
© 2021 Gao Tang

EXPLOITING STRUCTURES OF TRAJECTORY OPTIMIZATION FOR EFFICIENT
OPTIMAL MOTION PLANNING

BY

GAO TANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Associate Professor Kris Hauser, Chair
Professor David Forsyth
Assistant Professor Saurabh Gupta
Associate Professor Girish Chowdhary
Associate Professor Ludovic Righetti

ABSTRACT

Trajectory optimization is an important tool for optimal motion planning due to its flex-

ibility in cost design, capability to handle complex constraints, and optimality certification.

It has been widely used in robotic applications such as autonomous vehicles, unmanned

aerial vehicles, humanoid robots, and highly agile robots. However, practical robotic ap-

plications often possess nonlinear dynamics and non-convex constraints and cost functions,

which makes the trajectory optimization problem usually difficult to be efficiently solved

to global optimum. The long computation time, possibility of non-convergence, and exis-

tence of local optima impose significant challenges to applying trajectory optimization in

reactive tasks with requirements of real-time replanning. In this thesis, two structures of

optimization problems are exploited to significantly improve the efficiency, i.e. computation

time, reliability, i.e. success rate, and optimality, i.e. quality of the solution. The first

structure is the existence of a convex sub-problem, i.e. the problem becomes convex if a

subset of optimization variables is fixed and removed from the optimization. This structure

exists in a wide variety of problems, especially where decomposition of spatial and temporal

variables may result in convex sub-problem. A bilevel optimization framework is proposed

that optimizes the subset and its complement hierarchically where the upper level optimizes

the subset with convex constraints and the lower level uses convex optimization to solve its

complement. The key is to use the solution of the lower level problem to compute analytic

gradients for the upper level problem. The bilevel framework is reliable due to its convex

lower problem, efficient due to its simple upper problem, and yields better solutions than al-

ternatives, although the existence requirement of convex sub-problem is generally too strict

for many applications. The second structure is the local continuity of the argmin function for

parametric optimization problems which map from problem parameters to the corresponding

optimal solutions. The argmin function can be approximated from data which is collected

offline by sampling the problem parameters and solving them to optima. Three approaches

are proposed to learn the argmin from data each suited best for distinct applications. The

nearest-neighbor optimal control searches problems with similar parameters and uses their

solution to initialize nonlinear optimization. For problems with globally continuous argmin,

neural networks can be used to learn from data and a few steps of convex optimization can

further improve their predictions. As for problems with discontinuous argmin, mixture of

experts (MoE) models are used. The MoE contains several experts and a classifier and is

trained by splitting the data first according to discontinuity of argmin and then training each

ii

expert independently. Both empirical k-Means and theoretical topological data analysis ap-

proaches are explored for discontinuity identification and finding suitable data splits. Both

methods result in data splits that help train MoE models that outperform the discontinuity-

agnostic learning pipeline using standard neural networks. The trajectory learning approach

is efficient since it only requires model evaluation to compute a trajectory, reliable since the

MoE model is accurate after correctly handling discontinuity, and optimal since the data

are collected offline and solved to optimal. Moreover, this local continuity structure is less

restrictive and exists for a wide range of non-degenerate problems. Exploitation of these two

structures helps build an efficient optimal motion planner with high reliability.

iii

”To my family, for their love and support.”

iv

ACKNOWLEDGMENTS

Time flies and my journey of pursing a Ph.D. is about to end. Thinking back to the past

five years, I cannot help asking myself: “what if you had not been fortunate enough to meet

all the people who have helped you?”

I would first like to thank my advisor, Professor Kris Hauser, without whom this fantastic

journey would never have existed. His expertise in the robotics field and wide range of

knowledge helped me to jump out of my comfort zone and explore unheard methods. His

valuable suggestions during our weekly meetings guided me through this journey and brought

my work to a higher level. The freedom he gave allowed me to explore research directions

that interest me and there were countless times that he correctly pulled me back on the right

track before I wasted too much time on my immature ideas. I cannot thank him enough for

all the comments in paper writings and presentation preparations as well.

I would also like to thank other professors that helped me with my research during col-

laborations. I want to thank Professor Joseph Izatt and Dr. Anthony Kuo at Duke for their

support and insightful suggestions in our eye surgery meetings. I want to thank Professor

Leila Bridgeman at Duke for her instructions to help me understand model predictive control

in a theoretical way. I also appreciate the useful instructions from Professor Todd Murphey

from Northwestern in the autompc project.

I have to thank my co-authors with whom research has never been so easy. I would like

to thank Weidong (Bill) Sun at Duke for his assistance in quadcopter physical experiments,

and collaborations in brainstorming ideas, running experiments, writing papers, and confer-

ence presentations. I would like to thank Yuan Tian at Duke for his assistance in physical

experiments for the robotic eye surgery project. I could never have been involved in medical

research without the collaborations with Mark Draelos, Brenton Keller, and Yuan Tian.

I have to thank William Edwards for his massive contributions in the autompc and eye

surgery project. I appreciate the insightful ideas from Giorgos Mamakoukas in our autompc

discussions.

I would like to thank my colleagues and lab-mates for not only academic assistance but

also after-work activities. I shall never forget the help I got from and happiness I had with

my lab-mates–Jianqiao Li, Hayden Bader, Adam Konneker, Fan Wang, Haibei Zhu, Shihao

Wang, Wuming Zhang, Yilun Zhou, Yifan Zhu, João Marques, William Edwards, Amnon

Attali, Mengchao Zhang, Jaejun Park, Hyunjik Park, Yeonju Kim, Patrick Naughton, Yu

Zhou, and Zherong Pan. It is fortunate that I had the chance to work with you in the same

v

lab. Specifically I have to thank João Marques and Yifan Zhu for their help with writing

this thesis.

Last but not least, I would like to thank my family for their support in pursing this degree.

It will be a pain forever in my heart that we haven’t met for five years. I have to thank

my climbing friends without whom this journey would be dull–Wen Zhou, Jingjing Wang,

Xiaoyang Yao, Yingru Xu, Kris Hauser, Amnon Attali, Patrick Naughton and Yu Zhou.

Finally I have to thank my close friends for the memorable moments I had with Xing He,

Ruiyi Zhang, Jingxuan Ding, Yan Zhang, Yuanjun Yao, Weidong Sun, Yifan Zhu, Mengchao

Zhang, Jiaqi Guan, and Haoran Qiu.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Background . 1
1.2 Structure Exploitation . 7
1.3 Contributions . 11

CHAPTER 2 FAST UAV TRAJECTORY OPTIMIZATION USING BILEVEL
OPTIMIZATION WITH ANALYTICAL GRADIENTS 14
2.1 Introduction . 14
2.2 Related Work . 17
2.3 Methodology . 19
2.4 Convergence Analysis . 32
2.5 Experiments . 36
2.6 Conclusion . 44
2.7 Appendices . 45

CHAPTER 3 ENHANCING BILEVEL OPTIMIZATION FOR UAV TIME-OPTIMAL
TRAJECTORY USING A DUALITY GAP APPROACH 49
3.1 Introduction . 49
3.2 Related Work . 51
3.3 Problem Formulation . 52
3.4 Numerical Experiment . 57
3.5 Conclusion . 62

CHAPTER 4 A DATA-DRIVEN INDIRECT METHOD FOR NONLINEAR OP-
TIMAL CONTROL . 63
4.1 Introduction . 63
4.2 Related Work . 64
4.3 Trajectory Learning . 65
4.4 Data-Driven Framework . 68
4.5 Result . 73
4.6 Conclusion . 82

CHAPTER 5 LEARNING TRAJECTORIES FOR REAL-TIME OPTIMAL CON-
TROL OF QUADROTORS . 84
5.1 Introduction . 84
5.2 Related Work . 86
5.3 Methods . 86
5.4 Results . 91
5.5 Conclusion . 96

vii

CHAPTER 6 DISCONTINUITY-SENSITIVE OPTIMAL CONTROL LEARN-
ING BY MIXTURE OF EXPERTS . 98
6.1 Introduction . 98
6.2 Related Work . 100
6.3 Methodology . 102
6.4 Benchmark Problems Description . 107
6.5 Comparison of Training Approach . 111
6.6 Trajectory Clustering Approach . 115
6.7 Trajectory Rollout Results . 121
6.8 Conclusion . 125

CHAPTER 7 DISCONTINUOUS FUNCTION LEARNING WITH MIXTURE
OF EXPERTS AND TOPOLOGICAL DATA ANALYSIS 127
7.1 Introduction . 127
7.2 Related Work . 129
7.3 Preliminary . 130
7.4 Cycle-Based Data Split Method . 140
7.5 Numerical Experiments . 149
7.6 Conclusion . 155

CHAPTER 8 CONCLUSIONS . 157

REFERENCES . 159

APPENDIX A LIST OF PUBLISHED PAPERS . 171

viii

CHAPTER 1: INTRODUCTION

Motion planning is an essential component in autonomous systems as it computes how a

system should move to accomplish its tasks. There are a few desirable properties for motion

planners:

• Being able to handle different task specifications such as having different start and

goal states, working on new environments, and imposing different constraints on the

motion.

• Being able to exploit potentially underactuated and weakly actuated system dynamics

for aggressive behavior and long-term planning.

• Efficiency – so they may compute a plan within a limited time budget for reactive

tasks.

• Reliability – so they do not fail to compute a plan for feasible tasks in order to minimize

task termination and human intervention.

• Being able to compute optimal plans for various objective functions such as task time to

increase task efficiency, control cost to conserve energy or risk probability to maximize

safety.

However, it is challenging to have a planner that satisfies all those requirements, especially

for systems with nonlinear dynamics, underactuation, and complex constraints [1, 2, 3]. A

potential candidate is trajectory optimization which can handle nonlinear dynamics, under-

actuation, complex constraints, and different objective functions [1].

This class of motion planners is the focus of this work, and the readers are referred to

[2] for an introduction to other types of motion planners not covered here. In this chapter,

the formulation of trajectory optimization, previous research on this topic, typical methods

to solve it, trends in recent work, and existing open problems are briefly introduced. Two

types of structures in trajectory optimization problems and methods to exploit them in this

thesis are also introduced.

1.1 BACKGROUND

Trajectory optimization originates from optimal control theory, which deals with finding

a control sequence for a dynamical system over a period of time such that an objective

1

function is optimized subject to constraints. For a system governed by dynamical equation

ẋ = f(x, u), the trajectory optimization computes the control trajectory u(t) : [0, T] →
U ⊆ Rm and state trajectory x(t) : [0, T] → X ⊆ Rn that minimizes some measure of

performance J while satisfying all the necessary constraints, e.g. being collision-free and

dynamically feasible, where m and n are the dimension of the control and state space,

respectively. This optimization is formulated as

minimize
x,u,T

J(x, u, T) =

∫ T

0

`(x, u, t)dt+ Φ(x(T))

subject to ẋ = f(x, u)

x(0) ∈ X0, x(T) ∈ Xf
x(t) ∈ X , u(t) ∈ U ∀t ∈ [0, T]

φ(x, u) ≤ 0, ∀t ∈ [0, T]

(1.1)

where T > 0 is the potentially unknown execution time; the system starts from initial

state set X0 and ends at terminal state set Xf ; φ denotes the additional path constraints

on the state and control; `(x, u, t) is the running cost and Φ(x(T)) is the terminal cost.

The flexibility in the design of performance indices and the inclusion of constraints allows

us to obtain desired system behaviors such as aggressive motion to minimize task time,

momentum gaining to handle weak actuation, low-jerk motion to minimize control effort,

and safety-prioritized trajectory to minimize risks. Note that we use x ≡ x(t) and u ≡ u(t)

for simplicity throughout the thesis when there is no ambiguity. Following [4, 5], a brief

history of previous efforts into solving the trajectory optimization problem in Eq. (1.1) is

introduced.

1.1.1 Calculus of Variations

Optimal control is an important application of the Calculus of Variations (CV). The

history of CV dates back to the 17th century when the “branchistochrone” problem was

posed by Galileo Gallilei (1564-1642) which was later solved by John Bernoulli, Leibniz, and

Isaac Newton using CV. Leonard Euler (1707-1783) and Jean Louis Lagrange (1736-1813)

derived the first-order necessary conditions for a optimal solution, called Euler-Lagrange

equations today. Many researchers contributed to the theory of CV, the most important of

which is Pontryagin (1908-1988) for developing the “maximum principle” [6] that deals with

the presence of constraints for the state and input controls.

Most optimal control problems can be solved via the Euler-Lagrange equations and the

maximum principle. For introductory purposes, let us consider a simple problem with fixed

2

start point, fixed duration T , terminal constraint, constrained control, and no path con-

straints. One solves this problem by first introducing Lagrangian multipliers (sometimes

also called costates) λ(t) associated with the constraint of system dynamics and ν associ-

ated with the terminal constraint. Then the Euler-Lagrange equations are applied so one

derives the evolution of λ(t) as an Ordinary Differential Equation (ODE). The optimal con-

trol is derived using Pontryagin’s maximum principle which is usually a function of state x

and multiplier λ subject to constraints on control. The terminal state and ν are derived to

satisfy some equations called transversality conditions.

The complete set of necessary conditions consists of the ODE of system dynamics, the

ODE of λ(t), and transversality conditions at t = T . This is often referred to as a two

point boundary value problem (TPBVP). The readers are referred to [6] for more general

cases such as free T and path constraints. This TPBVP is usually solved with shooting

methods. One starts with some guess of the initial value of λ(t), i.e. λ(0), integrates the

two ODEs involving the evolution of state x(t) and Lagrangian multipliers λ(t), and check

if the boundary conditions at t = T are satisfied. The goal of shooting methods is to find

λ(0) such that boundary conditions at t = T are all satisfied. This is well solved by root-

finding algorithms and once λ(0) is found, the optimal trajectory is obtained by integrating

the ODEs. For specific problems, closed-form solutions can be obtained. One of the most

important applications of this method is the Linear Quadratic Regulator or LQR by Kalman

[7] in 1960 where the system’s dynamics are linear and the objective function is quadratic.

For general nonlinear problems, numerical methods are used to find these roots.

This type of approach to find the optimal trajectory by CV and root-finding algorithms

is usually called an indirect method. Indirect methods were first widely used in aerospace

engineering such as spacecrafts [8], rockets [6, 9], and aircrafts [10]. Indirect methods are

usually efficient due to the small amount of unknowns, and fast convergence rate of nonlinear

equation solver near its solution. The main issue of indirect methods is the difficulty in

finding the root of the TPBVP. In the presence of strong nonlinearities, the domain of

convergence of root-finding algorithms may be too narrow to converge from a random initial

guess. Moreover, the unknown Lagrange multipliers have no physical meaning and it is,

thus, often difficult to provide a reasonable initial guess for their values. The necessary

complex algebraic manipulation is another hurdle to automating indirect methods. One

of the most fatal shortcoming that limits its application area is the difficulty in handling

inequality constraints, especially inequality path constraints of states which exist in most

robotic applications such as collision avoidance. As a result, indirect methods are often used

in applications with simple constraints [11, 12] despite efforts in [13, 14] to handle complex

path constraints with limited success.

3

Since the theory of optimal control has been long established and there is not much

flexibility in TPBVP derivation, the research on indirect methods is often focused on

• How to improve the success rate and efficiency for specific problems [12, 15, 16]

• how to apply it to more challenging problems [17]

• how to provide initial guesses via simplification [14], and combination with other meth-

ods [18].

These methods, however, require specific domain knowledge, are problem specific and diffi-

cult to be generalized to other problems.

In this thesis, a general framework to provide initial guesses for indirect methods is pro-

posed. It uses the assumption that similar problems have similar solutions. For instance, the

optimal control problem starting from two close starts should have similar initial costates

if everything else is the same. This idea motivates to parameterize the problem of interest,

sample problem parameters, precompute a dataset of (problem, solution) pairs, and approx-

imate the mapping from problem to solution from data. The framework, Nearest Neighbor

Optimal Control (NNOC) is presented in Chapater 4 and shows orders of magnitude im-

provement in terms of computational efficiency.

1.1.2 Dynamic Programming

Bellman developed the theory of dynamic programming in the 1950s [19]. An optimal value

function V (x) was defined as the performance index starting from state x, and proceeding

optimally to a terminal state. The optimal control function u(x) is derived using the value

function V (x) and the system’s dynamics. The Hamilton–Jacobi–Bellman (HJB) partial

differential equation [6] is hard to solve analytically and a numerical solution often requires

a discretization of the state space, leading to the “curse of dimensionality”.

Despite the difficulty of solving HJB equation, the Bellman equation expressed in discrete

form has seen many applications. If the state space is limited to a region near a nominal

optimal trajectory, the dynamic programming problem can be approximated by a linear

quadratic (LQ) problem with linearized dynamics equation and quadratic approximation to

the performance index. Such idea has inspired the differential dynamic programming (DDP)

[20], iterative LQR [21], and iLQG [22] methods. These methods iteratively build a local

LQ problem near current trajectory and update the trajectory using the solution from local

LQ problems. These methods however, require tedious derivations to obtain the trajectory

update rule, especially in constrained optimization problems, and requires an initial guess

4

close to optimum, similar to the numerical optimization methods introduced later. Besides,

these methods are generally not efficient enough in real-time applications unless the initial

guess is close to optimum. These methods get the same optimal trajectory with the numerical

optimization methods described in the next section, but are less flexible in terms of choices

of cost functions and constraints.

Reinforcement learning (RL) [23], is another approach to solving optimal control problems.

Classical tabular methods, such as value iteration, policy iteration, and Q-learning [23] are all

based on the Bellman equation. However, tabular methods face the “curse of dimensionality”

problem and policy gradient [24] method is usually used for problems with high-dimensional

state and action space. Note that the policy gradient variant of RL does not explicitly use the

Bellman equation in theoretic derivation, but some implementations, such as actor-critic [25]

method, use it to improve their algorithm’s stability. The main advantage of RL methods

is it does not require the modeling of the system which is difficult in many applications.

However, RL methods are usually not sample-efficient and require many “rollouts” on the

actual system, making it unsuitable in many applications where physical experiments are

expensive or unsafe to do [26]. One could potentially train a RL agent within physical

simulator but it brings the issue of reality gap [27].

In this thesis, RL is mostly not addressed, since all the trajectory optimization methods

studied here require a dynamics model of the system. Model-based RL does exist, but the its

pipeline is to first fit a dynamics model from data and then find a policy subject to the fitted

model. It is thus unfair to compare RL which does not require a model with methods in this

thesis which require a precise model of the system. Theoretically speaking, one can perform

the policy search part using the known dynamics model, but this approach is not easier than

direct trajectory optimization and has difficulty imposing constraints by handcrafting the

reward function [28].

1.1.3 Numerical Optimization

With the development of constrained numerical optimization after WWII, in particular

the work of Kuhn and Tucker [29], large scale NLP solvers have been developed [30, 31].

The narrow convergence domain and inability to handle complex constraints of indirect

methods motivate researchers to find alternatives to it. An alternative is to discretize the

trajectory by values at a finite number of time points using a collocation method [32, 33]

or transcription method [34, 35, 36]. The discretized optimization problem is then solved

by sparse NLP solvers [37]. This approach, called direct methods, can be applied without

deriving the necessary conditions which are treated by the optimizer. This feature makes

5

the method appealing for complicated applications and writing automatic software for direct

methods is much easier than indirect methods. These methods are also able to handle

path inequalities more easily than indirect methods as well and are, thus, widely used in

many applications ranging from industrial robots [38], Unmanned Aerial Vehicles (UAV)

[39, 40, 41, 42], Autonomous Vehicles (AV) [43, 44], and legged robots [45, 46, 47].

One of the most important applications of trajectory optimization is Model Predictive

Control (MPC) [48, 49] which solves a finite-horizon optimal control sequence at every

time step, apply the first optimal control command to the system, and repeat the process.

It originates from chemical engineering where efficiency of trajectory optimization is not

an issue and has recently gathered the attention of the control community. The limited

time budget of robotics control applications only allows MPC be applied in systems with

quadratic costs, linear dynamics, and linear constraints, and limited planning horizon, i.e.

small-scale convex problems For nonlinear problems, a common practice is to use trajectory

optimization to compute an open-loop nominal trajectory, and applying MPC to track the

nominal trajectory after linearization of system dynamics around it. Similar control schemes

are also applicable when MPC is replaced with LQR or Proportional-Integral-Derivative

(PID) controller. In either case, trajectory optimization is used to compute a nominal

trajectory.

Another type of direct methods uses a novel parameterization of the trajectories instead of

discretization. For instance, a trajectory can be parameterized as high order polynomials and

the coefficients are optimized to minimize some cost function. For problems with differential

flatness [50], the dynamics equations are satisfied by computing the controls using the states

and their high order derivatives. The path constraints are satisfied by either placing a grid

on the trajectory [50] or deliberate parameterization such as control points of Bézier curves

[40]. The flexibility of trajectory parameterization is another reason for the popularity of

direct methods which allow for the exploitation of domain knowledge to simplify problems,

even though this is not generalizable.

The flexibility of direct methods comes with drawbacks, such as the limited expressive-

ness of parameterization, large amount of unknowns and constraints [12]. In some cases,

polynomials of finite order are selected as parameterization and may lead to overly conser-

vative trajectories [51]. Both direct transcription and direct collocation methods discretize

the state and control trajectory and may lead to large amount of unknowns and constraints

depending on the discretization resolution. There is a tradeoff between problem scale and

accuracy of discretization. Most importantly, nonlinear dynamics of the system and non-

convex constraints of the problem result in a non-convex optimization problem. Non-convex

optimization still remains as an open-question so it is unclear how to solve them efficiently

6

and reliably without getting into bad local optima.

Some representative recent research in direct methods include

• Application of direct methods to challenging problems such as legged robots with

unknown contact sequences [45].

• Lossless convexification of the optimization problem [52].

• Problem simplification using domain knowledge and novel parameterizations [50, 53].

• Software for general trajectory optimization [54, 55].

These methods, however, do not address the inefficiency caused by non-convex optimization

for general problems where expert knowledge is not available.

Although the large scale and non-convexity are not an issue for non-reactive tasks, due to

their offline computation and physical grounding providing reasonable initial guesses for the

optimization variables, the efficient computation of trajectories remains an open question.

1.2 STRUCTURE EXPLOITATION

In this thesis, we push forward the application of trajectory optimization in reactive tasks

by improving its efficiency and reliability. Specifically, we take advantage of the underlying

structures of some optimization problems and design corresponding solvers that outperform

a general solver, agnostic to such structures.

The first structure is the existence of convex subproblems. This structure is seen in

problems where the optimization variables can be split into two groups and fixing one group

results in a convex problem for the other one. A well-known approach to take advantage of

this structure is to identify the fixed group, heuristically choose a value for it, and optimize

the other group with convex optimization [50, 53]. The first two steps of this approach require

domain knowledge. For instance, in [40, 50] fixing the time allocation to each segment of

a spline trajectory allows the spline coefficients be optimized by Quadratic Programming

(QP). In [53] fixing the path makes the time-optimal problem convex by using a novel

parameterization. We propose a method that improves upon this approach by lifting the

restriction of fixing one group of variables using domain knowledge and, instead, efficiently

optimizing variables in both groups.

For reactive tasks, the distribution of the control task can be described by a probability

distribution of some parameters that uniquely specify a task. These types of planning

tasks are called parametric tasks in this thesis. For instance, a robot navigating in a room

7

has to finish tasks parameterized by the start and goal locations. For parametric tasks,

the trajectory optimization problems are parametric optimization problems [56, 57] as well.

The solution of a parametric optimization problem is a mapping from problem parameter

to the corresponding optimum [56]. The second structure is the local continuity of the

solution of parametric optimization problems called the argmin function in this thesis. For a

parametric optimization problem, the argmin function maps from a parameter to the optimal

solution of the corresponding optimization problem. This local continuity means that, for

every parameter, its solution is similar to the solution of some neighboring parameter. This

property motivates the precomputation of a dataset of sampled problems and learning from

this dataset to help solve new problems. We propose a machine learning method that builds

a model using precomputed data that directly predicts an approximate optimal trajectory

with high reliability so numerical optimization can be avoided, or in the worst case scenario,

be accelerated by better initial guesses.

1.2.1 Convex Subproblems

Here a subproblem means the resulting optimization problem in the remaining optimiza-

tion variables after fixing a subset of them. Formally, for a general constrained optimization

problem P : minx f(x) s.t. g(x) ≤ 0 with a decomposition of the optimization variable x into

two non-empty subsets xu ⊂ x and its compliment xl = x \ xu, a subproblem is defined as

P (xu) : minxl f(xu, xl) s.t. g(xu, xl) ≤ 0. If P (xu) is convex for every valid choice of xu, we

say that P has convex subproblems. Such type of structure has been widely used in UAVs

[40, 50], legged robots [58], manipulators [59], and vehicles [60]. In their work, the main

idea is to use heuristics or sampling to find xu in the first step and convex optimization

to find xl in the second. Apparently, this two-step approach depends on the choice of xu

which is non-trivial to compute and heuristics may work poorly given the nonlinearity of

the problem. These methods sacrifice solution optimality for the efficiency and reliability of

convex optimization methods.

One may wonder if xu can be further optimized but, unfortunately, optimizing xu can be

as difficult as x, if not more, because optimizing xu is non-convex as well and the gradient

of xu is non-trivial to compute since the cost function depends on xl which further depends

on xu [61]. In [50, 62] finite-difference methods are used to approximate the gradient at the

cost of efficiency and precision. Combined with gradient descent, xu can be optimized using

the finite difference approximation of gradients.

At present, not much is known that can be done about the non-convexity of the cost

function w.r.t. xu, but some problems of interest have convex constraints despite having a

8

non-convex objective. The convexity of constraints makes it easy to maintain feasibility since

projection into convex sets is more straightforward than into non-convex sets. For problems

with limited computation time budget, solution feasibility is one of the most important

requirements in case the optimizer is unable to converge within a limited amount of time.

With the constraint convexity assumption, optimization of xu has feasibility guarantees and

is more suitable for real-time applications where early termination may be necessary. As

long as a feasible initial guess is provided, algorithms with proper projection such as SNOPT

[37] maintain solution feasibility in every iteration. In this thesis, we investigate this type

of problem further.

Our strategy is to optimize xu and xl hierarchically under a bilevel optimization framework

[61, 63]. In the upper level xu is optimized using gradient descent subject to convex con-

straints. In the lower level, for given xu, it uses convex optimization to find xl, i.e. compute

xl(xu). The key to efficiently optimize xu is that the lower optimization can provide analytic

gradients of xu to the upper problem. The analytic gradient helps gradient descent converge

more efficiently and reliably than finite-difference approximations [50]. Another reason for

the efficiency of the bilevel framework is related to the scaling of variables. Variables xu

and xl may have vastly different units and scales. The decomposition of x into xu and xl

allows us to scale them separately. Moreover, the numerical sensitivity of the optimization,

i.e. gradients of the cost function with respect to xu and xl can be significantly different

as well. Solving them together may result in an ill-conditioned problem [64] and separating

them may help make both problems better conditioned. This framework is tested on two

types of UAV problems in Chapter 2 and 3.

1.2.2 Argmin Local Continuity

According to the theory of parametric optimization [56, 57, 65], the argmin function is

locally continuous under conditions of local convexity and constraint qualifications. However,

the global behavior of argmin’s continuity is unknown but it is reasonable to assume it

is at least piecewise continuous for non-degenerate problems of interest. In other words,

similar problem parameters usually have similar optimal trajectories. This motivates us to

approximate argmin from data collected by the offline optimization of sampled problems.

Assuming the planning task is parameterized by some vector p with known distribution,

one may sample {pi}ni=1 from the distribution and solve them offline using trajectory opti-

mization to get a dataset of optimal trajectories {zi}ni=1 where zi is the optimal trajectory

for problem with parameter pi. The task is use the parameter-solution pairs {(pi, zi)}ni=1 to

build a model z′(p) that approximates the argmin function z(p). This task is called trajectory

9

learning (TL) or trajectory regression.

Learning from trajectory data has been investigated for decades. Imitation learning (IL)

[66, 67] fits a policy function from data of expert demonstration which usually comes in the

form of trajectories. The difference lies in the fact that IL predicts actions directly while TL

predicts the trajectory which can be thought as a generalized policy. An issue of IL is the

distribution shift that occurs to the states when the policy is applied in a different context

than the expert demonstration. Although DAGGER [68] is proposed to address this issue,

recollecting expert data may not always be available. Inverse reinforcement learning (IRL)

[69] learns a reward function from demonstrations which is then used to optimize the robot’s

policy. This method is in contrast to our method, which assumes that the objective function

is known and uses it to design desired behaviors. This difference also distinguishes our

method from learning from demonstration [70] where humans provide direct demonstration

to the robots. In TL, the trajectories are computed, rather than empirical, which makes them

cheaper and easier to obtain in larger quantities. Learning from precomputed trajectories

is also seen in [71] where precomputed plans are used to train a model that predicts the

next sampling state for sampling based planners. This approach is usually inefficient for

problems with high-dimensional configuration spaces and does not concern multi-modality

of the problem.

Trajectory learning can be beneficial in a few ways. A well trained model directly predicts

the approximate optimal trajectory, bypassing the computationally expensive numerical op-

timization. It is also reliable, since it can always compute a feasible trajectory for a given

problem. Efficiency is guaranteed as long as the model evaluation is not too complex. The

optimality of the prediction is also satisfied as long as the collected data is optimal. The

only core assumption of this method is the local continuity of the argmin function, so this

framework can be potentially applied in a wide range of applications.

The greatest challenge of TL is to guarantee that it achieves decent accuracy over the

whole domain of the argmin function, i.e. it has to perform well over the full support

of the distribution of p to guarantee its success rate and avoid the need for refinement by

nonlinear optimizers due to the issues in efficiency and robustness of non-convex solvers. One

overlooked phenomenon–discontinuity of argmin– hampers the performance of continuous

models such as neural networks. Discontinuity of argmin may occur due to a switch of local

optimal family and degeneration in some problems, as shown later in this thesis. Neural

networks tend to predict an “average” of significantly different trajectories near discontinuity

regions [72]. The prediction is far from all the neighboring trajectories and leads to large

prediction error and eventually task failure, as shown in numerical experiments later.

It is, therefore, important to properly handle discontinuities in order to guarantee model

10

performance even in regions near discontinuity. The k-NN model is intrinsically discontinu-

ous and requires no interpolation and can, thus, handle discontinuous functions. However,

interpolation is indeed desired since it generalizes better to unknown data especially when

data are sparse. It is used in Chapter 4 to provide initial guesses for indirect methods. In

this thesis, the major focus is placed on the Mixture-of-Experts (MoE) model. The MoE is

composed of a classifier and several experts each of which focuses on a subset of the function

domain, all modeled by neural networks. MoE makes predictions by first using the classi-

fier to choose an expert which then predicts the optimal trajectory. It is a discontinuous

model since the classifier prediction is discontinuous. As a result, it can potentially avoid

the “averaging” issue from continuous models. The details of how to train an MoE are

elaborated in Chapter 6. The training procedure requires identification of function discon-

tinuities and splitting of data into pieces within which the argmin function is continuous.

For data splitting (also called data clustering) we propose an empirical approach based on

k-Means in Chapter 6 as well as a topology-based method with more theoretical guarantees

in Chapter 7. MoE is tested on several benchmark problems and shows advantages over

discontinuity-agnostic neural networks in Chapter 6 and 7.

1.3 CONTRIBUTIONS

In summary, this thesis proposes two approaches to exploit two structures within some

trajectory optimization problems in order to achieve reliability, efficiency and optimality of

the planner. The contributions include:

1. A bilevel optimization framework is proposed for problems with the existence of convex

subproblems that is is anytime feasible, efficient, and computes better trajectories than

alternatives thanks to the analytic gradient as a by-product of lower level optimiza-

tion. This framework is tested on the minimum-jerk trajectory problem for UAVs. It

shows orders of magnitude improvement over baseline methods and has been tested in

physical experiments. This work appeared previously as [73] and is submitted to TRO

with co-author Weidong Sun and Kris Hauser. This work is presented in Chapter 2.

2. The bilevel optimization framework is applied to time-optimal problems for UAVs.

An approach similar to log barrier on inequality constraints is proposed that helps

accelerate the lower level problem and smooth upper level problem. Similarly, its

reliability, efficiency and trajectory optimality are better than alternatives that rely on

directly solving the full non-convex problem. This work appeared previously as [74],

11

published in ICRA 2020 with co-author Weidong Sun and Kris Hauser. The details

are in Chapter 3.

3. The NNOC framework is proposed that learns from precomputed solutions and predicts

good initial guesses for nonlinear optimizers. It is tested on indirect methods where

unknown costates have no physical meanings and are difficult to provide initial guesses.

It provides significant improvement in terms of the chance of getting globally optimum

solutions and computational efficiency compared with random restart techniques. This

work appeared previously as [11], published in IROS 2017 with co-author Kris Hauser.

The details are in Chapter 4.

4. A learn, predict, and refine framework is proposed that uses neural networks to learn

from precomputed problems and predict optimal trajectories, and further local refine-

ment by convex optimization. It shows the capability of TL in complex applications

with nonlinear dynamics. The application of this framework on UAVs in physical

experiments shows the efficacy of the framework and advantages of obtaining a near-

optimal trajectory that considers dynamics over simplified methods that only consider

geometry. This work appeared previously as [42], published in IROS 2018 with co-

author Weidong Sun and Kris Hauser. This work is presented in Chapter 5.

5. The MoE framework is proposed that is capable of approximating discontinuous func-

tion and is better suited to TL where the argmin function is discontinuous. Experi-

ments show the best way to train MoE is to split the discontinuous data into continuous

pieces and train an expert for each piece instead of training a single model on the whole

dataset through backpropagation. A simple k-Means method with careful tuning of k

suffices in many problems and MoE is highly reliable in predicting a trajectory exe-

cutable by robots, while continuous neural networks tend to fail near discontinuities.

This work appeared previously as [75], published in ICRA 2019 with co-author Kris

Hauser. The details are in Chapter 6.

6. A topology based framework is proposed that detects if the argmin function to be

learned is discontinuous from data, and uses appropriate methods to split the data for

better MoE learning. Topological Data Analysis (TDA) computes topological features

from data. Any change of topological features is sufficient to prove the discontinuity

of the argmin function. Based on the change of topology, the corresponding data

split scheme is designed to minimize the number of splits while avoiding discontinuity

within each data split. The type of discontinuity from singularity for 3D obstacle

12

avoidance problem is well handled by the topology-based labeling algorithm while k-

Means method struggles with this problem. The details of this work are presented in

Chapter 7.

Finally, Chapter 8 concludes this thesis with a summary of the lessons learned from this

research and a discussion of potential future works in the field.

13

CHAPTER 2: FAST UAV TRAJECTORY OPTIMIZATION USING
BILEVEL OPTIMIZATION WITH ANALYTICAL GRADIENTS

This chapter proposes a bilevel optimization framework to efficiently solve problems where

the convex subproblem structure exists. The problem of time allocation for each piece of

a polynomial spline trajectory for UAVs has this structure and is used as an application

of this framework. In this problem, the time allocation and the spline coefficients are si-

multaneously optimized, leading to a challenging non-convex problem. The usual way is

to choose time allocations heuristically, and use convex optimization to solve the optimal

spline. Our framework improves it by allowing time allocations to be efficiently optimized as

well. The key to its efficiency is the analytic gradient is obtained as a by-product of convex

optimization which is used to compute the spline coefficients. The bilevel formulation may

have non-smooth cost function w.r.t. time allocations and the non-smoothness is handled by

subgradient descent with rigorous proof of convergence. This framework has shown orders

of magnitude improvement in terms of computational time compared with baselines and has

been tested in physical experiments. 1

2.1 INTRODUCTION

Real-time optimal trajectory generation has long been a challenging but essential com-

ponent in robotics. Due to the prevalence of nonlinear dynamics, non-convex constraints

and high dimensionality of the planning space, it is often difficult to optimize trajectories

quickly and reliably. Fortunately for UAVs differential flatness enables trajectory design

with polynomials pioneered by Mellinger et al [50]. Polynomial splines are usually used for

complex tasks and if the time allocation for each piece of the spline is known,the trajectory

can be optimized with Quadratic Programming (QP) methods. This type of method that

fixes a subset of optimization variables and optimizes the rest with convex optimization

has been applied to path planning for autonomous cars [76, 77], humanoid robots [58] and

UAVs [40, 50, 78].

However, this method’s optimality relies on the choice of a proper time allocation of the

splines when used in UAVs, which, given its intricate and highly nonlinear relationship with

the optimization objective and the problem’s constraints is not trivial. Indeed, most existing

methods rely on heuristics for that task [40] and efficient optimization of time allocation still

1This chapter is reproduced from Weidong Sun, Gao Tang and Kris Hauser, “Fast UAV trajectory
optimization using bilevel optimization with analytical gradients”. In 2020 American Control Conference
(ACC). A journal version is in press at IEEE Transactions on Robotics.

14

remains an open question despite efforts in [50, 62]. The lack of ability to efficiently optimize

time allocation leads to two situations. In one situation the optimization takes a long time

and is thus unable to be used in highly reactive problems. In the other one, heuristics are

used and the trajectory has large jerks, which is more likely to fail due to thrust limit and

consumes more energy. It is thus necessary to efficiently optimize the time allocation of UAV

trajectories.

One approach to this probem was proposed by Mellinger et al. [50], who applied a gradient

descent method to refine time allocation. Specifically, they divided the optimization problem

in two subproblems (or levels): the lower level optimizes the path while timing is fixed

using QP, and the upper level optimizes the time allocation using gradient descent. Similar

approach is used in [62].

Nonetheless, finding the gradient of the cost function w.r.t. the time allocation with

constraints present in the QP remains an unresolved issue even though analytic gradient

is recently given for unconstrained QP [79]. To address this, finite difference method [50]

has been employed. But it can be computationally expensive since the number of QPs that

needs to be solved at each gradient step grows linearly with the number of spline segments.

Moreover, the gradient is inaccurate due to truncation errors and difficulty in the choice of

step size. As a result, using finite difference takes longer to converge and tends to converge

to a worse cost.

Aiming to address this complexity, we use sensitivity analysis techniques [65] to compute

the gradient of the time allocation from the dual solution (Lagrange multipliers) of the QP.

By exploiting the dual solution of the QP, our method allows us to compute exact analytical

gradients w.r.t. time allocation, bypassing the downsides of finite difference methods: high

computational complexity and low accuracy. The gradient of time allocation is used with

gradient descent method to optimize the time allocation.

One potential issue is the non-smoothness of the upper level optimization. Fiacco [65]

shows that the smoothness of the optimal cost of parametric optimization problems, i.e.

objective function of the upper level optimization, requires smoothness of both the cost

and constraints, strong convexity near optimum, and some constraint qualifications. In

fact, these constraint qualifications do not hold universally and as a result the upper level is

theoretically a non-smooth optimization problem. Although this is not a problem in practice,

for completeness our method treats objective function discontinuities using a subgradient

method when non-differentiability is detected preventing the progress of gradient descent.

We prove the convergence of this method despite potential function non-smoothness.

The bilevel optimization framework is guaranteed to yield feasible results at any point in its

execution, allowing for arbitrary termination, as long as a feasible initial guess is provided.

15

In contrast, alternative solution methods based on nonlinear optimization such as direct

collocation and joint optimization of spatial and temporal variables have no such guarantee

due to the problem’s strong nonlinearity. Even with feasible initial guesses, our experiments

show that these methods do not have a high success rate since these methods do not force

feasibility during execution. Compared with straightforward gradient approximation by

finite difference, our analytic gradient is more accurate and computationally efficient. As

a result, our method outperforms finite-difference baselines in terms of both computation

speed and solution quality. One numerical example showing the effectiveness of our technique

is in Fig. 2.1. Physical experiments using a real quadrotor on point-to-point navigation and

dynamic goal tracking further demonstrate the effectiveness and real-time capabilities.

(a) Trajectories flying through a point cloud
environment with the initial trajectory (red)
and optimized trajectory using our method
(black). The 12 boxes indicate the safe corri-
dor in which the UAV is constrained.

0 5 10
Time [s]

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

V
el

o
ci

ty
[m

/s
]

X Velocity

Initial

Optimal

0 5 10
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Y Velocity

Initial

Optimal

(b) Velocity profiles of the trajectories in
along the x and y direction.

Figure 2.1: Initial trajectory is computed by the heuristic time assignment from Gao et
al. [40]. Our method optimizes a weighted sum of total jerk and time. Note for this one a
large weight is placed on total time and the trajectory is aggressive since it reaches velocity
limits for a large portion of time.

The contributions of this chapter include

1. A bilevel optimization framework to optimize time allocation with analytic gradient.

2. Comparison with finite-difference, direct collocation, and joint optimization.

3. Theoretical justification of the theorem being used.

4. Subgradient descent method to handle non-smoothness of the cost function and proof

of convergence.

16

5. Test of the algorithm in complex environments and realistic environments represented

by point clouds.

6. Theoretical and empirical scalability analysis to problems with more than 40 segments.

7. Demonstration of real-time capability in physical experiments.

2.2 RELATED WORK

2.2.1 Trajectory Optimization for UAVs

Trajectory optimization solves the problem of computing the optimal trajectory for dy-

namic systems under some cost function and constraints. It is a widely used method for

motion planning of robotic systems. See [80] for an introduction of trajectory optimization

for general systems. Specifically, direct collocation [81] has been widely used. However,

pioneered by Mellinger [50], polynomial trajectories which exploit the differential flatness of

UAV dynamics are often used for UAVs. With the snap of the trajectory as the cost func-

tion, a quadratic optimization suffices to compute the optimal trajectory. Some extensions

to this framework include using Bézier curve control points as optimization variables and

safe corridor generation to guarantee collision avoidance [40]. However, to use this frame-

work, the temporal variables of the trajectory such as the duration of each segment have

to be chosen prior to optimization. They are usually chosen by heuristics and this provides

room for optimization of time allocations. Wang et al. [82] propose an alternating method

but it lacks the ability to handle complex spatial constraints. Recent work [83] uses mixed-

integer QP to solve for trajectories and guarantees safety by always having a feasible, safe

back-up trajectory. However, the mixed-integer QP does not scale well with the number of

convex polyhedra. Our paper demonstrates the scalability of our method, which can solve

problems in corridors with up to more than 40 polyhedra. Gao et al. [41] computes safe

and aggressive trajectories in real time from human-piloted trajectories, and generates them

by alternatively optimizing the spatial and temporal trajectories. However, the two parts

optimize different objective functions, so convergence is not guaranteed. On the contrary,

our bilevel optimization method has been proven to converge to a local minimum.

2.2.2 Optimizing Time Allocation

As described above, trajectory optimization with polynomial splines is a well-studied

problem as long as the spline timing is fixed. However, finding an optimal time allocation in

17

real-time is still challenging. One strategy [40, 78] is to use heuristics such as graph search on

a discretized grid to generate a time allocation and keep timing fixed during the optimization

stage. Iterative methods such as gradient descent [50, 62] have also been used to optimize

time allocation. However, if gradients are computed by finite differences, (n + 1) QPs have

to be solved for a problem with n segments for every gradient evaluation, making it slow

and inaccurate. Another strategy to determine time allocation is to use sampling [58]. This

approach randomly samples the duration of each spline segment until the corresponding QP

can be solved, and has been applied successfully to humanoid locomotion problems. Because

optimality is not emphasized, this method is only helpful in settings where obtaining a

feasible solution is the major bottleneck.

2.2.3 Bilevel Optimization

Bilevel optimization [63] refers to a mathematical program where one optimization prob-

lem (the upper-level optimization problem) has another optimization problem (the lower-

level optimization problem) as one of its constraints, i.e., one optimization task is embedded

within another.

Bilevel and multi-level optimization techniques have been employed for switching time op-

timization for switched systems [84, 85, 86, 87]. These works focus on calculating derivatives

of an objective function with respect to switching times. In particular, works by Xu et al. [84]

and Egerstedt et al. [85] compute the derivatives using Lagrange multiplier methods, which

bear some resemblance to sensitivity analysis technique used in this paper. However, these

works are based on Pontryagin’s Maximum Principle [80] and fall short of the capability to

include inequality path constraints, which is often unavoidable in robotic applications.

Applications of bilevel optimization in robotics include trajectory optimization for legged

robots [87], and robust control and parameter estimation [88]. Landry et al. [88] present a

bilevel optimization solver based on an augmented Lagrangian method, however their bilevel

method is slower than directly solving the NLP in their experiments.

Many algorithms are available to solve bilevel optimization, and we refer readers to Sinha

et al. [63] and Colson et al. [61] for more comprehensive treatments of the topic. Most

closely related to our approach is the descent method, which seeks to decrease the upper-

level objective while keeping the new point feasible. Our method might be categorized as a

descent method as we solve the upper-level optimization problem by gradient descent using

gradients provided by the lower-level optimization problem. The descent method requires

gradient of the upper-level objective to be computed in order to proceed, but the computation

of gradient may be non-trivial. In [50, 62] finite-difference is used to approximate the gradient

18

at the cost of efficiency and precision, while in this work analytic gradient is computed to

improve the efficiency.

2.2.4 Gradients in Bilevel Optimization

Efficiently and accurately computing gradients of the lower-level optimization problem is

essential in applying gradient-based methods to solve bilevel optimization problems. The key

derivation used in our algorithm is based on sensitivity analysis for parametric NLPs [65].

The method used to compute gradient in this work is very similar to Pirnay et al. [89], which

provides the optimal sensitivity of solutions to NLP problems.

Efficient computation of gradients of optimization problems is also explored in the field

of machine learning. OptNet [90] incorporates a QP solver as a layer into the neural net-

work and is able to provide analytical gradients of the solution to the QP with respect to

input parameters for back propagation. Gould et al. [91] presents results on differentiating

argmin optimization problems with respect to optimization variables in the context of bilevel

optimization.

2.3 METHODOLOGY

2.3.1 Trajectory Optimization Preliminaries

In the case of UAV motion planning, differential flatness allows us to plan a trajectory in

the UAV’s four flat outputs [p(t)T ψ(t)]T which consist of 3-D position p(t) ∈ R3 and yaw

angle ψ(t) ∈ SO(2), without explicitly enforcing dynamics [50]. In this work, we plan in R3

by assuming the yaw stays constant, which is a common practice in UAV motion planning.

Trajectory optimization aims to find a trajectory x : [0, T] → Rd that minimizes some

measure of performance J while satisfying all the necessary constraints, e.g. being collision-

free and dynamically feasible, and is formulated as:

minimize
x,T

J(x, T) =

∫ T

0

`(x, t)dt+ Φ(x(T))

subject to x(0) = x0

x(T) ∈ Xgoal

φ(x(t)) ≤ 0, ∀t ∈ [0, T]

θ(x(t)) = 0, ∀t ∈ [0, T],

(2.1)

which is similar to the definition in Chapter 1 Eq. (1.1) except that the state vector x now

19

only contains the 3-D position p(t); constraints of dynamical equation are neglected due

to differential flatness; and constraints are split into equality and inequality constraints φ

and θ, respectively. Collision avoidance is the major constraint and encoded in g. Other

constraint include limits of velocity and acceleration.

2.3.2 Safe Corridors

To guarantee that the whole trajectory will stay collision-free, we extract a safe corridor

from the environment using the implementation from Gao et al. [40]. Here we give a brief

overview of their method. Given a map represented by an occupancy grid or an Euclidean

signed distance field (ESDF), a start position and a goal position, a safe corridor is generated

by taking the following steps:

1. Inflate all the obstacles in the map by a safety radius, so that the UAV can be consid-

ered as a point.

2. Find a path that connects the start and the goal using A? search or fast marching

method (FMM).

3. Grow a safe corridor consisting of convex polytopes around the path. In our implemen-

tation, we generate axis-aligned boxes by growing an axis-aligned box centered around

each node in the path until it hits an obstacle, and then removing redundant boxes.

One such corridor and its corresponding environment2 is shown in Fig. 2.1a. Here, axis-

aligned boxes are chosen for simplicity and compatibility with the grid data structures com-

monly used by perception algorithms. But in general, our method is applicable to corridors

composed of any convex polyhedron.

2.3.3 Trajectory Optimization with Piecewise Bézier Curves

In this section we define a trajectory optimization problem in terms of spatial variables c

(polynomial coefficients) and temporal variables y (durations of each segment of the curve).

We represent the trajectory as a piecewise Bézier curve of order d with n segments and

segment durations ∆t1, . . . ,∆tn. The timing of each knot point (connection point between

two consecutive pieces) is given by ti = ti−1 + ∆ti with t0 = 0. The i’th segment is defined

2http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/. Last retrived Jul-31-
2020.

20

over the domain [ti−1, ti] as:

x(t) =
d∑
j=0

cijBd,j

(
t− ti−1

∆ti

)
, t ∈ [ti−1, ti] (2.2)

for each i = 1, . . . , n, where cij ∈ R3 denotes the j’th control point in the i’th segment and

Bd,j denotes the j’th Bernstein polynomial of order d defined as

Bd,j(u) =
d!

j!(d− j)!u
j(1− u)d−j. (2.3)

We gather all the polynomial coefficients (control points) in the flattened vector c ∈
R3n(d+1) and define the time allocation as y = [∆t1, . . . ,∆tn]T ∈ Rn

+ .

Objective Function Often, the objective function J is chosen to be the integral of the

squared norm of some high-order derivative of the trajectory to penalize control effort. We

use a more general objective:

J(x, T) =

∫ T

0

‖x(q)(t)‖2dt+ wT, (2.4)

which is a weighted sum of the integral of the squared L2-norm of the q’th derivative and

the traversal time T , with weighting parameter denoted by w.

It has been shown that the first term in Eq. (2.4) can be written as a quadratic function

of the coefficients c, with the quadratic matrix Pq(y) determined by time allocation y and

the order of derivative q [40, 50]. With a slight abuse of notation, we can write Eq.(2.4) in

terms of polynomial coefficients c and time allocation y:

J(c, y) = cTPq(y)c+ 1Ty, (2.5)

where Pq(y) is a symmetric positive semidefinite matrix that is nonlinear in y and 1 is a

vector of 1s. Note that we will drop the subscript q in Pq(y) from now on since it is assumed

to be q = 3 (we wish to find a minimum jerk trajectory) throughout this work.

Constraints on Continuity Constraints on the trajectory should be enforced so that:

a) States at the start and end of the trajectory should match the initial state and (op-

tional) final state.

b) Continuities at knot points which ensure a smooth transition between each segment of

21

the trajectory. If the trajectory needs to be Ck continuous, equality constraints up to

the k’th order should be applied at all knot points. We found that in the UAV case,

applying continuity constraints up to acceleration yields good results, the same as [40].

The above constraints can be compiled into a linear equality constraint on the polynomial

coefficients c:

H(y)c = h, (2.6)

where the matrix H is generally nonlinear in time allocation y.

Constraints on Safety and Dynamic Feasibility Safety and dynamical feasibility are

ensured by imposing inequality constraints such that:

1. The whole trajectory stays in the safe corridor discussed in Section. 2.3.2.

2. The maximum velocity ‖x′(t)‖∞ and maximum acceleration ‖x′′(t)‖∞ along the tra-

jectory are bounded, i.e.,

‖x′(t)‖∞ ≤ vmax, ‖x′′(t)‖∞ ≤ amax ∀t ∈ [0, T] (2.7)

with vmax and amax prescribed by the capabilities of the vehicle, user preference or

operational norms.

We encode the trajectory using a piecewise Bézier curve [40], which has the properties:

1. The curve is totally contained in the convex hull of its control points.

2. The derivative of a Bézier curve is again a Bézier curve, with its coefficients being a

linear combination of its antiderivative’s coefficients.

Using these properties safety and dynamically feasible constraints can be imposed as a linear

inequality constraint on the flattened coefficients [40]:

G(y)c ≤ g, (2.8)

where matrix G is generally nonlinear in time allocation y.

We note that constraining position, velocity and acceleration using control points of Bézier

curve does introduce some conservativeness since only the ends of the curve reach the convex

boundary even if all control points are at boundary. This effect can be seen in Fig. 2.1b, in

which the velocity limits of ±2 m/s are only reached at a few discrete points.

22

An alternative collocation implementation would use a grid along the trajectory, with

constraints applied at grid points. Although collocation is less conservative, it would not

guarantee feasibility at non-grid points. Another approach is to split the Bézier curve into

more pieces so the curve can be represented by more control points. We refer readers to [51]

for a more detailed discussion about the conservativeness of Bézier curve in a convex hull

and potential alternatives.

If the total trajectory time can be changed, one can optimize without velocity and accel-

eration bounds and simply increase the total trajectory time to satisfy the bounds without

losing optimality of the time allocation. In fact, since our objective minimizes jerk, the

dynamic feasibility is already considered in the cost function to some extent. No matter

what representation is used, only the lower level optimization is affected and the efficacy of

our analytic gradient computation and gradient descent method still holds.

Constraints on Time Hard constraints on time allocation y may be imposed, such as a

fixed total traversal time or that the duration of each segment must be positive. We encode

these constraints as

Ay ≤ b, Cy = d, (2.9)

with A, b, C, d properly chosen.

2.3.4 Final Formulation

In summary, we collect Eq. (2.5), (2.6), (2.8) and (2.9), into the problem of Trajectory

Optimization using Bézier spline in a Corridor (TOBC):

minimize
c,y

J(c, y) = cTP (y)c+ w1Ty

subject to Ay ≤ b

Cy = d

G(y)c ≤ g

H(y)c = h,

(2.10)

which is nonlinear in time allocation y and convex (quadratic) in spline coefficients c for

fixed y. This formulation generalizes the formulations found in [40, 58, 77, 78].

We mainly study two variants of (2.10). The two variants differ in how the total trajectory

time is treated. One choice is to fix the total trajectory time since otherwise to minimize

trajectory jerk the total time goes to infinity. Another choice to prevent such a trivial

solution is to add the total trajectory time into the objective function. The Hard Time

23

variant imposes a fixed traversal time and uses minimum-jerk as the objective (following

Mellinger and Kumar [50]):

minimize
c,y

J(c, y) = cTP (y)c

subject to 1Ty = Tc

y ≥ δ

G(y)c ≤ g

H(y)c = h,

(2.11)

where Tc is a fixed traversal time, e.g., chosen by a higher-level planner, and δ is a small

value (we use 1× 10−6) which ensures that durations are positive in each corridor. We note

that the fixed traversal time Tc is necessary.

The Soft Time variant uses a weighted sum of jerk and traversal time as the objective

(following Richter et al. [62]) rather than imposing hard constraints on traversal time:

minimize
c,y

J(c, y) = cTP (y)c+ w1Ty

subject to y ≥ δ

G(y)c ≤ g

H(y)c = h.

(2.12)

One use case of Eq. (2.12) is tracking a dynamic goal, with the tracking aggressiveness

tuned by the weight w.

2.3.5 Formulation of the Bilevel Optimization Problem

To efficiently solve (2.10), we will rewrite it as a bilevel optimization problem, which is

defined as follows [63].

Definition 2.1. A bilevel optimization problem is given by

minimize
xu∈XU ,xl∈XL

F (xu, xl)

subject to xl ∈ argmin
xl∈XL

{ f0(xu, xl) :

gi(xu, xl) ≤ 0, i = 1, . . . ,m

hi(xu, xl) = 0, i = 1, . . . , p}
Gi(xu, xl) ≤ 0, i = 1, . . . ,M

Hi(xu, xl) = 0, i = 1, . . . , P

(2.13)

24

Figure 2.2: An illustration of bilevel optimization: y(1), y(2) and y(3) are three feasible
time allocations, they are optimized in the upper-level optimization problem. Each of these
y corresponds to a quadratic programming problem, which is being solved in the lower-
level optimization problem. The red paraboloids are quadratic objective functions, cyan
planes are equality constraints, no inequality constraints are drawn for illustration purposes.
Feasible sets are purple curves, and purple dots are the optimal solutions to each lower-level
optimization problem.

where the upper-level optimization problem is defined by upper-level objective F (·) and

upper-level constraints encoded in G(·) and H(·). The lower-level optimization problem,

defined by lower-level objective f0, with lower-level constraints {fi(·)}mi=1 and {hi(·)}pi=1, is

embedded as a constraint in the upper-level optimization problem. The upper-level and

lower-level decision variables are xu and xl, respectively. In Fig. 2.2 we illustrate a simple

bilevel optimization problem where xu ≡ y encodes the constraints and xl is the lower-level

variable to be solved for every instance of y. In this problem for every y the constraint is

different, and so is the optimal solution. In general, both the cost function and constraint

may depend on the upper level variable xu but here only the constraint depends on xu. The

goal in this problem is to find the optimal y such that the corresponding lower-level problem

has the smallest cost. Our analytic gradient computes the gradient of the lower level optimal

cost with respect to the upper level variable xu.

However, the bilevel optimization problem defined in Definition 2.1 is in general difficult to

solve if no structure exists such as convexity of the lower-level problem or the lower-problem

has closed-form solution [61]. Luckily, in our problem one structure is the lower and upper

problems share the same objective function, and the original problem can be written as

minimize
xu∈XU ,xl∈XL

F (xu, xl)

subject to Gi(xu, xl) ≤ 0, i = 1, . . . ,M

Hi(xu, xl) = 0, i = 1, . . . , P

(2.14)

25

which can be solved by joint optimization of xl and xu by nonlinear optimizer. The bilevel

formulation is

minimize
xu∈XU ,xl∈XL

F (xu, xl)

subject to xl ∈ argmin
xl∈XL

{ F (xu, xl) :

Gi(xu, xl) ≤ 0, i = 1, . . . ,M

Hi(xu, xl) = 0, i = 1, . . . , P}
Gi(xu, xl) ≤ 0, i = 1, . . . ,M

Hi(xu, xl) = 0, i = 1, . . . , P

(2.15)

Note that the only difference is the bilevel formulation have additional constraints that are

automatically satisfied at the optimum of the original problem in Eq. (2.14). To simplify

Eq. (2.15) the constraints in {Gi}Mi=1 and {Hi}Pi=1 are split into two groups–one group (poten-

tially empty) depends on xu only and the other one contains the remaining constraints. For

simplicity, they are written as ϕu(xu) ≤ 0 and ϕl(xu, xl) ≤ 0 with appropriate dimensions.

Note equality constraints are expressed using two inequality constraints in ϕu and ϕl. The

problem is then written as

minimize
xu∈XU ,xl∈XL

F (xu, xl)

subject to xl ∈ argmin
xl∈XL

{ F (xu, xl) :

ϕl(xu, xl) ≤ 0}
ϕu(xu) ≤ 0

(2.16)

The lower problem allows to write its optimum x∗l as a function of xu (assuming the

lower problem has unique solution so we can call it function instead of set mapping, but the

framework also works if the solution is indeed a set) and the upper level problem is now

minimize
xu∈XU

F (xu, x
∗
l (xu))

subject to ϕu(xu) ≤ 0
(2.17)

where the objective function only depends on xu (potentially non-convex and non-smooth)

and constraints of xu are convex. This formulation assumes the minimizer of the lower

problem x∗l exists and is unique for every xu ∈ XU . While this is in general not true, but for

the problem studied in this chapter, the uniqueness of the lower problem can be proved. The

existence, however, is seldom an issue since infeasible lower problem means the objective of

the upper problem is infinity and should be avoided in upper level optimization.

26

However, the upper level optimization problem is usually difficult to solve for general

bilevel problem, and sometimes more challenging than solving the original problem without

decomposition even if the lower problem is convex. In the upper problem function evaluation

becomes more expensive since the lower problem has to be solved for every evaluation.

Even if the lower problem is convex and generally efficient to solve, it is still much more

computationally expensive than simply evaluating the objective and cost functions in the

original problem. Moreover, one has to differentiate F (xu, x
∗
l (xu)) to compute the gradient

w.r.t. xu in order to optimize it unless derivative-free methods are used which tend to

be inefficient. The differentiation is highly non-trivial since it requires to differentiate the

optimizer of the lower problem which may not be expressed in closed-form. In [50, 62]

finite-difference is used to approximate the gradient at the cost of efficiency and precision.

Moreover, the optimizer of the lower problem may be non-smooth w.r.t. xu if some constraint

qualification are not satisfied [65], leading to non-smooth upper cost function. The upper

problem may be constrained if φu is not empty which may impose feasibility challenges.

Following definition in Eq. (2.16), we rewrite (2.10) as:

minimize
c,y

J(c, y) = cTP (y)c+ w1Ty

subject to c ∈ argmin
c
{J(c, y) : G(y)c ≤ g, H(y)c = h}

Ay ≤ b

Cy = d.

(2.18)

Note that although the objective functions J(c, y) remain the same in both the lower-level

(also the first constraint) and upper-level optimization problem, y is fixed in the lower-level

optimization problem but becomes the optimization variable in the upper-level optimiza-

tion problem. The lower-level problem is also a quadratic program (QP) because J(c, y) is

quadratic in c when y is fixed.

Our solution strategy is to use constrained gradient descent on the function J?(y) =

J(c?(y), y) with c? minimizing the QP for every time allocation y, i.e.,

c?(y) ∈ argmin
c
{cTP (y)c : G(y)c ≤ g, H(y)c = h}. (2.19)

With this notation, the problem becomes

minimize
y

J(y) = c∗(y)TP (y)c∗(y) + w1Ty

subject to Ay ≤ b

Cy = d.

(2.20)

27

Gradient descent has, indeed, been used to solve bilevel optimization problems [63], and

our framework is a variant of this method. Note that in Eq. (2.18) and (2.19) we express

c ∈ argmin since the solution to the lower problem is in general a set. However, we prove in

Sec. 2.4 that the optimal solution to TOBC is unique. Given a feasible y ∈ Rn, we find a

direction −∇yJ
?(y) ∈ Rn and a step length α that can make a sufficient decrease in J?(y)

while maintaining the feasibility of the new point ynew = y − α∇yJ
?(y). The key issue with

this approach is obtaining the gradients, which we address in the next section.

For this problem, a bilevel optimization framework may indeed outperforms joint opti-

mization for several practical reasons. The lower level solves spatial variables and utilizes

off-the-shelf convex solvers to handle the strong sensitivity of polynomial coefficients and

constraints for collision avoidance. The upper level optimizes temporal variables that are

numerically better behaved with simple linear constraints after being decoupled with spatial

variables. using gradient descent with backtracking line search [64] and gradient projection.

Because gradient descent does require a feasible initial guess of y, it is worth describing

how such a feasible point can be determined. For TOBC, feasibility requires meeting velocity

and acceleration limits, which requires enough time to be allocated to segments. If the initial

and final states are static (with zero velocity and acceleration), one can increase the total

trajectory time by scaling the time allocation to make it feasible. In other cases, however,

an initial guess may not be feasible. One possible approach to mitigate this problem is to

define a relaxed inner problem with slack variables if the initial guess is infeasible. We leave

this problem to be addressed in future work.

2.3.6 Gradient Computation

We use a key result from sensitivity analysis of parametric nonlinear programming (NLP) [92,

Thm 2.3.3] to derive the gradient ∇J?(y). In our problem, the lower-level objective is the

same as the upper-level one, which allows us to derive gradients of the upper-level decision

variables through sensitivity analysis. For brevity, we give results of first-order sensitivity

analysis and refer readers to [92] for details.

Theorem 2.1. Consider the problem of finding the local solution c(y) of a parametric NLP

problem:

minimize
c

J(c, y)

subject to gi(c, y) ≤ 0, i = 1, . . . ,m

hj(c, y) = 0, j = 1, . . . , p

(2.21)

where c is the vector of decision variables and y ∈ Rn is a parameter vector. Let c?(y0) be

28

a locally optimal solution, and let λ and ν be Lagrange multipliers associated with g(·) and

h(·), respectively.

If the following conditions hold:

1. functions J(·), gi(·) (for all i) and hj(·) (for all j) are twice continuously differentiable

in c, and their gradients w.r.t. c and the constraints gi(·) (for all i) and hj(·) (for all

j) are once continuously differentiable in y in a neighborhood of (c?, y0),

2. objective J(c, y) is twice continuously differentiable in (c, y) near (c?, y0),

3. the strong second-order sufficient conditions (SSOSC) hold at c?(y0),

4. the gradients ∇gi(c?, y0) (for i such that gi(c
?, y0) = 0) and ∇hj(c?, y0) (for all j) are

linearly independent,

then in a neighborhood of y = y0, the gradient of the objective is

∇yJ
?(y) = ∇yJ +

m∑
i=1

λi(y)∇ygi +

p∑
j=1

νj(y)∇yhj. (2.22)

Moreover, similar theorem in [65] further requires the Strict Complementary Slackness

(SCS), i.e., λi > 0 when gi(c
?, y0) = 0 but only requires second-order sufficient condition.

With SCS, the active set which is the collection of inequality constraints where equality

holds i.e. {i ∈ {1, . . . ,m}|gi(c∗, y0) = 0} does not change. Theorem in [92] does not require

SCS and this means J∗(y) is differentiable even if some constraints switches between being

active and non-active.

In our problem, conditions 1) and 2) are satisfied by construction; SSOSC can be proved

(see Appendix 2.7.1 for details). However, condition 4), also known as the Linear Inde-

pendence Constraint Qualification (LICQ) may fail in some cases. Moreover, this condition

can only be verified after the NLP is solved and the pattern of active constraints is known.

When LICQ holds, the Lagrangian multipliers are unique and Eq. (2.22) computes the exact

gradient of the objective. When LICQ does not hold, however, the Lagrangian multipliers

associated with linearly dependent constraints are not unique. The Karush-Kuhn-Tucker

(KKT) condition is satisfied for infinite number of multipliers. As a result, the gradient

computed by Eq. (2.22) may not be unique. In Sec. 2.4.3, we show that under the assump-

tion of Slater’s condition [93], Eq. (2.22) computes a subdifferential. Slater’s condition only

requires the existence of a feasible solution in the interior of the convex feasible set and is

not a strict assumption.

29

2.3.7 Solving Bilevel Optimization

Our algorithm, given in Alg. 2.1, uses a combination of gradient descent and subgradient

descent to solve (2.18). It takes an initial guess of the time allocation y0 as input. It then

iteratively descends J?(y) until some optimality conditions are satisfied or the maximum

number of iterations is reached. The usual step is a gradient descent step, but if it is

detected that the function is nondifferentiable, the algorithm switches to take a subgradient

step. Subgradient descent is widely used in training deep neural networks for non-convex

and non-smooth objective functions. Subgradient descent alone, however, is quite slow due

to diminishing step sizes. In our problem, the function is smooth in most regions so gradient

descent with line search is usually far more efficient. As we shall see in the experiments,

the subgradient step is rarely taken, but can kick the algorithm out of states where gradient

descent gets stuck.

Algorithm 2.1: Refine-Time (y0, αsub)

1 y ← y0, nsub ← 0, Jopt ←∞, yopt ← 0
2 for i← 0 to max-iterations do
3 J, λ, ν ← Solve-QP(P (y), G(y), g,H(y), h)
4 g ← Get-Gradient(λ, ν) // From Eq. (2.22)
5 p← Project-Gradient(g, A, b, C, d)
6 α, J, y ← Line-Search(y, p)
7 if α not found then
8 y ← y − αsubp/(nsub + 1), nsub ← nsub + 1
9 J ← J(y)

10 else
11 if optimality-conditions-satisfied then
12 break
13 end

14 end
15 if J < Jopt then
16 (Jopt, yopt)← (J, y)
17 end

18 end
19 Return yopt

Line 3 solves a QP problem with a time allocation y and then returns the objective value

J and the dual solution (Lagrange multipliers) λ and ν. Line 4 computes the estimated

gradient of the objective w.r.t. time allocation y with the Lagrange multipliers λ and ν

using Eq.(2.22). Line 5 finds a normalized descent direction from the gradient by projecting

the gradient onto the null space of equality constraints Cy = d [64]. In the Hard-Time

30

variant that we consider, the constraint is that total time is a constant, and hence the

projected gradient is computed as p = g − 1
n

∑n
i=1 gi.

Line 6 calls the line search Alg. 2.2 to find a suitable step length α that meets the

inequality constraints on y and gives sufficient decrease in the objective function. If α

cannot be found, we assume y is near a non-smooth region, so Alg. 1 takes a subgradient

step without checking for sufficient decrease. If taken, the first subgradient step size αsub is

initially set to the initial α at the step when line search fails. If a line search step can be

found, the following optimality conditions are checked in Line 7:

1. Norm of the projected gradient is less than 1× 10−3.

2. The change of the absolute or relative objective function is less than 1× 10−3.

Since the subgradient step may actually increase the objective function’s value, the best

solution during all iterations is returned (Lines 12–14).

Algorithm 2.2: Line-Search (ys, p)

1 static variable α0 constant variables τg > 1, 1 > τs > 0
2 α← α0

3 for i← 0 to max-iterations do
4 y = ys − αp
5 J, λ, ν ← Solve-QP(P (y), G(y), g,H(y), h)
6 if sufficient-decrease-achieved then
7 if i = 0 then
8 α0 ← τgα
9 else

10 α0 ← τsα
11 end
12 Return α, J, y

13 end
14 α← τsα

15 end
16 Return “not found”, J, y

We use an adaptive backtracking method to find a step α to achieve the Armijo sufficient

decrease condition [64]. If it fails to find a decrease, “α not found” will be returned as in

Line 16. The initial step length α0 defined in Line 1 will be updated adaptively. The update

strategy is similar to the update of trust region radius in a trust region algorithm [64]: α0

will grow or shrink based on the decrease achieved in the first iteration, shown in Line 8 and

Line 10, respectively. We find adaptive line search useful since it reduces the number of QPs

31

that are solved during line search and time for solving QPs dominates our algorithm’s time

complexity.

For a candidate step y → y − αp where α is the step size and p is the gradient, a non-

smoothness occurs when some point along this line segment fails to meet the LICQ condition

and first-order Taylor expansion does not well approximate the function value. However,

we do not attempt to detect every point at which the objective is non-smooth, because

the gradient can still make adequate progress (as determined by the sufficient decrease

condition) and it is practically computationally expensive to do. Instead, we decide to

trigger the subgradient step only when backtracking line search fails to find a sufficient

cost decrease. The subgradient steps use a standard diminishing step size to guarantee

convergence. We justify this decision further with the convergence analysis of Sec. 2.4.

Moreover, our experiments in Sec. 2.5.3 suggest that introducing subgradient steps increases

the number of iterations, but with the benefit of providing more opportunities to improve

the objective.

2.4 CONVERGENCE ANALYSIS

Although gradient descent with line search is convergent in smooth regions [64], we must

study the behavior of Alg. 2.1 in non-smooth regions when it switches to subgradient meth-

ods. The proof is mainly based on results from Davis et al. [94] which prove the convergence

of the stochastic subgradient descent method for a wide variety of functions including those

represented by deep neural networks. We prove convergence by showing the cost function

of the upper optimization in our problem satisfies the conditions of the theorem in [94]. We

note that the proof relies on the very structure of our problem and is not necessarily true for

other bilevel optimization problems. Specifically, the main property we use is the convexity

of the lower level problem.

2.4.1 Clarke Subdifferential

For a locally Lipschitz continuous function f : Rd → R, the Clarke subdifferential [95,

Ch2, Theorem 8.1] of f at any point x is the set

∂f(x) ≡ conv
{

lim
i→∞
∇f(xi) : xi

Ω−→ x
}

(2.23)

where Ω is any full-measure subset of Rd such that f is differentiable at each of its points;

conv means the convex hull of the limit of gradient for all sequences in Ω approaching x and

32

a point is (Clarke) critical if 0 ∈ ∂f(x). An arc x(t) : R+ → Rd is called a trajectory if it

satisfies the differential inclusion

ẋ(t) ∈ −∂f(x(t)) for a.e. t ≥ 0 (2.24)

An iteration sequence is used to track the trajectory

xk+1 = xk + αk(gk + ξk) (2.25)

where αk > 0 is a sequence of step sizes that is square summable but not summable, gk ∈
−∂f(x), and ξk is noise which is zero in our case. Then by [94, Theorem 3.1] the sequence

generated by Eq. (2.25) approximates the trajectory of the differential inclusion.

2.4.2 Convergence Result

In order for the trajectory of differential inclusion to converge to a critical point, a suffi-

cient condition is that f(x) must locally Lipschitz and semianalytic [94, Theorem 5.9]. This

condition requires f(x) to be piecewise analytic which fits naturally in our case where differ-

ent combinations of active inequality constraints result in piecewise functions. It suffices to

show within each piece, that the optimal cost of the lower optimization is an analytic func-

tion. Considering that the lower problem is a QP which can be solved by inverting a matrix

whose entries are analytic functions of the time allocation y given y > 0, the optimal solution

is an analytic function, and, consequently, so is the cost function of lower optimization.

It remains to show that each piece is connected, i.e. the optimal lower cost is continuous

with respect to the time allocation y. This can be shown by Theorem 2.1 of [65] which states

that the optimal cost is continuous as long as: the set-valued mapping from time allocation

to the feasible set (of lower optimization) is continuous; the feasible set is compact; and the

objective function is continuous. These conditions are easy to verify in our problem. As a

result, the subgradient methods being used in Alg. 2.1 converges to a critical point as long

as 1) the gradient from Eq. (2.22) is indeed a subdifferential even when LICQ fails to hold

and 2) the constraints in the upper level optimization do not affect the convergence of the

algorithm. These two conditions are discussed in the next two sections.

2.4.3 LICQ Failure

LICQ fails when, at the optimum point, the linearized equality and active inequality

constraints are linearly dependent. In that case, the Lagrangian multipliers associated with

33

those constraints are non-unique. In our problem, the lower optimization is QP and, thus, if

LICQ fails to hold, it means that some rows of H and GA are linearly dependent where GA

is the collection of inequality constraints that are active. Commercial QP solvers like Sqopt

and Mosek have a pre-solve process that eliminates redundant constraints so the actual QP

being solved returns unique multipliers and the redundant constraints have multipliers of

zero.

When LICQ fails, we have to assume Slater’s condition [93] holds. The Slater’s condition

imposes restrictions on the feasible set and requires the existence of a point in the feasible

set such that inequality constraints are strictly smaller than 0. The Slater’s condition is not

strict and only fails to hold for pathological cases in our problem. One pathological example

is due to velocity limit and time limit, the drone has to be at the maximum velocity to

travel from one end to another. Considering a 1D single corridor case starting from 0 to 1

within 1 seconds. The velocity limit of 1 m/s requires all velocity inequalities constraints

to be active and the feasible set has no interior. This case, however, is close to infeasibility

so it rarely occurs. Besides, this case is unstable and small perturbation to y solves the

issue. For convex problems, Mangasarian-Fromovitz Constraint Qualification (MFCQ) [56]

holds if Slater’s condition holds. Then the optimal cost of the lower problem is directional

differentiable [56, Theorem 7.3] in any direction and the directional derivative is given by

∇yJ
∗(ȳ, z) = min

c̄∈S(ȳ)
max

µ∈M(c̄,ȳ)
∇yL(c̄, ȳ, µ)z (2.26)

where z with ‖z‖ = 1 is any direction; S(ȳ) is the set of minimizers which is singleton in

our case due to uniqueness of the optimal solution; µ is the Lagrangian multipliers vector

and M(c̄, ȳ) is the set of valid multipliers that satisfy KKT conditions. In our problem, the

optimum is unique due to SSOSC so we can remove the minimum operator. The directional

derivative is obtained by essentially solving a linear program to compute the multipliers.

According to the proof within [56, Theorem 7.3], M is compact if MFCQ holds. Since

constraints are linear, M is essentially a polyhedron defined by equality and inequality con-

straints of KKT equations, so is the set of values of ∇yL(c̄, ȳ, µ) due to its linear dependency

on µ. For all the vertices, there exists a z such that the maximum is obtained at the vertex

due to convexity. In that direction, ∇yL(c̄, ȳ, µ) computes the exact gradient. So according

to the definition in Eq. (2.23), ∇yL(c̄, ȳ, µ) is within the subdifferential. So the polyhedron

of {∇yL(c̄, ȳ, µ)|µ ∈ M(c̄, ȳ)} is a subset of the Clarke differential, and so is the gradient

computed by any valid µ.

In fact, ∇yL(c̄, ȳ, µ) may be unique for all µ ∈ M(c̄, ȳ) such as when the non-dependent

constraints do not depend on y. In that case, the exact gradient is computed. One example

34

in our problem is when two corridors share a face (denoted as the plane x = b) and the

constraints include xi ≤ b, xj ≥ b, xi = xj where xi and xj is the last and first control points

of the two corridors, respectively. The first two constraints are the control points that are

within their corresponding corridors and the third one is path continuity. At optimum these

3 constraints are always linearly dependent but do not affect the gradient computation since

they do not depend on the time allocation. Moreover, one redundant inequality constraint

is removed during the pre-solve process of the optimizers.

2.4.4 Constraints in the Outer Optimization

This section shows that even with constraints in the outer optimization, the theory in

Sec. 2.4.1 can be applied. This is done by showing gradient descent with projected gradient

behaves exactly the same with another unconstrained problem. The outer optimization in

the Soft-Time variant as in Eq. (2.12) has the form

minimize
y

J(y) = c? + w1Ty

y ≥ 0.
(2.27)

The problem is essentially unconstrained at optimum. The reason is that as yi → 0, the

cost function approaches ∞ and non-positive durations can be rejected during line search.

So the constraint y ≥ 0 can be ignored in analysis.

The Hard-Time variant as in Eq. (2.11) has the form

minimize
y

J(y) = c?(y)

y ≥ 0

1Ty = Tc

(2.28)

with fixed total traversal time Tc.

Here we use a projected (sub)gradient method that computes the (sub)gradient g ∈ Rn

and projects it onto the hyperplane 1Tg = 0 so an update does not change the total traversal

time. The projection operator is given by

Pg = g − (1Tg/n)1 = (I − 1

n
11T)g (2.29)

and the update rule is

y′ ← y − αPg = y − α(I − 1

n
11T)g. (2.30)

35

We show that this is equivalent to (sub)gradient descent on an unconstrained problem:

minimize
s

J̃(s) = c?(y0 + As)

y0 + As ≥ 0
(2.31)

where s ∈ Rn−1; y0 is the initial time allocation which satisfies 1Ty0 = Tc; and A ∈ Rn×(n−1)

is a matrix forming the orthonormal basis of the null space of 1. A can be obtained by the

singular value decomposition 1 = USV T , with U = [1], S = [
√
n, 0, . . . , 0], and V ∈ Rn×n

is an orthogonal matrix with first column 1/
√
n and the remaining rows equal toA, that is

V =
[
1/
√
n A

]
.

The value y corresponding to an iterate s is given by y0 +As. Using the same argument as

in the Soft-Time variant, we can show the inequality constraint does not affect convergence.

Each iterate of gradient descent satisfies the constraint 1T (y0 +As) = Tc. Using chain rule,

the (sub)gradient of J̃ w.r.t. s is ATg where g is a (sub)gradient of J at y0 +As. The update

rule is thus

s′ ← s− αATg (2.32)

so the equivalent time allocation update is

y′ ← y0 + As′ = y0 + As− αAATg = y − αAATg. (2.33)

Using the orthogonality of V we have

I = V V T =
[
1/
√
n A

] [1T/√n
AT

]
= (11T)/n+ AAT (2.34)

which demonstrates that AAT = I − 1
n
11T . Hence, the unconstrained update rule (2.33) is

equivalent to (2.30).

2.5 EXPERIMENTS

Our algorithm, which is released as an open-source package3, is implemented in Python.

The QP solvers are called with interfaces to C++ libraries. In our algorithm, solving QP

always dominates the running time, our reported computation time is similar to a pure

C++ implementation with some overhead from Python. In numerical experiments, random

problems are generated to test the robustness of this algorithm on different problem instances

3https://github.com/OxDuke/Bilevel-Planner

36

with different number of corridors. In physical experiments, the limitation of our physical

environment leads problems with a few number of corridors.

2.5.1 Numerical Experiments

We evaluate our method on random instances of “indoor flight”. We take the indoor

building environment from [96], extrude it along z axis, and discretize the z direction into

5 cells. We then select some rows and columns in the image as shown in Fig. 2.3 and fill

the bottom 3 or top 3 cells (along z axis) as obstacles according to the color. The start

and goal are randomly sampled in the free space so in most cases there is movement along

z axis. The environment is shown in Fig. 2.3. The complexity of the environment allows us

to generate problems with more than 40 segments. 200 problems are randomly generated.

One example is shown in Fig. 2.4. We note that despite we are exclusively using axis-aligned

boxes as safe corridors for simplicity, convex polyhedrons may yield less conservative results

and our method is able to handle it as well. But there is a trade-off between the complexity

of corridors and optimality of the solution.

Figure 2.3: The 2d floor plan used to generate random test problems. Here the orange and
light green lines shows where obstacles along z axis are placed.

We solve the Hard Time variant as in Eq. (2.11), with the initial guess of time allocation

and fixed total traversal time computed from the heuristic introduced by Gao et al [40].

In this section, the QP solver is Gurobi 4, a commercial interior-point QP solver. We set

a major iteration limit of 50 to limit the total computation time. The velocity limit is

set as 2 m/s. To handle cases with infeasible initial time allocation, we simply multiply

the time allocation by a scalar until feasibility is obtained. As a benchmark, we compare

4https://www.gurobi.com/

37

our analytic gradient with a finite-difference approximation method under the same bilevel

optimization framework. Another method in comparison is to optimize the control points and

time allocation simultaneously using nonlinear optimizer SNOPT [97]. Finally, we compare

with direct collocation method [80] which discretize the trajectory, formulate an NLP and

solve it using SNOPT. These experiments are carried out on a workstation with a 3.30 GHz

Intel Xeon W-2155 processor, using only one thread.

Figure 2.4: A random problem instance. The start (square), goal (star), and generated
corridor (dashed boxes) are shown. The purple and cyan curve are the optimal trajectories
with the initial and final time allocations.

Finite Difference vs Analytic Gradient In this section, we solve the same problem

set as before and compare the analytic gradient from Lagrangian multipliers defined in

this paper with finite difference approximation, where one gradient computation requires

additional n QPs being solved. The average performance is shown in Tab. 2.1. Clearly,

analytical gradients are not only much faster, but also help the optimizer converge to a

better solution because of their higher precision.

Table 2.1: The Mean Total Computation Time, Average Major Iteration Time and Normal-
ized Cost (final cost over the cost from heuristic assignment) of Finite Difference (FD) w.r.t.
Analytic Gradient (AG)

Total Time (s) Avg. Iter. Time (s) Normalized Cost
FD 15.403 0.497 0.109
AG 0.874 0.024 0.068

Comparison with Joint Optimization Joint optimization directly solves Eq. (2.11) as

an NLP using SNOPT [97], a general nonlinear solver for sparse, large-scale problems. On

38

the contrary, bilevel optimization decouples temporal and spatial variables and solves them

hierarchically. We provide analytic gradients to SNOPT for solver robustness and explore

problem sparsity to the best of our ability. We initialize SNOPT with the unrefined time

allocation and the spline coefficients computed in the first QP solve. All the stopping criteria

are set to default except the optimality tolerance is set to 1× 10−3.

We observed that joint optimization is susceptible to the strong non-linearity of the prob-

lem and only 11 out of 200 problems converged to a feasible solution, as shown in Tab. 2.2.

Due to the low success rate, it’s clearly not suitable for the application. SNOPT tends

to terminate prematurely without converging, and often moves to an infeasible point even

though it starts from a feasible solution. We believe this is because the joint spatial and

temporal NLP is ill-conditioned. The QP objective function exhibits high-order dependence

on timing, and some spatial constraints are very sensitive to the high-order spline coeffi-

cients. On the other hand, in the bilevel formulation, the ill-conditioned problem is handled

by convex solvers, which are known to be more robust. We also note that SNOPT has no

guarantee on obtaining a feasible solution while our approach can be terminated at any time

and return a feasible solution. Usually nonlinear optimizers require an initial guess close to

the optimum values to converge. With the same initial guess of time allocation, our method

is able to make progress towards optimum while SNOPT moves from a feasible initial guess

to non-feasible solutions.

Comparison with Direct Collocation We also compared our proposed method with

the Direct Collocation method (DC) [80] to solve problem (2.11) as an alternate NLP formu-

lation. DC optimizes over discretized states [p(t), ṗ(t), p̈(t)] where p(t) is position and control

is u ≡ ...
p (t) at each collocation grid point t0, . . . , tN . To adjust the timing of each segment,

the initial and final times of each segment are introduced as additional decision variables.

The state and control trajectories are optimized simultaneously with segment times. Each

segment has a fixed grid size. See Appendix 2.7.2 for the details.

Once again, we use SNOPT to solve the NLP. The major iteration limit and total iteration

limit are set as 500 and 5000, respectively, to keep the total computation time manageable.

Due to the different NLP formulation, the final objective value from DC cannot be directly

compared to other approaches so we just compare success rate instead. Direct collocation

does not perform well on this problem and only 44 out of 200 problems converge to an

optimal solution, as shown in Tab. 2.2. We observed that with a higher iteration limit, DC

can achieve a higher success rate. However, the average computation time with the current

settings is already 7.12 s, which is unsuitable for responsive quadrotor flight. Although the

system dynamics in DC is linear, this problem is actually nonlinear since the duration of

39

each segment is optimized.

Table 2.2: Success Rate of Bilevel Optimization, Joint Optimization, and Direct Collocation

Bilevel Optimization Joint Optimization Direct Collocation
200/200 11/200 44/200

2.5.2 Scalability Study

For complex environments, the number of safe corridors may be as large as around 50 and

thus imposes a challenge to the computational efficiency. We perform an empirical scalability

study to see how our framework performs with increasing number of segments using the same

problems in the last section. We also study the effect of QP solvers and compare two types

of QP solvers: active-set solver Sqopt [98] and interior-point solver Gurobi. Both solvers are

designed for sparse and large-scale problems. Our previous test suite [99] showed that Sqopt

performs better when the average number of segments is below 10. In this paper we want

to study how it performs when the problem has more segments. We use the same setting as

the last section with the two QP solvers.

It turns out the performance of our algorithm in terms of cost function is quite consistent

with the two solvers. Numerical errors result in slight difference in the progress of the

algorithm in each solver. We note that we set an iteration limit of 50 and around 60

problems out of 200 are terminated after reaching the iteration limit. On average each

iteration requires 1.2 QPs being solved. This also indicates the total computation time is

roughly proportional to the average time of each QP solving. However, the computation

time is quite different for the two solvers, indicating different scalability in QP solving time.

The computation time is different since Sqopt and Gurobi have different scalability with

the number of segments which is proportional to the number of optimization variables and

constraints. Gurobi implements an interior-point method so its iteration number is roughly

constant. In each iteration a sparse block-diagonal matrix is factorized which takes time

linearly to the number of segments. Sqopt implements the active-set method which does not

scale well since it takes more iterations to identify the correct active set. However, it is faster

than Gurobi when the number of segments is below 10, which is consistent with the results

in [99]. If finite-difference is used to estimate the gradient, the algorithm has quadratic and

cubic scalability when the QP solver is Gurobi and Sqopt, respectively.

The total computation time scales similarly to average QP times since similar numbers

of QPs are solved, as shown in Fig. 2.5. The total computation time scales linearly when

40

Gurobi is the QP solver. The total computational time shows the potential of applying

our algorithm in real-time since the major improvement of cost functions occurs in the first

few iterations, evidenced in Fig. 2.6. For large problems with limited computation time, a

smaller iteration limit has to be used, although it does not affect the cost function too much.

10 20 30 40
#Segments

0

2

4

6

8

10

C
om

p
T

im
e

[s
]

Sqopt

Gurobi

Figure 2.5: The total computation time of our algorithm as a function of the number of
segments in random problems.

0 10 20 30 40 50
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
R

at
io

Figure 2.6: The profile of the average (solid line) and standard deviation (shaded) of the
cost ratio over the initial cost. The cost ratio is computed by dividing the cost at current
iteration by the initial cost.

2.5.3 Effect of Subgradient Step

Although the numerical experiments above are conducted on challenging 3D problems,

we found that the subgradient step of Alg. 1 is only triggered once. To better examine the

effect of subgradient steps, we designed a problem set that triggers subgradient steps more

frequently. These variants project the environments into 2D to eliminate vertical movement,

and velocity limits are disabled. 808 random problem instances of this form were generated,

and we compared Alg. 1 with and without Lines 9–12.

41

The results are shown in Fig. 2.7, with both Sqopt and Gurobi as the underlying QP

solver. A subgradient step was taken in 15 problems using Squopt, and in 65 problems using

Gurobi. The discrepancy between solvers is due to the slightly different gradient estimation,

which may lead to different algorithmic behavior overall. The plot combines results from

subgradient steps taken with either QP solver. For many problems, the subgradient step

decreases the cost substantially. However, it does pay a price in terms of increased compu-

tation time. The reason is that the gradient-only variant stalls out more quickly, while the

subgradient variant continues to optimize and make progress.

1 2 3 4 5 6 7
Comp Time SubGrad / Grad

0.2

0.4

0.6

0.8

1.0

C
os

t
S

ub
G

ra
d

/
G

ra
d

Figure 2.7: Enabling subgradient descent can improve cost when pure gradient descent gets
stuck. The x and y axis are the ratios of computation time and cost function, respectively,
of Alg. 1 with subgradient descent enabled vs the disabled variant. Lower is better for both
axes.

2.5.4 Physical Experiments

We validate our planner on an indoor obstacle avoidance scenario using a commercially

available small-scale quadrotor, Crazyflie 2.15. A video that compiles all the physical exper-

iments is provided as supplementary material.

UDP
200Hz Vicon Motion

Capture SystemKalman Filter

Onboard Attitude
Controller

Ground Station

Radio
100HzPosition

Controller

User Input

Trajectory
Generator

Crazyflie 2.1

Figure 2.8: Physical quadrotor system setup

The system setup is shown in Fig. 2.8. The position of the quadrotor is captured by the

Vicon6 motion capture system and transmitted to ground control station using Ethernet

5https://www.bitcraze.io/
6https://www.vicon.com/

42

Figure 2.9: Obstacle layout for physical quadrotor experiments, with the space within the
frames (tinted blue) are treated as obstacles. Evenly spaced frames from the executed
trajectory are overlaid, with the quadrotor circled in red.

at 200Hz. The raw data stream from Vicon goes through a Kalman filter and then serves

as feedback for a position controller on the ground control station. The position controller

is a feedfoward-feedback controller, with the feedforward term computed from the reference

trajectory and its time derivative thanks to the differential flatness property, and the feedback

term computed from a proportional-integral-differential (PID) controller.

As shown in Fig. 2.9, we set up two frames as walls, and considered them as obstacles in our

algorithm. We run 3 experiments to demonstrate the effectiveness and real-time capability

of our algorithm. Admittedly, in these physical experiments the number of segments is

not large. For problems with more segments, a smaller iteration limit can be used without

losing too much optimality. Indeed, the property of any-time feasibility of our algorithm

is suitable for challenging problems with many segments since the user can set arbitrary

number of iterations.

Comparison to time allocation heuristics Our algorithm plans a faster trajectory

while achieving the same control effort (jerk) as Gao el al. [40], which uses time allocation

heuristics. The quadrotor starts at some initial position and is asked to travel to a target

position chosen by a human operator using an Rviz7 interface while avoiding obstacles. Both

methods are set up to solve the Hard Time variant (2.11), but after running our algorithm,

we scale the total traversal time T until the jerks of two trajectories becomes the same.

Table. 2.3 indicates that our algorithm yields a 12% shorter and 18% faster trajectory with

equivalent jerk.

Controlling aggressiveness using time penalty w Next we show the Soft Time variant

(2.12) can handle objectives with various time penalties to control aggressiveness. Results

are summarized in Table 2.4. These indicate that, as expected, when the weight penalty

7http://wiki.ros.org/rviz

43

Table 2.3: Comparing against heuristic time assignment

Method Length Traversal Time Jerk

Ours 5.15 m 4.36 s 39

Gao et al. 5.82 m 5.32 s 39

increases, trajectories become faster and more jerky. Also, computation time is not signifi-

cantly affected by the weight parameter.

Table 2.4: Comparing motion aggressiveness parameters

Weight (w) Traversal Time Computation time Jerk

10 5.60 s 10.8 ms 11.2

20 4.96 s 10.7 ms 19.9

40 4.42 s 10.7 ms 36.1

80 4.01 s 9.3 ms 64.7

Tracking a dynamic goal The final experiments show the algorithm running in real-time,

where the quadrotor tracks a dynamic goal moved by a human while avoiding obstacles. The

goal is tracked by Vicon and is used for replanning at 3Hz. Trajectories are generated using

the Soft Time variant (2.12) with weight w = 80. In these experiments, each optimization

takes less than 15 ms.

2.6 CONCLUSION

We presented a novel bilevel optimization approach to UAV trajectory optimization, which

analytically calculates the gradient of the objective function w.r.t. temporal variables. The

optimization method takes into account the non-smoothness of the upper-level optimization

problem. Our results show that this approach achieves real-time performance and higher

quality trajectories than state-of-the-art heuristics. Our method can handle both hard time

variant with fixed total time and soft time variant where the weight is used to adjust tra-

jectory aggressiveness. It can be useful in multiple contexts such as formation flight and

tracking dynamic targets.

Future work may include accelerating the gradient descent by exploiting the structure of

the problem. For example, acceleration may be achieved through using Newton or Quasi-

Newton methods. We are also interested in studying extensions of the bilevel optimization

approach to other robotic applications like autonomous vehicles and legged locomotion.

44

2.7 APPENDICES

2.7.1 Proof of SSOSC

We prove the second-order sufficient conditions (SSOSC) holds in TOBC where jerk is

minimized amongst Bézier curves of order 6. For brevity we drop dependency on y. We

note that the choice of spline order and order of state derivatives continuity have to be

coordinated.

SSOSC [65] states that the Hessian of the Lagrangian evaluated at the optimal point is

positive definite on the null space of the gradients of all the equality and active inequality

constraints, i.e.,

wT∇2
ccL(c?, λ?, ν?)w > 0, ∀w 6= 0 s.t.GAw = 0;Hw = 0 (2.35)

where GA collects the rows of active inequality constraints and L(·) is the Lagrangian:

L(c, λ, ν) = cTPc+ λTGc+ νTHc, (2.36)

where λ and ν are the associated Lagrange multipliers.

Our proof shows that there does not exist any w 6= 0 that lies in the null space of P

and H simultaneously, which proves SSOSC because ∇2
ccL(c?, λ?, ν?) = P , and since P is a

symmetric positive semi-definite matrix, wTPw = 0 implies Pw = 0. (Note that we ignore

GA, so the proof holds regardless of which inequality constraints are active.)

Since each of the x, y, z dimensions can be decoupled, we show the proof in one dimension

without loss of generality. Matrix P is block diagonal, with blocks denoted Pi ∈ R7×7, whose

entries depend on the duration of the corresponding segment. It can be be shown that

NPi
=



1 1 1

1 2 4

1 3 9

1 4 16

1 5 25

1 6 36

1 7 49


(2.37)

is a basis for the null space of Pi, regardless of segment duration. The physical meaning

for each column of NPi
is not moving at all, moving with constant velocity, and moving

45

with constant acceleration, respectively, since these motions induce zero jerk. Then, for a

problem with n segments, the matrix

NP =


NPi

. . .

NPi

 (2.38)

is a basis of the null space of P , and has rank 3n.

The linear equality constraints include initial and final position, velocity, and acceleration

which accounts for 6 constraints. Continuity of position, velocity, and acceleration at con-

junction points provide another 3(n− 1) constraints for a problem with n segments. These

equality constraints are linear and can be arranged as

H =



L1 0

0 R1 −L2 0

0 R2

. . .

−Ln 0

0 Rn


. (2.39)

with 3× 3 blocks:

Li =

 1

−d/∆ti d/∆ti

d(d− 1)/∆t2i −2d(d− 1)/∆t2i d(d− 1)/∆t2i

 (2.40)

and

Ri =

 0 1

0 −d/∆ti d/∆ti

d(d− 1)/∆t2i −2d(d− 1)/∆t2i d(d− 1)/∆t2i

 , (2.41)

and each 0 block is of size 3 × (d − 5). Here, ∆ti is the time allocated to the i’th segment

and d = 6 is the spline degree. If a different spline degree is chosen, both Li and Ri are

different. The objective is chosen as jerk so continuity of state derivative up to acceleration

is selected.

Now we show that HNP has full column rank. First, split NPi
into blocks [QT

1 , Q
T
2 , Q

T
3]T

where Q1, Q3 ∈ R3×3 and Q2 ∈ R1×3. Note that Q1 and Q3 are square matrices of full rank.

46

With this notation we express the product

HNP =



L1Q1

R1Q3 −L2Q1

R2Q3
. . .
. . . −LnQ1

RnQ3


. (2.42)

Observe that each block is non-singular because it is a product of two square matrices of

full rank. The upper 3n by 3n part is full column rank since each block is non-singular.

Therefore, HNP has full column rank.

Consequently, any w 6= 0 in the nullspace of P can be expressed as w = NPv with v 6= 0,

which shows that Hw 6= 0. Hence there does not exist w 6= 0 that lies in the null space of P

and H simultaneously, which proves SSOSC as desired.

2.7.2 Direct Collocation Implementation

This section provides details of the direct collocation (DC) method implemented for our

numerical experiments. Our implementation follows the standard Hermite-Simpson collo-

cation method, see e.g. Betts [80, Section 5.1]. DC works by discretizing a continuous-time

trajectory optimization problem into a NLP with discretized states and controls as decision

variables. However, direct collocation is rarely used in UAV trajectory optimization since

it does not take advantage of the differential flatness and is usually used directly with the

system’s actual dynamics equations. In order to use DC to minimize trajectory jerk, we de-

fine the system state x(t) = [p(t), ṗ(t), p̈(t)]T ∈ R9 as a stacked vector of position p(t) ∈ R3,

velocity ṗ(t) ∈ R3 and acceleration p̈(t) ∈ R3. The control input u(t) is chosen to be the

jerk u(t) =
...
p (t) ∈ R3.

The system dynamics can be written as:

ẋ(t) = f
(
x(t), u(t)

)
= Ax(t) +Bu(t) (2.43)

where

A =

0 I3×3 0

0 0 I3×3

0 0 0

 , B =

 0

0

I3×3

 . (2.44)

Consider a safe corridor with N segments, we set up a N -phase trajectory optimization

47

problem. For the i’th phase, the trajectory is constrained to stay in the i’th convex region.

Continuity constraints up to acceleration are applied between consecutive segments. This

formulation matches with TOBC. The decision variables include:

1. Duration of each phase: ∆ti, i = 1, . . . , N ,

2. Discretized state trajectory of the UAV for each phase: xi(t), t ∈ [0,∆ti], i = 1, . . . , N ,

3. Discretized control trajectory for each phase: ui(t), t ∈ [0,∆ti], i = 1, . . . , N ,

and the cost function is

J =
N∑
i=1

∫ ∆ti

0

‖ui(τ)‖2dτ + w∆ti. (2.45)

The rest follows the standard DC formulation [80]

48

CHAPTER 3: ENHANCING BILEVEL OPTIMIZATION FOR UAV
TIME-OPTIMAL TRAJECTORY USING A DUALITY GAP APPROACH

In Chapter 2 the decomposition of spatial and temporal variables is used in a bilevel opti-

mization framework. It takes advantage of the structure that with temporal variables fixed,

the spatial variables are solved with convex optimization. In this chapter, the bilevel opti-

mization framework is used to solve the minimum-time trajectory for UAVs. With spatial

variables fixed, the temporal variables are solved by convex optimization for minimum-time

trajectory. Similar to the improvements in Chapter 2, it enables optimization of the spatial

trajectory while the baseline method keeps it fixed. Moreover, in this problem it is simply

too computationally expensive to use finite-difference to compute gradients given the high-

dimensionality of the parameterization of spatial trajectory. The analytic gradient is again

computed using Lagrangian multipliers from lower optimization and is key to the efficiency

of the framework. However, a different approach is proposed to handle non-smoothness. The

duality gap approach is introduced to the lower problem which is mathematically equiva-

lent to adding log barriers to the inequality constraints. With the log barrier, inequality

constraints are never active (an inequality constraint is active when equality holds) and

switches of constraint activeness are eliminated, so is non-smoothness. Warm-start of lower

optimization is enabled to further improve computational efficiency. This framework has

shown improvements in reliability, efficiency and optimality compared with ordinary trajec-

tory optimization approaches and bilevel optimization without duality gap. 1

3.1 INTRODUCTION

Time-optimal trajectory optimization is important for drones, vehicles, and industrial ma-

nipulators to complete tasks efficiently, but it is inherently difficult even for linear systems

due to its bang-bang control structure. Typical approaches to trajectory optimization, such

as Direct Collocation (DC), can handle a wide variety of costs, state constraints, and control

constraints by converting the problem into a nonlinear programming (NLP) optimization,

which can be solved by numerical techniques [80]. For time minimization, the state and

control are functions of time and solved simultaneously with the optimal trajectory time.

This approach introduces significant nonlinearity in the dynamics and non-convexity in con-

straints, so there is no guarantee that an optimal, or even feasible solution is obtained.

1This chapter is reproduced from Gao Tang, Weidong Sun, and Kris Hauser, “Enhancing bilevel optimiza-
tion for uav time-optimal trajectory using a duality gap approach”. In 2020 IEEE International Conference
on Robotics and Automation (ICRA).

49

Alternatively, a two-stage approach approximately solves the problem by optimizing the ge-

ometric path separately from the velocity profile, which exploits the speed and robustness

of Time Optimal Path Parameterization (TOPP) [53, 100]. The drawback of two-stage op-

timization is that the path is fixed after the first stage, while it is possible to further refine

it to reduce trajectory time. Following the approach in Chapter 2, the bilevel optimization

framework is applicable here as well. The gradients of the optimal traversal time with respect

to the path can be computed analytically, allowing the outer optimization to be addressed

as a standard NLP while the convexity of the TOPP problem lends itself to efficient and

reliable Interior-Point Methods (IPMs).

Guess

Refined Gap-free

Refined Gap

Start

Goal

(a) Spatial shape

−2

0

2

V
el

.
(m

/s
) Guess vx

Gap− free vx
Gap vx

0 5
Time (s)

−2

0

2
V

el
.

(m
/s

) Guess vy

Gap− free vy

Gap vy

(b) Velocity profile

Figure 3.1: (a) Initial and refined trajectory for a randomly generated problem. The feasible
space of the environment is split into convex boxes in which the path must lie, and an initial
minimum-jerk trajectory is refined to decrease trajectory traversal time with velocity and
acceleration limits. With the proposed gap technique, the trajectory converges more quickly
toward an optimum. (b) It also achieves a lower execution time compared with a gap-free
approach.

This chapter makes further improvements to the bilevel optimization framework. In [101],

the efficiency is limited by the slow convergence rate of the outer optimization, and warm-

starting of the inner IPM is not effective, because the prior optimum reaches the boundary

of inequality constraints and is far from the central path for the new problem. Furthermore,

the cost function in outer optimization is continuous but non-smooth due to changes of

active inequalities in the inner optimization. Function smoothness is important for the

convergence rate of gradient based methods such as the difference between gradient and

sub-gradient methods [93]. To handle these problems, we introduce a duality gap which

keeps the solution away from the boundary, and deliberately do not solve the optimization

to optimality. With a controlled duality gap, inequality constraints are never active and

50

thus there is no switch of active constraint and the solution of IPM is never at the boundary.

This trick helps to achieve 1) warm-start of inner optimization and 2) a smoother outer cost

function landscape, which significantly accelerates inner and outer optimization, respectively.

We prove that solving to a desired duality gap is equivalent to the log-barrier with inequality

constraints, and the gradient computation is equivalent to the method of [101].

Numerical experiments on an aerial vehicle with velocity and acceleration limits demon-

strate the robustness, efficiency, and optimality of our approach over standard bilevel opti-

mization, direct collocation, and simultaneous optimization of the path and velocity profile,

using state-of-the-art NLP solvers IPOPT [102] and SNOPT [103].

3.2 RELATED WORK

A general overview of motion planning for autonomous vehicles can be found in [3]. The

time-optimal problem for vehicles has been extensively studied [60, 104, 105, 106, 107, 108,

109]. The brittleness of spatio-temporal trajectory optimization using direct collocation has

been noted by other researchers, leading to a search for alternative, more robust techniques.

3.2.1 TOPP Solvers

Time-Optimal Path Parameterization (TOPP) seeks admissible control inputs that min-

imizes the traversal time of a pre-specified path subject to constraints such as system dy-

namics, control actuation, and velocity limit. Efficient approaches to it include: (1) convex

optimization (CO) [53, 59, 108], (2) numerical integration (NI) [100, 110], and (3) reach-

ability analysis (RA) [111]. Our TOPP solver solves the nonlinear optimization problem

directly and exploiting sparsity in the KKT solver [101] for efficiency. Since CO methods

are used, Lagrange multipliers are by-product and allow for calculation of the gradient of

the minimum time with respect to the path. No other methods besides CO can provide such

gradient information. Similar to [101], we use primal-dual IPM to solve the nonlinear CO

directly, instead of converting to SOCP [53] or using Sequential Linear Programming [59]

or primal barrier approach [108]. The sparsity of KKT solver is exploited to achieve linear

scalability as done in [101].

3.2.2 Two-stage Optimization

TOPP with a half-car model is studied by Velenis and Tsiotras [109], and is used as a

submodule in Kapania et al. [60]. There is work trying to remove the limitation of the two-

51

stage approach by updating the geometric path too. Kapania et al. presents a two-stage

iterative method for generating time-optimal trajectories through a race course. However,

they are minimizing path curvature to update the path which is different from minimizing

lap time. By contrast, our approach updates the path with a goal of minimizing traversal

time. Similarly Gao et al. [41] uses a two-stage approach to compute aggressive trajectories

for UAVs. The temporal variables are optimized to minimize traversal time similar to TOPP

but the spatial trajectory is optimized to minimize the total jerk. These two sets of variables

are iteratively optimized alternatively and it is unclear what the solution is converging to.

3.3 PROBLEM FORMULATION

3.3.1 Time-Optimal Motion Planning Problem

A system has generalized configuration q ∈ Rn and operates in an environment represented

by Xfree ⊆ Rn, which denotes all the collision-free configurations. The problem is to find

a trajectory in Xfree from a start configuration qs to a configuration in a goal set Xgoal ⊆
Xfree in a minimum amount of time while respecting constraints such as dynamics, collision

avoidance, and state and control bounds. The problem can be mathematically formulated

as:
minimize
q(t),u(t)

T

subject to q(t) ∈ Xfree, ∀t ∈ [0, T]

q(0) = qs,

q(T) ∈ Xgoal,

d(q(t), q̇2(t), q̈(t), u(t)) ≤ 0, ∀t ∈ [0, T]

(3.1)

where u(t) is the control input, T is the trajectory duration, and d(·) collects various con-

straints mentioned before.

This problem is difficult to solve directly due to its non-convexity since it has to optimize

path x(t) and time T simultaneously. Our bilevel approach optimizes path and time pa-

rameterization hierarchically and use the fact that if x(t) is fixed, a proper parametrization

allows convex optimization of temporal variables.

3.3.2 Path Representation

A feasible geometric path is a continuous curve p : [0, 1] → Xfree that connects the start

configuration qs and goal configuration qg such that p(0) = qs, p(1) = qg. We represent

52

paths using piecewise Bézier curves with C2 continuity for each DOF to simplify collision

avoidance similar to Chapter 2. A decomposition of Xfree is done as well so each Bézier curve

is within one safe region.

For a space decomposed into K convex regions, the path p of order m is represented by

a vector of length n(m + 1)K, p = [c1
0|c1

1| · · · |c1
m|c2

0|c2
1| · · · |cKm]T where cki is the ith control

point for the kth segment.

If hi is the number of hyperplanes bounding the i-th convex polyhedron, a total of n(m+

1)
∑K

i=1 hi linear inequality constraints are sufficient to guarantee collision avoidance. This

is done by simply constraining each control point to be within its safe convex region. This

is represented by an inequality like (with properly chosen Gp and gp):

Gpp ≤ gp. (3.2)

By the property of Bézier curve, it is sufficient to guarantee the curve is inside the polyhedron

by only constraining the control points [73].

We impose C2 continuity constraints on neighboring segments to enforce path smoothness.

This is achieved by constraining the control points. Also, the path should obey terminal

constraints, i.e. c1
0 = qs, c

K
m = qg. These linear equality constraints can be written in the

format of:

Hpp = hp. (3.3)

with properly chosen Hp and hp.

3.3.3 Time-Optimal Path Parameterization

TOPP aims to find a time parameterization to a geometric path, so that the traversal

time is minimized while satisfying all constraints. Pioneered by [53, 59], it is formulated as

a convex optimization problem under appropriate assumptions. Here we give a brief review

of this problem.

A time parameterization is a monotonously increasing scalar function s(t) : [0, T]→ [0, 1],

where T is the traversal time of the path. The trajectory is the time-parametrized geometric

path and represented as q(t) = p(s(t)) : [0, T]→ Xfree. By chain rule, we have

q̇(t) = p′(s)ṡ(t), q̈(t) = p′(s)s̈(t) + p′′(s)ṡ2(t) (3.4)

where �̇ and �′ denotes derivative w.r.t. time and s, respectively.

In TOPP, values of p′(s) and p′′(s) are known and not altered when the geometric path

53

is given, the time allocation s(t) has to be optimized. We introduce two variables a(s) =

s̈, b(s) = ṡ2 which satisfy the following relationship

ḃ(s) = b′(s)ṡ =
d(b(s))

dt
= 2ṡs̈ = 2a(s)ṡ (3.5)

or more simply,

b′(s) = 2a(s). (3.6)

The traversal time T can be written in terms of b(s) as

T =

∫ T

0

1dt =

∫ s(T)

s(0)

1

ṡ
ds =

∫ 1

0

1

ṡ
ds =

∫ 1

0

1√
b(s)

ds. (3.7)

To get a convex problem, we follow [59, 112] and discretize s(t) into N segments: {bi}Ni=0.

We assume that a(s) is piece-wise constant between two consecutive discretization points,

then b(s) becomes a piece-wise linear function. From (3.6) we have 2ai∆si = bi+1− bi where

∆si is the size of the ith grid. Now (3.7) can be manipulated into

T =

∫ 1

0

1√
b(s)

ds =
N−1∑
i=0

2∆si√
bi +

√
bi+1

(3.8)

A wide variety of constraints, i.e. d in (3.1) can be written as α(s)ṡ2 + β(s)s̈ ≤ γ(s)

after substituting Eq. (3.4) and have to be imposed throughout the trajectory. Due to

discretization they are imposed at the mid-points between two consecutive collocation points,

i.e. α(si+1/2)bi+1/2 + β(si+1/2)ai+1/2 ≤ γ(si+1/2). These constraints can be all expressed as

linear constraints of bi, bi+1, after algebraic manipulation.

It turns out all constraints under consideration are linear in b and are denoted as Gb(p)b ≤
gb(p) and Hb(p)b = hb(p). Note we explicitly write the dependencies of the constraints in

the inner problem on the path p. With objective function (3.8) being convex, TOPP can

be solved by convex optimization. As a result, given a geometric path, we have a reliable

approach to solve the corresponding TOPP.

3.3.4 Bilevel Optimization

The general formulation of bilevel optimization is given Definition 2.1 of Chapter 2. Apply-

ing this framework to the time-optimal problem with the parameterization discussed above,

the problem is formulated as (TOPT-BO):

54

minimize
p,b

J(p, b) =
∑N−1

i=0
2∆si√

bi+
√
bi+1

subject to b ∈ argmin
b
{J(p, b) : Gb(p)b ≤ gb(p); Hb(p)b = hb(p)}

Gpp ≤ gp

Hpp = hp.

(3.9)

The algorithm to solve this bilevel problem is similar. The upper level optimizes the

geometric path p while the lower level optimizes the temporal variable b for given p and

computes gradient for the upper problem. Compared with the bilevel problem in Chapter 2,

the upper problem has more complex constraints and the gradient projection is non-trivial

given the large amount of constraints on path p to guarantee collision avoidance and path

continuity. Instead SNOPT [37] is directly used to handle them and thanks to the proper

handling of linear constraints of SNOPT, feasibility of the upper problem is guaranteed.

3.3.5 Interior-Point Method to Certain Duality Gap

For a convex optimization problem with linear constraints in the form of

minimize
x

f(x)

subject to Gx ≤ g

Hx = h

(3.10)

where f(x) is convex. The Karush-Kuhn-Tucker (KKT) conditions for optimality is

∂f
∂x

+GTλ+HTν = 0

Gx+ s = g,Hx = h

λ ≥ 0, s ≥ 0, λ ◦ s = 0

(3.11)

where λ and ν are Lagrangian multipliers, s is slack variable and ◦ denote element-wise

product. The IPM solves Eq. (3.10) using Newton’s method with special modification to

account for inequality constraints and strict complementary slackness. To progressively move

towards optimality, the duality gap λT s is used to control how far the next iteration is to

the optimum. In fact, usually a centering step is used in order to prevent λ◦s from reaching

0 too quickly which slows down convergence.

Our modification of the IPM is to change the right side of the strict complementary

slackness condition. Instead of solving to λ ◦ s = 0, we only require IPM to solve to

λ ◦ s = µ for some value µ > 0. Here, µ is a user-defined parameter for our algorithm. This

55

modification has three positive and one negative effects. First, IPM solves toward λ ◦ s = 0

iteratively from a positive initial value of λ ◦ s, the value of λ ◦ s gradually converges to 0

from some positive value. As a result, early termination at µ > 0 requires fewer iterations.

Second, the solution is not on the boundary of nonnegative orthant and we avoid the difficulty

preventing warm start. Third, no inequality constraint is active at termination, so there is no

need to worry about the active set switch that causes non-smoothness of the outer gradient.

However, the drawback is that the result of optimization is suboptimal, since the KKT

condition is not satisfied. The degree of suboptimality can be tuned by reducing the value of

µ. Nevertheless, our experiments suggest that even a small value of µ is beneficial, and the

benefits overall are worth sacrificing a small amount of optimality in the inner optimization.

Because the duality gap modifies the KKT condition, the gradient obtained by sensitivity

analysis is no longer valid. To obtain the new gradient, we use the equivalence between

modified KKT conditions and log barrier method [93, Ch. 11]. The optimum of the barrier-

augmented problem

minimize
x,s

f(x)− µ∑ log s

subject to Gx+ s = g,

Hx = h

(3.12)

satisfies the KKT condition
∂f
∂x

+GTλ+HTν = 0

−µ
s

+ λ = 0

Gx+ s = g,Hx = h

(3.13)

where the Lagrangian multipliers are λ and ν. Note that the second equality is equivalent to

the duality gap condition (3.11), and non-negative constraints λ > 0 and s > 0 are implicitly

imposed. Hence, we apply sensitivity analysis to the log barrier problem to obtain analytic

gradient. Compared with the one without duality gap, the cost function is different and the

inequality constraints nows appear in the cost function. The general formulation stays the

same as in Eq. (2.22).

The algorithm for solving the modified KKT system is basically same with standard IPM

algorithm as cvxopt [112] and the only difference is Eq. (17) and Eq. (18b) of [112] are

modified to account for duality gap µ. The algorithm returns multipliers λ, µ and slack

variables s which are used to compute the cost with barrier as in Eq. (3.12) and analytic

gradient as in Eq. (2.22). Warm start is implemented by keeping the solution (x, s, λ, ν)

from the last problem and using them as the initial guess for the next problem. It is possible

that some inappropriate step is taken in outer optimization, and warm start fails to solve

the inner optimization problem. In this circumstance, a regular initial guess is used.

56

3.3.6 Duality Gap Bilevel Optimization Algorithm

Our overall bilevel optimization method is presented in Algorithm 3.1. The algorithm takes

an initial guess of the geometric path p0, the linear constraints Gp, gp, Hp, hp on the path,

and the duality gap µ. It also maintains a set of inner-optimization warm-start parameters,

zws. In each iteration, the TOPP solver (Gap-TOPP) takes a path p, desired duality gap

µ, and optional warm-start guess z as input, and outputs an optimized cost J , Lagrange

multipliers λ and time parameterization {bi}Ni=0. The gradient of the path p is computed in

the Get-Gradient subroutine using Lagrange multipliers, and later used to update the path.

The outer-level optimization is essentially a nonlinear optimization with linear constraints

and the optimality conditions are checked by the optimizer. At the end of the algorithm, we

solve the gap-free TOPP problem to get lower cost.

Any gradient-based method can be used as the Take-A-Step function which updates p

based on gradient ∇ and possibly its history (in Quasi-Newton approaches). We use off-

the-shelf NLP solver SNOPT to perform Take-A-Step function. Even though we are using a

nonlinear solver, the constraints in outer-level optimization are linear so feasibility is always

guaranteed. In our implementation the gap parameter µ is set to a small value and fixed

throughout the algorithm.

3.4 NUMERICAL EXPERIMENT

We evaluate our method on random instances of “forests” using the environment generator

of Gao et al. [40]. We generated 101 tests, each with a random environment and randomly

sampled feasible start points and goal points. We refer to [73] for a visualization of the

environment and statistics on number of segments. In all experiments, computation is

performed on a PC running Ubuntu 16.04 with 4.00 GHz CPU and 32 GB memory without

parallelization. Implementations are mainly based on Python, but the IPM solver is written

in C++ based on open-source cvxopt [112]. The NLP solvers are implemented in compiled

languages for efficiency, but they are called using cost and constraint functions written in

Python.

In this problem setting, a heuristic-based graph search finds a tentative path from the start

to goal. Box-type corridors are generated around the path to obtain a list of safe corridors

from start to goal that overlap with neighbors. The trajectory is thus divided into several

pieces with each piece constrained in one safe corridor. A demonstration of the box-type

corridors is shown in Fig. 3.1. We set the log barrier parameter µ = 0.001 in all examples,

and keep it constant throughout optimization. However, after optimization terminates we

57

Algorithm 3.1: Bilevel-Solver (p0, Gp, gp, Hp, hp, µ)

1 p← p0

2 zws ← nil
3 for i← 0 to max-iterations do
4 J, {bi}Ni=0, λ, ν ← Gap-TOPP(p, µ, zws)
5 zws ← ({bi}Ni=0, λ, ν)
6 ∇ ← Get-Gradient(λ, ν)
7 p← Take-A-Step(p, J,∇, Gp, gp, Hp, hp)
8 if optimality-conditions-satisfied then
9 break

10 end

11 end
12 J, {bi}Ni=0 ← TOPP(p)
13 Return J, p, {bi}Ni=0

14 def Gap-TOPP(p, µ, z):
15 if z is not nil // Warm start

16 then
17 x̄, λ̄, ν̄ ← z
18 if x̄ is dynamically infeasible for p then
19 Clear warm start
20 end

21 end
22 x, λ, ν ← solve Eq. (3.13) with guess x̄, λ̄, ν̄
23 return J(x) (Eq. (3.12)), x, λ, ν

re-solve with µ = 0 to obtain the actual minimum time. To initialize the optimization, we use

a minimum jerk trajectory computed using methods in [73] with or without time allocation

refinement. The outer optimization has a iteration limit of 80 to limit computation time.

3.4.1 Gap vs Gap-free

Here we show the effect of solving our modified KKT system (Gap) by comparing with

bilevel optimization where the inner optimization is solved to optimality (Gap free).

Let Problem A be an example composed of 3 boxes shown in Fig. 3.2. The gradient of the

cost function with respect to control points is also shown for both solvers. It can be seen

that two solvers may have large gradient difference on the same geometric path. Since the

gap solver is smoothing the cost function, its gradient has smaller magnitude. An alternate

view of this comparison is shown in Fig. 3.3. We start from a path that has already been

refined by bilevel solver for a few iterations, with the inner optimizations performed by

58

Gap-free

Gap

Start

Goal

Figure 3.2: Environment of problem A. The blue and orange arrow denotes gradient of
control points. The gap-free problem has larger gradient.

gap-free solver. Then we compute the gradient direction. We perturb the path slightly by

taking small steps along the gradient direction, and plot the directional derivative along the

gradient. This figure shows that by introducing the duality gap, a much smoother problem

is obtained.

To examine how the duality gap influences the performance of outer optimization, we

perform 80 outer iterations on problem A. The summary of results are shown in Tab. 3.1.

The gap solver needs fewer number of calls to the inner optimization. On average each inner

optimization also requires fewer iteration steps, which is directly proportional to optimization

times. As a result, the total computation time is improved. The smoother cost landscape

allows more efficient cost improvement given the same amount of outer optimization.

Table 3.1: Gap vs Gap-free bilevel opt., on problem A

Method # TOPP Avg Iter Comp time (s) Final cost (s)

Gap 150 8.71 0.37 2.85
Gap-free 168 20.80 0.66 2.89

We also compare their difference on all the test cases using the same amount of outer

iterations. The results are shown in Tab. 3.2 and are consistent with the results observed

in problem A. Since we are solving inner optimization more efficiently, the Gap method

achieves lower computation time. The Cost Improvement column refers to the difference

59

0.0000 0.0001 0.0002 0.0003 0.0004
Step Size

−40

−20

0

20

40

D
ir

ec
ti

on
al

D
er

iv
at

iv
e

Gap-free

Gap

Figure 3.3: Profile of directional derivatives (∇f ∗ · v/‖v‖) when a path is moved along a
direction v with different step sizes. The gap solver achieves smoother derivatives compared
with the gap-free solver.

Table 3.2: Gap vs Gap-free bilevel opt., avg. over all test cases

Method Comp. Time (s) Cost Improvement (s)

Gap 0.51 0.39
Gap-free 2.06 0.30

between initial traversal time and optimized traversal time, and shows that the smoother

cost function obtained by our method leads to faster convergence.

3.4.2 Bilevel vs Nonlinear Optimization

We compare our algorithm with two alternative optimization problem formulations, DC

and Joint, both solved with SNOPT and IPOPT. Analytical gradients are provided for solver

robustness and sparsity is exploited to the best of the authors’ ability.

The Joint condition solves the spatial and temporal parameters jointly. The spatial tra-

jectory is initialized directly using the result from minimum-jerk trajectory since they have

the same parameterization. The temporal trajectory is initialized by solving TOPP on the

initial guess. With this initialization, the initial guess is always feasible. Both SNOPT and

IPOPT are both configured to have optimality tolerance of 10−5. IPOPT has a maximum

iteration limit of 200 while SNOPT has total iteration (including both major and minor

iterations) limit of 10,000.

The DC condition formulates a nonlinear program using direct collocation. Since DC uses

a different trajectory parameterization, we use interpolation on the minimum-jerk trajectory

60

Table 3.3: Success rate of planning methods

DC Joint Bilevel

No Ref Ref No Ref Ref No Ref Ref

SN 78.2% 88.1% 69.3% 93.1% 100% 100%

IP 85.1% 93.1% 20.8% 23.8%

for the initial guess. The initial duration of the trajectory is scaled to satisfy velocity and

acceleration bound constraints. When solved by IPOPT, the iteration limit is set as 1,000

and optimality tolerance is 10−3. For SNOPT the total iteration limit is set as 50,000 and

the optimality tolerance of 10−3 is used.

Success Rate Success rate comparisons are shown in Tab. 3.3. Rows SN and IP denotes

the use of the NLP solver SNOPT and IPOPT, respectively, and columns No Ref and Ref

denotes whether time allocation is used to refine the minimum jerk trajectory using methods

in [73].

The bilevel optimization framework maintains inner optimization feasibility by construc-

tion and guarantees a feasible solution at any time as long as the initial guess is feasible. As

a result, its success rate is 100% as long as IPM is robust. Both Joint and DC rely on an

NLP solver and cannot guarantee a feasible solution. In practice, both Joint and DC may

end up at an infeasible solution even if the initial guess is feasible. This indicates the strong

nonlinearity of time-optimal problem and NLP solver may fail unless a solution close to

optimum is provided. Also, it can be seen that SNOPT is better at Joint optimization and

IPOPT excels in DC, and providing a refined minimum-jerk trajectory gives higher success

rate.

Cost and Computation Time Tab. 3.4 compares our method in terms of the optimized

cost and computation time. For DC and Joint, we restrict our comparison to the variants

that use the refined initial guess, IPOPT for DC, and SNOPT for Joint. For DC and Joint,

we average only the successful results, since the cost of infeasible solution cannot be sensibly

measured. The problems that DC and Joint successfully solve are compared with the cost

of Bilevel which tends to achieve lower cost. It turns out Bilevel outperforms DC and Joint

optimization in terms of both cost and computation time.

It is unclear why Joint has such a success rate but worse cost function, since successful

termination requires a feasible solution that satisfies KKT conditions for optimality. Since

joint optimization and bilevel optimization are initialized using the same guess, this might

61

Table 3.4: Optimized costs and computation times, by problem set (“Set X” indicates those
problems on which X succeeds)

Method DC Joint Bilevel

Avg Cost on All 10.03
Avg Cost on Set DC 10.2 9.98
Avg Cost on Set Joint 10.71 10.35
Avg Comp. Time (s) 6.42 0.62 0.51

be caused by the NLP solver converging to a local optimum.

3.5 CONCLUSION

We present a bilevel optimization framework to solve time-optimal problems with spatial

and temporal constraints. We exploit the convexity of TOPP and linearity of spatial con-

straints to achieve an any-time and highly robust trajectory optimizer. We establish the

equivalence of modified KKT condition and log barrier methods. This helps to achieve a

highly efficient IPM with warm start and smoother cost function. Numerical experiments

show that trajectory optimization on flying robots are solved reliably, while standard NLP

solvers fail to maintain feasibility of the solution, take a longer time, and obtain higher cost

solutions.

Future work should address in the relation between optimizing log barrier cost and the

original cost. The problem of choosing the duality gap and necessity of adjusting it during

optimization also requires further investigation. We are also interested in replacing the Bézier

curve representation due to its potential conservativeness. Including other constraints such

as motor actuation is also a promising direction to extend its area of applications. We are

also interested in optimizing types of cost function in the spatial-temporal decomposition

framework.

62

CHAPTER 4: A DATA-DRIVEN INDIRECT METHOD FOR NONLINEAR
OPTIMAL CONTROL

Starting from this chapter, the local continuity of the solution to the parametric opti-

mization problem, called the argmin function, is being exploited. Different from previous

chapters where the focus is to accelerate isolated optimization problems, from this chap-

ter parametric planning problems are solved, leading to parametric optimization problems.

Parametric optimization problems are more challenging compared with solving particular

realizations, but the solution can be approximated from precomputed data. In this chapter,

the classical k-Nearest Neighbor (k-NN) model is used to approximate the argmin func-

tion and help with providing initial guesses to nonlinear optimizers, leading to the Nearest

Neighbor Optimal Control (NNOC) framework. It is tested with indirect methods where

the unknown costates have no physical meanings and are more difficult to provide compared

with direct methods. Compared with random restart technique, NNOC has shown orders

of magnitude improvement in terms of computational time and high chances to get global

optima. 1

4.1 INTRODUCTION

Nonlinear optimal control problems are observed in many engineering applications but

are still difficult to solve globally with high confidence despite decades of research. Indirect

methods derive the necessary conditions for optimality using costate variables, and convert

the optimal control problem into a two-point boundary value problem (TPBVP) [6]. The

TPBVP contains unknown costates which are usually solved by nonlinear equation solvers.

Although indirect methods can be more efficient than direct methods, they are difficult to

apply successfully [12]. The derivation of Euler-Lagrange equations are error-prone and alge-

braic manipulation to form the TPBVP is not-trivial. Moreover, The optimal control might

not be continuous, i.e. bang-bang control for some choice of objective functions, and impose

challenges to accurate integration of the Euler-Lagrange equations which again makes con-

vergence more difficult. The main difficulty of indirect methods is the costate variables lack

physical meanings so good starting values are difficult to provide. For problems with strong

nonlinearity, the convergence domain is so narrow that a large number of initial guesses have

to be tried to obtain convergence. Hence, they must be augmented with another approach

1This chapter is reproduced from Gao Tang and Kris Hauser, “A data-driven indirect method for nonlinear
optimal control”. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
A journal version is published in Astrodynamics 2019 Dec.

63

like random restarts to have any chance of obtaining a global optimum, or convergence at

all. Such a shortcoming makes indirect methods impractical for real-time applications with

strong nonlinearity.

In recent years, the approach of using precomputed data to initialize nonlinear optimizer

has received some attention, with some success in trajectory optimization [113] and global

nonlinear optimization [114]. The general idea is that a database of solutions can be pre-

computed among a parameterized set of optimization problems. For a novel problem, if an

example exists in the database whose parameters are sufficiently close to its parameters,

then solution to the existing problem should be near the solution to the new one. To our

knowledge, this approach has not yet been applied to indirect solution of optimal control

problems.

We present NNOC, a data-driven implicit optimal control method that attempts to solve

TPBVPs using the k nearest problems in the database to determine initial costate guesses.

We also present a new technique that uses sensitivity analysis to approximate how solutions

vary with respect to problem parameters, which gives more accurate method for guessing

initial costates. In our experiments, we study two vehicle control problems of 4D and 5D,

respectively. Experiments study how the technique performs compared to other methods,

and demonstrate extremely high success rates as the size of the database grows. The use

of our proposed sensitivity analysis technique also reduces solution times by approximately

50%.

4.2 RELATED WORK

There is a lot of literature studying how to improve the convergence of indirect methods.

In [12, 13] a homotopic approach is used so we can start from an easier problem and grad-

ually approximate the original problem. In [12] a distribution of initial costate variables is

proposed which more or less solve the problem that we do not know the bounds of costate

variables. Other techniques include grid search of costate variables [115].

The idea of learning from experience has attracted researchers’ interest for decades in

robotics field. Besides the literature review of learning from expert trajectories in Chapter 1,

some more closely related research are briefly mentioned here. Machine learning techniques

have been used in trajectory optimization to predict the outcome of a starting point [116] or

to predict good initial trajectories [117] for local optimization. The grasps of novel objects

are generated using the experience of grasps [118]. In [119] precomputed examples of optimal

trajectory are generalized to enable the optimizer to work in real-time, as applied to a robot

ball-catching problem.

64

Our technique is related to explicit model predictive control (MPC) [120], a technique

for linearly constrained linear systems with quadratic costs, that analytically computes the

piecewise-linear optimal MPC control function over all initial states. Our approach takes a

similar approach to nonlinear optimal control using data.

4.3 TRAJECTORY LEARNING

The difficulty of real time trajectory optimization motivates the application of data-driven

methods to learn from precomputed optimal trajectories, called trajectory learning in this

thesis. Trajectory learning is essentially applying machine learning methods to the argmin

function of parametric trajectory optimization problems in parametric planning tasks. It

is promising for its flexibility in task parameterization which makes it applicable to a wide

range of problems. In this section, the challenges of applying trajectory learning to physical

robots are introduced.

4.3.1 Challenges

The flexibility of trajectory learning comes with several challenges. It is supposed that

the task is parameterized by vector p under some distribution and for each realization the

trajectory optimization problem has a solution z(p). The first challenge is data collection.

The distribution of p has to be assumed which may be non-trivial for some applications.

How to parameterize the problem may be an issue as well since the model usually requires

fixed size parameter and output. For instance, how to parameterize a 3D environment with

unknown information of obstacle types could be difficult. The density and coverage of data

have to be sufficient to guarantee model accuracy over the whole domain. Moreover, solving a

single optimization problem is already challenging while now the task is to solve n problems.

Fortunately, the dataset is built completely offline and highly parallelizable so computation

time is not a serious issue as long as there is a reasonable chance of obtaining the optimal

solution using random restart techniques for all parameters. Moreover, techniques in this

Chapter help to accelerate data generation as well.

The second challenge is how to use the model. Recalling that the model approximates

z(p), for a novel problem the model directly predicts the optimal trajectory. Because of

the inevitable model prediction error, one may perform a few correction steps to reduce

the violation of dynamics and safety constraints by either solving trajectory optimization

using prediction as an initial guess or iterative LQR type corrections. Whatever correction

is used, even if no correction, the result is an open-loop trajectory. In order to execute

65

the trajectory on physical systems, it is common to design a feedforward-feedback trajectory

tracking controller. The trajectory tracking controller is necessary since the dynamics model

used in trajectory optimization may be incorrect due to unmodelled disturbances and the

trajectory may not be dynamically feasible due to approximation errors. The whole process

of designing and applying a tracking controller for a trajectory and measuring if the goal state

is reached (within some threshold) is called trajectory rollout. The usual way to evaluate

the performance of a machine learning model is to compute the average prediction error

on the test set. However, for trajectory learning a more meaningful performance metric is

the success rate of trajectory rollout. For problems with strong requirements of constraint

satisfaction e.g. collision avoidance, one performance metric is the constraint violation of

the predicted trajectory.

The last challenge is model fitting. The goal is to improve the model accuracy by appro-

priate model selection and hyperparameter tuning. The most difficult part of model fitting

is to make sure the model has decent accuracy in the whole domain of the argmin function

i.e. support of the distribution of p for safety concerns. Any poorly predicted trajectory that

has large violation of system dynamics and safety constraints may lead to task failure and

has to be avoided. The reason for the requirement of dynamic feasibility is trajectory rollout

depends on the predicted trajectory for both feedforward and feedback controller design.

It is important that the feedforward control is not far from the optimum and linearization

around the predicted trajectory is valid which requires the predicted trajectory to be close

to the actual trajectory. Unfortunately, it is quite difficult to quantify what magnitude of

prediction error is small enough, although the feedback controller allows some margin of

error. Nevertheless, it is safe to assume the model must have decent accuracy in the whole

support of the distribution of p for a high rollout success rate. Besides requirements of the

coverage, amount, and quality of data, the model capability to approximate the compli-

cated argmin function, and appropriate method to train the model are also needed. One

overlooked phenomenon–discontinuity of argmin is bringing difficulty to continuous models

such as neural networks. The neural network tends to predict an “average” of significantly

different trajectories near discontinuity regions. The prediction is far from all the neighbor-

ing trajectories and leads to large prediction error and eventually task failure. It is thus

important to study how to learn a discontinuous function.

4.3.2 Discontinuous Function Learning

Discontinuity in the argmin function means problems with similar parameters have quite

different optimal trajectories. For a general parametric optimization problem, this may occur

66

due to switch of local optimal family, ambiguity of the solution (when the optimal solution

is a set instead of being unique), and some degeneration of problems. The first example as

shown in Fig. 4.1 is

minimize
x

min(x2, (x− 1)2 + p) (4.1)

whose argmin is x∗ = 0 for p ≥ 0 and x∗ = 1 for p < 0. The optimal solution has discontinuity

as p changes between being positive and negative. Another example is shown in Fig. 4.2

with objective function to maximize vTx subject to linear constraints. As v changes from v1

to v3, the optimum switches from the right corner to the top corner since at v2 the optimum

is ambiguous. The ambiguity comes from the fact that constraint qualification does not hold

at that direction choice. Considering that for every selection of direction v, the optimization

problem to find a point within the convex set is indeed convex, this examples also shows the

argmin may still have discontinuity even for parametric convex problems.

Figure 4.1: Discontinuity from switch of local optima

Figure 4.2: Discontinuity from solution ambiguity

67

4.4 DATA-DRIVEN FRAMEWORK

4.4.1 Indirect Methods for Optimal Control

Indirect methods essentially convert an optimal control problem to a system of nonlinear

equations. Suppose a nonlinear optimal control problem is given as

Minimize J = ϕ(t0, x0, tf , xf) +
∫ tf
t0
`(t, x, u)dt

subject to ẋ = f(t, x)

c(u) ≤ 0

h(t0, x0, tf , xf) = 0

(4.2)

where x ∈ Rn is the state variable, u ∈ Rm is the control, and t ∈ [t0, tf] is time. The

path constraint c collects inequality constraints on control. We note that indirect methods

have difficulty handling path constraint of states so they are assumed not to exist. h is a

collection of equality constraint on state variables at initial and final time. For simplicity we

will ignore other types of constraints. The indirect method introduces corresponding costate

variables λ ∈ Rn and the Hamiltonian [6]

H = L(t, x, u) + λTẋ = L(t, x, u) + λTf(t, x, u) (4.3)

and derive the Euler-Lagrange equations
ẋ =

∂H

∂λ

λ̇ = −∂H
∂x

(4.4)

and the optimal control

u? = argmin
c(u)≤0

H (4.5)

It is from this latter condition that the optimal control u? as a function of x and λ can

(usually) be determined. If the control u has no constraint, we uses ∂H/∂u = 0 to calculate

u?. For example, suppose

L(t, x, u) = xTQx+ uTRu (4.6)

be a quadratic cost and

f(t, x, u) = f0(t, x) +
m∑
i=1

fi(t, x)ui (4.7)

68

be the dynamics function. Then

∂H

∂u
= 2Ru+


λTf1(t, x)

...

λTfm(t, x)

 = 0 (4.8)

and hence u can be determined by multiplying the second summand by −R−1/2.

Then, to solve for the optimal trajectory given two-point boundary conditions including

an initial state,

x(t0) = x0 (4.9)

and final state

x(tf) = xf , (4.10)

a shooting method is used to determine the unknowns so that the boundary condition at tf

in Eq. (4.10) is satisfied. For the fixed-time problem where t0 and tf are fixed, the unknowns

z are the initial costate variables λ(t0).

In this chapter we also consider problems with free tf . In those problems the final time

tf is also a unknown, so z ≡ (λ, tf) and another boundary condition at tf will be imposed.

Specifically, the following statistic condition should be imposed:

H(tf) = 0. (4.11)

The TPBVP solver guesses all the unknowns z and integrates Eqs. (4.4) simultaneously

using the optimal control from time t0 to tf . The unknowns are updated until the boundary

conditions (i.e. Eq. (4.10) for fixed tf) at tf are satisfied up to a given tolerance. We imple-

ment the TPBVP shooting method by using the nonlinear least-squares software Minpack

[121]. Note that these least-squares solvers, typically based on Gauss-Newton or Levenberg-

Marquardt methods, are only local optimizations and may indeed fail to find a solution that

successfully meets the final state. An initial guess close to the solution is required otherwise

convergence cannot be guaranteed. In practice random restart method is usually employed

to find the global optimal solution. Thus the efficiency and reliability of indirect methods

are limited.

4.4.2 Parametric Optimal Control with Varying Initial Conditions

NNOC addresses the span of optimal control problems ranging over all initial conditions,

but with a fixed final state xf = 0. In the parametric trajectory optimization framework,

69

the planning problem is parameterized by the initial state, i.e. p ≡ x0. A complete, globally

optimal method for solving the optimal control problem can be viewed as a mapping g from

x0 to the optimal solution of the unknowns:

g : x0 → z?. (4.12)

The goal of NNOC is to approximate this map. Assuming x0 is defined in set X, the

first step to build the database is sampling from X and calculating the corresponding global

optimal solution. We can thus form a database of parameter-solution pairs where x0 is the

parameter and z?0 is the solution. Specifically, the database D = {(x(i)
0 , z

?(i)
0)|i = 1, . . . , N}

where we denote (x
(i)
0 , z

?(i)
0) as an optimal control pair. Since the computation of the database

is offline, we employ heuristic global optimization techniques such as random restarts. It

should be noted that for a general nonlinear optimal control problem there is no guarantee

that a global optimal solution can be found. The best local optimal solution is considered as

the global optimal solution so a sufficiently large number of restarts is used. However, it is

possible that for certain initial states no solution exist or we fail to find a feasible solution.

In that case we simply mark that no solution exists.

4.4.3 Extending the Database along Trajectories

We observe that each successful trajectory solve provides not only the optimal costate

at the initial time t0, but also all times thereafter. Hence, we can populate the database

more quickly by generating optimal problem/solution pairs (x(t), z(t)) along the trajectory.

So, after calculating an optimal trajectory x(t), costate trajectory λ(t), and optionally the

final time tf , we evenly sample M states and costates along the trajectory and add their

examples to the database. Specifically, we divide the time range [t0, tf] at intermediate values

ti, i = 1, . . . ,M , and add all of (x(ti), z(ti)) to the database. In the case where z contains

final time we set the final time for point i to be t0 + tf − ti.

4.4.4 Query of Database

For a novel problem, NNOC performs a k-nearest neighbor query of the database, and

the costates for each of the k nearest neighbors are used as seeds for the TPBVP solver.

The feasible solution with minimum cost is kept. The NN query is performed using the ap-

proximate nearest-neighbors library FLANN [122] 2. Several parameters affect performance,

2http://www.cs.ubc.ca/research/flann/ (accessed 9/2/2017)

70

including:

1. Database size N . If N is too small, the distance between new parameters and its

nearest neighbors might be too large, so the solutions might not lead to convergence.

Larger N is needed for problems that are highly nonlinear with small convergence

domain. Nearest-neighbor lookup time is fairly insensitive to N due to the use of

approximate methods.

2. Distribution of the examples in the database should approximate the query distribu-

tion. A näıve method is to sample each state component uniformly at random in a

range, but if knowledge is available about which states are encountered in practice, it

should be employed.

3. Number of neighbors k determines how many precomputed solutions are used as ten-

tative values for new problems. A larger k contributes to the robustness by combating

the effects of local optimal solutions. However, larger values increase running time.

We also present the option to employ sensitivity analysis when determining an initial guess

to a novel problem. Rather than using precomputed solutions directly as the initial guess

for new problems, this method builds a first-order approximation of g to determine a better

guess. It is described below.

4.4.5 Sensitivity Analysis

Assuming the mapping from parameters to solutions is continuous and differentiable,

sensitivity analysis can be used to build a first-order approximation to their variations.

We can thus obtain a better initial guess than directly using the solutions of precomputed

problems.

NNOC queries the database to find neighbors of the new state. But instead of using the

solutions of the neighbors directly as the initial guess, we can obtain a better guess using

the first-order approximation of the relation between the variation of parameters and the

variation of solutions.

Let us first explain the method for the fixed-time case. Denote λ0 ≡ λ(t0). We take the

variation of (4.10) and obtain

∂x(tf)

∂x0

δx0 +
∂x(tf)

∂λ0

δλ0 = 0 (4.13)

71

where
∂x(tf)

∂x0

and
∂x(tf)

∂λ0

are easily obtained by integrating the variational equation of the

system dynamics. The variational equation requires the Jacobian of the dynamics equation

and we refer to [123] for further details.

Using (4.13) we can obtain a linear relationship between the change of initial state and

the change of initial costate variables

δλ0 =
∂λ0

∂x0

δx0 = −∂x(tf)

∂λ0

−1∂x(tf)

∂x0

δx0. (4.14)

It should be noted that the matrix
∂λ0

∂x0

can be computed offline since it is determined by x0

and λ0 and can be computed when the database is being built.

Then, when a query problem x0 is matched to an example (x, λ) in the database (noting

λ = z in this example), we seed the solver with the initial costate

λ+
∂λ

∂x
(x0 − x). (4.15)

For free-time problems, we must compute the sensitivity of both λ0 and tf with respect

to x0. To do so, compute the variation of (4.10) and (4.11), obtaining
∂x(tf)

∂x0

δx0 +
∂x(tf)

∂λ0

δλ0 +
∂x(tf)

∂tf
δtf = 0

∂H(tf)

∂x0

δx0 +
∂H(tf)

∂λ0

δλ0 +
∂H(tf)

∂tf
δtf = 0

(4.16)

Here,
∂x(tf)

∂x0

and
∂x(tf)

∂λ0

are obtained as before;
∂x(tf)

∂tf
= ẋ(tf) is obtained by substituting

the optimal control into the dynamics function;
∂H(tf)

∂tf
= 0 since H does not depend on

time [6];
∂H(tf)

∂x0

=
∂H(t0)

∂x0

= −λ̇(t0); and
∂H(tf)

∂λ0

=
∂H(t0)

∂λ0

= ẋ(t0). Then we can calculate

δλ0 and δtf by solving a system of n+ 1 linear equations.

[
δλ0

δtf

]
= −


∂x(tf)

∂λ0

∂x(tf)

∂tf
∂H(tf)

∂λ0

∂H(tf)

∂tf


−1  ∂x(tf)

∂x0
∂H(tf)

∂x0

 δx0. (4.17)

As with the fixed-time case, the sensitivity matrix can be done offline and stored with the

example in the database.

72

4.5 RESULT

We test NNOC in two problems. Planar Car is a minimum effort problem on a second-

order Dubins car. Quadcopter is a minimum-time problem on a dynamic quadcopter model

moving within a plane. In each case we seed the database using randomly sampled initial

states from some distribution, solved using a random restart method. The first example is

a basic demonstration of the data-driven technique. Test sets of 1,000 problems are ran-

domly generated from the same distributions as we generate the training set. The database

was extended in the Quadcopter case with M = 100 trajectory samples. This example

demonstrates we can use the technique of extending database along trajectories to enlarge

our database. In order to use the database, the states of the quadcopter when it is moving

towards the target are also added to the test set. We study the effects of parameters such

as the stopping criteria for random restart, database size, number of neighbors queried, and

whether sensitivity analysis is used. The Planar Car experiments are run on a Macbook

Pro with a 2.90 GHz CPU while the Quadcopter experiments are run on a desktop with a

3.60 GHz CPU.

4.5.1 Planar Car

We consider a simplified planar car with the following dynamics [124]:

ẋ = v sin θ, ẏ = v cos θ, θ̇ = uθv, v̇ = uv (4.18)

where the state x = [x, y, θ, v] includes the planar coordinates, orientation, and velocity of

the vehicle. The control u = [uθ, uv] includes the control variables which change the steering

angle and velocity, respectively.

Optimal Control Formulation The performance index is given by the quadratic control

effort

J =

∫ tf

t0

uTRudt (4.19)

where R is a diagonal matrix with entries r1 = 0.2 and r2 = 0.1, as chosen in accordance

with [124].

We arbitrarily choose fixed initial and final times, i.e. t0 = 0, tf = 2.5. Initial states are

sampled from the range x ∈ [−3, 0], y ∈ [−3, 3], θ ∈ [−π, π], v = 0. It should be noted that

due to the symmetry of the problem we do not have to consider positive x. The target state

is the origin, so that final orientation and velocity is 0.

73

The costate variables λ = [λx, λy, λθ, λv] are governed by the Hamiltonian [6]

H = λTẋ+ uTRu

= λxv sin θ + λyv cos θ + λθvuθ + λvuv + r1u
2
θ + r2u

2
v

(4.20)

and we derive the Euler-Lagrange equations

λ̇x = −∂H
∂x

= 0

λ̇y = −∂H
∂y

= 0

λ̇θ = −∂H
∂θ

= −λxv cos θ + λyv sin θ

λ̇v = −∂H
∂v

= −λx sin θ − λy cos θ − λθuθ

(4.21)

Then we readily derive the optimal control which minimizes H as

u∗θ = −vλθ
2r1

, u∗v = − λv
2r2

(4.22)

Estimation of magnitude of costate variables The difficulty for providing tentative

λ(t0) is partially caused by the its unknown bounds. Admittedly, with the help of the

normalization of initial costate variables [12] we can sample them on the surface of a high-

dimension ball. Here we use a non-rigorous formula to help provide bounds for initial

costate variables. Experiments show that it helps to increase success rate of random restart

technique. The formula we use for estimation of the magnitude of λv is

s̄ = 2
√
x2 + y2, v̄ =

s̄

t
, ā =

4v̄

t
, λ̄v = 2ār2 (4.23)

where (̄·) denotes the magnitude. We first estimate the length of the trajectory, then average

velocity and average acceleration assuming a constant acceleration and deceleration. Then

the formulation of the optimal control is used to get the magnitude of λv. Using a similar

way, we obtain the magnitude of λθ as

λ̄θ =
16|θ0|r1

t2v̄2
(4.24)

It should be noted that an additional term v̄2 is multiplied in the denominator because the

additional multiplication of v in Eqs. (4.22) and (4.18).

74

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-3

-2

-1

0

1

2

3

Figure 4.3: Sample of optimal trajectories for Planar Car example.

Simulation result We evaluate four methods that differ in how initial guesses are provided

and how the iteration is terminated.

1. RR: Random Restart of k initial guesses, where k = 5, 10, 50, 100

2. RL: Random restart after k Locally optimal solutions are solved, where k = 1, 3, 5, 10

3. NNOC: start with the solutions of the k Nearest Neighbors where k = 1, 5, 10

4. NNOC+SA: start with the solutions of the k Nearest Neighbors where k = 1, 5, 10

with Sensitivity Analysis

It should be noted that in RL a maximum restart number of 100 is set in order to avoid

an infinite loop. For random restart techniques, the normalization of initial costates is used

[12].

To build the database, we randomly generate 20,000 initial states and calculate the cor-

responding costates. Then 5 databases of size 1,250, 2,500, 5,000, 10,000, 20,000 are con-

structed, respectively. In Fig. 4.3 we plot the optimal trajectories of 30 examples where the

arrow shows the direction the car is heading. We record the running time, number of solu-

tions, and the best performance index of each method. The results for RR and RL are listed

in Tab. 4.1 and Tab. 4.2, respectively. Success Rate denotes the percentage of obtaining at

least one local optimal solution; Avg. Conv. denotes the average number of local optima;

Global Rate denotes the fraction of times a method obtains a globally optimal solution; Avg.

Time is the average computation time for solving the TPBVP using shooting methods. To

calculate Global Rate, for each test example we compute the minimum cost solution found

over all methods tested. This value is then considered the globally minimum cost. A local

75

optimum returned by each method is considered global if its cost is close to the minimum

cost (the difference is less than 1×10−6). For this problem, we find that for a desired Global

Optimal Rate of 95%, about 100 random initial guesses must be tried, and RR takes about

7 s.

Table 4.1: Results of RR for Planar Car Example

k Success Rate Avg. Conv. Global Rate Avg. Time (s)

5 0.673 1.145 0.494 0.378
10 0.862 2.385 0.684 0.769
50 0.997 11.824 0.939 3.831
100 1 23.697 0.966 7.649

Table 4.2: Results of RL for Planar Car Example

k Success Rate Avg. Conv. Global Rate Avg. Time (s)

1 1 5.679 0.610 0.562
3 0.992 15.516 0.854 1.285
5 0.982 25.070 0.910 1.982
10 0.932 45.002 0.917 3.276

1250 2500 5000 10000 20000

Database size

0

0.05

0.1

0.15

0.2

0.25

A
v

g
.

T
im

e
(s

)

NNOC(1)

NNOC(5)

NNOC(10)

NNOC+SA(1)

NNOC+SA(5)

NNOC+SA(10)

Figure 4.4: Average computation time of NNOC for Planar Car example.

Fig. 4.4 compares running times to NNOC, and Fig. 4.5 shows the Global Optimal Rate,

for differing numbers of database size N , neighbor count k, and whether sensitivity analysis

76

is enabled. It can be observed that the average computation time decreases with increasing

N . The influence of N on average computation time is more significant for larger k. This

is reasonable since when k is large, the distance of some neighbors might be quite large and

increasing N can help avoid initial guesses that takes a long time to converge. Increasing k

increases global optimal rate significantly, but at the cost of increasing computation time.

Sensitivity analysis significantly reduces the average computation time and increases global

optimal rate. For a target global optimal rate of 95%, k = 5 and N = 20, 000 leads to

average computation time of 0.05 s which is nearly two orders of magnitude faster than RR.

4.5.2 Planar Quadcopter

The Quadcopter example defines the following dynamics [125]:

ẍ =
FT
m

sin θ, z̈ =
FT
m

cos θ − g, θ̇ = ω (4.25)

where g is the gravitational acceleration; m the mass of the quadcopter; FT the total thrust

force; and ω the pitch rate. The state x = [x, z, ẋ, ż, θ] include the x, z coordinates, the

velocity, and the pitch angle. The control is defined as u = [u, ω] where u = FT/m.

1250 2500 5000 10000 20000

Database size

0.7

0.75

0.8

0.85

0.9

0.95

1

G
lo

b
al

 O
p

ti
m

al
 R

at
e

NNOC(1)

NNOC(5)

NNOC(10)

NNOC+SA(1)

NNOC+SA(5)

NNOC+SA(10)

Figure 4.5: Global Optimal Rate of NNOC for Planar Car example.

Both controls are subject to saturation:

u ≤ u ≤ u, |ω| ≤ ω (4.26)

where u = 1, u = 20, ω = 5. The initial state of the quadcopter is randomly sampled such

that x ∈ [−10, 0], z ∈ [−10, 10], ẋ = ż = θ = 0. Due to symmetry of the problem, we do not

77

have to sample the cases with positive x.

Optimal Control Formulation The objective in this problem is to move to and hover at

the origin in minimum time while respecting control bounds. The time-optimal performance

index is

J =

∫ tf

0

1dt (4.27)

where tf is a free variable. However, the resulting optimal control is bang-bang control

which is numerically challenging to solve [125]. Hence, we use an alternate formulation that

adds regularization parameters to the performance index so the resulting optimal control

is continuous [126]. We introduce a logarithmic barrier function to the performance index,

which is a widely-used method in the field of aerospace engineering to handle non-smooth

bang-bang control [13, 15], as follows,

J =

∫ tf

0

L dt

=

∫ tf

0

1− ε1 ln[û(1− û)]− ε2 ln[ω̂(1− ω̂)] dt.

(4.28)

where û ∈ [0, 1] and ω̂ ∈ [0, 1] are nondimensionalized controls such that u ≡ u + (u − u)û

and ω ≡ ω + (ω − ω)ω̂. It can be shown that with this modification, the resulting optimal

control is continuous and differentiable. The parameters ε1 and ε2 control the magnitude

of the logarithmic barrier. Smaller values lead to a better approximation to the bang-bang

control, but they also enlarge numerical sensitivity and thus reduce the convergence domain.

In this work we initially choose the values ε1 = ε2 = 1 which are relatively large compared

with [15], but also have a larger convergence domain. Admittedly, one can tune the value of

ε1 and ε2 to tradeoff between optimality and difficulty.

With costate variables λ = [λx, λz, λẋ, λż, λθ], we write the Hamiltonian as

H = λxẋ+ λz ż + λẋu sin θ + λż(u cos θ − g) + λθω + L (4.29)

and derive the Euler-Lagrange equations
λ̇x = −∂H

∂x
= 0, λ̇y = −∂H

∂x
= 0

λ̇ẋ = −∂H
∂ẋ

= −λx, λ̇ż = −∂H
∂ż

= −λz

λ̇θ = −∂H
∂θ

= λżu sin θ − λẋu cos θ

(4.30)

78

Then the non-dimensionalized optimal control that minimizes H is
u∗ =

2ε1

2ε1 + ρ1 +
√

4ε21 + ρ2
1

ω∗ =
2ε2

2ε2 + ρ2 +
√

4ε22 + ρ2
2

(4.31)

where ρ1 and ρ2 are called switching functions and are defined as

ρ1 = (u− u)(λẋ sin θ + λż cos θ), ρ2 = (ω − ω)λθ. (4.32)

Simulation Result In this example, a different approach is applied to compare RR and

data-driven technique. We use the same method as we generate the training set to get 500

samples for the test set. We use the same way of extending the database along trajectories

to generate testing examples as well. Along each trajectory we evenly sample additional

l = 10 states. The following results is a summary of the simulation results on the sampled

initial states.

To build the database, we randomly generate 2,000 initial states and calculate the cor-

responding costates. Then the technique of sampling optimal trajectories to extend the

database is applied. 5 databases of size 12,500, 25,000, 50,000, 100,000, 200,000 are con-

structed, respectively. In Fig. 4.6 we plot the optimal trajectories of 50 examples. The

results for RR and RL are listed in Tab. 4.3- 4.4. We note that for this problem getting

local optima is not a serious problem and the Global Optimal Rate approximately equals

the success rate of returning one result. Random restart until 1 local optimal solution is

found is a good choice to solve this problem. On average this takes about 0.2 s.

-12 -10 -8 -6 -4 -2 0 2

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 4.6: Sample optimal trajectories for the Quadcopter example.

79

Table 4.3: Results of RR for Planar Quadcopter Example

k Success Rate Avg. Conv. Global Rate Avg. Time (s)

5 0.732 2.030 0.732 0.244
10 0.799 4.063 0.899 0.490
50 0.853 20.137 0.853 2.448
100 0.861 40.285 0.861 4.901

Table 4.4: Results of RL for Planar Quadcopter Example

k Success Rate Avg. Conv. Global Rate Avg. Time (s)

1 0.861 4.111 0.861 0.191
3 0.848 10.181 0.861 0.542
5 0.832 15.150 0.861 0.850
10 0.789 25.376 0.861 1.494

Fig. 4.7 shows solving time for NNOC. Increasing k leads to longer solving time since more

instances of TPBVP must be solved. But increasing the database size and using sensitivity

analysis decreases computation time. However, when k = 1, the decrease in computation

time is quite small. Fig. 4.8 shows the Global Optimal Rate, showing that NNOC almost

always computes the global optimum. When k = 1 and sensitivity analysis, the global

optimum is found about 99% of the time and average computation time is less than 4 ms.

12500 25000 50000 100000 200000

Database size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v

g
.

T
im

e
(s

)

NNOC(1)

NNOC(5)

NNOC(10)

NNOC+SA(1)

NNOC+SA(5)

NNOC+SA(10)

Figure 4.7: Average computation time of NNOC for Quadcopter example

80

12500 25000 50000 100000 200000

Database size

0.97

0.975

0.98

0.985

0.99

0.995

1

G
lo

b
al

 O
p

ti
m

al
 R

at
e

NNOC(1)

NNOC(5)

NNOC(10)

NNOC+SA(1)

NNOC+SA(5)

NNOC+SA(10)

Figure 4.8: Global Optimal Rate of NNOC for Quadcopter example

Model Predictive Control Simulation A potential application of NNOC is to imple-

ment real-time nonlinear MPC, which we illustrate using the simulated quadcopter problem

under disturbances (e.g., wind gusts).

We simulate model uncertainty by adding small perturbation to the system dynamics.

The simulated Eq.(4.25) becomes

ẍ =
FT
m

sin θ + ax, z̈ =
FT
m

cos θ − g + az, θ̇ = ω + α∆t (4.33)

where ax and az are the unmodelled acceleration along x and z axes; α is the unmodelled

angular acceleration; ∆t is the instantaneous time from the last control step such that α∆t

is the unmodelled change of angular velocity. At every control step (∆t = 0.1), ax, az, α are

sampled from normal distributions with standard deviations of 1.

Our implementation of the NNOC-MPC controller receives the current state as input

at 10Hz and uses NNOC+SA with k = 5 nearest neighbors to solve the optimal control

problem. In some cases, convergence cannot be obtained using NNOC. In this case, we

try solving using the costate trajectory from the last step as the initial guess, integrating

Eq.(4.30) forward by ∆t. If convergence cannot be reached again, then we consider this a

failure of the controller. The controller repeats until 1) the quadcopter is close to the origin,

as measured by ‖x‖ < 2 or 2) the quadcopter is too far from the origin, as measured by

‖x‖ > 20.

Our first NNOC database simply uses states along the optimal trajectories from states

at rest, as before. However, this database does not achieve adequate coverage in areas

of the state space that the system might reach under disturbances. We consider generat-

ing a robust database by simulating the NNOC-MPC controller from random initial states

81

using a larger perturbation and collecting the state and solutions. If the novel state is

not solved successfully using the above technique, a brute-force RR(100) is used. Each

database has 500,000 parameter-solution pairs. Symmetry about the x axis is exploited

by sampling states only with x ≤ 0, and mirroring any states with x > 0. Specifically, if

(x, z, ẋ, ż, θ) and (λx, λz, λẋ, λż, λθ) form a state-solution pair, then (−x,−z, ẋ, ż,−θ) and

(−λx, λz,−λẋ, λż,−λθ) also form a pair.

We perform 500 simulations with random initial states as shown in Fig. 4.9. We record

failed NNOC solves (which can be corrected during execution using a backup solver), as

well as overall failures of convergence. Table 4.5 gives a numerical comparison. Using the

standard database, the controller fails to achieve solutions via NNOC in 1.6% of intermediate

states. This also leads to overall failure of convergence in 16 / 500 initial states. Using the

robust database, NNOC+SA failed to obtain solutions in 0.65% of intermediate optimal

control problems. This leads to a failure of convergence in 7 / 500 initial states. These

results demonstrate that NNOC is able to control model uncertainty in a large fraction

of trajectories, and that performance is improved by ensuring the database has adequate

coverage of the states encountered in practice.

Figure 4.9: Comparison of NNOC-MPC simulation on the quadcopter for two databases.
Left: the standard database is constructed by sampling along unperturbed optimal trajecto-
ries. Right: the database is generated by running MPC under perturbation. Blue trajectories
are successful, and red are unsuccessful. Red stars and triangles denote states that are not
solved by NNOC-MPC. Black stars mark the final states of failed trajectories (some are not
visible in the depicted range).

4.6 CONCLUSION

In this paper a data-driven technique is proposed to help solve nonlinear optimal control

problems. NNOC addresses the major difficulty faced in indirect optimal control — providing

82

Table 4.5: Results for MPC with NNOC on the Quadcopter problem

Standard DB Robust DB

NNOC+SA solve failures 1.6% 0.65%
Convergence failures 3.2% 1.4%

tentative values for the unknowns — by retrieving the solutions to problems that have already

been solved using brute force methods. The effects of several crucial parameters such as the

database size, number of neighbors, and whether to use sensitivity analysis are investigated.

Compared with brute-force random restart technique, this method can obtain the global

optimal solution an order of magnitude faster and has the potential for real-time application

in nonlinear MPC.

In future work we intend to enhance the suitability of NNOC for real time control of

physical systems. Although current results are promising, robustness could be improved in

a number of ways. One approach so might use NNOC to calculate a reference trajectory for

a trajectory-tracking controller. Or, we could explicitly optimize robust trajectories for use

in the database. Future work should also address scalability to higher-dimensional systems

as well as state and parameter uncertainty.

83

CHAPTER 5: LEARNING TRAJECTORIES FOR REAL-TIME OPTIMAL
CONTROL OF QUADROTORS

Although NNOC has shown its advantages over random restart in indirect methods, the

problems presented in Chapter 4 are toy problems with low-dimensional parameter space.

k-NN method does not scale well with problem dimensionality and indirect methods have

limited scope of application. In this chapter the neural network is applied on a more chal-

lenging problem point-to-point movement of quadcopters solved by direct methods. It turns

out the neural network is capable of approximating the argmin function with high accuracy.

Different from NNOC where the model prediction is used as initial guess for nonlinear op-

timizer, here the predicted trajectory is directly used for tracking, after an additional step

of local refinement to reduce the error of dynamics constraints. This method generates ap-

proximately optimal trajectories without solving nonlinear optimization in real time. The

generated trajectory is easier to track compared with trajectories generated with geometry

such as minimum-snap trajectory. This claim is proved using physical experiments on a

weakly-actuated quadcopter. The real time object tracking experiments show its capability

in reactive tasks. 1

5.1 INTRODUCTION

Trajectory optimization is generally challenging to solve reliably and efficiently. In prac-

tice, to explore the benefits of trajectory optimization for agile maneuvers, the trajectories

are usually computed offline [127] and many approaches [14, 16] are proposed to improve

computational efficiency. As shown in Chapter 1, trajectory learning is a promising approach

to get the high-quality trajectory from optimization while avoiding its computational chal-

lenges. In this way the versatility of trajectory optimization on handling different dynamics,

constraints, and cost functions is still maintained but the high computational cost is moved

offline. This type of approach is demonstrated in Chapter 4 where the k-NN method is

used for trajectory learning combined with indirect methods. Although the k-NN method is

effective in handling existence of local optima, it is not scalable to high-dimensional space.

Nonlinear optimization is still required since k-NN does not interpolate to unseen problems

and its prediction is used as an initial guess to nonlinear optimizer. However, interpolation

is indeed desired since it generalizes better to unseen data especially when data is sparse.

1This chapter is reproduced from Gao Tang, Weidong Sun, and Kris Hauser, “Learning trajectories for
real-time optimal control of quadrotors”. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

84

Parametric models such as neural networks tend to scale better to high-dimensional space

and interpolate to unseen data.

As a result, we explore the ability of neural networks to perform optimal trajectory pre-

diction. To handle the prediction errors made by the neural network, it is important to

introduce some postprocessing in order to respect dynamics and control constraints. We

show that only a small amount of optimization suffices to achieve high performance. More-

over, for this problem, the discontinuity of argmin does not exist so the model selection and

training is quite straightforward.

We evaluate effectiveness of this approach on a quadrotor point-to-point navigation prob-

lem. Trained on 50,000 examples, our method calculates near-optimal trajectories in less

than 2 ms on average. Experiments demonstrate that trajectories calculated by our tech-

nique achieve lower tracking error than minimum-snap trajectories of the same duration [50].

Its fast rate of computation also allows it to be used in a model predictive control (MPC)

framework in which the trajectory has to be replanned frequently. Our approach enables

agile response to replanning command and the quadrotor is able to stay above a quickly

moving target object. This is verified with physical experiments where a human operator

moves the target object around.

x(m)

−6 −4 −2
0

2
4

y(
m)

−6
−4
−2

0
2

4
6

z(
m

)

−2

−1

0

1

2

Figure 5.1: Samples of a few optimal trajectories in the quadrotor dataset. The arrow shows
initial velocity direction. The target state is fixed at the origin.

85

5.2 RELATED WORK

Generation of optimal trajectories for dynamic systems in real-time often requires either

simplification of system dynamics into linear systems such as double integrator or param-

eterization of state trajectories in a limited function space such as piecewise polynomials.

This paper is concerned primarily with quadrotor trajectory generation, which has been

explored by many other researchers. Pioneered by Mellinger et al. [50], a quadrotor can

explore the differential flatness in its dynamics. The trajectory is parameterized using piece-

wise polynomials and minimizes a combination of the derivatives of the position states and

yaw angle, so-called minimum-snap trajectory. These approaches limit the trajectory class

to polynomial functions and the available choices of cost functions and constraints are lim-

ited. Another drawback is these approaches explore the differential flatness of the quadrotor

system and cannot be easily extended to quadrotors augmented with slung loads or arms,

or more precise model such as considering air drag.

On the other hand, numerical optimal control is versatile and does not require specific

system dynamics, cost function, or constraints. In [128] numerical optimal control is demon-

strated on a wide range of quadrotor related trajectory optimization problem. However,

it needs to solve non-linear programming (NLP) problems [80] which in general cannot be

solved in real time or to a global optimum due to high computational expense.

5.3 METHODS

Our approach is composed of four major components.

1. Formulate the problem of interest into a parametric OCP.

2. Generate a training database by sampling parameters from a given range and solving

for their optimal trajectories.

3. Use a neural network (NN) to learn the mapping from parameters to optimal trajec-

tories.

4. Online, given a new set of problem parameters, use the NN to predict an optimal

trajectory, and then solve a one-step QP to refine the prediction.

Although components 2–3 are computationally expensive, they are only performed once

offline. Only component 4 is performed repeatedly online, and we demonstrate that it can

be performed extremely quickly.

86

5.3.1 Parametric Optimal Control

We address dynamical systems in the form

ẋ = f(t, x, u) (5.1)

where t is time; x ∈ Rn is the state variable; u ∈ Rm is the control variable. We refer [50]

for the detailed dynamical equations. The state x = (x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r) ∈ R12

and control u ∈ R4. The control is directly chosen as the PWM (scaled to [0, 1]) for each

rotor due to the nonlinear relation between PWM and its thrust and moment [129].

A trajectory is a mapping from time to state and control variables, i.e. f : t→ [x(t), u(t)]

with t ∈ [0, tf]. We use direct transcription approach to solve OCPs. An equidistant

time grid of size N + 1, i.e. {ti}Ni=0 is used for discretization. The trajectory is thus z =

{ti, xi, ui}Ni=0. The cost function to be minimized is

J = wtN + h
N−1∑
i=0

[xi
TQxi +

(
ui − ui−1

h

)
TR

(
ui − ui−1

h

)
] (5.2)

where h is the grid size; u−1 is the nominal control that compensates gravity; w,Q,R penal-

izes flight time, state, and change of control variables; the term (ui−ui−1)/h approximates u̇.

We penalize the change of control since our drone has difficulty ramping up its PWM. The

penalty on transfer time w encodes the aggressiveness of the trajectory. This cost function

is difficult to be directly optimized using the minimum-snap or related approach. We limit

u ∈ [0.2, 0.85] to avoid saturation when feedback is introduced. Again, control bound on

PWM is also difficult to be constrained in the minimum-snap framework. Throughout the

paper we use w ∈ [0.1, 5], Q = diag(0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1), R = diag(5, 5, 5, 5); System

dynamics impose constraints

xk+1 = RK4(xk, uk, h) (5.3)

where RK4 means integrating f with constant control uk for time period h from state xk.

We note that RK4 is used for higher integration accuracy and thus N can be reduced. The

initial and final states specification imposes constraint

x0 = s0;xN = sf (5.4)

where s0 and sf are the desired initial and final states. Additionally, depending on specific

problem, other path constraint such as collision avoidance and bounds on state and control

can be applied.

87

The problem is to solve the optimal trajectory from a given initial position and velocity

(assuming zero angle and angular velocity) to the origin with zero velocity with different

choice of aggressiveness encoded by w. We denote the vector collecting 7 problem parameters

(3 initial position, 3 initial velocity, and w) as p. Due to the limitation of the laboratory size,

the initial position is limited within [−5,−5,−2.5] and [5, 5, 2.5] and velocity is limited within

[−2,−2,−1.5] and [2, 2, 1.5]. Since the initial velocity can be non-zero, this parametric OCP

provides the flexibility of commanding the quadrotor to another target in flight without

stopping. We only consider the obstacle-free problem, and intend to address obstacles in

future work.

5.3.2 Learning Optimal Trajectories

The solution to the parametric OCP is a mapping from problem parameter p to the

corresponding optimal trajectory z(p). This mapping can be approximated using neural

networks. The problem parameter is directly treated as a 7-D vector including 3-D position,

3-D velocity, and time penalty weight w. While the position and velocity parameters enables

prediction of optimal trajectories based on current state, w controls the aggressiveness of

the predicted trajectory. We assume the angle and angular velocity are small and can

be controlled much faster than position and velocity so they are not included in problem

parameters to simplify the problem. We encode the solution using a long vector, denoted as

Z composed of states {xi}Ni=0, controls {ui}N−1
i=0 , and time tN . The neural network is simply

chosen as a multilayer perceptron (MLP) with one hidden layer. It takes problem parameter

as input and the output is the encoded optimal trajectory, i.e. g(w, p) : p → Z(p) where w

are the weights of the network. Through learning, we find optimal w to minimize

L = Ep∼Pdata
loss(g(w, p), Z(p)) (5.5)

where loss is any regression loss function. We use smoothed L1 loss in this paper.

We train on a dataset of parameter-solution pairs {(p(1), Z(p(1)), . . . , (p(M), Z(p(M))} by

sampling a set of problem parameters p(1), . . . , p(M) and solving their corresponding OCPs

using a nonlinear programming (NLP) formulation. To generate the training dataset, both

position and velocity are sampled uniformly within range, while w is sampled uniformly

after log transformation. We firstly solve 5000 problems to optima using random restart

with different initial guesses. The random restart technique increases the probability that

the solutions to those problems are indeed globally optimal. These 5000 problem-solution

pairs are used as database and the NNOC approach [11], which initializes the local optimizer

88

0 5000 10000 15000 20000
Training step

0.0000

0.0025

0.0050

0.0075

0.0100

L
os

s

Train

Test

Figure 5.2: History of neural net training and test error

with several nearest neighbors in the database, is used to solve the rest of the problems. The

database can be built incrementally. Eventually we collect M = 50, 000 samples. After

the whole dataset is built, we resolve all examples again using NNOC to further reduce the

likelihood of local optima in the database. Samples of optimal trajectories are shown in

Fig. 5.1.

We train a neural network with input layer of size 7, hidden layer of size 500, and output

layer of size 317 (in this paper we choose N = 20). The hidden layer has a nonlinear

activation function, specifically Leaky ReLU with α = 0.2. 80% data are used for model

training and the rest is used as test set. Stochastic gradient descent with momentum is used

for training with a mini-batch of 64. The training is terminated when the test error does

not decrease within 1000 iterations. Fig. 5.2 illustrates the learning curves. At the end of

training, test error is 1.7×10−4, which indicates that the network approximates the function

accurately.

5.3.3 Refinement by QP

The neural network is capable of predicting Z(p) fairly well for any p, but the prediction

might not fully respect all the constraints due to approximation error. Although numerical

simulation shows the violation is low and the prediction can still be used for trajectory

tracking, this prediction improved by subsequent optimization. NLPs are often solved using

a sequential quadratic programming (SQP) algorithm, but our refinement technique only

solves a QP once. We call this approach one-step QP (OSQP), and demonstrate that it is

particularly fast when sparsity is exploited. If more computational resources are available,

this approach can be extended to perform a small amount of SQP to further refine the

trajectories, e.g., performing backtracking line search or trust region approach and multi-

89

step update.

Assuming the prediction Z is decoded into {ti, x̄i, ūi}Ni=0, we want to refine this prediction

by finding δZ ≡ {0, δxi, δui}Ni=0 such that Z + δZ solves optimal control problem. We note

that h is not optimized to keep the problem as QP. As shown later, the prediction error in

transfer time tN is small.

Substituting Z + δZ into the cost function and constraints yields

J = Constant + h
N−1∑
i=0

[δxi
TQδxi + 2x̄i

TQδxi + (δuiRδui

+ δui−1Rδui−1 + 2(ūi − ūi−1)TR(δui − δui−1))/h2]

(5.6)

which is quadratic in terms of δZ and

x̄k+1 + δxk+1 = RK4(x̄k + δx̄k, ūk + δūk, h) (5.7)

which is linearized to

x̄k+1 + δxk+1 = ȳk +
∂ȳk
∂x̄k

δxk +
∂ȳk
∂ūk

δuk (5.8)

where ȳk = RK4(x̄k, ūk, h). Since the neural network predicts Z close to the optimum, δZ is

small and linearization is valid. We conveniently change the nonlinear dynamics constraints

into linear constraints. Additionally, the constraints for initial and final states are readily

converted into

x̄0 + δx0 = s0; x̄N + δxN = sf (5.9)

and other constraints such as bounds on state and control variables can be converted simi-

larly.

We note that the neural network predicts a trajectory with zero angle and angular velocity

which might be different from the quadcopter’s current state. This issue is further reduced

by solving optimal δZ since to satisfy Eq. (5.9) the result trajectory has an initial state

identical to the quadcopter’s current state.

These constraints are assembled into a QP of the form

Minimize
x

1

2
xTPx+ qTx

subject to l ≤ Ax ≤ u
(5.10)

with positive semi-definite matrix P . From Eq. (5.9) δx0 and δxN can be determined directly.

The optimization variables for QP are thus {δxi}N−1
i=1 and {δui}N−1

i=0 . Observing that Q and

90

R are both diagonal in Eq. (5.6), P is also diagonal. The linear constraints contain linear

equality constraints from Eq. (5.8) and inequality constraints of bounds on state and control.

The bounds on state and control variables are essentially block identity matrix in A. There

are N sets of linearized dynamical constraints as Eq. (5.8) for k = 0, . . . , N−1. Each instance

of (5.8) introduces at most n×(n+m+1) nonzero elements. Out of those nonzero elements,

n2 belong to ∂ȳk
∂x̄k

, nm belong to ∂ȳk
∂ūk

, and the rest n is the diagonal matrix associated with

δxk+1. To exploit this sparsity, we use the implementation in [130], and all tested problems

can be solved in microseconds.

5.4 RESULTS

In this section, we evaluate the method’s performance in simulation and on a real quad-

copter.

5.4.1 System Description

We use a commercially available quadrotor Crazyflie 2.02, with basic specifications listed

in Tab. 5.1. We refer to [129] for more details on system dynamics. The position of the

quadrotor is captured by the Vicon motion capture system and transmitted to ground control

station using Ethernet at 200 Hz. The raw data stream from Vicon goes through a Kalman

filter and then serves as feedback for a position controller on the ground control station.

The position controller is a proportional-integral-differential (PID) controller, and sends

commands at 100 Hz through radio to the quadrotor which drives the on-board attitude

controller at 500 Hz. The commanded target position is fed into the neural network to

generate a trajectory and then optimized by OSQP to get the optimal trajectory. The

optimal trajectory is then sent to the position controller as a reference trajectory. The

system diagram is shown in Fig. 5.3.

UDP
200Hz Vicon Motion

Capture SystemKalman Filter

Onboard Attitude
Controller

Ground Station

Radio
100HzPosition

Controller

User Input

Trajectory
Generator

Crazyflie 2.1

Figure 5.3: Architecture of the system

2https://www.bitcraze.io/crazyflie-2/

91

Table 5.1: Specifications of Crazyflie2.0

Parameter Value

Mass (with markers) 33.5 g
Size(W×H×D) 92×29×92 mm
Takeoff weight 42 g
Flight time 7 min

0 1 2 3 4 5
Time (s)

0

1

2

v x
(m
/s

)

w = 0.1

w = 0.5

w = 2.0

w = 5.0

0 1 2 3 4 5
Time (s)

0.0

0.5

1.0

v x
(m
/s

)

Pred

OSQP

Opt

Figure 5.4: Top: four trajectories from the same initial state with different aggressiveness
weights. Bottom: predicted, OSQP refined, and optimal trajectories for w = 1. The curves
almost overlap, indicating high prediction accuracy.

5.4.2 Numerical Validation

The top row of Fig. 5.4 shows the prediction of optimal trajectories from (−3,−3,−2)

with zero velocity to the origin with different weights on transfer time. These show that the

chosen aggressiveness affects the optimized transfer time. The bottom row indicates that the

neural network makes accurate predictions. Refinement by QP is able to further optimize

the trajectory, and the result is visually indistinguishable from the global optimum.

We evaluate the network’s prediction error in transfer time in Fig. 5.5 and Tab. 5.2.

It shows that most of the errors are within 0.25 s. This is important because OSQP is

unable to improve the transfer time. However, there are still a few outliers with large

transfer time error. These tend to be non-aggressive problems. For example, in the worst

problem, w = 0.15 and the costs from the OSQP and optimal trajectory are 0.870 and 0.739,

92

−0.5 0.0 0.5 1.0 1.5
∆tN

0

500

1000

1500

C
ou

n
t

Figure 5.5: Prediction error in transfer time. Most prediction errors are within 0.25 s.
Outliers (invisible in histogram) are indicated with vertical lines.

Table 5.2: Prediction error in transfer time (s)

MAE RMSE max median

0.056 0.080 1.62 0.043

respectively.

Next, we examine the violation of the dynamics constraint. We randomly sample 1000

initial states and evaluate the L2 norm of the violation of constraints of the optimal tra-

jectories from our approach (0 means no violation). The result is shown in Fig. 5.6 with a

worst case of 0.12. Considering that this problem has (N − 1)n = 228 constraints, even the

worst-case violation is relatively small and can be well compensated by feedback control.

Tab. 5.3 compares the running time and cost of the following methods:

1. Our approach (NN+OSQP)

2. Minimum-snap trajectory (Min-Snap) [50]

3. NLP solver with straight line initialization (SL+NLP)

4. NLP solver with NNOC initialization (NNOC) [11]

5. NLP solver with neural net initialization (NN+NLP)

on 1000 sampled initial states. We note that Min-Snap is implemented in Python and a

careful C++ implementation can reduce the computation time to the same level with our

approach. The transfer time of minimum-snap trajectory must be set by some other methods

which often leads to conservativeness for safety. In these experiments it is selected to be

93

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Violation

0

250

500

750

1000

C
ou

n
t

Figure 5.6: Histogram of constraint violation measured by the norm of the constraint func-
tion. Outliers (invisible in histogram) are indicated with vertical lines.

the same with the results from NNOC. Since the minimum-snap approach is optimizing the

snap of selected state variable, it will have larger cost for our cost function.

Compared with the full NLP solver, our approach is able to get an approximate solution

two orders of magnitude faster at similar levels of cost. It also obtains better cost than Min-

Snap. Although we are not explicitly optimizing control energy, it turns out our approach

yields lower energy trajectory. Besides, Min-Snap has to check violation of control constraint

a posterior and as a result, the transfer time has to be chosen conservatively in practice.

Table 5.3: Comparison between approaches.

NN+OSQP Min-Snap SL+NLP NNOC NN+NLP

Success 1000 1000 563 1000 1000
Time (ms) 1.80 10.21 382.9 194.7 131.1
Avg. cost 3 8.73 8.88 8.64 8.64 8.64
Avg. energy 6.67 7.00 6.69 6.69 6.69
Avg. jerk 0.37 0.40 0.35 0.35 0.35

5.4.3 Point-to-point Navigation and Real-time Tracking

Fig. 5.7 compares our method applied to the real quadcopter by a point-to-point maneuver

from (0, 0, 0) to (3, 3, 1.5). Our approach predicts a transfer time of 3.1 s. The minimum-

snap trajectory to reach the same target within the same amount of time is also shown.

3See Eq. (5.2)

94

The two reference trajectories are quite different, especially in the z direction. This is not

too surprising because they are optimizing different cost functions. The trajectory from our

prediction yields better tracking performance. For underpowered drone like Crazyflie, the

specialized cost function in Eq. (5.2) penalizes rapid change of rotor PWM so it leads to

better performance than the general minimum-snap approach.

0 2 4
−2

0

x(
m

)

̂xsnap
xsnap
̂x

x
0 2 4

−0.25

0.00

0.25

Δx
(m

)

Δxsnap
Δx

0 2 4
0

2

y(
m

)

̂ysnap
ysnap

̂y
y

0 2 4
−0.25

0.00

0.25

Δy
(m

) Δysnap
Δy

0 2 4
Time (s)

1

2

z(
m

)

̂zsnap
zsnap
̂z

z

0 2 4
Time (s)

−0.1

0.0

Δz
(m

) Δzsnap
Δz

Figure 5.7: Results for tracking a trajectory. The dashed and solid lines are reference and
actual trajectory. The blue and red lines are the trajectory by our minimum-snap and our
approach. To reach the same target within the same amount of time, our approach generates
a trajectory with better tracking performance.

We repeated this experiment for 10 manually selected targets. The tracking errors, mea-

sure by the norm of position and velocity errors, are listed in Tab. 5.4. It shows our approach

generates a trajectory that is easier to track than the minimum-snap approach, given the

same transfer time.

Table 5.4: Comparison of average tracking error

NN+OSQP Min-Snap

0.45 0.87

95

Since our approach can predict a trajectory with non-zero initial velocity, it can switch

target rapidly. Fig. 5.8 demonstrates this capability. A movement to the initial target is

interrupted with a new target after 1.7 s. The technique smoothly and immediately switches

to the new trajectory.

0 1 2 3 4 5
−2

0
x(

m
)

̂x
x
plan

0 1 2 3 4 5
−2.5

0.0

2.5

y(
m

)

̂y
y
plan

0 1 2 3 4 5
Time (s)

1

2

z(
m

)

̂z
z
plan

Figure 5.8: Results for replanning during tracking. The vertical line indicates when replan-
ning is commanded. The blue curve shows the planned trajectory to the first target. Our
approach is able to generate optimal trajectory in real time.

5.5 CONCLUSION

We exploit the ability of machine learning for global nonlinear function approximation

and efficiency of local trajectory optimizer to enable real-time OCP solving.

The problem of interest is formulated as parametric OCP so dataset of optimal trajectories

is created and the parameter-solution mapping can be learned. It turns out the optimal

trajectories can be learned using small amount of data and approximated to high precision.

The local trajectory optimizer based on sparse QP benefits from the high accuracy of the

prediction from the learned model. The combination of these techniques enables real-time

solving of challenging nonlinear OCPs. We validate this approach using an indoor quadrotor

system. We note that this quadrotor is under-powered and light-weight so its disturbance

rejection capabilities is relatively weak. In future work we intend to apply our technique to

quadrotors capable of more aggressive maneuvers. Our method should benefit more from

the exploitation of nonlinear dynamics to achieve higher performance. Future work includes

96

applying this technique to more challenging systems such as locomotion and theoretical

study of stability guarantee and bounds on loss of cost function.

97

CHAPTER 6: DISCONTINUITY-SENSITIVE OPTIMAL CONTROL
LEARNING BY MIXTURE OF EXPERTS

In Chapter 5 standard neural network (SNN) emerges as a model for trajectory learning

with better scalability to parameter dimensionality and generalization to unseen problems.

However, SNN is a continuous model and has difficulty handling discontinuity which exists in

the argmin function of lots of parametric planning tasks. This chapter studies how to learn

discontinuous argmin function using the Mixture of Experts (MoE) model which contains

a classifier that makes discontinuous decisions. The training method for MoE is proposed

which outperforms standard training method for SNN using backpropagation. To train MoE,

the dataset has to be split into groups within which the argmin is continuous. The k-Means

clustering approach with carefully tuned k splits the dataset reasonably well with the help

of several metrics to measure the discontinuity within each split. Numerical experiments

on benchmark problems show the advantages of MoE over SNN in terms of success rate for

trajectory tracking. 1

6.1 INTRODUCTION

An underappreciated challenge for learning argmin from data is that function approxi-

mators, such as Standard multilayer feedforward Neural Networks (SNN), perform poorly

near discontinuities that are prevalent in many nonlinear OCPs. Fig. 6.1 shows the results

of learning a pendulum swingup task by SNN from optimal trajectories. There exist three

possible goals among all the optimal trajectories so the problem-optimum mapping is not

globally continuous. Although neural networks are capable of approximating continuous

nonlinear functions [131], near the region where the optimal goal state switches, they tend

to predict an “average” of the two goals, as shown in Fig. 6.1b. Even with a large amount

of data sampled densely near the boundaries, a given network may not have the capacity

to represent such a function accurately, and even for high-capacity deep networks it may be

difficult for training to converge.

This chapter addresses this problem by modifying the Mixture of Experts (MoE) [132, 133,

134] model to learn discontinuous argmin function. Given a problem parameter, MoE first

uses a classifier (gating network) to select a regressor (expert) and then use the regressor to

make a prediction (Fig. 6.2). MoE is trained such that each regressor works in a region of the

1This chapter is reproduced from Gao Tang and Kris Hauser, “Discontinuity-Sensitive Optimal Control
Learning by Mixture of Experts”. In 2019 IEEE International Conference on Robotics and Automation
(ICRA).

98

0 5 10
θ

−2

0

2
ω

(a) Samples of data

4 6 8
θ

0

1

2

ω

Optimal
SNN Pred.

(b) SNN Prediction

0 5 10
θ

−2

0

2

ω

(c) Samples of clustered data

4 6 8
θ

0

1

2

ω

Optimal
MoE Pred.

(d) MoE Prediction

Figure 6.1: Illustration of dataset and prediction of a selected state from SNN and MoE for
the pendulum swingup task (see Sec. 6.4.1 for details). (a) Samples of optimal pendulum
swingup trajectories. The red circles are possible target states. (b) SNN (trained using data
in (a)) prediction of a selected state. The solid and dashed lines denote the optimal and
predicted trajectories, respectively. (c) Samples of clustered optimal trajectories where each
color denotes one cluster. Trajectories are manually clustered according to the final states.
(d) MoE prediction to the same state as (b). Compared with SNN, MoE does not predict a
trajectory which averages trajectories from two clusters.

parameter space where the problem-optimum mapping is continuous. This is reminiscent of

a divide and conquer approach, which has already been widely used in the control community

for controller design [135]. Fig. 6.1c illustrates that the pendulum swingup dataset can be

divided into three regions, and with this division MoE makes better predictions than SNN

particularly near discontinuities, as shown in Fig. 6.1d.

We propose a training approach for MoE that significantly outperforms backpropagation

[134] or expectation maximization [133] on the whole model. The training data is a collection

of (problem parameter, optimal trajectory) pairs sampled and optimized in a preprocessing

step. We first partition the data such that within each cluster, the problem-optimum map-

ping is continuous. Then the classifier is trained to predict the identity of the partition and

99

a separate regressor is trained for each partition. Each component is trained individually

using backpropagation.

In this chapter, clustering and data split are used interchangably. A proper clustering

should eliminate intra-cluster discontinuity. We find that the combination of PCA and k-

Means is applicable in a wide range of benchmark problems and overall provides reasonable

performance. We also study how performance varies as the number of clusters k increases.

We present a tuning method that chooses the clustering hyperparameters to maximize intra-

cluster continuity. We propose and compare a number of metrics based on trajectory dis-

tance between neighbors, rate of trajectory change given parameter change, and constraint

violation of the average trajectory of neighbors. These metrics provide a “fingerprint” of

clustering performance which aids an engineer in comparing among possible clustering as-

signments. We also test a few off-the-shelf clustering metrics and show they do not provide

insights on data discontinuity.

For online use, the MoE-predicted trajectory is combined with a trajectory tracking con-

troller to accomplish the given task. Experiments on selected benchmark problems demon-

strate that suitably trained MoE models can learn near-optimal trajectories suitable for

trajectory tracking with remarkably high success rates (99.5+%).

The contributions of this chapter are:

1. The MoE model is proposed to learn the discontinuous problem-optimum mapping

and the training methods are compared.

2. A simple yet effective method is proposed to cluster the trajectories.

3. Clustering metrics are proposed to tune clustering hyperparameters and they agree

with empirical results.

4. Test of the learning pipeline on a sensor-based navigation problem with high input

dimension.

6.2 RELATED WORK

The discontinuity of the problem-optimum mapping has long been known [65], a fact that

has been underappreciated in the control learning community. Under certain assumptions,

this function is piecewise continuous, and discontinuity-tolerant methods have been proposed

for learning from optimal solutions [11, 114]. However, their approaches do not explicitly

try to partition the space into regions and the k-NN model does not scale well to input

100

regressor 1 regressor n

x x

...

x
classifier

y1 yn

y

Figure 6.2: Illustration of MoE. For every problem the prediction is made by one out of n
regressors selected by the classifier.

dimensionality. In contrast, the MoE model does indeed requires the segmentation the

dataset since it is a parametric model and has better generalization capability.

Approximation of piecewise continuous function using neural networks has been studied

in [136, 137]. In [136] discontinuous activation function is used but the finite number of

discontinuity points have to be known. In [137] a constructive method is used to build the

neural network. It requires precise knowledge of where discontinuity occurs and is thus not

practical in many applications. Learning discontinuous function with high dimensional input

and output purely from data without prior knowledge of discontinuity has not received lots

of research attention.

Most closely related work is previous research on MoE [132, 133, 134, 138]. Recent work

in [139] proposed a novel cost function to learn MoE on human-driven vehicle trajectories,

but this approach is sensitive to model initialization based on our experiments. This chapter

proposes several modifications to make MoE suitable for learning optimal trajectories. We

use hard classification boundaries (i.e. argmax) to avoid predictions that tend to be an

average of the boundary’s two sides. Another significant difference is the modification to the

training approach where each component of the model is trained independently. Traditionally

MoE is trained using either backpropagation [134] or expectation maximization [133] on the

whole model so the gating function (i.e. classifier) and experts are simultaneously updated.

However, we train the classifier and regressors independently, and experiments suggest that

this significantly increases trajectory tracking success rate.

101

6.3 METHODOLOGY

In this section, the problem of learning from optimal control is formulated and the key

components are analyzed. The proposed approach addresses a parametric OCP using the

following procedure:

1. Input: sample OCP parameters and collect dataset of problem-optimum pairs.

2. Cluster: select a clustering approach to cluster the trajectories, which also partitions

the parameter space.

3. Train: train the classifier and regressors individually using backpropagation.

4. Validate: predict optimal trajectories for the validation set and perform trajectory

rollout.

6.3.1 Parametric Optimal Control

In many applications, trajectory optimization problem is parameterized (e.g. by initial

and final states) and many realizations of parametric problems have to be solved, especially

for reactive tasks. Parametric OCP is formulated similar to Eq. (1.1) but every component

including dynamics, cost function, and constraints may be parametrized by some parameter

p. The solution is also a function of p. Parametric OCP is generally difficult to solve

analytically [123], but for any given parameter, numerical methods may be used to solve the

resulting OCP as what is done in previous chapters.

Supposing the problem is parameterized by p, the parameterized trajctory optimization

problem is

minimize
x,u,T

J(p, x, u, T) =

∫ T

0

`(p, x, u, t)dt+ Φ(p, x(T))

subject to ẋ = f(p, x, u)

x(0) ∈ X0(p), x(T) ∈ Xf (p)
x(t) ∈ X (p), u(t) ∈ U(p) ∀t ∈ [0, T]

φ(p, x, u) ≤ 0, ∀t ∈ [0, T]

(6.1)

where parameter p may appear in places ranging from objective function, system dynamics,

control feasible set, to path constraint, showing the flexibility of parameterized optimization.

For each realization of the parameterized problem, methods to solve problems defined in

Eq. (1.1) are still valid to use. Using direct transcription as an example, the time interval

[0, T] is evenly divided using a grid of size N + 1, and the state and control are discretized

102

using the grids, as {ti, xi, ui}Ni=0 where ti = iT/N, xi = x(ti), ui = u(ti). The problem in

Eq. (6.1) is discretized into

minimize
xi,ui,T

J(p, x, u, T) = h
∑N−1

i=0 `(p, xi, ui, ti) + Φ(p, xN)

subject to (xi+1 − xi)/h = f(p, xi, ui), i = 0, · · · , N − 1

x0 ∈ X0(p), xN ∈ Xf (p)
xi ∈ X (p), ui ∈ U(p) i = 0, · · · , N
φ(p, xi, ui) ≤ 0, i = 0, · · · , N

(6.2)

where h = T/N ; ẋ is approximated using forward finite difference and for direct collocation

such approximation is different [81]. In this formulation, the unknowns are discretized states

and controls on the grid (and total time T for problems with free duration), denoted as

z ≡ [{xi}Ni=0, {u}Ni=0, T] and the constraints are discretized version of constraints in Eq. (1.1).

The optimum of Eq. (6.2) is denoted as z∗(p). Essentially a numerical optimization problem

with finite number of unknowns and constraints described above is solved to obtain the

optimal trajectory.

In this chapter the nonlinear optimization problem and solves it using SNOPT [37]. Our

goal is to approximate the argmin function p → z?(p). The goal is to learn a function

z : Rl → RR that approximates z(p) where R is the length of vector z.

6.3.2 Optimal Trajectory Database Generation

To train models we generate a database of optimal trajectories z1, . . . , zM to sampled

problems p1, . . . , pM ∈ Rl where M is the data size. Due to non-convexity, even finding a

global optimum to a single problem can be difficult. One practical approach is to pick the

best local optimum from a multi-start method. However, the local optimum can be also

quite difficult to find if an initial guess not close to the optimum is provided. We adopt

a nearest-neighbor approach in Chapter 4 to help generate large databases quickly. We

first sample some number of problems (fewer than M but much larger than the number of

expected partitions) and use an exhaustive random restart approach to solve them. These

solutions are used as the initial database. Then we sample more parameters, and for each

new problem we attempt local optimization from each of its k-nearest neighbors to find k

local optima. The best solution is kept in the database. In this way, new problems are solved

and added to the nearest-neighbor query database as the whole dataset is being generated.

We note that this process is done completely offline and parallelizable. A few rounds of

solving all the problems again to remove local optimal trajectories are conducted as well.

103

6.3.3 Mixture of Experts

The MoE model is composed of a classifier and r regressors, as shown in Fig. 6.2. In this

paper both models are chosen as multilayer feedforward neural networks. Each regressor

takes input p ∈ Rl and makes a prediction yi(p, wi) ∈ RR, i = 1, . . . , r where wi specifies

the regressor weights. The classifier, with weights wc, takes input p and predicts r values

{ci}ri=1. The output of the classifier are combined with softmax to assign probabilities for

each model, i.e.

Pi =
exp ci

Σr
i=1 exp ci

(6.3)

or argmax to select one model only (in this case, Pk = 1 for k = arg maxi ci and Pk = 0

otherwise.) The difference between softmax and argmax is softmax tends to give a prediction

that is a mixture of predictions from all experts. Argmax, however, selects one model and

ignores other models’ predictions. The choice of softmax and argmax is compared on a

benchmark problem. It turns out argmax is a better choice for trajectory learning and this

is a fundamental difference from [132] where softmax is used.

In either case, the final prediction is a mixture of predictions from all regressors, i.e.

z(p) = Σr
i=1Pi(p, wc)yi(p, wi) (6.4)

The target is to find wc and {wi}ri=1 in order to minimize

L = Ep∼Pdata
loss(z(p), z?(p)) (6.5)

where Pdata is a distribution over problems and loss(·, ·) is any regression loss function.

6.3.4 Joint Training

The most straightforward way to train MoE is to treat the joint network as in Eq. (6.4) as

an SNN, randomly initialize weights, and minimize (6.5) using backpropagation. Although

several heuristics have been proposed to train MoE using backpropagation such as [134],

training may still be unstable. If softmax is used, all the data is used to train each regressor,

with weights equal to the probabilities predicted by the classifier. In the case of argmax,

each regressor is only trained using data assigned to it by the classifier. There is no gradient

to update the classifier if argmax is used. Softmax, on the other hand, can still have gradient

to update the classifier.

Since argmax is the limit of softmax if we scale {ci}ri=1 by a large positive scalar, we

104

introduce ε ∈ [0,∞) which is used to divide the output of the classifier before applying

softmax, i.e.

Pi =
exp (ci/ε)

Σn
i=1 exp (ci/ε)

. (6.6)

As ε → 0, the softmax weights approach the argmax function. Hence, ε must be gradually

lowered to balance between updating weights of classifier and restricting mixture of outputs

from multiple regressors. In this paper, we call training all components of MoE directly using

backpropagation as joint training while decoupled/individual/independent training means

training each regressor and classifier independently.

6.3.5 Trajectory Clustering

As we shall show later, joint training of MoE may improve the loss function compared

to decoupled training, but appears to be detrimental to trajectory tracking performance.

Clustering has been shown to be effective to avoid some instability in MoE training [138] by

training the classifier and regressors of MoE individually on subsets of the data. We adopt

the same approach here, and study how to cluster trajectories such that in each cluster the

problem-optimum mapping is continuous.

The dataset {(pj, zj)}Mj=1 is divided into r groups C1, . . . , Cr, ideally so that z?(p) is a

continuous function for all p in a given region. This problem can be formulated as a clustering

problem and each cluster denotes a region of the partitioned parameter space. The classifier

is trained to predict Pi(pj, wc) = 1 for all pj in Ci, and the i’th regressor is trained as usual,

restricted to the examples in Ci. We call this process (decoupled) pretraining. In fact our

approach terminates after pretraining, but we also study what happens if additional training

steps are taken.

We note that since the parameter and its solution are paired in each example, clustering

either one is sufficient to cluster the dataset. The trajectories for two problem parameters can

be very different even if the problems are close, therefore the trajectories themselves provide

better information for clustering. Hence, we experiment with using the distance between

optimal trajectories to classify the family of solutions. The simplest approach is to apply

standard clustering techniques, such as the k-Means algorithm to trajectories. However, the

k-Means algorithm relies on Euclidean distance but the trajectory vector usually has a high

dimensionality of up to several hundred. As a result, dimensionality reduction such as PCA

is performed before k-Means. We note that mini-batch k-Means is scalable to data size [140]

and suitable for our task. Our experiments show the combination of PCA and k-Means

results in reasonable results in all the benchmark problems. In order to determine the best

105

k, we propose clustering metrics that reveals function discontinuity within a cluster. The

metrics are compared with existing clustering and segmentation metrics. Trajectory rollout

performance on the test set is compared with clustering metrics as well.

6.3.6 Function discontinuity

It is beneficial to mathematically define continuity and connectedness.

Definition 6.1. Continuity: For a mapping f : p → z where p ∈ P ⊆ Rl and P is open;

z ∈ RR and two distance functions dp and dz defined on Rl and RR, f is continuous if

∀p ∈ P,∀ε > 0,∃δ > 0 such that ∀p′ ∈ Bδ(p) ∩ P, dz(p′, p) < ε where Bδ(p) = {p′|dp(p, p′) <
δ}. Similarly, f is discontinuous if ∃p ∈ P, ε > 0 such that ∀δ > 0,∃p′ ∈ Bδ(p) such that

dz(p, p′) > ε.

Definition 6.2. Path connectedness: We define a path between two points xi and xj of

a topological space X as a continuous function x(s) from unit interval [0, 1] to X with

x(0) = xi, x(1) = xj. Space X is path-connected if there is a path joining any two points in

X.

Definition 6.3. Set connectedness: Two sets S1 and S2 are disjoint if xi and xj are not

path connected ∀xi ∈ S1, ∀xj ∈ S2. A set S is disconnected if it is the union of two disjoint

nonempty sets. A connected component is a maximal connected subsets. The union of every

connected component is the set S.

The number of connected components is an important set property in this chapter. In

some problems, p is from a set with only one connected component while z forms a set of

several connected components. The existence of local optima families causes the existence

of multiple connected components for z. The mapping f from one connected component to

several connected components is surely discontinuous. A typical example is the pendulum

swingup problem as shown in Fig. 6.1 where the optimal trajectories form 3 connected

components.

However, even if z is also in a single connected component, f might still be discontinuous.

To explain this phenomenon, we use an obstacle avoidance problem, resembling the drone

with obstacle problem. Considering the shortest problem between two points s and t on

x-axis while avoiding a disk (no thickness) obstacle with radius 1 located at [0.5, u, v] and

perpendicular to x-axis, as shown in Fig. 6.3. The shortest path will pass the boundary of the

disk and that point is sufficient to represent the path (the red point in Fig. 6.3). Solving the

geometric problem gives the optimal point [0.5, u(1−1/
√
u2 + v2), v(1−1/

√
u2 + v2)] whose

106

2nd and 3rd component are both continuous function of u and v except the singularity point

at u = 0, v = 0. The singularity arises from the non-uniqueness of solution. The solution

set has a single connected component. However, the mapping is not continuous due to the

existence of singularity.

ts

Figure 6.3: Shortest path problem with disk obstacle in 3D.

In this paper, the former two types of function discontinuity both exist. Their different

behaviors are described later. A topological view of this type of discontinuity is in Chapter 7.

6.3.7 Trajectory Rollout and Model Validation

While the trajectory learning problem is essentially a regression problem, it is far more

informative to study the success rate of applying the predicted trajectory as a reference for

trajectory tracking controller such as PID, LQR, and MPC. In this paper, a feedforward-

feedback LQR controller is designed to track the trajectory. After trajectory tracking is

finished, the robot is expected to be close to an equilibrium point which is further controlled

by a stabilizing controller. We call the process of trajectory prediction, tracking, and equi-

librium stabilizing as trajectory rollout. A rollout is successful if the resulting state converges

to a desired equilibrium point.

6.4 BENCHMARK PROBLEMS DESCRIPTION

We study several benchmark problems with increasing dimensionality in problem param-

eter. A summary is listed in Tab. 6.1.

6.4.1 Pendulum Swing-Up

The system dynamic equations are

θ̇ = ω, ω̇ = u− sin θ (6.7)

107

Table 6.1: Summary of benchmark problems

pendulum vehicle drone-obs(1) drone-obs(2) navigation

State dims 2 4 12 12 4
Control dims 1 2 4 4 2
Problem param. x0 ∈ R2 x0 ∈ R4 R7 R11 R74

Trajectory dims 75 149 317 317 41
Dataset size 1,281 120,009 189,990 454,635 99,995

SNN size (2, 300, 75)
(4, 200,

200, 149)
(7, 500,

500, 317)
(11, 2000,
2000, 317)

(74, 500,
500, 500, 500,

500, 41)
Validation size 1000 10000 4728 9106 1000

where the state x = [θ, ω] are the angle and angular velocity of the pendulum; u ∈ [−1, 1]

is the control torque. The problem parameters are the initial states. The target state is the

straight up state, i.e. ωf = 0, mod (θf , 2π) = π. The cost function is a weighted sum of

time and control energy, i.e.

J = w(tf − t0) + r

∫ tf

t0

u2dt (6.8)

with w = 1, r = 1.

The parameter space is a subset of R2 and we directly sample parameters on a uniform

grid of 61 × 21. The validation set is sampled at random. Samples of optimal trajectories

are shown in Fig. 6.1.

Trajectory rollout is performed by first tracking a predicted trajectory using LQR and

then applying a stabilizer at the equilibrium for 5 s: we define success as the final state

deviates from the equilibrium within 0.1.

6.4.2 Ground Vehicle

We use a planar car with dynamic equations

ẋ = v sin θ, ẏ = v cos θ, θ̇ = uθv, v̇ = uv (6.9)

where the state x = [x, y, θ, v] ∈ R4 includes the planar coordinates, orientation, and velocity

of the vehicle; the control u = [uθ, uv] includes the control variables which change the

steering angle and velocity, respectively. The problem parameters are the initial states

within some range and the goal is to control the system to the origin with zero velocity and

108

mod (θf , 2π) = 0. The cost function is a weighted sum of time and control energy, i.e.

J = w(tf − t0) +

∫ tf

t0

r1u
2
θ + r2u

2
vdt (6.10)

with w = 10, r1 = r2 = 1.

The training and validation dataset are both generated by uniformly sampling the pa-

rameter space. Similar to the pendulum swingup problem, the constraint on θf makes it

possible to reach the goal with different θf . One might intuitively think the trajectories have

3 clusters subject to different θf . However, later results show 3 clusters are not sufficient

to characterize the structure of trajectories. Trajectory rollout is performed by tracking the

predicted trajectory using LQR. We note that a stabilizer is not used since the linearized

system is not controllable at the target state. As a result, rollout success is determined by

whether the norm of system state after trajectory tracking is within 0.5.

6.4.3 Drone with One Spherical Obstacle

The system has state x = (x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r) ∈ R12 and control u ∈ R4. The

states include 3D position, 3D velocity, 3D Euler angles, and 3D angular velocity and the

controls are speeds of the four motors. We refer to Ref. [141] for details of system dynamics of

the drone system. The goal is to control the drone from any equilibrium state with position

within [−10, 10]3 and all other states zero to the goal state 0. The cost function is a weighted

sum of time, control energy, and penalty on states, i.e.

J = w(tf − t0) +

∫ tf

t0

xTQx+ uTRudt (6.11)

with w = 10, Q = diag(0, 0, 0, 1, 1, 1, 0.1, 0.1, 0.1, 1, 1, 1), R = diag(1, 1, 1, 1).

One spherical obstacle is considered which imposes additional path constraints on state

variables. The obstacle is characterized by its position of center and radius. We uniformly

sample initial positions of the drone. However, if we uniformly sample the center and radius

of obstacles, in most cases the obstacle is too far to have any impact on the trajectories.

Therefore we randomly sample obstacles with radius within [1, 5] around the straight line

connecting the initial and final positions. We also reject obstacles that are less than 0.5 to

the start and goal positions or has a penetration depth smaller than 0.5 with the straight

line between the start and goal. Trajectory rollout is performed by LQR tracking followed

by LQR stabilizing controller. It turns out the drone can always be controlled to the target

position, with some violation of the obstacle avoidance constraint. The rollout metric is thus

109

chosen as the average constraint violation. This violation can be used to choose an obstacle

radius inflation value to avoid collision.

We note that the discontinuity of this problem is caused by singularity (similar to Fig. 6.3)

rather than isolated connected components.

6.4.4 Drone with Two Spherical Obstacles

This problem is similar to the previous one and the only difference is two obstacles are

considered. It increases the problem parameter dimensionality to 11. The structure of

optimal trajectories is similar to the drone problem with one obstacle.

6.4.5 Indoor Navigation with Distance Sensor

We consider a point robot navigating inside an indoor environment. The indoor envi-

ronment is composed of 3 rooms and 2 doors where each door connects two neighboring

rooms, as shown in Fig. 6.14. The point robot has to move from its current location probot

to the goal pgoal while avoiding collision with the walls. Polynomials are used to represent

the robot’s path for each degree of freedom, denoted as {x(t), y(t)}. The cost function of a

path is chosen as the jerk of the path added by a penalty on path time, i.e.

J = w(tf − t0) +

∫ tf

t0

(
...
x (t)2 +

...
y (t)2)dt (6.12)

with w = 1.

We assume the robot does not have access to its location or environment map but equipped

with a distance sensor to its surrounding. Since the location of the robot is unknown, this is

a partially observable problem. The target position is given as the offset from the robot to

the goal, i.e. pgoal − probot. The distance sensor returns the robot’s distances to the nearest

obstacles in all directions within some range. The intuition is that if the environment is

fixed, the sensor reading depends on the robot location and the inverse mapping from the

sensor reading to the robot’s location may be learned. However, the inverse mapping is

not unique for some observations, so is the mapping from sensor reading to the optimal

trajectory. Another source of mapping non-smoothness is sometimes the trajectory does not

depend on the sensor reading in scenarios when the robot is close to the goal and a straight

path is feasible. A rigorous approach to this problem is to compute optimal trajectories in

the belief space. However, this is beyond the scope of this paper and we leave it as future

work. The robot position is assumed known in data generation to compute the optimal

110

2

0

2
SNN MoE Custom MoE Rand

2

0

2
k-means-3 k-means-4 k-means-10

0.0 2.5 5.0
2

0

2
Retrain Argmax

0.0 2.5 5.0

Softmax 1.0

0.0 2.5 5.0

Softmax 0.1

1

0

1

2

3

4

5

6

7

(a) Prediction error of θf

2

0

2
SNN MoE Custom MoE Rand

2

0

2
k-means-3 k-means-4 k-means-10

0.0 2.5 5.0
2

0

2
Retrain Argmax

0.0 2.5 5.0

Softmax 1.0

0.0 2.5 5.0

Softmax 0.1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) State error after trajectory tracking

Figure 6.4: Comparing several models for learning the pendulum swing-up task. (a) shows
the prediction on θf for a uniform grid of initial states from different models. (b) shows the
state error after tracking a trajectory predicted by different models.

trajectories. In later steps of model training and validation, the robot position is not used.

We manually construct a simple indoor environment composed of 3 rectangles connected

by 2 doors, as shown in Fig. 6.14. Discontinuity arises when two close targets are at different

sides of the wall, which results in similar goal offsets but quite different paths. The distance

sensor resolution is chosen as 72 and a maximum range of 0.5 is used. It is used as a

validation problem to test if the proposed learning pipeline based on clustering metric gives

reasonable performance.

6.5 COMPARISON OF TRAINING APPROACH

We claim that independent pre-training of each component of MoE after careful data

clustering is a superior training approach to backpropagation and joint training. In this

section this claim is empirically verified on the pendulum benchmark problem.

6.5.1 Experiment Setup

The pendulum swingup problem is chosen because it has low parameter dimensionality

and is ideal for visualization of results. We compare on two metrics: 1) test error (smoothed

L1 loss) and 2) rollout success rate.

The following variations are considered:

1. SNN vs MoE,

111

2. Joint training vs decoupled training of MoE

3. Retraining after pretraining vs no retraining.

We summarize the choices to be made when MoE is trained with different approaches.

Choices such as network depth and size, optimizer, and step size are omitted since all ap-

proaches have these choices to make. The decoupled training only depends on how the data is

clustered since it always uses random weight initialization and the number of experts equals

the cluster number. For decoupled training, we test the following clustering strategy: 1)

customized clustering based on physical knowledge; 2) k-Means clustering with k = 3, 4, 10.

There are several choices to make when MoE is trained jointly:

1. Number of experts: this determines the structure of the network.

2. Weight initialization: weights are initialized randomly or from pretraining.

3. Argmax or softmax: it determines if a single or mixture of predictions is used.

4. Parameter ε: if softmax is used, this controls how much softmax approximates argmax,

as in Eq. (6.6).

For joint training, the following settings are tested: 1) 3 experts, random initialization,

argmax, ε = 1; 2) 3 experts, pretraining, argmax; 3) 3 experts, pretraining, softmax, ε = 1;

and 4) 3 experts, pretraining, softmax, ε = 1. We note that 3 experts are chosen to match the

decoupled training setting. The loss function to minimize is Eq. (6.5) since it is a regression

problem.

As a baseline, the SNN is chosen of size (2, 300, 75), where the first number denotes the

size of the input layer, the last number denotes the size of the output layer, and intermediate

numbers indicate the size of hidden layers. We experimented with SNN with more hidden

layers or more neurons in the hidden layer, but they result in similar or larger test error.

For MoE, the classifier is of size (2, 50, r) and the r regressors are all of size (2, 20, 75).

In all the experiments, hidden layers use LeakyReLU activation function with α = 0.2. The

output layer of regressors is linear. The input and output for each model are preprocessed by

standardization. Smooth L1 and cross entropy loss are used for regression and classification,

respectively. Neural network training is the same for both SNN and MoE, where 80% and

20% data are used as training and test set, respectively. Adam [142] is used to train all

neural networks with default parameters. The learning rate is always set to 0.001. Training

is stopped when test error does not decrease within the last 10 epochs. Additional validation

set is sampled for trajectory rollout from the same distribution.

112

Table 6.2: Comparison of prediction error and rollout success rate on the pendulum problem

Model SNN MoE
Clustering — Custom Rand. k-3 k-4 k-10 Custom Custom Custom
Retrain — — — — — — arg soft 1.0 soft 0.1

Val. error 0.046 0.030 0.035 0.039 0.029 0.051 0.027 0.028 0.026
Success (in 1000) 717 998 829 970 1000 1000 941 896 969

6.5.2 Results

Fig. 6.4.a plots the prediction error on θf and Fig. 6.4.b plots the state error after trajectory

tracking. The validation error and rollout success for each model are also listed in Tab. 6.2.

Row 1 shows that SNN makes poor predictions in regions near the discontinuity, averaging

between both sides of the boundary, causing moderate prediction error in θf , and having

large tracking error. MoE with custom clustering does also make large prediction error in θf

for states near the discontinuity, but these are caused by misclassification and the prediction

is a local optimal trajectory belonging to another cluster. Hence, they are suboptimal but

still reach the vertical position as desired, since the difference in θf is 2π. The suboptimality

is not too great, because near the boundaries two different local optimal trajectories have

similar costs. MoE trained from random initialization does achieve lower prediction error

than SNN, but is not very successful at predicting θf or trajectory tracking. This indicates

that training MoE by minimizing Eq. (6.5) is unable to identify the discontinuity with

uninformative initialization.

Row 2 tests MoE with k-Means clustering of different k, which are shown in Fig. 6.5.

Assuming the custom clustering as the ground truth, k = 4 and k = 10 finds the discontinuity

successfully with possible over-segmentation, but k = 3 only partially clusters the data.

The tracking success rate shows over-segmentation does not degrade tracking performance,

although it does result in higher classification error (as it has more red pixels in Fig. 6.4).

Row 3 of Fig. 6.4 shows results of retraining after pretraining MoE with custom clustering.

In all cases this approach decreases regression error but also rollout success rate. If argmax

is used, the classifier has no gradient to update itself so only the regressors are updated. Due

to classification error, the regressors will be trained with trajectories from other clusters. As

a result, the predictions near the classification boundaries will tend towards the average of

two clusters. If softmax is used, the classifier is updated but the output is a weighted sum of

predictions from all experts, and thus has the same averaging issue. As shown in Tab. 6.2,

retraining does decrease the prediction error at the cost of lower rollout success rate.

113

2

1

0

1

2
Custom-3 k-means-3

0 2 4 6
2

1

0

1

2
k-means-4

0 2 4 6

k-means-10

Figure 6.5: Choices of clusters for the pendulum problem. Different colors means different
clusters. Figures include: 1) custom 3 clusters 2) k-Means with 3 clusters 3) k-Means with
4 clusters 4) k-Means with 10 clusters.

6.5.3 Discussion

These experiments suggest that proper clustering is important for MoE training. Back-

propagation is unable to find an appropriate clustering from randomly initialized classifier

or classifier trained with incorrect clustering. Moreover, rollout success is a better metric

to use in practice, while testing error can be misleading. Due to misclassifications, a lower

testing error can be achieved by averaging at discontinuities, but this leads to severe failures.

We also observe that coupled retraining is detrimental to performance. This is because the

imperfect classification causes the individual regressors to be trained with data from other

regions, again leading to averaging artifacts.

The rationale of retraining is that pretraining provides a good initialization, but if the data

is clustered badly, i.e. in one cluster there is discontinuity, the loss function may be large.

The hope of retraining is to use backpropagation to update the classifier to find the correct

clustering assignments if the initial assignment in pretraining is not. However, we show

that retraining typically reduces model prediction error, but also decreases rollout success

rate. More specifically, if the initial clustering assignment has discontinuity, retraining might

improve but is unlikely to find the correct clustering. Even if the initial clustering is perfect,

retraining sacrifies rollout success for prediction error.

In order to obtain high trajectory tracking success rate, we have to 1) use argmax to select

one regressor; and 2) avoid training regressors with data from more than one clusters. This

114

raises the problem of how to appropriately cluster the trajectories which is studied in the

next section.

6.6 TRAJECTORY CLUSTERING APPROACH

In the previous section, we show that the performance of MoE depends on the cluster-

ing assignment and we cannot rely on coupled training to find an appropriate clustering.

Therefore it is worthwhile to investigate a general and scalable clustering approach that is

applicable to a wide spectrum of problems since expert knowledge is not always available.

Moreover, it is beneficial to have visualization tools to gain insights of the data structure and

help to tune hyperparameters. In this section, we experimentally explore how to visualize

the dataset. Moreover, several metrics are proposed in order to predict if a clustering leads

to reasonable data segmentation.

6.6.1 Trajectory Visualization

The trajectory is represented by a high-dimensional vector. In order to visualize such high

dimensional data, we experimentally explore a few approaches for trajectory visualization

to gain insights of the data structure.

PCA PCA is a simple yet effective and efficient approach for dimension reduction and

data visualization. It decomposes the data by projecting onto orthogonal directions sorted

by variance along those directions. We draw in Fig. 6.6 the scatter plot of the first two

components for the first 4 benchmark problems. It should be noted that the first two

major components might not explain sufficient variance in the data and two components are

chosen only for visualization purpose. As Fig. 6.6 shows, PCA provides useful information on

the existence of disconnected components for both pendulum and ground vehicle problems.

However, for the two drone problems, no additional information is obtained. Moreover,

the PCA plot shows the pendulum problem has 4 clusters, which is different from human

intuition. The PCA plot for ground vehicle could be misleading since it only shows existence

of 2 clusters. However, other technique suggests the existence of more than 2 clusters.

UMAP There is extensive research in nonlinear dimension reduction for data visualization

such as t-SNE [143] and UMAP [144]. Here UMAP is used due to its advantage of compu-

tational efficiency over t-SNE [144]. However, computational efficiency limits us to use at

most 100,000 downsampled data for the two drone problems. All the results are obtained

115

−10 −5 0 5 10
1st Component

−10

−5

0

5

10

2n
d

C
om

p
on

en
t

(a) Pendulum (b) Ground vehicle

(c) Drone-obstacle (d) Drone-two-obstacles

Figure 6.6: First two major PCA components for benchmark problems.

using the default setting and shown in Fig. 6.7. As the figure shows, UMAP constructs

low-dimensional embeddings as 4 and 6 disconnected components for the pendulum and

ground vehicle problems, respectively. The 4 components structure agrees with PCA results

for pendulum problem. But UMAP extracts more structures for ground vehicle trajectories

than PCA. For the drone with obstacles problems, the trajectories are actually not in discon-

nected components so UMAP is unable to embed the original data into several disconnected

components.

Summary We suggest two approaches for trajectory visualization to gain insights of the

trajectory structures. These two approaches are both dimensionality reduction method to

project the trajectories onto a plane for visualization. Structures like disconnected compo-

nents are revealed by these approaches. Both approaches are good at showing the existence

of disconnected components, but PCA might result in incomplete or misleading results.

Neither approach provides insights on the two drone problems due to its different discon-

tinuity pattern. We suggest using these techniques to detect the existence of disconnected

components.

116

−5 0 5

−10

0

10

20

(a) Pendulum (b) Ground vehicle

(c) Drone-obstacle (d) Drone-two-obstacles

Figure 6.7: Nonlinear manifold projection for benchmark problems.

6.6.2 Clustering Metric

A suitable clustering metric provides a surrogate to the performance of MoE without

training due to the close connection between MoE performance and data segmentation qual-

ity. There exist many clustering metrics in literature such as those studied in [145] but

they do not necessarily reveal intra-cluster discontinuity which may lead to MoE failure.

The clustering metric has to be able to reveal discontinuities within a data subset which is

essential to MoE performance. Moreover, although we can define discontinuity between any

two data by path connectedness, it is computationally prohibitive to verify connectedness

for every pair in a large dataset. It is reasonable to only consider function discontinuity in

a local region by the definition of discontinuity. Therefore for one example (pi, zi) we find

the neighbors of pi using nearest-neighbor methods in the parameter space and study the

corresponding trajectories. This is performed for each example in a data subset to get an

overall evaluation. We note that the performance of our approach is: 1) directly related

with intra-cluster discontinuity and 2) not sensitive to over-segmentation. The metrics are

designed to focus on function discontinuity. There exists many cluster validity indices to

evaluate and compare performances [145]. Our clustering of trajectories is closed related

117

with image segmentation [146] where it also tries to find regions that are spatially close but

far in pixels. Most of the cluster indices estimate the cluster cohesion (intra-distance) and

cluster separation (inter-distance) and combine them to compute a quality measure [145].

However, the intra-distance is usually calculated by the average distance from all data to

the cluster centroid and is thus perferable to spherical shape while in fact the metric should

be shape-invariant. Besides, the intra-distance depends on overall data distribution and

does not necessarily reveal function discontinuity which depends on local information. As a

result, the conventional cluster indices may not work well. Our data is also fundamentally

different from images and the image segmentation indices [146] cannot be directly used. For

example, the metrics based on pixel error or texture are not applicable. Besides, for the high

dimensional trajectory data many concepts in images do not have alternatives. Our metric

is more like trying to find segmentations such that within each region no edge exists.

Metric proposal We propose the following three metrics as surrogates of function dis-

continuity. These metrics are computationally cheap, based on pair-wise computation,

and easily visualized through histograms. A comparison with several existing metrics are

shown later. For a dataset of n data and choice of m neighbors, a surrogate function

f(·, ·, ·, ·) ∈ Rl × RR × Rl × RR → R is evaluated for each example (pi, zi) and each of

its neighbors {(pj, zj)}j∈Neighbor(i). By evaluating the metric function for every data and its

neighbors, a histogram can be used to summarize the overall segmentation quality. We can

further convert the histogram into a scalar for comparison among cluster numbers. The

inflection point can be used to choose the optimal cluster number. Surrogate functions

include:

Trajectory distance: Function discontinuity usually means small distance in p but large

distance in z, so trajectory distance is a promising surrogate, i.e. f(pi, zi, pj, zj) = dz(zi, zj)

for some distance function dz such as 2-norm. The assumption is p is sampled densely so

trajectory distance between neighbors is small unless discontinuity exists. An overall distri-

bution of trajectory distance between neighbors thus indicates the probability of function

discontinuity within a data cluster. However, this approach might not perform well when

data is so sparse that even neighbors from a continuous region have large distances. An

alternative is the ratio of trajectory and parameter distances. For a multivariate function,

a surrogate of gradient is f = dz(zi, zj)/dp(pi, pj) for distance function dz and dp, which

approximates the norm of the Jacobian. A larger ratio indicates a higher chance of disconti-

nuity. However, this approach involves division of dp(pi, pj) and is susceptible to trajectory

noises if two samples are close. Similarly, the trajectory distance dz(zi, zj) reveals disconti-

nuity if two close parameters have large trajectory distance. The trajectory distance is more

118

robust to data noise but may not perform well when data is sparse where neighbors from

a continuous region have large distances. The distance ratio and trajectory distance met-

rics perform similarly in our cases and we only present results from the trajectory distance

metric.

Homotopy class check: Continuity leads to the existence of homotopic trajectories to the

neighbors. An indicator of function discontinuity is whether the straight line connecting

two data belongs to the dataset. The surrogate is thus f = c((pi + pj)/2, (zi + zj)/2) for

some constraint violation function c(·, ·) ∈ Rl ×RR → R. We note that this only checks the

midpoint between pi and pj. Besides, we only evaluate the violation of constraints instead

of solving z((pi + pj)/2) for efficiency reasons. This resembles connectedness check and it is

able to detect the discontinuity type appearing in the shortest path problems.

0 10 20
dz

100

102

104

C
o

u
n

t 3

5

10

20

(a) dz

0 1 2 3

Constr. Violation

100

102

104

C
o

u
n

t 3

5

10

20

(b) Constr. Vio.

Figure 6.8: Histogram of metrics for PCA+k-Means for the Pendulum task. Colors denote
choices of cluster numbers. All figures show 3 clusters are not sufficient to cluster the dataset
well, as the distinctive blue bar on the right shows. As k increases, the histograms are moving
left, showing better function continuity property.

Comparison of Metrics We show the histogram of metric functions with different cluster

numbers for the pendulum problem in Fig. 6.8. The existence of bins at the right clearly

shows trajectory discontinuity when k = 3, and there does not exist discontinuity within

each cluster for other k. A scalar value for each histogram is calculated and shown in column

one of Fig. 6.9. The inflection point clearly shows k = 4 is the optimal cluster number if a

finer grid is used. In practice, a coarse grid is sufficient to determine a satisfactory k.

Fig. 6.9 also shows the metric values for other problems. If the inflection point is chosen,

the optimal clsuter numbers for the benchmark problems are 4, 10, 20, and 40, respectively.

As shown later, this agrees with the rollout results in Fig. 6.10. However, we note that the

119

3 4 5 6 7 8 9 10

Clusters

0.850

0.875

0.900

0.925

0.950

0.975
d
z

(a) Pendulum dz

5 6 7 8 9 10 11 12 13 14

Clusters

2.5

2.6

2.7

2.8

2.9

d
z

(b) Vehicle dz

5 10 15 20 25 30 35 40

Clusters

5.6

5.8

6.0

6.2

d
z

(c) Drone-One dz

5 10 15 20 25 30 35 40 45 50 55 60

Clusters

8.0

8.5

9.0

9.5

d
z

(d) Drone-Two dz

3 4 5 6 7 8 9 10

Clusters

0.00

0.01

0.02

0.03

V
io

(e) Pendulum Vio.

5 6 7 8 9 10 11 12 13 14

Clusters

0.02

0.04

0.06

0.08
V

io

(f) Vehicle Vio.

5 10 15 20 25 30 35 40

Clusters

0.5

0.6

0.7

0.8

0.9

1.0

V
io

(g) Drone-One Vio.

5 10 15 20 25 30 35 40 45 50 55 60

Clusters

0.8

0.9

1.0

V
io

(h) Drone-Two Vio.

Figure 6.9: Comparison of metric values for different cluster numbers for each benchmark
problem. We note that in subplot (g) and (h) the metric values changes so little that they
are less meaningful. We note that a fine grid is used here to illustrate the metrics and in
practice we test performance on a grid showing in Tab. 6.3.

constraint violation metric for the two drone problems is not quite meaningful due to the

small change in values.

Summary We propose 3 metrics as indicators of function discontinuity. All metrics can

be used to compare the amount of discontinuity between clustering assignments. However,

constraint violation serves as better metric since it has clear unit and is easier to set a

threshold. The dz/dp metric is a strong indicator of discontinuity, but it might be susceptible

to trajectory noises. Moreover, the threshold is rather difficult to choose since its range of

values may be large. The difficulty in threshold selection also applies to dz metric. Although

these metrics are not sufficient to determine whether a dataset is continuous or not, they

can be used to compare between different assignments.

Comparison with cluster validity indices There exist many clustering metrics that

are used to evaluate clustering algorithms. We refer [145] for an extensive comparison of

some. We select 3 metrics studied in [145] that perform well for the datasets used in [145].

The metrics include: Calinski-Harabasz index (CH), Silhouette index (Sil), and Davies-

Bouldin index (DB). We compute them by subroutines provided by scikit-learn [147]. Since

we perform clustering after dimensionality reduction, these metrics are also computed using

the data after PCA. All metrics are functions of separation which measures how different

120

clusters are from each other and cohesion which measures how similar data in the same

cluster are. The values of k with the best metrics are shown in Tab. 6.3. CH tends to choose

values at the boundaries and are thus not favorable. Sil and DB works well for the first two

problems but fails for the last two. The results clearly show existing clustering metrics are

not well suited for our problems. This is not beyond expectation since these metrics are shape

dependent and do not reveal intra-cluster discontinuity. Besides, the high-dimensionality of

the trajectory space imposes challenges to distance-based metrics.

Table 6.3: Best choice of k by existing clustering metrics in literature, which fail to correlate
with performance in Fig. 6.10.

Pendulum Vehicle Drone-Obstacle(1) Drone-Obstacle(2)
Choices (3, 5, 10, 20) (5, 10, 20, 40) (5, 10, 20, 40, 80) (5, 10, 20, 40, 80)

CH 20 5 5 5
Sil 5 10 5 5
DB 10 10 5 80

6.7 TRAJECTORY ROLLOUT RESULTS

Trajectory rollout is the test metric for model evaluation since it directly reveals the

performance of a deployed model. We compare SNN, and MoE with different cluster sizes

on this metric. The model size of SNN is fine-tuned and shown in Tab. 6.1 by enumerating

a few network depth and hidden layer size combinations to achieve the lowest test error, so

SNN has some advantage. The MoE is trained individually according to data clustering and

the regressors use the same depth with SNN but the hidden layer sizes are chosen in a way

such that

1. The number of parameters of each regressor is proportional to the data size of the

cluster.

2. The sum of regressors parameter number equals SNN.

The rollout result is computed on a validation set and the regression loss is neglected. The

rollout metric for the pendulum and vehicle problem is the success rate while the two drone

problems use constraint violation. In Fig. 6.10 a result summary is shown with the effect

of k. MoE outperforms SNN in all benchmark problems. As the cluster number increases,

MoE performance increases and eventually decreases slowly. The clustering metrics agrees

with the rollout performances.

121

3 5 10 20
Clusters

(a) Pendulum

0.0

0.5

1.0

S
uc

ce
ss

R
at

e

SNN

MoE

5 10 20 40
Clusters
(b) Vehicle

0.0

0.5

1.0

S
uc

ce
ss

R
at

e

SNN

MoE

5 10 20 40 80
Clusters

(c) Drone-One-Obs

0.00

0.05

0.10

C
on

st
ra

in
t

V
io

la
ti

on

SNN

MoE

5 10 20 40 80
Clusters

(d) Drone-Two-Obs

0.0

0.2

C
on

st
ra

in
t

V
io

la
ti

on

SNN

MoE

Figure 6.10: Comparison between MoE and SNN on benchmark problems. MoE outperforms
SNN in all problems. For (a) and (b), MoE achieves higher than 99% success rate. For (c)
and (d) SNN has 50% improvement in terms of constraint violation. It also shows as k
increases, MoE performance increases and eventually decreases.

6.7.1 Examples of SNN vs MoE

To demonstrate why SNN tends to fail near function discontinuity while MoE is able to

handle this, we further show a few examples for the benchmark problems. In Fig. 6.11 we

show the predictions from SNN and MoE on a selected parameter as well as the optimal

trajectories of its neighbors for the vehicle problem. Similar to the pendulum problem, SNN

may fail to predict θf correctly.

Fig. 6.12 shows examples of optimal trajectories and predictions from SNN and MoE

for the drone problem with one obstacle. As the initial state moves along z direction, the

optimal trajectories change from going above to going below the obstacle. SNN is unable

to handle such discontinuity and predicts a trajectory that violates the obstacle avoidance

constraint. However, MoE is able to reason about the discontinuity and predicts trajectories

using different experts.

6.7.2 Test of Learning Pipeline on Navigation Problem

The indoor navigation problem is used as a test problem on the trajectory learning pipeline

proposed in this paper. Specifically, we want to test if the clustering metrics help to choose

a clustering assignment and how MoE performs based on this choice. We note that this

an expert can manually divide the dataset of this problem into 9 clusters based on the

122

0 5
x

−2.5

0.0

2.5

5.0

7.5

10.0

y

Goal

Start

SNN

MoE

Opt.

0 5
x

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

Goal

Start

Cluster 6

Cluster 2

Figure 6.11: Left: The optimal trajectory and predictions (no tracking) from SNN and MoE
for a chosen start state for the Vehicle problem. MoE makes accurate prediction while SNN
predicts an average trajectory of two clusters. The arrow denotes the final angle (straight
up is desired) and SNN makes large prediction on it. Right: the neighbors of the chosen
state. The pink and green lines are the neighbors of the start so they start from different
locations. They demonstrate the existing discontinuity within trajectories.

x(
m

)

−3−2−10123
y(m)

0 1 2 3 4 5 6 7 8

z(m
)

0

2

4

6

8

Start1
Start2

Goal SNN 1

MoE 1

Opt. 1

SNN 2

MoE 2

Opt. 2

Figure 6.12: Optimal trajectories and prediction (no tracking) from SNN and MoE for two
selected close states for the Drone-One-Obstacle problem. SNN predicts a trajectory that
violates obstacles avoidance constraints. Green sphere: obstacle with center at (0, 4, 4)
and radius 3. Solid, dashed and dotted lines: optimal trajectories, prediction of MoE, and
prediction of SNN, respectively.

123

room numbers of the start and goal. This manual clustering serves as a baseline. For

metric computation, PCA is used to reduce dimensionality to 6 (resulting in 90% explained

variance) before Nearest Neighbor algorithm is used. The trajectory distance-based metrics

are shown in Fig. 6.13 and indicates 20 clusters is the best choice among the three choices.

The constraint violation metric is chosen as whether the midpoint has collision with the

environment and listed in Tab. 6.4.

10 20 40

Clusters

0.35

0.40

0.45
d
z

K-Means

SNN

Manual

Figure 6.13: Comparison of the trajectory distance metric for the Navigation task. It shows
k = 20 is a reasonable choice among the 3. The metric value is large if no clustering is
performed and small for a manual clustering.

Table 6.4: Number of pairs whose midpoint has collision for several clustering assignments

SNN Manual k = 10 k = 20 k = 40

32722 30 9978 1059 4310

The metrics indicate k = 20 might result in best performance and we directly fit MoE

using clustering assignemnt by k = 20. For a test set of 1000 examples, MoE results in 9

collisions while SNN gets 36 collisions. The reduction in collisions shows MoE improves upon

SNN near discontinuity. Note that for different problems, the region of discontinuity may

be of different sizes and the improvement may not be great if the region is small. However,

MoE is still necessary to achieve reliable success rate to minimize requirement of human

intervention and prevent catastrophic failures.

Fig. 6.14 shows examples of optimal trajectories and predictions from SNN and MoE.

Similar to the drone problem, SNN predicts averages between trajectories and leads to

collision.

124

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Neighbors

Start

Goal

SNN

MoE

Figure 6.14: Comparison of SNN and MoE on a selected example. The dashed lines are the
neighbors of this example. The blue and orange lines denote prediction by SNN and MoE,
respectively. The neighbors showing existence of function discontinuity and MoE is able to
handle it while SNN predicts a path with collision.

6.8 CONCLUSION

In this chapter we demonstrate that optimal trajectories can be learned with high accuracy

if we take into account the special structure of optimal control problems. MoE is designed

such that each expert approximates a smooth region in the problem-optimum mapping, and

the classifier handles discontinuities without averaging. It is important to train MoE with

the correct clusters, and curiously, coupled training of the regressors and classifier tends to

be detrimental to tracking performance. We also argue that test error is not a good metric to

judge learning models, but rather rollout success rate under trajectory tracking is preferable.

Several metrics are proposed to evaluate existence of discontinuity and compare between

clustering assignments. These metrics are proved useful in selecting cluster numbers. For

a typical PCA+k-Means clustering pipeline, we find that as the cluster number increases,

the MoE performance tends to increase first and eventually decrease. Deep RL with policy

gradient algorithm also suffers from policy discontinuity issue and tends to fail as problem

becomes more complex.

One limitation of this approach is some problems are not easily parameterizable.si Take

the drone with obstacle problems as an example, if we further increase obstacle numbers,

the data collection and training procedure have to be repeated. Moreover, for obstacles with

irregular shape, it is not easy to find a low-dimensional representation. One approach is to

use some redundant parameterization such as scenarios images. Another limitation is how

125

to determine whether the collected data is sufficient or not.

Future work includes developing more sophisticated clustering algorithms that automat-

ically find the best clustering assignment. Solving the discontinuity issue in RL is another

problem to investigate. Further work also includes how to prove the stability of trajectory

rollout using the predicted trajectories.

126

CHAPTER 7: DISCONTINUOUS FUNCTION LEARNING WITH
MIXTURE OF EXPERTS AND TOPOLOGICAL DATA ANALYSIS

In Chapter 6 Mixture-of-Experts (MoE) models are used to handle the discontinuities

in the optimal solution for parametric planning tasks. In that context, the existence of

discontinuity is found with domain knowledge. Training of the experts requires us to split

the data into groups, which is done by k-Means clustering with a carefully tuned number

of clusters. Despite the empirical success of k-Means, there is no guarantee if the chosen k

sufficiently splits all discontinuities. In this chapter, we present a topology-based clustering

approach with more theoretical performance guarantees. We prove that any change of the

computed topological features sufficiently shows the existence of function discontinuities.

Three types of changes of topological features are studied and different clustering approaches

are proposed for each type. This topology-based clustering method sufficiently removes

discontinuities while keeping the number of clusters low, and improves the performance of

MoE models compared with k-Means. 1

7.1 INTRODUCTION

Training of MoE to approximate discontinuous function requires us to split the training

data into groups within the domain of which the function is continuous. The k-Means

method in Chapter 6 uses clustering of trajectories to split the dataset after dimensionality

reduction with PCA. However, a proper choice of k requires fine-tunings because:

1. There is no a-priori information on how many groups are necessary. A small k may not

be sufficient to remove all discontinuities. A large k may cause data over-segmentation

and model performance degradation;

2. There are no theoretical guarantees that k-Means is capable of removing all disconti-

nuities in this task with a reasonable k.

Since k-Means is based on Euclidean distance which may perform poorly for trajectory

data that lies on some manifold, the results in Chapter 6 show k-Means clustering usually

requires over-segmentation to get decent results of MoE. Although over-segmentation is not

as serious an issue as under-segmentation, the results in Chapter 6 show that the model

prediction becomes worse as the number of clusters grows too large since the available data

for each expert becomes scarcer. This motivates the search for a better data clustering

1Ongoing work.

127

method in order to avoid the issues from both under and over segmentation. To achieve this

task, it is necessary to find the discontinuity types from data. However, this is a challenging

task without domain knowledge since the high-dimensional input and output spaces makes

data visualization difficult.

A promising approach to this problem is using topology. Considering the 2D and 3D

obstacle avoidance problems as shown in Fig. 7.1, the spaces the trajectories are within have

different topology. For instance, all the trajectories of the 3D problem can be continuously

deformed into one another while in the 2D problem the trajectories above the obstacle cannot

be deformed into those below the obstacle. Moreover, a cycle (formed by the red trajectories

in Fig. 7.1b) can be found in the trajectories of the 3D problem that cannot be continuously

deformed into a single trajectory while such a cycle cannot be found in the 2D problem.

The differences in these behaviors are caused by the different topology of the two trajectory

spaces. A good approach to split the trajectories in the 2D problem is according to whether

they are above or below the obstacle, but this approach is not sufficient for the 3D case.

This example shows it is necessary to consider topology for better data clustering.

Note, however,that, in this example, domain knowledge is used to identify the difference

in topology, which limits the generalization of this method to other problems where domain

knowledge is not accessible. Fortunately, Topological Data Analysis (TDA) [148] is a compu-

tational tool that finds the topological structures from data without any domain knowledge.

TDA is able to compute the topological features from a dataset sampled from the topo-

logical space such as the zeroth homology group (H0, connected components) and the first

homology group (H1, 1D hole). Higher order homology groups are often too expensive to

compute and are thus not investigated in this chapter. The H0 group is the connected com-

ponents which usually appear as trajectories within the same homotopy class. For instance,

the trajectories of the 2D problem have 2 connected components, while the 3D problem only

has 1 connected component. The H1 group is the 1D hole (or cycle) which usually occurs in

problems with obstacles where part of the configuration space is not feasible. For instance,

the trajectories of the 2D problem have zero 1D hole, while the 3D problem has a 1D hole.

The number of connected components and 1D holes can be computed by TDA. Later we

show that these features computed by TDA help to check the existence and and determine

the type of discontinuities of the argmin function using sampled data. The discontinuity

type is used to determine how to cluster the dataset for better MoE performance.

The contribution of our work includes:

1. Prove any change of topological features is sufficient to show the existence of discon-

tinuity of the function to be approximated from data.

128

(a) 2D (b) 3D

Figure 7.1: Samples of trajectories for the 2D and 3D obstacle avoidance problem. These
two problems have different topological structures. The red trajectories in 3D denote a cycle.

2. Propose corresponding clustering methods for different changes of the topological fea-

tures.

3. A topology-based clustering approach for problems with geometric singularity com-

monly seen in 3D obstacle avoidance problems.

7.2 RELATED WORK

Trajectory learning has shown advantages over approaches that compromise optimality

for real-time efficiency, as Chapter 5 shows. Blindly learning with continuous SNN under-

performs MoE in discontinuous function approximation, which occurs in lots of trajectory

learning tasks, as shown in Chapter 6. However, successful training of MoE requires the

discontinuous function to be split into continuous pieces, which is non-trivial without do-

main knowledge. The k-Means method in Chapter 6 uses clustering of trajectories to split

the dataset, but has no theoretical guarantees of successful discontinuity split and ignores

discontinuity types. Moreover, empirically it needs careful tuning of k to avoid issues from

both under and over data segmentation. In this chapter, topological structures of the data

computed by TDA are used to identify function discontinuity and design corresponding split

method.

In motion planning, the topology of the environment and trajectories are both used. In

[148] the homotopy class of the trajectories is used to help with graph search-based motion

planning. It can find paths respecting given homology class constraints and explore different

129

homotopy classes in an environment. Topology is also used in [149] to deal with system

uncertainty. In [150] topology is used to study the complexity of motion planning algorithms

in navigation tasks. These methods, however, rely on graph search methods to compute the

optimal plan and do not consider learning from trajectories. The most related work [72] also

uses TDA to extract multimodality information from precomputed trajectories, cluster them

and train MoE models using these clusters. However, they are not considering H1 structures

in the trajectory data, which occur frequently in robotics applications.

7.3 PRELIMINARY

In this section, we briefly introduce several essential components to help the readers to

understand the terminologies throughout this chapter with the help of some examples. We

refer to readers interested in the details of computational topology to [151] for a thorough

exploration of the topic.

7.3.1 Betti Numbers

The topology of a space describes how all the points in the space are connected [151] and

it is invariant to many types of continuous deformations. For instance, a closed curve is

different from an open curve since it divides the plane into 2 disjoint parts and it has no

ends. A circle and square are topologically equivalent since they are both closed curves and

have the same space division property. A cylinder is different from a donut as the donut has

a hole while the cylinder doesn’t. As a result, a closed curve that wraps around the donut’s

smaller ring cannot be continuously shrunk into a point while such curve does not exist for

cylinder. Computational topology studies the topology of a topological space using sampled

data. For instance, if the data is sampled from an annulus, computational topology is able

to establish its topological equivalence to a closed curve.

Homology is a way of associating algebraic groups to a topological space with the same

topology. For instance, an annulus curve is associated with S1 group since they share the

same topology. A disk, however, is associated with the zero group (a group consisting of

a single element). Widely used groups in computational topology are the zeroth dimen-

sional homology group (H0) which relates to the number of connected components in the

structure and the first dimensional homology group (H1) which is related to the number

of one-dimensional holes. The ranks of H0 and H1 are called the zeroth and first Betti

numbers, denoted as b0, b1, representing the number of connected components and 1D holes,

130

respectively. A closed curve, like the annulus, has b0 = 1, b1 = 1 and an open curve, like a

line segment, has b0 = 1, b1 = 0.

7.3.2 Cycles and Homotopy

A continuous function p : [0, 1] → C from interval [0, 1] to a subset C of a topological

space X is called a path on X between p(0) and p(1). A path with the same start and goal,

i.e. p(0) = p(1) is called a cycle. The degenerate case where p(t) = p(0),∀t ∈ [0, 1] is called

a point cycle.

A homotopy between two continuous functions f and g is a continuous function H :

X × [0, 1]→ Y from the product of a topological space X with the closed unit interval to a

topological space Y such that for each point x ∈ X,H(x, 0) = f(x) and H(x, 1) = g(x). If

there exists a homotopy between them, f and g are said to be homotopic. These definitions

allow us to check if two cycles in the same topological space are homotopic. If one cycle

can be continuously deformed into another one (i.e transformed by a continuous function

H, these two cycles are said to be homotopic. The definition of cycle and homotopy helps

distinguish spaces with b1 6= 0 and b1 = 0. For topological space with b1 = 0, any cycle

is homotopic to a point cycle. However, in spaces with b1 > 0, there are at least b1 cycles

that are not homotopic to a point cycle or one another. In this thesis, a cycle is called

non-contractible if it is not homotopic to a point cycle. For space with b1 = 0, there are no

non-contractible cycles.

7.3.3 Persistent Homology

In order to compute Betti numbers, one has to start with building simplicial complexes

from data. A k-dimensional simplex σ = [x0, . . . , xk] is the convex hull of k + 1 affinely

independent points. Simplices of the first few dimensions have special names: vertex for 0-

simplex, edge for 1-simplex, triangle for 2-simplex, and tetrahedron for 3-simplex. The face of

a simplex is the convex hull of a non-empty subset of the vertices of σ. By this definition, the

faces are simplices of lower dimensionality. A simplicial complex is a collection of simplices

such that (see [148] for more rigorous definitions):

1. every face of a simplex is also in the complex;

2. the intersection between two simplices is either empty or in the complex.

A widely used complex is the Vietoris-Rips complex (VR complex) which is similar to an

r-neighboring graph. An r-neighboring graph of a dataset treats each data point as a vertex

131

and connects every pair of vertices with distance below or equal to r with an edge. For a set

of points in metric space equipped with a distance function, the VR complex is the set of

all simplices whose maximum vertex distance is not greater than r. Clearly, with different

values of r, the VR complex is different and may exhibit different topological structures,

i.e. homology groups. For example, when r is very small, the VR complex is formed by

isolated 0-simplices, i.e. vertices; when r is very large, the complex is composed of a high-

dimensional simplex and all the faces of this simplex. These two complexes have different

homology groups and are topologically different.

Persistent homology studies the evolution of homology groups in the VR complex as r

increases. As r increases, new simplices are formed into the complex. New homology groups

may appear (also called a “birth”) and old ones may be destroyed (also called a “death”).

For instance, the addition of an edge between two disjoint components cause them to merge

into one component, leading the number of connected components to decrease by 1. This

process can be seen as the “death” of one component and growth of the other component

as one component is absorbed by the other.

Similarly, a new edge may form a cycle with existing edges and lead to the birth of a 1D

hole. For each homology group, its connection radius r at its birth and death, called birth

and death index, respectively, can be computed. The lifetime of a homology group, defined

as the difference between death and birth index can be computed and compared. Homology

groups with longer lifetimes, i.e. persistent, are more likely to be caused by the topology

of the underlying space. One may plot a persistence diagram [151], showing the birth and

death index of each homology group and the user may select groups with long lifetimes

and compute Betti numbers by counting them. As an example, we show the results for

applying TDA on 2D data sampled on an annulus (shown in Fig. 7.2) in Fig. 7.3. The figure

indicates that the annulus has one connected component and one 1D hole so b0 = b1 = 1.

The persistence diagram shows one H0 feature and one H1 feature have significantly longer

lifetime than others so we can read from the diagram that b0 = b1 = 1. In this way, persistent

homology is used to extract the topological features from sampled data.

7.3.4 Graph Cut Perspective

The VR complex is essentially an r-neighboring graph if we only consider the vertices

(0-simplex) and edges (1-simplex) and exclude higher-dimensional simplices. A graph is

defined as a pair G = (V,E) where V is a set with elements called vertices and E is

composed of pairs of distinct elements in V called edges. A r-neighboring graph for a

dataset is a graph with V containing all the data samples and E containing all pairs of

132

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7.2: Data samples from an annulus.

Figure 7.3: The persistence diagram for the sampled data from an annulus. It is clear the
topological space of the data has a single component and an 1D hole.

samples with distance below r. A subgraph is composed of a subset of vertices Vs ⊆ V and

edges Es = E
⋂{{v, w} ⊆ Vs|v 6= w}. The MoE requires the dataset to be split into finite

pieces. This scheme naturally fits into the framework of graph cut problems, which aim

to split the graph into several isolated subgraphs by removing some edges from the graph.

Each subgraph represents a subset of the dataset used to train an expert. Each subset of

data also represents a subset of the function domain, denoted as subdomain later on. It is

important to make sure the function is continuous in each subdomain to avoid the averaging

issue from neural networks for each expert, as shown by many examples in Chapter 6.

Noting that each data sample is a pair of input (task parameter of the planning task) and

output (optimal trajectory) from the argmin function, its discontinuity is approximately

133

represented by pairs of samples that are similar in input but not similar in output. Recalling

the argmin maps from parameter space X to trajectory space Z, which are assumed to be

equipped with distance function ρx and ρz, respectively, two distance thresholds ε and δ are

chosen for X and Z. An ε-neighboring (using ρx) graph can be built using sampled task

parameters, and for each edge in this graph, the weight can be computed as the trajectory

distance (using ρz) between its two vertices. The edges with weight greater than δ are

labelled as bridges. A more rigorous definition is

Definition 7.1. For two topological spaces X and Z equipped with distance function ρx and

ρz, respectively, a dataset {(xi, zi)}ni=1 of size n are sampled such that xi ∈ X and zi ∈ Z.

For two thresholds ε > 0 and δ > 0, a bridge is a pair of data, denoted as (x1, z1) and

(x2, z2) that satisfies ρx(x1, x2) < ε and ρz(z1, z2) > δ.

The goal of graph cut is to make sure no bridge exists in any subgraph. In this chapter,

we sometimes use “segment” and “graph cut” interchangeably.

7.3.5 Continuity and Betti Numbers

Considering the motivation is to learn a function from topological space X to Y , we are

particularly interested in two topological features: b0 and b1 of domain X, image Y , and

graph Z = {(x, f(x))|x ∈ X}. Here f(x) is the function to be learnt from data. We claim

that, by inspecting the Betti numbers b0, b1 of X and Z, one can infer if function f : X → Y

is discontinuous. We use notation bi(X) as the i-th Betti number of space X. We denote

f(X) as the image of f on domain X, i.e. f(X) = {y|y = f(x), x ∈ X}. The following

theorem states that the necessary condition for a function to be continuous is that both b0

and b1 of the domain and graph of the function are the same.

Theorem 7.1. A function f : X → Y where X and Y are topological spaces is continuous

only if the domain X and graph Z = {(x, f(x))|x ∈ X} have the same zeroth and first Betti

numbers.

A few lemmas are necessary to prove the theorem. The first two are about b0.

Lemma 7.1. b0(X) ≤ b0(Z)

Proof. For two disjoint components X1, X2 ⊂ X, there is no path that connects any x1 ∈
X1, x2 ∈ X2. We show there is no path connecting z1 ≡ (x1, f(x1)) and z2 ≡ (x2, f(x2))

as well by contraction. Assuming ϕ : [0, 1] → Z is a path connecting z1 and z2, then the

function ϕ′ : [0, 1] → X defined as ϕ′(s) = ϕ(s)1:d is also continuous where subscript 1 : d

134

denotes the first d entry where d is the dimension of X. As a result, ϕ′ is a path in X

connecting x1 and x2, which contradicts the assumption that x1 and x2 are in different

components. Since, z1 and z2 are in different components as long as x1 and x2 are not in

the same component, b0(X) ≤ b0(Z). QED.

Lemma 7.2. If b0(X) < b0(Z), f is discontinuous.

Proof. There must be at least one component of X, denoted as X1 ⊂ X whose image lies

in two components of Z. We assume x0, x1 ∈ X1 while (x0, f(x0)) and (x1, f(x1)) are in

different components. For path p(s) : [0, 1]→ X1 with p(0) = x0, p(1) = x1, f(p(s)) must be

discontinuous otherwise (x0, f(x0)) and (x1, f(x1)) are in the same component. As a result,

f is discontinuous. QED.

These two lemmas show if Z has more connected components than X, f is discontinuous.

The following two lemmas are about b1.

Lemma 7.3. If b0(X) = b1(X), b0(Z) = 1, b1(Z) = 0, f is discontinuous.

Proof. By Lemma 7.1, b0(X) = 1, and, thus, b1(X) = 1 and there is a non-contratible cycle

p(s) : [0, 1] → X. Consider the mapping q(s) : [0, 1] → Z defined as q(s) = (p(s), f(p(s))).

Assuming f is continuous, q(s) is a cycle in Z. Since b1(Z) = 0, q(s) is contratible to a

single point. However, using the same way to contract p(s) we may contract q(s) to a single

point as well, which contradicts the assumption of non-contratible p(s). As a result, f is

discontinuous. QED.

Lemma 7.4. If b0(X) = b1(X), b1(X) = 0, b1(Z) = 1, f is discontinuous.

Proof. Since b1(Z) = 1, we have a non-contratible cycle q(s) : [0, 1] → Z, denoted as

(p(s), f(p(s))) with p(0) = p(1). As a result, p(s) is a cycle as well which is contratible

to a point since b1(X) = 0. Assuming f is continuous, when we contract p(s), q(s) is

continuously changing as well so it remains a cycle. When p(s) is contracted into a point,

f(p(s)) is still a cycle and this cannot happen for continuous f . By contraction, f must be

discontinuous. QED.

These two lemmas show if a function’s domain and graph have different b1, it must be

discontinuous. Although the proofs are for b1 = 1, they are easily generalizable to other

values.

With the four lemmas, it is straightforward to prove Theorem 7.1 by combining these

lemmas.

135

Proof. According to Lemma 7.1, the graph of a function cannot have smaller number of

components than its domain. Lemma 7.2 shows f is discontinuous if b0(Z) > b0(X). As

a result, b0(X) must equal b0(Z) for continuous f . Similarly, according to Lemma 7.3 and

Lemma 7.4, any change of b1 between X and Z has to be caused by discontinuous f . As a

result, b1(X) must equal b1(Z) for continuous f . QED.

Remark 7.1. It is not surprising that a discontinuous function may cause an increase of b0

and b1. One example of decreased b1 is in Fig. 7.4a where X has an 1D hole while Z does

not.

Remark 7.2. One may think the key to discontinuity is the Betti numbers of X and Y .

However, the function shown in Fig. 7.4a Fig. 7.4b have the same topology in both X and

Y , yet the difference in Z causes a discontinuity seen in Fig. 7.4a.

Remark 7.3. As the proof in Lemma 7.4 shows, one may increase b1 if the function is

continuous in most regions but has a singularity that may map from one point to a cycle.

This is indeed the case as shown in Fig. 7.1b. Technically speaking, the domain of the

function does not contain the singularity point so b1(X) is not 0. However, in practice, we

are dealing with sampled data and may never sample the singularity point at all. Moreover,

empirical results show TDA is not able to capture a 1D hole caused by singularity point so

it would still report b1(X) = 0.

Later we show how we can use the information from Betti numbers to analyze the discon-

tinuity of the function and design strategies to better segment them using data.

7.3.6 Graph with More Connected Components Than Domain

In some cases, the graph of a function has more connected components than its domain,

revealed by the increased value of b0. Such discontinuity occurs when one component in

the domain is mapped to multiple connected components in the graph by a discontinuous

function. This type of discontinuous function is widely seen in problems with multiple

trajectory homotopy classes. At the location where one has to switch to a different homotopy

class, the argmin function has a discontinuity. For instance, one may avoid an obstacle from

both sides, leading to two homotopy classes as shown in Fig. 7.1a. When the start y location

moves up, the optimal trajectory switches to passing the obstacle from another side and

causes function discontinuity.

This type of discontinuity is well handled using topology since TDA computes the number

of connected components, i.e. b0. Using the results from TDA, which gives b0, we can find a

136

1.0

0.5
0.0

0.5
1.0

1.0
0.5

0.0
0.5

1.0

3
2
1

0
1
2
3

(a) z = arctan 2(y, x)

1.0
0.5
0.0

0.5
1.0 1.0 0.5 0.0 0.5 1.0

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(b) z = sin(2 arctan 2(y, x))

Figure 7.4: Two function with the same topology in X and Y , but difference in Z causes
different behavior in terms of continuity.

threshold where all major connected components are alive. We can then build the simplicial

complex with the selected threshold and perform connected component analysis on the graph

(using vertices and edges of the simplicial complex) to extract the isolated components. The

dataset is split such that each component corresponds to one cluster.

7.3.7 Graph with Fewer 1D Hole Than Domain

In this stage, we assume discontinuity from discrepancy of connected components has

already been handled. In some cases, the domain of a function has more 1D holes than its

graph, revealed by the decreased value of b1. An example with decreased b1 is the 2D obstacle

avoidance problem where the start is not restricted to a fixed x, as shown in Fig. 7.5. In this

case, the domain of the function has a 1D hole due to the obstacle, but all the trajectories

are in the same component without 1D hole structure. This is different from Fig. 7.1a, since

path below the obstacle can be continuously transformed into one above the obstacle by

moving the start around the obstacle to the left and then up right. Considering a r-NN

graph built using sampled data, removing the edges across the horizontal line (right side

of the obstacle) is not able to cut the graph into 2 subgraphs since the function domain

has a hole, i.e. cutting a closed curve once results in an open curve instead of two curves.

Additional edges have to be removed in order to get isolated subgraphs, which is necessary

137

to guarantee that “bridges” do not appear in any subgraph. These additional edges can be

somewhat arbitrarily chosen but some choices such as edges crossing the horizontal line on

the left side of the obstacle may yield better conditions for function approximation since

the subgraphs are balanced. We propose an iterative algorithm that removes edges that are

balanced in terms of distances to the “bridges”. The algorithm is shown in Alg. 7.1. It

iteratively removes edges as long as any subgraph contains “bridges”.

Figure 7.5: 2D obstacle avoidance with free start location. The goal is on the left while the
start is free on the right.

Algorithm 7.1: Split the dataset to remove discontinuity within dataset

Data: Dataset of Samples (x, y), list of risky edges E, r-NN graph
Result: A Split of the dataset with no risky edges

1 Remove risky edges from the graph
2 while true do
3 Perform connected component analysis on the graph
4 Find the most risky edge with two vertices being in the same component
5 if No edge is found then
6 break
7 end
8 Find the shortest path connecting the two vertices
9 Cut the path by removing one edge in the middle

10 end
11 Split the dataset according to connected components

138

7.3.8 Graph with More 1D Hole Than Domain

In some cases, the graph of a function has more 1D holes than its domain, revealed by the

increased value of b1. Such increase may be caused by geometric singularity which is widely

seen in 3D obstacle avoidance problems as shown in Fig. 7.1b. In this problem, singularity

occurs when the start, goal, and obstacle center are colinear and avoiding the obstacle

from any direction is equivalent in terms of path length. In the neighborhood around the

singularity, the function is continuous but has large and rapidly changing gradients, making

it hard to capture purely from data. Moreover, this region is small and a uniformly sampled

dataset has only a small fraction of data in the singularity region. However, it still degrades

the performance of SNN as shown in Chapter 6. There is not much that can be done to

remedy the large gradients around the singularity, but a good strategy to split the dataset

is to split it into a “pizza” shape with the singularity point being the conjunction point for

all the pieces. One way to do this for 3D obstacle avoidance problem shown in Fig. 7.1b

is to compute the avoidance direction and cut the dataset according to the directions. The

amount of cuts can be chosen arbitrarily if it is not too small. Note that there is a tradeoff

between data size in each piece (presumably, fewer data points make it harder to train good

models) and difficulty of function approximation (presuming, again, that a larger piece is

harder to fit since it has larger intersection with singularity region, making the dataset more

ill-conditioned). In our practice, 8 pieces seem to be a decent choice that balances well

between data availability to each expert and difficulty of function approximation.

Figure 7.6: 2D obstacle avoidance with a movable obstacle. The black and red trajectory
are closer in terms of topology but further in terms of Euclidean distance (compared with
black and blue).

However, generalizing this idea into an algorithm that does not require knowledge on how

to perform the “pizza” cuts is non-trivial. Ideally assuming the increased b1 is caused by the

same geometric singularity, the algorithm should be able to automatically find the singularity

and cut the data into several pieces in a similar way. Doing so purely from data without

139

expert knowledge is an unsolved problem to the best of the author’s knowledge. Since the

b1 structure is characterized by non-contractible cycles, we propose a method that assigns

a cycle and generalized angle to each data. The generalized angle shows the location of a

sample within a cycle and samples with similar angles are similar in terms of their locations

in a cycle. However, the generalized angle is defined within [0, 1] to distinguish standard

angle within [0, 2π]. Finally we can cut the graph by the angle of each vertex using a uniform

grid. This process resembles the “pizza” cut and the details are shown in the next section.

7.4 CYCLE-BASED DATA SPLIT METHOD

Splitting data means grouping data according to similarity or distance. Finding a good

distance metric is difficult and often involves considerable trial and error. Classical methods,

such as k-Means, assume Euclidean distances and may not work well for higher dimensional

trajectory data lying on some nonlinear manifold. A distance based on topology is desirable

since Euclidean distances are only locally useful for data on many nonlinear manifolds. An

example is shown in Fig. 7.6 where Euclidean distance assigns a smaller distance to two

trajectories from different homotopy classes.

If the function has a geometric singularity near some point, for a point in the neighborhood,

the direction of perturbation that causes largest change in the function’s output is from the

point to the singularity point. As a result, the data split should try to avoid having edges

within the same piece whose distance to the singularity is small. This is exactly why the

“pizza” shape piece (i.e. cluster, subgraph) is a good choice, since it avoids such edges.

Admittedly, in each piece, the gradient near singularity is still large so it may be still difficult

to precisely capture. But this choice avoids the averaging issue that occurs when a piece

contains edges crossing the singularity.

Then the question becomes how to assign an angle-like value to each data. Since a cycle

naturally resembles a circle, we can conveniently assign angles to each vertex of the cycle.

However, there may be infinite number of cycles that contain one vertex so there may be

ambiguity of the angles assigned to each vertex. To resolve such ambiguity, we must select

one cycle for each vertex. An intuitive choice is to let the cycle that has the minimum length

and contains the vertex of interest as the representative cycle of that vertex. Moreover,

we use the angle of that vertex within its representative cycle as the angle of each vertex.

Furthermore, all the cycles are required to be homotopic to each other and not contractible

to zero cycle. With those rules, the question becomes how to compute the representative

cycle for each vertex that is homotopic to existing cycles and how to assign generalized angles

to the vertices of the cycle.

140

To guarantee all representative cycles are homotopic, we propose to use a constructive

method, i.e. starting from a cycle that represents the 1D hole and constructing cycles

homotopic to any existing cycle. In this way, it is guaranteed that all cycles are homotopic

to each other. The constructive method naturally forms a tree-like structure representing

how a cycle is constructed from the first cycle, i.e. the root of the tree. The details of how to

construct a homotopic cycle from existing cycles are explained later in Sec. 7.4.2. Supposing

all the representative cycles are computed, the tree structure also helps assign angles to each

cycle. Several restrictions are used for assigning angles to a cycle:

1. The generalized angles for all vertices are within [0, 1].

2. The angles are monotonically increasing except for the wrap from 1 to 0.

3. For any two consecutive vertices in the cycle, the difference in angles (with proper

wrapping) is proportional to the distance between them.

With those rules, it suffices to assign an angle to any vertex of the cycle since all the other

vertices’ angles can be computed accordingly. We first assign angles to the cycle at the root

of the tree where some arbitrarily chosen vertex is assigned with angle of 0. Then, following

the tree (excluding the root), we assign angles to every node by finding the best alignment

with its parent. It essentially searches the angle of the representative vertex on a grid that

minimizes the cycle distance to its parent. The details are explained in Sec. 7.4.2. After

the tree is traversed (regardless of the order), every data point is assigned an angle which is

used for the data split.

7.4.1 Find the Root

First the root is computed, i.e. a base cycle representing the hole in the structure. Luckily

this can be done with the help of TDA algorithms. Ripser [152] computes the birth and

death index of topological features and the user has to inspect the persistence diagram in

order to determine a lifetime threshold and ignore features with short lifetimes. Assuming

the H1 feature with the longest lifetime is selected, we can directly extract the birth and

death index from the return values of Ripser. Moreover, with some modification in the

source code, we are able to identify which edge (with weight equal to birth index) closes

the cycle so the H1 feature first appears. We may build a graph that connects every pair of

vertices with distance below the birth index of the cycle. Then we perform graph search to

find the shortest path between the two vertices of the birth edge that completes the cycle.

An example is shown in Fig. 7.7. It’s worth mentioning that the cycle tends to be long due

141

to the choice of connection threshold. In fact, with such a threshold, the graph may even

have multiple connected components. In order to get a more reasonable cycle (in the notion

of length), it is necessary to shrink the cycle to minimum length (while not changing its

topology) on a graph with larger connection threshold. However, the connection threshold

should not exceed the death index, since it would eliminate the hole otherwise.

Figure 7.7: The VR complex at the birth of the cycle with longest lifetime and the edge that
leads to birth of this cycle (in black).

We use a simple yet empirically effective method to contract the cycle from TDA into

a minimum one. First, with a properly chosen connection threshold, the graph is built.

Then we randomly choose two vertices in the cycle and compute the shortest path between

them. If the shortest path is different from the path in the cycle, we replace the path in

the cycle with the shortest path. In this way, we can reduce the length of the cycle, i.e.

contract the cycle. However, there are a few practical problems. First, simply replacing

a part of the cycle with a path with shorter distance may change the topology and as a

result, may eventually shrink the cycle to a point. To prevent such behavior, we only search

pairs of neighboring vertices (i.e. at most 25% of the cycle length apart). Second, this

shortcut process has to be done repeatedly but the convergence of this method is unknown.

Empirical results show this method works reasonably well, as shown in Fig. 7.8. We note

that the algorithm is randomized and in some problems multiple trials are necessary to get a

reasonable result with manual inspection of the results. However, more analysis is necessary

to establish guarantee of convergence.

142

Figure 7.8: The VR complex at the operation threshold (2 times the birth radius) and the
shrunk shortest cycle in the graph.

7.4.2 Expand Cycle to Neighbors

For a given cycle, it is reasonable to extend the cycle to its neighboring vertices since

neighboring vertices are more likely to have similar representative cycles. Here, the neigh-

boring vertices of a cycle are the union of neighboring vertices of each vertex in the cycle.

In this section, we introduce how a cycle is propagated to its neighbors.

Homotopic Expansion In order to guarantee homotopy, we use a theorem from [151]. It

would be hard to write out the theorem without additional rigorous definitions of complicated

concepts. But the main idea is that if an initial cycle is added by the boundary of a simplicial

complex composed of 2-simplices and their faces (i.e. triangles, edges, and vertices), the

resulting cycle is homotopic to the initial cycle, as shown in Fig. 7.9 where examples of

simplicial complexes composed of one and two triangles are shown. However, it is valid to

include any number of triangles as long as they form a simplicial complex. For simplicity, we

only consider one-triangle expansion since our cycle optimization algorithm still manages to

find the minimum-length cycle, so the multi-triangle expansion are discovered automatically

if it leads to a shorter cycle.

Cycle Optimization We propose to use an optimization-based method to find the rep-

resentative cycle for a vertex from a cycle expanded from a neighboring cycle. The idea

143

Figure 7.9: Options to expand a cycle to neighboring vertices. The new cycle stays homotopic
if CD is replaced with CF and FD or DI and IH are replaced with DG and GH. However,
adding BE and EB is excluded.

is similar to gradient descent and it iteratively finds a homotopic and shorter cycle nearby

until improvement halts, i.e. it converges to local minimum.

For a cycle, we find the union of all the neighbors for each vertex of the cycle and construct

a subgraph with those vertices. In this way, we can find a region near the cycle and check if

a homotopic cycle exists within this region, contains the vertex of interest, and has shorter

length. The problem, then, becomes: how to find the shortest cycle with fixed start in a

graph that is homotopic to a given cycle. The main difficulty of this task is guaranteeing the

homotopy of the result and we propose a dynamic programming based method to handle it.

We denote a cycle with N vertices as C = (C0, C1, . . . , CN , C0) and where C0 is the vertex

of interest that has to be within any new cycles. For simplicity, we call it the head of

the cycle despite the fact that a cycle has no head. The new cycle, denoted as C ′, must

have C ′0 = C0. To proceed, our DP method tries to find the next vertex for C ′ within

the neighbors of C1. To allow for a multi-step path from C ′0 to the neighbors of C1, we

further construct a subgraph whose vertices are the union of C0 and C1’s neighbors. For

each neighbor of C1, a graph search is conducted to compute the shortest path to it from C0.

The shortest path length from C0 to vertex v ∈ N (C1) is denoted as w(v). Since it’s possible

144

that the path may contain more than 2 vertices, the final cycle may have more vertices than

the initial cycle. Then, we find the next vertex within N (C2) by considering the subgraph

obtained by the union of N (C1) and N (C2). Specifically, for each vertex in N (C1), we use

Dijkstra’s algorithm to find the shortest path to each vertex in N (C2), denoted as d(v1, v2)

with v1 ∈ N (C1), v2 ∈ N (C2). The shortest distance to any neighbor of C2 is thus

w(v) = min
u∈N (C1)

w(u) + d(u, v) (7.1)

where w(u) has already been computed in the first step. Similarly this can be done for the

following vertices of C. Finally the algorithm is again computed back to C0, i.e. the vertex

of interest and it suffices to take w(C0) as the shortest cycle length. In order to extract the

actual cycle, we have to backtrack the search process so some bookkeeping is necessary.

With this method, we can contract the cycle within its neighbors. Similarly to gradient

descent, we can iteratively contract the cycle until no improvement can be achieved. This

process is guaranteed to converge since the search space is finite (i.e. number of available

cycles is finite) and our algorithm is always decreasing the cycle length. However, further

analysis is required to establish the rate of convergence and how to avoid local optimum.

In practice, the number of iterations is usually small since the new cycle is similar to the

previous one as we are considering neighboring vertices of a cycle. An example of cycle

expansion from a parent cycle to a neighboring vertex is shown in Fig. 7.10. Notice that,

without optimization, the child cycle only replaces one edge of the parent with two edges.

Optimization of the child cycle makes it significantly different from the parent cycle.

(a) (b)

Figure 7.10: An example of cycle expansion from a parent cycle (green) to a child (blue).
(a) the overall cycle shape. (b) the red triangle details how the expansion is initialized and
finally optimized to shorter length.

145

7.4.3 Cycle Alignment

Each cycle is associated with a parent cycle in the cycle expansion algorithm. Assuming

the parent cycle is assigned with angles, it’s a natural choice to assign angles to the child

cycle by some similarity metric of the cycles. Because the rules for assigning angles to a cycle

make the cycle angles uniquely determined by its head angle, it suffices to assign an angle to

the head that minimizes the distance between two cycles. In order to compute the distance

between two cycles, we first define an piecewise linear interpolation function on the parent

cycle with its vertex angles as input and data points associated with each vertex as output

(with proper wrapping). Then for each vertex of the child cycle, the corresponding data

point in the parent cycle with the same angle is computed by interpolation. The distance

from each vertex of the child cycle to the parent cycle is thus computed by the distance

to the interpolated data. Then the cycle distance is computed by the sum of the distances

from each vertex of the child cycle to the parent cycle. With this distance metric, we can

search the best angle for the head of the child cycle on a grid. One reason for grid search is

that the distance function is non-convex and non-smooth which hinders the convergence of

gradient-based methods. With this subroutine, the angles of all the cycles can be computed

by traversing the tree from the root to all the leafs.

(a) Examples of optimized cycles. (b) Data split using our algorithm where each
color denotes a split.

Figure 7.11: Results for cycle-based split of an annulus. The cycles associated with each
data sample is indeed minimum-length. The split according to generalized angle agrees well
with the actual angle.

146

7.4.4 Overall Algorithm

With each component ready, we list the overall algorithm in Alg. 7.2 for assigning general-

ized angles to the data with H1 topological structure. The key subroutines are listed as well.

After computing angles to each data, it’s straightforward to split the dataset by selecting a

resolution, evenly splitting interval [0, 1], and assigning a group to each data according to

the interval wihin which its angle lies. Such a split scheme is similar to the desired “pizza”

cut because of the way the generalized angle is computed. Examples of cycles found by the

algorithm in a 2D dataset with an 1D hole are shown in Fig. 7.11a. The final data split is

shown in Fig. 7.11b. The results show this algorithm is correctly splitting the dataset in a

desired way.

Algorithm 7.2: Compute labels for data with H1 structure

Data: Samples (x, y), edge threshold ε
Result: Labels for each data

1 Compute the initial cycle as in Alg. 7.3
2 Contract the initial cycle to get the root cycle C as in Alg. 7.4
3 Initialize empty priority queue q, empty closed set
4 for vertex Ci in C do
5 Add Ci to closed set
6 for vertex v in N (Ci) do
7 if v not in closed set then
8 Add (d(v, Ci), v, C) to q
9 end

10 end

11 end
12 while q is not empty do
13 Pop frontier (d̄, v, C) from q
14 if v not in closed set then
15 success, C ′ = Expand from C to vertex v using Alg. 7.5
16 if success is true then
17 Align C ′ with C and label C ′

18 Add v to closed set
19 for vertex w ∈ N (v) do
20 Add (d̄+ d(w, v), w, C ′) to q
21 end

22 end

23 end

24 end
25 Return the labels for all vertex in closed set

147

Algorithm 7.3: Compute the initial cycle

Data: Samples (x, y)
Result: Initial cycle

1 Concatenate z = [x, y] and perform TDA on z
2 Find the H1 feature with longest lifetime, get its birth index α, and birth edge (with

vertex u and v)
3 Construct a r-NN graph with edge threshold α
4 Remove the birth edge if it is in the r-NN graph
5 Find shortest path from u to v (e.g. Dijkstra)
6 Return the cycle by adding edge (u, v) to the shortest path

Algorithm 7.4: Compute the root cycle

Data: Samples z, edge threshold ε, initial cycle C0, maximum iteration number
maxiter

Result: Non-contratible root cycle
1 Construct r-NN graph G with z and edge threshold ε
2 i← 0, C ← C0

3 for i from 1 to maxiter do
4 Randomly select a vertex u from C
5 Select the vertex v that is int(0.25 × number of vertices of C) steps away
6 Compute the shortest path between u and v on G
7 Replace the cycle segment u→ v by the shortest path

8 end
9 Return C

Algorithm 7.5: Expand cycle to new vertex

Data: Graph G, parent cycle C, vertex v, maximum iteration maxiter
Result: Representative cycle of v

1 Compute an initial cycle C (possibly non-shortest) using Alg. 7.6
2 for i from 1 to maxiter do
3 Compute the shortest homotopic cycle C ′ around C using Alg. 7.7
4 if C ′ = C then
5 break
6 else
7 C = C ′

8 end

9 end

148

Algorithm 7.6: Construct homotopic cycle to new vertex

Data: Graph G, parent cycle C, vertex v
Result: A homotopic cycle containing vertex v

1 Initialize empty edge list
2 for Edge e = (a, b) in C with a, b ∈ N (v) do
3 Add (d(a, v) + d(b, v)− d(a, b), (a, b)) to edge list
4 end
5 if edge list is empty then
6 Return False, None
7 end
8 Find the edge in the list whose first entry is smallest
9 Construct a cycle by replacing edge (a, b) with edges (a, v) and (v, b), denoted as C,

make v its head
10 Return C

Algorithm 7.7: Dynamic programming to find shorter cycle

Data: Graph G, cycle C
Result: A shortest and homotopic cycle around C

1 Initialize dictionary w for v ∈ N (C0) do
2 w(v) = d(v, C0)
3 end
4 for Edge (Ci, Ci+1) in C do
5 Construct subgraph using vertices N (Ci) ∪N (Ci+1)
6 Perform Dijkstra to compute pairwise distance
7 for v ∈ N (Ci+1) do
8 Compute and assign w(v) using Eq. (7.1)
9 end

10 end
11 Get minimum length w(C0)
12 Backtrack to compute the shortest cycle
13 Return the shortest cycle

7.5 NUMERICAL EXPERIMENTS

7.5.1 Pendulum Swing-up Revisited

This problem is taken from Chapter 6 and the goal is to show how TDA can be applied

to this problem. First we compute the Betti numbers for function domain X and graph Z.

It turns out b0(X) = 1, b1(X) = 0, b0(Z) = 3, b1(Z) = 0. The topological structure of X is

trivial since we sample the start states uniformly on a grid. The persistence diagram for Z

is shown in Fig. 7.12a.

149

The increase of b0 shows the existence of a function discontinuity. A threshold when the 3

major components are alive is chosen from the persistence diagram and a graph is built with

edge weights below this threshold. The connected component analysis gives 3 components

as shown in Fig. 7.12b, the data split from topology agrees with the results in Chapter 6

and the authors’ understanding of the problem.

(a) Persistant Diagram (b) Data Split

Figure 7.12: a) Persistence diagram for pendulum swingup problem. 3 connected components
can be read from H0. Note: the 2nd and 3rd component with longest lifetime overlaps. b)
Split of the dataset for pendulum swingup problem using our method

7.5.2 2D Obstacle Avoidance with Fixed Horizontal Start

For the problem shown in Fig. 7.1a. We use TDA to get b0(X) = 1 and b0(Z) = 2. This

suggests the discontinuity comes from switch of homotopy classes. As a result, we select

the threshold of 1.0 and perform connected component analysis on the simplicial complex.

The results are shown Fig. 7.13 which clearly shows it correctly finds the two trajectory

homotopy classes.

7.5.3 2D Obstacle Avoidance with Free Start

The 2D obstacle avoidance problem with free start location has a different type of topology

from the one with fixed x. For this one, the obstacle is assumed to have a radius of 0.5 m.

The start location is freely chosen within a selected range. The TDA result for X and Z

150

(a) Persistence Diagram

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(b) Data Split

Figure 7.13: Results for the 2D problem with vertical start.

are shown in Fig. 7.14, indicating decrease of b1. The recursive edge cut method is used to

handle it.

(a) 2D (b) 3D

Figure 7.14: TDA results of domain and graph for the 2D problem with free start. The
domain has a single component and a hole while the graph has no hole.

The results are shown in Fig. 7.15. As the results show, it correctly split the dataset

into two pieces to avoid discontinuity. Moreover, the split is balanced to some extent. The

results of using this data split to train an MoE and comparing it with SNN, are shown in

Tab. 7.1. The results of using k-Means methods in Chapter 6 are similar to this result since

this problem is relatively simple.

151

Table 7.1: Comparison of constraint violation for the 2D obstacle problem with free start.

SNN Topo
Avg Vio (m) 0.009 0.001

Vio (in 400) 34 8
Max Vio (m) 0.45 0.021

Figure 7.15: Split of data for 2D obstacle problem with free start locations. Each color
denotes a subgraph.

7.5.4 3D Obstacle Avoidance with Moving Obstacle

To generate the dataset, we randomly sample the obstacle on orthant of a sphere. The

obstacle has a fixed radius of 0.3 m and is uniformly sampled in that orthant. The start

is sampled so that a straight line from the start to the goal has some penetration with the

obstacle for the purpose of increasing problem difficulty and sample efficiency with obstacle

avoidance information. Compared to a problem with a fixed obstacle such as Fig. 7.1b,

this problem is challenging, since the singularity is not a single point but a function of the

obstacle location. We generate 80000 data points for training and 4000 for testing. We

evaluate the model by computing the constraint violation (i.e. penetration of the trajectory

into the obstacle) of the predicted trajectory for the validation set. We use a subset of data

to perform TDA to reduce computational cost. Another reason for using a subset is because

using only a subset of data may still reveal the topological structure and extract a cycle for

us to work with. The results from TDA is in Fig. 7.16, showing the existence of a single 1D

hole.

The root cycle is shown in Fig. 7.17 where the colors from blue to red indicate increasing

generalized angles. The same with intuition, the cycle is around an obstacle. For this one,

152

0.0 0.2 0.4 0.6 0.8 1.0
Birth

0.0

0.2

0.4

0.6

0.8

1.0

D
ea

th

H0
H1

Figure 7.16: Persistence diagram for 3D obstacle problem. It shows b0 = b1 = 1.

the trajectories have similar obstacle locations.

0.2

0.4

0.6

0.8

1.0

0.0
0.1

0.2
0.3

0.4

0.6

0.8

1.0

1.2

Figure 7.17: The root cycle where colors from blue to red indicate increasing generalized
angles.

After applying Alg. 7.2 to this problem, a data split is obtained. The MoE can be trained

according to this data split and are tested on the validation set. For each validation problem,

we use the trained model to predict the path and compute constraint violation as the pene-

tration depth of the path into the obstacle. The results are shown in Tab. 7.2. Clearly, our

method outperforms all other methods in terms of the mean violation (in all voilated cases).

153

Specifically, our method is much reliable for prediction near singularity regions since it has

the smallest maximum violation. The k-Means based data split method outperforms SNN

since it is able to separate some amount of discontinuity. However, the maximum violation is

similar to SNN and it shows k-Means based method is unable to fully separate discontinuity.

Table 7.2: Constraint violation for different approximation models for 3D obstacle problem.

SNN k-Mean 10 k-Mean 20 k-Mean 40 Cycle
Avg Vio (mm) 5.8 4.4 4.0 6.7 3.7

Vio (in 4000) 1053 530 361 635 477
Max Vio (mm) 180.6 193.8 191.2 202.5 49.3

7.5.5 Discussion

We demonstrate the efficacy of our framework in discontinuity detection and data split

using examples for each type of discontinuity. They all follow a pipeline of data collection,

topological analysis, discontinuity detection, data split, and MoE training. Compared with

SNN, the MoE model is capable of approximating discontinuous functions and our topology-

based method correctly splits the data according to estimated discontinuities. This frame-

work improves upon Chapter 6 since there is no requirement of tuning of the number of

clusters and has better theoretical foundation.

Problems with increased b0 are the most straightforward since, for motion planning prob-

lems, trajectories from different homotopy classes tend to have large distances so k-Means

based method may separate them, even though there is no guarantee about it. However,

for problems where intra-distance is larger than inter-distance, k-Means based methods may

have worse performance, although this can be partially solved by over-segmentation at the

risk of model overfitting in later training stages. On the contrary, topology based methods

give the exact data split by discontinuity and is, thus, more convenient. It minimizes the

number of connected components so the classifier is easier to train and the region where

extrapolation of MoE occurs is minimized.

Problems with decreased b1 are more complicated and it also bring ambiguity about where

to cut non-risky edges. k-Means based methods may still be effective since near discontinuity

trajectories have large distances if they should be separated. Again, k has to be fine-tuned

to get better results. Our method uses a heuristic method to encourage data balance which

needs more theoretical analysis while k-Means method does not directly reason about data

balance.

154

Problems with discontinuities caused by an increase in b1 are the most difficult, since the

singularity is inherently difficult to learn from data. The data split only partially alleviates

the problem and relies on extrapolation to handle the large gradient regions. The data split

scheme of computing generalized angles helps to realize the desired “pizza” cut and works well

in practice. k-Means based method tends to fail at this particular case especially when the

singularity point is not constant. In that case, trajectories that are far in terms of generalized

angle may be closer (Euclidean distance) than trajectories with similar generalized angles.

Our topology-based method can accurately compute trajectory distance based on the 1D

hole topology.

Remark 7.4. However, one drawback of using TDA to count connected components is for

k components it requires the death indexes of the top k-th H0 structure to be apparently

greater than the rest. Recalling that the death index is the minimum distance between two

smaller components, the TDA approach requires that the (k+ 1)-th component merges with

other components in early stage. This requires sufficient data density. However, it is difficult

to have sufficient data density in high-dimensional spaces and, therefore, the method scales

poorly with problem dimensionality. One approach to this problem is to search the death

index in decreasing order and check which threshold gives a data split that minimizes the

number of connected components and removes all discontinuity within every component.

The sample size problem occurs to 1D hole topological structures as well. The death index

which resembles the “radius” of the cycle has to be much larger than the largest edge length

of the cycle when it is formed. Similar to H0 structure, it requires a sufficient sample density

as well. Otherwise the H1 structure is not recognizable from the persistence diagram.

In sampled data, it is not unusual that data “voids” exist, simply because some regions are

not sampled. In that case, TDA may compute some artificial H1 feature with short lifetimes.

However, those voids are detrimental to the cycle contraction method since a large enough

search radius is required to jump over them. A larger radius requires more computational

resources since in the DP method more neighbors are considered. A poorly chosen radii

may result in locally optimal cycles and poor generalized angle computation as well. It is

worthwhile studying how dispersion [2] affects the algorithm.

7.6 CONCLUSION

In this chapter we propose a unified framework that combines topological data analysis and

MoE for trajectory learning. Function discontinuity is detected by computing and comparing

the topological features on the function’s domain and graph from data. For several types of

155

discontinuity that are widely seen in robotics applications, we study how to identify them

from topological features and propose corresponding data split schemes to handle them.

For problems with increased number of components, our method is tuning-free and can

find the minimum split that removes all discontinuities within each split. For problems

with decreased number of 1D hole, our method heuristically finds a relatively balanced split

scheme and does not require the tuning of number of clusters like k-Means based approach.

For problems with increased number of 1D holes because of singularity, generalized angles

are computed for each sample that approximately represent its location in a cycle. The

similarity in generalized angles better preserves similarity in topology so it outperforms k-

Means based method, especially for cases where the singularity point is a function of problem

parameters. Future work includes studying problems of higher order holes, complexity and

scalability analysis of the methods, and application to more challenging problems.

156

CHAPTER 8: CONCLUSIONS

In this thesis, the author advocates the exploitation of two structures that exist in a wide

range of trajectory optimization problems. With proper methods to exploit them, efficient

optimal planners can be built with high reliability.

The convex sub-problem is in general a strong structure, only exists in particular appli-

cations and requires domain knowledge to identify it. However, the two types of problems

discussed in this thesis are generalizable to lots of applications where polynomial trajecto-

ries are used. The bilevel optimization framework is in general difficult to solve but the

framework in this thesis behaves surprisingly well because of the differences from general

bilevel problems: 1) the lower and upper problem have the same objective function and the

smoothness of the objective function is better behaved than argmin, as often seen in other

bilevel problems; 2) the upper problem is limited to possess convex constraints only and it

simplifies constraint satisfaction by a lot; and 3) the lower problem does not have feasibility

issues and does not impose additional limitations to gradient descent of the upper problem.

It is unclear and, thus, worthwhile investigating if the convex sub-problem structure widely

exists in robotic applications. For future work, one may try to apply this framework to

other robotic applications. It is also of great interest to study if the smoothing technique is

effective to general bilevel optimization problems where the upper and lower problem have

different cost functions. The feasibility issue of the lower problem may be worth investigat-

ing as well to see if it imposes challenges to the upper problem and how to handle it. Overall

the bilevel framework has great potential since it takes advantage of convex optimization to

guarantee feasibility and analytic gradients to speed up the upper optimization. In the worst

case scenario, the framework falls back to the approach that heuristically chooses non-convex

optimization variables so it cannot be worse than the alternative.

The learning-based framework has a generally wider range of applications since it only

requires piecewise continuity of the argmin function which is satisfied in most practical

applications. The same with other learning methods, the trajectory learning approach faces

the same issues such as data collection, data cleaning, model selection, hyperparameter

tuning, and model deployment. In this thesis, we mainly aim to address the issue of the

discontinuity of the argmin function. Despite the fact that a function can be discontinuous

in arbitrary ways, we have studied several of the most widely seen discontinuity types.

Our empirical k-Means approach and theoretical topology-based approach have shown the

ability to handle several discontinuity types of interest. The MoE framework has also shown

its advantage over discontinuity-agnostic continuous neural network models, especially for

157

model predictions in regions near discontinuity. Some open questions for trajectory learning

include:

• Is there any way to establish a validation error guarantee of the model prediction?;

• Is this approach scalable to problems with high dimensional parameters?;

• Can the requirement of fixed-size input and output dimensionality be lifted?;

• How to quantify trajectory prediction error and establish conditions for guarantees of

successful trajectory tracking.

Some open questions for discontinuity in trajectory learning include:

• there are potentially infinite number of discontinuity types, is there a unified framework

that handles them all?;

• Is there a training algorithm for MoE such that it automatically detects data discon-

tinuity?; and

• How to handle discontinuities dur to a change in higher order Betti numbers.

Overall, the trajectory learning framework is promising since 1) it moves all computationally

expensive nonlinear optimization offline which, in theory, can accept long computation time

and low success rates; 2) is flexible enough and does not have strong requirements of problem

structures; 3) it predicts approximately optimal trajectory and are easier to be executed in

physical experiments and 4) in the worst case scenario, the prediction can be used as an

initial guess to optimizers so it cannot make things worse. With more efforts in those open

questions, more applications of trajectory learning is foreseeable, with or without MoE.

158

REFERENCES

[1] H. M. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
S. Thrun, and R. C. Arkin, Principles of robot motion: theory, algorithms, and imple-
mentation. MIT press, 2005.

[2] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[3] B. Paden, M. Cáp, S. Z. Yong, D. S. Yershov, and E. Frazzoli, “A survey
of motion planning and control techniques for self-driving urban vehicles,” IEEE
T. Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016. [Online]. Available:
https://doi.org/10.1109/TIV.2016.2578706

[4] A. E. Bryson, “Optimal control-1950 to 1985,” IEEE Control Systems Magazine,
vol. 16, no. 3, pp. 26–33, 1996.

[5] H. J. Sussmann and J. C. Willems, “300 years of optimal control: from the brachys-
tochrone to the maximum principle,” IEEE Control Systems Magazine, vol. 17, no. 3,
pp. 32–44, 1997.

[6] A. E. Bryson, Applied optimal control: optimization, estimation and control. CRC
Press, 1975.

[7] R. E. Kalman et al., “Contributions to the theory of optimal control,” Bol. soc. mat.
mexicana, vol. 5, no. 2, pp. 102–119, 1960.

[8] D. F. Lawden, Optimal trajectories for space navigation. Butterworths, 1963, vol. 3.

[9] A. Bryson Jr and S. E. Ross, “Optimum rocket trajectories with aerodynamic drag,”
Journal of Jet Propulsion, vol. 28, no. 7, pp. 465–469, 1958.

[10] A. E. Bryson and W. F. Denham, “A steepest-ascent method for solving optimum
programming problems,” ASME Journal of Applied Mechanics, vol. 29, 1962.

[11] G. Tang and K. Hauser, “A data-driven indirect method for nonlinear optimal control,”
in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on. IEEE, 2017, pp. 4854–4861.

[12] F. Jiang, H. Baoyin, and J. Li, “Practical techniques for low-thrust trajectory op-
timization with homotopic approach,” Journal of guidance, control, and dynamics,
vol. 35, no. 1, pp. 245–258, 2012.

[13] R. Bertrand and R. Epenoy, “New smoothing techniques for solving bang–bang optimal
control problems: numerical results and statistical interpretation,” Optimal Control
Applications and Methods, vol. 23, no. 4, pp. 171–197, 2002.

[14] F. Jiang, G. Tang, and J. Li, “Improving low-thrust trajectory optimization by adjoint
estimation with shape-based path,” Journal of Guidance, Control, and Dynamics, pp.
1–8, 2017.

159

[15] G. Tang and F. Jiang, “Capture of near-Earth objects with low-thrust propulsion and
invariant manifolds,” Astrophysics and Space Science, vol. 361, no. 1, p. 10, 2015.

[16] F. Jiang and G. Tang, “Systematic low-thrust trajectory optimization for a multi-
rendezvous mission using adjoint scaling,” Astrophysics and Space Science, vol. 361,
no. 4, p. 117, 2016.

[17] Z. Chi, D. Wu, F. Jiang, and J. Li, “Optimization of variable-specific-impulse gravity-
assist trajectories,” Journal of Spacecraft and Rockets, vol. 57, no. 2, pp. 291–299,
2020.

[18] G. Tang, F. Jiang, and J. Li, “Fuel-optimal low-thrust trajectory optimization using in-
direct method and successive convex programming,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 54, no. 4, pp. 2053–2066, 2018.

[19] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[20] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic program-
ming,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 1168–1175.

[21] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear bio-
logical movement systems.” in ICINCO (1). Citeseer, 2004, pp. 222–229.

[22] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal feed-
back control of constrained nonlinear stochastic systems,” in Proceedings of the 2005,
American Control Conference, 2005. IEEE, 2005, pp. 300–306.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press
Cambridge, 1998, vol. 1, no. 1.

[24] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al., “Policy gradient
methods for reinforcement learning with function approximation.” in NIPs, vol. 99.
Citeseer, 1999, pp. 1057–1063.

[25] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural
information processing systems. Citeseer, 2000, pp. 1008–1014.

[26] Y. Yu, “Towards sample efficient reinforcement learning.” in IJCAI, 2018, pp. 5739–
5743.

[27] Z. Ding and H. Dong, “Challenges of reinforcement learning,” in Deep Reinforcement
Learning. Springer, 2020, pp. 249–272.

[28] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in deep reinforce-
ment learning,” arXiv preprint arXiv:1910.01708, 2019.

160

[29] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in he 2nd Berkeley Sym-
posium on Mathematical Statistics and Probability. University of California Press,
Berkeley, 1951, pp. 481–492.

[30] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. New York: Aca-
demic Press, 1981.

[31] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “User’s guide for sol/npsol:
A fortran package for nonlinear programming.” STANFORD UNIV CA SYSTEMS
OPTIMIZATION LAB, Tech. Rep., 1983.

[32] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using nonlinear
programming and collocation,” J. Guidance, Control, and Dynamics, vol. 10, no. 4,
pp. 338–342, 1987.

[33] P. J. Enright and B. A. Conway, “Optimal finite-thrust spacecraft trajectories using
collocation and nonlinear programming,” Journal of Guidance, Control, and Dynam-
ics, vol. 14, no. 5, pp. 981–985, 1991.

[34] D. Tabak and B. C. Kuo, Optimal control by mathematical programming. New Jersey:
Prentice-Hall, 1971.

[35] D. G. Hull, “Conversion of optimal control problems into parameter optimization prob-
lems,” Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 57–60, 1997.

[36] P. J. Enright and B. A. Conway, “Discrete approximations to optimal trajectories
using direct transcription and nonlinear programming,” Journal of Guidance, Control,
and Dynamics, vol. 15, no. 4, pp. 994–1002, 1992.

[37] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm for large-scale
constrained optimization,” SIAM review, vol. 47, no. 1, pp. 99–131, 2005.

[38] A. Heim and O. Von Stryk, “Trajectory optimization of industrial robots with appli-
cation to computer-aided robotics and robot controllers,” Optimization, vol. 47, no.
3-4, pp. 407–420, 2000.

[39] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran,
“Continuous-time trajectory optimization for online uav replanning,” in 2016
IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE,
2016, pp. 5332–5339.

[40] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation for quadrotors
using fast marching method and bernstein basis polynomial,” in IEEE International
Conference on Robotics and Automation, 2018, pp. 344–351.

[41] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-repeat-replan: A
complete and robust system for aggressive flight in complex environments,” IEEE T.
Robotics, vol. 36, no. 5, pp. 1526–1545, 2020.

161

[42] G. Tang, W. Sun, and K. Hauser, “Learning trajectories for real-time optimal control of
quadrotors,” in Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ International
Conference on. IEEE, 2018, pp. –.

[43] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion planner
with trajectory optimization for autonomous vehicles,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 2061–2067.

[44] X. Hu and J. Sun, “Trajectory optimization of connected and autonomous vehicles at
a multilane freeway merging area,” Transportation Research Part C: Emerging Tech-
nologies, vol. 101, pp. 111–125, 2019.

[45] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of
rigid bodies through contact,” The International Journal of Robotics Research, vol. 33,
no. 1, pp. 69–81, 2014.

[46] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and C. Semini, “Applica-
tion of wrench-based feasibility analysis to the online trajectory optimization of legged
robots,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3363–3370, 2018.

[47] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory opti-
mization for legged systems through phase-based end-effector parameterization,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 1560–1567, 2018.

[48] M. Morari and J. H. Lee, “Model predictive control: past, present and future,” Com-
puters & Chemical Engineering, vol. 23, no. 4-5, pp. 667–682, 1999.

[49] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid
systems. Cambridge University Press, 2017.

[50] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for
quadrotors,” in IEEE Intl. Conf. on Robotics and Automation, 2011, pp. 2520–2525.

[51] J. Tordesillas and J. P. How, “Minvo basis: Finding simplexes with minimum volume
enclosing polynomial curves,” arXiv preprint arXiv:2010.10726, 2020.

[52] B. Açıkmeşe and L. Blackmore, “Lossless convexification of a class of optimal control
problems with non-convex control constraints,” Automatica, vol. 47, no. 2, pp. 341–347,
2011.

[53] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and M. Diehl, “Time-
optimal path tracking for robots: A convex optimization approach,” IEEE Transac-
tions on Automatic Control, vol. 54, no. 10, pp. 2318–2327, Oct. 2009.

[54] M. A. Patterson and A. V. Rao, “Gpops-ii: A matlab software for solving multiple-
phase optimal control problems using hp-adaptive gaussian quadrature collocation
methods and sparse nonlinear programming,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 1, pp. 1–37, 2014.

162

[55] T. A. Howell, B. E. Jackson, and Z. Manchester, “Altro: A fast solver for constrained
trajectory optimization,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 7674–7679.

[56] G. Still, “Lectures on parametric optimization: An introduction,” Optimization On-
line, 2018.

[57] J. Guddat, F. G. Vazquez, and H. T. Jongen, Parametric optimization: singularities,
pathfollowing and jumps. Springer, 1990.

[58] P. Fernbach, S. Tonneau, and M. Täıx, “Croc: Convex resolution of centroidal dy-
namics trajectories to provide a feasibility criterion for the multi contact planning
problem,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
2018, pp. 1–9.

[59] K. Hauser, “Fast interpolation and time-optimization with contact,” Int. J.
Robotics Research, vol. 33, no. 9, pp. 1231–1250, 2014. [Online]. Available:
https://doi.org/10.1177/0278364914527855

[60] N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A sequential two-step algorithm
for fast generation of vehicle racing trajectories,” J. Dynamic Systems, Measurement,
and Control, vol. 138, 04 2016.

[61] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Annals
of operations research, vol. 153, no. 1, pp. 235–256, 2007.

[62] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadro-
tor flight in dense indoor environments,” in Robotics Research. Springer, 2016, pp.
649–666.

[63] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: from classical
to evolutionary approaches and applications,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 2, pp. 276–295, 2018.

[64] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business
Media, 2006.

[65] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear program-
ming. Academic press, 1983.

[66] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey of
learning methods,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–35, 2017.

[67] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end driving
via conditional imitation learning,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 1–9.

163

[68] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 2011, pp. 627–635.

[69] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,”
in Proceedings of the twenty-first international conference on Machine learning, 2004,
p. 1.

[70] S. Schaal, “Learning from demonstration,” in Advances in neural information process-
ing systems, 1997, pp. 1040–1046.

[71] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion planning networks,”
in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 2118–2124.

[72] W. Merkt, V. Ivan, T. Dinev, I. Havoutis, and S. Vijayakumar, “Memory clustering
using persistent homology for multimodality-and discontinuity-sensitive learning of
optimal control warm-starts,” arXiv preprint arXiv:2010.01024, 2020.

[73] W. Sun, G. Tang, and K. Hauser, “Fast UAV trajectory optimization using
bilevel optimization with analytical gradients,” CoRR, 2018. [Online]. Available:
http://arxiv.org/abs/1811.10753

[74] G. Tang, W. Sun, and K. Hauser, “Enhancing bilevel optimization for uav time-
optimal trajectory using a duality gap approach,” in IEEE International Conference
on Robotics and Automation, 2020.

[75] G. Tang and K. Hauser, “Discontinuity-sensitive optimal control learning by mixture
of experts,” in 2019 International Conference on Robotics and Automation (ICRA),
May 2019, pp. 7892–7898.

[76] M. Wang, Z. Wang, S. Paudel, and M. Schwager, “Safe distributed lane change maneu-
vers for multiple autonomous vehicles using buffered input cells,” in IEEE International
Conference on Robotics and Automation, 2018, pp. 1–7.

[77] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, and Q. Kong,
“Baidu apollo em motion planner,” arXiv:1807.08048, 2018.

[78] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and V. Kumar,
“Planning dynamically feasible trajectories for quadrotors using safe flight corridors
in 3-d complex environments,” IEEE Robotics and Automation Letters, vol. 2, pp.
1688–1695, 2017.

[79] Z. Wang, H. Ye, C. Xu, and F. Gao, “Generating large-scale trajectories efficiently
using descriptions of polynomials,” arXiv preprint arXiv:2011.02662, 2020.

[80] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of
guidance, control, and dynamics, vol. 21, no. 2, pp. 193–207, 1998.

164

[81] O. Von Stryk, “Numerical solution of optimal control problems by direct collocation,”
in Optimal control. Springer, 1993, pp. 129–143.

[82] Z. Wang, X. Zhou, C. Xu, J. Chu, and F. Gao, “Alternating minimization based
trajectory generation for quadrotor aggressive flight,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, July 2020.

[83] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe trajectory planner
for flights in unknown environments,” in IEEE/RSJ Int. Conf. Intelligent Robots and
Systems. IEEE, 2019, pp. 1934–1940.

[84] X. Xu and P. J. Antsaklis, “Optimal control of switched systems based on parameter-
ization of the switching instants,” IEEE Transactions on Automatic Control, vol. 49,
no. 1, pp. 2–16, 2004.

[85] M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of switching times in
switched dynamical systems,” in 42nd IEEE International Conference on Decision
and Control, vol. 3, 2003, pp. 2138–2143.

[86] E. R. Johnson and T. D. Murphey, “Second-order switching time optimization for
nonlinear time-varying dynamic systems,” IEEE Transactions on Automatic Control,
vol. 56, no. 8, pp. 1953–1957, 2011.

[87] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An efficient optimal
planning and control framework for quadrupedal locomotion,” in IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 93–100.

[88] B. Landry, Z. Manchester, and M. Pavone, “A differentiable augmented lagrangian
method for bilevel nonlinear optimization,” CoRR, 2019. [Online]. Available:
https://arxiv.org/abs/1902.03319

[89] H. Pirnay, R. López-Negrete, and L. T. Biegler, “Optimal sensitivity based on ipopt,”
Mathematical Programming Computation, vol. 4, no. 4, pp. 307–331, 2012.

[90] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer in neural
networks,” in Proc. 34th International Conference on Machine Learning - Volume 70,
2017, pp. 136–145.

[91] S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo, “On dif-
ferentiating parameterized argmin and argmax problems with application to bi-level
optimization,” arXiv:1607.05447, 2016.

[92] K. Jittorntrum, “Sequential algorithms in nonlinear programming,” Ph.D. dissertation,
Australian National University, 1978.

[93] S. Boyd and L. Vandenberghe, Convex optimization. New York, NY, USA: Cambridge
university press, 2004.

165

[94] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee, “Stochastic subgradient method
converges on tame functions,” Foundations of Computational Mathematics, pp. 1–36,
2018.

[95] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and
control theory. Springer Science & Business Media, 2008, vol. 178.

[96] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. Davidson,
“Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning
and sampling-based planning,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 5113–5120.

[97] P. E. Gill, W. Murray, M. A. Saunders, and E. Wong, “User’s guide for SNOPT 7.7:
Software for large-scale nonlinear programming,” Department of Mathematics, Uni-
versity of California, San Diego, La Jolla, CA, Center for Computational Mathematics
Report CCoM 18-1, 2018.

[98] P. E. Gill, W. Murray, M. A. Saunders, and E. Wong, “User’s guide for SQOPT 7.7:
Software for large-scale linear and quadratic programming,” Department of Mathe-
matics, University of California, San Diego, La Jolla, CA, Center for Computational
Mathematics Report CCoM 18-2, 2018.

[99] W. Sun, G. Tang, and K. Hauser, “Fast uav trajectory optimization using bilevelop-
timization with analytical gradients,” in 2020 American Control Conference. IEEE,
2020, pp. 1–6.

[100] Q. Pham, “A general, fast, and robust implementation of the time-optimal path param-
eterization algorithm,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1533–1540,
Dec. 2014.

[101] G. Tang, W. Sun, and K. Hauser, “Time-optimal trajectory generation for dynamic
vehicles: A bilevel optimization approach,” in Intelligent Robots and Systems (IROS),
2019 IEEE/RSJ International Conference on. IEEE, 2019, pp. 0–7.

[102] A. Wächter and L. T. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,” Mathematical
Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006. [Online]. Available:
https://doi.org/10.1007/s10107-004-0559-y

[103] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm for large-scale
constrained optimization,” SIAM J. on Optimization, vol. 12, no. 4, pp. 979–1006,
Apr. 2002. [Online]. Available: http://dx.doi.org/10.1137/S1052623499350013

[104] J. h. Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsiotras, and
K. Iagnemma, “Optimal motion planning with the half-car dynamical model for au-
tonomous high-speed driving,” in 2013 American Control Conference, June 2013, pp.
188–193.

166

[105] F. Bayer and J. Hauser, “Trajectory optimization for vehicles in a constrained envi-
ronment,” in IEEE Conf. Decision and Control (CDC), Dec. 2012, pp. 5625–5630.

[106] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both forwards and
backwards,” PACIFIC J. MATHEMATICS, 1990.

[107] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion planner
with trajectory optimization for autonomous vehicles,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 2061–2067.

[108] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed path,”
International Journal of Control, vol. 87, no. 6, pp. 1297–1311, 2014. [Online].
Available: https://doi.org/10.1080/00207179.2013.875224

[109] E. Velenis and P. Tsiotras, “Optimal velocity profile generation for given acceleration
limits; the half-car model case,” in IEEE Int. Symp. Industrial Electronics, 2005. ISIE
2005., vol. 1, 2005, pp. 361–366.

[110] J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control of robotic
manipulators along specified paths,” Int. J. Robotics Research, vol. 4, no. 3, pp. 3–17,
1985. [Online]. Available: https://doi.org/10.1177/027836498500400301

[111] H. Pham and Q. Pham, “A new approach to time-optimal path parameterization based
on reachability analysis,” IEEE Transactions on Robotics, vol. 34, no. 3, pp. 645–659,
June 2018.

[112] L. Vandenberghe, “The cvxopt linear and quadratic cone program solvers,” 2010.
[Online]. Available: http://www.seas.ucla.edu/∼vandenbe/publications/coneprog.pdf

[113] N. Jetchev and M. Toussaint, “Fast motion planning from experience: trajectory pre-
diction for speeding up movement generation,” Autonomous Robots, vol. 34, no. 1-2,
pp. 111–127, Jan. 2013.

[114] K. Hauser, “Learning the problem-optimum map: Analysis and application to global
optimization in robotics,” IEEE Trans. Robotics, vol. 33, no. 1, pp. 141–152, Feb. 2017.

[115] R. P. Russell, “Primer vector theory applied to global low-thrust trade studies,” Jour-
nal of Guidance, Control, and Dynamics, vol. 30, no. 2, pp. 460–472, 2007.

[116] A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone, “Ma-
chine learning for global optimization,” Computational Optimization and Applications,
vol. 51, no. 1, pp. 279–303, 2012.

[117] J. Pan, Z. Chen, and P. Abbeel, “Predicting initialization effectiveness for trajectory
optimization,” in IEEE Intl. Conf. Robotics and Automation, 2014.

[118] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis: a sur-
vey,” IEEE Transactions on Robotics, vol. 30, no. 2, pp. 289–309, 2014.

167

[119] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and J. Peters, “Trajec-
tory planning for optimal robot catching in real-time,” in IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2011, pp. 3719–3726.

[120] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit solution of model
predictive control via multiparametric quadratic programming,” in Proc. American
Control Conf., vol. 1–6, 2000, pp. 872 – 876.

[121] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “User guide for minpack-1,” CM-
P00068642, Tech. Rep., 1980.

[122] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high dimensional
data,” in Pattern Analysis and Machine Intelligence, vol. 36, 2014.

[123] H. Maurer and D. Augustin, “Sensitivity Analysis and Real-Time Control of Paramet-
ric Optimal Control Problems Using Boundary Value Methods,” in Online Optimiza-
tion of Large Scale Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 17–55.

[124] Z. Xie, C. K. Liu, and K. K. Hauser, “Differential dynamic programming with nonlinear
constraints,” in IEEE Int’l. Conf. Robotics and Automation, Sep. 2016, pp. 1–8.

[125] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea, “Quadrocopter performance bench-
marking using optimal control,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. IEEE, 2011, pp. 5179–5186.

[126] T. Tomić, M. Maier, and S. Haddadin, “Learning quadrotor maneuvers from optimal
control and generalizing in real-time,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE, 2014, pp. 1747–1754.

[127] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza, “Fast trajec-
tory optimization for agile quadrotor maneuvers with a cable-suspended payload,” in
Robotics: Science and Systems, 2017, pp. 1–10.

[128] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based systems using
numerical optimal control,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), May 2016, pp. 2958–2964.

[129] J. Förster, M. Hamer, and R. D’Andrea, “System identification of the crazyflie 2.0
nano quadrocopter,” B.S. thesis, ETH Zurich, 2015.

[130] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp: An operator
splitting solver for quadratic programs,” in UKACC 12th International Conference on
Control (CONTROL), 2018, pp. 339–339.

[131] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-
versal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

168

[132] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of
local experts,” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

[133] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the em algo-
rithm,” Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[134] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean,
“Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,”
arXiv preprint arXiv:1701.06538, 2017.

[135] R. Murray-Smith and T. Johansen, Multiple model approaches to nonlinear modelling
and control. CRC press, 1997.

[136] R. R. Selmic and F. L. Lewis, “Neural-network approximation of piecewise contin-
uous functions: application to friction compensation,” IEEE transactions on neural
networks, vol. 13, no. 3, pp. 745–751, 2002.

[137] B. Llanas, S. Lantarón, and F. J. Sáinz, “Constructive approximation of discontinuous
functions by neural networks,” Neural Processing Letters, vol. 27, no. 3, pp. 209–226,
2008.

[138] B. Tang, M. I. Heywood, and M. Shepherd, “Input partitioning to mixture of ex-
perts,” in Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International
Joint Conference on, vol. 1. IEEE, 2002, pp. 227–232.

[139] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schnei-
der, and N. Djuric, “Multimodal trajectory predictions for autonomous driving using
deep convolutional networks,” in 2019 International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2019, pp. 2090–2096.

[140] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 1177–1178.

[141] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for pre-
cise aggressive maneuvers with quadrotors,” The International Journal of Robotics
Research, vol. 31, no. 5, pp. 664–674, Apr. 2012.

[142] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[143] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[144] L. McInnes and J. Healy, “Umap: Uniform manifold approximation and projection for
dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[145] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. PéRez, and I. Perona, “An extensive
comparative study of cluster validity indices,” Pattern Recognition, vol. 46, no. 1, pp.
243–256, 2013.

169

[146] H. Zhang, J. E. Fritts, and S. A. Goldman, “Image segmentation evaluation: A survey
of unsupervised methods,” computer vision and image understanding, vol. 110, no. 2,
pp. 260–280, 2008.

[147] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in
python,” Journal of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[148] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in search-
based robot path planning,” Autonomous Robots, vol. 33, no. 3, pp. 273–290, 2012.

[149] S. Bhattacharya, R. Ghrist, and V. Kumar, “Persistent homology for path planning in
uncertain environments,” IEEE Transactions on Robotics, vol. 31, no. 3, pp. 578–590,
2015.

[150] M. Farber, Invitation to topological robotics. European Mathematical Society, 2008,
vol. 8.

[151] H. Edelsbrunner and J. Harer, Computational topology: an introduction. American
Mathematical Soc., 2010.

[152] U. Bauer, “Ripser: efficient computation of vietoris-rips persistence barcodes,” arXiv
preprint arXiv:1908.02518, 2019.

170

APPENDIX A: LIST OF PUBLISHED PAPERS

The whole list of published papers, including co-authorship during my PhD career, is

• Sun W, Tang G, Hauser K, “Fast UAV trajectory optimization using bilevel optimiza-

tion with analytical gradients,” T-RO in press.

• Tang G, Sun W, Hauser K, “Enhancing bilevel optimization for uav time-optimal

trajectory using a duality gap approach,” in ICRA 2020.

• Tang G, Hauser K, “A data-driven indirect method for nonlinear optimal control,” in

IROS 2017.

• Tang G, Sun W, Hauser K, “Learning trajectories for real-time optimal control of

quadrotors,” in IROS 2018.

• Tang G, Hauser K, “Discontinuity-sensitive optimal control learning by mixture of

experts,” in ICRA 2019.

• Tang G, Sun W, Hauser K. Time-Optimal Trajectory Generation for Dynamic Vehicles:

A Bilevel Optimization Approach. in IROS 2019.

• Keller B, Draelos M, Tang G, Farsiu S, Kuo AN, Hauser K, Izatt JA. Real-time corneal

segmentation and 3D needle tracking in intrasurgical OCT. Biomedical optics express.

2018 Jun 1;9(6):2716-32.

• Draelos M, Keller B, Tang G, Kuo A, Hauser K, Izatt J. Real-time image-guided

cooperative robotic assist device for deep anterior lamellar keratoplasty. in ICRA

2018.

• Draelos M, Tang G, Keller B, Kuo A, Hauser K, Izatt JA. Optical coherence tomog-

raphy guided robotic needle insertion for deep anterior lamellar keratoplasty. IEEE

Transactions on Biomedical Engineering. 2019.

• Tian Y, Draelos M, Tang G, Qian R, Kuo A, Izatt J, Hauser K. Toward autonomous

robotic micro-suturing using optical coherence tomography calibration and path plan-

ning. in ICRA 2020

• Edwards W, Tang G, Mamakoukas G, Murphey T, Hauser K. Automatic Tuning for

Data-driven Model Predictive Control. in ICRA 2021

171

