑑,𝑘 are the desired state and control at the 𝑘𝑡ℎ prediction step; 𝑄𝑥 and 𝑅𝑢

are the block diagonal positive definite gain matrices for state and control, respectively. The

first term in (3.31) consisting of the error functions of the state vector can be decomposed

as:

||𝑥𝑘 − 𝑥𝑘,𝑑||2𝑄 = ||𝑒𝑝𝑘
||2𝑄𝑝

+ ||𝑒𝑝̇𝑘
||2𝑄𝑝̇

+ ||𝑒𝑅𝑘
||2𝑄𝑅

+ ||𝑒𝜔𝑘
||2𝑄𝜔

, (3.32)

where 𝑄𝑝,𝑄𝑝̇,𝑄𝑅,𝑄𝜔 are diagonal positive definite weighting matrices; 𝑒𝑝𝑘
, 𝑒𝑝̇𝑘

are the error

terms for deviations from the corresponding reference trajectories 𝑝𝑑
𝑘, 𝑝̇

𝑑
𝑘 constructed from

the user input. The error function for the rotation matrix and angular velocity are given

by [17] as

𝑒𝑅𝑘
= log(𝑅⊤

𝑑,𝑘 ·𝑅𝑘)∨ (3.33)

𝑒𝜔𝑘
= 𝜔𝑘 −𝑅⊤

𝑘 𝑅𝑑,𝑘𝜔𝑑,𝑘, (3.34)

where 𝑅𝑑,𝑘 and 𝜔𝑑,𝑘 are the desired rotation matrix and angular velocity trajectories. The

terminal cost function is similarly defined.

In the stage cost expression (3.32), all the error terms are in the linear form of the state

and control vectors except the error of orientation 𝑒𝑅𝑘
, which involves matrix logarithm

map as shown in (3.33). A linear approximation of the nonlinear error term on the rotation

matrix is used. Taking the hat map on (3.33) and applying the matrix exponential map give

exp(𝑒𝑅𝑘
) = 𝑅⊤

𝑑,𝑘𝑅𝑘 ≈ 𝑅⊤
𝑑,𝑘𝑅𝑜𝑝exp(𝜉𝑘), (3.35)

where the same approximation is made here as in (3.9). Taking the matrix logarithm of

51

(3.35) and then applying the vee map give the approximate error term on 𝑅𝑘,

𝑒𝑅𝑘
= log(𝑅⊤

𝑑,𝑘 ·𝑅𝑜𝑝)∨ + 𝜉𝑘. (3.36)

The error function defined in (3.36) is in linear form of the state variable 𝜉𝑘 since both

𝑅⊤
𝑑,𝑘 and 𝑅𝑜𝑝 are known matrices. The error function can be interpreted as the sum of (a)

the geodesic between 𝑅𝑜𝑝 and 𝑅𝑑,𝑘 and (b) the vector 𝜉𝑘 which lies in the tangent space at

𝑅𝑜𝑝. The orientation error function Ψ on 𝑅 can therefore be defined as,

Ψ(𝜉𝑘) = 𝑒⊤
𝑅𝑘

𝑄𝑅𝑒𝑅𝑘
= ||𝑒𝑅𝑘

||2𝑄𝑅
, (3.37)

which is in quadratic form of 𝜉𝑘. Given that the weighting matrix 𝑄𝑅 is positive definite,

the orientation error function Ψ is positive definite.

The terminal cost ℓ𝑇 is similarly defined as (3.32) with terminal gains. The cost of control

is constructed as

||𝑢𝑘 − 𝑢𝑑,𝑘||2𝑅𝑢
= ||𝑢𝑜𝑝 + 𝛿𝑢𝑘 − 𝑢𝑑,𝑘||2𝑅𝑢

, (3.38)

where 𝛿𝑢𝑘 is the 𝑘𝑡ℎ predicted variation from the operating point 𝑢𝑜𝑝.

3.2.6 Force Constraints

The force constraints are imposed to ensure that the solved GRF are physically feasible.

When the foot is in contact with the ground, the normal force should be non-negative and

the tangent forces should lie within the friction cone, which is prescribed as

{𝑢𝑖|𝑢𝑛
𝑖 ≥ 0, ||𝑢𝑡

𝑖||2 ≤ 𝜇|𝑢𝑛
𝑖 |}, (3.39)

where 𝜇 is the coefficient of friction; superscript (·)𝑡 and (·)𝑛 indicate tangential and normal

force components, respectively. || · ||2 is the 2-norm and | · | takes the absolute value of a

52

scalar.

Since the friction cone constraint is a second-order cone constraint, it is not admissible to

the QP formulation with linear constraints. Instead, the conservative friction pyramid [133]

is used as an approximation of the friction cone. In addition, the normal force is bounded to

ensure that the commanded torque does not exceed the actuator limits. The feasible control

set U in (3.5) is defined as:

U𝑖 := {𝛿𝑢𝑖 | |𝑢𝑥/𝑦
𝑖,𝑜𝑝 + 𝛿𝑢

𝑥/𝑦
𝑖,𝑘 | ≤ 𝜇|𝑢𝑧

𝑖,𝑜𝑝 + 𝛿𝑢𝑧
𝑖,𝑘|,

𝑢𝑧,𝑚𝑖𝑛
𝑖,𝑘 ≤ 𝑢𝑧

𝑖,𝑜𝑝 + 𝛿𝑢𝑧
𝑖,𝑘 ≤ 𝑢𝑧,𝑚𝑎𝑥

𝑖,𝑘 ,

𝑢𝑧,𝑚𝑖𝑛
𝑖,𝑘 ≥ 0},

(3.40)

where the 𝑧 axis is aligned with the normal vector of the ground and 𝑥, 𝑦 are two axes

orthogonal to each other that lie in the tangent plane at the contact point; 𝑢𝑧,𝑚𝑖𝑛
𝑖,𝑘 and 𝑢𝑧,𝑚𝑎𝑥

𝑖,𝑘

are the minimum and maximum normal forces at the 𝑘𝑡ℎ predicted step for leg 𝑖. If leg 𝑖

was in swing phase, then the value for both lower and upper bounds are set to zero so that

the swing leg controller takes over and guides the foot towards the next foothold position.

It can be observed that (3.40) denotes an intersection of a finite set of closed halfspaces in

R3. Hence, U𝑖 is a polyhedron. Similarly, the feasible force set U is also polyhedral.

3.2.7 Quadratic Program Formulation

Given the convex quadratic cost function from Section 3.2.5, the affine dyanmics from Section

3.2.4 and linear force constraints from Section 3.2.6, the general nonlinear MPC problem

53

(3.5) can be be reformulated as a Quadratic Program (QP),

min. 𝛾𝑁ℓ𝑇 (𝑥𝑡+𝑁 |𝑡) +
𝑁−1∑︁
𝑘=0

𝛾𝑘ℓ(𝑥𝑡+𝑘|𝑡, 𝛿𝑢𝑡+𝑘|𝑡) (3.41a)

s.t. 𝑥𝑡+𝑘+1|𝑡 = 𝐴𝑥𝑡+𝑘|𝑡 + 𝐵𝛿𝑢𝑡+𝑘|𝑡 + 𝑑 (3.41b)

𝛿𝑢𝑡+𝑘|𝑡 ∈ U𝑘, 𝑘 = 0, · · · , 𝑁 − 1 (3.41c)

𝑥𝑡|𝑡 = 𝑥(𝑡) = 𝑥𝑜𝑝, (3.41d)

where the cost function is defined in (3.31); the decay rate factor 𝛾 ∈ (0, 1] discounts cost

further from the current moment. The definition of the affine dynamics can be found in (3.30)

and the force constraint is expressed in (3.40). Note that we lifted the explicit constraints

on the state vectors but instead relied on the cost function for the state regulation. The QP

in (3.41) can be rewritten in a more compact form. Following the formulation in [139], the

new optimization variable 𝑧 is constructed as

𝑧 = [𝛿𝑢⊤
0 ,𝑥

⊤
1 , · · · , 𝛿𝑢⊤

𝑁−1,𝑥
⊤
𝑁]⊤ ∈ R24𝑁 , (3.42)

such that (3.41) can be transcribed into the standard QP form [15],

minimize 1
2𝑧⊤𝑃 𝑧 + 𝑐⊤𝑧

subject to 𝐴𝑖𝑛𝑒𝑞 · 𝑧 ≤ 𝑏𝑖𝑛𝑒𝑞

𝐴𝑒𝑞 · 𝑧 = 𝑏𝑒𝑞,

(3.43)

where 𝑃 ∈ R𝑁(𝑛+𝑚) is a symmetric positive definite matrix assembled from the gain matrices

𝑄𝑥,𝑅𝑢; the inequality constraint 𝐴𝑖𝑛𝑒𝑞 ·𝑧 ≤ 𝑏𝑖𝑛𝑒𝑞 imposes the force constraints; the equality

constraint 𝐴𝑒𝑞 · 𝑧 = 𝑏𝑒𝑞 respects the linear dynamics.

54

3.3 Numerical Implementation

This section presents the simulation results of RF-MPC stabilizing various periodic gaits and

an aperiodic 3D acrobatic maneuver. Furthermore, RF-MPC is compared with the MPC

that uses Euler angles as orientation representation (EA-MPC) in the acrobatic maneuver.

The resulting QPs from the MPC formulation in all of the simulations are solved using

MATLAB 𝑞𝑢𝑎𝑑𝑝𝑟𝑜𝑔. Gain values and gait pattern parameters for the following simulations

can be found in Table B.1.

3.3.1 Walking Trot

The data of a walking trot simulation is shown in Fig. 3.3. The robot starts from a stationary

pose and accelerates in the 𝑥-direction until it reaches the final velocity of 0.5 m/s. As can be

seen in Fig. 3.3 (a), the velocity in the 𝑥-direction reaches 0.5 m/s and the velocity deviation

for all directions is within ±0.1 m/s. Fig. 3.3 (b) shows that the orientation deviation in all

directions is bounded within ±0.02 rad. The vertical GRFs of all four legs are shown in Fig.

3.3 (c). Further details about the generation of the reference trajectory for trotting can be

found in Section 3.3.5.

The simulation is set up such that at each sampling time, the control input is applied to

the original nonlinear model (3.8) simulated using MATLAB 𝑜𝑑𝑒45 to integrate the dynam-

ics. The gait pattern in the walking trot simulation is executed using a time-based schedule.

3.3.2 Bounding

To demonstrate the capability of RF-MPC to stabilize dynamic motions with large body

attitude oscillation, the bounding simulation is presented. The bounding motion involves

an aerial phase when all four feet lose contact with the ground. To stabilize the bounding

motion, the reference trajectory is designed based on the impulse-scaling principle [107] to

55

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.2

0

0.2

0.4

V
e

lo
c
it
y
 [

m
/s

]

(a) vx
vy
vz

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.04

-0.02

0

0.02

0.04

O
ri
e

n
ta

ti
o

n
 [

ra
d

]

(b) log(R)∨x
log(R)∨y
log(R)∨z

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

0

20

40

V
e

rt
ic

a
l
G

R
F

 [
N

]

(c) FL
FR
HL
HR

Figure 3.3: Simulation results of walking trot where the robot starts from static pose and accelerates
in the 𝑥-direction (a) CoM velocity; the robot accelerates at 0.5 m/s2 and reaches the desired
velocity of 0.5 m/s in the 𝑥-direction. (b) Orientation in terms of the log map of the rotation
matrix (c) Vertical ground reaction forces of four legs.

preserve the periodicity of the gait. Details about the generation of reference trajectory

can be found in Section 3.3.5. Here, we kindly note that an elaborate reference trajectory

is optional for RF-MPC to stabilize bounding. While a trivial reference such as that used

for trotting also works, the reference trajectory presented in Section Section 3.3.5 enables

bounding motions with a longer aerial phase. Similar to the walking trot, the robot is

commanded to start from the static pose and accelerates at 1.0 m/s2 to reach the final

velocity of 2.5 m/s.

Fig. 3.4 (a) presents the phase portrait of angle and angular velocity along the 𝑦-axis.

It shows that the motion converges to a periodic orbit. The velocity tracking performance

shown in Fig. 3.4 (b) demonstrates that the MPC controller is capable of stabilizing bounding

velocity up to 2.5 m/s. The vertical GRF profiles of legs FL and HL are shown in Fig. 3.4

(c).

56

-0.2 0 0.2

log(R)∨y [rad]

-5

0

5

B
ω
y
[r
ad

/s
] (a)

0 2 4

Time [s]

-1

0

1

2

3

v
x
[m

/s
]

(b)

Reference
Measured

0 1 2 3 4 5

Time [s]

0

50

100

u
z
[N

]

(c)
FL
HL

Figure 3.4: Simulation results of bounding. (a) Phase portrait of body angle and angular velocity
in the 𝑦-axis. (b) Velocity tracking performance in the 𝑥-direction. (c) Vertical GRFs of FL and
HL legs.

3.3.3 Aperiodic Complex Dynamic Maneuver

A complex acrobatic dynamic maneuver is presented in this section to demonstrate that

RF-MPC is capable of controlling aperiodic dynamic motions that involve orientations that

correspond to singularities in Euler angle representation. RF-MPC is benchmarked with an

MPC controller with Euler angles for its orientation representation. In addition, the initial

condition is perturbed to investigate the robustness of RF-MPC.

Fig. 3.5 (a) shows the reference trajectory of the acrobatic motion, which is a backflip

with a twist. The reference CoM trajectory is colored black and the reference poses are

shown in blue. The robot initially stands on a slope with the slope angle of 45∘, with the

front of the robot facing upwards and body parallel to the slope. The stance phase of this

acrobatic jump consists of 0.1 s of all four feet in contact, followed by 0.1 s of only the hind

feet pair in contact with the slope. After the stance phase, all four feet are airborne and the

robot enters the aerial phase for 0.3 s before landing. The landing direction of the robot is

57

facing away from the slope. The feed-forward GRF and the dynamically-feasible reference

trajectory are generated by solving an off-line TO problem, where the slope is set to be 45∘.

Further details about the generation of the reference trajectory are provided in Section 3.3.5.

As can be observed from Fig. 3.5 (a), when the robot approaches the singularity, EA-

MPC becomes unstable and exerted a large vertical force that pushes the robot away from

the reference trajectory. As shown in Fig. 3.5 (c) (d), the body orientation and CoM position

eventually diverge from the reference trajectory after the robot encounters singularity, which

is visualized in Fig. 3.5 (e). In comparison, Fig. 3.5 (b) shows that RF-MPC can successfully

stabilize the backward tumble motion that involves singularity. Here, we would like to point

out in 3.5 (e) that the robot actually passes through singularity when the hind legs are in

contact as indicated by the duration when 𝜅−1(𝒯Θ) < 10−1, in the light shaded area. Fig.

3.5 (c) (d) display that the orientation and CoM position deviation are kept small during

the motion. The CoM position and orientation deviations are defined as

|𝑒𝑝| = |𝑝(𝑡)− 𝑝𝑑(𝑡)|

|𝑒𝑅| = |𝑙𝑜𝑔(𝑅⊤
𝑑 (𝑡)𝑅(𝑡))∨|,

(3.44)

where 𝑝𝑑 and 𝑅𝑑 are the reference CoM position and body orientation, respectively.

To demonstrate the robustness of RF-MPC, the slope angle for the simulated cases is

changed from 45∘ to 53.6∘. Since the body of the robot is parallel to the slope at the beginning

of the jump, the initial orientation of the robot is also perturbed. As can be observed from

Fig. 3.5 (c), the backflip can be executed and stabilized by RF-MPC. In contrast, an open-

loop simulation shows that in the absence of feedback control, the orientation of the robot

quickly deviates from the reference trajectory due to the initial condition perturbation.

58

EA-MPC RF-MPC

Figure 3.5: Simulation results of a complex aperiodic 3D maneuver where the robot performs a
twisting jump off an inclined surface. The reference poses are shown in blue and the poses controlled
by MPC are shown in red; the reference CoM trajectory is shown in black. The deep-shaded area
is when four legs are in contact with the surface; the light-shaded area is when only hind legs are in
contact and the non-shaded area is when the robot is in the aerial phase. (a) The EA-MPC becomes
unstable when the robot is close to the singular pose. (b) RF-MPC can track the reference motion
that involves singular poses. (c) The orientation deviation |𝑒𝑅| of open-loop control, RF-MPC,
and the EA-MPC. (d) The CoM position deviation. (e) The function to quantify the distance to
singularity 𝜅−1(𝒯Θ).

59

3.3.4 Comparison of Linearization Schemes

One of the crucial decisions we made in the proposed RF-MPC is to linearize the dynamics

about the operating point. The choice is made because RF-MPC represents orientation using

the rotation matrix, which presumes 𝑆𝑂(3) structure. Such a structure loses its validity when

the predicted states are far away from the point where the linearization is performed upon.

Nevertheless, a reasonable alternative is linearizing around the reference trajectory, which is

a widely used technique in robotics. To investigate which linearization scheme provides more

robust behavior, this section presents a simulation case study that compares MPC linearized

around the reference trajectory (scheme 1) with MPC linearized around the operating point

(scheme 2).

Scheme 1 linearizes dynamics around the reference trajectory, which includes the desired

state {𝑥𝑑
𝑡+𝑘|𝑡} and control {𝑢𝑑

𝑡+𝑘|𝑡} within the prediction horizon, where 𝑘 = 0, · · · , 𝑁−1 and

𝑁 is the prediction horizon. Hence, 𝐴𝑘 and 𝐵𝑘 are matrices for a Linear Time-Varying (LTV)

system, parametrized by the reference trajectory within the prediction horizon. Scheme 2

linearizes dynamics around the operating point, which involves current state 𝑥𝑜𝑝 and control

𝑢𝑜𝑝, as defined in Section 3.2. Constant matrices 𝐴|𝑜𝑝 and 𝐵|𝑜𝑝 are used to propagate the

state through the prediction horizon using a Linear Time-Invariant (LTI) system.

The robustness of these two linearization schemes is qualitatively compared by examining

how much external disturbance they can handle. The simulation is set up such that robot

is bounding at a constant speed of 1.0 m/s in the +𝑥 direction. The disturbance with a

maximum force of 27 𝑁 is applied to the robot in the +𝑦 direction, causing it to deviate

from the reference trajectory. The reference trajectory, controller gain, gait timing, and

disturbance are the same for both schemes, with only the linearization scheme being different.

Fig. 3.6 (a) shows a sequential snapshot of the simulated scenario for scheme 2. The

GRFs are shown in red and the disturbance force (visible at t = 1.0 s and t = 1.5 s) is in

cyan. Fig. 3.6 (b) shows the disturbance force profile, which is applied at the FR shoulder

60

t = 0.2 s t = 0.6 s t = 1.0 s

t = 1.5 s t = 2.0 s t = 3.0 s

(a)

Figure 3.6: Comparison between two linearization schemes. (a) A sequential snapshot of the
simulation scenario for scheme 2. The GRFs are shown in red and the disturbance force is shown
in cyan. The translucent box represents the reference pose of the robot. (b) Disturbance force
profile. (c) Velocity deviation and (d) Orientation deviation in the 𝑦-direction from the reference
trajectory, respectively. (e) Prediction error of the Rotation matrix.

61

of the robot.

RF-MPC using scheme 1 fails at 1.5 s since the velocity and orientation start to diverge

from the reference, as shown in Fig. 3.6 (c) and (d), respectively. In comparison, the

RF-MPC using scheme 2 recovers from the disturbance and successfully tracks the reference

trajectory. To investigate the reason for the discrepancy, we defined a quantity that measures

the prediction quality of the rotation matrices,

Ψ(𝑡) =
𝑁∑︁

𝑘=1
||̃︁𝑅𝑘 −𝑅𝑘||𝐹 + ||𝑙𝑜𝑔(𝑅⊤

𝑜𝑝,𝑡+𝑘
̃︁𝑅𝑘)∨||, (3.45)

where 𝑅𝑜𝑝,𝑡+𝑘 ∈ 𝑆𝑂(3) is the rotation matrix at time 𝑡+𝑘·𝑑𝑡; 𝑅𝑘 is the 𝑘𝑡ℎ predicted rotation

matrix at time 𝑡, whose projection to the 𝑆𝑂(3) manifold is denoted as ̃︁𝑅𝑘 ∈ 𝑆𝑂(3); || · ||𝐹 is

the Frobenius norm of a matrix. The prediction error of rotation matrices is plotted in Fig.

3.6 (e), where the error value of scheme 1 became high when the system started to deviate

from the reference trajectory. This numerical study serves as an empirical validation of the

robustness of scheme 2 in comparison to scheme 1 in disturbance rejection.

3.3.5 Reference Trajectory Generation

Trotting

The reference control trajectory 𝑢𝑘,𝑑 for trotting is defined based on the heuristic that the

total weight of the robot is supported evenly by all the contact legs:

𝑢
𝑥/𝑦
𝑖,𝑘,𝑑 = 0, 𝑢𝑧

𝑖,𝑘,𝑑 = 𝑏𝑖,𝑘∑︀4
𝑖=1 𝑏𝑖,𝑘

𝑀𝑔, (3.46)

where 𝑏𝑖,𝑘 ∈ {0, 1} is a binary variable that indicates the contact condition of leg 𝑖 at instance

𝑡+𝑘, where 𝑏𝑖,𝑘 = 1 indicates contact phase and 0 otherwise. The value of the binary variable

𝑏𝑖,𝑘 is defined according to the time schedule of a Finite State Machine (FSM), which is

introduced in Section 3.4.1. The reference state 𝑥𝑘,𝑑 is constructed by simply assuming

62

the robot accelerate from static pose with constant acceleration until reaching the maximal

velocity. Both walking trot and running trot use the same reference trajectory.

Aperiodic Complex Dynamic Maneuver

The reference trajectory is generated by an off-line TO algorithm based on the single-shooting

method. The twist jump motion is decomposed into three phases with fixed timing. Phase

one is when four feet are in contact, which lasts for 0.1 s; phase two is when front legs lift-off

and hind legs are in contact, which lasts for 0.1 s; phase three is when the robot is airborne,

which lasts for 0.3 s. The optimization variables are the magnitude of the GRFs, which is

assumed to be constant throughout phases one and two. The cost function is the weighted

sum of the control effort and the deviation from the desired landing pose. The constraints

imposed in the optimizations are

∙ Fixed initial state and bounded final state

∙ Fixed contact sequence and timing

∙ Kinematic reachability of each leg

∙ Collision avoidance with the environment

∙ Unilateral GRF stay within friction cone.

The TO is formulated as a nonlinear program with 24 variables, representing the force

magnitude of 4 GRFs (each has 3 components) in two stance phases. The optimization

problem is solved by the MATLAB NLP solver fmincon.

Bounding

The periodic trajectory for bounding gait is generated by considering the robot as a single

rigid body in 2D, which has 3 DoFs (𝑥, 𝑧, 𝜃). The contact sequence and timing is pre-specified

as front-stance, aerial phase I, hind-stance and aerial phase II. The shapes of vertical GRF

63

and pitch torque profiles are parametrized by Bézier polynomials. Periodicity in the 𝑧 and

𝜃 directions is achieved by finding the scaling factors and initial condition based on the

principle of impulse-scaling [107] analytically.

Controlled Tumble

To generate the reference trajectory of the controlled tumble in Section 3.5.4, we used the

open-source OptimTraj library [69] to set up the TO problem using the direct collocation

method. The optimization is done on a 2-D single rigid body model of the robot. The convex

quadratic cost function penalizes large GRF and rewards smooth force profiles. In addition

to the constraints mentioned in Section 3.3.5, the following constraints are also imposed

∙ The constraints that enforce dynamic feasibility.

∙ Path constraints on the state and control.

The above problem setup has 27 time steps, which results in an optimization problem with

272 variables and 366 constraints solved by MATLAB NLP solver fmincon.

3.4 Control Framework

The MPC framework in Section 3.2 is combined with other components such as state esti-

mation and swing leg controllers to give rise to various motions implemented on the robot

hardware platform. This section presents the implementation details that are required to

realize the MPC control design on the hardware.

Fig. 3.7 shows the schematics of the overall control system. The Finite State Machine

(FSM) sends the desired state and control trajectories 𝑋𝑑,𝑈𝑑 to the MPC, which formulates

a Quadratic Program (QP). The QP is solved by the custom QP solver qpSWIFT [106] to

obtain the optimal solution 𝛿𝑢, which is added to the control at the operating point 𝑢−
𝑜𝑝 to

get the GRF 𝑢𝑜𝑝. A swing leg controller calculates the swing force 𝑢𝑠𝑤 to track the swing

64

Finite State Machine
(FSM)

Model Predictive
Control (MPC)

QP solver
(qpSWIFT)

Joint
Controller

BLDC motor Encoder IMU

{QP}

𝑢𝑜𝑝
−

𝑋𝑑, 𝑈𝑑 𝑢𝑜𝑝

𝑥𝑜𝑝

𝑢𝑜𝑝 + 𝑢𝑠𝑤

Environment

Robot 𝜏12

Swing
Controller

𝑝𝑓, ሶ𝑝𝑓

𝑢𝑠𝑤

𝜸

𝑝𝑑
𝑓
, ሶ𝑝𝑑

𝑓

State
Estimator

User input

Figure 3.7: Overview of the control system. The user sends commands to the on-board computer
(blue), where the finite state machine schedules the gait and sends desired trajectories to the MPC
block to formulate the QP. The custom QP solver qpSWIFT solves for the 𝑢𝑜𝑝 and send it to the
FSM. The FSM combines the stance and swing forces and sends to the joint controller (green),
which maps leg forces to joint torque and sends to the BLDC motors. The state estimator (green)
receives sensor signals for the MPC formulation of the next cycle. The previous solution of the QP
𝑢−

𝑜𝑝 is sent to the MPC as the control at the operating point.

foot trajectories. The commanded torque is modified by a lower-level joint controller, which

compensates for friction and motor dynamics. The Brush-Less Direct Current (BLDC)

motors actuate the robot to interact with the environment. The QP solver qpSWIFT [106]

is designed to efficiently solve MPC problems with the decision variable size of around 200.

3.4.1 Finite State Machine

Various gaits are generated by a finite state machine (FSM). Fig. 3.8 shows the schematics

of the FSM where the timing schedules are sent from the gait planner to each leg. A leg

65

Gait
planner

Finite State Machine (FSM)

Swing HL
(3)

Stance

𝑠3

Swing FR
(2)

Stance

𝑠2

Swing HR
(4)

Stance

𝑠4

Swing
s1 = ҧ𝑡/𝑇𝑠𝑤

FL
(1)

Stance
s1 = ҧ𝑡/𝑇𝑠𝑡

𝐺1, Δ𝑗

Timing schedule

Figure 3.8: Schematics of the Finite State Machine (FSM). The gait planner sends to all legs
the timing schedules; the normalized variable 𝑠𝑖 is the percentile completion of the current state.
Δ𝑗 , 𝑗 ∈ {𝑠𝑡, 𝑠𝑤} are the reset maps and 𝐺𝑖 are the guard sets.

independent phase variable 𝑠𝑖 quantifies the percentile completion of either stance or swing

state. The phase variables are defined as 𝑠𝑖 := {𝑡/𝑇𝑗 s.t. 𝑗 ∈ {𝑠𝑡, 𝑠𝑤}}, where 𝑡 represents

the current dwell time, 𝑇𝑠𝑡, 𝑇𝑠𝑤 are stance and swing times, respectively. The period of the

gait is the sum of the dwell times 𝑇 = 𝑇𝑠𝑡 + 𝑇𝑠𝑤. The guard sets 𝐺𝑖 and reset maps Δ𝑗

define the transition between states. The guard sets are given as 𝐺𝑖 := {𝑡 s.t. 𝑡 = 𝑇𝑗}.

The reset map is defined as Δ𝑗(𝑡) = 0 such that it resets the phase variable and current

dwell time. This framework allows the implementation of any gait sequence by changing

the timing schedules. The contact detection algorithm can be incorporated to adjust the

gait timings and extend the time-based FSM to event-based FSM. Using the FSM scheme,

trotting, bounding, and aperiodic motions can be realized. It is worth noting that the

prediction horizon can cover multiple phases. Hence, in motions with aerial phases such as

bounding and acrobatic jump, the RF-MPC can take into consideration of the upcoming

phase change and plan the current control accordingly.

3.4.2 Computation Setup

The MPC framework is implemented using Simulink Real-Time (SLRT). The encoder read-

ings and lower-level kinematics calculations are carried out at a base rate of 4 kHz, while

66

the IMU signals are received and state estimation is performed at 1 kHz. The user input

from the joystick is updated at 23 Hz, and the QP is solved at between 160 Hz to 250 Hz

depending on the size of the problem. The proposed QP (3.43) is solved by a custom QP

solver qpSWIFT [106] for all the experiments. Written in ANSI C, the solver is library-free

while and it interfaces with SLRT through a gateway s-function. An RF-MPC with a pre-

diction horizon of 6 entails solving a QP with 144 variables, 72 inequality, and 72 equality

constraints.

3.5 Experiment Results

The proposed RF-MPC controller is a general motion control framework that can be used

to achieve multiple motion objectives. This section presents the experimental results of

some common tasks for quadrupedal robots, including pose control, balancing on a moving

platform, and periodic locomotive gaits such as walking trot, running trot, and bounding. In

addition, a controlled tumble experiment is presented to show that the RF-MPC framework

is capable of controlling dynamic motions previously hard to achieve because of the presence

of singularity. The gain values and the gait timing for all experiments can be found in Table

B.2.

3.5.1 Pose and Balancing Control

To exhibit the tracking performance of the MPC controller, the pose control experiment is

conducted. The experimenter sends the desired CoM vertical height and orientation com-

mands in 𝑦 and 𝑧 directions to the robot from the joystick. The MPC controller continuously

solves for the desired GRFs at the four feet, which are in contact with the ground through-

out the experiment. The position and orientation reference tracking data shown in Fig. 3.9

suggests that RF-MPC can closely track the reference command. To demonstrate the capa-

bility of RF-MPC to balance its body under large disturbances, the balancing experiment is

67

65 70 75 80 85 90 95 100 105 110
0.1

0.15

0.2

[m
]

pz

(a)

Reference
Measured

65 70 75 80 85 90 95 100 105 110
-0.5

0

0.5

[r
ad

]
log(R)∨y

(b)

65 70 75 80 85 90 95 100 105 110

Time [s]

-0.5

0

0.5

[r
ad

]

log(R)∨z

(c)

Figure 3.9: Pose control experiment data. (a) the position tracking performance for 𝑝𝑧, (b) and
(c) present the orientation tracking performance in the 𝑦 and 𝑧 directions.

presented. The experimental setup is shown in Fig. 3.10 (a). The robot stands on a pivoted

platform, attempting to maintain the balance at the nominal standing pose when the plat-

form is perturbed by the operator. The robot body coordinate {𝐵} and the coordinate of

the platform {𝑃} are both plotted in Fig. 3.10 (a). The origin of {𝑃} is set at the center of

the four feet. Fig. 3.10 (b) shows the orientation deviation in the 𝑥 and 𝑦 directions for {𝑃}

in blue and {𝐵} in red; Fig. 3.10 (c) shows the angular velocity in the 𝑥 and 𝑦 directions.

As shown in Fig. 3.10, the balancing controller significantly reduces the movement of the

robot’s body frame {𝐵} compared to that of the platform-fixed frame {𝑃}.

3.5.2 Walking Trot

To demonstrate that RF-MPC can stabilize basic locomotion gaits, the walking trot ex-

periment is presented. The robot can move in any direction parallel to the ground while

maintaining the body orientation. Fig. 3.11 (a) and (b) exhibit the velocity tracking perfor-

mance of the controller, and Fig. 3.11 (c) shows that the orientation deviation is kept small

68

(a)

{𝐵}

{𝑃}

Figure 3.10: The balancing control experiment (a) Experimental setup. The robot stands on a
platform pivoted on a sphere, the pivot point is shown as a solid circle. The four triangles indicate
the foot contact points. (b) The orientation deviation of the platform coordinate {𝑃} (blue) and
the body coordinate {𝐵} (red). (c) The body angular velocity of the platform coordinate (blue)
and the body coordinate (red).

(within ±0.06 rad) during the walking trot experiment; Fig. 3.11 (d) presents the vertical

GRF during the walking trot. The velocities are measured from the state estimation.

3.5.3 Running Trot and Bounding

To investigate the performance of RF-MPC for dynamic gaits, experiments of running trot

and bounding gaits with full aerial phases are conducted. Fig. 3.12 presents the running trot

experiment data, where Fig. 3.12 (a) shows that the vertical CoM velocity experiences 40

ms free fall during the aerial phase. Fig. 3.12 (b) shows that the robot can produce abruptly

changing GRF as the contact condition changes. During the trot running experiment, the

vertical GRF can reach as high as 60 N while the knee torque goes up to 6.3 Nm, as can be

observed in Fig. 3.12(b) and (c), respectively.

The bounding gait leverages the full dynamics of the robot and involves extensive body

pitch oscillation. Sequential snapshots of the bounding experiment can be found in Fig.

3.13 (a). The robot starts from a static pose and the MPC stabilizes the robot to follow

69

125 130 135 140

-0.2

0

0.2

ṗ
x
[m

/s
] (a)

Reference
Measured

125 130 135 140

-0.2

0

0.2

ṗ
y
[m

/s
] (b)

125 130 135 140
-0.1

0

0.1

[r
ad

] (c)

log(R)∨x
log(R)∨y

125 130 135 140

Time [s]

0

50

u
z
[N

] (d)
FL

FR

Figure 3.11: Walking trot experiment data. (a) Velocity tracking in the 𝑥-direction. (b) Velocity
tracking in the 𝑦-direction (c) Orientation deviations along the 𝑥 and 𝑦-axes, where the reference
is 0. (d) Commanded vertical GRF 𝑢𝑧 for front legs.

70

275 276 277 278 279 280
-0.4

-0.2

0

0.2

ṗ
z
[m

/s
] (a)

Reference
Measured

275 275.2
-0.4

-0.2

0

0.2
(a1)

275 276 277 278 279 280
0

20

40

60

u
z
[N

]

(b)

275 275.2
0

20

40

60 (b1)

275 276 277 278 279 280

Time [s]

-2

0

2

4

6

8

τ
k
n
e
e
[N

m
] (c)

275 275.2
-2

0

2

4

6

8
(c1)

FL
FR
HL
HR

Figure 3.12: Running trot experiment data. Zoomed-in views placed at the right of the figure show
the details of the signals. (a) Reference and measured CoM vertical velocity in the 𝑧-direction (b)
Vertical GRF (c) Knee torque.

the desired GRF and state trajectories. More details about reference trajectory generation

can be found in Section 3.3.5. The reference and measured trajectories of orientation and

angular velocity in the 𝑦-direction are shown in Fig. 3.13 (b), (c). Since the robot started

from a static pose, there is an initial offset. The vertical GRF profile is shown in Fig. 3.13

(d). The transition from the swing to the stance phase occurs when a touchdown event is

declared by the contact detection algorithm described in Section 2.4.3.

3.5.4 Controlled Backflip

To demonstrate the capability of RF-MPC to control dynamic maneuvers that involve singu-

larity poses, a controlled tumble experiment is presented. As shown in Fig. 3.14, the robot

flips backward around the 𝑦-axis, passing through the pose where the robot is upright, before

it lands with the upside-down orientation. Note that even though the reference trajectory is

71

(a1) t = 50 ms (a2) t = 70 ms (a3) t = 100 ms

(a4) t = 110 ms (a5) t = 120 ms (a6) t = 150 ms

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

lo
g
(R

)∨ y
[r
ad

]

(b)

0 0.2 0.4 0.6 0.8 1

-5

0

5

B
ω
y
[r
ad

/s
]

(c)

Reference
Measured

0 0.2 0.4 0.6 0.8 1

Time [s]

0

50

u
z
[N

] (d)
FL
FR
HL
HR

Figure 3.13: Bounding experiment results (a) Sequential snapshots of the robot in a bounding
experiment. (b) Orientation tracking in the 𝑦-direction 𝑙𝑜𝑔(𝑅)∨

𝑦 (c) Angular velocity tracking in
the 𝑦-direction 𝐵𝜔𝑦 (d) Vertical GRF.

72

generated based on a 2-D model of the robot as presented in Section 3.3.5, RF-MPC controls

the 3D robot in the controlled tumble experiment without resorting to the decomposition of

sagittal plane motion and out-of-plane motion.

The image sequence in Fig. 3.15 (a) is plotted along with the body orientation, which is

reconstructed from the experiment data as shown in Fig. 3.15 (b). The rotation matrix is

represented by the body coordinate frame axes (𝑥-blue, 𝑦-red, 𝑧-green); the three color-coded

rings correspond to the Euler angles with the roll-pitch-yaw sequence convention (roll-blue,

pitch-red, yaw-green). Note that the robot is at the singular pose at around 300 ms as

shown in Fig. 3.15 (a3). In the corresponding body orientation plot, the axes of the rings

for Euler angles almost coincide. Therefore, the robot indeed passes through the singularity

pose when the RF-MPC is actively controlling the hind legs to track the reference trajectory.

To the best of the authors’ knowledge, this is the first instance of hardware experimental

implementation of MPC to control acrobatic motion which involves singularity.

Fig. 3.16 presents the data from the controlled tumble experiment, where the robot

goes through three phases. The deep-shaded area corresponds to the phase when all four

legs are in contact; the light-shaded area indicates the phase when only the hind legs are

in contact; the non-shaded area corresponds to the landing phase. The RF-MPC controller

is activated during the first two phases, and an impedance control is utilized in the third

phase. Experiment data gathered from 10 backflip trials are shown in Fig. 3.16, where the

solid lines are the mean values of all the tests, and the shaded tube is the value within one

standard deviation.

As can be observed from Fig. 3.16 (d), the robot passes through the neighborhood of

singularity as the number introduced in Section 3.1.1 drops below the threshold 10−1. Fig.

3.16 (c) shows that the pitch angle 𝜃 is not monotonic throughout the controlled tumble

while 𝑙𝑜𝑔(𝑅)∨
𝑦 decreases monotonically. The dash-dot curves in Fig. 3.16 (a) and (c) are

from the experiment trial where the initial state of the robot is perturbed. Specifically, the

height of the stage on which the front legs are positioned is increased from 80 mm to 130

73

Figure 3.14: Quadruped robot Panther performing a controlled tumble that involves passing
through the upright pose, which corresponds to the singularity in the Euler angle representa-
tion. Throughout the controlled tumble, the feet pair indicated by the white triangle is kept in
contact with the ground. The red arrow indicates the direction of the backflip and the shadowed
images are snapshots during the backflip.

mm. It can be observed that while in this case, the trajectory of the robot deviates more

than one standard deviation from the average, RF-MPC can still stabilize the motion and

land safely.

3.6 Summary

In this chapter, we presented a representation-free model predictive control framework that

directly represents orientation using the rotation matrix instead of using other orientation

representations. Despite the local validity of linearized dynamics on the rotation matrix, this

approach introduces the possibility to stabilize 3D complex acrobatic maneuvers that involve

singularities in the Euler angles formulation. By directly working on the rotation matrix,

this method avoids issues arising from the usage of other representations such as unwinding

phenomenon (quaternion) or singularity (Euler angles). The application of a variation-

based linearization scheme and a vectorization routine linearized the nonlinear dynamics

and transformed the matrix variables into vector variables. The deliberate construction of

the orientation error function enabled us to formulate the MPC into the standard QP form.

We reported both simulation and experiment results of the RF-MPC controller applied

74

(a3) (a4) (a5) (a6)(a2)(a1)

(b1)

t = 0 ms t = 150 ms t = 300 ms t = 350 ms t = 400 ms t = 600 ms

(b3) (b4) (b5) (b6)(b2)

Figure 3.15: Quadruped robot Panther performing a controlled tumble that passes through sin-
gularity pose. (a) An image sequence of the robot executing the controlled tumble, with its front
legs launching from an 80 mm high platform. (b) The body orientation reconstructed from the
experimental data. The rotation matrix is represented by the body coordinate frame axes (𝑥-blue,
𝑦-red, 𝑧-green); the Euler angles are visualized by the three colored rings with arrows (𝜑-blue,
𝜃-red, 𝜓-green). The robot passes through the upright pose (a3) while the hind legs are in contact
with the ground. The Gimbal lock effect is shown in (b3) where axes of Euler angles are aligned.

on the quadruped Panther robot. In the simulation case study presented in Section 3.3.4 we

found out that in the RF-MPC framework, linearizing around the operating point provides

a more robust control strategy compared with linearizing around the reference trajectory.

Experiments including pose/balance control, walking/running trot, and bounding were con-

ducted on the robot. In addition, the controlled tumble experiment demonstrated that the

RF-MPC controller can stabilize dynamic motions that involve singularity. By utilizing a

custom QP solver qpSWIFT, the MPC can reach a control frequency as high as 250 Hz.

75

Figure 3.16: Experimental data from 10 controlled tumble trials. The solid lines are the average
(avg.) of all the tests, and the shaded tube is the range within one standard deviation. The
black dash-dot curves in (a) and (c) are from the case where the initial condition of the backflip
is perturbed (pert.). The deep-shaded area is when four legs are in contact; the light-shaded area
is when hind legs are in contact, and the non-shaded area is when all legs are in the impedance
control phase. (a) The CoM height. (b) The knee torque of legs FL and HL. (c) Comparison
between the pitch angle 𝜃 and rotation matrix 𝑙𝑜𝑔(𝑅)∨

𝑦 . (d) The function 𝜅−1(𝒯Θ) indicates that
the robot indeed encountered the singular pose in the controlled tumble experiment.

76

Chapter 4

Kinodynamic Motion Planning via
Mixed-Integer Convex Program

This chapter presents a mixed-integer convex program (MICP) formulation for kinodynamic

motion planning problems for dynamic legged robots to traverse challenging terrains. This

motion planning algorithm simultaneously reasons about centroidal motion, contact loca-

tion, actuator torque limit, and gait sequence in a single MICP. Specifically, the non-convex

actuator constraint is relaxed to piece-wise convex constraints over a discretization of the

configuration space. In addition, the bilinear terms are approximated by McCormick en-

velope convex relaxation. The MICP can be efficiently solved to the global optimum by

off-the-shelf numerical solvers and provide highly dynamic jumping motions without initial

guesses. Simulation and experimental results demonstrate that the proposed method can

find novel and dexterous maneuvers that are directly deployable on a single-legged and a

two-legged robot to overcome challenging terrains1. This chapter is based on our work in [31]

and [30].

4.1 Introduction

The ability to perform dynamic motions such as leaping over gaps and jumping on high

platforms is a unique advantage of legged systems. Planning for dynamic motions such as

jumping is a challenging problem since it involves both continuous and discrete variables.

This problem requires decision-making in a semi-continuous search space, which involves

continuous variables describing robot state, contact positions, and contact wrenches; It also
1Video clips featuring the simulation and experiment results are available in movie1 and movie2.

77

https://www.youtube.com/watch?v=0pFYjoUKGu0
https://www.youtube.com/watch?v=y2qmHU9aa0Q

involves discrete variables such as the foothold position and gait sequence.

Many methods have been developed to solve this problem. For example, the trajectory

optimization (TO) approach locally improves upon an initial motion plan by solving a gen-

eral nonlinear optimization problem using a gradient-based nonlinear solver. There has been

tremendous progress in using TO to solve locomotion problems. MIT Cheetah 2 robot can

jump over obstacles by solving nonlinear constrained optimization online [107]. Optimized

jumping trajectories are generated offline [101] and implemented on MIT Cheetah 3 [11]. Lin-

ear complementary problems (LCP) are formulated in [111] to generate trajectories without

a priori contact scheduling. Dynamic movements without scheduled contact are also gener-

ated in [87] using a hierarchical framework. The combined planning problem is solved in [95]

by incorporating all constraints into the objective function, and solve unconstrained nonlin-

ear programming (NLP). Legged locomotions with gait sequences are generated on non-flat

terrain in [143] in a single TO formulation using a phase-based parameterization method.

These methods either rely on explicit contact schedules or require solving a large NLP. The

size and non-convexity of these problems imply that the nonlinear solver is only effective in

searching for a local minimum around the initial guess. Hence, proper initialization of the

optimization is crucial in finding a feasible solution. Besides, the infeasible status returned

by a local NLP solver is not informative since one is not sure whether the planning problem

itself is infeasible or it is not initialized properly.

4.1.1 Motivation

Mixed-integer convex optimization does not rely on the initial seed and warrants global

solution [15]. With the recent advancement in numerical solvers, a medium-sized mixed-

integer convex programming (MICP) can be solved efficiently by off-the-shelf solvers such

as gurobi [102], Mosek [97] and CPLEX [63]. Due to its feature that warrants a global

solution with either global optimality or infeasibility certificate, MICP has found many

applications in robotics. For example, it has been used in global inverse kinematics [25],

78

Goal region

CoM in Stance

CoM in Flight

𝜃

Single-legged robot

Two-legged robotStatic foothold

Invalid foothold

Figure 4.1: Illustration of the kinodynamic motion planning problem for jumping legged robots.
The robot systems of concern include a planar single-legged robot (R1) and a planar two-legged
robot (R2). The terrain height variation is higher than the robot height, so the robot has to execute
jumping motions to reach the goal region.

grasping [82], footstep planning [28], quadruped locomotion planning [1], and aggressive

legged locomotion [134], [31]. The distinct feature of mixed-integer programs (MIP) is that

the binary variables can turn on/off constraints, which enables reasoning about discrete

choices.

However, the combinatorial nature of MIP causes the curse of dimensionality, which

means a MIP quickly becomes intractable as the number of variables increases. The issue of

high computational requirements is mitigated by exploiting the structure of each individual

problem. Specifically, simplified models and condensed constraint formulations are employed

to reduce the number of variables used in the MICP. Because of the problem-specific nature

of the MICP formulation, two case studies are presented where MICP comes up with dynamic

motions for a planar single-legged robot and a planar two-legged robot.

4.1.2 Problem Statement

The examples included in this chapter only concern planar robots, which are tasked to start

from an initial position to reach the goal region. The height variation of the terrain is larger

than the height of the robots, hence, the robot has to execute jumping motions to overcome

79

obstacles and reach the goal region. As shown in Fig. 4.1, the terrain is modeled as a

piecewise affine function, where the goal region is colored purple. The jumping motions of

the robots compose of alternating stance phases and aerial phases. Unlike the single-legged

robot whose stance phase is unambiguous, the stance phase of the two-legged robot can

be further sub-categorized into the front, back, and double stance. For conciseness, the

single-legged robot will be referred to as R1, and the two-legged robot R2 for the rest of the

chapter.

To solve the kinodynamic motion planning problem, a TO problem such as the following

can be formulated

minimize
𝑥𝑜𝑝𝑡

𝑓0(𝑥𝑜𝑝𝑡) (4.1a)

subject to 𝑋̇ = 𝑓(𝑋,𝑢) (4.1b)

𝑝𝑓𝑝 ∈ 𝑇𝑒𝑟𝑟𝑎𝑖𝑛 (4.1c)

𝑞(𝑡) ∈ Ω (4.1d)

𝑞(𝑡0) ∈ 𝑄0 (4.1e)

𝑞(𝑡𝑓) ∈ 𝑄𝑔 (4.1f)

𝑢(𝑡) ∈ 𝑈 (𝑞(𝑡)) (4.1g)

where 𝑥𝑜𝑝𝑡 is the decision variable vector; 𝑓0(·) is a convex objective function. 𝑋 = [𝑞⊤, 𝑞̇⊤]⊤

is the state vector, where 𝑞 is the configuration of the robot and 𝑞̇ is its time derivative. 𝑓(·)

is the continuous time dynamics and 𝑢 is the control vector. 𝑝𝑓𝑝 is the concatenated foothold

position vector, which should be on the 𝑇𝑒𝑟𝑟𝑎𝑖𝑛 surface during stance phases. Constraint

(4.1d) limits 𝑞 to be within the configuration space (C-space) Ω of the robot; 𝑡0 and 𝑡𝑓 refer

to the initial and final time; 𝑄0 and 𝑄𝑔 represents the initial configuration set and goal

configuration set, respectively. 𝑈 indicates the set of admissible control as a function of the

configuration of the robot.

80

4.2 Common Formulations for R1 and R2

This section collects all the common formulations for the single-legged robot R1 and the two-

legged robot R2, although the specific implementation differs due to platform differences.

For example, the simplified dynamic of R1 and R2 takes the same double integrator form,

but the dimension is different since R1 is modeled as a point-mass and R2 has an additional

pitch dimension.

4.2.1 Reduced Model

To simplify the robot dynamics, the leg mass is neglected and the equation of motion takes

the form of a double integrator

𝑞 = 𝒟−1𝑢 + 𝑎𝑔 (4.2)

where 𝑞 is the configuration of the robot; 𝒟 is the inertia matrix; 𝑢 is the control input

vector; 𝑎𝑔 is the gravitational acceleration vector. Here, R1 is modeled as a point-mass

and R2 as a single rigid body, where the centroidal dynamics [103] are used to capture the

dynamics of the robot systems. Therefore, the input to R1 is the GRF 𝑢 ∈ R2, and the

input to R2 is the spatial wrench about CoM 𝑢 ∈ R3. The expressions for each term in Eq.

(4.2) are summarized in the following table for robots R1 and R2.

81

Table 4.1: Definition of each term in the simplified dynamics Eq. (4.2) for both robots, as shown
in Fig. 4.1

Terms robot R1 robot R2

𝑞 [𝑥, 𝑧]⊤ [𝑥, 𝑧, 𝜃]⊤

𝑢 [𝐹𝑥, 𝐹𝑧]⊤ [𝐹𝑥, 𝐹𝑧, 𝜏𝑦]⊤

𝒟 diag(𝑚,𝑚) diag(𝑚,𝑚, 𝐼𝜃)

𝑎𝑔 [0,−𝑔]⊤ [0,−𝑔, 0]⊤

𝑑𝑖𝑚(𝑞) 2 3

𝑁𝑙𝑒𝑔 1 2

In table 4.1, [𝑥, 𝑧]⊤ is the CoM position; 𝜃 is the pitch angle; 𝐹𝑥, 𝐹𝑧 are the sum of GRF

in the 𝑥 and 𝑧 directions, respectively; 𝜏𝑦 is the effective moment applied at CoM. 𝑚 is the

total mass of the robot, and 𝐼𝜃 is the moment of inertia; diag(·) creates a diagonal matrix

from the input vector; 𝑔 is the constant of gravitational acceleration; 𝑑𝑖𝑚(𝑞) is the dimension

of the configuration space; 𝑁𝑙𝑒𝑔 is the total leg number of the robot.

Let the control trajectory 𝑢(𝑡) be parameterized by the Bézier polynomial of degree

𝑁𝐵 with coefficient 𝛼𝑢. Then, the state trajectories 𝑞̇(𝑡), 𝑞(𝑡) are also Bézier polynomials

with coefficients 𝛼𝑞 and 𝛼𝑞, respectively. Given initial conditions 𝑞̇0, 𝑞0, 𝛼𝑞 and 𝛼𝑞 can be

calculated by linear operations

𝛼𝑞 = ℒ(𝛼𝑢, 𝑞̇0), 𝛼𝑞 = ℒ(𝛼𝑞, 𝑞0), (4.3)

where the linear operation ℒ(·) is defined in Appendix 6.3.

The continuous time trajectories 𝑢(𝑡), 𝑞̇(𝑡), 𝑞(𝑡) are sampled at a discrete time sequence

{𝑡𝑖|𝑖 = 1, 2, · · · , 𝑁𝑡}, where 𝑁𝑡 is the number of nodes during the stance phase.

82

4.2.2 Configuration Space

The configuration space (C-space) of the robot is the set of configurations that the robot can

reach during the stance phase without violating kinematic constraints. The set of constraints

that define the C-space is

Ω := {𝑞 ∈ R𝑑𝑖𝑚(𝑞) | 𝑞𝑙𝑏 ≤ 𝑞 ≤ 𝑞𝑢𝑏 (4.4a)

for 𝑖 = 1 to 𝑁𝑙𝑒𝑔 (4.4b)

𝑛̂⊤ · (𝑝ℎ
𝑖 − 𝑝𝑓

𝑖) ≥ 0 (4.4c)

𝑛̂⊤ · (𝑝𝑘
𝑖 − 𝑝𝑓

𝑖) ≥ 0 (4.4d)

if 𝑝𝑓
𝑖 in contact (4.4e)

|𝑝ℎ
𝑖 − 𝑝𝑓

𝑖 |2 ∈ [𝑟𝑙𝑏, 𝑟𝑢𝑏]}, (4.4f)

where constants 𝑑𝑖𝑚(𝑞) and 𝑁𝑙𝑒𝑔 are given in Table 4.1 for robot R1 and R2. 𝑛̂ is the unit

normal vector of the terrain; 𝑝ℎ,𝑝𝑘,𝑝𝑓 are the hip joint, knee joint and foot positions. (4.4a)

is an element-wise box constraint on the robot configuration. Inequalities (4.4c) and (4.4d)

prohibit the hip and knee from penetrating the ground; (4.4f) limits the leg extension to be

within the range [𝑟𝑙𝑏,𝑟𝑢𝑏].

4.2.3 Aerial Phase Kinematics

The robot is assumed to execute a series of jumping motions, which involves both stance and

aerial phases. The kinematic relationship between the take-off state of the previous stance

and the touch-down state of the subsequent stance is

⎡⎢⎢⎣𝑞

𝑞̇

⎤⎥⎥⎦
𝑇 𝐷

𝑗+1

=

⎡⎢⎢⎣𝑞

𝑞̇

⎤⎥⎥⎦
𝑇 𝑂

𝑗

+

⎡⎢⎢⎣𝑞̇𝑇 𝑂
𝑗

𝑎𝑔

⎤⎥⎥⎦𝑇𝑗,𝑎𝑖𝑟 +

⎡⎢⎢⎣1
2𝑎𝑔

0

⎤⎥⎥⎦𝑇 2
𝑗,𝑎𝑖𝑟 (4.5)

83

where the superscripts (·)𝑇 𝑂 and (·)𝑇 𝐷 indicate variables at take-off and touch-down, respec-

tively; 𝑇𝑗,𝑎𝑖𝑟 is the aerial time of the 𝑖𝑡ℎ jump; where 𝑗 = 1, · · ·𝑁𝑗 and 𝑁𝑗 is the number

of jumps. The state 𝑞 is the sum of the foothold configuration and the local configuration

𝑞 = 𝑞𝑓𝑝 + 𝑞, where the foothold configuration 𝑞𝑓𝑝 is used to select the terrain segment for

the next stance. Meanwhile, configuration space constraint and wrench constraint can be

imposed on the local configuration 𝑞.

4.2.4 Bilinear Terms

The aerial phase kinematic equation (4.5) is non-convex because 𝑞̇𝑇 𝑂 ·𝑇𝑎𝑖𝑟 is a bilinear term.

The bilinear term can be approximated using the McCormick Envelope [90], which approxi-

mates the saddle-shaped bilinear product surface 𝑥·𝑦 as a collection of convex polytopes. The

McCormick envelope formulation transcribes the originally non-convex blinear constraints

into mixed-integer convex ones. This approach was used in [134] for planning aggressive

motions of legged robots, and it is adopted here to preserve the mixed-integer convex formu-

lation. Since the range of each quantity of the bilinear product can be obtained empirically

from simulations and experiments, a relatively small number of binary variables are needed

for the McCormick Envelope. Similarly, the quadratic term 𝑇 2
𝑓𝑙𝑡 in (4.5) is approximated by

a piecewise affine function. The binary variables used in the approximation of the bilinear

and quadratic terms are collected in the binary matrix 𝐵𝑚𝑐.

4.2.5 Foothold Position Choices

In this chapter, the terrain is modeled as a piecewise affine function. A binary matrix

variable 𝐵𝑓𝑝 ∈ {0, 1}𝑁𝑠×𝑁𝑗 can be constructed to assign foothold positions, where 𝑁𝑠 is the

total number of terrain segments and 𝑁𝑗 is the total number of jumps. 𝐵𝑓𝑝
𝑠,𝑗 = 1 implies that

at the jump 𝑗, the foothold position lies on the segment 𝑠,

𝐵𝑓𝑝
𝑠,𝑗 = 1 =⇒ 𝑝𝑗

𝑓𝑝 ∈ 𝑠𝑒𝑔𝑠, (4.6)

84

where the implies operator (=⇒) in (4.9) is implemented using the big-M formulation [119].

The big-M formulation represents piece-wise affine constraints using binary variables. Other

methods such as the convex-hull approach [132] can be used here, but the big-M formulation

yields a problem with fewer decision variables. 𝑝𝑗
𝑓𝑝 is the foothold position for the 𝑗𝑡ℎ jump.

The terrain segment 𝑠𝑒𝑔𝑠 is a line segment defined as

𝑠𝑒𝑔𝑠 = {𝑝 = [𝑥, 𝑧]⊤ ∈ R2|𝐴𝑠 · 𝑝 ≤ 𝑏𝑠, 𝑥 ∈ [𝑥𝑙𝑏
𝑠 , 𝑥

𝑢𝑏
𝑠]}, (4.7)

where 𝐴𝑠 and 𝑏𝑠 describe the affine function with domain [𝑥𝑙𝑏
𝑠 , 𝑥

𝑢𝑏
𝑠].

To ensure that for each jump, the foothold position only lands on exactly one of the

terrain segments, the following constraint has to be imposed.

𝑁𝑠∑︁
𝑠=1

𝐵𝑓𝑝
𝑠,𝑗 = 1,∀𝑗 = 1, · · · , 𝑁𝑗 (4.8)

Note that Eq. (4.8) is a mixed-integer linear constraint.

4.3 Planar Single-Legged Robot R1

This section presents how the kinodynamic motion planning problem of R1 can be for-

mulated as a MICP. Specifically, the non-convex torque limit constraint relaxed as mixed-

integer ellipsoidal constraints, making the resulting mathematically program a Mixed-Integer

Quadratically Constrained Program (MIQCP). The torque limit constraint in this chapter is

assumed to be not velocity-dependent to make the problem more tractable. The experiment

result of a Parkour motion is presented to validate the proposed formulation.

4.3.1 C-Space Discretization

The C-space of R1 as shown in Fig.4.2(a) is discretized into 𝑁𝑑 ∈ Z+ number of triangle

cells 𝑐𝑘 ⊂ Ω, 𝑘 ∈ {1, · · · , 𝑁𝑑}. The union of polytopes 𝑐𝑖 constitutes an inner approximation

85

𝑟𝑢𝑏
ො𝑛

𝑥
𝑧

𝛀 𝑐1 𝑐2
⋯

(a) (b)

Figure 4.2: Illustrations of the C-space of the planar single-legged robot R1 (a) The original C-space
(b) An example of the C-space discretization with 𝑁𝑑 = 24 cells

of Ω. Fig. 4.2(b) shows an example of workspace discretization, where 𝑁𝑑 = 24. A binary

matrix 𝐵𝑐𝑠 ∈ {0, 1}𝑁𝑑×𝑁𝑡 is constructed such that 𝐵𝑐𝑠
𝑘,𝑖 = 1 indicates that 𝑞(𝑡𝑖) is within 𝑐𝑘.

𝐵𝑐𝑠
𝑘,𝑖 =⇒ 𝑞(𝑡𝑖) ∈ 𝑐𝑘 ⇐⇒ 𝐴𝑘 · 𝑞(𝑡𝑖) ≤ 𝑏𝑘, (4.9)

where 𝐴𝑘 and 𝑏𝑘 encodes the geometry of cell 𝑐𝑘 using the half-plane representation (ℋ-Rep).

The symbol ⇐⇒ means “if and only if”. The following constraint is also imposed

𝑁𝑑∑︁
𝑘=1

𝐵𝑐𝑠
𝑘,𝑖 = 1, ∀𝑖 = 1, · · · , 𝑁𝑡, (4.10)

so that at each time, 𝑞 is assigned to exactly one of the cells.

4.3.2 Mixed-Integer Convex Torque Constraint

In this section, the non-convex torque limit constraint is relaxed into a mixed-integer convex

constraint. The torque limit constraint is

||𝐽⊤(𝑞) · 𝑢||2 ≤ 𝜏𝑚𝑎𝑥 (4.11)

86

where 𝜏𝑚𝑎𝑥 is the maximum actuator torque; 𝑞 = [𝑥, 𝑧]⊤ is the robot configuration; 𝑢 =

[𝐹𝑥, 𝐹𝑧]⊤ is the GRF; || · ||2 is the two-norm. Given 𝑞, the joint angles solved from inverse

kinematics (IK) is used to construct the Jacobian matrix 𝐽 . The torque limit constraint

(4.11) is non-convex because the IK and 𝐽 calculation involve trigonometric functions. The

torque limit constraint (4.11) can be written in the equivalent quadratic form

𝑢⊤𝐽(𝑞) · 𝐽⊤(𝑞)𝑢 ≤ 𝜏 2
𝑚𝑎𝑥, (4.12)

where 𝐽𝐽⊤ is a symmetric, positive definite matrix.

The key idea of the proposed mixed-integer convex formulation is imposing a piecewise

convex relaxation of the torque constraint over the C-space discretization. The triangle

shown in Fig. 4.3(a) is a cell 𝑐𝑘 taken from the C-space discretization in Fig. 4.2(b). If

the satisfaction of some convex constraint can guarantee that (4.12) holds for every point

within the cell 𝑐𝑘, then this constraint can be taken as a representative constraint for 𝑐𝑘.

Suppose 𝑁 points are sampled from 𝑐𝑘, then (4.12) should hold for every sampled points

𝑞𝑖, 𝑖 ∈ {1, · · · , 𝑁}. If there exists a matrix 𝑋 such that

𝑢⊤𝐽(𝑞𝑖) · 𝐽(𝑞𝑖)⊤𝑢 ≤ 𝑢⊤𝑋𝑢 ≤ 𝜏 2
𝑚𝑎𝑥, ∀𝑖, (4.13)

then,

𝑢⊤𝑋𝑢 ≤ 𝜏 2
𝑚𝑎𝑥 (4.14)

is the representative constraint. The matrix 𝑋 must satisfy the linear matrix inequality

(LMI)

𝑋 ⪰ 𝐽(𝑞𝑖)𝐽(𝑞𝑖)⊤ (4.15)

for all sampled 𝑞𝑖.

The geometric interpretation of (4.13) is presented in Fig.4.3(b). The inequality (4.12)

corresponds to an ellipsoid for each sampled 𝑞𝑖 in the joint torque space. The red, yellow, and

87

𝜀3
𝜀1

𝜀2

𝜀𝑋

𝜏ℎ𝑖𝑝

𝜏𝑘𝑛𝑒𝑒1

2

3

𝑥

𝑧

(a) (b)

Figure 4.3: Geometric interpretation of the minimum bounding ellipsoid problem for the torque
limit constraint within a cell. (a) A cell 𝑐𝑖 from the C-space discretization (b) 𝜀1,2,3 are the ellipsoids
associated with vertices 1, 2, 3. 𝜀𝑋 is the minimum bounding ellipsoid.

green ellipsoids in Fig.4.3(b) corresponds to the three vertices of the cell 𝑐𝑘 as shown in Fig.

4.3(a). The LMI in (4.15) indicates that the ellipsoid corresponding to 𝑋 encloses all of the

other sampled ones, hence a convex relaxation. To make the relaxation as tight as possible,

the volume of the ellipsoid corresponding to 𝑋 should be minimized. The problem of finding

such a minimum bounding ellipsoid can be cast as a semidefinite program (SDP) [15].

minimize
𝑋

tr(𝑊 𝑋),

subject to 𝑋 ⪰ 𝐽(𝑞𝑖)𝐽(𝑞𝑖)⊤, 𝑖 ∈ {1, · · · , 𝑁},
(4.16)

where 𝑋 ∈ S++ is the positive definite optimization matrix variable; 𝐽(𝑞𝑖)𝐽(𝑞𝑖)⊤ ∈ S++ is

the matrix associated with the ellipsoid 𝜀𝑖. The LMI is valid if and only if 𝜀𝑖 ⊆ 𝜀𝑋 ,∀𝑖 ∈

{1, · · · , 𝑁}. 𝑊 ∈ S++ is a scaling matrix, which is set to be identify matrix since the hip

and knee motors are the same.

In practice, a finite number of samples are drawn since sampling every point within 𝑐𝑘

is not realistic. One key observation is that once the samples increase beyond the vertices,

the shape and volume of the minimum-bounding ellipsoid does not change, as shown in Fig.

4.4. Therefore, only the vertices are sampled to solve for the matrix 𝑋.

One SDP is posed and solved for each cell 𝑐𝑘 to find its corresponding 𝑋𝑘 so that the

88

2 4 6 8 10

(a)

(b)

Figure 4.4: The change of minimal outer ellipsoid with respect to the number of sample points
taken in one polytope. (a) The trend of volume change (b)The trend of ellipsoid shape change as
sample increases.

piecewise convex torque constraint can be imposed

𝐵𝑐𝑠
𝑘,𝑖 =⇒ 𝑢(𝑡𝑖)⊤ ·𝑋𝑘 · 𝑢(𝑡𝑖) ≤ 𝜏 2

𝑚𝑎𝑥, ∀𝑖, (4.17)

where 𝐵𝑐𝑠 is the binary matrix for C-space discretization as in Section 4.3.1. The constraint

(4.17) is quadratic in 𝑢, which is in affine form of the Bézier polynomial coefficent 𝛼𝑢 as

introduced in Section 4.2.1. Note that for a given grid resolution, the matrix 𝑋 only needs

to be calculated once. As the discretization resolution (𝑁𝑑) increases, the convex relaxation

of the torque limit constraint becomes less conservative while the computational demand

increases.

4.3.3 MIQCP Formulation

The kinodynamic motion planning problem of the R1 robot can be transcribed to a MIQCP,

whose optimization variables are

𝑥𝑜𝑝𝑡 = [𝛼𝑢, 𝑞0, 𝑞̇0,𝑇𝑎𝑖𝑟,𝑝𝑓𝑝,𝐵
𝑐𝑠,𝐵𝑓𝑝,𝐵𝑚𝑐] (4.18)

89

where 𝐵𝑐𝑠,𝐵𝑓𝑝,𝐵𝑚𝑐 are binary variables for C-space discretization, foothold position and

McCormick Envelope, respectively. The complete MIQCP formulation is

minimize
𝑥𝑜𝑝𝑡

𝑓0(𝑥𝑜𝑝𝑡) (4.19a)

subject to 𝛼𝑞 = ℒ(𝛼𝑢, 𝑞̇0),𝛼𝑞 = ℒ(𝛼𝑞, 𝑞0) (4.19b)

𝑞(𝑡0) ∈ 𝑄0 (4.19c)

𝑞(𝑡𝑓) ∈ 𝑄𝑔 (4.19d)

aerial phase kinematics: (4.5) (4.19e)
𝑁𝑠∑︁
𝑠=1

𝐵𝑓𝑝
𝑠,𝑗 = 1 (4.19f)

𝐵𝑓𝑝
𝑠,𝑗 = 1 =⇒ 𝑝𝑗

𝑓𝑝 ∈ 𝑠𝑒𝑔𝑠 (4.19g)
𝑁𝑑∑︁
𝑘=1

𝐵𝑐𝑠
𝑘,𝑖 = 1 (4.19h)

𝐵𝑐𝑠
𝑘,𝑖 =⇒ 𝑞(𝑡𝑖) ∈ 𝑐𝑘 (4.19i)

𝐵𝑐𝑠
𝑘,𝑖 =⇒ 𝑢(𝑡𝑖)⊤ ·𝑋𝑘 · 𝑢(𝑡𝑖) ≤ 𝜏 2

𝑚𝑎𝑥 (4.19j)

𝑢(𝑡𝑖) ∈ 𝒞 (4.19k)

𝑖 = 1, · · · , 𝑁𝑡; 𝑗 = 1, · · · , 𝑁𝑗 (4.19l)

𝑘 = 1, · · · , 𝑁𝑑; 𝑠 = 1, · · · , 𝑁𝑠 (4.19m)

where 𝑓0(·) is the convex objective function. For example, 𝑓0 can be ||𝑞(𝑡𝑓)−𝑞𝑔||2, where 𝑞𝑔

is the goal configuration. Constraint (4.19b) encodes the simplified dynamics (4.2) as linear

relationships of Bézier polynomial coefficients; (4.19c) and (4.19d) restrains the initial and

final configurations within their corresponding sets 𝑄0 and 𝑄𝑔, respectively. The aerial phase

kinematics involves the binary matrix 𝐵𝑚𝑐; (4.19f) and ((4.19g)) are mixed-integer affine

constraints for foothold position choice; (4.19h) - (4.19j) impose the mixed-integer convex

quadratic relaxed torque limit constraint, whose original non-convex control constraint is

(4.1g). To prevent contact foot from slipping, GRF are constrained within the friction cone

90

𝒞 defined as

𝒞 = {𝑢| |𝑢𝑡| ≤ 𝜇𝑢𝑛 ≥ 0} (4.20)

where the subscripts (·)𝑡 and (·)𝑛 refers to tangential and normal components of the GRF;

𝜇 is the friction coefficient.

With the objective function of (4.19) being convex, (4.19j) being a (mixed-integer)

quadratic constraint, and the rest being (mixed-integer) affine in 𝑥𝑜𝑝𝑡, the mathematical

program (4.19) is a mixed-integer quadratically-constrained convex program (MIQCP).

The MIQCP (4.19) is formulated in MATLAB using YALMIP [83]. The SDP is solved

using the solver MOSEK [97] and the MIQCP is solved using the solver CPLEX [63] on a

desktop with 2.9 GHz Intel i7.

4.3.4 Results

This section presents the application results of the kinodynamic motion planning algorithm

on the R1 robot. Specifically, a Parkour motion of two consecutive jumps is found by the

MIQCP without any initial guess, which is one of the benefits of the MIP formulation. The

validity of the solved trajectories is proved by hardware experiment results produced by the

R1 robot.

Experiment Setup

The R1 robot is a 2 DoF leg module rigidly mounted on the end of a passive boom system

with radius 𝑅𝑏𝑜𝑜𝑚 = 1.25 m. The R1 robot is 0.91 kg and its hip and knee joints are

equipped with an encoder. Off-board power source and computer are tethered to the robot.

Two encoders are installed on the base of the boom to measure the CoM position of the

robot. The feed-forward force obtained by solving the MIQCP off-line was applied during

the stance phase. An operational-space PD controller was used to track swing foot trajectory

during the flight phase. Contact detection as described in Section 2.4.3 was implemented to

91

0 ms 280 ms 560 ms

680 ms 840 ms 1120 ms

Figure 4.5: Sequential snapshots of the Parkour experiment where the robot makes two consecutive
jumps to traverse terrain with large height variation. The MIQCP-based planner is able to find
the solution that utilizes the left obstacle as a stepping stone to reach the 0.66 m high goal region.

initiate the stance phase.

Experiment Result

The MIQCP dynamic motion planning algorithm is used to solve for the jumping trajectory

that can overcome a terrain shown in Fig. 4.5. The surface of the left platform is sloped,

which prohibits taking individual single jumps since the robot cannot stand statically on the

slope.

The R1 robot is tasked to reach the goal region on the right obstacle, which cannot be

reached with a single jump due to the torque limit. The proposed MIQCP algorithm can

find the strategy that utilizes the sloped obstacle on the left as a stepping stone towards

the goal region, as shown in Fig. 4.5. Note that R1 adopted the strategy of making two

consecutive jumps to overcome the sloped surface on the left platform.

Fig. 4.6 shows the experiment CoM trajectory closely follows the simulation CoM tra-

jectory. The deviation is in part caused by the foot swing movement, which is shown as the

92

0.22

0.66

0.1

Figure 4.6: The CoM trajectories from the MIQCP-based planner (blue) and the experimental
platform (red). The swing leg motions cause the CoM

gray curve. This problem could be solved within 0.9 seconds.

4.4 Planar Two-Legged Robot R2

This section presents how the MICP-based kinodynamic motion planning framework used

for R1 can be naturally extended to R2. The R2 robot is more complex due to the additional

leg and torso pitch DoF, which increases the state dimension and complicates the contact

scenario. Specifically, unlike the unique stance mode of R1, R2 can take a single (under-

actuated) or double stance (over-actuated). To address these problems, a more general

polytopic wrench constraint takes place of the ellipsoidal torque limit constraint in Section

4.3.2, making the final formulation a mixed-integer convex program (MICP). Specifically,

the input to the system changes from the GRF at the contact foot to the effective body

wrench generated by the GRF. This choice of input provides a more general framework that

incorporates different contact scenarios.

93

4.4.1 C-Space Discretization

A schematics of the R2 robot is shown in Fig. 4.7(a), where {𝑆} refers to the world frame

and {𝐵} the local frame. The C-space shown in Fig.4.7(b) is divided into three disjoint

regions corresponding to front stance Ω𝑓𝑠 (blue), double stance Ω𝑑𝑠 (black), and back stance

Ω𝑏𝑠 (red), namely,

Ω = Ω𝑏𝑠 ∪Ω𝑓𝑠 ∪Ω𝑑𝑠. (4.21)

Such a construction of C-space is based on the following assumptions:

Assumption 1 (Fixed Stance Width). When in double stance, the distance between two

contact feet is equal to the body length.

This assumption enables the C-space to be fixed given the body length and leg linkage

length. Furthermore, all quantities in (4.4) can be retrieved through inverse and forward

kinematic calculation based on the robot configuration 𝑞. Fig. 4.7(b) shows the C-space of

the robot with parameters in Table 2.1.

When double stance is kinematically feasible, so are the front and back stance. To

simplify the choice of stance mode, the following assumption is made.

Assumption 2 (Preference on Double Stance). When possible, the R2 robot prefers double

stance to single stance.

The basis of assumption 2 is the observation that a double stance provides more control

authority compared with a single stance. Assumption 2 establishes a one-to-one mapping

between robot configuration 𝑞 and stance mode, as shown in Fig. 4.7 (c). Namely, the

contact mode scheduling automatically emerges as the trajectory 𝑞(𝑡) is solved.

Similar to Section 4.3.1, the non-convex C-space of R2 is discretized into cells of tetra-

hedrons. The discretization is arranged such that each tetrahedron resides within the same

stance region. Each tetrahedron is defined using a set of linear inequality constraints

𝑐𝑘 := {𝑞 ∈ R3 | 𝐴𝑘 · 𝑞 ≤ 𝑏𝑘},∀𝑘 = 1, · · · , 𝑁𝑑. (4.22)

94

𝒙𝒛

𝜽

(𝑖𝑖)

(𝑖)

(𝑖𝑖𝑖)

𝛀𝑏𝑠

𝛀𝑓𝑠

𝛀𝑑𝑠

{𝑆}
{𝐵}

𝜃

𝑥
𝑧

𝒒 =
𝑥
𝑧
𝜃

𝑦
ෝ𝒏

(a) (b) (c)

Figure 4.7: The schematics and C-space segmentation of R2. (a) The schematics of R2. The
coordinate {𝑆} refers to the world frame and {𝐵} the local frame. (b) The C-space of R2, which
is divided into three mutually exclusive regions corresponding to back stance (red), double stance
(black), and front stance (blue), respectively. (c) The illustration of robot configuration in each
corresponding stance mode.

4.4.2 Feasible Wrench Polytope

This section presents a formulation of the feasible wrench polytope (𝐹𝑊𝑃) that is pertinent

to the robot system studied in this section. A more comprehensive derivation of the 𝐹𝑊𝑃

can be found in [104].

The feasible force polytope (𝐹𝐹𝑃) for one leg is defined as

𝐹𝐹𝑃 := {𝑓 ∈ R2 | |𝐽⊤𝑓 |∞ ≤ 𝜏𝑚𝑎𝑥 (4.23a)

|𝑓 − 𝑛̂⊤𝑓 |∞ ≤ 𝜇𝑛̂⊤𝑓}, (4.23b)

where 𝐽 is the Jacobian matrix; 𝜏𝑚𝑎𝑥 is the joint torque limit; 𝜇 is the coefficient of friction.

The inequality (4.23a) encodes the joint torque constraint |𝜏 |∞ < 𝜏𝑚𝑎𝑥 using the infinity

norm. The inequality (4.23b) represents the friction cone constraint. The 𝐹𝐹𝑃 is a function

of the robot configuration 𝑞 because of assumption 1. An example of 𝐹𝐹𝑃 is shown in Fig.

4.8(a), where the 𝐹𝐹𝑃 of front leg is colored blue and that of back leg colored red.

95

-0.4 -0.2 0 0.2 0.4

x [m]

-0.1

0

0.1

0.2

0.3

z
[m

]

-0.02
0.3

-0.01

0.20.2

fx [N]fz [N]

= y
[N

m
]

0.1 0

0

0 -0.2

0.01

-0.1 -0.4

-60

-40

-20

0

20

40

60

200

= y
[N

m
]

FWP

0

fz [N]

0
-200 200

400

fx [N]

(a)

(b)

(c)

Figure 4.8: 𝐹𝑊𝑃 visualization of the R2 robot. (a) The 𝐹𝐹𝑃 of front (blue) and back (red) legs.
(b) The 𝐹𝑊𝑃 of both legs plotted in the 3D wrench space. (c) The 𝐹𝑊𝑃𝑞 of the robot is the
Minkowski sum of the 𝐹𝑊𝑃 of both legs.

The 𝐹𝑊𝑃 of one leg is the set of wrench that can be produced by the 𝐹𝐹𝑃

𝐹𝑊𝑃𝑖 := {𝑢𝑖 ∈ R3 | 𝑢𝑖 =

⎡⎢⎢⎣ 𝑓𝑘
𝑖

𝑟𝑖 ∧ 𝑓𝑘
𝑖

⎤⎥⎥⎦ ,𝑓𝑘
𝑖 ∈ 𝐹𝐹𝑃𝑖}, (4.24)

where 𝑓𝑘
𝑖 is the 𝑘𝑡ℎ vertex of 𝐹𝐹𝑃 for contact point 𝑖. Note that the 𝐹𝑊𝑃 is defined using

the vertex-representation of a polytope (𝒱-Rep). Fig. 4.8(b) shows the 𝐹𝑊𝑃 of front leg

(blue) and back leg (red), which are 2-D polytopes embedded in the 3-D wrench space.

When R2 is in double stance, the effective 𝐹𝑊𝑃 about the CoM is the Minkowsi sum

[135] of the 𝐹𝑊𝑃 created by each contact foot,

𝐹𝑊𝑃𝑑𝑠 =
2⨁︁

𝑖=1
𝐹𝑊𝑃𝑖, (4.25)

where 𝐹𝑊𝑃𝑑𝑠 indicates the double stance 𝐹𝑊𝑃 . The Minkowski sum of two sets 𝑋 and

𝑌 is 𝑋 ⊕ 𝑌 := {𝑥 + 𝑦|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }. Fig. 4.8(c) shows an example of 𝐹𝑊𝑃𝑑𝑠 as the

Minkowski sum of the 𝐹𝑊𝑃 of both legs. Assumption 2 implies that when 𝑞 ∈ Ω𝑑𝑠, the

96

corresponding 𝐹𝑊𝑃𝑑𝑠 is defined as in (4.25).

For a polytope 𝑐𝑘 in the C-space discretization, its representative 𝐹𝑊𝑃 is

𝐹𝑊𝑃𝑐𝑘
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∩4

𝑣=1𝐹𝑊𝑃𝑐𝑘,𝑣, double stance

𝐹𝑊𝑃 𝑐𝑏𝑠𝑣
𝑐𝑘

, single stance,
(4.26)

where 𝐹𝑊𝑃𝑐𝑘,𝑣 is the 𝐹𝑊𝑃 at vertex 𝑣𝑡ℎ of the cell 𝑐𝑘. 𝐹𝑊𝑃 𝑐𝑏𝑠𝑣
𝑐𝑘

is the 𝐹𝑊𝑃 at the

Chebyshev center [15], which is the center of the largest Euclidean ball that lies in a polytope.

The choice of 𝐹𝑊𝑃 for double stance in (4.26) is conservative because it is the intersection

of the 𝐹𝑊𝑃 at all of the 4 vertices of the cell, hence providing robustness when the robot

is in the double stance. In comparison, the 𝐹𝑊𝑃 at each vertex of a single stance cell

degenerates to a 2-D polytope due to the coupling between forces and moment. Since each

vertex corresponds to a different 𝑟𝑖, the 𝐹𝑊𝑃 of a single stance cell have no intersection

except the origin. Therefore, the 𝐹𝑊𝑃 for a single stance cell is defined at the Chebyshev

center of the cell.

The 𝐹𝑊𝑃𝑐𝑘
can be represented using the half-plane representation (ℋ-Rep) consisting

of a set of linear constraints

𝐹𝑊𝑃𝑐𝑘
:= {𝑢 ∈ R3 | 𝐴𝑓𝑤𝑝

𝑘 · 𝑢 ≤ 𝑏𝑓𝑤𝑝
𝑘 }, 𝑘 = 1, · · · , 𝑁𝑑, (4.27)

where 𝐴𝑓𝑤𝑝
𝑘 and 𝑏𝑓𝑤𝑝

𝑘 encode the geometry of the 𝐹𝑊𝑃 at cell 𝑐𝑘. The single stance 𝐹𝑊𝑃

is subject to equality constraints, which can also be incorporated into the form of inequality

constraint as in (4.27).

Similar to the matrix 𝑋 in Section 4.3.2, the 𝐹𝑊𝑃𝑐𝑘
only needs to be computed once

for a given set of robot physical parameters and C-space discretization.

97

4.4.3 Mixed-Integer Wrench Constraint

The non-convex wrench constraint is imposed in a piecewise constant fashion over the dis-

cretized C-space, similar to the mixed-integer convex torque limit constraint presented in

Section 4.3.2. A binary matrix 𝐵𝑐𝑠 ∈ {0, 1}𝑁𝑡×𝑁𝑑 is constructed such that 𝐵𝑐𝑠
𝑘,𝑖 = 1 indicates

that 𝑞(𝑡𝑖) is within cell 𝑐𝑘 and the spatial wrench should be chosen within 𝐹𝑊𝑃𝑐𝑘

𝐵𝑐𝑠
𝑘,𝑖 =⇒ 𝑞(𝑡𝑖) ∈ 𝑐𝑘

=⇒ 𝑢(𝑡𝑖) ∈ 𝐹𝑊𝑃𝑐𝑘
,

(4.28)

where the implies operator (=⇒) is implemented using the big-M formulation [119]. Addi-

tional constraints
𝑁𝑑∑︁
𝑘=1

𝐵𝑐𝑠
𝑘,𝑖 = 1, ∀𝑖 = 1, · · · , 𝑁𝑡, (4.29)

are imposed so that at each time 𝑡𝑖, 𝑞(𝑡𝑖) resides within exactly one cell.

4.4.4 MICP Formulation

Similar to the MIQCP presented in Section 4.3.3, the kinodynamic motion planning problem

of R2 can be transcribed to a MICP with mixed-integer affine constraints. The optimization

variables are

𝑥𝑜𝑝𝑡 = [𝛼𝑢, 𝑞0, 𝑞̇0,𝑇𝑎𝑖𝑟,𝑝𝑓𝑝,𝐵
𝑐𝑠,𝐵𝑓𝑝,𝐵𝑚𝑐], (4.30)

98

where the definition of each entry in 𝑥𝑜𝑝𝑡 is identical to that in (4.3.3). The complete MICP

formulation is:

minimize
𝑥𝑜𝑝𝑡

𝑓0(𝑥𝑜𝑝𝑡) (4.31a)

subject to 𝛼𝑞 = ℒ(𝛼𝑢, 𝑞̇0),𝛼𝑞 = ℒ(𝛼𝑞, 𝑞0) (4.31b)

𝑞(𝑡0) ∈ 𝑄0 (4.31c)

𝑞(𝑡𝑓) ∈ 𝑄𝑔 (4.31d)

aerial phase kinematics: (4.5) (4.31e)
𝑁𝑠∑︁
𝑠=1

𝐵𝑓𝑝
𝑠,𝑗 = 1 (4.31f)

𝐵𝑓𝑝
𝑠,𝑗 = 1 =⇒ 𝑝𝑗

𝑓𝑝 ∈ 𝑠𝑒𝑔𝑠 (4.31g)
𝑁𝑑∑︁
𝑘=1

𝐵𝑐𝑠
𝑘,𝑖 = 1 (4.31h)

𝐵𝑐𝑠
𝑘,𝑖 =⇒ 𝑞(𝑡𝑖) ∈ 𝑐𝑘 (4.31i)

𝐵𝑐𝑠
𝑘,𝑖 =⇒ 𝑢(𝑡𝑖) ∈ 𝐹𝑊𝑃𝑐𝑘

(4.31j)

𝑖 = 1, · · · , 𝑁𝑡; 𝑗 = 1, · · · , 𝑁𝑗 (4.31k)

𝑘 = 1, · · · , 𝑁𝑑; 𝑠 = 1, · · · , 𝑁𝑠. (4.31l)

The terms are defined similarly to that of MIQCP (4.19) except constraint (4.31j), where

the 𝐹𝑊𝑃 constraint replaces the quadratic torque constraint (4.19j). Note that there is no

friction cone constraint since it has been incorporated in 𝐹𝑊𝑃 . The convex objective 𝑓0(·)

is a task-specific function chosen by design. For example, 𝑓0 can be ||𝑞(𝑡𝑓) − 𝑞𝑔||, which

makes the problem a mixed-integer quadratic program (MIQP). 𝑓0 can also be −𝑞𝑥(𝑡𝑓)

to maximize horizontal jumping distance, which leads to a mixed-integer linear program

(MILP); the objective can also be set as a constant value to solve a feasibility problem.

The MICP problem is formulated in MATLAB using YALMIP [83]. The computational

geometry calculation related to 𝐹𝑊𝑃 is done using the Multi-Parametric Toolbox 3 (MPT3)

99

[52]. The MICP is solved by the solver Gurobi [102]. All of the computation is performed

on a desktop with 2.9 GHz Intel i7.

4.4.5 Results

To validate the proposed kinodynamic motion planning algorithm, jumping experiments

are conducted on the robot. Experiment results for both jumping forward and backward,

together with the simulation result of a dynamic Parkour motion are presented. Note that

the trajectories of all three motions are solved by the proposed MICP without any initial

guesses.

Experimental Setup

The experimental setup of the R2 robot is shown in Fig. 4.9. Similar to the setup used

in [81], the robot is composed of a torso made of a carbon fiber tube and two legs modules.

An inertial measurement unit (IMU) is mounted on the torso for state estimation. The

center of the torso is connected via a bearing to the end of the boom system identical to the

one used in Section 4.3.4. An encoder is mounted at the connection between the tip of the

boom and the robot to measure the pitch angle 𝜃. The total mass of the robot is 2.56 kg,

and the rest of the physical parameters can be found in Table 2.1.

Jump On Platforms

A picture where the robot jumps forward and upward onto a 0.2 m high platform (80% of

robot height) is shown in Fig. 4.9. Another experiment where the robot jumps back onto the

platform is shown in Fig. 4.10. It can be observed that the motion involves large body pitch

oscillation that steers the swing foot clear of the obstacle and aids the robot to accomplish

the task. For both motions, the robot configuration is constrained within the double stance

region Ω𝑑𝑠 to accelerate the computation. The wrench trajectory 𝑢(𝑡) obtained from solving

the MICP is distributed to the GRF using the closed-chain-constrained operational-space

100

Amp

IMU

Torso

Boom

Figure 4.9: The hardware experiment where the two-legged planar robot executed a dynamic
motion generated by the MIQP and mounted an obstacle 80% of its height. The robot is mounted
on a boom system to constrain its motion within the sagittal plane.

0 ms 200 ms 500 ms

950 ms 1500 ms

Figure 4.10: Sequential snapshots of the experiment where the robot executed the dynamic motion
generated by the MIQP and jumped backward onto a 0.2 m high platform.

control [61], similar to the frontal plane controller in [107]. The number of variables for both

motions is 216 (27 continuous, 189 integers), and the computational time to solve the MICP

is 0.84 s for the jumping forward problem and 5.94 s for the jumping backward problem. The

solve time difference may be explained by that the knee-bending-back configuration provides

more forward force authority. Additionally, the knee-bending-forward configuration imposes

stricter collision avoidance constraints between the knee and terrain. The Bézier coefficients

of the wrench trajectories are summarized in Table 4.2.

101

Experiment Wrench Bézier Coefficients
𝛼𝑓𝑥 0.0, -7.6, 33.8, -33.7, 90.1, 0.0

Jump forward 𝛼𝑓𝑧 25.1, -69.0, 152.0, -50.0, 262.7, 0.0
𝛼𝜏𝑦 0.0, 5.5, -25.3, 25.5, -5.8, 0.0
𝛼𝑓𝑥 0.0, 198.4, -404.8, 296.7, -135.5, 0.0

Jump backward 𝛼𝑓𝑧 25.1, -171.9, 631.8, -786.8, 623.5, 0.0
𝛼𝜏𝑦 0.0, 44.5, -79.4, 48.2, -14.5, 0.0

Table 4.2: Bézier coefficient for the jumping on platform experiments

Parkour Motion

The proposed kinodynamic motion planning framework can provide complex maneuver plans

to traverse challenging terrains. For example, Fig. 4.11 shows a terrain where the robot

cannot reach the goal region on the high platform with a single jump due to actuator

limitations. The solution that MICP provides is a Parkour motion that exploits the left

platform as a stepping stone towards the goal region by making two consecutive jumps. In

addition, the proposed MICP approach solves the problem without initial guess nor user

input about the step planning. With the grid resolution 𝑁𝑏𝑠 = 10, 𝑁𝑓𝑠 = 10, 𝑁𝑑𝑠 = 21, the

MICP involves 485 variables (53 continuous, 432 integer), and the computational time is 27

s. The robot is in a back stance towards the end of the second jump, presumably to exploit

the body pitch for extra kinematic reachability. This simulation result of Parkour motion

showcases one of the advantages of MICP-based motion planning algorithms, which is that

it can reason about making discrete decisions.

4.5 Summary

This chapter presents a mixed-integer convex programs (MICP)-based kinodynamic motion

planning framework for dynamic legged robots to traverse challenging terrains. This terrain

traversal problem could be posed as a trajectory optimization (TO) problem. However, the

non-convex torque limit constraint often induces solutions trapped in local minima, depend-

ing on the initial guess. The novel MICP-based planning framework can provide a certificate

102

-1 -0.5 0 0.5 1 1.5

x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z
 [
m

]

CoM Stance

CoM Flight

Goal Region

pfp

Figure 4.11: Simulation result of the Parkour motion. The proposed formulation can find the
strategy of utilizing the left platform as a stepping-stone to reach the goal region on the high
platform.

for global optimality or infeasibility, while not requiring an initial trajectory. Specifically, the

non-convex control constraint is replaced by piece-wise convex relaxation over the C-space

discretization using the mixed-integer formulation. Other non-convex constraints such as

bilinear terms and foothold position choice can also fit into the mixed-integer framework,

which makes the final problem a MICP. Dynamically feasible trajectories can be obtained

by off-the-shelf numerical solvers, which can solve the MICP efficiently to global optimality

given the discretization resolution. Experiments on two robot platforms R1 and R2 show-

case the efficacy of the proposed framework to enable dynamic legged robots to overcome

challenging terrains.

One of the applications of the MICP-based planner is to automatically generate initial

guesses to a full trajectory optimization with higher model fidelity. Another potential ap-

plication is dynamic TO for manipulators. The major drawback of this scheme, however, is

that the exponentially growing solve time as the number of decision variable increases. This

disadvantage prohibits the application of the MICP-based method to higher dimensional

103

space. Nevertheless, advancements in computer hardware and efficient algorithm, such as

the recent results on warm-starting a B&B solver [84], can potentially mitigate this problem.

104

Chapter 5

Hybrid Sample/Optimization - based
Planning for Jumping Robots

This chapter proposes a hybrid planning framework that generates long-horizon dynamic

motion plans for jumping legged robots to overcome complex terrains. By employing a mo-

tion primitive [48], which is a pre-defined and pre-computed motion, the original problem is

decoupled as path planning followed by a trajectory optimization (TO) module that handles

dynamics. A variant of a kinodynamic Rapidly-exploring Random Trees (RRT) planner finds

a path as a parabola sequence between stance phases. To accelerate the computation process,

a reachability informed control sampling scheme is proposed to leverage the pre-computed

velocity reachability map. The path is post-processed to eliminate redundant jumps and

passed to the TO module to find a dynamically feasible trajectory. Simulation results are

presented where the proposed hybrid planner navigates a single-legged robot through com-

plex obstacles by executing multiple consecutive jumps, producing novel strategies to leap

over large gaps by leveraging dynamics. In a physical experiment, the hybrid planner is

tested on a real robot successfully traversing challenging terrain. This chapter is based on

our work in [35] 1.

5.1 Introduction

Legged systems have the unique capability of making jumps to overcome challenging terrains

with large height differences and wide gaps. Agile animals such as squirrels can plan complex

dynamic maneuvers that fully utilize their inherent dynamics to jump over extremely difficult
1Video clips featuring the simulation and experiment are available in movie1

105

https://www.youtube.com/watch?v=4T0opebCdp0

0.2 m

Figure 5.1: Snapshots of the experiment where the robot executed three consecutive jumps pro-
duced by the proposed hybrid planner and surmounted the 0.9 m high platform. The R1 robot is
mounted on a boom system.

obstacle tracks. To rival nimble animals, many legged robots with high jumping capability

have been developed [46, 62, 67, 153]. However, due to the differential constraints imposed

by the robot dynamics and the hybrid nature inherent to locomotion, motion planning

algorithms that can enable these jumping robots to traverse complex terrains are not as well

developed.

Campana and Laumond proposed a ballistic motion planning algorithm [19] that can find

a path with friction cone and velocity constraints in a complex 3D environment using Proba-

bilistic Roadmaps (PRM) [68]. Inspired by [19], this work aims to improve upon the assump-

tion of impulsive stance phase by explicitly addressing the stance dynamics, so that more

innovative trajectory can be discovered. To achieve this goal, this work adopts the kinody-

namic motion planning [38] view point, which respects the dynamics of the robot by imposing

it as differential constraints. Sampling-based methods such as PRM and Rapidly-exploring

Random Trees (RRT) [77] are widely used to solve large planning problems. However, the

presence of certain differential constraints can severely compromise the efficiency of these

algorithms. Reachability-guided RRT (RG-RRT) [127] increases the sampling efficiency by

106

taking into consideration of local reachability. Implementing RG-RRT in task space and uti-

lizing motion primitives enabled the LittleDog to bound over rough terrain [126]. To increase

the efficiency of kinodynamic planners, Bézier curves [76] are used since they parametrize a

trajectory with fewer parameters. On the other extreme, solving the whole trajectory with

full dynamics results in a large trajectory optimization (TO) problem. TO has been widely

used to generate dynamic motion plans for humanoids [24, 75] and quadrupeds [67, 109]

since it handles the state and control constraints in a nonlinear program (NLP) formulation.

However, the computation time increases drastically as the planning horizon increases.

To exploit the advantages of both sampling and optimization-based methods, this paper

proposes a hybrid sampling/optimization-based planner for generating dynamic motions

for single-legged jumping robots to traverse challenging terrains. We decouple the original

problem into sampling-based planning followed by a module that solves for the full dynamics

using optimization. Similar to [19], aerial phases are constructed as parabolas connected by

stance phases. Since the relationship between the touchdown and liftoff state is complex,

a velocity reachability map is pre-computed and used in the kinodynamic RRT. After a

feasible path is found by the kinodynamic RRT and post-processed, trajectory optimization

is performed at each stance to find the state and control trajectories.

The proposed hybrid planner is benchmarked against a quasi-static planner and a mixed-

integer convex program (MICP) based planner. Compared with the quasi-static planner, our

method is momentum aware in the sense that it can find strategies where the robot makes

consecutive jumps to gain momentum to clear a wide gap. Compared with the MICP-based

planner, the solve time of the hybrid planner scales much better as the number of step

increases. To validate the trajectory produced by the hybrid planner, a physical experiment

is conducted on robot hardware and snapshots of the experiment are presented in Fig. 5.1.

107

𝑣𝑖𝑛

𝑣𝑜𝑢𝑡
𝑥
𝑣 𝑇𝐷

𝑥
𝑣 𝑇𝑂

𝑥

𝑧

𝑃𝑖𝑛 𝑃𝑜𝑢𝑡

𝑥
𝑧

ෝ𝒏𝑡𝑒𝑟

𝛀

𝑟𝑚𝑎𝑥

base

𝜃𝑚𝑖𝑛

GRF

(a) (b)

Figure 5.2: (a) Illustration of the motion primitive. To connect two neighboring parabolas, the
boundary states of stance are constrained on their corresponding parabola (gray curve). (b) The
schematic of the single-legged robot when it is in stance phase. The configuration Ω is the gray
shaded area.

5.2 Hybrid Planning Pre-requisites

The hybrid planning approach decomposes the complex kinodynamic motion planning prob-

lem into two stages. The first stage utilizes a variant of kinodynamic RRT to find a sequence

of parabolas that connects the start and the goal. The second stage applies TO at each stance

to solve for the full dynamics. The motion primitive [48] that enables the hybrid framework is

shown in Fig. 5.2. The incoming parabola 𝑃𝑖𝑛 and outgoing parabola 𝑃𝑜𝑢𝑡 are parametrized

by 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡, respectively. Note that these are variables that only pertain to the kinematic

path, which is generated by the sampling-based planning stage. The touchdown states of

the TO 𝑥𝑇 𝐷 and the liftoff state 𝑥𝐿𝑂 are chosen on 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡, respectively. Therefore,

the aerial phase determined by the first stage is preserved in the second stage. The added

benefit is that since each stance is isolated, the multiple TOs can be parallelized.

If TO fails in the second stage, the failed jump is removed from the tree, and sampling-

based planning resumes to generate more TO candidates. We observe that failures are

infrequent due to our use of a velocity reachability map (defined in Section 5.2.2) within

sampling-based planning to generate feasible jumps with high likelihood.

108

5.2.1 Stance Trajectory Existence

A fundamental subproblem in our approach is a boundary value problem to determine

whether a feasible trajectory at a stance can connect prescribed incoming and outgoing

states. It can be formulated as a trajectory optimization problem, called 𝑇𝑂1, as follows:

minimize
𝛼𝐹 ,𝑇𝑠𝑡

𝑁∑︁
𝑘=1
||𝜏𝑘|| · 𝑇𝑠𝑡 (5.1a)

subject to 𝑝𝑘 ∈ Ω (5.1b)

𝜏𝑚𝑖𝑛 ≤ 𝜏𝑘 ≤ 𝜏𝑚𝑎𝑥 (5.1c)

𝑥𝑇 𝐷 ∈ 𝑃𝑖𝑛,𝑥𝐿𝑂 ∈ 𝑃𝑜𝑢𝑡 (5.1d)

𝐹𝑘 ∈ 𝒞(𝜇). (5.1e)

Since the robot starts and ends at the static pose at the first and last jump, the initial

position of the first jump and the final position of the last jump is only subject to the

workspace constraint.

To make the problem finite-dimensional, the state and control trajectories are discretized

at 𝑁 sample points and subscript (·)𝑘 indicates values at the 𝑘𝑡ℎ instance of the sampled

time. The resulting optimization problem is a nonlinear program (NLP).

5.2.2 Velocity Reachability Map

Given an incoming velocity 𝑣𝑖𝑛 at a stance, the velocity reachability map ℛ(𝑣𝑖𝑛) is defined as

the set of 𝑣𝑜𝑢𝑡 such that that 𝑇𝑂1(𝑣𝑖𝑛,𝑣𝑜𝑢𝑡) in (5.1) has a solution. The reverse reachability

map ℛ−1(𝑣𝑜𝑢𝑡) is defined similarly.

For a given single-legged robot, we precompute an approximation of the reachability

map that is used in the sampling-based planner to greatly speed up planning by limiting

connections so that they have a high probability of yielding a dynamically feasible trajectory.

We approximate ℛ(𝑣𝑖𝑛) by running 𝑇𝑂1 over a 4D grid of 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡 and recording successes

109

and failures. Even though an NLP can be trapped in local minima, 𝑇𝑂1 works sufficiently

well for the small-scale problem as is the case here. For each 𝑣𝑖𝑛, the successful 𝑣𝑜𝑢𝑡 are

approximated with a convex hull, which may under-approximate the true reachability at the

margins but over-approximate it in convex regions. The same dataset is used to derive an

approximation of ℛ−1 in a similar fashion.

Fig. 5.3 presents a illustration of the velocity reachability map. The bottom area is

the set of 𝑣𝑖𝑛 with non-empty ℛ(𝑣𝑖𝑛). Each cell representing a 𝑣𝑖𝑛 color coded by the area

covered by ℛ(𝑣𝑖𝑛). Note that the set of valid 𝑣𝑖𝑛 is asymmetric because the serial linkage

leg of the robot bends towards one side. The ℛ of two sample 𝑣𝑖𝑛 are plotted on the top

of Fig. 5.3, where the cross symbol represents that 𝑇𝑂1 can find a solution for the 𝑣𝑖𝑛,𝑣𝑜𝑢𝑡

pair. The set ℛ(𝑣𝑖𝑛) is defined as the convex hull of the crossed points.

Figure 5.3: An illustration of the reachability map ℛ. The bottom area is the set of 𝑣𝑖𝑛 with a
non-empty 𝑣𝑜𝑢𝑡 set; the color at each 𝑣𝑖𝑛 indicates the total area of the corresponding 𝑣𝑜𝑢𝑡 set.
Two sample 𝑣𝑜𝑢𝑡 sets are shown at the top.

110

5.3 Hybrid Sampling/Optimization-based Plannng

Algorithms

5.3.1 Sampling-Based Planning

Sampling-based planning forms the outer loop of the hybrid motion planner as shown in Algo-

rithm 1. We use a variant of the kinodynamic RRT algorithm, modified with a reachability-

informed control sampling scheme.

Algorithm 1 Hybrid Motion Planner
Input: ℛ,𝑥0,𝑥𝑔, 𝑇 𝑒𝑟𝑟𝑎𝑖𝑛
Output: 𝑇𝑟𝑎𝑗 ◁ Jumping trajectory

1: 𝒯 .𝑖𝑛𝑖𝑡(𝑥0)
2: 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒
3: while not 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 do
4: 𝑥𝑟𝑎𝑛𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝑇𝑒𝑟𝑟𝑎𝑖𝑛)
5: 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡(𝒯 ,𝑥𝑟𝑎𝑛𝑑)
6: 𝑥𝑛𝑒𝑤 ← 𝑆𝑇𝐸𝐸𝑅(ℛ,𝑥𝑟𝑎𝑛𝑑,𝑥𝑝𝑎𝑟𝑒𝑛𝑡, 𝑇 𝑒𝑟𝑟𝑎𝑖𝑛)
7: if 𝑥𝑛𝑒𝑤 ̸= 𝑛𝑢𝑙𝑙 then
8: 𝒯 .𝑎𝑑𝑑(𝑥𝑝𝑎𝑟𝑒𝑛𝑡 → 𝑥𝑛𝑒𝑤)
9: if 𝑅𝑒𝑎𝑐ℎ𝐺𝑜𝑎𝑙(𝑥𝑛𝑒𝑤) then

10: 𝑝𝑎𝑡ℎ = 𝒯 .𝐹 𝑖𝑛𝑑𝑃𝑎𝑡ℎ()
11: 𝑝𝑎𝑡ℎ* = 𝑝𝑎𝑡ℎ.𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡()
12: 𝑥𝑓𝑎𝑖𝑙, 𝑡𝑟𝑎𝑗 = 𝑇𝑟𝑎𝑗𝑂𝑝𝑡(𝑝𝑎𝑡ℎ*)
13: if 𝑥𝑓𝑎𝑖𝑙 = 𝑛𝑢𝑙𝑙 then return 𝑡𝑟𝑎𝑗;
14: else 𝒯 .𝑇 𝑟𝑖𝑚(𝑥𝑓𝑎𝑖𝑙)

A tree 𝒯 is built from the initial state 𝑥0 by taking a random sample 𝑥𝑟𝑎𝑛𝑑 ∈ R3 in

the state-space (𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒). The dimensionality of 𝑥𝑟𝑎𝑛𝑑 is 3 because it involves the

x-position and the incoming velocity. The parent node 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 of the random sample 𝑥𝑟𝑎𝑛𝑑 is

found (𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡) based on a distance metric described in Section 5.3.2. A steer function

(𝑆𝑇𝐸𝐸𝑅) attempts to extend from 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 to 𝑥𝑟𝑎𝑛𝑑, and a new node 𝑥𝑛𝑒𝑤 will be added to

the tree if no collision was detected during the 𝑆𝑇𝐸𝐸𝑅 step. Otherwise, a sample will be

drawn. Details of the 𝑆𝑇𝐸𝐸𝑅 function is presented in Algorithm 2 and in Section 5.3.2.

The kinodynamic RRT is terminated once the goal region has been reached (𝑅𝑒𝑎𝑐ℎ𝐺𝑜𝑎𝑙).

111

Then a path 𝑝𝑎𝑡ℎ will be extracted from the tree (𝒯 .𝐹 𝑖𝑛𝑑𝑃𝑎𝑡ℎ).

The path is post-processed to eliminate redundant jumps to get 𝑝𝑎𝑡ℎ* (𝑝𝑎𝑡ℎ.𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡)

as described in Section 5.3.3. Trajectory optimization 𝑇𝑟𝑎𝑗𝑂𝑝𝑡 is performed on the jumps

in 𝑝𝑎𝑡ℎ* as described in Section 5.3.4. If it succeeds, we are done, but if this fails, the failed

state is returned. In this case, the sub-tree rooted at the failure state will be deleted and

the random sampling resumes. random sampling resumes.

5.3.2 Reachability-Informed Control Sampling

A distance metric 𝜌(𝑥1, 𝑥2) is used to find the nearest neighbor of the sample. We use a

weighted Euclidean distance with weights [10, 30, 0.1, 0.01] to account for the importance

of horizontal and vertical components of position and velocity. The weight ratio of 𝑝𝑥 and

𝑝𝑧 affects how much the planner prefers to stay on the same height, and the weight on

𝑣𝑥 is higher than 𝑣𝑧 because 𝑣𝑥 determines the direction of the jump and is sensitive to

friction limits. The 𝑆𝑇𝐸𝐸𝑅 function finds a collision-free parabola that goes from 𝑥𝑝𝑎𝑟𝑒𝑛𝑡

towards 𝑥𝑟𝑎𝑛𝑑 while considering the velocity reachability map. First, an outgoing velocity

𝑣𝑔𝑢𝑒𝑠𝑠 is obtained by kinematically connecting 𝑝𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑝𝑟𝑎𝑛𝑑 without velocity constraint

(𝐶𝑜𝑛𝑛𝑒𝑐𝑡). Second, 𝑣𝑔𝑢𝑒𝑠𝑠 is projected (𝑃𝑟𝑜𝑗𝑒𝑐𝑡) to the reachable set ℛ(𝑣𝑝𝑎𝑟𝑒𝑛𝑡), which is a

convex polytope. Hence, the projection can be performed by solving a quadratic program

(QP) [15].

The 𝑆𝑇𝐸𝐸𝑅 function tries at most 𝑁𝑡𝑟𝑦 times to obtain a collision-free parabola. The

random samples from 𝑆𝑎𝑚𝑝𝑙𝑒𝑊𝑖𝑡ℎ𝐵𝑖𝑎𝑠 follow a Gaussian distribution centered at 𝑣𝑝𝑟𝑜𝑗 with

standard deviation of 𝜎, where 𝜎 is the distance between 𝑣𝑝𝑟𝑜𝑗 and the farthest vertex of

the polytope ℛ(𝑣𝑝𝑎𝑟𝑒𝑛𝑡). Any sample outside of the reachable set is rejected. The sampled

velocity 𝑣𝑠𝑎𝑚𝑝𝑙𝑒 is used to project 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 to the landing state 𝑥𝑛𝑒𝑤 (𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑙𝑒). 𝑥𝑛𝑒𝑤 is

returned if the parabola does not induce collision. Otherwise, 𝑛𝑢𝑙𝑙 is returned to indicate

collision.

112

Algorithm 2 STEER
Input: ℛ,𝑥𝑟𝑎𝑛𝑑,𝑥𝑝𝑎𝑟𝑒𝑛𝑡, 𝑇 𝑒𝑟𝑟𝑎𝑖𝑛
Output: 𝑥𝑛𝑒𝑤

1: 𝑣𝑔𝑢𝑒𝑠𝑠 ← 𝐶𝑜𝑛𝑛𝑒𝑐𝑡(𝑝𝑟𝑎𝑛𝑑,𝑝𝑝𝑎𝑟𝑒𝑛𝑡)
2: 𝑣𝑝𝑟𝑜𝑗 ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑣𝑔𝑢𝑒𝑠𝑠,ℛ(𝑣𝑝𝑎𝑟𝑒𝑛𝑡))
3: for 𝑖 = 1 to 𝑁𝑡𝑟𝑦 do
4: 𝑣𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑊𝑖𝑡ℎ𝐵𝑖𝑎𝑠(𝑣𝑝𝑟𝑜𝑗,ℛ(𝑣𝑝𝑎𝑟𝑒𝑛𝑡))
5: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,𝑥𝑛𝑒𝑤 ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑙𝑒(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑣𝑠𝑎𝑚𝑝𝑙𝑒, 𝑇 𝑒𝑟𝑟𝑎𝑖𝑛)
6: if not 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 then
7: return 𝑥𝑛𝑒𝑤

8: return 𝑛𝑢𝑙𝑙

5.3.3 Path Shortcut

Once the goal region has been reached, a kinematic 𝑝𝑎𝑡ℎ is extracted from the tree 𝒯

using the method 𝒯 .𝐹 𝑖𝑛𝑑𝑃𝑎𝑡ℎ. Since it is possible that 𝑝𝑎𝑡ℎ involves redundant jumps,

the 𝑝𝑎𝑡ℎ.𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 method is applied to shortcut the path and reduce the solve time for the

subsequent TO. The 𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 method is summarized in Algorithm 3. The node 𝑥𝑖 attempts

to connect with a node 𝑥𝑗(𝑗 > 𝑖) whose index starts from the end of 𝑝𝑎𝑡ℎ. If 𝑥𝑖 and 𝑥𝑗

are successfully connected by the function 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑊𝑖𝑡ℎℛ, then the 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑙𝑒 function is

called to check for collision. If the parabola is collision free, then the new node 𝑥𝑛𝑒𝑤 is added

to the 𝑝𝑎𝑡ℎ* and 𝑣𝑖
𝑜𝑢𝑡,𝑣

𝑗
𝑖𝑛 will be updated. Then the index 𝑖 is given the value of 𝑗 to indicate

a shortcut. In the outer loop, 𝑥𝑖 marches from the start of 𝑝𝑎𝑡ℎ sequentially, until it reaches

the length of the 𝑝𝑎𝑡ℎ given by the method 𝑝𝑎𝑡ℎ.𝐿𝑒𝑛𝑔𝑡ℎ. The function 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑊𝑖𝑡ℎℛ

solves an small nonlinear program that accounts for the velocity reachability map,

minimize
𝑣𝑖

𝑜𝑢𝑡,𝑣𝑗
𝑖𝑛,𝑇𝑎𝑖𝑟

𝐽 (5.2a)

subject to 𝑣𝑖
𝑜𝑢𝑡 ∈ ℛ(𝑣𝑖

𝑖𝑛) (5.2b)

𝑣𝑗
𝑖𝑛 ∈ ℛ−1(𝑣𝑗

𝑜𝑢𝑡) (5.2c)

𝑥𝑗
𝑖𝑛 = Φ(𝑥𝑖

𝑜𝑢𝑡, 𝑇𝑎𝑖𝑟), (5.2d)

where the objective function 𝐽 is set to a constant to form a feasibility problem.

113

Algorithm 3 Path Shortcut
Input: 𝑝𝑎𝑡ℎ,ℛ, 𝑇 𝑒𝑟𝑟𝑎𝑖𝑛

Output: 𝑝𝑎𝑡ℎ*

1: 𝑝𝑎𝑡ℎ*.𝑖𝑛𝑖𝑡(𝑝𝑎𝑡ℎ[0])

2: 𝑁 ← 𝑝𝑎𝑡ℎ.𝐿𝑒𝑛𝑔𝑡ℎ(), 𝑖← 0

3: while 𝑖 < 𝑁 do

4: for 𝑗 = 𝑁 to 𝑖+ 1 do

5: 𝑥𝑖 ← 𝑝𝑎𝑡ℎ[𝑖],𝑥𝑗 ← 𝑝𝑎𝑡ℎ[𝑗]

6: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝐹𝑎𝑙𝑠𝑒

7: 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,𝑣𝑜𝑢𝑡 ← 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑊𝑖𝑡ℎℛ(𝑥𝑖,𝑥𝑗,ℛ)

8: if 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 then

9: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,𝑥𝑛𝑒𝑤 ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑙𝑒(𝑥𝑖,𝑣𝑜𝑢𝑡, 𝑇 𝑒𝑟𝑟𝑎𝑖𝑛)

10: if not 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 then

11: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒

12: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒 then

13: 𝑝𝑎𝑡ℎ*.𝑎𝑑𝑑(𝑥𝑛𝑒𝑤)

14: 𝑖← 𝑗

15: break

16: else if 𝑗 = 𝑖+ 1 then

17: 𝑝𝑎𝑡ℎ*.𝑎𝑑𝑑(𝑥𝑗)

18: 𝑖+ +

19: return 𝑝𝑎𝑡ℎ*

5.3.4 Trajectory Optimization

The parabola sequence 𝑝𝑎𝑡ℎ* from the sampling-based planner is solved in sequence using

calls to 𝑇𝑂1 to connect each subsequent parabola with a stance phase. If 𝑇𝑂1 cannot solve

a connection, a new TO that considers two consecutive jumps (𝑇𝑂2) will be solved. This

114

attempts to connect the incoming velocity from the current stance phase to the outgoing

velocity in the next stance phase, which involves trajectory optimization over two stance

phases and an aerial phase.

minimize
𝛼𝑖

𝐹 ,𝑇 𝑖
𝑠𝑡,𝑇𝑎𝑖𝑟,𝑥1

𝐿𝑂,𝑥2
𝑇 𝐷

2∑︁
𝑖=1

𝑁∑︁
𝑘=1
||𝜏 𝑖

𝑘|| · 𝑇 𝑖
𝑠𝑡 (5.3a)

subject to 𝑝𝑖
𝑘 ∈ Ω (5.3b)

𝜏𝑚𝑖𝑛 ≤ 𝜏 𝑖
𝑘 ≤ 𝜏𝑚𝑎𝑥 (5.3c)

𝑥1
𝑇 𝐷 ∈ 𝑃 1

𝑖𝑛,𝑥
2
𝐿𝑂 ∈ 𝑃 2

𝑜𝑢𝑡 (5.3d)

𝑥2
𝑇 𝐷 = Φ(𝑥1

𝐿𝑂, 𝑇𝑎𝑖𝑟) (5.3e)

𝐹 𝑖
𝑘 ∈ 𝒞(𝜇), (5.3f)

where the superscript 𝑖 ∈ {1, 2} indicates the stance sequence. The aerial phase with aerial

time 𝑇𝑎𝑖𝑟 that connects stance 1 and 2 has the kinematic relationship Φ,

Φ(𝑥, 𝑇) =

⎡⎢⎢⎣ 𝑝 + 𝑣𝑇 + 1
2𝑎𝑔𝑇

2

𝑣 + 𝑎𝑔𝑇

⎤⎥⎥⎦ . (5.4)

𝑇𝑂2 can sometimes find trajectories that cannot be discovered by 𝑇𝑂1 since 𝑇𝑂2 has

more relaxed constraints. If 𝑇𝑂2 cannot find a solution, the current stance state is treated

as causing the failure and will be returned as 𝑥𝑓𝑎𝑖𝑙 to be pruned from the tree.

115

5.4 Results

5.4.1 Computation Setup

The hybrid planning framework is formulated in MATLAB, and the 𝑇𝑂1 (5.1) and 𝑇𝑂2 (5.3)

are formulated in CasADi [2] using the multiple-shooting method. The resulting nonlinear

program (NLP) is solved by the solver ipopt [9]. The computational geometry calculation

is done using the Mutli-Parametric Toolbox 3 (MPT3) [53]. The QPs for projection as

described in Section 5.3.2 are solved by qpSWIFT [106]. The MICP-based planner in Section

5.4.3 is implemented using YALMIP [83] and solved by gurobi [102]. All of the simulation

examples are run on a desktop with Intel i7 at 3.40 GHz.

5.4.2 Performance on Various Terrains

The proposed hybrid motion planner is tested on 5 different terrains, as shown in Fig. 5.4

and Fig. 5.5. The terrains are assumed to be represented by piecewise constant functions.

The robot starts from the initial foot location (green circle) and tries to find a jumping path

to reach the goal region (yellow box). Within each stance phase, the touchdown velocity

𝑣𝑇 𝐷 is indicated by a blue arrow and the liftoff velocity 𝑣𝐿𝑂 a red arrow. The gray region

shown in terrains (a) and (b) are the workspaces. The initial and final robot configurations

at each stance are shown for terrains (a)-(d). Note that in terrain (d) segment 4, the planner

adopted the strategy of taking intermediate jumps to re-orient the momentum of the robot in

order to jump over the wide gap. Fig. 5.5 shows an example solution where the robot takes

9 jumps to reach the goal region. At stance 2, the 𝑇𝑂1 failed to find a solution, which is

indicated by the black dot. Nevertheless, 𝑇𝑂2 found a feasible trajectory by simultaneously

solving for stance 2 and 3 on segment 3. A zoom-in view is presented to illustrate stance 2

and 3, where the aerial trajectory is shown in a black dotted line. Fig. 5.6 (a) summarizes

the solve time decomposition for the example terrains. Solve time results from 20 trials are

averaged and the standard deviation is represented by the error bar. Terrain (a) takes the

116

shortest time (5 s) and the terrain in Fig. 5.5 takes the longest time to solve (26 s). Fig.

5.6 (b) shows the average node number of the RRT tree. Please note that the y-axis is in

log scale.

Although our method solves these problems in tens of seconds, the performance of the

current implementation can be significantly improved. First, it is coded in MATLAB for

rapid prototyping, so its run time can be reduced once re-written in a compile language. In

addition, the run time can be further decreased if the TO at each stance was parallelized

since each stance can be solved independently.

(a)

(b)

𝑣𝑇𝐷
𝑣𝐿𝑂

Goal region

Stance 𝑝

Aerial 𝑝

Start

1 𝑚

Workspace

(c) (d)

1

2

3

4

4

1

2

3

Figure 5.4: Example of terrains that are solved using the proposed hybrid motion planner. A scale
is presented to show dimension. (a) a flat ground (b) three stairs: Left-Right-Right (c) a wide gap,
where the region with saw teeth is forbidden (d) three stairs: Left-Right-Left.

117

1 𝑚

𝑣𝑇𝐷
𝑣𝐿𝑂

Goal region

Stance 𝑝

Aerial 𝑝 for 𝑇𝑂1

Start

Aerial 𝑝 for 𝑇𝑂2

𝑇𝑂1 failed step

1

2

3

4

5

Figure 5.5: The hybrid sampling/optimization-based planning algorithm can solve complex terrains
as the one presented in this figure. The zoom-in part shows the case where 𝑇𝑂1 failed at stance 2,
and 𝑇𝑂2 succeeded by solving for stance 2 and 3 simultaneously.

(a)

(b)

Figure 5.6: Simulation results from 20 trials on the example terrains. The error bar represents one
standard deviation. (a) The average solve time decomposed into three parts, RRT, shortcut, and
TO. (b) The average node number of the tree.

118

5.4.3 Benchmark

The proposed hybrid motion planning framework is compared with a quasi-static planner

and a mixed-integer convex program (MICP) based planner. The three methods are tested

in the scenario presented in Fig. 5.7 (a). The platform height ℎ, 2ℎ and the gap width 𝑤

are varied and the solve time results are shown in Fig. 5.7 (b)(c).

Quasi-static Planning

This method is similar to the proposed one except that it does not utilize the velocity

reachability map introduced in Section 5.2.2 in the sampling stage. The quasi-static planning

assumes that each step starts with zero velocity and can achieve maximum velocity 𝑣𝑚𝑎𝑥

in every direction. The second assumption entails the assumed reachable region to be a

parabolic envelope parametrized by 𝑣𝑚𝑎𝑥 [39].

Mixed-Integer Convex Programs

The MICP-based method here plans consecutive jumps while considering actuator limits [31].

It is a resolution complete algorithm whose worst-case solve time increases drastically as the

number of jumps increases. The number of jump is set to 2 for the MICP-based planner

to limit the solve time within the same order of magnitude as the other two methods. To

achieve convex formulation, the torque limit constraint is relaxed and the solution is more

conservative.

Fig. 5.7 (b) presents the solve time of the three methods where 𝑤 is fixed at 0.4 m and ℎ

is varied from 0.2 m to 0.7 m. As can be observed from the figure, the MICP-based planner

is slower than the other two methods and failed when ℎ is higher than 0.45 m. In contrast,

the quasi-static planner performs almost as well as the hybrid planner in the first scenario.

Fig. 5.7 (c) shows the solve time comparison where ℎ is fixed at 0.5 m, and 𝑤 is varied from

0.3 m to 0.6 m. The quasi-static planner failed at 𝑤 =0.43 m due to its static assumption.

The MICP-based planner can solve a slightly wider gap at the cost of longer solve time. In

119

(a)

(b) (c)

Figure 5.7: Benchmark result of the hybrid planner, quasi-static planner, and MICP-based planner.
The former two are repeated 10 times and the average is shown as a solid line and the shaded area
represents one standard deviation. (a) The scenario for the benchmarking of the three methods
(b) The testing case where 𝑤 is fixed at 0.4 m and ℎ is varied (c) The testing case where ℎ is fixed
at 0.5 m, and 𝑤 is varied.

comparison, the proposed hybrid planner finds solutions in all the tested scenarios using the

shortest solve time.

These tests highlight the advantages of the proposed hybrid planning framework. Com-

pared with the quasi-static planner, the proposed framework utilizes the velocity reachability

map to reason about the momentum of the robot. Hence, the proposed method can come

up with the strategy of taking intermediate jumps to re-direct its momentum to overcome

wide gaps. The MICP-based planner can plan for consecutive jumps but its solve time does

not scale well as the number of jump increases due to the curse of dimensionality. Besides,

the MICP-based planner produces conservative results due to the convex relaxation.

5.4.4 Experiment Setup

The experimental platform used in this chapter is identical to the R1 robot used in Section

4.3.4 except that the total moving mass is 1.1 kg. The R1 robot is fixed to the end of a boom

120

system with a radius 1.25 m. The position of the robot is measured by two encoders installed

at the base of the boom. The feedforward force profile from the hybrid planning algorithm

is applied at the stance phases, and a PD controller is applied during the aerial phase to

track foot swing trajectory. Proprioceptive contact detection, as presented in Section 2.4.3,

was implemented to initiate stance phases.

5.4.5 Experiment Result

The terrain is set up such that the robot has to make use of the 0.4 m high platform on the

left to reach the goal region on the 0.9 m high platform on the right. The snapshots of the

experiment are presented in Fig. 5.1. The hybrid planner can come up with the strategy of

making intermediate jumps on the left platform to re-direct its momentum to clear the wide

gap and reach the goal region.

The hip and knee joint torque trajectories for the three jumps experiment are shown in

Fig. 5.8, where the stance phases are indicated by the gray areas. It can be observed that

both hip and knee torques are within the torque limit (10 Nm). The oscillation after the

stance phase is due to the rapid swing foot retraction to avoid collision with the environment.

5.5 Summary

This chapter presents a hybrid sampling/optimization motion planning algorithm for an ag-

ile single-legged robot to jump over challenging terrains. Under appropriate assumptions,

the original kinodynamic motion planning problem could be decoupled into sampling and

optimization stages. In the sampling stage, a variant of the kinodynamic RRT algorithm

is employed to search for a kinematically feasible path as a sequence of parabolas. The

pre-computed velocity reachability map is utilized to restrain the samples to be within a

subset of the state space, which accelerates the algorithm by increasing the success rate of

the subsequent TO. After a path shortcutting procedure, the optimization stage solves a

121

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [s]

-5

0

5

10

Jo
in

t T
or

qu
e

[N
m

]

hip

knee

Figure 5.8: The joint torque recording for the three consecutive jumps experiment. The shaded
areas indicate stance phases.

TO problem at each jump for the dynamically feasible trajectory. The performance of the

proposed hybrid motion planning algorithm is shown on various example terrains, and the

advantage of this method is highlighted through benchmarking with two other methods.

A trajectory generated by the proposed method is applied on a physical robot, which suc-

cessfully traversed a challenging terrain by executing 3 consecutive jumps. The proposed

hybrid planner is applicable to other single-legged robots such as SALTO [46] to traverse

more complex terrains.

122

Chapter 6

Summary and Conclusion

6.1 Summary

The major advantage of legged robots is the ability to navigate complex and unstructured

environments. Inspired by the locomotion competence of agile animals, the goal of this

thesis is to make contribution towards developing motion capabilities for legged robots,

particularly for negotiating complex environments. This thesis has provided an integrative

framework that encompasses control, motion planning, and hardware synthesis of legged

robot by leveraging the optimization-based methods. In general, this thesis has made broad

contributions in areas of simple-model-based control and planning for legged robots. Specif-

ically, we proposed the representation-free model predictive control (RF-MPC) which can

stabilize quadruped robot acrobatic motions in 𝑆𝐸(3) under a unified framework, and a

kinodynamic motion planning framework that simultaneously plans contact and centroidal

dynamics, while explicitly enforcing the actuator torque constraint. Throughout this thesis,

hardware experiments are conducted on various custom legged robot platforms to validate

the proposed methods. Chapter 2 details the synthesis process of a dynamic quadrupedal

robot Panther with the custom high-power proprioceptive actuator. The QP-based con-

troller and off-line trajectory optimization (TO) enabled the squat jumping experiment with

a maximal jumping height of 0.7 m.

In Chapter 3, the quadrupedal robot Panther serves as the experimental platform for the

RF-MPC. By directly using the rotation matrix, this framework opens up the possibility to

stabilize complex 3D acrobatic maneuvers that may involve singularities in the widely-used

123

Euler angles representation. Experiment results of various gaits and a controlled tumble

demonstrated that the RF-MPC controller can stabilize various dynamic motions that may

involve singularity within a single control framework.

In Chapter 4, we formulate the mixed-integer convex program (MICP) to solve the kin-

odynamic motion planning problems for dynamic legged robot to traverse complex terrains.

Structure of each individual problem is exploited while simple models are utilized to mitigate

the problem of high computational requirement. We replace the non-convex constraints in

the original TO problem with piece-wise convex relaxations to formulate a MICP. The MICP

is then solved by off-the-shelf numerical solvers to obtain dynamic trajectories with global

optimality certificate, given the discretization resolution. Experiment results on two robot

platforms demonstrate the efficacy of the MICP framework for enabling aperiodic dynamic

legged locomotion to overcome complex obstacles.

In Chapter 5, long-horizon motions are obtained by using a hybrid sample / optimization

- based motion planning algorithm. This hybrid algorithm decouples the problem into a

sampling and an optimization stage by employing a motion primitive. We use a variant

of the kinodynamic RRT algorithm to search for kinematically-feasible path, where a pre-

computed velocity reachability map is employed to accelerate the process. After a path

short-cutting procedure, the optimization stage solves a TO problem at each jump to obtain

a dynamically-feasible trajectory. Simulation and experiment results demonstrate that the

robot successfully traversed a variety of challenging terrains by executing consecutive jumps.

6.2 Future Work

The progress made in this thesis can serve as a starting point for future robotics research.

Here we list a few possible research directions:

∙ The RF-MPC framework is likely to open up possibilities for controlling extremely

dynamic 3D motions for ground and aerial robots. With the emergence of powerful and

124

light-weight computing units, the RF-MPC formulation can be applied to stabilizing

acrobatic maneuvers in UAVs. For legged robots, we envision to equip them with

special end-effectors, such as claws [110] or magnetic grippers, to enable them to climb

up vertical surfaces and walk on ceilings.

∙ Although the MICP framework has been shown to be applicable for various challenging

terrains, its long solve time prohibits it from being implemented in a receding horizon

fashion. Recent work of Marcucci and Tedrake [84] proposes a method that warm-

starts MIQP in hybrid MPC applications. Development of robust MIQP algorithms

suitable for embedded applications [130] and integration with machine learning [5] may

open up opportunities for real-time hybrid MPC in legged robots.

∙ The possible application of real-time MIQP solvers can unlock a legion of new dynamic

and intelligent behaviors for legged locomotion. We envision a cascade control frame-

work where a high-level kinodynamic motion planner generates long horizon behavior

by solving MIQP at a lower frequency; A mid-level MPC operating at a medium fre-

quency for refining motion plans in shorter behavior horizon, possibly by leveraging

NLP solvers (e.g. SQP, DDP); A low-level QP-based controller for motion regulation

at a high frequency.

6.3 Conclusion

This thesis has developed an integrative framework that tightly connects the control, plan-

ning and hardware synthesis of legged robots for negotiating challenging environments through

aperiodic dynamic maneuvers, largely through the application of optimization-based meth-

ods. To track complex 3D acrobatic motions, we developed a representation-free MPC

(RF-MPC) framework that can stabilize dynamic motions with large orientation excursion,

in a unified framework. This approach is fundamentally different from the prevalent Euler

125

angle representation since the direct utilization of the rotation matrix avoids the singularity

issue of Euler angles, and does not require switching among controllers. This unified frame-

work is beneficial because switching between controllers is either slow or prone to edge case

failure. This thesis also makes contribution in legged robot motion planning algorithms.

Prior to this work, state-of-the-art algorithms either solve the footstep planning and the dy-

namic trajectory tracking problems in a sequential manner or solve for dynamic trajectories

and contact simultaneously in a single NLP. The first approach disregards the interplay be-

tween footstep placement and centroidal motion, and searches for a trajectory in a restricted

subset of the solution space. The second approach relies on solving a computationally ex-

pensive NLP whose solution is sensitive to the initial guesses. Our MICP-based planner

utilizes simple templates and considers contact, dynamics, and torque limit concurrently,

while not requiring any initial guesses. To further push the behavior horizon, the hybrid

sample/optimization-based planner leverages the advantages of both regimes and reduces

the computational expense for overcoming complex terrains.

Looking ahead, parallel advancement of sensing technology, efficient numerical solvers,

together with the framework proposed in this thesis have the potential to endow legged robot

with autonomous mobility in complex unstructured environment for real-world deployment.

126

Bibliography

[1] Bernardo Aceituno-Cabezas, Carlos Mastalli, Hongkai Dai, Michele Focchi, Andreea
Radulescu, Darwin G Caldwell, José Cappelletto, Juan C Grieco, Gerardo Fernández-
López, and Claudio Semini. Simultaneous contact, gait, and motion planning for
robust multilegged locomotion via mixed-integer convex optimization. IEEE Robotics
and Automation Letters, 3(3):2531–2538, July 2018.

[2] Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
Casadi: a software framework for nonlinear optimization and optimal control. Mathe-
matical Programming Computation, 11(1):1–36, 2019.

[3] Neculai Andrei. A sqp algorithm for large-scale constrained optimization: Snopt. In
Continuous Nonlinear Optimization for Engineering Applications in GAMS Technol-
ogy, pages 317–330. Springer, 2017.

[4] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997.

[5] Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in
milliseconds. arXiv preprint arXiv:1907.02206, 2019.

[6] John T Betts. Survey of numerical methods for trajectory optimization. Journal of
guidance, control, and dynamics, 21(2):193–207, 1998.

[7] John T Betts. Practical methods for optimal control and estimation using nonlinear
programming. SIAM, 2010.

[8] Sanjay P Bhat and Dennis S Bernstein. A topological obstruction to global asymp-
totic stabilization of rotational motion and the unwinding phenomenon. In American
Control Conference, 1998. Proceedings of the 1998, volume 5, pages 2785–2789. IEEE,
1998.

[9] Lorenz T Biegler and Victor M Zavala. Large-scale nonlinear programming using ipopt:
An integrating framework for enterprise-wide dynamic optimization. Computers &
Chemical Engineering, 33(3):575–582, 2009.

[10] Gerardo Bledt. Regularized predictive control framework for robust dynamic legged
locomotion. PhD thesis, Massachusetts Institute of Technology, 2020.

127

[11] Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo, Patrick M Wensing,
and Sangbae Kim. MIT cheetah 3: Design and control of a robust, dynamic quadruped
robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2245–2252. IEEE, 2018.

[12] Gerardo Bledt, Patrick M Wensing, and Sangbae Kim. Policy-regularized model pre-
dictive control to stabilize diverse quadrupedal gaits for the MIT cheetah. In Intelli-
gent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages
4102–4109. IEEE, 2017.

[13] Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solu-
tion of optimal control problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

[14] Robert Bohlin and Lydia E Kavraki. Path planning using lazy prm. In Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1, pages 521–528.
IEEE, 2000.

[15] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[16] Tim Bretl, Stephen Rock, Jean-Claude Latombe, Brett Kennedy, and Hrand Aghazar-
ian. Free-climbing with a multi-use robot. In Experimental Robotics IX, pages 449–458.
Springer, 2006.

[17] Francesco Bullo and Andrew D Lewis. Geometric control of mechanical systems: mod-
eling, analysis, and design for simple mechanical control systems, volume 49. Springer
Science & Business Media, 2004.

[18] Richard H Byrd, Jorge Nocedal, and Richard A Waltz. K nitro: An integrated pack-
age for nonlinear optimization. In Large-scale nonlinear optimization, pages 35–59.
Springer, 2006.

[19] Mylene Campana and Jean-Paul Laumond. Ballistic motion planning. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1410–1416. IEEE, 2016.

[20] Matthew Chignoli and Patrick M. Wensing. Variational-based optimal control of un-
deractuated balancing for dynamic quadrupeds. IEEE Access, 8:49785–49797, 2020.

[21] Peter Corke. An inertial and visual sensing system for a small autonomous helicopter.
Journal of robotic systems, 21(2):43–51, 2004.

[22] John J Craig. Introduction to robotics: mechanics and control, 3/E. Pearson Education
India, 2009.

128

[23] Xingye Da and Jessy Grizzle. Combining trajectory optimization, supervised machine
learning, and model structure for mitigating the curse of dimensionality in the control
of bipedal robots. The International Journal of Robotics Research, 38(9):1063–1097,
2019.

[24] Stefano Dafarra, Sylvain Bertrand, Robert J Griffin, Giorgio Metta, Daniele Pucci,
and Jerry Pratt. Non-linear trajectory optimization for large step-ups: Application to
the humanoid robot atlas. pages 3884–3891, 2020.

[25] Hongkai Dai, Gregory Izatt, and Russ Tedrake. Global inverse kinematics via mixed-
integer convex optimization. The International Journal of Robotics Research, 38(12-
13):1420–1441, 2019.

[26] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion planning with
simple dynamics and full kinematics. In Proceedings of the IEEE-RAS international
conference on humanoid robots, 2014.

[27] Alessandro De Luca and Raffaella Mattone. Sensorless robot collision detection and
hybrid force/motion control. In Proceedings of the 2005 IEEE international conference
on robotics and automation, pages 999–1004. IEEE, 2005.

[28] Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with mixed-
integer convex optimization. In 2014 IEEE-RAS International Conference on Hu-
manoid Robots, pages 279–286, Nov 2014.

[29] Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae Kim.
Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1–9. IEEE, 2018.

[30] Yanran Ding, Chuanzheng Li, and Hae-Won Park. Kinodynamic motion planning for
multi-legged robot jumping via mixed-integer convex program. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

[31] Yanran Ding, Chuanzheng Li, and Hae-Won Park. Single leg dynamic motion planning
with mixed-integer convex optimization. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1–6. IEEE, 2018.

[32] Yanran Ding, Abhishek Pandala, Chuanzheng Li, Young-Ha Shin, and Hae-Won Park.
Representation-free model predictive control for dynamic motions in quadrupeds.
IEEE Transactions on Robotics, pages 1–18, 2021.

[33] Yanran Ding, Abhishek Pandala, and Hae-Won Park. Real-time model predictive
control for versatile dynamic motions in quadrupedal robots. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8484–8490. IEEE, 2019.

[34] Yanran Ding and Hae-Won Park. Design and experimental implementation of a quasi-
direct-drive leg for optimized jumping. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 300–305. IEEE, 2017.

129

[35] Yanran Ding, Mengchao Zhang, Chuanzheng Li, Hae-Won Park, and Kris Hauser.
Hybrid sampling/optimization-based planning for agile jumping robots on challenging
terrains. In 2021 International Conference on Robotics and Automation (ICRA). IEEE,
2021.

[36] Çetin Dişibüyük and Halil Oruç. A generalization of rational bernstein–bézier curves.
BIT Numerical Mathematics, 47(2):313–323, 2007.

[37] Eid H. Doha, Ali H. Bhrawy, and M. A. Saker. Integrals of Bernstein polynomials: An
application for the solution of high even-order differential equations. Applied Mathe-
matics Letters, 24(4):559–565, 2011.

[38] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic motion
planning. Journal of the ACM (JACM), 40(5):1048–1066, 1993.

[39] Denis Donnelly. The parabolic envelope of constant initial speed trajectories. AmJPh,
60(12):1149–1150, 1992.

[40] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[41] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G Atkeson. Optimization-
based full body control for the darpa robotics challenge. Journal of Field Robotics,
32(2):293–312, 2015.

[42] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and
Moritz Diehl. qpOASES: A parametric active-set algorithm for quadratic program-
ming. Mathematical Programming Computation, 6(4):327–363, 2014.

[43] Robert J Full and Daniel E Koditschek. Templates and anchors: neuromechanical hy-
potheses of legged locomotion on land. Journal of experimental biology, 202(23):3325–
3332, 1999.

[44] Yukai Gong, Ross Hartley, Xingye Da, Ayonga Hereid, Omar Harib, Jiunn-Kai Huang,
and Jessy Grizzle. Feedback control of a cassie bipedal robot: Walking, standing, and
riding a segway. In 2019 American Control Conference (ACC), pages 4559–4566. IEEE,
2019.

[45] Alexander Graham. Kronecker products and matrix calculus with applications. Courier
Dover Publications, 2018.

[46] Duncan W Haldane, Mark M Plecnik, Justin K Yim, and Ronald S Fearing. Robotic
vertical jumping agility via series-elastic power modulation. Science Robotics, 1(1),
2016.

[47] Duncan W Haldane, Justin K Yim, and Ronald S Fearing. Repetitive extreme-
acceleration (14-g) spatial jumping with salto-1p. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3345–3351. IEEE, 2017.

130

[48] Kris Hauser, Timothy Bretl, Kensuke Harada, and Jean-Claude Latombe. Using mo-
tion primitives in probabilistic sample-based planning for humanoid robots. In Algo-
rithmic foundation of robotics VII, pages 507–522. Springer, 2008.

[49] Kris Hauser, Timothy Bretl, and J-C Latombe. Non-gaited humanoid locomotion
planning. In 5th IEEE-RAS International Conference on Humanoid Robots, 2005.,
pages 7–12. IEEE, 2005.

[50] Kris Hauser, Timothy Bretl, Jean-Claude Latombe, Kensuke Harada, and Brian
Wilcox. Motion planning for legged robots on varied terrain. The International Journal
of Robotics Research, 27(11-12):1325–1349, 2008.

[51] Bernd Henze, Christian Ott, and Maximo A Roa. Posture and balance control for
humanoid robots in multi-contact scenarios based on model predictive control. In In-
telligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 3253–3258. IEEE, 2014.

[52] Martin Herceg, Michal Kvasnica, Colin N. Jones, and Manfred Morari. Multi-
Parametric Toolbox 3.0. In Proc. of the European Control Conference, pages 502–510,
Zürich, Switzerland, July 17–19 2013.

[53] Martin Herceg, Michal Kvasnica, Colin N Jones, and Manfred Morari. Multi-
parametric toolbox 3.0. In 2013 European Control Conference (ECC), pages 502–510.
IEEE, 2013.

[54] Andrei Herdt, Holger Diedam, Pierre-Brice Wieber, Dimitar Dimitrov, Katja Mom-
baur, and Moritz Diehl. Online walking motion generation with automatic footstep
placement. Advanced Robotics, 24(5-6):719–737, 2010.

[55] Andrei Herdt, Nicolas Perrin, and Pierre-Brice Wieber. Walking without thinking
about it. In IROS 2010-IEEE-RSJ International Conference on Intelligent Robots &
Systems, pages 190–195. IEEE, 2010.

[56] Ayonga Hereid, Eric A Cousineau, Christian M Hubicki, and Aaron D Ames. 3d
dynamic walking with underactuated humanoid robots: A direct collocation frame-
work for optimizing hybrid zero dynamics. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 1447–1454. IEEE, 2016.

[57] Ayonga Hereid, Christian M Hubicki, Eric A Cousineau, Jonathan W Hurst, and
Aaron D Ames. Hybrid zero dynamics based multiple shooting optimization with
applications to robotic walking. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 5734–5740. IEEE, 2015.

[58] Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger, Stefan Schaal,
and Ludovic Righetti. Momentum control with hierarchical inverse dynamics on a
torque-controlled humanoid. Autonomous Robots, 40(3):473–491, 2016.

131

[59] Alexander Herzog, Nicholas Rotella, Stefan Schaal, and Ludovic Righetti. Trajectory
generation for multi-contact momentum control. In 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), pages 874–880. IEEE, 2015.

[60] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso,
Vassilios Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch,
et al. Anymal-a highly mobile and dynamic quadrupedal robot. In 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 38–44. IEEE,
2016.

[61] Marco Hutter, Hannes Sommer, Christian Gehring, Mark Hoepflinger, Michael
Bloesch, and Roland Siegwart. Quadrupedal locomotion using hierarchical operational
space control. The International Journal of Robotics Research, 33(8):1047–1062, 2014.

[62] Jemin Hwangbo, Vassilios Tsounis, Hendrik Kolvenbach, and Marco Hutter. Cable-
driven actuation for highly dynamic robotic systems. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 8543–8550. IEEE, 2018.

[63] IBM Corp. User’s manual for CPLEX, 2010.

[64] Matt R Jardin and Eric R Mueller. Optimized measurements of unmanned-air-vehicle
mass moment of inertia with a bifilar pendulum. Journal of Aircraft, 46(3):763–775,
2009.

[65] S Kajita. Study of dynamic biped locomotion on rugged terrain-derivation and appli-
cation of the linear inverted pendulum mode. In Proc. IEEE Int. Conf. on Robotics
and Automation, Sacramento, CA, 1991, pages 1405–1411, 1991.

[66] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[67] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini cheetah: A platform for
pushing the limits of dynamic quadruped control. In 2019 International Conference
on Robotics and Automation (ICRA), pages 6295–6301. IEEE, 2019.

[68] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE transac-
tions on Robotics and Automation, 12(4):566–580, 1996.

[69] Matthew Kelly. An introduction to trajectory optimization: How to do your own direct
collocation. SIAM Review, 59(4):849–904, 2017.

[70] Gavin Kenneally, Avik De, and Daniel E Koditschek. Design principles for a family
of direct-drive legged robots. IEEE Robotics and Automation Letters, 1(2):900–907,
2016.

[71] Oussama Khatib. A unified approach for motion and force control of robot manipula-
tors: The operational space formulation. IEEE Journal on Robotics and Automation,
3(1):43–53, 1987.

132

[72] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae Kim.
Highly dynamic quadruped locomotion via whole-body impulse control and model
predictive control. arXiv preprint arXiv:1909.06586, 2019.

[73] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika
Inoue. Motion planning for humanoid robots under obstacle and dynamic balance
constraints. In Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No. 01CH37164), volume 1, pages 692–698. IEEE, 2001.

[74] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika
Inoue. Motion planning for humanoid robots. In Robotics Research. The Eleventh
International Symposium, pages 365–374. Springer, 2005.

[75] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai,
Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. Optimization-based
locomotion planning, estimation, and control design for the atlas humanoid robot.
Autonomous robots, 40(3):429–455, 2016.

[76] Boris Lau, Christoph Sprunk, and Wolfram Burgard. Kinodynamic motion planning
for mobile robots using splines. In 2009 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 2427–2433. IEEE, 2009.

[77] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
Report No. TR 98-11, Computer Science Department, Iowa State University., 1998.

[78] Steven M LaValle. Planning Algorithms. Cambridge university press, 2006.

[79] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The
international journal of robotics research, 20(5):378–400, 2001.

[80] Taeyoung Lee, Melvin Leoky, and N Harris McClamroch. Geometric tracking control of
a quadrotor uav on SE(3). In Decision and Control (CDC), 2010 49th IEEE Conference
on, pages 5420–5425. IEEE, 2010.

[81] Chuanzheng Li, Yanran Ding, and Hae-Won Park. Centroidal-momentum-based tra-
jectory generation for legged locomotion. Mechatronics, 68:102364, 2020.

[82] Min Liu, Zherong Pan, Kai Xu, and Dinesh Manocha. New formulation of mixed-
integer conic programming for globally optimal grasp planning. IEEE Robotics and
Automation Letters, 5(3):4663–4670, 2020.

[83] Johan Lofberg. YALMIP: A toolbox for modeling and optimization in matlab. In
2004 IEEE international conference on robotics and automation (IEEE Cat. No.
04CH37508), pages 284–289. IEEE, 2004.

[84] Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model
predictive control of hybrid systems. IEEE Transactions on Automatic Control, 2020.

133

[85] Jerrold E Marsden and Tudor S Ratiu. Introduction to mechanics and symmetry.
Physics Today, 48(12):65, 1995.

[86] Carlos Mastalli, Michele Focchi, Ioannis Havoutis, Andreea Radulescu, Sylvain Cali-
non, Jonas Buchli, Darwin G Caldwell, and Claudio Semini. Trajectory and foothold
optimization using low-dimensional models for rough terrain locomotion. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 1096–
1103. IEEE, 2017.

[87] Carlos Mastalli, Ioannis Havoutis, Michele Focchi, Darwin G Caldwell, and Claudio
Semini. Hierarchical planning of dynamic movements without scheduled contact se-
quences. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 4636–4641. IEEE, 2016.

[88] Maxon Motor. Maxon motor catalog. [Online] Available: www.maxonmotorusa.com/.

[89] Christopher G. Mayhew, Ricardo G. Sanfelice, and Andrew R. Teel. On quaternion-
based attitude control and the unwinding phenomenon. In Proceedings of the 2011
American Control Conference, pages 299–304, 2011.

[90] Garth P McCormick. Computability of global solutions to factorable nonconvex
programs: Part I-convex underestimating problems. Mathematical programming,
10(1):147–175, 1976.

[91] Edward S Meadows, Michael A Henson, John W Eaton, and James B Rawlings. Re-
ceding horizon control and discontinuous state feedback stabilization. International
Journal of Control, 62(5):1217–1229, 1995.

[92] Michael Mistry, Jonas Buchli, and Stefan Schaal. Inverse dynamics control of floating
base systems using orthogonal decomposition. In 2010 IEEE international conference
on robotics and automation, pages 3406–3412. IEEE, 2010.

[93] Michael Mistry and Ludovic Righetti. Operational space control of constrained and
underactuated systems. Robotics: Science and systems VII, pages 225–232, 2012.

[94] MIT-Biomimetics-Robotics-Lab. Cheetah-software. https://github.com/
charlespwd/project-title[Accessed 29 June 2020], 2019.

[95] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of complex behav-
iors through contact-invariant optimization. ACM Transactions on Graphics (TOG),
31(4):1–8, 2012.

[96] James Morgan. How far can a squirrel jump? https://birdwatchingbuzz.com/
how-far-can-a-squirrel-jump/[Accessed 23 Feb. 2021].

[97] MOSEK ApS. The MOSEK optimization software, 2014.

134

https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title
https://birdwatchingbuzz.com/how-far-can-a-squirrel-jump/
https://birdwatchingbuzz.com/how-far-can-a-squirrel-jump/

[98] DM Murray and SJ Yakowitz. Differential dynamic programming and newton’s method
for discrete optimal control problems. Journal of Optimization Theory and Applica-
tions, 43(3):395–414, 1984.

[99] Michael Neunert, Farbod Farshidian, Alexander W Winkler, and Jonas Buchli. Tra-
jectory optimization through contacts and automatic gait discovery for quadrupeds.
IEEE Robotics and Automation Letters, 2(3):1502–1509, 2017.

[100] Michael Neunert, Markus Stäuble, Markus Giftthaler, Carmine D Bellicoso, Jan Car-
ius, Christian Gehring, Marco Hutter, and Jonas Buchli. Whole-body nonlinear model
predictive control through contacts for quadrupeds. IEEE Robotics and Automation
Letters, 3(3):1458–1465, 2018.

[101] Quan Nguyen, Matthew J Powell, Benjamin Katz, Jared Di Carlo, and Sangbae Kim.
Optimized jumping on the MIT Cheetah 3 robot. In 2019 International Conference
on Robotics and Automation (ICRA), pages 7448–7454, May 2019.

[102] Gurobi Optimization. Gurobi optimizer reference manual, 2020.

[103] David E Orin, Ambarish Goswami, and Sung-Hee Lee. Centroidal dynamics of a
humanoid robot. Autonomous robots, 35(2-3):161–176, 2013.

[104] Romeo Orsolino, Michele Focchi, Carlos Mastalli, Hongkai Dai, Darwin G Caldwell,
and Claudio Semini. Application of wrench-based feasibility analysis to the online
trajectory optimization of legged robots. IEEE Robotics and Automation Letters,
3(4):3363–3370, 2018.

[105] SS Osder, WE Rouse, and LS Young. Navigation, guidance, and control systems for
V/STOL aircraft. Sperry Tech, 1(3), 1973.

[106] Abhishek Goud Pandala, Yanran Ding, and Hae-Won Park. qpswift: A real-time sparse
quadratic program solver for robotic applications. IEEE Robotics and Automation
Letters, 4(4):3355–3362, 2019.

[107] Hae-Won Park, Patrick M Wensing, and Sangbae Kim. High-speed bounding with
the MIT Cheetah 2: Control design and experiments. The International Journal of
Robotics Research, 36(2):167–192, 2017.

[108] Hae-Won Park, Patrick M Wensing, and Sangbae Kim. Jumping over obstacles with
MIT cheetah 2. Robotics and Autonomous Systems, 136:103703, 2021.

[109] Hae-Won Park, Patrick M Wensing, Sangbae Kim, et al. Online planning for au-
tonomous running jumps over obstacles in high-speed quadrupeds. Robotics: Science
and Systems, 2015.

[110] Jaejun Park, Hae-Won Park, et al. Design of anti-skid foot with passive slip detection
mechanism for conditional utilization of heterogeneous foot pads. IEEE Robotics and
Automation Letters, 4(2):1170–1177, 2019.

135

[111] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory op-
timization of rigid bodies through contact. The International Journal of Robotics
Research, 33(1):69–81, 2014.

[112] Michael Posa, Scott Kuindersma, and Russ Tedrake. Optimization and stabilization of
trajectories for constrained dynamical systems. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 1366–1373. IEEE, 2016.

[113] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. Capture point:
A step toward humanoid push recovery. In Humanoid Robots, 2006 6th IEEE-RAS
International Conference on, pages 200–207. IEEE, 2006.

[114] Joao Ramos and Sangbae Kim. Humanoid dynamic synchronization through whole-
body bilateral feedback teleoperation. IEEE Transactions on Robotics, 34(4):953–965,
2018.

[115] Ludovic Righetti, Jonas Buchli, Michael Mistry, Mrinal Kalakrishnan, and Stefan
Schaal. Optimal distribution of contact forces with inverse-dynamics control. The
International Journal of Robotics Research, 32(3):280–298, 2013.

[116] Ludovic Righetti, Jonas Buchli, Michael Mistry, and Stefan Schaal. Inverse dynamics
control of floating-base robots with external constraints: A unified view. In 2011 IEEE
international conference on robotics and automation, pages 1085–1090. IEEE, 2011.

[117] Srikanth Saripalli, Jonathan M Roberts, Peter Corke, Gregg Buskey, and Gaurav
Sukhatme. A tale of two helicopters. In Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003 (IROS 2003), volume 1, pages
805–810. IEEE, 2003.

[118] Brian W Satzinger, Chelsea Lau, Marten Byl, and Katie Byl. Tractable locomotion
planning for robosimian. The International Journal of Robotics Research, 34(13):1541–
1558, 2015.

[119] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer
programming for multi-vehicle path planning. In Control Conference (ECC), 2001
European, pages 2603–2608. IEEE, 2001.

[120] Claudio Semini, Nikos G Tsagarakis, Emanuele Guglielmino, Michele Focchi, Ferdi-
nando Cannella, and Darwin G Caldwell. Design of HyQ–a hydraulically and electri-
cally actuated quadruped robot. Proceedings of the Institution of Mechanical Engi-
neers, Part I: Journal of Systems and Control Engineering, 225(6):831–849, 2011.

[121] Luis Sentis. Synthesis and control of whole-body behaviors in humanoid systems. Cite-
seer, 2007.

[122] Luis Sentis and Oussama Khatib. A whole-body control framework for humanoids
operating in human environments. In Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006., pages 2641–2648. IEEE, 2006.

136

[123] Luis Sentis, Jaeheung Park, and Oussama Khatib. Compliant control of multicontact
and center-of-mass behaviors in humanoid robots. IEEE Transactions on robotics,
26(3):483–501, 2010.

[124] Sangok Seok, Albert Wang, Meng Yee Chuah, David Otten, Jeffrey Lang, and Sangbae
Kim. Design principles for highly efficient quadrupeds and implementation on the MIT
cheetah robot. In 2013 IEEE International Conference on Robotics and Automation,
pages 3307–3312. IEEE, 2013.

[125] Sangok Seok, Albert Wang, David Otten, and Sangbae Kim. Actuator design for high
force proprioceptive control in fast legged locomotion. In Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on, pages 1970–1975. IEEE,
2012.

[126] Alexander Shkolnik, Michael Levashov, Ian R Manchester, and Russ Tedrake. Bound-
ing on rough terrain with the littledog robot. The International Journal of Robotics
Research, 30(2):192–215, 2011.

[127] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-guided sam-
pling for planning under differential constraints. In 2009 IEEE International Confer-
ence on Robotics and Automation, pages 2859–2865. IEEE, 2009.

[128] Malcolm D Shuster. A survey of attitude representations. Navigation, 8(9):439–517,
1993.

[129] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.

[130] Bartolomeo Stellato, Vihangkumar V Naik, Alberto Bemporad, Paul Goulart, and
Stephen Boyd. Embedded mixed-integer quadratic optimization using the osqp solver.
In 2018 European Control Conference (ECC), pages 1536–1541. IEEE, 2018.

[131] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex
behaviors through online trajectory optimization. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4906–4913. IEEE, 2012.

[132] Francisco Trespalacios and Ignacio E Grossmann. Review of mixed-integer nonlin-
ear and generalized disjunctive programming methods. Chemie Ingenieur Technik,
86(7):991–1012, 2014.

[133] Jeffrey C Trinkle, J-S Pang, Sandra Sudarsky, and Grace Lo. On dynamic multi-rigid-
body contact problems with coulomb friction. ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 77(4):267–279,
1997.

[134] Andrés Klee Valenzuela. Mixed-integer convex optimization for planning aggressive
motions of legged robots over rough terrain. PhD thesis, Massachusetts Institute of
Technology, 2016.

137

[135] Gokul Varadhan and Dinesh Manocha. Accurate Minkowski sum approximation of
polyhedral models. In 12th Pacific Conference on Computer Graphics and Applica-
tions, 2004. PG 2004. Proceedings., pages 392–401. IEEE, 2004.

[136] Oskar von Stryk. Numerical Solution of Optimal Control Problems by Direct Colloca-
tion, pages 129–143. Birkhäuser Basel, Basel, 1993.

[137] Oskar Von Stryk and Roland Bulirsch. Direct and indirect methods for trajectory
optimization. Annals of operations research, 37(1):357–373, 1992.

[138] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106(1):25–57, 2006.

[139] Yang Wang and Stephen Boyd. Fast model predictive control using online optimization.
IEEE Transactions on Control Systems Technology, 18(2):267–278, March 2010.

[140] Patrick M Wensing and David E Orin. Generation of dynamic humanoid behaviors
through task-space control with conic optimization. In 2013 IEEE International Con-
ference on Robotics and Automation, pages 3103–3109. IEEE, 2013.

[141] Patrick M Wensing and David E Orin. High-speed humanoid running through control
with a 3d-slip model. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5134–5140. IEEE, 2013.

[142] Patrick M Wensing, Albert Wang, Sangok Seok, David Otten, Jeffrey Lang, and Sang-
bae Kim. Proprioceptive actuator design in the MIT Cheetah: Impact mitigation and
high-bandwidth physical interaction for dynamic legged robots. IEEE Transactions
on Robotics, 33(3):509–522, 2017.

[143] Alexander W Winkler, C Dario Bellicoso, Marco Hutter, and Jonas Buchli. Gait and
trajectory optimization for legged systems through phase-based end-effector parame-
terization. IEEE Robotics and Automation Letters, 3(3):1560–1567, 2018.

[144] Andrew Witkin and Michael Kass. Spacetime constraints. ACM Siggraph Computer
Graphics, 22(4):159–168, 1988.

[145] Philip Wolfe. The simplex method for quadratic programming. Econometrica: Journal
of the Econometric Society, pages 382–398, 1959.

[146] Guofan Wu and Koushil Sreenath. Variation-based linearization of nonlinear systems
evolving on SO(3)and S2,. IEEE Access, 3:1592–1604, 2015.

[147] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de
Panne. Feedback control for cassie with deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1241–1246. IEEE, 2018.

138

[148] Xiaobin Xiong and Aaron Ames. Dynamic and versatile humanoid walking via em-
bedding 3d actuated slip model with hybrid lip based stepping. IEEE Robotics and
Automation Letters, 5(4):6286–6293, 2020.

[149] Xiaobin Xiong and Aaron Ames. Slip walking over rough terrain via h-lip stepping
and backstepping-barrier function inspired quadratic program. IEEE Robotics and
Automation Letters, 6(2):2122–2129, 2021.

[150] Xiaobin Xiong and Aaron D Ames. Bipedal hopping: Reduced-order model embed-
ding via optimization-based control. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3821–3828. IEEE, 2018.

[151] Xiaobin Xiong and Aaron D Ames. Orbit characterization, stabilization and composi-
tion on 3D underactuated bipedal walking via hybrid passive linear inverted pendulum
model. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4644–4651. IEEE, 2019.

[152] Xiufeng Yang, Ying Chen, Longlong Chang, Ariel A Calderón, and Néstor O Pérez-
Arancibia. Bee+: A 95-mg four-winged insect-scale flying robot driven by twinned
unimorph actuators. IEEE Robotics and Automation Letters, 4(4):4270–4277, 2019.

[153] Justin K Yim and Ronald S Fearing. Precision jumping limits from flight-phase control
in salto-1p. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2229–2236. IEEE, 2018.

[154] Justin K Yim, Bajwa Roodra Pratap Singh, Eric K Wang, Roy Featherstone, and
Ronald S Fearing. Precision robotic leaping and landing using stance-phase balance.
IEEE Robotics and Automation Letters, 5(2):3422–3429, 2020.

139

Appendix A

Integration of Bézier Polynomial

A Bézier polynomial is a linear combination of a Bernstein polynomial basis [36], so the

integration of a Bézier polynomial is a linear operation [37] on the Bézier coefficients. For

example, the linear relationship between wrench Bézier coefficients and twist Bézier coeffi-

cients is

𝑀 + 1
𝑇𝑠𝑡

Φ(𝑀,𝑇𝑠𝑡)𝛼𝑞 = [𝐷−1𝛼⊤
ℱ + 𝑎𝑔, 𝑞̇0]⊤, (A.1)

where 𝑀 is the order of Bézier polynomial; 𝑇𝑠𝑡 is stance duration; 𝑞̇0 ∈ R3 is the initial

body twist; 𝛼𝑞 ∈ R(𝑀+2)×3 is the Bézier coefficients for the spatial twist trajectory; Φ ∈

R(𝑀+2)×(𝑀+2) is a matrix whose elements are defined as

Φ𝑖,𝑗 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, 𝑗 = 𝑖 = 1, 2, · · · ,𝑀 + 1

1, 𝑗 = 𝑖+ 1 = 2, 3, · · · ,𝑀 + 2

𝑇𝑠𝑡

𝑀+1 , 𝑖 = 𝑀 + 2, 𝑗 = 1

0, otherwise.

(A.2)

The linear operation 𝛼𝑞 = ℒ(𝛼ℱ , 𝑞̇0) is obtained by inverting the matrix in front of 𝛼𝑞

in (A.1). Similarly, the Bézier coefficients of the configuration trajectory 𝑞(𝑡) can also be

integrated given initial configuration 𝑞0 ∈ R3.

140

Appendix B

Gain values for RF-MPC

The gain values for the simulation and experiment of RF-MPC are presented in Table B.1

and Table B.2, respectively. From experience, we found out that the gain matrices Q and

R also have a range of values that lead to stable behaviors. However, the exact effect of

each gain value is difficult to quantify due to a large number of tuning parameters and their

complex interaction in objective landscape shaping. Nevertheless, we found some general

guidelines or “rules of thumb” concerning the tuning of the gain matrices Q and R.

1. The 𝑄𝑝, 𝑄𝑅 terms are comparable to the proportional terms in a PD controller.

2. The 𝑄𝑝̇, 𝑄𝜔 terms are comparable to the derivative terms in a PD controller.

3. Increasing 𝑅𝑢 makes the control follow the reference control more closely.

4. The order of the gain value normalizes the magnitude of the nominal error in each

dimension to the same order. For example, 𝑄𝑝 : (0.01𝑚)2·1𝑒5 = 10, 𝑄𝑝̇ : (1𝑚𝑠−1)2·10 =

10, 𝑅𝑢 : (10𝑁)2 · 0.1 = 10.

In practice, we start the gain value from a reasonable guess based on the guidelines, and then

tune the gain values in a trial-and-error manner. From experience, we found out that an

elaborate fine-tuning process is required only for complex maneuvers; simple motions such

as trotting only require a relatively small amount of tuning effort.

141

Table B.1: Cost function weights for the simulations. The values in parenthesis represent weights
on the terminal costs.

Sim. Sim. Sim. Acro.
Pose TrotWalk Bound Mnvr.

𝑄𝑝𝑥 3e5 (1e5) 1e5 8e4 5e6
𝑄𝑝𝑦 5e5 (1e5) 2e5 5e4 5e6
𝑄𝑝𝑧 2e5 (1e5) 3e5 3e6 5e6
𝑄𝑝̇𝑥 10 (30) 5e2 4e3(5e2) 5e3
𝑄𝑝̇𝑦 8 (30) 1e3 5e2 5e3
𝑄𝑝̇𝑧 10 (30) 1e3 7e2(5e2) 5e3
𝑄𝑅𝑥 5e2 1e3 8e3 1e6
𝑄𝑅𝑦 2e3 (3e3) 1e4 5e5 (5e4) 1e6
𝑄𝑅𝑧 1e3 8e2 8e3 1e6
𝑄𝜔𝑥 2 40 2e2 5e3
𝑄𝜔𝑦 4 40 1e2 5e3
𝑄𝜔𝑧 3 10 2e2 5e3
𝑅𝑢𝑥 0.1 0.1 0.2 0.1
𝑅𝑢𝑦 0.1 0.2 0.2 0.1
𝑅𝑢𝑧 0.1 0.1 0.2 0.1
𝑇𝑠𝑡 N/A 0.3 0.1 0.1 (0.2)
𝑇𝑠𝑤 N/A 0.15 0.16 N/A
𝑁ℎ𝑜𝑟 7 6 6 7
𝛾 1.0 1.0 0.9 0.9

𝑇𝑝𝑟𝑒𝑑 0.05 0.08 0.01 0.01
𝑓𝑀𝑃 𝐶 100 100 100 100

Note: 𝑇𝑠𝑡, 𝑇𝑠𝑤 and 𝑇𝑝𝑟𝑒𝑑 all have the unit of [s]; 𝑁ℎ𝑜𝑟 is the MPC prediction horizon; 𝑇𝑝𝑟𝑒𝑑 is
the prediction time step; 𝑓𝑀𝑃 𝐶 is the MPC control frequency with the unit of [Hz].

142

Table B.2: Cost function weights for the experiments. The values in parenthesis represent weights
on the terminal costs.

Exp. Pose/ Exp. Exp. Exp. Exp.
Balance TrotWalk TrotRun Bound Backflip

𝑄𝑝𝑥 3e5 (1e5) 1e5 1e5 2e5 (1.2e5) 1e5
𝑄𝑝𝑦 5e5 (1e5) 1e5 (1.5e5) 1e5 (1.5e5) 4e5 1e5 (2e5)
𝑄𝑝𝑧 2e5 (1e5) 1.5e5 (2.2e5) 2e4 1.5e5 (2e5) 1.5e5 (2.2e5)
𝑄𝑝̇𝑥 10 (30) 1e3 (1.5e3) 1e3 (1.5e3) 50 1e3 (1.5e3)
𝑄𝑝̇𝑦 8 (30) 1e3 1e3 200 (150) 1e3
𝑄𝑝̇𝑧 10 (30) 150 100 30 150
𝑄𝑅𝑥 5e2 2e3 1e3 (2e3) 3e3 (1e3) 4e3 (6e3)
𝑄𝑅𝑦 2e3 (3e3) 2e3 2e3 4e3 (8e3) 0 (10)
𝑄𝑅𝑧 1e3 8e2 8e2 1e3 (3e3) 8e2
𝑄𝜔𝑥 2 60 (100) 60 (100) 3 (2) 60 (100)
𝑄𝜔𝑦 4 40 (45) 40 (45) 6 (2) 0 (1)
𝑄𝜔𝑧 3 10 10 5 (8) 10
𝑅𝑢𝑥 0.1 0.1 0.1 0.1 0.1
𝑅𝑢𝑦 0.1 0.18 0.18 0.18 0.12
𝑅𝑢𝑧 0.1 0.08 0.08 0.2 0.1
𝑇𝑠𝑡 N/A 0.3 0.12 / 0.2 0.1 0.12 (0.3)*
𝑇𝑠𝑤 N/A 0.15 0.2 / 0.1 0.2 0.3
𝑁ℎ𝑜𝑟 6 6 6 7 6
𝛾 1.0 1.0 1.0 0.8 0.8

𝑇𝑝𝑟𝑒𝑑 0.02 0.08 0.05 0.01 0.02
𝑓𝑀𝑃 𝐶 250 250 250 160 200

Note: 𝑇𝑠𝑡, 𝑇𝑠𝑤 and 𝑇𝑝𝑟𝑒𝑑 all have the unit of [s]; 𝑁ℎ𝑜𝑟 is the MPC prediction horizon; 𝑇𝑝𝑟𝑒𝑑 is
the prediction time step; 𝑓𝑀𝑃 𝐶 is the MPC control frequency with the unit of [Hz].
*0.13 s is the front stance time, and 0.3 s is the hind stance time.

143

	List of Figures
	List of Tables
	Chapter 1 Introduction
	Motivation
	Related Work
	Reactive Control for Locomotion
	Model Predictive Control (MPC)
	Motion Planning for Locomotion

	Organization and Contributions

	Chapter 2 Robotic System Synthesis
	Panther - a Small and Agile Quadruped Robot
	Dimension
	Main Body Design
	Leg Module Synthesis

	Actuator Design
	Motor Selection
	Determining Gear Ratio
	Planetary Gearbox Design

	Electronic System
	Software
	State Estimation
	Swing Leg Control
	Contact Detection

	Implementation Details
	Center of Mass Location
	Mass Moment of Inertia
	Friction Compensation
	Force Calibration

	Squat Jumping as Capability Test
	Quadratic Program-based Controller
	Experiment Results

	Summary

	Chapter 3 Representation-Free Model Predictive Control
	Introduction
	Euler Angles
	Quaternion

	Representation-Free MPC Formulation
	3D Single Rigid Body Model
	Variation-based Linearization
	Vectorization
	Discrete-time Affine Dynamics
	Cost Function
	Force Constraints
	Quadratic Program Formulation

	Numerical Implementation
	Walking Trot
	Bounding
	Aperiodic Complex Dynamic Maneuver
	Comparison of Linearization Schemes
	Reference Trajectory Generation

	Control Framework
	Finite State Machine
	Computation Setup

	Experiment Results
	Pose and Balancing Control
	Walking Trot
	Running Trot and Bounding
	Controlled Backflip

	Summary

	Chapter 4 Kinodynamic Motion Planning via Mixed-Integer Convex Program
	Introduction
	Motivation
	Problem Statement

	Common Formulations for R1 and R2
	Reduced Model
	Configuration Space
	Aerial Phase Kinematics
	Bilinear Terms
	Foothold Position Choices

	Planar Single-Legged Robot R1
	C-Space Discretization
	Mixed-Integer Convex Torque Constraint
	MIQCP Formulation
	Results

	Planar Two-Legged Robot R2
	C-Space Discretization
	Feasible Wrench Polytope
	Mixed-Integer Wrench Constraint
	MICP Formulation
	Results

	Summary

	Chapter 5 Hybrid Sample/Optimization - based Planning for Jumping Robots
	Introduction
	Hybrid Planning Pre-requisites
	Stance Trajectory Existence
	Velocity Reachability Map

	Hybrid Sampling/Optimization-based Plannng Algorithms
	Sampling-Based Planning
	Reachability-Informed Control Sampling
	Path Shortcut
	Trajectory Optimization

	Results
	Computation Setup
	Performance on Various Terrains
	Benchmark
	Experiment Setup
	Experiment Result

	Summary

	Chapter 6 Summary and Conclusion
	Summary
	Future Work
	Conclusion

	Bibliography
	Bibliography
	Appendix A Integration of Bézier Polynomial
	Appendix B Gain values for RF-MPC

