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ABSTRACT

Despite decades of efforts, we are still far from eliminating construction safety risks. Re-

cently, computer vision techniques have been applied for construction safety management

on real-world residential and commercial projects; they have shown the potential to funda-

mentally change safety management practices and safety performance measurement. The

most significant breakthroughs of this field have been achieved in the areas of safety prac-

tice observations, incident and safety performance forecasting, and vision-based construction

risk assessment. However, fundamental theoretical and technical challenges have yet to be

addressed in order to achieve the full potential of construction site images and videos for

construction safety.

This dissertation explores methods for automated semantic and spatio–temporal visual

understanding of worker and equipment and how to use them to improve automatic safety

inspections and risk analysis: (1) a new method is developed to improve the breadth and

depth of vision-based safety compliance checking by explicitly classifying worker–tool inter-

actions. A detection model is trained on a newly constructed image dataset for construction

sites, achieving 52.9% mean average precision for 10 object categories and 89.4% average

precision for detecting workers. Using this detector and new dataset, the proposed human-

object interaction recognition model achieved 79.78% precision and 77.64% recall for hard

hat checking; 79.11% precision and 75.29% recall for safety vest checking. The new model

also verifies hand protection for workers when tools are being used with 66.2% precision and

64.86% recall. The proposed model is superior to methods relying on hand-made rules to

recognize interactions or that reason directly on the outputs of object detectors. (2) to sup-

port systems that proactively prevent these accidents, this thesis presents a path prediction

model for workers and equipment. The model leverages the extracted video frames to pre-

dict upcoming worker and equipment motion trajectories on construction sites. Specifically,
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the model takes 2D tracks of workers and equipment from visual data –based on computer

vision methods for detection and tracking– and uses a Long Short-Term Memory (LSTM)

encoder-decoder followed by a Mixture Density Network (MDN) to predict their locations. A

multi-head prediction module is introduced to predict locations at different future times. The

method is validated on an existing dataset TrajNet and a new dataset of 105 high-definition

videos recorded over 30 days from a real-world construction site. On TrajNet dataset the

proposed model significantly outperforms Social LSTM. On the new dataset, the presented

model outperforms conventional time-series models and achieves average localization errors

of 7.30, 12.71 and 24.22 pixels for 10, 20, and 40 future steps, respectively. (3) A new con-

struction worker safety analysis method is introduced that evaluates worker level risk from

site photos and videos. This method evaluates worker state, which is based on workers’ body

pose, their protective equipment use, their interactions with tools and materials, the con-

struction activity being performed, and hazards in the workplace. To estimate worker state,

a visual–based Object–Activity–Keypoint (OAK) recognition model is proposed that take

36.6% less time and 40.1% less memory while keeping comparably performances compared to

a system running individual models for each sub-task. Worker activity recognition is further

improved with a spatio-temporal graph model using recognized per-frame worker activity,

detected bounding boxes of tools and materials, and estimated worker poses. Finally, sever-

ity levels are predicted by a trained classifier on a dataset of images of construction workers

accompanied with ground truth severity level annotations. In the test dataset, the severity

level prediction model achieves 85.7% cross-validation accuracy in a bricklaying task and

86.6% cross–validation accuracy for a plastering task.
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CHAPTER 1: INTRODUCTION

Despite decades of efforts to achieve the “zero-accident” safety vision, construction safety

remains to be a challenging problem today. In the past decade, efforts for improving safety

management practices have not yet met a significant nation-wise safety enhancement in the

United States. According to a report of the Occupational Safety and Health Administration

(OSHA), 1008 fatalities were reported from construction sites in 2018 [1], taking 21.1% of

the total annual workplace fatalities and reaching a new highest point since 2011 ( Fig 1.1).

Unsafe activities, dangerous site conditions, and ergonomic risks result in a large number

of worker fatalities and injuries. The Bureau of Labor Statistics (BLS) [2] reports that,

in 2018 alone, fall through the surface and existing opening causes 60 deaths, exposure to

electricity causes 86 deaths, struck-by or caught-in equipment and objects causes 132 deaths,

and pedestrian struck-by vehicle causes 56 deaths. BLS also reports a growing number of

non-fatal injuries since 2011. Categorized by the source of injuries, in 2018, 16,960 injuries

were caused by parts and materials, 8,240 injuries were caused by powered/non-powered

hand tools, 5,300 injuries were caused by vehicles. When categorized by the part of the

body affected, 11,110 back injuries, 6,640 head injuries, 4,850 foot injuries, and 13,930

hand injuries were reported. The number of construction fatalities and injuries has brought

severe financial impacts to the industry. An early study [3] estimated, on average, one

fatal accident results in a 4 million dollars loss, and per non-fatal accident causes 42,000

dollar loss. Another recent article from Midwest Economic Policy Institute [4] reports, from

2011 to 2016, the average 867.8 annual construction worker fatalities cost the United States

nearly 5 billion dollars in lost production, loss of family income, pain and suffering costs,

and reduced quality of life every year. The tremendous losses in construction companies’

financial well–being and workers’ quality of life calls for future research to identify, assess,

and manage unsafe practices on construction sites. This thesis points out three critical gaps
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Figure 1.1: Construction Workers Total Fatalities from financial year 2010 to 2018

in the practical and theoretical knowledge of current construction safety:

1. Unrecognized hazards and underestimated risks associated with behaviors.

Behavior–based safety programs are the most commonly implemented safety control

on construction sites, whose scopes are protective equipment noncompliance, workers’

exposure to hazardous areas, and failure to follow the safety procedure [5]. Histori-

cal behavior data are used as training materials for toolbox talk and safety courses

[6, 5]. However, such data only represent a small subset of potential scenarios that

unfortunately resulted in injuries [7]. The generalization from this knowledge may

not faithfully reflect all hazard scenarios and their degrees of severity in the future.

Partially because of this, a large portion of hazards is not recognized. Albert et al. [8]

discovers on average only 46% of hazards are recognized by workers in diverse projects.

A study conducted in Australia [9] shows workers failed to recognize 57% of hazards

in the work environment. Haslam et al. [10] analyze 100 individual accidents and find

out 42% of accidents are associated with inadequate hazard recognition skill.

2. Insufficiency of paper–based safety inspections. Safety inspections, in the form

of paper-based checklists, document unsafe conditions, and hazards on construction

sites. Manual safety inspection for a construction site is typically scheduled on a

weekly to monthly basis by a small group of safety engineers in the U.S. Researchers

[11, 12, 13, 14, 15, 16, 17] have considered many bottle–necks faced by the manual

safety inspections: (1) the prolonged checklist-filling time diverts attention paid to
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safety practices; (2) many safety–critical changes are left unrecognized and unreported

between two scheduled safety inspections; (3) the manual inspection processes are

subjective, costly and not comprehensive to avoid biases; (4) an unwelcome focus

on the numbers instead of the content [17]. Besides these practical drawbacks, in a

safety analysis cycle [18] the slow, costly and manual safety inspections also prevents

obtaining timely feedback after corrective actions are made. It ultimately undermines

the efforts to validate factors for systematically site safety improvement [12, 14, 19, 20].

As a consequence, the current safety management often stays as a tactical response to

fatalities and injuries instead of strategical planning to prevent accidents [13].

3. Safety quantification and measurement. Commonly used safety indicators are

based on historical injury data, such as the Incident Rate (IR) and Days-away-from-

Work. While providing long–term safety performance measures and serving as bench-

marks across projects and companies, they are reactive and can only be updated after

accidents happen. For a particular project, they often provide too few data points to

analyze and to proactively predict future accidents [21]. Also, they do not support

continuous learning to further improve safety conditions when no injury occurs in a

project for a long period [22]. Proactive safety measurement techniques, such as con-

struction risk assessment and job hazard analysis, are also costly and labor–intensive

[7].

The key concept to address these gaps is the automation in the perception, the prediction,

and the risk analysis in safety practices [23, 24, 25, 5]. The improved perception technologies

for safety observations allow safety practices, both good or bad, to be timely reported to

the management and cover every safety–critical location in a construction site. Previous

studies have articulated the importance of advancement in the safety sensing technologies

[13, 24, 26, 18, 27] that far more safety non-compliance cases and hazards can be recognized

than the manual approach, and that resolving the recognized cases ultimately renders a

safer work environment. Early forecasting on imminent accidents and near-miss incidents

prevents workers from being harmed and helps construction companies decide on initiatives

that can proactively improve safety and lower their insurance premiums. Risk analyses based
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on manual and automatically recorded data are crucial to building more objective standards

for risk assessment. A reduction in the number of observed safety non-compliance levels and

worker ergonomic risks indicates an improvement of safety [26, 28, 29]. When implemented

at the enterprise–level, automatic risk assessment can also serve as a common benchmark to

compare one project against one another and prioritize safety training on projects [30].

Improving the perception of safety practices is the first and fundamental step towards this

grand vision. To achieve this, it is crucial to make good use of massive and inexpensive

construction site data that are already collected. Recently, a growing volume and types of

visual data have been collected on construction sites. Today, construction sites generate a

significantly great number of visual data [31], about 325,000 images are taken by professional

photographers, 95,400 images by webcams, and 2000 images weekly by the construction

project team at a typical commercial building project about 750,000 squared-feet. The

ground robot, Unmanned Aerial Vehicle (UAV), and laser scanner have been deployed to

automatically collect indoor and outdoor visual data (see Fig. 1.2). These data contain

information regarding construction resources’ appearances, geometries, distances, locations,

activities, and motions history. This information is essential to make safety inspections for

safety rule checking, hazard identification, accident prevention, etc. Some images collected

by the safety team have already been used as visual evidence along with written safety reports

(see example in Fig. 1.3). The recent growth in the number and types of construction site

visual data provides an opportunity to incorporate them to develop new means to understand

site safety conditions. A recent study [18] shows incorporating manually image review is

helpful in a continuous safety management feedback loop.

1.1 Point of Departure

Several commercially available solutions (e.g. AutoDesk BIM 360, SafeSite, Safety-Report)

provide visual data collection features for safety inspections using mobile devices. These

solutions allow site images and videos to be categorized, tagged, and uploaded by workers

and safety inspectors. Any safety observation or comment made by onsite personnel can be

attached along with the uploaded visual data. This adaptation to digitized safety reports
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Figure 1.2: Various forms of visual data and their frequency of capture

Figure 1.3: An example of safety observation report with image evidence. Image credit to
Safety-Reports.
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brings down the granularity of safety update frequency from a monthly to a daily basis.

From a company’s perspective, these solutions provide well–structured safety reports and a

constant influx of safety information that can be stratified at the sub-contractor, project,

and regional levels. Such archive of safety information opens new opportunities for more

efficiently selecting sub-contractors and more accurately conducting accident investigations.

However, this feature still depends on manual tagging and descriptions and does not eco-

nomically solve the fundamental problem of low frequency in safety inspections.

Methods to provide automatic safety inspections rely on computer vision and machine

learning models to process the collected visual data. Integrated solutions have been of-

fered from site data collections to hazard and non-compliance identification. For instance,

SmartVid.io uses object detection and voice recognition to automatically tag images por-

traying over 50 safety–related entities, such as workers, PPE, equipment, and material. The

resulting tags are used for conducting basic PPE compliance checkings, such as housekeep-

ing, fall protection, and PPE compliance. Skycatch, DroneDeploy, and SiteTrax.io provide

image collections from UAV and a broad range of downstream computer vision applications

from surface mapping, object detection, and asset tracking. In the risk assessment field,

worker ergonomic risk assessment is carried out by feeding visually recognized body joint

angles to standard ergonomic severity assessment systems [32, 29, 33].

However, the current computer vision and machine learning methods applied to construc-

tion safety in the existing literature haven’t addressed some fundamental theoretical and

technical problems in automating safety inspections and risk analysis. For example, existing

automatic safety observation tools, powered by deep learning object detection models, of

Smartvid and SiteTrax do not consider workers’ activities and their surrounding work envi-

ronment when conducting PPE compliance checking. Such as knowing the fall arrest systems

are only required if workers operate on elevated surfaces. The hazardous proximity indicator

for collision prediction [26, 13] still passively assess risks by creating buffer zones, it does not

consider the dynamic of moving workers and equipment. Existing visual–based ergonomic

assessment methods don’t consider workers’ activity, their PPE use, their interactions with

tools and materials, and the workplace context as variables in the safety analysis. In addition

to these theoretical limitations, early studies [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] on
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visual–based productivity and safety applications often validate their methods on datasets

with limited size and variance, making the generalization of their methods across projects

challenging.

1.2 Computer Vision Methods Applied and Contributions Made

Applied computer vision and machine learning research for construction safety is a rapidly

evolving topic and researchers closely follow the latest research in the general computer

vision community. However, problem formulation, data collection, and validation procedures

remain to be the main challenges in this domain.

As previously mentioned, localization of construction resources is the fundamental input

required by the majority of construction safety applications, such as for PPE compliance

checking, worker and equipment tracking, and worker pose estimation. Currently, many

localization tasks in the computer vision domain are formulated as object detection that

detects tight bounding boxes around object instances. This dissertation follows this task

design of localizing for its efficiency and simplicity. Based on the classic object detection

task, this dissertation expands the scope of current computer vision-based safety applications

by employing and developing advanced computer vision models that propose for a better

semantic and spatio-temporal understanding of construction resources from site photos and

videos. The developed advanced computer vision models can be directly integrated into

object detection models, or directly taking the output bounding boxes of object detection

models as the input, or reuses intermediate object detection model results. This is achieved

by employing the classic Faster RCNN [45] object detection framework, which naturally

allows multiple types of outputs in addition to bounding boxes to be generated from single

images.

In particular, this dissertation explores the following three major directions that are based

on the classic object detection task, their approaches and contributions are:

i Semantic: the human-object interactions between worker and their PPE and tools

use are modeled and recognized directly from construction site static images. An end-
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to-end computer vision model is proposed that first detects worker, equipment, and

tools, and recognizes workers’ interactions with detected tools and equipment.

ii Spatio-temporal: the motion trajectories of workers and equipment are captured

from site videos. Then a new forecasting model is proposed based on recurrent neural

network formulation and a sequence generation task. The forecasted locations are

checked against pre-defined safety regions to predict fall and collision hazards and

sends notifications to the management.

iii Semantic+Spatio-temporal: a risk analysis method is proposed to predict worker-

level severity levels based on an estimated worker state feature vector consisting of

worker’s activity, worker interactions with tools, equipment, and material, workers’

body pose, and surrounding hazard condition. All components of the worker state

feature vector are generated from a stack of consecutive frames. To generate the per-

frame visual recognition results, a variant of Mask RCNN [46] is used which generates

objects, keypoints, and activity labels at 26 frames per second. To refine per-frame

activity recognition, a spatio-temporal graph model is proposed that takes individual

frames’ object, activity, and keypoint features. A pre-trained model is used to lift 2D

worker pose to 3D.

Despite the recent massive growth of construction site photos and videos, obtaining large-

scale, diverse, and balanced construction datasets is still challenging. As a consequence,

few public released models can be widely deployed on construction sites. The two main

data collection challenges are: first, collections of diverse construction site photos; second,

effective and economical annotation procedures. This is due to the fact that public available

construction site images are scarce, and annotating construction resources requires expert

knowledge, sometimes years of training. This dissertation employs and extends the previous

crowd-sourcing annotation method [47] by breaking down complex annotation tasks into well-

defined steps and using the combination of crowd-sourced annotators and in-house expert

annotators. This dissertation also demonstrates obtaining online construction site photos

using web–crawling techniques. The datasets presented in this dissertation are the largest

and the most diverse in their own tasks compared to the existing publicly available datasets.

8



The constructed image datasets are used to verify and validate the proposed models: (i) the

human-object interactions recognition model is first verified in a new construction site image

dataset with abundant object and interaction annotations. The best model is validated on

retrieving PPE non-compliant workers from the existing image repository and outperforms

alternative strategies using detected bounding boxes; (ii) the proposed motion trajectory

forecasting model is verified in a newly constructed construction worker and equipment long-

term trajectory dataset. The proposed forecasting model also outperforms previous generic

trajectory forecasting models on a short-term trajectory dataset collected on a university

campus and streets. The proximity hazard prediction application is validated in a real–

world construction site and demonstrated good potential in helping safety managers to

identify workers crossing excavation area events; (iii) The proposed computer vision models

to generate worker state vectors are verified in a newly constructed single worker video

dataset recording plastering and bricklaying operations. The proposed risk analysis method

is validated on a set of construction image dataset and ground-truth human annotations

on single worker severity levels. The full worker state is shown to be more informative to

predicting frame-wise worker severity level, compared to an alternative approach predicting

severity levels using an image classifier.

The next section describes the research objectives and discusses their significance. The

rest of the chapters are organized as in the following order: Chapter 3 presents and validates

a novel method to recognize worker-equipment interactions for PPE compliance checking;

chapter 4 presents and validates a novel method to forecast the worker and equipment mo-

tion trajectory; chapter 5 present a novel machine learning–based worker level risk analysis

method that leverages worker activity, worker pose, their PPE use, their interactions with

tools and materials, and the workplace context. Each chapter provides the background, the

introduction of the problem, the methodology, and the evaluation process.

1.3 Research Objectives

The overarching goal of this dissertation is to improve PPE compliance checking, forecast

unsafe conditions, and behaviors, and enhance worker–level risk analysis using existing im-
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age and video data collected from construction sites. This is done by researching semantic

and spatio-temporal visual understanding of construction site images and videos. This over-

arching goal is achieved with the following research objectives:

Objective 1:

Create and validate a crow-sourced method to build construction image datasets based on

construction safety knowledge and existing construction visual data.

Research Questions:

(1)What are the similar language structures of safety rules? (2) What kind of construction

resources and their relations can be visually detected by computer vision models? (3) can

we use train non-experts in construction and teach them to apply safety rules and annotate

on construction images? (4) How do we validate their annotations?

Significance:

It is challenging to build large–scale construction dataset. Our research is one of the

first attempts to analyze semantic components of construction safety rules and annotate

their visual correspondences using a crowd-sourced approach. The safety rule parsing and

crowd-sourced method are the key components to identify safety checking items that can be

automated by computer vision and machine learning models.

Objective 2:

Create and validate a computer vision method to improve visual-based PPE compliance

checking concerning workers’ interactions with the tools and equipment.

Research Questions:

(1) How are visual-based PPE compliance checking results used to improve safety inspec-

tion? (2) How can we assess the severity of PPE non-compliance under various working

scenarios? (3) Can we make visual PPE compliance checking and severity assessment robust

under cluttered scenes and computationally efficient? (4) can we discover the interactions

of construction resources from safety regulations and automatically recognize their visual

correspondence.

Significance:

Since visual-based PPE compliance checking is a well-recognized computer vision appli-

cation for construction safety. Making it more robust to real-world data and being able
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to assess the severity of PPE incompliance further cuts down the time for reviewing and

validating safety reports. It also makes it possible to establish a common benchmark at the

enterprise level to compare PPE compliance performance across projects.

Objective 3:

Create and validate a machine learning method to forecast worker and equipment motion

trajectories for hazardous proximity indicators.

Research Questions:

(1) What is missing in the location-based proximity hazard indicator? (2) Can we make

it more proactive by predicting the motion trajectories of moving workers and equipment?

(3) Can we make the predictions with respect to the context information?

Significance:

Proactive proximity hazard identification and accident prevention is an appealing idea to

save lives and cut down the cost. Struck-by prevention and too-close near-miss reporting are

not yet fully proactive without considering the dynamic of moving workers and equipment.

Objective 4:

Create and validate computer vision models for jointly recognizing workers’ activity, their

body pose, their PPE use, and their interactions with tools and materials.

Research Questions:

(1) The worker activity, their tools use, and worker body pose can be closely related, can we

perform these three different tasks simultaneously through optimizing model architecture?

(2) Can we design the model in a way that tasks can provide contextual information to

each other? (3) How can we use model outputs to describe safety–critical information of a

worker?

Significance:

Visual–based worker activity recognition, PPE and tools detection, and worker pose es-

timation are conventionally treated as different tasks performed by very different models.

their unification under a general model framework has not been explored. Despite that they

are closely related, their mutual information is not used for improving the performances of

individual tasks.

Objective 5:
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Create and validate a machine learning–based approach for worker–level risk analysis using

visually recognized work information as input.

Research Questions:

(1)How to formulate risk scores for a worker at a given time step in terms of probability and

severity of the worker’s status? (2) Can a worker’s severity level displayed in a single image

being evaluated consistently among safety practitioners? (3) Can we predict human–rated

worker level severity levels with the visually recognized worker information?

Significance:

Worker risk analysis is often explored in the context of proximity and ergonomic health.

Seldom effort is made on investigating comprehensive information of workers’ status, in-

cluding their activity, their body pose, their PPE use, tools, and material use, as well as

the workplace context can be used to predict worker severity level. On the other hand,

visual–based PPE compliance tools haven’t considered risk severity level. This research au-

tomatically collects workers’ status and exam how they can be informative in predicting

human assessment on severity level.
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CHAPTER 2: HUMAN-OBJECT INTERACTION
RECOGNITION FOR AUTOMATIC CONSTRUCTION SITE

SAFETY INSPECTION1

2.1 Introduction

Safety inspections on construction sites are a vital part of any company’s injury prevention

efforts. Despite the improvement in safety education and practices, the ever-growing desire

for higher productivity is negatively impacting safety on construction sites [8]. For example,

in the United States, around 20% of fatal injuries occur on construction sites [1], while

construction workers make up less than 10% of the total workforce [2]. Noncompliance

with proper protection and incorrect use of tools often result in environmental harm, object

contact, and body part injuries. In 2017 alone, 145 fatalities were due to exposure to harmful

substances or environments, and another 133 fatalities were caused by contact with objects

and equipment [1]. In addition, in 2017, the U.S. Bureau of Labor Statistics (BLS) reported

8,280 injuries caused by powered or non-powered hand tools, 6,560 head injuries, 4,850 foot

injuries, and 13,530 hand injuries [48]. Ensuring that workers wear safety gear and use tools

correctly makes a difference. The financial losses due to accidents on construction sites are

substantial, often around billions of dollars every year. According to a previous study [3],

the average total cost of a fatal accident is $4 million and that of non-fatal accident is above

$42,000 (values in 2002 dollars).

Timely, effective, and accurate safety inspections are essential for evaluating and improving

construction safety. Safety inspections are typically performed by manual observers who

produce biweekly or monthly written reports. The frequency at which this process is carried

out does not allow hazards to be recognized and eliminated swiftly. Furthermore, text-based

written safety reports often do not describe safety hazards at a sufficient level of detail [23].

To bridge these two gaps in practice, efforts need to be made on automatically conducting

1This chapter in whole or in part is published in the Automation in Construction journal.
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safety inspections on massive amounts of data that is rich in details and easily comprehended

by humans. Visual data from construction sites is a viable candidate for this purpose. Today,

construction sites generate hundreds to thousands of photos and videos on a daily basis [31].

However, the majority of visual data is underutilized or used for progress tracking and as-

built documentation purposes [23, 25]. Researchers have been investigating use of computer

vision methods on construction visual data. As generic computer vision methods [49, 50, 46]

become more potent and accessible, a new opportunity arises to incorporate the massive

and unmanageable amount of construction site visual data. One example is to complement

today’s safety inspection and documentation practices [25]. Photos are already taken on job

sites on a daily basis, particularly when they are pooled from document management systems.

Hence, automatically checking safety compliance from site photos increases frequency of

site safety inspections. This procedure is particularly valuable if project teams are under-

staffed. The effectiveness of such a procedure has already been demonstrated by recent

commercial solutions. For example, SmartVid’s artificial intelligence (AI) engine, which has

been successfully applied to more than 1000 projects, detects hard hat, gloves, and safety

vests for worker safety. Identified potential safety compliance issues are tagged and sent

to safety managers for review and further comment. Corrections or manual annotations

also help improve completeness and accuracy of data for future machine learning training

and development purposes. When used at the enterprise level, such automated solutions

help companies benchmark their projects against one another and prioritize safety training

on projects. Comparing incident rates recorded via these systems against average industry

numbers also helps construction companies decide on initiatives that can proactively improve

safety and lower their insurance premiums.

Research on applying computer vision for safety inspection is still at an early stage

[34, 35, 36, 37, 38, 39, 51, 32]. Many methods are not tested for robustness to occlusion,

variation in object size and appearance, and differences in construction scenes [39, 51, 32].

Vision-based worker and equipment safety proximity checking methods often convert ob-

jects’ 2D locations to 3D by camera calibration or monocular depth estimation [52]. Activity

recognition from temporal data has also been investigated for safety applications. Previous

researches on recognizing single worker and equipment’s activity assume a few types of ac-
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tions are performed during limited temporal intervals [40, 41, 42, 43, 44, 53]. Group and

multi-agent activity recognition for construction often leverage the spatial relations between

workers and equipment. Cai et al. [54] apply hand-made spatial cues, such as head pose

and body orientation, to recognize groups of workers and equipment and then classify group

activity. Kim et al. [55] improve individual’s activity recognition by designing rule-based

post-processing that leverages interacting excavators and dump trucks’ object type, recon-

structed 3D locations, and individual actions. Similarly, complex safety inspection tasks,

such as fall protection, can not be handled easily only using detector outputs [56]. Exist-

ing safety gear compliance checking methods, including SmartVid’s AI engine, often rely

on rule-based post-processing. For example, checking hardhat compliance by determining

whether the hard hat box overlaps with the uppermost part of the worker box [39] will fail

if the worker is not in an up-right posture. In this paper, the authors expand on this further

by learning to recognize workers’ interactions in static 2D images, as opposed to recognizing

them using hand-made rules on detected construction objects. To learn the interactions,

one needs a uniform and scalable interaction representation. Tang and Golparvar-Fard [57]

present a framework to correlate construction objects with linguistic constraints in site im-

ages. This framework is extracted from textual safety rules and is associated with their visual

correspondences in site images. However, Tang and Golparvar-Fard [57] only provide early

examples of these correlations, and different interactions were not formalized in a consistent

manner. The absence of representations that are both structured and formal impedes data

annotation and learning tasks. In this article, the authors build on Tang and Golparvar-

Fard [57] and formalize interactions in a uniform structure as presented in human-object

interactions (HOIs).

Many safety checking tasks can be formulated as HOI recognition. In a job hazard anal-

ysis, individual steps of a job are often described by action verbs or action phrases, such as

“holding tools”, “using grinders”, and “climbing ladders”. Potential hazards are associated

with each step, and control measures are suggested. Similarly, the severity of hazards rec-

ognized from images can be more accurately evaluated by recognizing workers’ interactions

with the tools and the equipment. For instance, not wearing a face shield is not necessarily

a noncompliance when the worker is not using a tool that produces sparks, heat, or strong
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light; not wearing hand protection while using tools is more critical than not wearing hand

protection in the office trailer. Based on these observations, the authors propose a learned

HOI model which improves the performance of existing vision-based safety checking meth-

ods and prevents false alarms. The authors argue that such a model not only improves

existing safety gear compliance checking tasks, but also highlights critical noncompliance

incidents. The authors present a number of experiments to validate their claims. First, the

proposed HOI recognition model is compared and validated with a previous HOI method

and a rule-based method. The method is more effective at retrieving actual interaction in-

stances. Second, to demonstrate safety gear compliance checking, the proposed HOI model

is compared with alternative checking strategies, such as using a rule-based HOI method

and using object detection alone. For checking hard hat and safety coloring compliance,

the model achieves better precision and recall compared to the rule-based method. For

checking hand protection compliance while using tools, the HOI formulation outputs sig-

nificantly fewer false positives than when object detection is applied alone. Also for this

example, the proposed HOI model achieves better precision and recall compared with the

rule-based alternative. These experiment results suggest a learned HOI model has practical

value and improves existing vision-based safety checking methods. The authors will discuss

these in greater detail in the Experiment Results and Discussions section. Figure 2.1 shows

an example of the model output. The authors also introduce an approach for collecting and

annotating construction images to build a new dataset upon which the proposed HOI models

are trained and validated.
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Worker 1 and 3 are standing on a scaffolding, 

are they wearing harnesses?                      No

Worker 2 is not standing on the scaffolding, is 

he/she wearing a hard hat ?                       Yes

Figure 2.1: Example of HOI model output. (Left) The input image. (Middle) The object
detector branch recognizes all targeted construction resource instances. (Right) The HOI
branch recognizes interactions between detected object instances. Once objects and HOIs
are recognized, fall protection safety questions such as “Are worker 1 and worker 3 having
personal fall arrest systems?” and “Is worker 2 wearing a hard hat?” can be answered
directly using model outputs. Best viewed in color and high definition.

2.2 Related Work

Researchers on vision-based construction safety checking have been intensively investigating

how to recognize various construction resources from construction visual data. The major-

ity of previous work utilizes vision-based object detection methods to recognize and localize

construction resources. In this section, the authors first review previous work on improve-

ments on object detection and on the application of object detection to construction. Next,

as the authors propose learning an HOI recognition model on object detection results for

vision-based compliance checking, a review of existing vision-based HOI recognition meth-

ods is provided. The authors also introduce the closely related concept of “Scene Graphs”,

which can be used to integrate interaction instances into a semantically rich description of

an image.
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2.2.1 Recognizing Construction Resources for Construction Safety

Computer vision has been applied to construction safety in the context of recognizing and lo-

calizing construction resources such as workers, trucks, and excavators [34, 58, 36]. Detection

of construction materials [59, 60], however, is often used to help progress monitoring. Re-

searchers have proposed various representations to capture object locations in construction

site images. Motion [58, 34], geometry [61], and appearance cues have been used to generate

“object proposals” in the detection pipeline. These object proposals are described by vari-

ous types of features, such as Histograms of Oriented Gradients and Hue-Saturation-Value

color histograms [36]. Discriminative classifiers such as Support Vector Machines are used

to categorize these object proposals as belonging to one of several target object categories.

Since 2015, major progress on the traditional two-stage “propose-then-classify” approach

has greatly improved object detection models’ accuracy and speed (e.g. FastRCNN [62],

FasterRCNN [45], and MaskRCNN [46]). FasterRCNN, for example, takes an image as

the input and detects objects by generating and then classifying object proposals in a sin-

gle forward pass of the model. The object proposals can be reused for other tasks, such as

generating the object instance segmentation masks in the detected bounding box or estimat-

ing person body keypoints from a detected person box. These tasks (object classification,

instance segmentation, and keypoint estimation) can be regarded as running in parallel.

MaskRCNN [46] is an example of this parallelism design. In MaskRCNN, both object classi-

fication and instance segmentation are built on top of proposed object bounding box regions.

Region Proposal Network (RPN) [45] generates a set of proposal bounding boxes using the

convolutional image features. Regional features of bounding boxes are extracted by Region

of Interest Pooling (RoIPool), also from the convolutional image features. RoIPool evenly

divides each box-shape region into cells such that regional features of all boxes will have

equal dimensions. For each cell, RoIPool quantizes the image features covered by that cell’s

coordinates, then selects the max value as the representative value for this cell. MaskRCNN

introduced an enhanced version of RoIPool called RoIAlign. For each cell, RoIAlign bilin-

early interpolates the image features covered by that cell and obtains feature values at the

center of that cell. This improves alignment between the box regions and regional feature
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values. For more details on RoIAlign, readers are encouraged to look into He et al. [46]. In

this paper, the authors adhere to this parallelism design and build a sub-module network on

top of FasterRCNN to recognize HOIs. This design enables a fast and integrated model to

detect construction resources and recognize HOI between workers and tools/equipment.

The deep learning-based object detectors [63, 49, 45] often perform well with abundant

training data. However, the construction-specific datasets used in recent work [64, 65, 66,

57, 56] are much smaller than generic object detection datasets [67, 68]. Despite this, deep

learning-based object detectors still achieve comparable results to traditional object detec-

tors. This is because the previous construction object detection datasets often consist of a

few construction sites, small in the number of objects in the image, and lack intra-class vari-

ance of the objects within the same class. The authors present a new dataset that spans a

larger number of construction sites. The authors also present construction resources bound-

ing box annotations with higher intra-class variations in order to examine modern object

detectors for more diverse and realistic construction situations.

Action recognition using ordinary images in the construction focuses on workers and ex-

cavators. Researchers investigate part-based keypoint features of a single object [61, 40] and

visual appearance of a single object [47] to recognize its actions. The recognized actions are

primarily used for productivity monitoring. On the other hand, automatic safety inspection

from ordinary images often does not take actions into account. Modeling and recognizing

interaction of workers with their environment and resources from site images, which is vital

from a safety perspective, is a heavily underdeveloped area of research. Work that lever-

ages actions for safety monitoring has thus far been conducted with rule-based approaches

[35, 39, 42]. Luo et al. [65] apply rule-based method to recognize construction activities.

They presented a predefined score matrix called Relevancy Network which is applied on

the detected instances. By leveraging predefined semantic relations and spatial distances

of detected objects, the most likely activity is determined. While the Relevancy Network

performs well on the tested job site, it can not be directly applied to a different site, as the

spatial layouts of detected objects might be completely changed.
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2.2.2 HOI Recognition and Scene Graph

An HOI instance is often expressed in triplet form < Subject − Predicate − Object >. To

recognize an HOI instance, the model needs to simultaneously localize both subject and

object and predicting the interaction between them. Prior work on HOI recognition relies

on hand-crafted features. Gupta et al. [69] classify interactions using spatial and functional

constraints such as typical locations of human pose and manipulative objects; Yao et al. [70]

define graph connections of objects and body parts and then apply a conditional random

field on object detection and human pose estimation outputs; Prest et al. localize and track

objects over time with respect to person locations [71]. In contrast, recent research on HOI

recognition [72, 73, 74] explores the rich bounding box regional features from RoIPool and

combines object detection and HOI recognition in a single model that is trained in an end-

to-end fashion. The proposed HOI recognition model is inspired by these works. However,

generic HOI studies focus on classifying the right interaction class of an object pair from

multiple likely answers, e.g., holding, riding, and sitting between a person and a bike. In

this paper, the proposed HOI recognition model is designed to search and determine whether

certain interactions are present. This is a reasonable simplification because often the key

interaction between worker and a type of construction object is required for identifying

safety compliance issues. Xiong et al. [75] present a recent effort on learning to recognize

workers’ interactions for hazard identification. They model relations between two objects on

construction sites with a conditional random field. Xiong et al. also treat visual relations

as triplet forms and hazards as certain relations between a pair of objects. They provide

early explorations of the concept. There are few key differences between Xiong et al. and

this paper. First, in this paper, extensive experiments on different models are conducted.

Multiple safety inspection tasks are thoroughly examined to validate the proposed HOI

models against alternative vision-based strategies. These verification significantly extend the

exploration by Xiong et al. Second, as proven in [72, 73, 74], exploring all potential object

pairs can be effectively conducted. Third, a newly constructed large dataset is presented in

this paper, as well as the detailed description of dataset construction.

Because triplet form has simple formulation and carries rich semantic information( e.g.,
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time, the location, and logical order of events), triplet form offers an advantage and con-

venience in formulating many scene understanding tasks. For instance, HOI recognition is

treated as an intermediate step to scene graph generation [76, 77], which captures a global

snapshot of all objects’ relations to each other in the scene using a directed graph. Scene

graphs can also be constructed from visual relations as shown in [75]. In the last section,

the authors will explain how scene graphs can be used for safety education.

2.3 Approach for Building an HOI Dataset for Construction

Safety

While image datasets exist for workers, and many safety gear detection, an HOI dataset

for construction sites is not presented in previous literature. In addition, existing object

detection datasets for construction are often collected from a few construction sites and

are accompanied by a small number of ground truth annotations. Models trained on these

datasets often do not generalize well on other sites. To validate the proposed HOI model,

this section describes the authors’ approach for constructing a more diverse and safety-

relevant object detection dataset and subsequently the first HOI dataset for construction.

Inspired by a similar dataset building procedures [74], the authors conduct the following

steps. First, a selection of safety rules is used to identify the set of construction objects and

HOI classes. These keywords are used to find relevant images from public resources. Second,

a crowd-sourced approach is used to annotate objects of the targeted classes. This approach

consists of three parts: annotator qualification, annotation quality control, and annotation

post-assessment. Third, a similar approach is used for HOI annotation. HOI annotators are

asked to link previously annotated boxes given the interaction specified. All HOI data are

post-assessed and validated. In the following section, the authors will introduce the HOI

dataset building procedure in greater detail.
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2.3.1 Defining the Scope of Safety Inspection Tasks

The same safety rule collection presented by Tang and Golparvar-Fard [57] is used here. It

reviews over 1,000 generic safety rules covering various safety aspects, such as the general

work environment, safety gear, elevated surfaces, and contamination control, etc. Tang and

Golparvar-Fard [57] select safety rules that can be checked from visual appearance. For

each selected safety rule, linguistic entities such as “worker”, “wearing”, and “hardhat” are

manually parsed to linguistic semantic role labels: a single “Agent”, a single “Verb”, and

zero to multiple “Theme”s. However, these semantic role labels are not necessarily triplets.

In this work, they are further selected and parsed. When the semantic role “Agent” is

realized by workers, the “Agent” role is treated as the Subject. Each tool and equipment

realizing semantic role “Theme” is treated as an Object. A “Verb” or phrase derived from

“Verb” (e.g., “wearing” and “standing on”) is treated as the Predicate between each pair

of Subject and Object. In terms of the Cognitive Reliability and Error Analysis Method

(CREAM) [78], this triplet formulation captures human errors related to error mode Object.

It recognizes human errors by recognizing workers not interacting with the right objects

when conducting activities; for instance, a worker standing on scaffolding but not wearing a

fall arrest system, or a worker using a power tool but not wearing eye protection. Table 2.1

shows examples of safety rules and their primary HOIs.

The refined safety rule collection identifies 22 types of construction resources to be anno-

tated; the authors list the definitions of these construction resources in Sec. 2.3.4. Ideally,

all 22 classes should be included in the HOI experiments. Nevertheless, the authors discover

visual correspondences for some of the HOI classes that are extremely rare in the currently

available public databases. Examples include “workers-standing on-guardrail” or “worker-

riding on-vehicle”. Therefore, the authors report HOI recognition results only for three

interactions and 10 construction resources (see Table 2.2 and Table 2.6 accordingly), as by

themselves these categories provide an abundant number of HOI instances for evaluations.
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Table 2.1: Examples of Selected Safety Rules and Their Primary HOIs

Safety Rules Primary HOIs

Is appropriate foot protection required where

there is the risk of foot injuries from hot, cor-

rosive, poisonous substances, falling objects,

crushing or penetrating actions?

worker-using-hand tool

worker-using-power tool

worker-wearing-foot protection

Are appropriate safety glasses, face shields,

and similar equipment used while using hand

tools or equipment that might produce flying

materials or be subject to breakage?

worker-using-hand tool

worker-wearing-eye protection

worker-wearing-face protection

Are goggles or face shields always worn when

grinding?

worker-wearing-eye protection

worker-using-power tool
Is approved respiratory equipment provided

and used when appropriate during spraying

operations?

worker-wearing-respiratory equip-

ment

Are welders and other workers nearby pro-

vided with flash shields during welding opera-

tions?

worker-wearing-face protection

worker-using-power tool
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Table 2.2: HOI Predicate Definitions

Predicates Definition

standing on Workers supported by elevated surfaces against grav-

ity. Include worker standing, sitting, and climbing on

scaffolding planks, bracing, pipe.

using Instances that show workers using hand and power tools

in any intermediate stage of a construction activity.

Carrying the tools on the waist belt and holding the

tools during transportation or being idle are not con-

sidered as using. This criteria is checked by examining

workers’ body poses and surrounding context.

wearing Workers wearing protective equipment (e.g., hard hat,

hand protection, ear protection) as a means to protect

body parts from sources of injury, e.g., sound, light,

physical impact, heat, chemical, dust.

24



2.3.2 Image Collection

The authors design a guideline for image data collection that is inspired by Lin et al. [67].

Open image resources are explored, and construction site images are crawled, then manually

selected. Such selection aims to collect images of high data variety in order to reflect real-

world scenarios. The authors use a web-crawling tool with the construction safety HOI class

and object categories as keywords to retrieve images from Flickr and Google Images, and

also they extensively searched on ImageNet.

Flickr. The authors use the group id and tags mode Flickr APIs to retrieve images from

construction-related user image groups. As of September 2017, the largest group had col-

lected over 38,900 construction site images. Flickr also allows searches through image tags.

By setting tag mode to “ANY” and “ALL”, images whose user-defined tags match any or

all search keywords will be returned. The authors use object names and their synonyms

in “ANY” mode for each search and use “ALL” mode to search tuple < subject, object >

pattern tags (e.g. “worker, hard hat”). The max number of the image returned is set as

10000 for each search.

Google Images. HOI triplets (e.g., “worker climbing ladder”) are used to crawl images on

Google Image. Also, the prefix “construction” is added on each search to resolve ambiguous

terms. The maximum number of images returned is set to 10,000 for each search.

ImageNet. ImageNet [79] is a large dataset of images depicting a broad variety of objects,

of which only a portion are construction-specific. The authors manually selected images

from the following ImageNet entries: “repairman”, “structure”, “scaffolding”, “hard hat”,

“scaling ladder”. In total, 1,170 images were selected from the ImageNet dataset.

Unsuitable Images. A few rounds of reviews are conducted to select final candidate images.

The goal for review is to select realistic images as taken from real-world construction sites.

The most desired images depict construction workers in non-frontal/non-iconic views [67]

and with a substantial amount of construction site environment context. Five common

unsuitable properties are identified; one unsuitable image often has one or more of these

properties. (see Fig. 2.2). Unsuitable images are removed because they are unrealistically

rendered or with limited visibility.
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Figure 2.2: Examples of unsuitable images returned by a web crawler. First column:
incorrect exposure; second column: non-construction content; third column:
non-realistic content; fourth column: lack construction background; fifth column:
panorama.

a. Incorrect Exposure. Images that are either overexposed or underexposed provides

poor information of construction sites and objects. Silhouettes, common in Flickr

images, also fall into this category.

b. Irrelevant Content. Despite search among specific user groups or adding prefixes

to search terms, a lot of irrelevant images are returned from the crawler, especially in

Google Image search.

c. Nonrealistic Content. This differs from Irrelevant Content, as images depict con-

struction scenes or objects that are not reflective of real-world scenarios, such as car-

toons or computer-rendered images.

d. Lack of Background. Crawling on Google Image returns many construction images

of objects backdropped against a white background. These images are not included,

as they do not show objects in their natural context. Artificial background introduces

unnecessary data biases that do not appear in the real world.

e. Panorama/Fisheye Images Objects are often heavily distorted in these images.

They are unsuitable because the appearance and geometry of objects in these images

often do not agree with those of the majority of construction daily photos.
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2.3.3 Image Annotation

Annotating a large and diverse image collection is challenging. An hourly paid small group

of annotators with construction knowledge can provide reliable annotations, though the

annotation process is likely to be slow. Crowd-sourcing annotations distributes tasks across

many more annotators, and each annotator gets paid by the number of tasks completed. This

approach allows for rapid and cost-effective completion of tasks but requires a significant

amount of quality control. In this paper, the authors use the crowd-sourcing platforms and

design verification methods to obtain highly confident annotations for both object instances

and HOI instances.

Object Annotations. A crowd-sourced data annotation team is hired to annotate each

of 22 construction objects in the final candidate image set. To train the annotators, first

the authors provide generic but also distinctive definitions for each object class (Table2.3).

The edge cases for each object class are articulated with three to five positive and negative

instances (e.g., sunglasses are not an eye protection ). A subset of 207 fully annotated images

is provided to the annotation team as examples of annotations of sufficient quality. Another

200 images are annotated by the authors as the golden set; these images, rather than their

annotations, are also sent to the annotation team.

The authors here describe the object annotation quality control procedure similar to Liu

and Golparvar-Fard [47]. It involves three major steps: (1) qualification of annotators

based on their performance on a small portion of the pre-annotated data; (2) a quality

control process based on comparing submitted and ground truth annotations on the golden

set images, which are randomly inserted in the annotation tasks; (3) a post-assessment

phase, which collects and leverages multiple annotators’ answers using majority voting, this

generates the final annotations for each image. The Annotations for all images are accepted

only if the performance on the golden set satisfied the desired threshold. The readers are

encouraged to look into Liu and Golparvar-Fard [47] for detailed explanations. This stage

took less than a week to complete; examples of annotated object instances is shown in

Fig. 2.3. Table 2.3 and 2.4 shows the object classes and their statistics.

HOI Annotations. The HOI annotations are conducted on Amazon Mechanical Turk
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Figure 2.3: Bounding box examples of construction resource instances. Each blue box
contains a single worker; red boxes contain instances of other object categories that a
worker might interact with.

(AMT) because this task uses only a subset of annotated objects, i.e., workers, safety gears,

tools, and scaffolding. Linking bounding boxes is also easier compared to the previous object

annotation task. The annotation interfaces that were used to create the HICO-DET [74] are

adapted and modified. Our HOI annotation pipeline includes an annotation interface and a

review interface (see Figure 2.4). In the annotation interface, every AMT worker is assigned

to a Human Intelligence Task (HIT) to finish one to six HOI annotation jobs given an image

and drawn bounding boxes. For each job, only one HOI class and all boxes of relevant objects

are displayed, e.g., if construction workers and hand protections are displayed, AMT workers

are asked to annotate all “wearing” interaction instances. The annotation procedure is shown

in Figure 2.5. AMT workers’ annotations are reviewed offline, and a HIT is approved only

when all its constituent tasks are approved.

The authors do not use a golden set of HOI instances here, as this task is simpler com-

pared to object annotation in the previous round. Missing and incorrectly annotated HOI

instances are rectified after annotator-reviewer communication via AMT. Annotators sub-
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mitting random results are quickly identified and rejected by human reviewers. In total, 78

AMT workers participated in the HOI labeling. On average, each AMT worker completed

50.02 HITs, though only 18 AMT workers completed over 50 HITs. The HOI labeling took

around 60 man-hours in total with an average per-image completion time of 52.11 seconds.

The entire review process took one proficient reviewer around 20 man-hours with an aver-

age approval rate of 86.05%. These statistics imply that labeling HOIs for the construction

site can be conducted by non-expert annotators with satisfactory approval rate, the major

bottleneck of this process being the number of proficient reviewers. This HOI annotation

stage was finished within two days.

2.3.4 Dataset Statistics

Twenty-two construction object categories from 32 safety rules (examples can be found

in Sec. 2.3.1) were annotated. The web-crawling from three online sources returns 14,253

images. 4,565 images were selected as the final candidates and then annotated. In total,

37,735 object instances were returned. Box size distribution (see Table2.4) in the dataset

is close to that of Microsoft Common Objects in Context (MS-COCO), in the proposed

dataset the proportion of small, medium, large boxes take 42.63%, 32.88%, and 24.49% ,

while in MS-COCO they are 41%, 34%, and 24%, respectively. Small boxes have areas less

than 32-by-32 pixels, large boxes have areas greater than 96-by-96 pixels. Object detectors

are expected to have similar performance on these two datasets under MS-COCO standard

object detection evaluation metrics. The proposed dataset contains more annotated workers

than the dataset introduced by Luo et al. (2018) [65]. On average, there are 2.29 workers

per image in the presented dataset, and only 0.38 worker in that of Luo et al. Over 22,000

instances of safety gear are annotated in the presented dataset. The ratio between annotated

worker and safety gear is nearly 1:2.2, this gives a rich context to detect interactions between

workers and safety gear. Table 2.5 is a comparison of object statistics in the proposed dataset

with construction datasets from previous work. Using 3,311 images, the authors obtained

13,479 highly confident HOI annotations; their distribution is shown in Table 2.6.

The dataset for object detection is split into training and testing sets by the 80/20 conven-
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(a) HOI annotation interface

(b) HOI review interface

Figure 2.4: HOI AMT interfaces. (a) HOI annotation interface. The AMT worker links
box pairs that satisfy the displayed HOI class. If no such HOI instance can be identified,
the AMT worker can check the No interaction visible box. After finishing all HOI class,
the worker is requested to submit the HIT; (b) Review interface. Reviewers can browse
all HITs submitted by AMT workers. In the left two columns, blue means not reviewed
yet, green means HIT or worker accepted, and red means HIT rejected.
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(a) (b)

(c) (d)

Figure 2.5: An example of “worker-wearing-hard hat” instance annotated using the
presented AMT HOI annotation interface. (a) find/click on the worker box to select a
worker. (b) drag the mouse to the top of the corresponding hardhat detection box. (c)
release mouse when the “arrow” links the two detection boxes and when the annotation of
“worker-wearing-har dhat” instance is complete. (d) repeating steps a to c until all workers
are associated with the hard hats they are wearing.
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Table 2.3: Object Class Definition and Note for Annotating HOI Dataset

Cat. Name Definition If in HOI dataset

Worker Worker All labors. Included

Safety
Gear

Hard hat Type I and type II hard hats of
classes G, E and C

Included

Foot Protection Leather boots and rubber boots Included
Safety Coloring High visualization color safety

vests or uniforms
Included

Hand Protection Cotton, leather and insulated
gloves

Included

Eye Protection Safety glasses, goggles, and weld
goggles

Included

Fall Arrest System Body harness and connector Included
Ear Protection Ear muffs Few wearing instances
Face Protection Face shields and flash shields Included
Respiratory Equip. Respirators and dust masks Included

Tools
Hand Tool Hammers, concrete floats, shovels

and hack saws
Included

Power Tool Grinders, welders, drills, round
saws and breakers

Included

Ladder Metal and wooden scale ladders No three points of con-
tact violations

Compressed Air Nail guns, jackhammers and
sandblasters

No interactions

Vehicle

Lifting Equip. Scissor lift and suspended scaffold No standing on rail in-
teractions

Other Vehicle Mobile cranes, trucks, pickup
trucks and cars

Few driving and no
riding instances

Excavator Crawler excavators Few driving and no
riding instances

Backhoe Loader Side shift and center pivot back-
hoe loaders

Few driving and near
identical

Fueling Tank Fuel tanks, fuel trailers and fuel
trucks

No interaction

Others

Scaffolding Steel, patented, single and kwik-
stage scaffold

Included

Guardrail Fixed barriers with top rails and
midrails

No standing on inter-
action

Concrete Paste Concrete paste for flatwork No interactions
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Table 2.4: Full Object Instance Distribution

Name All Small Medium Large

Worker 10492 1397 4205 4890

Hardhat 6751 4706 1861 184

Foot Protection 6240 4757 1441 1088

Safety Coloring 3942 1079 1775 1088

Hand Protection 3542 2620 878 44

Hand Tool 1253 461 570 222

Other Vehicle 1008 36 204 768

Eye Protection 681 523 150 8

Ladder 621 62 263 296

Fall Arrest System 608 111 336 161

Power Tool 492 106 254 132

Scaffolding 419 0 12 407

Excavator 384 16 65 303

Lifting Equipment 258 6 48 204

Guardrail 255 19 73 163

Concrete Paste 200 5 38 157

Ear Protection 150 84 59 7

Face Protection 121 40 64 17

Backhoe Loader 96 4 17 75

Compressed Air Tool 96 17 46 33

Respiratory Equipment 87 35 39 13

Fueling Tank 39 4 12 23
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Table 2.5: Construction Site Object Detection Dataset Comparison

Dataset Images Classes Instances

Chi et al. [34] 750 3 1282

Memarzadeh et al. [36] 7508 3 7508

Azar et al. [37] 6070 1 6070

Park et al. [39] 3320 2 6402

Kim et al. [64] <3000 5 2920

Luo et al. [65] 7790 22 13984

This paper 4565 22 37735

tion. The HOI recognition train and test splits are subsets of the object detection train and

test splits. A total of 3,652 images (30,277 object instances) were used for object detection

training, and 913 images (7458 object instances) were used for testing. For HOI recognition,

the training set contains 2,657 (80.2%) images and 10,815 HOI instances, the testing set

contains 654 images and 2,664 HOI instances (see Table 2.6). The HOI training and testing

sets have similar class distributions.

2.4 Detecting and Recognizing HOI

The design of the HOI recognition model is presented in this section. As mentioned in the

related work, the authors take advantage of the “parallel” model design in FasterRCNN. A

sub-network to recognize HOI instances is built on top of a FasterRCNN object detection

model. The overall idea of the HOI recognition subnetwork is to leverage detected object

boxes to perform pairwise classifications of all worker and nonworker box pairs.

2.4.1 Network Architecture

The proposed model is shown in Figure 2.6. The model consists of three branches: region

proposal, object detection, and HOI recognition. RPN [45] and RoIAlign combined are
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Table 2.6: HOI Annotation Statistics

Predicates Objects Instances

standing on Scaffolding 302

using Hand Tool 573

Power Tool 278

wearing Eye Protection 461

Face Protection 88

Foot Protection 3496

Hand Protection 2090

Hard hat 3638

Fall Arrest System 400

Respiratory Equipment 58

Safety Coloring 2095

Object Detection Module

Box Pair Location Features

HOI Recognition

HOI 

Proposals

Boxes

M worker boxes in N total detected boxes

worker – wearing – hardhat

worker – wearing - eye protection

worker – wearing - face protection

worker – wearing - hand protection 1

worker – wearing - hand protection 2

worker – using - power tool

Regional Features

Figure 2.6: Network Architecture. Staring from the last convolutional layer (layer4) from
the ResNet50+FPN model, the network adds an HOI Recognition branch on the Faster
RCNN framework. In this branch object detector results, layer4 appearance features, and
HO pair’s Spatial Features are used to construct HOI proposals. For M worker boxes
detected out of N detected boxes, HOI proposal generates at most M ×N human-object
pairs to be classified.
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treated as the region proposal to provide boxes and their regional visual features to be

shared by both the object detection branch and HOI recognition branch. In addition to

visual features from RPN, a new spatial feature is introduced to encode the spatial relation of

two bounding boxes (see Sec. 2.4.2); this feature is generated from bounding box predictions

and directly used for HOI recognition.

Object and HOI Proposals. The object proposals are generated with RPN, each object

proposal is parameterized by the coordinates of the top-left corner and the bottom-right

corner. The HOI proposals are generated by enumerating all possible pairings between

worker and tool or equipment. Let M be the number of detected worker instances and N

be the total number of detected instances in an image. There are thus M × (N −M) valid

HOI proposals.

Object Detection. Object detection first applies RPN on the last convolutional feature

maps (layer4) of a Resnet50 + FPN model [80]. For each image, the layer4 feature is a 3D

tensor whose depth is 256 and height and width are proportional to image height and width.

Region of Interest (RoI) features [62], which are extracted by RoIAlign with box proposals

from layer4 features, are forwarded to two fully connected layers to predict object categories

and regress bounding box coordinates as in FasterRCNN [45].

HOI Recognition. The HOI recognition branch concatenates three features for the HOI

proposals: (1) HOI spatial feature, which is generated from detected objects’ box coordi-

nates, while the detail is introduced later; (2) linguistic cue, which is the class probability for

the object box from the object detection branch; (3) HOI appearance feature, by concate-

nating RoI features of detected human box and object box. The RoI feature is handled by

a specialized mininet: a 1× 1 convolutional layer followed by a ReLU activation layer, then

an average pooling layer whose kernel width and height are the same as the RoI feature’s

width and height (see Figure 2.6, HOI recognition branch). This mininet is meant for feature

transfer with the minimum number of parameters. All three features are reformulated into

a 4D tensor whose dimension is Batch size × nChannel × M × N, where nChannel is the

length of concatenating all three HOI features and Batch size is always 1. This tensor is

referred to as the HOI feature map. HOI classification on an HOI feature map is similar to

generating segmentation masks in Fully Convolutional Network [81] for semantic segmenta-
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tion. The final output of the HOI recognition model is a 2D mask of size M × N, where

each element in the mask contains an HOI class index or a background index indicating the

absence of target interaction.

2.4.2 Modeling Spatial Correlation in HO Boxpairs

The aforementioned spatial feature is explained here. This spatial feature discretely encodes

a Human-Object box pair’s spatial location. The motivations of this discret box pair feature

are: (1) each box’s position should be represented relative to the entire image; (2) the HO box

pair’s relative position is invariant to image scale (see Fig. 2.7); (3) spatial features should be

represented discriminatively by one-hot vectors. Firstly, the entire image is divided to a S×S

grid (Fig. 2.7b). Two one-hot vectors are used to represent the location of individual cells in

the grid; for example, cell (2,1) is represented as ([0, 1, 0, ..., 0], [1, 0, ..., 0]). For each box, P

points are evenly sampled on every edge, resulting in 4(P − 1) points representing a single

box’s location. Each point lies in one cell of the image grid, whose location is represented by

a 2S length vector, so the entire box is encoded by an 8×S(P −1) length vector. To capture

the relative location feature, a distance metric is proposed in terms of the number of cells

between the i′th point in the human box and the i′th point in the object box (Fig. 2.7c).

The distance on one axis between two points is an integer value between [−S + 1, S − 1], so

another one-hot vector of size 2× (2S − 1) is used to encode this distance. Thus, a Human-

Object box pairs relative distance is encoded in a vector of length 8× (P −1)× (2S−1). To

construct the final HOI spatial feature of a Human-Object pair, the human box’s encoded

coordinates, the object box’s encoded coordinates, and the box pair’s relative distance are

concatenated, resulting in a feature of length 8 × (P − 1) × (4S − 1). In the experiment

S = 14 and P = 7; the author simply follows conventions of ROI features to choose these

parameters.
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(a) RGB image and boxes (b) Sparse box locations (c) Encoding box
pair relations

Figure 2.7: Procedure to encode box pair relation. (a) Image with blue box drawn around
worker and red boxes drawn around other objects. (b) Encoding box coordinates by
determining box sample point locations in image grid; only the boxes border coordinates
are sampled. (c) Encoding HO box pair’s relative position; 4 arrows are shown as 4 out of
24 links to corresponding points between human box and object box; distance between
corresponding sample points on box border is computed in terms of number of cells.

2.5 Experiment

2.5.1 Implementation Details

Loss Functions. Object classification and smooth L1 bbox regression losses are used to

train the object detection branch [45, 46]. For the HOI branch, since the output tensor is a

4×M×N tensor (3 interactions and the background class), the ground truth HOI labels are

organized as an M × N matrix; then cross-entropy is used to compute the HOI prediction

loss.

Batch Preparation. Only one image is used in every batch as in Faster RCNN. Batch size

for object classification is 256 object proposals from RPN. The positive:negative example

ratio is kept at approximately 1:3 to avoid extreme data imbalance. In the HOI recognition

branch, as the number of objects detected varies for every image, the HOI proposal number

changes drastically. Positive HOI examples are often rare in an image, so the authors apply

a hard negative examples sampling strategy. For every image, scores for every HOI proposal

are computed; this is done during the forward pass. Then HOI batch size is set as 64.

Positive examples are filled first, then the rest of the batch is filled by highly confident false

positive prediction and sorted by their scores in descending order.
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Inference. The model detects object bounding boxes (e.g., workers, hard hats, power

tools), and then recognizes HOI instances ( e.g., worker wearing hardhats), in an image by a

single forward pass, similar to the cascaded inference in Gkioxari et al. [73]. From the object

detection branch, a large amount of detected boxes are generated, and then a Non-Maximun

Suppression (NMS) operation is applied to remove the overlapping boxes. At most the top

100 boxes, which have high detection scores and are deemed to be non-overlapping, are

preserved. Boxes whose scores are higher than 0.5 are used to generate the HOI proposals.

Evaluation Metrics. Correctly detected bounding boxes for an object class are called true

positives (TP), incorrectly detected boxes are called false positives (FP), missed ground

truth boxes are called false negatives (FN). The precision of detecting an object class is

defined as the ratio between TP and TP+FP. Recall of an object class is defined as the

ratio between TP and TP+FN. A detected box is a true positive when: (1) the Intersection

of Union (IoU) between this box and a ground truth box is above a threshold and the

highest among all unmatched ground truth boxes; (2) the detected box’s object class is the

same as the ground truth box it matches to; (3) the detection score is above a threshold.

For a given IoU threshold, a precision-recall curve is generated by calculating precision and

recall for each detection score threshold. The Average Precision (AP) of a class is the area

under the precision-recall curve. Object detection models are evaluated by mean Average

Precision (mAP) from all object classes. The PAscal Visual Object Classes (VOC) [68] mAP

is evaluated by a single IoU threshold of 0.5; it is used as the main evaluation metric for

object detection in this paper. An HOI recognition result is considered correct when: (1)

both detected boxes are correct and have at least 0.5 IoU with their corresponding ground

truth boxes; (2) the interaction is predicted correctly. HOI recognition is evaluated by Top-

K recall or Recall@K [82, 77]. Top-K recall is defined as, given the K most confident HOI

prediction instances sorted in descending order, the ratio of ground truth HOI examples

being included in these K predictions. Top-K recall is used because persons in the image

center region are more likely to be annotated than persons in the background or edges of

the image [74]. Using mAP to evaluate HOI recognition can falsely penalize positive but not

annotated HOI instances. The average number of ground truth HOI examples per image

in the HOI test set is 4.11; the authors report K in the experiments as 5, 10, and 15 by

39



inspections of experiment results. When K is greater than 15, Recall@K scores do not

change much and become saturated. Because the number of recognized HOI instances in

an image is also determined by the number of detected objects, it can be lower than K.

The average number of ground truth HOI examples per image is also used as a metric. In

general, the closer to this number, the better the HOI recognition model is.

Training Specifications. A Pytorch implementation of FasterRCNN is used. Ten object

classes relevant to the HOI experiments (i.e., worker, eye protection, face protection, foot

protection, hand protection, hard hat, safety coloring, scaffolding, hand tool, and power tool)

are used to evaluate the object detection model. The Faster RCNN model is fine-tuned from

an MS-COCO object detection model, the final output layer is re-initialized with random

weights, and output classes are changed from 91 to 11, including the background class. The

object detection model is trained with the stochastic gradient descent (SGD) optimizer with

momentum 0.9. The object detection model is firstly trained with a learning rate 1E − 3

for the first 70,000 steps and 1E − 4 for the following 25,000 steps. To detect small objects

better, a small 4 × 4 region proposal anchor is added to the original three larger anchors.

Otherwise, the training setup is the same as the training for the VOC07 [68] dataset. The

HOI model shares convolutional layers with the trained object detection model up to the last

convolutional layer (layer4) of ResNet50+FPN. When training the HOI model, weights up to

the layer4 are fixed, and the layers after this are trained from scratch by the SGD optimizer

with 0.9 momentum and by 13,000 steps. The learning rate for training HOI recognition

model is set as 1E − 3. The weight decay is applied for training HOI recognition model and

is set to 1E − 4 for each step as a means of regularization. All weights converge when the

loss is stable and the test set performance no longer increases. All models are trained with

one NVIDIA Tesla K40 GPU.

2.5.2 HOI Recognition Experiments

The authors design a rule-based HOI recognition baseline (“Rule-based”) to compare with

the proposed learning-based HOI recognition model. This baseline consists of the following

rules: (1) All non-worker objects detected will be assigned to their closest detected worker
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instance, the distance between two bounding boxes is measured by the L2 distance of each

box’s center. (2) The interaction of an HO pair is always assigned to the most frequent non-

background interaction from the training set (e.g., whenever a hard hat box and a worker

box are paired, their interaction is always assigned as “wearing”). This baseline heavily

exploits class and location biases to emulate previous work that uses a rule-based method

for activity recognition [65]. As a comparison to the previous HOI recognition models, the

authors reimplement HO-RCNN, proposed by [74]. The HO-RCNN has two main differences

from the authors’. First, the human-object pair spatial features are different. Second, HO-

RCNN is a multi-stream model and sums up different streams’ outputs and applies a softmax

layer for the final prediction.

Second, a sanity check is conducted by predicting HOI results from an untrained HOI

recognition model (model Random) to validate that the bounding boxes and interactions

are indeed correlated in the presented HOI dataset, such that a random guess cannot pre-

dict them. Also, an ablation study is conducted to examine and validate each feature’s

contribution to the proposed HOI recognition model. Model RoI uses only concatenated

HO pair RoI features; SP. uses only the proposed HO spatial feature; other models use

various combinations of RoI, SP., and linguistic features.

The authors present an experiment on applying a single HOI recognition result for safety

gear compliance checking. Consider the task of checking workers wearing hard hats. A

false negative occurs when: a worker does not wear a hard hat but the system says the

worker does, or the system missed this worker. A false positive occurs when: the system

says a worker does not wear a hard hat but the worker does or the detected worker is a false

detection. The same definitions apply to safety coloring checking. The proposed method

checks hard hat compliance as in the following steps: (1) An image is taken in and workers

and hard hats are detected; (2) the HOI model checks whether there is “wearing” interaction

between each detected worker-hard hat pair; (3) for a detected worker, if there is no hard

hat detected or a detected worker is not recognized “wearing” any hardhat, that worker is

marked as an incidence; (4) evaluation is made by matching bounding box overlaps between

the marked incidents, and the actual incidents, then precision and recall are calculated. A

match should have an IoU greater than 0.5. All HOI recognition results are used in an image.
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The same procedure applies to safety coloring checking. The authors apply three different

checking strategies. Strategy “Multi-class detection” reports workers only if there is not a

single hard hat/safety coloring detected. Strategy“Rule-based HOI” performs per-worker

checking based on the Rule-based HOI method. Strategy “Learned HOI” uses our final HOI

model (RoI.+SP.+Ling.) for per-worker checking.

Checking hand protection is not required when, for instance, workers are inside an office

trailer or near rotating machinery. The authors apply the proposed HOI recognition model

for finding workers using hand tools or power tools but not wearing hand protection; this cri-

terion is covered in: OSHA 1910.138(a) General requirements. “Employers shall select and

require employees to use appropriate hand protection when employees’ hands are exposed to

hazards such as those from skin absorption of harmful substances; severe cuts or lacerations;

severe abrasions; punctures; chemical burns; thermal burns; and harmful temperature ex-

tremes.” Object detection models, such as in Smartvid AI engine, cannot directly check this

criterion because they do not leverage the context in which the workers are operating. The

authors examine different strategies to check this task. Strategy “Worker detection only”

flags all detected workers as potential incidents. Strategy “Multi-class detection” flags all

worker instances where at least one worker and one tool are detected but hand protections

are not. Strategy “Rule-based HOI” applies the Rule-based method to identify incidents.

Strategy “Learned HOI” applies the final HOI recognition model (RoI.+SP.+Ling.) by first

classifying whether a worker is using hand tools or power tools, then classifying whether this

worker is wearing hand protection.

2.6 Experiment Results and Discussions

2.6.1 Object Detection Error Analysis Tool

To understand the root cause of detection error, an object detector error analysis inspired

by Hoiem et al. [83] is used for analyzing different false positive errors in the trained object

detector. Such analysis shows six types of errors, and in such an order their corresponding

precision-recall (PR) curves are generated. The investigated types of errors are: (1) PR
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curve at IoU = 0.75 (C75); (2) PR curve at IoU = 0.5 (C50), the same as the VOC

AP metric; (3) PR curve at IoU = 0.1 (Loc), which error by mis-localization is ignored

to show the impact of incorrect object localization; (4) PR curve ignoring false positives

from detecting similar objects (Sim), which in the proposed dataset affect only safety gear

classes; (5) PR curve by considering a detection correct when it matches to any class label

(Oth); (6) PR curve after removing all background and class confusion false positives (BG);

the last PR trivially representing AP = 1 when all other false negatives are corrected (FN).

Each curve represents the object detection performances if all previous errors, including

itself, are corrected. The color-coded areas show the relative importance of each type of

error analyzed. Figure 2.8 shows examples of the object detection error analysis.

2.6.2 Object Detector Results and Analysis

The best-performing Faster RCNN detector with ResNet50 + FPN features reaches overall

52.9% mAP. In particular, this model achieves 89.4% AP for worker detection. Full detector

results are shown in Table 2.7. Based on the error analysis of all object detection results

(Fig. 2.8), resolving the confusions with the background (purple area in Fig. 2.8a) can

significantly improve overall detection performance by 19.5% mAP. This detection error

analysis result (Fig. 2.8) confirms many previous observations [57, 65, 31] that high intra- and

inter-category appearance variabilities are serious hindrances to object detection methods

for construction resources. Future research is suggested to disambiguate similar patches

between background structure and relevant objects. The overall worker detection AP in the

trained detection model reaches 89.4% (Fig. 2.8b). This number is 29.4% higher than the

number for worker detection reported in Luo et al. [65], despite the experimental results

being evaluated on a dataset with more inter-class variance (Table2.5). The overall high

performance of the trained object detection shows it is sufficient to use detected object

instances for training the HOI models and evaluate the proposed method from raw image

inputs.
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Table 2.7: Faster RCNN Object Detector Results

Class AP (%) Class AP (%)

Worker 89.4 Hard hat 93.6

Eye protection 28.0 Safety coloring 82.8

Face protection 25.1 Scaffolding 42.0

Foot protection 67.8 Hand tool 20.6

Hand protection 66.1 Power tool 14.2
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Figure 2.8: Trained Faster RCNN detector error analysis. (a) shows the error analysis for
all subjected classes; (b) shows the error analysis for worker.
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Table 2.8: HOI Recognition Experiment Recall Results. Note two bounding box sources
are used: one from detected objects (Det.), the other from ground truth object annotations
(GT).

Boxes Method Recall@5(%) Recall@10(%) Recall@15(%)

Det.

Random 0.450 0.713 0.938

Rule-based 51.40 57.32 63.25

HO-RCNN 51.00 58.50 60.13

RoI 27.36 41.19 48.49

SP 50.17 58.58 59.72

RoI+Ling. 37.82 50.22 55.94

RoI+SP. 50.38 58.39 59.87

RoI+SP.+Ling. 55.59 62.58 63.25

GT
Rule-based 74.66 93.50 95.49

RoI+SP.+Ling. 71.05 85.51 87.57

2.6.3 HOI Recognition Results and Analysis

HOI recognition models’ Recall@K results are shown in Table 2.8. HOI recognition models

trained with detected and ground truth bounding boxes are presented in Table 2.8 Box

Sources “Det.” and “GT”, respectively. The best-performing HOI recognition model and

Rule-based model are retrained with the ground truth bounding boxes in the train set.

This setting eliminates the box localization and object classification errors to evaluate HOI

recognition assuming a perfect object detection is achieved.

When trained on the detected boxes, model RoI+SP.+Ling. performs better than the

rest of the models. Compared with the Rule-based model, the best model outperforms

significantly on Recall@5 and Recall@10 but achieves the same result on Recall@15 metric,

because all highly confident detected object instances are used. The proposed model notably

outperforms the HO-RCNN by large margins on all metrics. This validates the authors’

incentive to incorporate multiple types of features into the proposed HOI recognition model.

Spatial features are shown to be strong cues; using these alone produces better results than
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when they are not used, as can be shown by comparing the SP. and ROI+Ling. rows in

Table 2.8. Linguistic features also help with HOI recognition, as one of the main differences

between the proposed model and HO-RCNN is that linguistic cues are also used. More

qualitative results from the best-performing HOI recognition model are displayed in Fig. 2.9.

Discussion on safety compliance checking will show how the improvement in recognizing HOI

results in a better approach to perform automatic safety checking.

A comparison between the Rule-based model and the RoI+SP.+Ling. model using de-

tected boxes (Box Source “Det.” in Table 2.8 ) and ground truth boxes (Box Source “GT” in

Table 2.8 ) reveals an interesting finding on the impact of object detection for HOI recogni-

tion. When HOI recognition model is trained with the detected boxes, the RoI+SP.+Ling.

model outperforms the Rule-based model at all evaluation metrics. When the HOI recog-

nition model is trained with the ground truth boxes, RoI+SP.+Ling. model receives a

significant boost in performance, e.g. from 55.59% to 71.05% for Recall@5. However, the

Rule-based model outperforms the RoI+SP.+Ling. model significantly on all metrics. The

perfect object detection setting almost doubles the HOI recognition performance. However,

it is unrealistic to expect object detection outputs to be completely reliable in real-world

scenarios. Thus, the proposed HOI model remains the more viable solution in practice.

Table 2.9 shows the HOI recognition results for hard hat and safety coloring. Both show

high performance and thus are considered reliable for compliance checking. Table 2.10

shows results from hard hat and safety coloring compliance checking. For both safety gear

checking tasks, the learned HOI model achieves both higher precision and recall than the

rule-based model. Since both methods use the same object detection results, the learned

HOI recognition model correctly recognizes more workers wearing hard hats/safety coloring,

and therefore produces fewer false positives. And the model correctly classifies those who do

not wear hardhats/safety coloring, hence producing fewer false negatives. Compared with

using object detection results alone, applying HOI clearly achieves much better recall of the

actual noncompliance with only slightly losing in precision in the safety coloring example.

Table 2.11 reports quantitative results of different strategies for checking hand protection

conditioned on the use of tools. Strategy “Worker detection only” recalls most of the actual

instances, but includes a very large number of false positives. In practice, this creates a
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Figure 2.9: More HOI recognition results from the best model.
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Table 2.9: HOI Recall for Hard Hat and Safety Coloring. Model trained with the detected
bounding boxes.

Safety Gear Method Recall@5(%) Recall@10(%) Recall@15(%)

Hard Hat
Rule-based 76.02 78.50 78.50

RoI+SP.+Ling. 84.67 88.97 88.97

Safety Coloring
Rule-based 72.04 79.45 79.79

RoI+SP.+Ling. 76.02 80.82 81.84

Table 2.10: Precision and Recall for Hard Hat and Safety Coloring Compliance Checking

Criteria Strategy Precision (%) Recall (%)

Not wearing hard hat

Multi-class detection 72.04 18.84

Rule-based HOI 78.32 74.68

Learned HOI 79.78 77.64

Not wearing safety coloring

Multi-class detection 80.83 59.21

Rule-based HOI 78.43 71.78

Learned HOI 79.11 75.29
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Table 2.11: Precision and Recall for Hand Protection Compliance Checking

Criteria Method Precision (%) Recall (%)

Not wearing

hand protection

while using

hand tools or

power tools

Worker detection only 7.50 87.80

Multi-class detection 24.14 51.21

Rule-based HOI 65.21 60.00

Learned HOI 66.20 64.86

burden of manually removing false alarms. Compared with “Worker detection”, the strategy

“Multi-class detection” which also includes hand protection and tools detection, reduces the

false positives but suffers from a large increase in false negatives. In practice, this leaves too

many incidents undetected and may need a second round of manual inspection of all images.

HOI methods significantly improve precision over just using detection results, which means

more relevant incidents will be reported to human reviewers. Compared to the “Multi-class

detection” strategy, both HOI methods cover more actual incidents. The proposed method

“learned HOI” improves recall by 4.86% compared to “Rule-based HOI”. These results show

that applying HOI results is potentially a better strategy than relying on object detection

results alone, and a learned HOI model is practically more feasible than a rule-based HOI

method.

Over 1,000 construction sites in the United States have successfully applied object de-

tection models for tagging safety gear, equipment, and workers on images taken from their

sites. In practice, tags are reviewed, added, and modified by safety personnel. The auto-

matically generated and human-verified tags provide a means of safety observation at larger

scale and more frequently. These improvements potentially enable executives to understand

safety trends within a project and benchmark across different projects. The proposed HOI

model highlights relevant instances for human reviewers and potentially further reduces their

workload. It also allows checking results with context to be reported to executives such that

a better informed decision can be made. Nevertheless, the current HOI recognition model is

limited in two ways. First, HOI models depend on the object detection performance. As sug-

gested in the object detection error analysis, confusion with background patches is the main
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obstacle that requires more attention. An improved object detection model in the proposed

method reduces false negatives in safety gear compliance checking. Second, many safety

critical interactions between workers and equipment/tools are rarely recorded in visual data;

more research on HOI should be done to transfer the knowledge of worker interactions from

one type of equipment to another. For example, an HOI recognition model that recognizes

a worker climbing a ladder should also recognize a worker climbing the cross-bracing of a

scaffolding.

2.7 Future Applications of HOI Recognition in Construction

Safety

Many potential applications can benefit from the rich semantic scene information that HOI

provides. In this paper, three construction safety applications are listed. Note that for each

application the following three factors are considered: (1) Model Maturity (model robust-

ness and efficiency to be widely deployed); (2) Confidence from Management (how much

trust do construction managers have in the machine learning models); (3) Level of com-

plexity to detect objects in construction sites. (the level of material and equipment

clutter, light conditions and weather, ans so forth. determines the level of difficulty to train

a production-grade object detection and HOI recognition model). The authors list potential

applications for safety inspections, monitoring, and education.

2.7.1 Assistive Automatic Safety Report Generation

Mobile devices are now commonly used to capture and share construction job sites’ “as-is”

conditions. Reporting job site safety condition by digitized reports, 2D photos, and 3D scans

has largely reduced the latency in safety communication. Despite this, safety reporting is

primarily performed manually. The simplest form of automation in safety reporting is to

customize the safety report template according to the job site. For instance, when a worker

is captured in the image, a set of personal protective equipment safety checks should be

suggested from the application, and the inspector’s confirmation is expected to complete
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corresponding checking entries.

2.7.2 Proactive Safety Performance Measurement

HOI information also helps with computing a proactive safety index. In safety management,

proactive safety indexes are calculated from safety observations [14]. Several proactive in-

dex metrics had been proposed by [20, 84], indicating a strong correlation between daily

construction activity statistics to the overall safety condition of the entire job site. Retriev-

ing recognized interactions and discovering their correlations with safety incidences can be

helpful to establish new proactive indicators. The triplet form of HOI recognition has the

advantage of expressing queries as natural language rather than just as a list of keywords.

2.7.3 Safety Education

Recent progress on safety education uses interactive virtual reality-based training platforms

[85] for new construction workers to increase their understanding and awareness of common

safety hazards on the job site. The mechanism to create game content can be tailored to

fit construction scenarios. Recent research in computer vision propose that scene graphs, a

data structure used in for representing logical events in games, can be modeled by a set of

HOI instances and directly generated from images. As a vision task, scene graph generation

[77, 76] can be regarded as the inverse process of computer graphics rendering. Once scene

graphs are generated from an image or a video, the same information can be rendered in a

safety VR training environment. The advantages is that the rendered scene can play back

what has been observed in the real world. Figure 2.10 presents the general workflow of

this concept: (1) input images are first read by a multi-level scene understanding model;

(2) detection results are combined into a scene graph representation; scene graphs depict

how the machine comprehends image content, and it resembles human interpretation of the

scene; (3) a generated scene graph can be rendered with a predefined 3D model library. Note

that in the scene graph example present in Figure 2.10, the rendering is created with the

Google SketchUp 3D model warehouse.
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Input Detections Rendering

Scene Graph

Figure 2.10: Illustrating a potential HOI use case for safety training. Realistic safety
training scenes can be rendered in virtual reality environment using scene graph
representations captured from real world construction images.
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2.8 Conclusion

This paper improves vision-based safety checking methods. While the majority of existing

automatic safety checking methods detect only safety-relevant resources, the authors pro-

pose an additional HOI recognition model to directly recognize the worker interactions (i.e.,

wearing protective equipment, using tools, and standing on equipment). The proposed HOI

recognition model achieves Top-5 recall of 55.59%, outperforming a baseline of hand-made

rules on detected objects and another previous HOI recognition model. There are two main

practical benefits from the proposed approach. First, safety gear compliance checking is

performed directly using HOI recognition results. Using examples of hard hat and safety

coloring checking, the authors validate the HOI model and show that it is better than the

hand-made rule-based method both in precision and recall. Second, the proposed method

considers workers’ interactions and highlights potential compliance issues. For the exam-

ple of checking workers not wearing hand protection while using hand/power tools. Using

HOI recognition results in significant improvement in precision compared with using object

detection alone. For this example, a learned HOI recognition model is better in terms of

precision and recall than the rule-based method. Experimental results validate the claim

that applying HOI improves vision-based safety checking. The validations point out that vi-

sual understanding of workers’ activity and tools they used are crucial for automated safety

checking systems, and such information cannot be easily extrapolated by object detection

results alone. Other potential use cases, such as safety report generation and virtual reality

based safety training, are also discussed in the paper. All experiments are supported by a

newly constructed safety-related object detection and HOI recognition dataset for construc-

tion sites.
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CHAPTER 3: VIDEO-BASED MOTION TRAJECTORY
FORECASTING METHOD FOR PROACTIVE

CONSTRUCTION SAFETY MONITORING SYSTEMS1

3.1 Introduction

Construction is one of the least safe industrial sectors of the U.S. economy. Annually ac-

counting for one in five worker deaths in the U.S., the Bureau of Labor Statistics (BLS)

and the Occupational Health and Safety Agency (OSHA) have both reported that between

2011 and 2017, construction fatality number has grown from 781 to 971 incidents [1]. These

statistics show workers-on-foot (referred to as workers) frequently operate in hazardous con-

ditions due to nearby construction equipment and the surrounding working environment. In

2017 alone, 118 workers died from vehicle accidents and collapse hazards [2], including (1)

struck-by-vehicle in work zone or objects falling from vehicle or machinery, (2) caught in

or compressed by equipment or objects, (3) struck, caught, or crushed in collapsing struc-

ture, equipment, or material. Although OSHA regulations, company-wise policies, and best

practices have been successfully established and followed for many years, it is still challeng-

ing to empower individuals to remain fully alert at all times. Improving safety monitoring

helps workers and equipment operators make better-informed decisions regarding their safety

without impeding their tasks at hand. Over the past decade, safety alerting systems have

been developed that proactively inform workers and equipment operators about potential

safety incidents. Examples of these systems include audio alerting systems in the equip-

ment cabins or tags and safety vests that inform workers. To work reliably, these systems

require real-time identification and communication of worker and equipment current and

future locations.

Identifying, analyzing and recording proximity of workers and equipment to hazards is a

critical part of any proactive construction safety management system seeking to avoid exces-

1This chapter in whole or in part is published in the Journal of Computing in Civil Engineering.
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sive proximity and the potential struck-by accidents/near-misses this can incur. While safety

altering systems have significantly advanced over the past decade, methods for identification

and prevention of safety hazards are still in their infancy. Recent reports by the Construction

Industry Institute [86] and the BLS data [2] shows while safety programs are widely imple-

mented, the need for faster and more productive delivery of projects, is still negatively im-

pacting safety and as such, construction fatality and non-fatal injury rates have been steadily

growing. While lagging indicators used in today’s practices help executives understand these

safety trends and determine which projects need more attention, at the project-level these

metrics may not be effective in offering superintendents and project managers with action-

able insight to proactively identify and prevent safety hazards. Many researchers advocate

proactive safety management by adapting leading indicators [22, 87, 88, 89, 90, 91, 92, 93].

In contrast to the lagging indicators, the leading indicators do not rely on past injury data

and promote positive feedback from safety-related practices. Another body of work leverages

safety-related observation data to measure leading indicators [13, 94, 95, 96, 97, 98, 99] or

enable real-time safety alert systems [23, 100, 101, 102]. Extended reviews on real-time lo-

cation tracking systems are provided by Teizer et al. (2015) [103] and Soltanmohammadlou

et al. (2019) [104].

A critical component of these methods and systems is real-time visibility to current states

of workers and equipment on site using remote sensing technology [23, 105, 106]. For exam-

ple, location monitoring and quantification of worker’s proximity to hazard zones provides

an objective measurement of the hazard severity [13, 94]. In addition to locations, Wang

and Razavi (2018) [106] suggest assessing proximity safety using other factors such as worker

velocity, blind spots and resource orientations. However, estimating the future locations of

tracked objects is rarely discussed in the literature. Without considering the future locations,

estimation of proximity events and using that information in systems that alert stakeholders

on safety risk may be limited. In the absence of such systems and relevant information,

workers, equipment operators, and safety managers may not have enough response time to

prevent accidents. A system that proactively alerts project stakeholders on upcoming safety

issues should be able to track and forecast future locations of workers and construction

equipment.
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Nevertheless, forecasting future locations of workers and equipment based on previous

observations is challenging. Most related literature such as [107, 108, 104] explores the

application of real-Time Localization Systems (RTLS) via wireless network, Global Posi-

tioning System (GPS), Ultra-wideband (UWB), and Radio Frequency Identification (RFID)

that recognizes unauthorized action, entrance of workers inside a predefined risk area around

equipment, indoor hazard assessment, and real-time collision prevention. Despite their ben-

efits, systems that tag workers are still faced by privacy concerns. More research on non-

intrusive technologies and data handling protocols is needed to increase workers’ acceptance.

The vision-based technologies provide an alternative solution to track workers and equip-

ment. The combination of visual data and computer vision algorithms provide an easy,

inexpensive, and rapid mechanism for generating a large body of operational knowledge,

and naturally in a non-intrusive way [103, 24, 109, 31, 25]. As most computer vision al-

gorithms are developed to resemble human vision, the direct outputs, such as class labels,

bounding boxes, segments, are more intuitive for human comprehension. Also, visual data

is rich in semantic information such that the same set of data can also be reused for different

safety applications [25]. However, vision-based approaches face critical shortcomings. The

current visual perception algorithms for construction often do not generalize well due to

intra-class variance in real-world data. Occlusion is a critical limitation that hinders the ac-

curacy of tracks [110, 104]. Other challenges in vision-based tracking for construction, such

as camera locations and field of view, data collection and converting image-based trajectory

to world coordinates, have been discussed in other works [111, 112, 113, 114]. Considering

their benefits and limitations, several companies have already implemented these systems

on their sites; e.g., Skanska’s use of RTLS system [115], for checking worker and equipment

arrival and leaving time. Oxblue [116] uses site visual data for tracking and estimating

activity levels. While the authors focus on vision-based methods in this manuscript as an

example, the underlying algorithms offered for forecasting locations can be applied to non-

visual based tracks as well. The authors take advantage of the advent of modern computer

vision techniques in detection and tracking [46, 50, 117], as well as GPU technology. Com-

pared to vision-based tracking methods previously applied to construction applications, the

presented tracking pipeline is superior in terms of speed, accessibility and tracks’ quality
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and details are introduced in the Dataset and Implementation Details section.

To provide insight into how safety issues can be identified proactively, forecasting arbitrary

length trajectories in real-world data is not trivial. The uncertainty often originates from

the length of historical data, semantic scene layout, surrounding objects’ motion, and actors’

intention [118, 119, 120, 121, 122]. Existing methods are often applied to simple scenes; for

example, a person walking in a parking lot [118]. Template-based tracking methods, such

as Karman filter [110], bear similarity to path forecasting as they also estimate the state

of the next step from past observations. However, in practice, they are used as a robust

estimation of instrument measures, not for iterative future sequence generation [123]. This

paper takes advantage of readily available tracked worker and equipment data from single

camera construction site videos and offers a new method for actively reporting future events

of workers and equipment that has the potential for real-time safety alerting systems. In

addition to exhaustive experiments on forecasting models, the applicability of the forecasting

model based on visual feedback is also demonstrated by putting the model into a real-world

safety monitoring application prototype. Note, single-camera videos are always affected by

illuminations, occlusions, and change in the camera field of view. In the following sections,

the authors first offer an overview of the relevant methods and gaps in knowledge. Next, the

method, experimental setup and verification steps are discussed in detail.

3.2 Related Work

Over the past two decades, a large body of research has focused on data-driven approaches

to discover safety leading indicators. These methods have been explored with both project-

level and operation-level data to correlate observations with safety measurements. Computer

vision methods such as object detection and object tracking have been frequently employed

to recognize construction resources. A complete review of these methods is out of the scope

of these papers and readers are encouraged to look into [103, 124, 109, 47]. Instead, the

most relevant works are highlighted in this section:

Vision-based detection and tracking in construction. Previous work has intro-

duced vision-based tracking methods to construction sites and a number of most recent
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publications achieve promising results. The majority of these works formulate tracking re-

sources in 2D or 3D as a data association problem and as such, they focus on tracking a

template-based detector in consecutive frames [125, 113, 111]. Because these methods rely

on the most recent observations for tracking, they do not perform well under occlusions.

Robust estimation methods such as [110, 112] have been introduced that address the oc-

clusion problem for single object tracking on construction sites. Kim et al. (2019) [99] is

the most recent example where it is shown that state-of-the-art real-time object detection

improves the localization of workers and equipment. In the past decade, the advent of deep

neural network features has revolutionized object detection methods in the computer vision

domain. MASK-RCNN [46] and YOLO [50] detectors are two outstanding examples that

are built for generic object detection. Their designs favor performance and inference time

respectively but are both generally reliable. However, a set of their experimental results on

MS-COCO [67] suggests that modern object detectors still struggle in drawing bounding

boxes around objects that look cluttered or small in the image. Object tracking has been a

challenging task [126]. However, recent works such as [117] show that it suffices to address

tracking problems by applying rudimentary optimization techniques to object detector out-

puts. These methods enable fast prototyping on construction site safety applications from

off-the-shelf models. Nevertheless, it is worth noticing while workers appear very similar to

generic person instances, construction equipment such as mobile cranes and backhoe loaders

are not included in common datasets and can not be easily detected. For more details on

such datasets and methods, readers are encouraged to look into [127].

Motion trajectory and activity forecasting using visual data. Motion trajectory

and activity forecasting are similar topics and have been explored extensively in the computer

vision community [128]. The former, also referred to as path prediction in some work,

predicts one or more agents’ future 2D/3D locations, the latter predicts future low-level

human activities in videos. Specifically, forecasting requires enough temporal information to

differentiate ambiguous predictions. For example, the actions of getting-on and getting-off

the car may appear the same in some transition states. On the other hand, over-exploiting

the demonstration may lead to the model constraining itself and overlooking other faithful

alternative predictions, this is a part of a phenomenon known as mode collapse in generative
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models[129].

Path prediction. Early work employs clustering, Kalman filter, linear regression, auto-

regression and non-linear Gaussian process [130, 131]. These methods often only work under

laboratory settings and simple scenarios. The inverse reinforcement learning [118, 120, 121]

framework is recently introduced to this topic, it models the actor’s strategies under certain

states, and also take into account the effect of static semantic environment on pedestrians.

A typical constraint of this type of method is that it needs at least some estimation of

the endpoints to forecast the path connecting them. Others perform path prediction in

real-world data by regressing sequential locations using Long Short-term Network (LSTM)

model[119, 132, 122, 133], this is also known as an imitation learning problem. Many LSTM

based methods are adapted from the sequence prediction model proposed by Graves (2013)

[123], which combines LSTM and Mixture Density Network(MDN). Pedestrians and road

users interactions figure prominently in prior work. Socially acceptable behavior in path

prediction has been extensively studied in [119, 122, 121, 132, 134]. For example, Social

LSTM[119] introduced social-pooling to combine LSTM states of nearby moving pedestrians.

The impact from the static world had been investigated by Kitani et al. (2012) [118],

where semantic segmentation masks are used to estimate the rewards of different states.

Nevertheless, these methods are often developed for predicting short sequences and their

application in long-term forecasting is not investigated.

Activity prediction stems from activity classification and is also a closely related topic to

path prediction. The majority of research conducted on activity classification benchmarks

also provides tasks for activity prediction; readers are referred to previous work [135, 136].

The objective of activity prediction is to predict immediate follow-up activities from an

observed sequence of activities. A detailed survey of relevant work is provided by Kong and

Fu (2018) [128]. Activity prediction is connected with path prediction because the forecasting

formulation can often be applied to both tasks. In the Method section, the authors discuss

how the presented path prediction model can be directly adapted to predict activities from

construction site videos. Validating this model for activity prediction in construction is

beyond the scope of this manuscript and is considered as part of the future work.

Proactive safety management for proximity hazards. Several works in the literature
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have focused on leading indicators and methods for proactive safety management at the

project-level. For example, Hallowell and Gambatese (2009) [11] identified highly effective

components of a safety program and quantified each component’s ability to mitigate safety

risks. Hinze et al. (2013) [87] characterized leading indicators as passive and active measures

that are predictive over an extended period of time or are able to initiate corrective actions

in a short time, respectively. Hallowell et al. (2013) [14] reviewed proactive metrics from

safety related practice and suggested near-miss reporting to be considered among the top

priorities. Sheenhan et al. (2016) [88] provided evidence of the link between leading and

lagging indicators and suggested the middle management plays a moderating role. Guo

and Yiu (2016) [89] described a pragmatic method to identify leading indicators through

conceptualization, indicator generation, validation and revision. These works suggest that

leading indicators can be identified from non-injury safety data, such as safety observations

and near-miss reports. Useful leading indicators should explain the status to workers and

executives and support their decision making.

At the object-level, proactive management using workers and equipment data has been

extensively explored. Workers and equipment’s location data has been used to identify prox-

imity events and assess risks [13, 94, 95, 98]. Proactive construction management systems

have been explored using observations of unsafe actions and positions [137, 138, 97, 102, 56].

Real-time alert systems have also been investigated based on proximity checking [23, 100].

These system all benefit from employing low-latency remote sensing technologies. Triax

(2020) [139] is a recent example of these systems that has been successfully implemented on

100s of jobsites. Despite their benefits, their implementation still faces resistance from the

union workers. For example, on a project in the state of Illinois, union ironworkers refused

to wear these safety clips due to their intrusiveness. In contrast, construction site visual

data is non-intrusive and has been traditionally used for many construction applications

[24, 31], including predictive progress analytic [140]. Recently, visual data has been used

for proactive safety measurement. Fang et al. 2018 [56] proposes a personal fall protection

inspection model for steeplejack workers and provide a fall accident analysis based on the

configuration of recognized resources. Another recent attempt is made by SmartVid [141].

Similar to earlier works of Khosrowpour et al. (2013) [142], their solution conducts personal
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protective equipment recognition outputs from images collected from job sites. Together

with other features such as project types and weather, their method also predicts the chance

of accidents in the future. Nevertheless, solely relying on visual data for safety inspections

has several limitations: cameras can not monitor objects out of view or occluded; cameras

need to be calibrated to recover objects’ 3D world coordinates in most cases. In this paper,

the authors do not explicitly address these limitations and conduct all experiments under

normal conditions. This is because the primary goal here is to present and validate a method

that can leverage existing visual feeds from jobsites to provide actionable insight to project

management. Since site cameras are almost always available on every construction site, the

application of this method may offer an opportunity to prevent accidents that may otherwise

go unnoticed.

The method presented in this paper is developed following this philosophy: construction

safety management systems should not only generalize well to different input data, tasks,

and occasions but also faithfully explain why the predictions are made. The outputs of these

systems should inform when, where and how to prevent accidents.

The most closely related work to ours is Kim et al. (2019) [114] where a proof of concept is

offered. Specifically, Kim et al. (2019) [114] retrain Social GAN [122] models using the data

provided in the same work and test model performances on forecasting paths of a worker,

an excavator and a wheel loader in 916 sequence frames. While Social GAN is a strong

baseline for short-term (in terms of time steps versus the actual time) dense trajectories, our

work focus on long-term predictions in long sequences. Our models are trained and tested

on a larger dataset which has over 3000 tracks and contains more than one million steps.

The longest track in our presented dataset contains 1996 steps. The maximum prediction

length in Kim et al. (2019) [114] is 16 steps ahead, whereas in experiments conducted in this

article, predictions on 10, 20, and 40 steps ahead are reported. Nevertheless, the authors

compare Kim et al. (2019) [114] with the proposed method, the results show that our

motion trajectory forecasting model significantly outperforms Kim et al. (2019) [114](see

section Experiments).

61



3.3 Method

In this section, the authors formulate the problem of using construction site videos to forecast

workers and equipment trajectories. In brief, for each tracked object, the model takes the

2D image plane coordinates of an object along with its contextual features at the current

step as the input. These features are used to generate 2D Gaussian mixture distribution

parameters. The mode of the Gaussian mixture is then treated as the predicted location for

one future time step of each tracked object. The model outputs a sequence of locations for

future time steps; i.e., 10, 20, and 40 steps ahead.

Prediction formulation. This paper makes an analogy between the path prediction

problem and the sequence generation problem presented in Graves (2013) [123], where LSTM

is used to capture the long term dependency in multidimensional sequential data, and is

successfully validated in hand-writing stroke generation. Similarly, path prediction can be

considered as prediction future locations from previously observed location sequences. Note,

this formulation is different from that of a tracking problem because no observation in the

future is used in forecasting. In the following, a high-level overview of the forecasting problem

formulation is offered and discussions on how this model has been adapted for our task is

described later. Let vector x = (x1, x2, ..., xT ) is the input to past trajectories of construction

resources (i.e., tracking trajectories of workers and equipment) from videos obtained through

deep learning algorithms and its prediction target vector o = (o1, o2, ..., oT ). O representing

all possible values for ot. The goal is to find the most likely ot, i.e. which maximizes

Pr(ot|x1:t). A latent variable yt and functions Y ,H are introduced, then target can be

written as ôt = argmax ôtPr(O|yt) and yt = Y(H(x1;t)). When H is a single-layer LSTM and

Y is a fully connected layer, yt can be obtained from encoding equation:

ht = H(Wxxt +Whht−1 + bh) (3.1)

and output equation

yt = Y(Wyht + by) (3.2)

where Y denotes the output layer function parameterized by weight matrix Wy and bias
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unit by, Wx is the weight matrix to embed input data, Wh is the weight matrix to process

hidden state from last step, bh is the bias units of the LSTM. So the likelihood of target

vector Pr(o) is

Pr(o) =
T∏
t=1

Pr(ôt|yt) (3.3)

and the loss function L(o) to train LSTM model is

L(o) = − logPr(o) = −
T∑
t=1

logPr(ôt|yt) (3.4)

This model can be trained with standard backpropagation through time and gradient descent

optimizers.

Applicability for construction tasks. Although the aforementioned prediction formu-

lation is designed for path prediction, it can be easily extended to other forecasting tasks and

potentially used to automate workforce assessment applications such as the one described

in Liu and Golparvar-Fard (2015) [47]. In path prediction, both xt, model input at time t,

and ot, model output at time t, are continuous image plane coordinate (w, h). For activity

prediction, a closely related task to path prediction, both xt and ot can be one-hot vectors

of length C, where C is the number of target activity categories. Because the output space

is no longer continuous, MDN can be simply replaced by linear layers followed by softmax.

While such applications are very plausible, such work is outside the scope of the current

manuscript and is considered as future work.

Using contextual cues for activity forecasting. Inspired by previous works that

investigate the social and environment impact on path prediction [118, 119, 122, 121, 132,

134],the authors make similar analogies to construction sites.

• Social feature. Many previous works consider the interactions between tracked

objects[119, 122]. However, both static and moving objects can affect workers and

equipment behavior on construction sites. For instance, a worker may try to avoid

an excavator in motion that is backing up. The Occupancy Map feature (denoted as

FeatSocial) in Alahi et al. (2016) [119] provides a simple way to capture social fea-

tures from both static and dynamic objects and can be precomputed to speed up the
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training.

• Attribute feature. Interaction patterns may differ based on the object’s attributes[120],

this paper uses one-hot object class (i.e., worker and vehicle) vectors as a feature (de-

noted as FeatAttribute) to differentiate tracked objects.

Output layer and multi-head predictions. In multidimensional sequence generation,

MDN is often used to address the uncertainty derived from one-to-many mapping between

the input sequence and the output sequence. Its advantage is demonstrated in Graves

(2013)[123]. Hence MDN is used here as the output layer Y . Contrarily to most prior work

that define the target variable as the offset between two consecutive steps ôt = xt+1 − xt, in

this work target variable ôt is the actual location xt+s in s steps. Given ht. MDN outputs

parameters of a mixture Gaussian distribution at each step, such that output equation is

rewritten as

yt = {πjt , µ
j
t , σ

j
t , ρ

j
t}Mj=1 = Y(Wyht + by) (3.5)

where M is the number of mixture components, processing of Gaussian parameters is the

same as Eq.19-22 in Graves (2013) [123]. Using multiple MDN output layers is, in spirit,

similar to conducting sequence to sequence prediction which alleviates error propagation

in long sequences. A set of prediction steps is noted as s = (s1, s2, ...sK). Therefore, the

likelihood function and loss function can be expressed as:

Pr(ôkt|yt) =
M∑
j=1

πjtN (ôkt|µktj, σktj, ρktj) (3.6)

L(o) = −
K∑
k=1

T∑
t=1

logPr(ôkt|yt) (3.7)

where N is the 2D Gaussian function parameterized by (µjt , σ
j
t , ρ

j
t). At test time, ôt =

µ
argmaxjπ

j
t

t .

Embedding contextual data. The models illustrated in Fig. 3.1. Our model archi-

tecture is presented in Fig. 3.1b. Different from Social LSTM (Fig. 3.1a), who uses two

separate multi-layer perceptions to embed current locations and social tensor then decode
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with a single LSTM layer. The proposed method employs rigorous embedding of contextual

features. Specifically, the input image coordinates xt is first concatenated with FeatAttribute

before fed into the LSTM encoder, whose embedding latent feature is concatenated with

FeatSocial. Then the concatenated LSTM states are passed through an LSTM decoder, the

decoder outputs directly to MDN, which generates mixed Gaussian parameters for s. The

intuition is that different types of contextual features may work in a hierarchical way of con-

tributing to decision-making instead of being crammed together. Variations to this design

have been tested and whose results are outperformed. The detail numbers are not reported

in this paper.

3.4 Dataset and implementation details

To validate the proposed method, two real-world datasets are used for experiments. The

first, Voyager dataset, contains 105 videos from a fixed camera recorded for 30 days on

one construction site. The recorded area roughly covers a 270-meter by 35-meter region

where many underground utilities are installed during the recording. The site-camera con-

figuration is shown in Fig. 3.2; the second dataset, the TrajNet dataset [143], is built from

overhead camera footage. The TrajNet dataset is derived from commonly used path pre-

diction benchmarks in previous works and is currently the largest benchmark for evaluating

generic pedestrian trajectory forecasting models.

Voyager data collection and processing. Over 1,000 minutes of 1080p high-definition

videos are collected from a single construction site (see examples frames in Fig. 3.3). Tra-

jectory data is automatically generated with a detect-match schema using a state-of-the-art

real-time tracker [117], that is:

• All videos are extracted at 20 frames per second and all extracted frames are detected

by an off-the-shelf Mask RCNN model [46] trained on MS-COCO [67] dataset.

• With the confidence thresholds of 0.5, detection results of three MS-COCO categories,

person, truck, car are selected from every frame.
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(a) Social LSTM architecture

(b) Proposed model architecture

Figure 3.1: Proposed model architecture compared against Social LSTM [119] architecture.
Social LSTM model (3.1a) predicts future path in an iterative manner, while the presented
model (3.1b) generates and updates samples of the future paths within fixed future time
intervals.

Figure 3.2: Site-camera configuration for the voyager dataset. The red bounding box marks
the area monitored, the circle on the top right corner marks the position of the camera
mounted on a tripod. The monitored area is 270 meters in width and 35 meters in height.
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• Detected instances for each video are then processed by SORT [117] tracker to obtain

raw trajectories, the life-span for each track is set as 20 frames to allow re-identifying

occluded instances;

• Tracking results are interpolated and smoothed to fill in missing values.

Trajectories of construction equipment and passenger vehicles are merged into vehicle

category, as the off-the-shelf object detection model is not trained on equipment such as

excavators and mobile cranes. The Mask-RCNN model often confuses them with trucks and

cars, but these instances are very robust to be differentiated from the rest of COCO categories

so that highly confident vehicle instances can still be obtained. For other construction site

video collections, worker and vehicle tracks can be easily obtained following the presented

tracking pipeline. In total, 17397 person tracks and 33037 vehicle tracks are recognized for

the Voyager dataset. Note that not all tracks are used for experiments, a few criteria are

applied to find admissible tracks. In general, admissible tracks are selected where they last at

least 30 frames but not longer than 2000 frames, and whose endpoints L2 distance is longer

than 50 pixels. Admissible tracks from the 76 videos are used as training and validation sets

(that we refer to collectively as trainval). 20% of tracks in trainval set are used for model

selection, admissible tracks from the last 29 videos are used as the test set. In the trainval

set there are 1630 person and 1752 vehicle tracks, in the test set, there are 143 person tracks

and 161 vehicle tracks. Fig. 3.4 shows admissible tracks’ length and duration distributions

in both the trainval set and the test set, these two sets are very similar. Fig. 3.3 shows

examples of extracted frames, the top row is from the trainval and the bottom row is from

the test, one can tell the site layout has drastically changed during the recording. Although

the aerial view of the site is obtained as in Fig.3.2 and track conversion from the image

plane coordinates in pixels to the world coordinates in meters is possible, all experiments

results are reported in pixels. This is because creating a 3D scene from visual data and

projecting the forecasted motion trajectories within that scene or establishing homography

transformation between two scenes are mutually exclusive research tasks to path prediction.

However, for reporting purposes, the mapping conducted between reference object’s image

size and physical size shows that for experiments conducted, each pixel in the near-camera

67



Figure 3.3: Examples frames of Voyager videos. The dataset is recorded within 30
consecutive days. An example of video recorded in the first day is shown at upper-left and
the example from the last day appear at the lower-right. Images from the top row are
samples from the trainval split; and images from the bottom row are samples from the test
split.

represents 5-10cm in real-world coordinate systems.

TrajNet dataset. Only one subset of TrajNet, World Plane Human-Human, is used

throughout the experiments. The tracks in this subset are transformed under the world

coordinates from several videos in various scenes. Only pedestrians’ tracks are recorded.

Because the evaluation server is not accessible, only the train set is used for training and

validation. For the rest of this paper, TrajNet data is referred to as the train set of the

World Plane Human-Human subset. In total, TrajNet data includes 11448 tracks from 58

scenes, each track has 20 steps, see example tracks in Fig. 3.5. When evaluating Trajnet

data, forecasting models use the first eight steps of each test track and general locations of

the rest 12 steps. All tracks in TrajNet data are evaluated on the TrajNet evaluation server,

all prediction heads’ results are averaged.

Implementation details For both datasets, data are normalized by train set coordi-

nates’ mean and standard deviation, model predicted locations are denormalized for final

predictions. This processing allows for the forecasting model to be applied on non-visual
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Figure 3.4: The duration and endpoint distance distribution within tracks of the Voyager
dataset. Plots in the top row are for the trainval set tracks and the bottom row for test set
tracks. The duration and endpoint distance distributions of the trainval set and the test
set are similar according to admissible track criteria.
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(a) scene crowds zara03 (b) scene stanford-gates 0

(c) scene stanford-bookstore 1 (d) scene stanford-coupa 3

Figure 3.5: Examples tracks in TrajNet data by scenes. The unit of measure is meter.
Note that even though all track coordinates are transformed to the world plane, they do
not necessarily have the same magnitude. Coordinate values can be within 0 to 5 meters or
can be around 20 meters. Track patterns also vary between scenes, for example, the
crowds zara03 tracks are more homogeneous than that of the standford-bookstore 1. Such
data variance naturally calls to leverage contextual information.
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based tracks. Both the encoder and the decoder LSTM have 32 hidden units. For both

datasets, the social pooling region is a 2-by-2 square grid centered at the location xt. In

Voyager dataset, this grid has 200 pixels on each side, in the Trajnet dataset, 10 meters is

chosen. When choosing the prediction heads, 10, 20, 40 future steps are selected for the

Voyager dataset. Note this particular choice does not constrain the proposed method to

specific forecasting time-scales, as the choice was simply to make sure verification can rep-

resent increasing difficulties for path prediction. Because Voyager dataset video frames are

sampled at 20 frames per second, the prediction future times correspond to 0.5, 1.0 and 2.0

seconds, respectively. Here, reducing the video frame sampling ratio increases the actual

forecast time. Twelve prediction heads are used for TrajNet data. All models are optimized

with Adam optimizer and a learning rate of 0.005. Gradient clipping is applied to 50% of

the global gradient norm, this is proved to be essential to stabilize the training. For both

models, training tracks are dynamically packed such that one batch of tracks with different

lengths can be efficiently trained in one mini-batch. The Voyager model is trained with batch

size 128 and 1500 epochs, learning rate decay is set to 0.5 at 600, 900,1100,1300 epochs. The

training on the Voyager dataset, which has around one million steps in total, can be finished

in one and a half hours. The TrajNet model is trained similarly but the batch size is re-

duced to 64 and the number of epochs is reduced to 1000. All models are implemented with

PyTorch 1.0 and trained with a system with a single Nvidia GeForce 2080Ti GPU, an Intel

i7-8700k CPU, and 32 GB RAM.

3.5 Experiments

Baselines. Five different baseline path forecasting models are implemented for comparison

with the proposed method. The first is a linear regression model (Linear Reg) parameterized

by time t. For each track in the test set, locations from x0 to xt are used to regress a

function to predict future locations xt+s. Polynomial functions are also tested because they

may perform better compared to linear models in smaller datasets. Their results are worse

than that of linear regression and thus not reported. The second baseline is the popular

time-series analysis method of Vector Autoregression (VAR), here lag order p = 5 is chosen
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based on parameter tuning. VAR combines past observations linearly and is a strong baseline

when the subjected data is periodical. One single VAR model is computed for each track

in the test, each VAR model takes 5 steps and outputs the next step’s location. Errors of

all test tracks are averaged. The third baseline does not consider the temporal dependency,

each LSTM is replaced by a Multi-Layer Perception (MLP) with the same number of hidden

units, this is referred to as MLP+Reg. The fourth is a simplified model where the MDN part

is removed (LSTM+Reg.), leaving the LSTM decoder output as the predicted locations. The

last baseline is Kim et al. (2019) [114], where a retrained Social GAN [122] is introduced.

The authors apply the same procedure as in Kim et al. (2019) [114] and retrain a Social

GAN using the code repository of Gupta et al. (2018) [122]. This Social GAN takes the first

8 steps and predicts locations for the next 40 steps. Note that our model is not constrained

by observing 8 steps first. The retrained Social GAN model is validated on the Voyager data

test set.

Ablation study. The authors exhaustively evaluate each component of the proposed

model. Without any contextual cues, LSTM+MDN is a baseline in the ablation study.

Multi-head prediction is evaluated versus single-head prediction and evaluations on the con-

tribution of each contextual feature are conducted. Because the gap between experiment

results are small and are affected by the randomness of model initialization and optimizer

initial state, five rounds of experiments are conducted for each ablation model, the final

results are averaged from all experiments. Each ablation model’s results are compared with

that of LSTM+MDN by student t test. When the p value is smaller than 0.05, the hypoth-

esis is rejected and the difference between the models’ results is deemed to be statistically

significant.

Error evaluation. Predicted trajectories for the Voyager dataset are evaluated by the

average Root of Mean Square Error (RMSE) between actual and predicted locations per pre-

diction head; e.g., in prediction heads for 10, 20, 40 frames their error metrics are RMSE@10,

20, 40, respectively. For the TrajNet dataset, Mean Disp. L2 is computed by the average

RMSE between actual and predicted later 12 steps of all tracks. Final Disp. L2 is the

average RMSE of actual and predicted final locations of all tracks. The average error is the

average of the Final error and the Mean error. Lower values in these metrics mean better
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model performances.

Results and Analysis. Table 3.1 presents all experimental results from the Voyager

dataset. First, when prediction performances are compared across all three prediction heads,

it is intuitive to see longer forecasting time leads to lower prediction capability. Next, each

method’s performance is examined.

Section Baseline compares all the baseline model performances. Conventional time series

models, Linear Reg. and VAR, are significantly worse than the deep learning methods, this

shows that the Voyager data is collected in a way that demonstrates real-world difficulties

associated with motion trajectory application from existing cameras. The results achieved

with MLP+Reg., LSTM+Reg., and LSTM+MDN model are shown in Table 3.1 and validate

the effectiveness of using LSTM and MDN when they are used together. By considering the

temporal information of trajectories using LSTM, the LSTM+Reg. model reduces nearly

50% localization errors particularly when it is compared with MLP+Reg. model. By using

MDN to consider prediction uncertainty, the LSTM+MDN model significantly improves over

LSTM+Reg. model, as it directly imitates this behavior from the training data. Quantitative

results from the method presented in Kim et al. (2019) [114] (ID 4 in Table 3.1) show that

the method does not perform better than baseline LSTM+Reg. The underlying intuition is

that Social GAN models are designed to predict short-term dense crowd motion trajectories,

and the errors propagate significantly as predicting future locations. Hence this method does

not offer as a strong baseline for long-term predictions in terms of the number of future steps.

Section Ours in Table 3.1 shows the results of the ablation study. In these experiments, in

RMSE@40 which the model achieves the best long-term prediction performance is considered

as the best model. This is because for the safety application it is intuitive that longer

responsive time helps equipment operators, superintendents or managers to react within a

reasonable time-frame. Comparing results from multi-head and single-head prediction (i.e.,

ID 6 and 7 in Table 3.1), the p values for all prediction heads are larger than 0.05, showing

there is no statistically significant difference between the two, but the multi-head inference is

much faster than that of single-head. Adding Featsocial or Featattribute alone shows statistical

significant improvement over the LSTM+MDN baseline (i.e. ID 6 and 8, 6 and 9 in Table 3.1)

as well. The best RMSE@10 result is achieved by LSTM+MDN+Featsocial model and the
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Figure 3.6: Examples of path prediction generated from the final model. Tracks of the
lower center of bounding boxes are treated as the object track. The green track represents
previously observed locations; the red dot line represents the current location and the
actual future locations; the cyan cross line represents the model predictions. The arrows
indicate the forward moving directions. Figure best viewed in color.

best RMSE@20 results are from LSTM+MDN+Featattribute. The full model, which combines

both social features and attribute features, (ID 10 in Table 3.1) achieves the best long-

term result for RMSE@40. Note that all results are reported when models converge. The

performance of the model during the training and testing process remains similar and no

significant drop is observed. For example, in one of the trials for the LSTM+MDN model, the

test set RMSE@40 is 25.99 pixels and train set RMSE@40 is 22.68 pixels. Since the Voyager

dataset’s trainval set and test set are split by the date of recording, the close performances

between train and test set indicate the proposed method generalizes well on the voyager data

and possibly under all similar camera installations on construction sites. Two examples of

path prediction from the final model are shown in Fig. 3.6. With a reference object on the

near-camera side, a conversion is estimated that a near-camera side pixel measures around

5 cm distance. A new trial for the final model is run using 135 test tracks whose mean

y-coordinates do not exceed 400 pixels away from the image button edge. The resulting

RSME in meters at 10, 20, and 40 steps ahead are 0.28 m (5.7 pixels), 0.44 m (8.76 pixels),

and 0.87 m (17.39 pixels), correspondingly.
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Table 3.1: Voyager experiment results. Method ID 1-4 summarizes the baseline models’
performances. ID 5-9 shows the ablation study results. Note that number in the
parentheses for ID 6-9 are the p values of student t tests with LSTM+MDN performances.
When a p value is smaller than 0.05, it means results from the two methods are different
with statistical significance.

Group ID Model RMSE@10 RMSE@20 RMSE@40

Baselines

1 Linear Reg. 62.47 68.59 82.51

2 VAR 46.85 90.27 163.02

3 MLP+Reg. 14.17 27.08 50.16

4 Kim et al. (2019) [114] 9.33 18.32 36.30

5 LSTM+Reg. 8.67 14.65 27.39

Ours

6 LSTM+MDN 7.42 13.26 25.25

7 LSTM+MDN(single-head) 7.51 (0.23) 13.30 (0.54) 25.20 (0.45)

8 LSTM+MDN+Featsocial 7.24 (0.02) 12.70 (0.008) 24.30 (0.01)

9 LSTM+MDN+Featattribute 7.22 (0.002) 12.95 (0.01) 24.74 (0.02)

10 Full Model 7.30 (0.09) 12.71 (0.005) 24.22 (0.004)
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Path prediction may be also affected by trajectory lengths. To investigate this factor,

the authors run another trial of the final model and report RMSE conditioned on tracks’

end-points L2 distances in pixels. Following the end-point distance distribution shown in

Fig. 3.4, the authors consider 209 tracks with the distance less than 250 pixels as short-

length tracks, 36 tracks whose distances larger than 500 pixels as long-length tracks. 59

tracks whose distances are between 250 pixels and 500 pixels as mid-length tracks. Results

in Table 3.2 suggest the distances traveled is another important factor on path prediction,

predictions for the short-length tracks are significantly better than longer tracks. This shows

further investigation and research should be done in the future for a continuous long-term

path forecasting.

Table 3.2: Voyager test set path prediction as a function of track distances. Results are
generated from the final model.

Length RMSE@10 RMSE@20 RMSE@40

Short-length 5.93 9.45 18.04

Mid-length 8.08 14.87 31.62

Long-length 8.50 16.00 33.10

All 7.08 12.48 24.79

A separate experiment using the final model is run for the extended future time. The

actual time whose location forecasted is affected by the track sample rate, and the number

of steps ahead the network is configured to predict. The authors conduct an experiment

to investigate their effects on predicting locations in the extended future time. In Case 1,

the sampling rate is set to 10 frames per second, prediction heads are kept as 20, 40, and

60. In Case 2, sampling rate remains at 20 frames per second, prediction heads are set to

40, 80, 120 steps ahead. Each test case predicts locations in 2, 4, and 6 seconds in the

future, respectively. Results reported in Table 3.3 shows Case 1 performs slightly worse at

prediction in 2 seconds, but better at predictions for 4 and 6 seconds.

A comparison between the proposed method and Social LSTM on TrajNet data is shown

in Table 3.4, Social LSTM implementation are found in an open codebase [144]. The most

recent social LSTM performances are reported using the Stanford TrajNet leaderboard, a
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Table 3.3: Location predictions for extended future time by different data and model
settings. Lower error in pixels means better.

Test Cases RMSE for 2 sec. RMSE for 4 sec. RMSE for 6 sec.

Case 1 (lower freq., same

steps )

27.55 58.79 87.12

Case 2 (same freq., ex-

tended steps )

27.42 60.11 89.07

generic dataset for short-term path prediction. The proposed path prediction models have

been evaluated on the same website. Results in Table 3.4 show we significantly improve

over the reported Social LSTM performances and achieve comparable performance to Social

GAN [122], which was used in Kim et al. (2019) [114].

Table 3.4: Model comparison on TrajNet test set. Other model performances are obtained
from the TrajNet leaderboard. Errors reported in meters.

Group ID Model Mean Error Final Error Average Error

Social LSTM
1 Occupancy LSTM 1.101 3.12 2.1105

2 Social LSTM 0.675 2.098 1.3865

Social GAN 3 Social GAN 0.561 2.107 1.334

Ours

4 LSTM+MDN 0.608 1.775 1.1915

5 LSTM+MDN+Featsocial 0.574 1.665 1.1195

3.6 Potential use cases of predicted paths and the integration with

proactive safety hazard monitoring tools

Our goal here is to demonstrate and validate a working prototype and as such a complete

interface design to offer actionable items on safety was not considered. Recent commercial

solutions such as Smartvid.io and Indus.ai demonstrate user-friendly examples. The trained

model presented in this manuscript can be integrated into such visual safety monitoring sys-

tems that detect and track workers and equipment. The aforementioned tracking pipeline
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takes 1080p images and runs at 31 frames per second with 1.4GB GPU memory usage. The

path prediction model simply takes in tracked objects’ 2D coordinates, computes occupancy

maps, and generates predictions. For example, for 91 tracked objects in the image, the fore-

casting inference for all objects runs at 117 frames per second with 300MB GPU memory.

The forecasted locations are outputted along with the tracked locations for each object. As

a simple demonstration of the working prototype, the forecasted locations are used to report

potential conflicts between workers/equipment and the proximity hazards of predetermined

excavation areas. A simple user interface feature is developed to highlight potentially un-

safe proximity events, which may go unnoticed in the absence of an automated monitoring

tool. A web-based viewer application, which consists of a backend program of two interfaces

(Fig. 3.7), is also implemented to detect, forecast and document workers entering excavation

areas events. In its current form, the developed prototype serves as an automatic perfor-

mance update and off-line review program for safety personnel. A complete interface design

and development is beyond the scope of this paper.

Specifically, the developed viewer application includes an administrator interface and a

web-based viewer interface. On both interfaces, videos and the predicted paths are displayed

under a fixed camera viewpoint. A bird-eye view of paths can be more intuitive but it was

considered a software development task as opposed to validating the developed prototype.

For future improvement, accurate transformation between views can be obtained by finding

correspondences and solving a Perspective-n-Point mapping between fixed camera viewpoints

and geo-referenced models (e.g., drone-driven orthophotos). Kim et al. (2019) [99] shows an

interesting example of such an interface. The administrator interface (Fig. 3.7a) shows the

streamed video and allows the safety team to add, delete, and modify excavation areas as

polygons under the image coordinates. There is no restriction on the shape and the number

of polygons to be annotated. The expected time of the flagged events along with the visual

evidence will be pushed to the viewer interface. The viewer interface is implemented with

Visdom and consists of two panels. The main panel(Fig. 3.7b) visualizes site videos masked

by excavation areas (the window at the bottom). A user interface module on the top left

corner of the prototyped viewer reports two types of proximity events: (a) forecasted events

where a tracked worker will likely enter an annotated region, and (b) an observation that a
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tracked worker is already in the region. The safety events are reviewed based on image coor-

dinates. Because the excavation polygon areas are drawn close to the ground, the workers’

locations and the polygons can be considered on the same plane. By linking the forecasted

locations, a predicted path is formed. When a predicted path intersects with a polygon,

the estimated time to enter is interpolated based on the intersection’s image coordinates

and two closest predicted locations’ coordinates and timestamps. When a tracked worker is

forecasted to enter the zones, this event will be logged in the text box marked by blue color.

When a worker is already detected within the zone, the event will be logged and marked by

red color. Visual evidence of the latest captured event is shown at the upper right corner

window. A separate panel (Fig. 3.7c) stores all visual evidence of captured events, each rec-

ognized worker is assigned to a unique ID number not related to their personal information.

By querying the ID, all of the captured snapshot sorted by timestamps are presented to the

viewer.

The reported events were examined by safety managers and superintendents. For instance,

for a 12-min video, all 13 proximity events of six tracked workers were reported by the

prototype. One of the safety managers confirmed four forecasted events that workers jump-

in/over trench. All four forecasted event times match the actual observation times. The

visual snapshot also helped the manager to identify a few PPE compliance issues such as

not wearing safety coloring, long pants, and hardhat.

Forecasting future unsafe events can be critical for many intervention actions, for example

alerting construction equipment drivers if there is a worker in the way. Also, the prototype

design has several practical benefits. First, only images are needed as input, the prototype

can take network–connected camera streams as-is. Second, the web-based viewer allows

authorized viewers such as executives access real-time site conditions from anywhere on and

off a construction site. Third, the current prototype runs live at the frequency of 5 frames per

second (5Hz) and applying changes to the excavation areas from the administrator interface

incurs a negligible time delay.

The prototype provides abundant visual evidence on how the entire event progresses.

However, further studies in some aspects can significantly improve the current framework’s

practical values in forecasting and preventing imminent accidents. First, robust visual recog-
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nition under occlusion is helpful in terms of improving workers and equipment localization

and reducing forecasting false negatives. Previous work has proposed approaches such as us-

ing a Kalman filter and a multi-view camera system [125]. Second, the proposed forecasting

framework assists workers and equipment that are not aware of surrounding proximity haz-

ards and identifies those who willingly take the risk. However, the current formulation does

not differentiate those who calibrate their surrounding hazards and act cautiously. Without

such differentiation, the current framework is expected to produce a high volume of false

alarms, which may lead to stress and annoyance [145]. A likely approach to tell those who

being cautious is to capture workers’ attention, a recent example following up the proposed

framework models attention by using workers’ head directions [146] and shows such infor-

mation improves motion forecasting. Third, although the proposed formulation can produce

models forecasting locations in arbitrary future time by setting hyper-parameters, it is rec-

ommended to calibrate these parameters with respect to the alarm systems deployed. For

instance, a radio system [147] that checks the dangerous distance of an approaching vehicle

up to 25km/h. For a vehicle traveling at 10km/h (2.78m/s), such a system takes 21 measure-

ments and 3.6 seconds between the vehicle’s first detection to fully stop, allowing 10 meters

of total travel since the first detection and 8 meters final safe distance from the vehicle. To

double the final safe distance, the forecasting model needs to predict 5 seconds of future

locations and the proposed framework’s sampling frequency satisfy the requirement of the

radio system. Lastly, experimental results show that the presented model and the working

prototypes generalize well to different dates for a single construction site and across datasets,

though it is still challenging to transfer the trained model to another site with a different

camera configuration. Learning a generalized motion prediction model is desired but faces

fundamental challenges. One of future work directions is integrating site overlay and job

motivation in the forecast model, such that the model can adjust based on the condition of

the site and individual trade.
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(a) The administrator interface for the safety team.

(b) The main Viewer Panel (c) Event snapshots panel

Figure 3.7: Interfaces of the implemented safety application prototype. Figure best viewed
in color and when it is zoom-in.
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3.7 Conclusion

Vision-based motion trajectory forecasting has the potential to supplement existing proac-

tive safety management systems. An example of these systems was introduced in Teizer et

al. (2010) [23], where current locations of worker and equipment were being used to pre-

vent struck-by accidents. This paper focus on forecasting workers and equipment’s motion

trajectory data captured from already available video streams from construction sites. The

presented model utilizes an LSTM encoder-decoder structure, multi-head predictions, and

embedding of contextual cues for long-term forecasting. To validate the method, a large

trajectory dataset, Voyager dataset, is collected and validated and the experimental results

prove the benefit of the model design decisions. For 1080p videos, the model forecasts fu-

ture locations in 10, 20 and 40 frames, corresponding to 0.5, 1.0 and 2.0 seconds in the

future, responsively. The final model achieves an average localization error 7.30 pixel to

0.5 seconds, 12.71 pixels to 1.0 second and 24.22 pixels to 2.0 seconds. However, experi-

ment results also suggest forecasting for long distance tracks is more difficult than that of

short distance tracks. And reducing data sampling rate is a better option to extend fore-

cast time. The proposed model is also validated and compared in a generic pedestrian path

forecasting benchmark TrajNet. As a proof of concept, a prototype is implemented with the

presented model for forecasting, documenting and visualization of entering controlled access

area events. A simple validation of the prototype shows practical values.
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CHAPTER 4: MACHINE LEARNING–BASED RISK
ANALYSIS FOR CONSTRUCTION WORKER SAFETY FROM

UBIQUITOUS SITE PHOTOS AND VIDEOS1

4.1 Introduction

The 2019 National Census of Fatal Occupational Injuries report released by the U.S. Bureau

of Labor Statistics (BLS) shows that the private construction industry had 1,061 fatal injuries

for the year, up 5% from 2018 and the sector’s highest number of worker deaths since 2007

[2]. Exposure to harmful substances or environments caused 167 workers to lose their lives.

Another 146 workers lost their lives after making contact with objects or equipment that

we deemed unsafe. These statistics are disappointing and makes apparent that more work

must be done not only to detect and prevent workers from jobsite hazards, but also improve

the total occupational health of the construction workforce.

Having an instant access to safety observations helps project managers identify poten-

tial safety issues and allows them to proactively monitor their crew engagements. Thanks

to the significant advancement made in deploying imaging technologies such as 360-degree,

time-lapse, and drone cameras on construction sites [148, 31], an opportunity has merged to

deploy computer vision–based techniques at a scale that matters. Building on the growing

availability of these ubiquitous sources of visual data, numerous visual–based safety inspec-

tion methods and tools are introduced through academia [24, 5, 25]. Startup companies such

as Smartvid.io have also deployed similar capabilities in detecting 50 different safety–related

objects (e.g., hardhat, glove, glasses, ladder) from images and videos over 1,000 construction

sites. A large number of case studies has already been published that shows the effectiveness

of these solution across a variety of residential, commercial and industrial projects. These

recent developments fundamentally change the practice of quantitative measurements of

1This chapter in whole or in part is accepted by the Journal of Computing in Civil Engineering at the
time of writing.
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incidents, and safety benchmarks across many projects at the enterprise-level. The wide ap-

plicability of these computer vision techniques and the availability of large volume of visual

data has built an opportunity for more advanced and frequent safety assessments, partic-

ularly when they are compared with traditional labor–intensive weekly or bi-weekly safety

reporting methods. Despite the advantages of these solutions in predicting and preventing

incidents, a number of scientific problems have yet to be addressed to fully benefit from the

potential of the available visual data and current computer vision techniques:

1. Existing computer vision safety inspection tools explicitly detect safety–related ob-

jects and their confidence scores, without analyzing (a) worker activities in the context of

safety or (2) assessing incident severity under activities, whereas existing construction risk

models, such as the Construction Hazard Assessment with Spatial and Temporal Exposure

(CHASTE) approach [149, 7], often describe risk as a function of probability and severity of

incidents.

2. Many computer vision safety inspection tools count recognized incidents regardless

the severity levels of different incident occasions. For example, in a plastering task, wet

Portland cement can cause dermal irritation or burns if a worker doesn’t wear proper Personal

Protective Equipment (PPE), such as safety glasses and gloves. Applying plaster is more

likely to cause harm to naked skin than collecting plaster because of the splatter from

applications. Understanding this difference requires comprehensive reasoning on a worker’s

activity, body pose, and interactions with PPE, tools, and material. However, the detection

of safety hazards in this rich context of workplace is not fully explored. As such, beyond

reporting on the fluctuation of safety incidents and their frequency over project timeline,

current computer vision driven methods are unable to provide insights about the severity of

the safety incidents.

To enable risk analysis for safety monitoring, modern computer vision techniques such as

human–object interaction [30] and object relations [75] are necessary to detect and analyze

workers and their interactions with tools, equipment and the work environment. Also safety

inspection must cover a wider range of tasks including recognizing unsafe activities, unsafe

conditions, and occupational health risks [150, 151, 152, 153], however current computer

vision safety inspection methods and tools heavily focus on PPE compliance checking. An
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underlying technical limitation is that the object detection models introduced in these tools

are often incapable of analyzing worker activities to measure risk of exposure to harmful

substances or environments, potential fall–related incidents [154], or unsafe body postures

[29, 33]. Instead, they primarily focus on pose estimation or activity recognition [155, 156,

157]. There is a need for methods that can jointly detect workers and PPE, as well as their

activities, interaction with tools, and work context from site images and videos to allow for

modern tools that can minimize the inefficiencies associated with existing isolated safety

inspection tools.

Contributions: The main contribution of this study is a new machine learning-based

method to predict worker level severity using single workers’ visual data captured at a close

distance. Experiment results show that a combined worker state, including information of

the workers’ body pose, the activities being performed, their PPE use, their interactions

with tools and material, and the presence of workplace hazards, is the most informative for

this prediction task. This study also contributes to the body of knowledge by providing

186,464 bounding box annotations of worker, PPE, tools, and material on a large scale

single worker bricklaying and plastering image dataset. In addition to the contributions, this

study presents two technical improvements. (a) a joint–task model for recognizing objects,

worker activity, and worker body pose from a single image. This model is more efficient

and achieves comparable performance than using individual models for each sub-task. (b) a

spatio-temporal graph neural network model to refine frame–wise worker activity recognition

by taking in per-frame object, activity, and keypoint predictions. These two improvements

foreshadow a unification of worker activity recognition, worker PPE compliance checking,

and worker ergonomic risk monitoring tasks from videos of workers taken at a close distance.

Finally, single worker severity levels are predicted by a trained classifier on a dataset of

images of construction workers accompanied with ground truth severity level annotations.

The severity level prediction model using the full worker state achieves over 85% cross–

validation accuracy on the test data.

The following section reviews the most relevant work on risk analysis models, visual–

based unsafe action recognition, safety inspection, and ergonomic risk analysis. The third

section introduces the proposed risk analysis model, the breakdown of risk formulation, and
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the human study procedure. The fourth section introduces the vision model used for joint

activity recognition, object detection, and pose estimation. The spatio–temporal model for

refining activity recognition is also presented. The fifth section introduces a bricklaying

and plastering activity dataset used for model verification. The sixth section presents the

details on model specifications and experiment setups. The seventh section analyzes the

experiment results. Finally, the findings from this work, the limitations and open research

areas are discussed.

4.2 Related Work

Prior research related to this study can be categorized into two buckets: (1) safety risk

analysis and (2) computer vision–driven techniques for worker safety inspection, ergonomic

assessment, and activity recognition. As the present study covers a broad range of topics

and techniques, we offer a list of key features and their code names from previous studies

and this work. This list and Table 4.1 summarize previous studies’ scopes, objectives, and

their main differences with this study. The list of key features in this study are:

• DET: Detect presence of worker or PPE

• HOI: Recognize worker interactions or relations

• 2DWP: Estimate worker pose from images

• 3DWP: Direct reconstruction of 3D worker pose from a single image

• AR: Recognize construction activities

• FAR: Provide frame-level activity labels

• MT: Learn multiple tasks jointly

• SP: Model spatio-temporal dependencies
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4.2.1 Safety risk analysis models

A number of prior work on construction risk analysis identify potential area where risk anal-

ysis methods can be integrated with safety inspection practices. Hallowell and Gambatese

(2010) [158] proposes a safety equilibrium equation, measuring (a) the safety risk as the

sum of all risk scores associated with construction activities conducted in a project and

(b) the safety capacity of a safety program. Here the safety capacity refers to the ability

of safety program elements to mitigate a portion of the common safety risks [158]. For

a construction activity such as climbing ladder and transporting material, it is associated

with a set of frequently observed worker injury causes, such as contact with objects, falls,

and overexertion. Risk scores of these causes are summed as the total risk score for that

construction activity. Individual risks are measured by the likelihood of injury from the

historical records and a pre-determined severity scale. The CHASTE risk analysis method

[149, 7] estimates loss-of-control (unwanted, undesired) event risks by the probability of

events, expected severity of damage, crew size, and spatial–temporal degree of exposure to

hazards during incidents. Real–time risk monitoring [159] estimates the real–time risk as

the expected cost of all possible safety states at each time stamp. In practice, the real–time

risk formulation can be applied for both online monitoring and offline analysis of time series

data. Results aggregated over an event’s duration can be used as the the risk score for an

activity in Hallowell and Gambatese (2010) [158] and the expected severity level in Sacks

et al. (2009) [149]. Paltrinieri et al. (2019) [160] and Poh et al. (2018) [91] validated

machine learning approaches to classify risk indexes and categories. Their findings show the

practicality of learned classification models for estimating severity from safety observations.

This paper also takes a learning approach to estimate severity levels. However, the pro-

posed model is applied on a single worker level and uses visually recognized information

referred to as the worker state as its input features. An approximation heuristic is used to

handle a much larger state space than that used by Årnes et al. (2005) [159].
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4.2.2 Computer vision–based safety inspection

A large body of prior work focuses on detecting PPE (e.g., hard hat, safety vest) using

construction site visual data. Early work on this topic uses low-level image features such

as edges [161] and histograms of oriented gradients [39]. Classifiers such as the support

vector machine and k-nearest neighbors are used on image features [162]. More recently,

deep learning–based object detectors have been used to detect hard hats [163, 164, 165, 75,

30, 166], safety vests [164, 30], harnesses [56, 154, 30], and many other protections such as

safety glasses [30]. Research has also explored human–object interactions to recognize PPE

use in various work conditions including indoors and outdoors [30, 75, 166]. These methods

only focus on the recognition task and as such, do not offer any measurements on safety

risk. Different from prior work, this paper only use visual–based PPE compliance results as

a component of the overall risk analysis by integrating that with an assessment of worker

activities, body posture as well as the work context.

4.2.3 Computer vision–based ergonomic risk analysis

Over the last few decades, a number of postural profiling and evaluation systems, such as

the Ovako Working Posture Assessment System (OWAS) [167]; the Rapid Upper Limb As-

sessment (RULA) [168]; the Rapid Entire Body Assessment (REBA) [169]; and the Posture,

Activity, Tools, and Handling (PATH) method [170] have been introduced in the literature,

however practical deployments and evaluations using these systems are often conducted

manually. Ray and Teizer (2012) [43] present one of the earliest methods for automatic

worker ergonomic analysis based on visual data. Their method uses Red–Green–Blue–

Depth (RGBD) sensors and estimates various body postures of a worker such as raised

arms, standing, squatting, bending, and crawling by checking the 2D configurations of pre-

dicted worker body keypoint locations. However, the estimated poses are directly used to

recognize safety incidents without measuring their severity. More recent works on visual

ergonomic assessment feed visually estimated poses and joint angles to the OWAS, REBA

and RULA evaluations systems. For instance, MassirisFernández et al. (2020) [171] consid-

ers the single camera positions to adjust estimated 2D keypoint locations and then estimate
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RULA scores. Liu et al. (2016) [172] propose a 3D human skeleton extraction method from

stereo video camera. Some of the recent worked have reconstructed a set of 3D keypoint

locations based on the image-based recognition of the body posture. For instance, Zhang

et al. (2018) [32], Yu et al. (2019) [29], and Chu et al. (2020) [33] estimate 2D keypoint

locations first and transform the 2D keypoints to 3D coordinates using various pretrained

2D to 3D human pose conversion models. The resulting 3D worker skeletons are used to

generate OWAS pose codes or to calculate REBA scores. High inter-observer agreement is

achieved between the visual-based REBA scores and REBA scores generated from wearable

Inertial Measurement Units (IMU). Their work shows that existing visual-based pose esti-

mation models can be reliability used for localizing workers’ 2D and 3D body keypoints and

generating pose assessment scores. However, one common limitation of the aforementioned

work is that the context of worker activity and workplace is not considered as a part of the

ergonomic analysis. Similar to the PATH method –which extends the OWAS approach by

also considering workers’ activity and tool use– this paper leverages worker pose, activity,

PPE, tools, material, and context, simultaneously; however different from PATH, this pro-

cess is entirely automatic. As a simple illustration of this idea, the OWAS system is used

and the pose classification of Zhang et al. (2018) [32] is followed. As such, this paper con-

tributes to the body of knowledge in visual-based ergonomic assessment by extending these

methods and specifically unifying the recognition with PPE compliance risk analysis as well

as activity recognition.

4.2.4 Computer vision–based worker activity recognition

Construction resource activity recognition is a well studied topic [173, 174, 175, 42, 40, 176], a

more comprehensive review can be found in Yang et al. (2015) [177]. Recent computer vision

methods recognize worker activities from video feeds by applying conventional computer

vision model architectures and pipelines which rely on hand–selected features. Yang et al.

(2016) [53] use dense trajectory features to classify worker activities in recorded video clips.

Luo et al. (2018) [156] apply temporal and spatial streams to classify workers activity in

recorded construction site videos. Luo et al. (2019) [178] apply RGB image, optical flow,
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and grey image streams to classify worker activities in a steel reinforcement task. Ding et

al. (2018) [179] integrate a 2D convolutional neural network and a long short–term memory

network to recognize unsafe actions in recorded worker climbing ladder videos. Luo et al.

(2019) [180] apply a 3D convolution neural network on tracked workers and label activity

for each worker tracklet. Luo et al. (2019) [181] use a probabilistic graphical model to refine

worker activity labels in untrimmed videos. Other more recent works explore worker activity

recognition assisted by other high–level visual information. Cai et al. (2019) [182] improves

group activity recognition by using worker head orientations as attention cues. Roberts

et al. (2020) [155] simultaneously perform activity recognition and worker pose tracking

in untrimmed videos and show that activity recognition can be improved by incorporating

recognized pose. This paper builds on the same idea of Roberts et al. (2020) [155] to jointly

perform detection and activity recognition, but it is different in may ways. First, object

features for tools are added along with pose features to assist activity recognition. Second,

the present study also performs frame–wise activity recognition, but uses single images

instead of stacks of images as input. This allows a unified visual model to simultaneously

generate object, activity, and pose predictions, hence much less computation resource is

needed. Luo et al. (2019) [181] is close to the present study in terms of probabilistic

graphical modeling of activity recognition; however, their method does not use pose, tool,

equipment, material information as the basis of their recognition.

The present study applies a spatio-temporal graph modeling for activity recognition that is

inspired by the structural Recurrent Neural Network (RNN) [183]. The introduced Structural

RNN recognizes human activities by modeling humans and objects as nodes in a graph,

pairwise human–object and object–object relations at a time step t as spatio-temporal edges,

and transition of the same node through time as temporal edges. With the goal of predicting

nodes’ labels (i.e., human activity), this architecture uses a factor graph formulation to model

each node’s factor function and each pair-wise edge’s factor function. This formulation is

tailored to treat worker activity, pose, and interactions with tools and materials at time step

t as nodes, and nodes’ relations as edges. In the Results and Analysis section, it is shown

that this new formulation significantly improves frame-wise activity recognition.
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Figure 4.1: Workflow of the presented risk analysis model. Site image used as input is from
the dataset introduced in Yang et al. (2016) [53].

4.3 Method

4.3.1 Risk Analysis Model Using Multi-type Visual Information

A new single worker risk analysis model is proposed in this study and the workflow is

illustrated in Fig. 4.1. The input data is a stack of consecutive frames of an single worker

image taken at a close distance. In step 1, the model first processes every image from

the stack and produces initial predictions of worker activity, PPE, tools, material, and

2D body keypoints. In step 2, a spatio–temporal model refines activity recognition from

per-frame recognition results. In step 3, the estimated 2D body keypoints are lifted to

3D coordinates using a pretrained keypoint conversion model [184]. In step 4, each single

frame’s safety severity level per worker is predicted with a trained classifier taking the visual

recognized results. With these four steps, worker risk score can be calculated . In this

paper, the proposed risk analysis model is validated with single worker outdoor bricklaying

and plastering image dataset. To extend to other single worker construction activities, the

workflow requires new images taken with similar worker-camera configurations to images

used in this study as well as image annotations using the presented format. Models trained

in this study can be fine-tuned to other activities to reduce data size requirements.
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Risk Analysis Formulation

The risk formulation in Årnes et al. (2005) [159] is followed by using a discrete state–space

and a function that maps a state to a severity level. The state space describes a single

worker’s state at time t. A worker state is defined as a vector with nine components: (a)

three components from the pose codes of worker arms, back, and legs; (b) one component

containing worker activity label ; (c) two components for detecting hard hat and gloves as

two required worker PPE; (d) two components for tools and material interactions; (e) one

component for work context to indicate potential falling to a lower level hazard.

P (state) denotes the probability distribution of worker states when a worker’s body pose,

and the presence of PPE, tools, and materials are observed in a visual frame. S(state)

is the severity level of worker in a state. An assumption is made that components are

independent given the input image. This allows a simplification in modeling state probability

by products of individual probability instead of a joint probability space. Then P (state) can

be evaluated using visual recognition model predictions such that P (state) =
∏

i P (i), and

i is a component in the worker state. Thus risk score (Rt) is computed through Eq. 4.1.

Rt = E[P (state)S(state)] =
N∑
j

S(j)
∏
i

P (i) (4.1)

where j is the jth possible worker state generated by visual models’ predictions. Because

of the high dimensionality in the worker state space and the high confidence outputs of deep

learning models, in practice, the distribution P (state) is peaked at one state. An example

of this phenomenon is shown in Fig. 4.2. Since the probability mass is concentrated in a few

possible worker states, Eq. 4.1 can be approximated by considering a few top likely worker

states, i.e., those who allocate more than 95% probability mass. Computation of a worker

state probability is explained in the Experiment and Implementation Details section.

Worker Postural Code Using The OWAS System

In this method, a worker’s arm, back, and leg poses is classified similar to the OWAS pose

profiling [167] and it is later implementations for visual-based ergonomic assessment [32, 28].
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Figure 4.2: An example of the highest confidence worker state predicted by visual models.
Left figure shows a visualization of model predictions on objects, activity, and 2D body
keypoints that define the mostly likely worker state. Right figure shows prediction
confidence scores of the mostly likely worker state’s components.

Fig. 4.3 shows the worker’s body keypoints arrangement and pose classification angles. Given

the estimated gravity direction, poses are classified based on the angles between skeleton

(vectors that connect keypoints) and the gravity direction (see Back1, Back2, Arms, Legs

angles in Fig. 4.3b). Pose code criteria are listed in Table 4.2, following recommendations

in Zhang et al. (2018) [32]. Fig. 4.4 shows two examples of arms poses. More details on

the estimated gravity direction is presented in the Experiment and Implementation Details

section.

Machine Learning–Based Severity Level Classification

The worker–level severity S(state) of a worker state is estimated with a classification model

trained on ground truth human ratings. Participants rate one of the four severity levels:

Negligible, Low, Medium, and High. These severity levels (Table 4.3) are defined similar to

OWAS’s action categories. A logistic regression model is fitted using worker state features

and human severity level ratings. The severity levels can be converted to a normalized

severity weight from 1 to 100 for calculating the final risk score, similar to the method

proposed in Rozenfeld et al. (2010) [7]. Note that the absolute values of severity weights
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(a) Body keypoint arrangement (b) pose classification angles

Figure 4.3: Worker body keypoints used for pose classification. The right figure shows four
types of angles used to classify pose: the top two types of angles for back, lower left for
arms, and lower right for legs.

Table 4.2: Pose classification using the four types of angles

Body Part Positions Angle Range

Arms

A:Both arms on or below shoulder

level
Both Arms angles ≤ 90°

B: One arm on or below shoulder

level
One Arms angles > 90°

C: Both arms above shoulder level Both Arms angles > 90°

Back

A: Back straight Both Back1 and Back2 angles ≥ 160°

B: Back bent Back1 or Back2 angle ∈ [120°, 160°)

C: Back bent heavily Back1 or Back2 angle ∈ [0°, 120°)

Legs

A: Standing straight Both Legs angles ≥ 160°

B: Knee bent At least one Legs angle ∈ [60°, 160°)

C: Squatting Both Legs angles < 60°
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(a) Applying plaster with both arms on or
below shoulder level

(b) Applying plaster with one arm above
shoulder level

Figure 4.4: Snapshots of arms positions during plastering activity. Image from dataset
introduced in [53].

here do not represent any probability or likelihood, they are intended to represent relative

importance for reporting instances. Severity weights are interactive parameters that can be

adjusted by safety personnel adapting to particular projects and jobsites. It is recommended

to adjust the relative values between each severity weights based on the degree of harm and

the magnitude of the potential loss. More details in obtaining ground truth severity level

annotation is shown in the “ Experiment Setup and Dataset” section.

4.3.2 Visual Recognition Models

Two types of model are developed to automatically recognize workers’ activities, poses, PPE

use, tool and material interactions from video frames. The first model is a modified version of

Mask RCNN [46], which in this paper it is referred as the Object–Activity–Keypoint (OAK)

RCNN model. This model performs the following tasks simultaneously: detecting worker,

material, PPE, and tools; recognizing per–frame worker activity; estimating a worker’s 2D

body keypoints’ locations. The second is a spatio–temporal graph neural network model

which refines per–frame activity recognition results by connecting recognition results across

frames. This model is referred to as Act-STG.
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Table 4.3: Severity level definitions

Severity Level Severity Weight Definition

Negligible 1

Activity and workplace context do not cause harm

to worker’s head, arms, hands, back, or legs. No

action required.

Low 5

Activity and workplace context may cause slight

but no apparent harm to worker’s head, arms,

hands, back, or legs. Worker must be checked in

the near future.

Medium 25

One of head, arms, hands, back, and legs is sub-

ject to acute or chronic harm caused by worker’s

activity and workplace context. Corrective actions

are required as soon as possible.

High 100

Two or more of head, arms, hands, back, and legs

are subject to acute or chronic harm caused by

worker’s activity and workplace context. Immedi-

ate corrections are required.
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Object-Activity-Keypoint (OAK) RCNN Model

The model’s network architecture for per-image object detection, activity classification, and

keypoint estimation, is shown in Fig. 4.5. The OAK model is based on a generalized RCNN

framework and consists of four parts: the backbone feature maps, an object detector, a

keypoint estimator, and an activity predictor. For backbone feature maps, a pretrained

Reset50 + FPN [80] convolutional neural network is used as model initial weights; the

output image feature (layer4 feature) is a 3D tensor whose depth is 256 and height and

width are proportional to image height and width. The object detector is a Fast RCNN

model with region of interest pooling (RoIAlign) layer [46]; the pooled regional features

are used to predict object bounding boxes’ locations and classes (Fig.4.5a). The activity

recognition head pools the regional features from the whole convolutional feature maps

(Fig.4.5c). The keypoint estimator is a variation of Mask RCNN with a keypoint estimation

head (Fig.4.5b). The keypoint estimation head takes a detected worker bounding box and

pools its regional features again. This regional features are fed to a mini-network consisting

of four convolutional layers and one transpose convolutional layer. The keypoint head output

is a 4D tensor of size 1×C ×W ×H, with C as the number of keypoint classes and W and

H being the regional feature maps’ height and width; in the present study they are both

56. For each channel in C, the location (w, h) with the highest confidence indicates that

keypoint’s location in the feature map. A final transformation is used to convert keypoint

locations from feature map coordinates to image coordinates. The 3D keypoints’ locations

are generated using an off-the-shelf keypoint conversion model [184] which can take 13 2D

body keypoints to 17 3D body keypoints. Note that the three heads reuse the backbone

convolutional features in both training and testing phases. This treatment significantly

reduces model size and inference time compared to training three separate models, while

keeping a comparative performance. More details are presented in the Results and Analysis

section.
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(a) Object detection module

(b) Keypoint estimation module

(c) Activity classification module

Figure 4.5: OAK model architecture. All modules share the same input image and
backbone convolutional feature map; each task is performed by a specific head. Model
input images from dataset introduced in Yang et al. (2016) [53].
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Spatio-Temporal Graph Model for Activity Recognition (Act-STG)

A spatio-temporal graph G = (V,ES, ET ) is composed of a collection of random variables

V that are associated with nodes, a collection of spatio-temporal edges ES between a pair

of nodes at time t, and a collection of temporal edges ET connecting the same node from

time t to time t + 1. Such a graph models a probability distribution of nodes and is used

to predict node labels or real value vectors y at time t [183]. This formulation is considered

in the present study to refine activity recognition (Fig. 4.6) with per–frame activity, worker

body keypoints, and detected tools and materials as nodes in the graph. Jain et al. (2016)

[183] apply a factorization of this graph to simplify marginal probability computation with

a factor function Ψ(yv, xv) for each node, and a factor function Ψ(ye, xe) for each edge; xv

and xe are feature representations for each node and edge, respectively.

As shown in Fig. 4.6a, to construct a model that has a scalable representation of an

arbitrary size graph, a pseudo node is introduced representing the summarized features for

the detected tools and materials (Eq. 4.2), where fMLP is a single feedforward network to

map bounding box regional features to graph node features, and Zobj is the final object

feature averaged from all objects. A similar pseudo node is introduced for all estimated

worker body 2D keypoints (Eq. 4.3) to generate a summarized keypoint feature Zkp for

workers at each frame. Vector a in Fig. 4.6a is the pooled regional activity feature from the

OAK model. When Fig. 4.6 is viewed in color, red color refers to activity nodes and factors,

green color refers to object nodes and factors, and blue color refers to keypoint nodes and

factors. Note that to reduce overfitting, predicted activity scores from OAK model are not

used in Act-STG as a feature.

Zobj =

∑
ni
N

;ni = fMLP (obji) (4.2)

Zkp =

∑
ki

K
; ki = fMLP (kpi) (4.3)

Similar to structural-RNN [183], a factor graph (see Fig. 4.6b) is used to formulate the

spatio-temporal graph (Fig. 4.6a). Nine factors are defined in total: three node factors
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(a) Proposed spatio-temporal graph.
(b) A factor graph representation of the
proposed spatio-temporal graph.

Figure 4.6: Structure RNN model for spatio-temporal modeling.

for activity (fact), objects (fobj), and keypoints (fkp), three spatial edge factors connecting

activity and objects (rao), activity and keypoints (rak), and objects and keypoints (rok), and

finally three temporal edge factors that model time propagation of activity (ra), objects

(ro), and keypoints (rk). While the spatio-temporal edge factors capture the relations of

recognized activity, detected objects, and estimated keypoint locations between frames, the

node factors refine per-frame activity using the spatio-temporal features. All factors in the

present study are implemented with Gated Recurrent Unit (GRU) [185]. Like many graph

neural network models, the temporal update rules from time t to time t + 1 for Act-STG

are defined as in the following:

et+1
ao = rao

(
sta + sto

)
et+1
ak = rak

(
sta + stk

)
et+1
ok = rok

(
sto + stk

) (4.4)

And the spatial update rules are:
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et+1
k = rk

(
Zk+1
kp + et+1

ak + et+1
ok

)
et+1
o = ro

(
Zk+1
obj + et+1

ok + et+1
ao

)
et+1
a = ra

(
ak+1 + et+1

ao + et+1
ak

) (4.5)

where e is the output and s is the hidden state of each factor. The final activity prediction

F is a summation of all node factor predictions:

F t+1 = fact
(
et+1
a

)
+ fobj

(
et+1
o

)
+ fkp

(
et+1
k

)
(4.6)

4.4 Experimental Setup and Dataset

The image data used in the present study is originated from a collection of video clips first

introduced by Yang et al. (2016) [53]. The original video resolution is 240p. The majority

of the original video collection captured single worker outdoor construction activities and

was taken at a close distance to workers. Yang et al. (2016) [53] has provided video–

level activity labels, such as bricklaying and plastering. Roberts et al. (2020) [155] have

augmented a subset of bricklaying and plastering videos and have added frame–wise activity

labels and single–worker body keypoints. This work extends the annotations in Roberts et

al. (2020) [155] by adding per-frame object bounding box annotations of PPE, tools, and

material and video level workplace context annotation. Bounding box annotations of PPE,

tools and materials were outsourced to Alibaba AI Lab and their quality were thoroughly

and rigorously reviewed by construction experts to correct missing and mis-labeled objects.

4.4.1 Dataset Statistics and Characteristics

Images in the presented dataset contains a high inter and intra–class variance in terms of

worker appearance, workplace background, and camera viewing angles. In the bricklaying

set, 18 workers are captured in 179 videos. In the plastering set, 9 workers are captured in

122 videos. Different workers have the distinguishable appearance, motion, and surrounding
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Figure 4.7: Annotation examples of bricklaying task. Each frame is annotated with an
activity label, a set of body keypoints connected by line segments, and a set of object
annotations on PPE and tools. Image from dataset introduced in Yang et al. (2016) [53].

workplace context. Each worker is recorded from more than one camera viewing angles and

distances, representing highly diverse motion patterns in images. Images used in this study

have a realistic representation of real–world bricklaying and plastering data complexity.

Building on previous work, the image dataset presented in this study provides abundant

annotations for single worker activity, worker body pose, and PPE, tools, material object

bounding boxes, and potential workplace hazard as context labels. Context labels indicate

the potential hazard of workers falling to a lower level. In total, this image dataset contains

36,969 worker activity labels, 186,464 object bounding boxes, 480,597 worker body keypoints,

and 69 video-level context labels. Table 4.4 shows the definitions of activity, PPE, tools,

and material for bricklaying and plastering sets. 13 body keypoints are annotated: nose,

shoulders, elbows, wrists, hips, knees, and ankles. Qualitative annotation examples are shown

in Fig. 4.7 and Fig. 4.8 for bricklaying and plastering, respectively. A detailed annotation

breakdown by training and testing sets is presented in the following section.

The majority of images in this dataset focus on outdoor construction activities in com-

mercial projects. However, there are two indoor construction workers in the plastering set,

e.g. the right worker in Fig. 4.8. The camera viewpoint constraint due to small and clutter

indoor space can be critical to apply the proposed method on indoor construction images

because annotating and training on OAKs and severity levels are more challenging when a

worker’s frontal and side view is not available.
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Table 4.4: Activities and objects for bricklaying and plastering.

Task Activity Description Objects

Bricklaying

A: Prepare material

Collect mortar or

brick, put mortar on

brick, or break brick

Hard hat,

gloves, masonry

trowel, mortar

container, brick
B: Place material

Place brick or spread

mortar on wall

C: Consolidate placement
Tap brick into place or

remove excess mortar

Plastering

A: Collect plaster
Collect plaster with

hawk or hand board
Hard hat,

gloves, masonry

trowel, mortar

container, hawk
B: Transfer plaster

Transfer plaster be-

tween hawk or hand

board and trowel

C: Apply plaster
Deposit and spread

plaster on the wall

Figure 4.8: Annotation examples of plastering task. Each frame is annotated with an
activity label, a set of body keypoints connected by line segments, and a set of object
annotations on PPE and tools. Image from dataset introduced in Yang et al. (2016) [53].
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Table 4.5: Annotation numbers in training and testing sets

Split Frame–Level

Activity

Labels

Frame–Level

Object Labels

Frame–Level

Keypoint

Labels

Video–Level

Hazards

Labels

Bricklaying
train 12,146 68,370 157,898 32

test 9,327 53,806 121,251 20

Plastering
train 8,829 37,303 114,777 12

test 6,667 26,985 86,671 5

4.4.2 Data Split

To validate vision models and the proposed risk analysis method, the dataset is split by

workers. For each worker conducting that task, (a) when the number of videos for this

worker is even, training and testing videos are randomly split by half; (b) when the number

of videos is odd, extra videos are placed into training set. Finally, the bricklaying task has

101 videos in the training set, and 78 videos in the testing set. The plastering task has 67

videos in the training set, and 55 videos in the testing set. The dataset is split in such way

to avoid almost identical images in training set “bleed” in to testing set while diversifying

testing data. Vision model experiments and risk analysis human calibrations are conducted

on the testing set videos. Table 4.5 shows a detailed annotation breakdown for traning and

testing sets.

4.4.3 Worker Severity Level Annotation

Only testing images of bricklaying and plastering sets are used to obtain ground truth

annotations of worker severity level. Since labeling severity level requires substantial safety

knowledge and can be subjective to annotators’ own experience, a two-stage annotation

is applied to obtain consistent severity level labels. In the first stage, a number of safety

experts are invited for an online survey to rate severity levels on 10 randomly selected images.

Instruction and severity level definitions are provided in the online survey. All annotators
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Figure 4.9: The interface used for the second stage severity level annotation. Image from
dataset introduced in Yang et al. (2016) [53]

Table 4.6: Numbers of ground truth worker severity level annotations

Task Negligible Low Medium High

Bricklaying 33 88 58 10

Plastering 45 42 96 34

are anonymous and encouraged to disclose their years of experience in construction safety.

A multi-participant inter-observer agreement test [186] is conducted to find annotators in

close agreements. These annotators are later invited for the second stage annotation where

a randomly selected image is presented in an interface (Fig. 4.9). Annotators are asked to

select a severity level for the depicted worker and click the “Next Image” button to save

their annotations and proceed to the next image. Each image will be annotated at most

once. Annotation ends when all test images are annotated or participants close the interface.

All severity level annotations collected in the second stage are used as final ground truth

severity labels. In the first stage annotation, 7 participants achieved a 0.64 kappa score.

This is close to the 0.7 kappa score of safety index prediction from Poh et al. (2018) [91]. 4

participants have over 5 years of experience in construction safety and 3 participants have 1

to 3 years of experience in construction safety. In the second stage, the selected participants

annotated 189 bricklaying images and 217 plastering images (see severity level examples in

Fig. 4.10). Ground truth severity level annotations statistics are shown in Table 5.
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Figure 4.10: Examples of severity level annotations. Upper-left: negligible; Upper-right:
low; Bottom-left: medium; Bottom-right: high. Image from dataset introduced in Yang et
al. (2016) [53].

4.5 Experiment and Implementation Details

4.5.1 Experiment Procedure

For each task, an OAK model is first trained, then an Act-STG model, and apply the trained

models for the testing set. Predicted 2D keypoint locations are fed to the 2D-3D keypoint

conversion model to generate 3D keypoint locations. Finally, predicted activities from Act-

STG, detected PPE, tools, and material from OAK, estimated 3D keypoints, and ground

truth work context condition are combined as worker states. A subset of testing images for

both tasks is evaluated by human, estimated worker states for these images are used to fit

logistic regression models. All training and testing is run using a system with an Intel i7

8700K processor, a Nvidia RTX 2080Ti graphics card, and 32 Gb memory.
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4.5.2 Evaluation Metrics

Due to being computationally intensive, the inference speed, memory consumption, and the

performance of the OAK model are evaluated first. Per-frame activity prediction of Act-STG

and and severity level classification are evaluated as a high–performing visual recognition

model is essential for the severity classification. The model performance metrics are defined

as in the following.

A correctly recognized instance is called a True Positive (TP). An falsely recognized in-

stance is called a False Positives (FP). A missed ground truth instance is called a False

Negative (FN). Precision is defined as the ratio between TP and TP+FP, and recall is

defined as the ratio between TP and TP+FN. By adjusting the threshold for prediction

confidence, a precision-recall curve of a class is generated. The Average Precision (AP)

is defined as the area under the precision-recall curve, mean Average Precision (mAP) is

defined as the average of AP for all classes. The mAP metric evaluates the overall model

performance across all possible prediction score thresholds; it is a more robust metric focus

on the general model performance [67, 45, 46].

For activity recognition, mAP is reported using activity scores of all classes and the

ground truth activity class label each frame. Precision and recall averaged over activity

classes are reported, in this case a frame wise activity prediction is the class having the

highest activity score. mAP for object detection and keypoint estimation should be reported

considering localization errors. The Intersection over Union (IoU) is defined as the ratio

between intersection area and union area between a detected bounding box and a ground

truth bounding box. In the present study, a 0.5 IoU threshold is used to determine whether a

ground truth object instances is matched to a detected object instance. So object detection

is evaluated by mAP@IoU=0.5. For keypoint estimation, the Object Keypoint Similarity

(OKS) [67] is defined in Eq. 4.7.

OKS =
1

N

∑
i

exp

(
−d2i

2s2k2i

)
(4.7)

where i is the ith keypoint, N is the total number of keypoints, di is the Euclidean distance

between a ground truth keypoint and its corresponding detected keypoint, s is the person
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bounding box area in pixels, and ki are scaling factors for each type of keypoint: 0.026, 0.079,

0.072, 0.062, 0.107, 0.087, and 0.089 for the nose, shoulders, elbows, wrists, hips, knees, and

ankles, respectively [67]. In the present study, a worker’s pose is correctly detected if its

OAK is greater or equal to 0.5; hence the pose evaluation metric is mAP@OAK=0.5.

Regressing severity level is evaluated by the 5-fold cross–validation accuracy. This accu-

racy is computed by averaging accuracy of each fold while treating the rest 4 folds as training

data. Standard error on cross–validation accuracy is used as a measurement of deviation.

4.5.3 Computing Worker State Probability

Worker state probability is computed by the product of components probabilities. For

example, the probability of hard hat use is the detected hard hat box’s probability ph if such

box’s exterior is within 50 pixels of the nose’s 2D location; otherwise it is (1−ph). The same

50-pixel criterion is applied for gloves, tools, and materials. Note this criterion is a hyper-

parameter that can be selected by users. Using 50 pixels works well in the presented dataset

as all images only contain a single worker and have dimensions of 240-by-320 pixels. For

crowded multiple worker images, a learned interaction recognition model is recommended

[30]. The probability of work context is zero or one because it is treated as given information

apart from the visual model outputs. The probabilities of arms, back, and legs are computed

based on their corresponding keypoints’ prediction scores. For example, the probability of

arms’ pose P (arms) is the product of left and right elbows’ probability and left and right

shoulders’ probability. An estimated keypoint’s probability is computed as the summed

probability over a rectangle box centered at the estimated location, because any keypoint

estimation within a certain distance of its ground truth location is not penalized in the OKS

keypoint evaluation. The size of the rectangle box is computed by using 10% of the worker

box’s height and width.
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4.5.4 Implementation Details

As previously mentioned, the OAK model is modified based on a Pytorch vision package im-

plementation of Mask RCNN. The joint training of object detection and keypoint estimation

is achieved by masking out keypoint targets for non-worker objects. The training process

is improved by initiating the backbone feature weights with a pre-trained Microsoft Com-

mon Object in Context (MS-COCO) [67] person keypoint estimator. For both tasks, OAK

models are trained with Stochastic Gradient Descent (SGD) optimizer with 0.9 momentum.

Learning rate is set as 0.001 with 0.1 decay at every five epochs, and weight decay is set as

0.0005 for each epoch. 9 epochs are trained to obtain the best models. Act-STG model is

also implemented using Pytorch. For each task, Act-STG model is also trained with SGD

optimizer and 0.9 momentum. The learning rate is set as 0.00001. Gradient clipping is set

as 50% of the gradient norm to achieve a stable training process. An off-the-shelf 2D-3D

person keypoint conversion model from the official code repository of Pavllo et al. (2019)

[184] is used; the gravity direction is assumed to be v = (0, 0,−1). Two qualitative examples

of keypoints conversion are shown in Fig. 4.11.

4.6 Results and Analysis

4.6.1 OAK Model Analysis

First, all models are profiled using the official Pytorch vision metric logger tool. At inference

time, OAK model runs at 26.6 frames per second and takes 887 MB memory. Compared to

a system running individual models for each sub-task (Bundled Model in Table 4.7), OAK

model takes 36.6% less time and 40.1% less memory. Act-STG and Keypoint conversion

models add negligible inference overhead. These results show that the proposed workflow

has the potential to process images at near real–time speed.

OAK model’s improvements in inference speed and space usage are at small or even no

cost of model performance. Table 4.8 shows that the OAK model achieves 83.2% mAP at

0.5 OKS for keypoint estimation on the bricklaying task, losing 0.5% mAP to the Keypoint
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Figure 4.11: Qualitative examples of 2D keypoint conversion to 3D keypoint. Image data
from Yang et al. (2016) [53].
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RCNN model. The OAK model achieves 88.8% mAP at 0.5 OKS for the plastering task,

outperforming the Keypoint RCNN model by 1.6% mAP. Even though the OAK model adds

one parallel task for activity and detects multiple non-worker object classes, it still achieves

comparable keypoint estimation capability to the original Keypoint RCNN on this construc-

tion worker dataset. Table 4.9 shows a similar trend for object detection performances. The

OAK model’s object detection performance is very close to that of the Faster RCNN model.

The OAK model achieves 78.7% mAP at 0.5 IoU for the bricklaying task and 69.6% mAP

for the plastering task, while the Faster RCNN model achieves 78.1% mAP and 70.6% mAP,

respectively. Surprisingly, the OAK model gains small improvements on activity recogni-

tion over the activity model. In Table 4.10, the OAK model reaches 62.5% mAP for the

bricklaying task, outperforming activity model by 0.7% mAP, it also reaches 75.3% mAP

for plastering task, outperforming the Activity model by 0.5% mAP. Precision and recall

results between the Activity model and the OAK model are also comparable, although OAK

model shows slight advantage in precision or recall. These results show that the proposed

strategy of merging low-level image features from different vision tasks into a common set

of convolutional feature maps does not significantly reduce model performance. In other

words, the three branches in OAK model share a common set of convolutional backbone

features, so the low–level image features are informed by three different tasks. However, the

high-level task features in their individual classifiers are not aware of how other tasks per-

forms, so their “communication” is indirectly through the low–level convolutional features

and backward gradients. This implies two things: the image feature is generalized by three

tasks; the convolutional network is over-parameterized such that there are enough space to

encode information for three different tasks.

4.6.2 Act-STG Model Analysis

Act-STG model fuses single–frame visual information (i.e., objects, activity, and pose) and

refine activity recognition from sequential data. Comparing Act-STG with the best single-

frame models in Table 4.10, Act-STG model significantly improves activity recognition per-

formance. For the plastering task, 7.6% increment in mAP, 6.2% increment in precision,
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Table 4.7: Model consumed resources

Model Averaged inference speed (ms) Model GPU usage (MB)

Activity model 12.3 438

Faster RCNN 22.0 453

Keypoint RCNN 25.0 590

Bundled models 59.3 1481

OAK model 37.6 887

Table 4.8: Keypoint estimation evaluation results

Model Keypoint mAP(oks=0.5) (%)

Bricklaying

Keypoint RCNN 83.7

OAK model 83.2

Plastering

Keypoint RCNN 87.2

OAK model 88.8

and 6.9% increment in recall are gained. For the bricklaying task, mAP, precision, and

recall performances are raised by 2.3%, 5.5%, and 2.8%, respectively. These results illus-

trate the benefits of capturing high-level spatio-temporal relations between different vision

information for activity recognition. Act-RNN removes objects and keypoints nodes in ACT-

STG, it serves as a baseline that simply models temporal activity. Comparing Act-STG and

Act-RNN, it is clear that modeling spatio-temporal relations from objects and keypoints

contributes to better activity recognition.

4.6.3 Severity Level Prediction Analysis

A generalized linear model framework is used with two constraints: (1) a ridge regression

penalty term; (2) weights are constrained to be non-negative. Table 4.11 shows the severity

level prediction results, the best model at the last row uses the full worker state as features.
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Table 4.9: Object detection evaluation results

Model Object mAP(IoU=.5)

Bricklaying

Faster RCNN 77.5

OAK model 78.7

Plastering

Faster RCNN 70.6

OAK model 69.6

Table 4.10: Activity recognition evaluation results

Model mAP (%) Precision (%) Recall (%)

Bricklaying

Activity model 61.8 60.6 56.4

OAK model 62.5 60.6 59.3

Act-RNN 62.6 61.5 60.3

Act-STG 70.1 66.8 66.2

Plastering

Activity model 74.8 65.7 72.0

OAK model 75.3 67.4 71.7

Act-RNN 76.1 68.7 73.4

Act-STG 77.6 72.9 74.8
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Table 4.11: Severity level prediction results

Bricklaying Plastering

Features Acc. (%) SE (%) Acc. (%) SE (%)

whole image 18.4 17.1 34.1 13.0

activity+context 50.5 4.6 54.8 1.3

PPE+tools+material 56.6 2.6 44.2 0.3

arms+back+legs 60.8 1.0 76.5 1.7

Full worker state 85.7 3.6 86.6 2.6

On the bricklaying task, the best model achieves 85.7% cross–validation accuracy (Acc.)

and 3.6% standard error (SE). On the plastering task, the best model achieves 86.6% cross–

validation accuracy and 2.6% standard error. These numbers show that regression models

can reliably predict human preference using the generated worker states.

In addition, an ablation study is conducted using variations of worker state components

and a fine–tuned ImageNet ResNet18 image classifier that directly predicts severity level

from whole image. The full comparisons are reported in Table 4.11. whole image represents

the ResNet18 image classifier; activity+context refers to the logistic regression model only

using activity and context components as the worker state; PPE+tools+material refers to the

classifier using PPE, tools, and material components as the worker state; arms+back+legs

refers to the classifier using worker’s pose components as the worker state; Full worker state

is the proposed method. The proposed severity level prediction model using the full worker

state achieves the best result. The reported results also show that severity level prediction

cannot be easily learned from pure image classification.

The best model for severity level prediction is not significantly biased towards particular

worker OWAS body pose codes and worker activities. However, severity level prediction

performance when a worker in the state “Knee bent” or “Transfer plaster” is slightly lower

than workers in other states. Detailed performance breakdown is presented in Table 4.12.

Note “n/a” under a class in Table 4.12 means no instance of that class in the images with

ground truth severity level annotations.
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Table 4.12: The best severity level prediction model performance breakdown by poses and
activities

Arms (%) Back (%) Legs (%) Activity (%)

Task A B C A B C A B C A B C

Plastering 84.5 86.4 n/a 89.3 82.3 85.0 89.2 78.0 90.4 77.8k 89.6 84.8

Bricklaying 86.4 90.0 n/a 84.6 86.8 87.0 91.4 82.3 n/a 81.4 92.4 85.0

For every frame in a given video, worker states are recognized and ranked by their prob-

abilities in descending order. The top worker states are counted until their cumulative

probability is over 95%. The severity level of each worker state is predicted using the best

model and converted to severity weights in Table 4.3. The proposed risk formulation in

Eq. 4.1 is used to generate a risk score for each frame. Fig. 4.12 shows three test set videos’

risk scores generated from the proposed method. A dot represents the calculated risk score

for a frame computed using, worker images are pointed to their corresponding risk scores and

frame numbers. These three videos are not used to train severity level prediction models.

The worker in the top video experiences the highest risk among the three likely because of

three factors, (i) he stands on an elevated surface with an open edge;(ii) he does not wear

any proper PPE; (iii) in the beginning his back was heavily bent. The worker in the middle

video is at higher risk in the beginning because of heavily bent back and not wearing gloves,

later his risk score increases because of applying plaster with one arm raised above shoulder

level and not wearing gloves. Compare three workers in the top middle, and bottom videos,

the bottom worker experiences lower risk because of properly worn PPE, even though his

back is bent during placing material.

4.7 Limitations and Open Research Areas

The foregoing experiment results and analysis show that automatically obtaining visual

knowledge of a worker has a potential to assist worker risk analysis. From a technical

standpoint, the present study also shows that abundant visual knowledge of a worker’s

activity, body pose, PPE use, and interactions with tools and material is beneficial for worker
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Figure 4.12: Calculated risk scores for three test set videos.
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risk analysis and can be efficiently obtained with a multi-tasked visual model framework.

Nevertheless, there are a few limitations that affect the performance, robustness, and

applications of the proposed method.

Data Collection: (i) the proposed method is validated mostly on images that capture

single worker outdoor bricklaying and plastering construction activities at a close distance

to workers. To extend this method to other construction site images, such as indoor con-

struction and far-field images, additional image OAKs annotations are necessary. However,

since the proposed OAK model and Act-STG are derived from generic computer vision

tasks, they can be fine-tuned and applied even if only partial sub-task data is provided for

the new applications. (ii) collecting ground truth severity level labels is still challenging,

as substantial safety knowledge and additional inter-observer agreement tests are necessary

to obtain high-quality labels. Annotators’ agreement can shift between companies, regions,

and countries. (iii) it is needed to avoid wasting annotation resources on the most frequent

severity levels because annotators recruitment can be expensive and slow.

Model Development: (i) heavy occlusion of body keypoints and objects can greatly

affect severity level prediction outcomes. Robust recognition under heavy occlusion is not

considered in this work as the dataset used has low occlusion in general. Robust models to

image occlusion are often explored in the context of object tracking, this is a work for future

development. (ii) worker pose is a crucial cue for safety professionals to assess risks. In this

study, an estimated 3D pose is used for predicting severity level. However, the estimated

3D keypoints are not explicitly evaluated in the present study. We entrust that duty to

an off-the-shelf model based on its high performance on generic benchmarks and visual

examinations of many construction site image examples. 3D keypoint localization can be

better evaluated against IMU-based 3D data [29, 33]. Another limitation of the off-the-shelf

keypoint conversion model is that camera viewing angles and distances to persons in generic

datasets may be different from those in collected construction site images. This difference

results in deviations in body pose classification. Future work in this direction will train 3D

body keypoint estimation models by construction worker images and their calibrated 3D

keypoint locations.

Application: Given the current state of development, the ideal scenario to apply the
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proposed method is through wearable cameras which are increasingly popular on job sites.

This satisfies the requirement of using outdoor, close-ranged worker images. Although the

proposed method runs at around 26 frames per second on a single desktop GPU, such a

powerful embedded system has not yet been commercially ready. So the proposed method is

used offline. Future explorations on system topics, such as hardware acceleration and network

communication, are needed to validate real-world case-studies of the proposed method.

4.8 Conclusions

In the present study, a visual–based risk analysis model is proposed for evaluating worker–

level risk. The proposed risk model leverages a worker state described by visually obtained

worker’s activity, worker’s body pose, PPE use, worker’s interactions with tools and material,

and workplace context. A joint learning on object, activity, and keypoints can be efficiently

obtained by a unified regional convolutional neural network framework. This strategy sig-

nificantly reduces resources required and achieves comparable model performance to models

that are dedicated for individual tasks. A spatio–temporal graph neural network model

that combines per-frame information on objects, activities, and keypoints is beneficial for

improving activity recognition. A machine learning–based severity prediction model takes

the worker state and predicts worker severity level. An ablation study shows that the full

worker state is more informative to predict severity level than any worker state using partial

visual information. These findings are validated with a newly introduced large image dataset

with exhaustive annotations of single worker activity, body pose, PPE, tools, and materials.

The final severity prediction model achieves 85.7% cross-validation accuracy for bricklaying

images and 86.6% cross-validation accuracy for plastering images.
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CHAPTER 5: CONCLUSION

5.1 Summary

In the past decade, the growth in volume of visual data collected on construction sites and

the development of modern computer vision have provided an unprecedented opportunity

to automate safety inspection and risk analysis processes on construction sites. These auto-

mated processes empowers safety inspection practices with more frequent inspection reports,

wider coverage of construction sites, and less expensive labour cost. Despite the fact that

commercially available visual–based automatic safety tools are already deployed over 1,000

construction sites in the U.S., many research questions are still need to be addressed for more

robust, accurate and explainable methods to assist safety managers. In this dissertation, I

presented my research on improving semantic, spatio-temporal visual understanding and in

particular how these methods can assist autonomous worker safety inspection and risk anal-

ysis. I hope the present study can inspire other to continue exploring systematic approaches

to improve automation in safety programs. Specifically, I have studied and presented the

areas below:

1. The introduction chapter presented the national level construction safety performance

in the U.S. and identified several gaps-in-knowledge between the “zero accident” vision

and current safety inspection programs. Limitations of previous research were iden-

tified and the research road map for this study was drawn. The succeeding chapters

presented the proposed solutions.

2. HOI recognition was used for structuring visual–based safety compliance checking. In

particular, a learning–based HOI recognition model was compared with a rule–based

HOI recognition model on a newly construction construction image dataset. It was
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found that while HOI formulation extends visual–based safety compliance checking

from zero–order object level to first–order object relation level, object detection per-

formance is crucial to HOI recognition models. While rule–based HOI recognition

methods have been used in previous work and proven to be a strong baseline, the real-

ity is that learning–based HOI is more robust to deal with real–world object detection

performance.

3. A new model to forecast motion trajectory of workers and equipment was proposed.

The model expanded the research scope of proximity hazard identification on construc-

tion sites. The model was validated and outperformed several baseline models using

visual object tracks collected from a real–world construction site as well as a generic

pedestrian trajectory forecasting benchmark. It was found that acute motion, such

as turning, stopping and starting, are the most challenging scenarios to forecast. The

proposed forecasting model is general and can be easily adapted to forecast worker

activity.

4. A survey from construction safety professionals found a consensus on rating worker

severity level from single images can be reached. While a simple image classification

model can not predict worker severity level well, using the worker state, a high–level

visual summary of a worker’s status, significantly improved worker severity level pre-

diction. A generalized object detection framework that unified worker activity recog-

nition, worker body keypoint estimation, and PPE, tools, and material detection, a

spatio–temporal graph neural network model for activity label refinement, and a 2D-3D

keypoint conversion model were used together to generate high quality worker state.

5.2 Open Research Opportunities

The present study proposed many new research directions for visual–based construction

safety management and showed promising results for future exploration. However, there are

few critical challenges and opportunities were less addressed in the study. The following

sections explains these topics in detail.
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5.2.1 Image–Language Models For Construction Safety Inspection

The image–language tasks is a family of machine learning tasks that associate textual data

to their visual correspondences. The holy grail of these tasks is often regarded as the Visual

Question Answering (VQA) [187]. In VQA, the machine is presented with an image and

a textual question, and is expected to answer the question based on image content by free

form answers or multiple choices. It is reasonable to imagine that the ultimate form of an

automated safety tool will be an “all–knowing” agent that can answer any safety relevant

questions that a safety professional may asks. This is close to the problem setting of VQA.

Nevertheless, unlike the general VQA, safety questions are likely to be limited to “how

many” and “yes or no” questions, and the answers needed to be explained by the machine to

convince safety professionals. So the question–answer–explanation format in grounded VQA

[188] and visual commonsense [189] are closer to what answering safety questions requires.

Future research is expected to explore a VQA–like system that answers natural language

safety queries based on a single construction site image or a repository of construction site

photologs or with the aid of external safety knowledge. In chapter 2, the HOI formulation

is introduced to address safety inspection tasks. HOI provides a basis to address VQA

in the construction safety settings, because some questions can be decomposed into HOIs.

Questions can also be generated from a scene graph, which is constructed by a set of HOIs.

A recent development on this topic in the built environment is the 3D Scene Graph dataset

[190], where 3D objects in point clouds are associated based on their relative positions.

5.2.2 Fairness In Computer Vision for Construction Safety

There are times when behavior–based safety programs are being used to place blame on in-

dividuals or organizations because its excessive focus on observing worker behaviors. While

many safety professionals agree that worker participation is an important factor of any

effective safety program, a “justified” blame (and the consequential negative rewards) is

detrimental to a company’s safety culture. To my best knowledge, existing visual–based

safety tools have not consider how their visual recognition models should be used to curb

(and not promote) prejudice and systematic bias in current safety management programs.
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On the other hand, computer vision models, if unchecked, are known for exploiting dataset

biases and correlating individual traits with outcomes. A recent example is how face recog-

nition models are proven to be biased toward people with darker skin colors. Evaluating

and ensuring fairness in visual–based safety tools is crucial for the continuous growth of

companies that provide these services. It is also a testimony to fulfill the human–centered

artificial intelligence vision. Work introduced in chapter 2, chapter 3, and chapter 4 provide

a basis for this exploration. High intra and inter–class annotations serve as benchmarks

to examine the degree of bias in the trained models. The crowd-sourced data annotation

process in chapter 2 and chapter 4 also provide the basis to control annotation distribution

in order to build fair datasets.

5.2.3 Low–shot Learning, Generative Models, and Synthesized Dataset for
Object Detection in Construction Sites

Building construction site image dataset are often faced with the following challenges: 1)

there are only a few open–sourced construction image dataset available and fewer companies

are willing to share their image data to the public; 2) annotating construction resources

requires professional construction knowledge; 3) there are too many rare classes in construc-

tion resources. Since these challenges are not uniquely faced by construction applications,

there are many tools that can be borrowed from the general machine learning community.

On the learning side, low–shot learning is used to handle extremely low example cases (less

than 10 positive examples); domain adaptation is widely applied to assist learning using

knowledge from similar tasks. On the data side, generative models, generative adversarial

network in particular, learn a high–dimensional distribution of the dataset and generate new

data by sampling from the learned distribution; Synthesized dataset, such as those rendered

from virtual reality engine, provides supplemental data to assist training. A recent notable

development of using large scale synthetic dataset is presented in [191]. In chapter 2 and

chapter 3, coarse level object categories are used because of this rare class issue. The PPE

and vehicle examples in chapter 2 and chapter 3 can be further annotated and used as a

basis for building fine–grained and few–shot recognition models for construction sites.
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