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ABSTRACT

This thesis focuses on the study of allocation mechanisms and pricing schemes

for the design and analysis of competitive electricity markets. Motivated

by the increasing demand-side participation in high- and low-voltage power

grids, we consider two-sided competition models where a finite group of pro-

ducers and consumers compete through scalar-parameterized supply offers

and demand bids. Acting as a smooth approximation to supply offers used

in practice, scalar-parameterized offers greatly facilitate mathematical anal-

ysis while preserving the primary determinants and mechanisms by which

market power is exercised in electricity markets. In the framework of a

pool-based market, characterized by a central dispatch and pricing mech-

anism, when strategic, capacity-constrained suppliers face strategic, price-

responsive consumers, we show that market allocative efficiency loss and

price markup at the Nash equilibrium are bounded. We demonstrate anal-

ogous efficiency bounds in the study of inter-area electricity markets where

we exploit scalar-parameterized offers to model budget-constrained price ar-

bitrageurs that compete against affine inter-area price spreads. Our analysis

provides important insights on the type of behavior that may occur at the

equilibrium including the pivotal role assumed by certain players, the im-

pacts of aggregate liquidity and uncertainty as well financial positions in

other electricity markets. Through the application of reinforcement learn-

ing algorithms we demonstrate that players can discover their equilibrium

actions even when they know little to nothing about the game setting.

The simplicity of scalar-parameterized supply offers that grant market ac-

tors’ one-dimensional action spaces while properly constraining their strate-

gic flexibility, render such offer/bid structures an attractive candidate for the

expansion of electricity markets to distribution grids. Motivated by the rapid

proliferation of distributed energy resources that increasingly hold value for

the grid either as power suppliers or flexible demand, we leverage scalar-
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parameterized supply offers together with appropriate pricing schemes to

design a pool-based market for the retail sector. Our goal is complicated by

the underlying physics of distribution grids that render the central dispatch

problem, in its full generality, non-linear and non-convex. To get around this

difficulty, we exploit semidefinite relaxations of the optimal power flow prob-

lem and leverage duality theory to define prices for electricity as the optimal

Lagrange multipliers of nodal real and reactive power balance constraints.

We demonstrate that such prices stand on sound economic principles that

together with scalar-parameterized offers/bids, constitute a comprehensive

mechanism for the expansion of markets to the low-voltage side of the elec-

tric power grid.
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CHAPTER 1

INTRODUCTION

This chapter presents the motivation for the thesis, gives the outline of the

chapters, and states the original contributions of the thesis. There are no ded-

icated chapters covering a literature review or to establish notation. Rather,

the literature is reviewed and notation is established in each chapter and

section where it is appropriate.

1.1 Electricity Markets: Where They Stand and

Where They Are Progressing

Spot pricing of electricity [1, 2] laid the theoretical foundations for the re-

structuring of wholesale electricity markets. The underlying purpose for

restructuring the power sector is, at least in theory, to unleash the forces

of competition, improve efficiency and eventually reduce the costs for con-

sumers. Decades of experience with restructuring has led to a bid-based,

security constrained unit commitment and economic dispatch model as the

reference paradigm for wholesale electricity market design, closely following

the guidelines of the original theory.

Restructured electricity markets are, typically, administered by a central

authority such as regional transmission organizations (RTOs) or indepen-

dent system operators (ISOs) that are responsible for clearing the market

while ensuring the stable and reliable operation of the power system. Figure

1.1 illustrates geographical areas in which organized electricity markets are

operated by an ISO/RTO, henceforth referred to as system operator (SO).

Each SO-operated electricity market reflects a two-settlement system with

day-ahead markets (DAMs) and balancing real-time markets (RTMs). The

DAM clears to meet the bid-in load for each hour of the day, one day in

advance. Power schedules and locational marginal prices (LMPs) are cal-
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Figure 1.1: RTOs/ISOs in North America. Uncolored regions represent states
that operate under the vertically integrated utility paradigm.

culated from the market-clearing process and these price-quantity pairs are

settled for all market participants. To reflect changes that may occur be-

tween day-ahead and real-time, the RTM is used to re-dispatch resources to

meet imbalances caused by variability and uncertainty, induced largely by

demand fluctuations and intermittent renewable generation.

Organized wholesale electricity markets have, indeed, contributed to re-

duction of electricity costs and encouraged innovation through competition.

For example, PJM reports that their market has saved consumers at least

$3.2 billion a year by integrating more efficient resources and ensuring the

lowest production costs [3]. Figure 1.2 illustrates how wholesale electricity

prices have remained largely flat since the introduction of markets in 1999,

while the generation mix is about 30% less carbon-intensive than ten years

ago. Even utilities located in fully regulated states benefit from organized

markets as they can offer or purchase electricity in the market when it makes

economic sense. However, there is growing concern that the ability of existing

electricity market designs to continue to deliver such benefits will drastically

diminish, as radical developments and transformations are under way.

This thesis focuses on three major forces propelling the overall transforma-

tion in the power industry and electricity markets: (1) massive deployment of

large-scale renewable generation, (2) increased participation of the consumer-

side, and (3) widespread adoption of distributed energy resources (DERs) in

the low-voltage grid. Such developments—facilitated by the deployment of

rapidly improving technologies that travel down the cost curve—raise nu-
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(a) (b)

Figure 1.2: Benefits of organized electricity markets: wholesale prices have
remained flat (left) and average emissions have steadily declined in PJM
(right).

merous markets design questions and require a growing toolbox of solutions,

a set of which is presented in this thesis.

Integration of grid-scale renewable resources such as wind and solar is

accelerating (see Figure 1.3) and the trend is likely to continue. Such re-

sources are uncertain, intermittent and largely uncontrollable, i.e., cannot

be dispatched on demand. Such variability makes it challenging to balance

demand and supply across a transmission-constrained power network at all

times. Current electricity markets accommodate said uncertainty in a rather

ad-hoc manner, e.g. by planning for the nominal scenario and choosing fixed

reserve margins to deal with forecast errors. Unfortunately, deepening renew-

able penetrations ultimately lead to greater forecast errors and prohibitively

large reserve margins [4, 5].

Unpredictability and variability are sometimes interpreted as “missing

markets” problems. This has been largely addressed through the introduc-

tion of ancillary service markets. However, having separate markets may cre-

ate opportunity for arbitrage or exercise of market power. Ideally, markets

should optimize against uncertainty at the forward stage, i.e., DAM, with

the explicit incorporation of uncertainty and produce price signals that in-

ternalize said uncertainty. Any such mechanism should yield efficient market

allocations and guarantee revenue adequacy, at least in expectation. More-

over, it should ensure bounded efficiency losses in market allocations and

societal welfare when participants exercise market power.

Besides suitable modeling and analytical tools, increasing coordination

across larger geographic areas with diverse resources and weather patterns

facilitates renewable resource integration. To harness the low-cost and clean
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energy from these resources we need an almost seamless operation of the

interconnected grid; that is an efficient way to transfer power across different

grids to move more renewable generation from the middle of the country to

the coasts. As such, consumers can receive the benefits of these resources

no matter how far away they are located. Moreover, a dynamic and effi-

cient scheduling of power across different regions, allows for real-time reserve

provision improving reliability, which is becoming increasingly critical due

to the variable output of these renewable resources. Even systems that are

not part of organized markets can benefit from regional coordination. For

example, CAISO and PacifiCorp formed an Energy Imbalance Market (EIM)

in 2014 to “manage resource deviations, smoothing out power flows so that

renewable energy is effectively integrated into the grid” [6]. The EIM covers

fourteen western states, comprising mostly of energy balancing authorities

that are not organized into regional markets.

Figure 1.3: Annual change in U.S. electricity generation by source.

The gathered momentum with grid-scale renewable generation is spread-

ing swiftly down the electric power value chain, as grids in many regions

become increasingly decentralized and host a growing number of distributed

energy resources (DERs). A DER is “any resource on the distribution system

that produces electricity and is not otherwise included in the formal NERC

definition of the Bulk Electric System (BES)” [7]. This encompasses many

resource types and technologies such as solar photovoltaics (PV), combined

heat and power (CHP), small-scale wind turbines, energy storage, demand

response as well as electric vehicles (EV) and EV charges.

While once viewed primarily as a threat to utility business models, DERs

are beginning to be considered as valuable tools to: reduce carbon emissions,

access new revenue streams for utilities and other providers, defer investment
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in transmission and distribution infrastructure, improve grid efficiency and

asset utilization for utilities and customers, and fulfill renewable portfolio

standards (RPS). DERs could develop into a significant tool for managing

integrated grid-scale renewable resources. For example, SOs could reach

behind the meter to tap into customers’ largely unused storage devices or

demand response to smooth out fluctuations in renewable output. In the

wholesale market, demand response at times of high renewable availability,

helps mitigate the revenue slump caused by renewable suppliers with near-

zero marginal costs [8]. However, the majority of demand flexibility is due

to residential and commercial customers connected at the low-voltage side

of the grid [9] and are currently largely excluded from wholesale markets.

To harness said benefits of DERs, the industry needs first to develop the

regulatory and market structures necessary to access, monitor and manage

these resources.

The challenge involves efforts to simulate, quantify, and monetize the value

created by DERs. Since these resources are connected to the distribution

side of the grid, pricing energy and ancillary services for the distribution

network is becoming an increasingly important aspect of electricity market

design. The integration of DERs into a market clearing process raises nu-

merous market design questions including bid/offer structures, products to

be traded, network model, pricing and settlement schemes, interactions with

wholesale markets and so forth. This thesis advocates that redesigning and

expanding electricity markets is not only imperative but it constitutes a cost-

effective solution to manage the challenges posed by these trends. Our goal

is to provide market tools and solutions to appropriately model, analyze and

redesign existing or future electricity markets.

1.2 Outline of Thesis

This thesis consists of six chapters (including introduction and conclusion),

which concentrate on two main areas: first, the introduction of market mech-

anisms that are suitable for modeling and analytical purposes and second,

the deployment of such mechanisms for the design of comprehensive market

frameworks. To measure the performance of the aforementioned mechanisms

we study the market outcome under two specific conditions: (i) market par-
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ticipants are pure price-takers, i.e., the market resembles conditions of perfect

competition, and (ii) participants exercise market power and distort market

outcomes. As such, we make extensive use of concepts and tools from welfare

economics and game theory.

Chapter 2 introduces the market mechanism that is utilized for market

design and analysis throughout this thesis. It consists of a particular family

of scalar-parameterized supply offers and demand bids that allow suppliers

and consumers to declare their private information in the market. We con-

sider a two-sided market where both suppliers and consumers compete for

a product with the allocations determined by a central manager or market

operator. Our model incorporates production capacity constraints and min-

imum inelastic demand requirements. We explicitly show that under perfect

competition, there exist prices such that the mechanism yields allocations

that maximize social welfare. When market participants are strategic, we

explicitly characterize the Nash equilibrium and the market allocation at

the equilibrium. We prove that strategic interactions cannot cripple market

performance and provide bounds on the welfare loss and price markup at

the equilibrium. We conclude the chapter by showing that efficient alloca-

tions can be sustained for a market that operates under (convex) network

constraints.

In Chapter 3 we demonstrate the analytical prowess of scalar-parameterized

supply offers. To that end, we investigate regional, market-based, coordi-

nation mechanisms such as coordinated transaction scheduling (CTS). We

discuss the mechanics of CTS and we set up a theoretical framework that we

use as the proxy of CTS markets. We demonstrate how scalar-parameterized

offers can be effectively utilized to model pure price-arbitrageurs facing inter-

regional prices spreads, which we camouflage as demand functions. The effec-

tiveness of said mechanism is explicitly illustrated by its capability to reveal

the well-documented flaws of CTS: (1) lack of market liquidity, (2) trans-

action fees, and (3) SO’s forecast errors. We explicitly quantify the impact

of strategic participants by deriving the market allocation at the Nash equi-

librium. Moreover, employing simple reinforcement learning algorithms we

show that such outcomes can be learned through repeated interactions of

players with CTS markets.

Moving in the direction of electricity market design, in Chapter 4 we fo-

cus on price formation and settlement schemes for electricity markets with
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full consideration of the power network. We start off with the non-convex,

non-linear, market clearing model referred to as alternating current optimal

power flow model (AC-OPF). Motivated by recent work on distribution LMPs

(DLMPs), we explore economic properties of a pricing scheme that utilizes

optimal Lagrange multipliers from a semidefinite programming (SDP) relax-

ation of AC-OPF. We call these prices RLMPs. We show explicitly how such

prices possess a number of nice properties: RLMPs support efficient market

equilibria, guarantee revenue adequacy and minimize a form of side-payments

when the duality gap between AC and SDP is nonzero.

RLMPs together with the scalar-parameterized supply offers and demand

bids are the primary constituents for the design of a comprehensive electric-

ity market for distribution networks. In Chapter 5, we set up this market

framework, which explicitly takes into consideration the characteristics of

distribution networks. Here, we define appropriate DLMP price signals (a

special case of RLMPs) that can be used to compensate resources connected

at the distribution level, such as DERs. The said prices support efficient

market allocations and ensure, under mild conditions, that the SO remains

solvent after settling all transactions. The market framework presented in

Chapter 5 constitutes a comprehensive effort to design appropriate mecha-

nisms for low-voltage power customers to offer their services to the grid and

receive compensation, while a central entity ensures the secure operation of

the grid.

1.3 Original Contribution of the Thesis

First of all, to the best knowledge of the author, this thesis is the first piece

of work that presents a comprehensive electricity market framework for dis-

tribution networks with explicitly defined offer/bid structures and clearing

mechanisms. Moreover, the analysis presented in Chapters 2 and 6, is a gener-

alization of earlier efforts that focused on properties of scalar-parameterized

supply offers when the demand-side is perfectly inelastic. In this thesis,

consumers are active participants in two ways: submit individual demand

bids—the dual version of said offers—and in aggregate as a smooth, elastic

demand function in CTS. In particular, said offer/bid structures can effec-

tively model:
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• Controllable power producers (e.g., natural gas, fossil fueled genera-

tion) with capacity constraints

• Renewable generation resources with uncertain supply and maximum

production capacity

• Price-arbitrageurs / virtual bidders with budget constraints

• Inelastic demand/load

• Price-responsive demand

• Uncertain demand

• Generation assets and consumers connected in three-phase unbalanced

distribution networks

Several results presented in this thesis are joint work with other research

collaborators. Such results are merely stated for completeness. Whenever

this is the case, we mention it explicitly and cite the relevant work for refer-

ence to the reader. In detail the original contributions of this thesis are:

• Section 2.3, Theorem 1: We prove that two-sided markets with scalar-

parameterized offers/bids, support efficient market equilibria under

pure price-taking participants. This result illustrates that when market

actors are non-strategic and are restricted to use a particular family of

bids/offers, then the market yields allocations that (i) maximize soci-

ety’s welfare, and (ii) are incentive compatible.

• Section 2.4, Theorem 2: For the two-sided market framework, we es-

tablish existence and uniqueness of the Nash equilibrium for strategic

market participants. Furthermore, Theorem 2 provides a computation-

ally efficient way to characterize the Nash equilibrium and the market

allocation. This is achieved by solving a convex program.

• Section 2.5, Theorem 3: Under strategic interactions, the misrepre-

sentation of private information has the potential to induce market

allocations that are suboptimal to the efficient outcome. Theorem 3

explicitly characterizes the bounds on welfare loss and price markup
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at the Nash equilibrium. This result demonstrates that the scalar-

parameterized functions do not cripple market performance when par-

ticipants are strategic.

• Section 3.3, Theorem 4: In the analysis of CTS markets, we establish

sufficient conditions that guarantee existence of a Nash equilibrium in

competition models with scalar-parameterized supply functions facing

elastic demand functions.

• Section 3.4, Proposition 1: For affine demand models, we characterize

the unique Nash equilibrium of the CTS game and quantify the impacts

of market liquidity on scheduling efficiency. Specifically, CTS outcome

yields efficient allocations when market liquidity is high. In the inter-

mediate liquidity regime, efficiency loss of CTS is at most 25%. When

market liquidity is prohibitively low, inefficient outcomes are a result

of lack of liquidity and not the strategic interactions of players.

• Section 3.4.2: The Nash equilibrium of CTS can be discovered through

the application of the upper confidence bound (UCB) algorithm. We

apply UCB to a game with five players, where each player is given a

discrete set of actions, including the Nash equilibrium strategy. Play-

ers’ actions converge within a finite number of plays. To the best of

the author’s knowledge, this is the first application of UCB to supply

function competition with scalar-parameterized models.

• Section 3.5, Proposition 2: This result demonstrates the coupling of

CTS with virtual transactions in other energy markets. To the best of

the author’s knowledge this is the first analysis that highlights potential

uneconomic bidding due to players holding combined positions in CTS

and other energy markets.

• Section 3.6, Proposition 3: This result reflects a somewhat counter-

intuitive outcome: the incentives of CTS bidders are aligned in a way

that allows them to correct SO’s forecasts or systematic bias. This

result is counter-intuitive in the sense that, in electricity markets, the

SO is, typically, viewed as the ultimate authority that has the best

information on the system’s state, and thus strategic participants are

expected to drive markets to suboptimal outcomes. To the best of the
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author’s knowledge, this is the first theoretical result that contradicts

perceived suboptimality of CTS. Moreover, Proposition 3 demonstrates

the impact of transaction fees on achieving the goal of CTS: to con-

verge prices between neighboring markets. Our analysis demonstrates

that transaction fees act as barrier to trade and prevents bidders from

offering their entire budgets.

• Section 4.3, Theorem 5: We show that RLMPs, defined as the Lagrange

multipliers of an optimal solution to the SDP dispatch problem, support

efficient market equilibria and guarantee revenue adequacy under mild

conditions. Moreover, we explicitly compute the duality gap between

AC and SDP economic dispatch problems, and show that it comprises

two terms: the lost opportunity cost (LOC) and the product revenue

shortfall (PRS). Theorem 5 establishes that RLMPs minimize a form of

side-payments whenever the duality gap is nonzero, a feature common

to convex-hull pricing (CHP).

• Section 5.3: We define DLMPs for real and reactive power in multi-

phase distribution networks. That is, there is a price for electricity

for each phase at every node in the network. Moreover, in Theorem

6, we combine DLMPs together with supply function competition in

scalar-parameterized offers/bids support efficient market allocations.
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CHAPTER 2

A SCALAR-PARAMETERIZED
MECHANISM FOR TWO-SIDED

MARKETS

We introduce the market mechanism that serves as the main tool to analyze

and design competitive electricity markets. We begin by considering a general

market setting where both suppliers and consumers compete for a product.

We restrict our attention to a particular family of supply offers and demand

bids referred to as scalar-parameterized offers/bids. We study properties of

said mechanism when market participants are pure price-takers, and when

they are strategic. The goal of the analysis presented here is to demonstrate

the strengths of scalar-parameterized offer/bid structures in the design and

analysis of any market and electricity markets in particular.

2.1 Supply Function Competition in Electricity

Markets

In wholesale electricity markets, the behavior of market participants has

been largely modeled and analyzed through the well-known Bertrand and

Cournot competition models, which are simple (degenerate) price/quantity

offer strategies [10, 11, 12, 13, 14, 15, 16, 17]. However, the Bertrand model

typically assumes that each participant is willing to supply the entire de-

mand, which may not be satisfied in a number of cases. Variations of the

Bertrand model with capacity constraints have been proposed, however, in

such settings pure Nash equilibria may not exist [18]. The Cournot model

has a number of appealing properties when studying oligopolies in markets

with relatively high demand elasticity. However, when demand elasticity

is low, Cournot competition may exhibit arbitrarily high welfare loss [19].

For day-ahead electricity markets in particular, pure quantity/price compe-

tition cannot adequately represent supply offers or demand bids of market

participants. In such markets power producers submit varying quantities at
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successively higher prices and the demand-side specifies the quantity willing

to purchase at successively lower prices.

One is then forced to consider offer/bid structures that allow participants

more degrees of freedom to declare their preferences. The seminal work by

Klemperer and Meyer [20] demonstrated that in the absence of uncertainty

there exist an enormous multiplicity of equilibria in supply functions. Hence,

we must restrict attention to a particular family of supply functions. Lin-

ear supply functions make up another candidate used to model electricity

markets—although incorporating capacity constraints into linear supply of-

fers is not straightforward [21]. Moreover, arbitrary high-efficiency loss at

the Nash equilibrium is possible, particularly when suppliers have highly

heterogeneous cost functions [22].

What is then a suitable mechanism for electricity markets? We answer

this question in conjunction to the major transformations currently taking

place in electric power systems. In particular, the emergence of a poten-

tial retail marketplace [23] incites greater demand-side participation all the

while higher grid-scale renewable generation and DERs increase uncertainty

in market outcomes. Hence, the ideal candidate for offer/bid structures: (i)

must provide enough flexibility to participants to declare their preferences

against a range of possible market outcomes, (ii) is simple enough to facili-

tate widespread participation in retail and wholesale sectors, (iii) facilitates

modeling of the demand-side without severely complicating analysis, (iv)

sustains competitive outcomes, and (v) does not cripple market performance

when participants exercise market power.

In this thesis, we restrict our attention on a specific family of supply of-

fers and demand bids, referred to as scalar-parameterized supply/demand

functions, studied in [24, 25]. The specific family of supply functions allows

market actors to have one-dimensional action spaces, when faced with a sin-

gle market price. Such market mechanisms are simple to implement and are

considered to be fair among market participants. In [26], the authors show

that said mechanisms possess a number of attractive properties including

bounded price of anarchy and price markup at the Nash equilibrium. The

family of supply functions considered here is a capacitated version similar to

those employed by [27, 28]. Such supply functions prohibit situations where

firms can offer in the market beyond their means. Understanding the impact

of capacity constraints is critical in many industries, including the electric
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power sector where the importance and irreversibility of investment on pro-

duction capacities impose long-term decisions. In the sequel, we demonstrate

why scalar-parameterized offer/bids is the best-possible mechanism available

for certain market structures that exhibits a number of desired properties.

Notation: Let R denote the set of real numbers and R+ the set of non-

negative real numbers. Denote the transpose of a vector x ∈ Rn by xᵀ. Let

x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 be the vector including all but the

ith element of x. Finally, denote by 1 the vector of all ones with appropriate

size.

2.2 A Two-Sided Market on Copperplate Power

System

We consider a market that consists of a collection of consumers I, a collection

of suppliers J , and a central entity or market manager. In particular,

• Consumers: Consumer i ∈ I demands amount di, which must be

greater than some minimum inelastic demand requirement d0i . Each

consumer derives utility Ui(di) from consuming amount di. For each

i ∈ I, Ui is assumed smooth, concave and strictly increasing for di ≥ d0i

with Ui(d
0
i ) = 0.

• Suppliers: Supplier j ∈ J offers amount sj, which must lie below

some maximum (nameplate) production capacity denoted by κ0j . Each

supplier incurs costs Cj(sj) for producing quantity sj. For each j ∈ J ,

Cj(sj) is assumed smooth, convex and strictly increasing with Cj(sj) ≥
0 for sj ≥ 0. Over the domain sj ≤ 0, Cj(sj) = 0.

• Market manager: The manager collects supply offers and demand

bids from market participants and implements a centralized market

mechanism that defines: (1) the amount each producer/consumer sup-

plies/demands, and (2) the market price and payments for every pro-

ducer/consumer.

The market manager would ideally like to compute a market allocation that

maximizes society’s welfare while operating within the constraints of the

individual participants. Let d ∈ R|I|+ and s ∈ R|J |+ denote the collection
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of demand and supply quantities, respectively. Then, the market manager

would like to solve the following program.

maximize W(d, s) :=
∑
i∈I

Ui(di)−
∑
j∈J

Cj(sj), (2.1a)

subject to
∑
i∈I

di =
∑
j∈J

sj, (2.1b)

0 ≤ sj ≤ κ0j , (2.1c)

d0i ≤ di, (2.1d)

for each i ∈ I, j ∈ J ,

over the variables d, s. Any demand plan d and supply plan s constitutes

an efficient market allocation if it solves (2.1). Such allocations can be

determined if the market manager has perfect knowledge on the market and

all participants. However, Ui and Cj are, typically, private information and

thus, not available to the market manager. The first question we ask is:

Is there a mechanism that allows market participants to reveal their private

information in a way that yields efficient market allocations? In what follows,

we present such a mechanism based on scalar-parameterized supply functions

and demand bids.

Consider consumer i ∈ I that provides to the market manager demand

bid θdi such that, given a market price λ > 0, the consumer is willing to buy

quantity

di = D(θdi , λ) := d0i +
θdi
λ
, θdi ≥ 0. (2.2)

The expression in (2.2) represents the quantity the consumer is willing to

buy, given the inelastic component d0i , the market price and the parameter

θdi . The inelastic demand d0i represents the minimum quantity the consumer

must be supplied while θdi /λ represents the price-responsive portion of their

demand. Note that the demand bid is decreasing in price, i.e., it is downward

sloping. Similarly, consider firm j ∈ J that submits to the market supply

offer θsj such that, given the market price λ > 0, they are willing to supply

14



sj = S(θsj , λ) := κ0j −
θsj
λ
, θsj ≥ 0. (2.3)

The supply offer (2.3) represents the quantity supplier j is willing to offer as

a function of price. The supply offer is further parameterized in the capacity

κ0j , which represents supplier j’s maximum production capacity. Observe

that as demand approaches its inelastic portion d0i , consumer i’s willingness

to buy approaches infinity. Similarly, as the supply quantity approaches firm

j’s maximum capacity κ0j , the requested market price grows unbounded.

Remark 1. A possible drawback of the class of supply functions in (2.3)

is that it allows market participants to offer negative quantities. Nothing

rules this out in the definition of the mechanism and suppliers may be rightly

nervous to agree in a mechanism with such a property. However, we will

show that such situations cannot arise at a market equilibrium, under both

competitive and strategic behavior.

Let θd = (θd1, . . . , θ
d
|I|) and θs = (θs1, . . . , θ

s
|J |) denote the collection of

demand bids and supply offers, respectively. The market manager chooses

price λ(θd,θs) > 0 to clear the market such that supply equals demand, i.e.,

∑
i∈I

D(θdi , λ) =
∑
j∈J

S(θsj , λ). (2.4)

Such choice is only possible when 1ᵀθd+1ᵀθs > 0 in which case the market

price is given by

λ(θd,θs) =
1ᵀθd + 1ᵀθs

κ0|J | − d0|I|
, (2.5)

where d0|I| =
∑

i∈I d
0
i and κ0|J | =

∑
j∈J κ

0
j . We assume throughout that κ0|J | >

d0|I| and the market price is well-defined. In the case where 1ᵀθd + 1ᵀθs = 0,

i.e., every market participant submits zero parameter, we adopt the following

conventions

D(0, 0) = d0i , ∀i ∈ I and S(0, 0) = κ0j , ∀j ∈ J . (2.6)

For markets with perfectly inelastic demand, the residual supply index

(RSI) is often adopted as a suitable indicator of market power. Precisely,

the RSI of firm j measures the capability of the aggregate market capacity—
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excluding that of j—to meet total inelastic demand. In the market model

considered here, the inelastic portion of demand is d0|I|. Mathematically, if

RSIj :=
κ0|J | − κ0j
d0|I|

is strictly less than one, then firm j is said to be pivotal. See [29] and [30] for

further details. As we show in Section 2.4, the presence of pivotal suppliers

is critical in the analysis of the market outcome under strategic interactions.

2.3 Perfect Competition

In this section, we study the market outcome assuming all market partici-

pants are pure price-takers. We aim to establish the existence and character-

ization of the market equilibrium taking into account the profit-maximizing

nature of suppliers and consumers.

Given market price λ > 0, each consumer maximizes the payoff

πi(θ
d
i , λ) = Ui

(
D
(
θdi , λ

))
− λD

(
θdi , λ

)
, i ∈ I. (2.7)

Similarly, each supplier maximizes

πj(θ
s
j , λ) = λS(θsj , λ)− Cj(S(θsj , λ)), j ∈ J . (2.8)

We now proceed with our first result which shows that when consumers bid

in (2.2) and firms offer in (2.3) the mechanism supports an efficient market

equilibrium.

Theorem 1. There exists a market equilibrium (θd,?,θs,?, λ) satisfying

πi(θ
d,?
i , λ) ≥ πi(θ

d
i , λ), ∀ θdi ≥ 0 and i ∈ I, (2.9a)

πj(θ
s,?
j , λ) ≥ πj(θ

s
j , λ), ∀ θsj ≥ 0 and j ∈ J , (2.9b)

λ is given by (2.5). (2.9c)

Moreover, the supply plan s?j = S(θs,?j , λ) for every j ∈ J and the demand

plan d?i = D(θd,?i , λ) for every i ∈ I, constitute an efficient allocation.
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The proof of Theorem 1 is provided in Section 2.7. According to Theorem

1, under perfect competition, suppliers and consumers maximize their payoffs

and the resulting market allocation is efficient. This implies that given price

λ, the firms have no incentive to deviate from supplying s? and consumers

have no incentive to deviate from buying d?. Thus, the competitive market

allocation is efficient and the market clearing price is the shadow price (or

Lagrange multiplier) of the constraint
∑

i∈I di =
∑

j∈J sj. Therefore, at price

λ the marginal social benefit of additional output equals the marginal social

cost, which establishes the first fundamental theorem of welfare economics.

2.4 Strategic Consumers and Suppliers

In contrast to the price-taking model, we now consider a model where mar-

ket participants are price-anticipating. Price-anticipating suppliers and con-

sumers realize that the market price is a function of their actions and ad-

just their bids/offers accordingly. In particular, the payoff for the price-

anticipating consumer i ∈ I is

πi(θ
d
i ,θ

d
−i,θ

s) = Ui

(
d0i +

θdi
λ (θd,θs)

)
− λ

(
θd,θs

)
d0i − θdi . (2.10)

Note that the payoff of each consumer depends on the actions of all other

market participants that are collectively incorporated in the market price.

Similarly, firm j’s payoff depends on action θsj and the actions of all other

market participants. Specifically, for each j ∈ J we have

πj(θ
s
j ,θ

s
−j,θ

d) = λ
(
θd,θs

)
κ0j − θsj − Cj

(
κ0j −

θsj
λ (θd,θs)

)
. (2.11)

We define the game G with I ∪ J denoting the set of players with strategy

spaces Θi = R+ and payoffs given by (2.10) and (2.11). Our goal is to study

the existence (and uniqueness) of the Nash equilibrium of G and provide

an efficient way to compute the equilibrium allocation. A bid/offer profile
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(
θ̂d, θ̂s

)
constitutes a Nash equilibrium if

πi(θ̂
d
i , θ̂

d
−i, θ̂

s) ≥ πi(θ
d
i , θ̂

d
−i, θ̂

s), ∀ θdi ≥ 0 and i ∈ I
πj(θ̂

s
j , θ̂

s
−j, θ̂

d) ≥ πj(θ
s
j , θ̂

s
−j, θ̂

d), ∀ θsj ≥ 0 and j ∈ J .

We begin with the following result that illustrates how certain problem pa-

rameters influence the existence of a Nash equilibrium for G.

Lemma 1. G does not admit a Nash equilibrium if a pivotal supplier exists

in the market.

The proof of Lemma 1 is provided in Section 2.7. In effect, Lemma 1 implies

that when any |J |−1 firms cannot supply the entire inelastic demand in the

market, then there exists a pivotal supplier that faces a non-zero inflexible

demand that has infinite willingness to pay. This makes the suppliers’ payoff

grow unbounded with respect their action θs. Hence, a Nash equilibrium

cannot exist in this case. As a consequence of Lemma 1, there cannot exist

a Nash equilibrium with |J | = 1 since, by definition, the single supplier is

pivotal. In view of Lemma 1, we impose the following assumption.

Assumption 1. RSIj > 1 for each firm j ∈ J .

Equipped with the previous observations, we present our main result that

explicitly characterizes the unique Nash equilibrium of G.

Theorem 2. Suppose Assumption 1 holds. G admits a unique Nash equilib-

rium
(
θ̂d, θ̂s

)
. Moreover, the supply profile

ŝj = Sj

(
θ̂sj , λ(θ̂d, θ̂s)

)
, j ∈ J

and the demand profile

d̂i = Di

(
θ̂di , λ(θ̂d, θ̂s)

)
, i ∈ I
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are given by the unique solution of the following convex program

maximize Ŵ(d, s) :=
∑
i∈I

Ûi(di)−
∑
j∈J

Ĉj(sj), (2.12a)

subject to
∑
i∈I

di =
∑
j∈J

sj, (2.12b)

0 ≤ sj ≤ κ0j , (2.12c)

d0i ≤ di, (2.12d)

for each i ∈ I, j ∈ J ,

where

Ûi(di) :=

(
1− di

κ0|J | − d0|I| + d0i

)
Ui(di) +

1

κ0|J | − d0|I| + d0i

∫ di

d0i

Ui(z)dz,

(2.13)

Ĉj(sj) :=

(
1 +

si
κ0|J | − κ0j − d0|I|

)
Cj(sj)−

1

κ0|J | − κ0j − d0|I|

∫ sj

0

Cj(z)dz.

(2.14)

The proof of Theorem 2 is provided in Section 2.7. Computing Nash

equilibria is, in general, hard as shown in [31]. Theorem 2 establishes the

computation of the market allocation at the Nash equilibrium—and the Nash

equilibrium itself—through the solution of a convex program in (d, s) instead

of solving |J |+|I| problems in the actions (θd,θs), which can be cumbersome

depending on the structure of the utility and cost functions. The crux of The-

orem 2 is the construction of an appropriate convex program that yields the

market allocation at the Nash equilibrium—a technique closely related to the

use of potential functions in characterizing Nash equilibria ([32]). However,

the functions (2.13) and (2.14) are not potentials for G, since they depend on

the allocations and not on the players’ decisions. Hence, we cannot use these

functions to conclude anything about convergence of best response dynamics

to the Nash equilibrium. However, in Section 2.5, we exploit the structure

of Ûi and Ĉj to compute bounds on the efficiency loss and the price markup

observed at the Nash equilibrium.
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2.5 Efficiency Loss and Price Markup

The structure of the modified utility and cost functions allows us to make

a number of interesting observations about the behavior of strategic market

actors. First, note that since Cj(sj) are assumed convex and increasing, it

follows that Ĉj(sj) ≥ Cj(sj), ∀ sj ≥ 0. Similarly, since Ui(di) are concave and

increasing, for each consumer we have Ûi(di) ≤ Ui(di), ∀ di ≥ d0i . In effect,

strategic suppliers misrepresent their costs functions through Ĉj(sj), which

are greater than the true cost Cj(sj) at every sj. On the other hand, strategic

consumers misrepresent their utilities through Ûi(di), which are smaller than

the true utility Ui(di) at every di.

Furthermore, W(d̂, ŝ) ≤ W(d?, s?) since the maximum value of W occurs

at (d?, s?). However, in our next result, we show that the social welfare at

the Nash is bounded below and can be relatively close to the optimal value

provided some minimum flexible production capacity. In order to compute

bounds on price markups at the Nash equilibrium we utilize the Lerner index

[33], which we define as

LI(θ̂d, θ̂s) := 1− 1

λ(θ̂d, θ̂s)
max
j

{
∂

∂sj
Cj

(
S(θ̂sj , λ(θ̂d, θ̂s))

)}
. (2.15)

The Lerner index measures a firm’s market power and it varies from zero

to one, with higher values indicating greater market power. The following

result summarizes the efficiency loss at the Nash equilibrium and the price

markups.

Theorem 3. Suppose Assumption 1 holds and let κ0m = max{κ01, . . . , κ0|J |}.
Let (d?, s?) be the optimal allocation from (2.1) and (d̂, ŝ) be the market

allocation at the Nash equilibrium of G. It follows that

∑
i∈I

Ui(d̂i)−
∑
j∈J

Cj(ŝj) ≥
3

4

∑
i∈I

Ui(d
?
i )−

(
1− κ0m

ζ

)−1∑
j∈J

Cj(s
?
j), (2.16)

where ζ := κ0|J | − d0|I| and ζ ∈ (κ0m,∞). Moreover, when ζ ∈ [4κ0m,∞) we

have ∑
i∈I

Ui(d̂i)−
∑
j∈J

Cj(ŝj) ≥
3

4

∑
i∈I

Ui(d
?
i )−

4

3

∑
j∈J

Cj(s
?
j). (2.17)
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Finally, the Lerner index at the Nash equilibrium satisfies

LI(θ̂d, θ̂s) ≤ κ0m
ζ
< 1. (2.18)

The proof of Theorem 3 is provided in Section 2.7. In effect, Theorem 3

provides a lower bound on the social welfare at the Nash equilibrium and

an upper bound on the market price with respect to the true marginal cost

of suppliers. Notice that W(d̂, ŝ) is in the worst case 3/4 of the aggregate

utility less ζ/(ζ−κ0m) of the aggregate costs at the efficient allocation. We do

not claim this bound is tight; there may exist an even tighter bound on the

social welfare the computation of which we relegate to future work. Higher

values of ζ yield values of the social welfare at the Nash equilibrium closer to

W(d?, s?). The worst-case values for W(d̂, ŝ) arise when ζ → κ0m, although

it never reaches it. Intuitively, when the aggregate production capacity of

supply is relatively close to the total inelastic demand, then firms’ market

power increases over consumers, gradually inducing pivotalness for the sup-

plier with the maximum production capacity. Specifically, for ζ ∈ (κ0m, 2κ
0
m)

the efficiency loss can be arbitrarily high, similar to that derived by [27]

for a market with capacity-constrained suppliers. When ζ ∈ [2κ0m,∞) the

worst-case aggregate cost coefficient in (2.16) is equal to two and we re-

cover the worst-case bound of [26] derived for uncapacitated supply function

competition. Moreover, (2.17) shows that provided some minimum flexible

production capacity, the social welfare at the Nash equilibrium is no lower

than 3/4 of the aggregate utility less 4/3 of the aggregate cost at the effi-

cient allocation—not much lower than W(d?, s?). From (2.18) note that the

Lerner index is strictly less than one due to the non-pivotal supplier assump-

tion. As ζ grows large, LI(θ̂d, θ̂s) goes to zero, indicating less market power

on the supply side. As d0|I| approaches κ0|J |, LI(θ̂
d, θ̂s) grows large implying

high market power since there is little available capacity to supply anything

more than the total inelastic demand.

2.6 Illustrative Examples

In this section we provide numerical experiments to illustrate the behavior

of the social welfare under perfect competition and strategic interactions
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Figure 2.1: Plot (a) shows values of the social welfare with respect to ζ at
the efficient and Nash equilibrium allocations. In (b) we plot social wel-
fare bounds for (strategic) price-responsive and perfectly inelastic demand.
Plot (c) shows how the social welfare varies with respect to the number of
consumers.

with respect to specific problem parameters. As shown in Section 2.5, the

key parameter that affects social welfare is the total flexible capacity in the

market ζ.

Consider a market with |J | = 6 and |I| = 5. Let each consumer i ∈ I
have utility

Ui(di) := βi log(di), d0i = 1.

Note that the above utility function is strictly concave and increasing and

attains a minimum value Ui(d
0
i ) = 0 for every i ∈ I. Moreover, every supplier

j ∈ J incurs costs given by

Cj(sj) :=
1

2
αjs

2
j .

The modified utility for each i ∈ I is

Ûi(di) =

(
1− di

ζ + d0i

)
βi log(di) +

βi
ζ + d0i

(di log(di)− di + 1) .

Similarly, for each j ∈ J the modified cost is given by

Ĉj(sj) =

(
1 +

sj
ζ − κ0j

)
1

2
αjs

2
j −

1

6

(
αj

ζ − κ0j

)
s3j .

Figures 2.1a and 2.1b illustrate how social welfare at the optimal and Nash

allocations varies with respect to ζ. For the experiments we assumed that the

vector of utility coefficients βi is [1, 1, 1.5, 2, 2] and of the cost coefficients αj is

[0.1, 0.2, 0.3, 0.4, 0.5, 0.5]. More specifically, we start with a value of κ0j = 1.1
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for every j ∈ J—just slightly higher than d0i to avoid pivotal suppliers—

and increase it gradually. Observe that the higher the value of ζ the closer

W(d̂, ŝ) is to W(d?, s?). On the other hand, the smaller ζ is, the higher the

efficiency loss at the Nash equilibrium. To gain additional insights, define

the following ratio

ρS :=
W(d̂, ŝ)

W(d?, s?)
.

For the special case in which the market has perfectly inelastic, non-strategic

demand, we utilize the worst-case market performance metric ρC , which is

adjusted from [27] and is given by

ρC =

(
1 +

1

ζ − κ0j
min

{
κ0j , d

0
|I|
})−1

. (2.19)

Figure 2.1b demonstrates that the worst-case value of W(d̂, ŝ) occurs when

ζ = 1.6 ∈ (κ0m, 2κ
0
m) where the ratio ρS = 0.4. Immediately after ζ ∈

[2κ0m,∞), the ratio ρS jumps to 0.8 and stays above 0.9 after ζ ≥ 4κ0m. Note

that ρS lies everywhere above ρC except when ζ ∈ (κ0m, 2κ
0
m) where ρS = ρC .

This implies that although consumers are strategic, the market efficiency loss

is lower-bounded by the worst-case performance of a market with perfectly

inelastic demand. It remains to be shown whether this outcome holds more

broadly, for any choice of cost and utility functions. Finally, increasing the

number of consumers, while keeping the production capacity constant, widens

the disparity between W(d̂, ŝ) and W(d?, s?) as shown in Figure 2.1c. This

illustrates the effect of increasing the inelastic portion of demand and as

such inducing higher market power on the existing set of firms, which is also

captured by the Lerner index in (2.18).

2.7 Proofs

2.7.1 Proof of Theorem 1

The crux of our derivations relies on Lagrangian duality to establish that the

equilibrium conditions of (2.7) and (2.8) together with (2.5) are equivalent to

the first-order optimality conditions of (2.1). We begin with the consumer’s
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problem. The payoff in (2.7) is concave in each player’s action θdi . Hence, the

Karush-Kuhn-Tucker (KKT) optimality conditions are both necessary and

sufficient. For every i ∈ I, an optimal strategy θd,?i ≥ 0 must satisfy

∂

∂di
Ui

(
D(θd,?i , λ)

)
= λ, if θd,?i > 0 (2.20a)

∂

∂di
Ui

(
D(θd,?i , λ)

)
≤ λ, if θd,?i = 0. (2.20b)

Each supplier’s payoff is concave in the action θsj . Moreover, an optimal

strategy θs,?j must lie in the closed interval
[
0, λκ0j

]
. If not, then it is easy to

show that Sj(θ
s
j , λ) < 0 for θsj > λκ0j . Therefore, such strategies cannot occur

at the equilibrium since they yield negative payoff. Therefore, an optimal

strategy θs,?j must satisfy

∂

∂sj
Cj
(
S(θs,?j , λ)

)
≤ λ, if 0 ≤ θs,?j < λκ0j , (2.21a)

∂

∂sj
Cj
(
S(θs,?j , λ)

)
≥ λ, if 0 < θs,?j ≤ λκ0j . (2.21b)

We now turn to problem (2.1) solved by the market manager. Associate

the Lagrange multiplier λ with the equality constraint (2.1b). The objective

function is continuous and concave over a compact set. Therefore, there

exists at least one optimal solution (d?, s?) and λ ≥ 0 that satisfy

∂Ui(d
?
i )

∂di
= λ, if d?i > d0i (2.22a)

∂Ui(d
?
i )

∂di
≤ λ, if d?i = d0i . (2.22b)

Similarly, the supply vector s? must satisfy

∂Cj(s
?
j)

∂sj
≥ λ, if 0 ≤ s?j < κ0j (2.23a)

∂Cj(s
?
j)

∂sj
≤ λ, if 0 < s?j ≤ κ0j . (2.23b)
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Primal feasibility requires ∑
i∈I

d?i =
∑
j∈J

s?j . (2.24)

Note that λ > 0 since Ui and Cj are strictly increasing and there exists at

least one s?j > 0. If the pair (s?, λ) satisfies (2.23) and we let θsj = λ
(
κ0j − s?j

)
for every j ∈ J , then (θs, λ) satisfy (2.21) and θs ≥ 0. In effect (2.23) become

equivalent to (2.21).

Similarly, if the pair (d?, λ) satisfies (2.22) and we let θdi = λ(d?i − d0i )

then (θd, λ) satisfy (2.20) and θd ≥ 0. In this case, (2.22) become equivalent

to (2.20). Finally, the market clearing condition in (2.24) yields λ is given

by (2.5). Hence, (θd,θs, λ) is a market equilibrium. Now suppose that

(θd,?,θs,?, λ) satisfy (2.20),(2.21) and λ is given by (2.5). Let sj = S(θs,?j , λ)

for j ∈ J and di = D(θs,?i , λ) for i ∈ I. Then, it is easy to verify that the

vector (d, s) satisfies (2.22)-(2.24). Therefore, (d, s) is an efficient allocation.

2.7.2 Proof of Lemma 1

Let supplier j be pivotal. Then it must hold

RSIj =
κ0|J | − κ0j
d0|I|

< 1, (2.25)

i.e., the total production capacity less that of j’s is less than the total inelastic

demand in the market. In this case, the first derivative of the supplier’s payoff

becomes

∂

∂θsj
πj(θ

s
j ,θ

s
−j,θ

d) =
κ0j + d0|I| − κ0|J |
κ0|J | − d0|I|

+ (κ0|J | − d0|I|)
∂Cj
∂sj

(
1ᵀθd + 1ᵀθs−j

(1ᵀθd + 1ᵀθs)2

)
.

(2.26)

From (2.25) it follows that (2.26) is strictly positive. Therefore, the payoff is

strictly increasing in the action θsj and grows unbounded. A Nash equilibrium

does not exist.
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2.7.3 Proof of Theorem 2

We break the proof into five steps. First, we show that any Nash equilib-

rium has at least two positive components and we derive the necessary and

sufficient conditions for such equilibrium. Next we establish the existence

and uniqueness of the market allocation at the Nash equilibrium and de-

rive the first-order necessary conditions for (2.12). We show that for the

bids/offers given by (2.2) and (2.3), the equilibrium conditions of all players

become equivalent to the first-order conditions of (2.12). Finally, we establish

uniqueness of the Nash equilibrium.

Step 1. (Any Nash Equilibrium Has at Least Two Positive Components)

First, it is straightforward to see that 1ᵀθd + 1ᵀθs = 0 cannot occur at the

Nash equilibrium since κ0|J | > d0|I| and therefore the market does not clear.

Next, we consider two cases. First, assume that 1ᵀ θd = 0. Fix supplier j

and let 1ᵀ θs−j = 0. Note that, in this case, θsj > 0 is not possible by the

non-pivotal supplier assumption. A Nash equilibrium cannot exist with all

consumers bidding zero and all but one supplier offering a strictly positive

θsj . Second, assume 1ᵀ θs = 0. Fix consumer i and let 1ᵀ θd−i = 0. Then,

θdi > 0 implies di > d0i . In this case, the payoff of consumer i is given by

Ui
(
d0i + κ0|J | − d0|I|

)
− d0i
κ0|J | − d0|I|

θdi − θdi , (2.27)

which is strictly increasing as θdi becomes small and attains its maximum

when θdi = 0. Thus for any θdi > 0 there exists an infinitesimally smaller and

positive θdi that yields higher payoff. Moreover, by definition of Ui(0, 0) =

U(d0i ) = 0. A Nash equilibrium does not exist in this case. Hence, at the Nash

equilibrium, the vector θ =
(
θd,θs

)
has at least two positive components.

Step 2. (Necessary and Sufficient Nash Equilibrium Conditions) Having

shown that any Nash equilibrium must have at least two positive components,

we only focus in the region where 1ᵀ θd + 1ᵀ θs > 0. Note that, for each

consumer (supplier), their payoff is strictly concave in the action θdi (θsj).

Hence, the KKT conditions are both necessary and sufficient. Moreover, we

must have

0 ≤ θ̂sj ≤ θmax
j :=

κ0j
κ0|J | − κ0j − d0|I|

(∑
i∈I

θdi +
∑
k 6=j∈J

θsk

)
,
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in order for S
(
θ̂sj , λ(θd,θs)

)
≥ 0. We have the following equilibrium condi-

tions.

A demand profile θ̂d =
(
θ̂d1, . . . , θ̂

d
|I|

)
is a Nash profile if and only if

(
1− D(θ̂di , λ(θ̂d, θ̂s))

κ0|J | − d0|I| + d0i

)
∂

∂di
Ui

(
D(θ̂di , λ(θ̂d, θ̂s))

)
= λ(θ̂d, θ̂s), if θ̂di > 0 (2.28a)

(
1− D(θ̂di , λ(θ̂d, θ̂s))

κ0|J | − d0|I| + d0i

)
∂

∂di
Ui

(
D(θ̂di , p(θ̂

d, θ̂s))
)
≤ λ(θ̂d, θ̂s), if θ̂di = 0. (2.28b)

A supply profile θ̂s =
(
θ̂s1, . . . , θ̂

s
|J |

)
is a Nash equilibrium if and only if

1 +
S
(
θ̂sj , λ(θ̂d, θ̂s)

)
κ0|J | − κ0j − d0|I|

 ∂

∂sj
Cj

(
S(θ̂sj , λ(θ̂d, θ̂s))

)
≤ λ(θ̂d, θ̂s), if 0 ≤ θ̂sj < θmax

j

(2.29a)

1 +
S
(
θ̂sj , λ(θ̂d, θ̂s))

)
κ0|J | − κ0j − d0|I|

 ∂

∂sj
Cj

(
S(θ̂sj , λ(θ̂d, θ̂s)))

)
≥ λ(θ̂d, θ̂s), if 0 < θ̂sj ≤ θmax

j .

(2.29b)

The equilibrium conditions (2.28) and (2.29) are derived from the KKT

conditions of each player’s payoff maximization problem, where the payoff

of each consumer and supplier is given by expressions (2.10) and (2.11),

respectively.

Step 3. (Existence and Uniqueness of a Market Allocation) Equipped with

the above relations we now proceed to the market manager’s problem. Note

that Ûi(di) is strictly concave and Ĉj(sj) is strictly convex. Hence, Ŵ is

continuous and strictly concave over a compact set. Specifically, the Hessian

matrix H of Ŵ has diagonal elements

hkk =



∂2Ûk(dk)

∂d2k
< 0, for k = 1, . . . , |I|

−∂
2Ĉk(sk)

∂s2k
< 0, for k = |I|+ 1, . . . , |I|+ |J |,

(2.30)

27



and hkm = 0 for k 6= m. Hence, H is negative definite and there exists a

unique solution to (2.12).

Step 4. (Necessary and Sufficient Conditions for the Market Allocation)

Let (d̂, ŝ) be the unique optimal solution to (2.12). There exists Lagrange

multiplier λ such that(
1− d̂i

κ0|J | − d0|I| + d0i

)
∂Ui(d̂i)

∂di
= λ, if d̂i > d0, (2.31a)(

1− d̂i
κ0|J | − d0|I| + d0i

)
∂Ui(d̂i)

∂di
≤ λ, if d̂i = d0, (2.31b)(

1 +
ŝj

κ0|J | − κ0j − d0|I|

)
∂Cj(ŝj)

∂sj
≥ λ, if 0 ≤ ŝj < κ0j , (2.31c)(

1 +
ŝj

κ0|J | − κ0j − d0|I|

)
∂Cj(ŝj)

∂sj
≤ λ, if 0 < ŝj ≤ κ0j . (2.31d)

Moreover, primal feasibility requires∑
i∈I

d̂i =
∑
j∈J

ŝj. (2.32)

Note that since there is at least one ŝj > 0 and Ui and Ci are strictly

increasing, then λ > 0. Consider bids θ̂di = λ(d̂i − d0i ) for i ∈ I and offers

θ̂sj = λ(κ0j − ŝj) for j ∈ J . Then, θdi ≥ 0 and θsj ≥ 0 for every consumer and

every supplier, respectively. Suppose now that di > d0i and dk = d0k for all

k 6= i and let sj = κ0j for all j ∈ J . This implies that di = d0i + κ0|J | − d0|I|.
Then from (2.31a) we have λ = 0. However, we have ∂Uk(d

0
k)/∂dk > 0 for

each k 6= i ∈ I, which violates (2.31b). Thus, the vector (θ̂d, θ̂s) cannot have

all components zero except one θdi > 0.

Similarly, (θ̂d, θ̂s) cannot have all components zero except one θsj > 0 for

some firm j ∈ J . This is obvious by Assumption 1 since it holds κ0|J |− κ0j >
d0|I| for every supplier. Hence, at least two components of (θ̂d, θ̂s) are positive.

Moreover, since ŝj = κ0j if and only if θ̂sj = 0, ŝj = 0 if and only if θ̂sj = θmax
j ,

then it is not hard to see that (2.31) become equivalent to (2.28)-(2.29).

Hence, the action vector (θ̂d, θ̂s) is a Nash equilibrium. This also establishes

existence of the Nash equilibrium.

We now reverse the argument. Let (θ̂d, θ̂s) be a Nash equilibrium profile
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satisfying (2.28)-(2.29). Therefore, it has at least two positive components

and λ(θ̂d, θ̂s) > 0. Define the demand allocation d̂i = d0i + θ̂di /λ(θ̂d, θ̂s) for

i ∈ I and the supply allocation ŝj = κ0j − θ̂sj/λ(θ̂d, θ̂s) for j ∈ J . It follows

that (d̂, ŝ) satisfy (2.31) with λ = λ(θ̂d, θ̂s).

Step 5. (Uniqueness of the Nash Equilibrium) We have shown that all

Nash equilibria yield a unique market allocation. Uniqueness of the Nash

equilibrium follows from the fact that the transformation from
(
θd,θs

)
to

(d, s, λ) is one-to-one.

2.7.4 Proof of Theorem 3

Step 1. (Bounding the Price Markup) To derive the upper bound on the

Lerner index we note that at the Nash equilibrium there exists at least one

firm such that Sj

(
p(θ̂d, θ̂s)

)
< κ0j or θ̂sj > 0. Therefore,

λ(θ̂d, θ̂s) ≤

1 +
S
(
θ̂si , λ(θ̂d, θ̂s)

)
ζ − κ0j

 ∂

∂sj
Cj

(
Sj

(
θ̂sj , λ(θ̂d, θ̂s)

))
≤
(

1 +
κ0j

ζ − κ0j

)
∂

∂sj
Cj

(
Sj

(
θ̂sj , λ(θ̂d, θ̂s)

))
≤ ζ

ζ − κ0j
max
j

{
∂

∂sj
Cj

(
Sj

(
θ̂si , λ(θ̂d, θ̂s)

))}
. (2.33)

Utilizing (2.33) and substituting in the expression of LI(θ̂d, θ̂s) yields the

bound in (2.18).

Step 2. (Bounding the Social Welfare) To simplify exposition let x = (d, s).

In this step we aim to bound the social welfare at the Nash equilibrium, i.e.,
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W(x̂). Specifically,

W(x̂) ≥ W(x̂) +

|J |+|I|∑
k=1

∂Ŵ(x̂k)

∂xk
(x?k − x̂k) (2.34a)

=W(x̂) +

{∑
k∈I

∂Ûk(d̂k)

∂dk
(d?k − d̂k)−

∑
k∈J

∂Ĉk(ŝk)

∂sk
(s?k − ŝk)

}
(2.34b)

=W(x̂) +
∑
k∈I

(
1− d̂k

ζ + d0k

)
∂Uk(d̂k)

∂dk
(d?k − d̃k)

−
∑
k∈J

(
1 +

ŝk
ζ − κ0k

)
∂Ck(ŝk)

∂sk
(s?k − ŝk) (2.34c)

≥ W(x̂) +
∑
k∈I

(
1− d̂k

ζ + d0k

)(
Uk(d

?
k)− Uk(d̂k)

)
−
∑
k∈J

(
1 +

ŝk
ζ − κ0k

)
(Ck(s

?
k)− Ck(ŝk)) (2.34d)

≥
∑
k∈I

Uk(d̂k)−
∑
k∈J

Ck(ŝk) +
∑
k∈I

(
1− d̂k

d?k

)(
Uk(d

?
k)− Uk(d̂k)

)
−
(

ζ

ζ −maxk κ
0
k

)∑
k∈J

(Ck(s
?
k)− Ck(ŝk)) (2.34e)

≥
∑
k∈I

( d̂k
d?k

)2

+ 1− d̂k
d?k

Uk(d
?
k)−

(
ζ

ζ −maxk κ
0
k

)∑
k∈J

Ck(s
?
k) (2.34f)

≥ 3

4

∑
k∈I

Uk(d
?
k)−

(
ζ

ζ −maxκ0k

)∑
k∈J

Ck(s
?
k). (2.34g)

Inequality (2.34a) follows from optimality conditions of (2.12) while (2.34c)

from the definitions of Ûk and Ĉk. Inequality (2.34d) follows from concavity

of Uk and convexity of Ck. Step (2.34e) follows from the fact that d?k < ζ+d0k
for every k ∈ I and ŝk ≤ κ0k for every k ∈ J . Inequality (2.34f) follows from

concavity of Uk and that

Uk

((
1− d̂k − d0k

d?k − d0k

)
d0k +

d̂k − d0k
d?k − d0k

d?k

)
≥
(

1− d̂k − d0k
d?k − d0k

)
Uk(d

0
k) +

d̂k − d0k
d?k − d0k

Uk(d
?
k),

(2.35)

which implies that Uk(d̂k) & d̂kUk(d
?
k)/d

?
k. The last inequality follows from

minimizing the expression y2−y+1, which is minimized for y? = 1/2, where

y = d̂k/d
?
k. Finally, note that ζ/(ζ −maxk κ

0
k) is a decreasing function of ζ.
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Requiring ζ ∈ [4 maxk κ
0
k,∞) its highest value is 4/3.

2.8 Summary

We studied a market with |J | suppliers and |I| consumers that compete

in supply offers and demand bids for a product. Our analysis showed that

with a specific family of scalar-parameterized offers/bids, the market sup-

ports an efficient competitive equilibrium. Under strategic interactions, we

showed there exists a unique Nash equilibrium and propose an efficient way

of computing the induced market allocation. Moreover, the welfare loss and

the price markups at the Nash equilibrium are bounded. We extended the

two-sided market mechanism in wholesale electricity market models and es-

tablished that it supports efficient market equilibria. The market mechanism

has multiple interesting applications. For example, owing to their simplicity,

scalar-parameterized offers/bids can be effectively utilized to model compe-

tition among retail electricity customers that are becoming both consumers

and producers, due to the proliferation of distributed energy resources. We

explore the properties of the mechanism in such applications in Chapter 5.
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CHAPTER 3

ANALYSIS OF INTER-REGIONAL
MARKETS VIA

SCALAR-PARAMETERIZED SUPPLY
FUNCTIONS

The importance of inter-regional markets and coordination among different

SOs is underlined by the wave of geographically disperse renewable gener-

ation. In practice, inter-regional markets involve complex rules and mech-

anisms, often resulting in inefficient power schedules. In this chapter, we

effectively analyze such markets utilizing scalar-parameterized supply offers

and reveal the main factors that drive efficiency in inter-regional markets.

3.1 The Importance of Tie-Lines

Different parts of an interconnected power grid are controlled and managed

by different system operators (SOs). We call the geographical footprint

within each SO’s jurisdiction an area, and transmission lines that intercon-

nect two different areas as tie-lines. Efficient scheduling of power flows over

tie-lines is paramount to improve market efficiency and exploit geographically

diverse renewable resources. Tie-lines are capable of supplying a significant

portion of each area’s electricity demand. For example, the New York ISO

(NYISO) and ISO New England (ISO-NE) share nine tie-lines with approxi-

mately 1800 MW capacity, capable of supplying 12% of New England’s and

10% of New York’s demand as of 2009 [34]. Even though tie-lines are im-

portant assets, they have been historically under-utilized or scheduled in the

counter-economic direction [34]. The economic loss from inefficient tie-line

schedules has been estimated at $784 million between NYISO and ISO-NE

in 2006-10 [34], the burden of which has been ultimately borne by end-use

customers. What causes such inefficiencies? There are a number of factors

that include the inherent uncertainty about power requirements when tie-

lines are scheduled prior to delivery time points, the lack of coordination and

appropriate information exchange among the SOs, ad hoc use of proxy buses
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in deciding the schedule and transaction fees.

Conceptually, power flows over tie-lines should be determined through a

joint economic dispatch problem geared toward maximizing the efficiency

of the interconnected power grid as a whole. However, historical and legal

reasons render such an aggregation of market information from different areas

at a central location untenable. Naturally, a considerable effort has been

made to solve the joint dispatch problem in a distributed fashion, focusing on

primal [35, 36] and dual decomposition methods [37, 38, 39]. In such methods,

SOs exchange information among themselves to compute the optimal tie-

line schedule. This theoretical coordination mechanism, referred to as Tie

Optimization (TO) in [34], proved challenging to implement in practice. It

was perceived as requiring the SOs to trade directly with each other, violating

their financial neutrality, in lieu of the earlier market-based, albeit inefficient,

process for scheduling tie-line flows. Instead, many SOs adopted variants of

Coordinated Transaction Scheduling (CTS), e.g., see [40, 41], that sought

to blend the earlier market-based tie-line scheduling with the theoretically

optimal TO, after receiving approval from FERC.

CTS is a market mechanism in which external market participants submit

bids and offers to import or export from one area to the other. CTS market

design is predicated on the simple premise that arbitrage opportunity will

attract more participants, whose profit motivation will ultimately shrink that

opportunity, pushing the schedule closer to the theoretically optimum. CTS

has certainly improved tie-line scheduling as per [42, 43], but significant inef-

ficiencies remain. Motivated by these inefficiencies, we present a theoretical

model to analyze CTS and investigate the repercussions of strategic behavior

on overall market performance. We provide palpable insights on the conse-

quences of an illiquid market, errors in SOs’ price forecasts and transaction

fees on market efficiency, all of which have been named in [43] as crucial

factors affecting CTS market efficiency.1 In Section 3.2 we introduce the

mechanics of CTS.

1We remark that the use of proxy buses as CTS trading locations results in the so-
called “loop flow” problem (see [44]) that negatively impacts CTS market performance.
We refer the reader to [45] for mechanisms to tackle this problem.
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Figure 3.1: Illustration of the TO and CTS scheduling mechanisms.

3.2 The CTS Mechanism

CTS is a real-time, market-based mechanism for tie-line scheduling that re-

placed an earlier market-based structure in an effort to streamline the bidding

and scheduling process. Among the important changes, CTS unified the bid

submission and clearing process among the neighboring SOs, reduced the tie-

line schedule duration from one hour to 15-minute intervals, and decreased

time delays among bidding, scheduling, and power delivery. To illustrate the

mechanics and economic rationale of CTS, consider a two-area power system,

shown in Figure 3.1, that share a common interface, with the power flowing

through the interface denoted by Q. Assume the SOs want to determine the

tie-line schedule for an upcoming interval [t, t + 15]. At t − 15, both SOs

compute their supply stacks by solving an area-wise parametric economic

dispatch by varying the amount of power Q flowing on the tie-line. Notice

that there is approximately a 30-minute time delay between when the tie-line

is scheduled and when power delivery takes place.

An example of supply stack is shown in Figure 3.1. The stack of area a

represents the expected incremental dispatch cost of delivering power at its

side of the interface. Similarly, the stack of area b represents the expected

decremental dispatch cost of reduced supply, shown in descending order. In

this example, the direction of power should be from area a to b since at zero

schedule, area b operates at higher costs than area a. At the level where dis-

patch costs at the border become equal or where the supply stacks intersect,

34



the tie-line schedule minimizes the aggregate dispatch costs across the two

areas. This schedule, denoted by QTO, corresponds to the outcome of the

theoretical tie optimization (TO) scheme that minimizes the aggregate dis-

patch costs across the two areas. While CTS remains our focus in this thesis,

TO serves as our theoretical benchmark to compare CTS against. Contrary

to TO, CTS relies on virtual traders whose offers/bids are utilized together

with the supply stacks to arrive at the tie-line schedule, as we describe next.

A CTS participant is a virtual bidder that can offer to transport power

across areas without physically consuming or producing it. They only par-

ticipate in the tie-line scheduling process, bearing no obligation for physical

power delivery; the transaction is purely financial. In particular, CTS partic-

ipants submit “interface” bids that consist of three elements: the minimum

price difference the bidder is willing to accept, the maximum quantity to

be transferred, and the direction of trade, i.e., the exporting and importing

area. All the bids indicating a direction from a to b are stacked from lowest

to highest price, to create their own interface supply stack as shown in Figure

3.1. Bids that indicate direction from b to a are rejected at the outset since

they would widen the SO-predicted price spread. The price spread curve is

derived by subtracting the supply stack of area a from that of area b. The

CTS schedule, denoted by QCTS, is set at the intersection of the interface

supply stack and the price spread.2 An interface bid is accepted if its offer

price is less than the price spread at the tie-line schedule. Therefore, all

interface bids to the left of the CTS schedule are accepted; all bids to the

right are not.

CTS bids can be submitted up to t − 75, are cleared at t − 15 and are

settled at the ex-post LMPs calculated for the time period [t, t+ 15]. Hence,

there is approximately a 30-minute latency time for the SOs and 90 minutes

for CTS participants. This latency problem exposes participants to financial

risk since there is uncertainty at which LMPs CTS bids will settle. LMPs

are highly volatile (see Figure II-7 in [34]) and bids that appeared economic

at t − 15 may be uneconomic at t + 15, impacting overall efficiency of CTS

2The intersection of the supply stacks can occur to the right of the total transfer
capability (TTC) of the interface. In such cases, QCTS is equal to TTC, preventing price
convergence. However, according to [34], the primary interface between NYISO–ISO-NE
was congested 0.3% and 1.2% of the hours eastbound and westbound, respectively, in 2009.
In this work, we focus on the factors that cause price separation under CTS, other than
TTC.
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schedules. We emphasize that it may not be possible to eliminate latency

time, irrespective of the scheduling mechanism in place, as this would require

improvements in communication technology and SO commitment systems

that often require look-ahead information. Thus, scheduling inefficiencies

due to time delays will continue to occur under CTS or any other mechanism,

unless bid submittal and market clearing come significantly close to delivery

time.

In the sequel, we extract a theoretical model to study CTS. The purpose

of our model is to serve as a useful tool for analysis and reveal fundamental

design flaws of CTS and similar markets, and not to precisely describe reality.

Despite being a theoretical abstraction, our model reveals a number of factors

that drive CTS efficiency such as market liquidity, behavior of CTS bidders,

transaction fees and SO’s forecast errors.

3.3 Modeling the CTS Market as a Game

The first question we answer is whether the incentives of CTS bidders are

aligned with those of the SOs and CTS design. Given that latency time will

always influence efficiency, let us assume, for the time being, that bid submit-

tal and scheduling times happen near real-time. We relegate the discussion

on latency in Section 3.6. To reveal the impacts of bidding behavior on CTS,

we model CTS as a game among virtual bidders who compete to transport

power over the tie-lines against an elastic inter-area price spread that varies

with Q. For areas a and b, denote by Pa(Q) and Pb(Q), the LMPs at CTS

trading locations, respectively. Without loss of generality, let area a export

and area b import power, and define

P(Q) := Pb(Q)− Pa(Q) (3.1)

as the price spread between the areas.

Assumption 2. P : R→ R is differentiable, concave and strictly decreasing

in Q ≥ 0 with P(0) > 0.

Concavity, differentiability and decreasing nature of P are standard as-

sumptions in prior literature on supply function and Cournot competition
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models, e.g., see [46, 21, 47, 20]. In CTS, the decreasing nature of P re-

sults organically from the fact that price differences decline as the lower-cost

region exports to the higher-cost, displacing expensive generation from the

dispatch solution. However, smoothness of P does not occur in practice. In

the sequel, we argue that Pb(Q) − Pa(Q) does exhibit some affine depen-

dence on Q based on available data. Furthermore, without some theoretical

assumptions, the game-theoretical analysis becomes challenging.

With the previous discussion in mind, consider N virtual bidders in the

CTS market. Let bidder i provide two parameters θi, Bi to the SOs with the

understanding that they are willing to transport up to

xi(p) := Bi −
θi
p
, θi ≥ 0 (3.2)

amount of power from area a to b at a price spread of p > 0. Figure 3.2

reveals how the parameters θi, Bi affect the shape of the transport offer.

Bidder i is willing to transport a maximum quantity of Bi, but at a mini-

mum price spread of θi/Bi. The required price difference increases with the

power transport and grows unbounded as the latter approaches Bi. In ef-

fect, transporting power above Bi requires an infinite price difference. The

parameterized “hockey-stick” shaped transport offer in (3.2) is a smooth ap-

proximation to the one in practice where a player is willing to transport up

to Bi at a specified price difference. Therefore, bidder i expresses their total

budget or their liquidity in Bi. In what follows, we assume that the bid-

der acts strategically in θi, given Bi that models their budget constraints.

The transport offer considered in (3.2) allows market participants to submit

negative quantities. Hence, we restrict θi to satisfy θi ≤ P(0)Bi.

p
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Figure 3.2: Parameterized interface bid of CTS market participant.

Using the family of transport offers in (3.2), the bidders participate in
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a capacitated scalar-parameterized supply function competition against an

elastic demand in (3.1). Given the liquidities B = (B1, . . . , BN), the choice

of bids θ = (θ1, . . . , θN) from the CTS bidders describes their willingness to

transport power across the interface according to (3.2). The SOs calculate

x? := (x?1, . . . , x
?
N) as the allocations of the tie-line flow to the participants

by solving

x?(θ; B) ∈ argmax
x≤B

∫ 1
ᵀ
x

0

P(z)dz −
N∑
i=1

∫ xi

0

θi
Bi − s

ds, (3.3)

where 1 denotes a vector of ones of appropriate size. Notice that the trans-

port offer enters the SOs’ problem as the “bid-in cost” of each CTS bidder

to transport quantity xi. With this interpretation, the SOs’ flow allocation

problem in (3.3) seeks to maximize the social welfare of an economy that is

composed of the wholesale markets in areas a and b together with the CTS

bidders (see [45] for a similar interpretation of the CTS market objective).

Observe that the reported transport offer of each participant resembles a

logarithmic barrier function which encodes each participant’s budget con-

straint. Thus, one can drop this constraint for any participant whose bid

satisfies θi > 0.

The CTS schedule occurs where the offer stack for inter-area power trans-

port offers intersects the SOs’ price spread function. Formally,

P(QCTS) =
1ᵀθ

1ᵀB−QCTS
. (3.4)

Denote the solution of (3.4) by QCTS(θ; B). Then, the market clearing price

is given by

p(θ; B) = P(QCTS(θ; B)). (3.5)

Let us now define a useful benchmark: the maximum inter-area demand or

QTO. This schedule corresponds to the quantity for which the inter-area price

spread vanishes or formally

QTO ∈ argmax
Q≥0

W(Q) :=

∫ Q

0

P(z)dz. (3.6)

At QTO there is no more opportunity for arbitrage as P(QTO) = 0. With

this definition in mind, we can now define the CTS flow allocation to every
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participant as

x?i (θ; B) = Bi −
θi

p(θ; B)
, for 1

ᵀ
θ > 0. (3.7)

When 1ᵀ θ = 0, from (3.3) it follows that QCTS = min{1ᵀ B, QTO}. When

1ᵀ B < QTO, x?i (0; B) = Bi irrespective of p. On the other hand, if 1ᵀ B ≥
QTO, then any feasible solution of (3.3) is optimal. In this case, we specify

x?i as the allocation of QTO proportional to each participant’s budget, i.e.,

x?i (0; B) = (Bi/1
ᵀ B)QTO. With these additional conventions, x?i is well-

defined for any θ and B.

While virtual bidders do not incur any costs to physically transport power,

many pairs of SOs levy transaction fees on a per-MWh basis, e.g., in CTS

between NYISO and PJM, NYISO charges physical exports to PJM at a

rate ranging from $4-$8 per MWh, while PJM charges physical imports and

exports rates that average less than $3 per MWh. See [43] for details. For

a willingness to transport xi MW of power from area a to b, assume that

transaction cost equals c · xi, where c is measured in $/MWh. Then, each

bidder’s payoff equals the total revenue garnered less the transaction costs,

formally given in

πi(θi,θ−i) = P (QCTS(θ; B))x?i (θ; B)− cx?i (θ; B)

= P (QCTS(θ; B))Bi − θi − cx?i (θ; B), (3.8)

where θ−i denotes a vector with all but the ith component of θ. With this

discussion in mind, we now proceed to define the CTS game. The set of

players consists of N CTS participants. When players incur costs c ≥ 0,

any player bidding θi/Bi ≤ c would incur loss. Thus, it makes sense to re-

strict each player’s action space to the compact set [cBi,P(0)Bi]. Therefore,

Θ =
∏n

i=1[cBi,P(0)Bi] is the strategy space of the game. Define G(B, c)

as the CTS game among N virtual bidders who bid θ ∈ Θ, given B, and

receive a payoff described by (3.8). Bidders selfishly seek to maximize their

own payoffs, given their liquidities. A bid profile θNE constitutes a Nash

equilibrium of G(B, c), if

πi
(
θNEi ,θNE−i

)
≥ πi

(
θi,θ

NE
−i
)

for all θi ∈ [cBi,P(0)Bi]. That is, no player has an incentive for a unilateral
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deviation from the equilibrium offer. We establish the existence of such an

equilibrium profile in our first result.

Theorem 4 (Existence of Nash Equilibrium). Let Assumption 2 hold. Then,

the CTS game G(B, c) admits a Nash equilibrium if P satisfies

P ′′(Q)(1
ᵀ
B−Q) ≥ 2P ′(Q). (3.9)

The proof of Theorem 4 is provided in Section 3.7. The proof relies on

Rosen’s result in [48] after we establish that G(B, c) is a concave game. Exis-

tence of an equilibrium requires the additional condition on P given by (3.9),

that is satisfied by many commonly used demand function families including

affine models. To explicitly characterize the Nash equilibrium we restrict our

attention to affine price spreads

P(Q) := α− βQ (3.10)

with α, β > 0. Therefore, from Theorem 4 we conclude that an equilibrium

always exists for G(B, c, α, β). The price spread can be shown to be affine in

Q, when each area is represented as a copperplate power system, having a

generator with quadratic generation costs and a fixed demand. This follows

from properties of multiparametric quadratic programs in [49, Theorem 7.6].

To further justify our modeling choice, we perform a linear regression of New

England’s LMP at the CTS node (Roseton) as PNE = w1PNY + w2Q + w3,

where PNY is the LMP at New York’s CTS trading node. We obtain w1 ≈ 1.0

with an adjusted R2 coefficient of 0.95, revealing an affine dependency of

PNY − PNE in Q. We obtain similar results when PNY is the dependent

variable and PNE, Q are used as predictors. However, Q alone is not sufficient

to accurately predict price differences between SOs. Spreads are, typically,

noisy data that is influenced by multiple factors such as renewable generation

[50], fuel prices [51], seasonality [52, 53], and so forth. The goal of this

thesis is not to provide an accurate model to forecast inter-area price spreads;

our focus is to reveal market design flaws particularly when participants

are strategic. To this end, an affine model is satisfactory to perform the

game-theoretic analysis. Finally, we remark that while it is challenging to

establish uniqueness of equilibria in the setting of Theorem 4, the same does

not hold with affine demand functions under additional assumptions, as we
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demonstrate next.

3.4 Impact of Liquidity in CTS Markets

Our first goal is to investigate the impacts of liquidity on the CTS scheduling

efficiency. To isolate the effects of liquidity, neglect transaction fees and set

c ≈ 0. We define the efficiency of CTS as the ratio

ηCTS(B) :=
W
(
QCTS(θNE,B)

)
W (QTO)

,

where recall thatW measures the aggregate welfare of the wholesale markets

in the two areas attained at a particular tie-line schedule. TO seeks to

maximize this welfare with QTO = α/β, while the outcome of CTS arises

from the strategic interaction of the market participants.

Our next result characterizes the equilibrium and provides key insights

into the behavior of ηCTS ≤ 1 in different liquidity regimes.

Proposition 1. Consider the CTS game G(B, 0, α, β), where Bm is the

unique maximal budget in {B1, . . . , BN}. Then, G(B, 0, α, β) admits a unique

Nash equilibrium θNE given by

θNEm =


1

4β
(β2Bm − P2(1ᵀB)) , if |1ᵀB− α/β| < Bm,

0, otherwise,
(3.11)

and θNEi = 0 for i 6= m. Furthermore, we have

ηCTS(B)


= 1, if 1ᵀB− α/β ≥ Bm,

≥ 3

4
, if |1ᵀB− α/β| < Bm

= 2z − z2, otherwise

, (3.12)

where z := β
α
1ᵀB.

The proof of Proposition 1 is provided in Section 3.7. The result high-

lights that allocation and efficiency vary widely with liquidity and the player

with the maximal liquidity plays a rather central role in determining the out-

come of the CTS market. To offer more insights, distinguish three different
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(a) (b) (c)

Figure 3.3: Plots (a), (b) and (c) show payoffs of a 3-player CTS game
G(B, 0, α, β) in the high, intermediate and low liquidity regimes, respectively.
The liquidities satisfy B1 < B2 < B3.

liquidity regimes. Identify the liquidity as high when 1ᵀ B − α/β ≥ Bm,

where the aggregate liquidity of all players but m is sufficient to cover the

efficient schedule QTO = α/β. The intermediate liquidity occurs where

the aggregate liquidity is different from QTO by at most the liquidity of

player m, i.e., |1ᵀB− α/β| < Bm. Finally, the low liquidity regime is where

1ᵀB +Bm < QTO. The outcome and the efficiency differ substantially across

these regimes.

Using the equilibrium profile, it is easy to see that the flow allocation is

given by

x?m(θNE; B) =

1
2
(α/β − 1ᵀB−m), if |1ᵀB− α/β| < Bm,

Bm, otherwise,
,

x?i (θ
NE; B) = Bi, i 6= m,

where B−m denotes the vector of liquidities of all players, except m. Thus,

all but player m offer their maximum liquidity at equilibrium. These players

benefit from being inframarginal, exploiting the bid of the marginal player m.

This behavior is reminiscent of the so-called “free-rider problem” (see [54]).

When the liquidity is too high or too low, player m does not have enough

market power and does not benefit from bidding nonzero θm, implying that

they do not withhold from their maximal budget Bm in their transport offer.

In the intermediate liquidity case, player m enjoys market power and their

flow allocation can be shown to be the Cournot best response to this residual

price spread P(Q− 1ᵀB−m).
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The tie-line schedule at the equilibrium of G(B, 0, α, β) is

QCTS =


QTO, if 1ᵀB−Bm ≥ α/β,

1
2

(QTO + 1ᵀB−m) , if |1ᵀB− α/β| < Bm,

1ᵀB, otherwise.

When liquidity is high, QCTS coincides with QTO, implying that CTS yields

the SOs’ intended outcome. In other words, perfect competition arises as a

result of strategic incentives. In the intermediate liquidity regime, CTS suf-

fers welfare loss due to strategic interaction. The loss, however, is bounded;

strategic behavior cannot cripple the welfare under perfect competition by

more than 25%. When the liquidity is low, the lower bound on ηCTS can

be arbitrarily small. However, in this case, lack of efficiency is not due to

strategic interactions but rather due to the lack of market liquidity.

3.4.1 Strategic Selection of Budgets

To offer further insights in the previous discussion, consider an example of a

CTS game with three players. The players’ payoffs are shown in Figure 3.3 for

each liquidity regime. When liquidity is high, all players garner zero payoffs

by bidding θNE. Any other action, induces negative reward and CTS yields

the efficient schedule. Notice how the payoff of maximal player (B3) changes

in the intermediate regime, which leads to her choosing θNEm > 0. This results

in efficiency loss of CTS. Interestingly, the maximum payoff for all players

(and highest efficiency loss for CTS) is attained at the low liquidity regime,

which can result either from a small number of players or small budgets.

This outcome is problematic from a market design perspective: it incentivizes

players’ to misrepresent Bi’s.

Indeed, if players are aware that reporting lowerBi’s increases their payoffs,

strategic behavior would lead to even greater efficiency loss. To see why,

consider the case where players, prior to choosing θi’s, strategically select

their budgets. The selection of budgets is such that no player would prefer

to be in the high or intermediate liquidity regimes. To maximize their payoffs,

players would have to select Bi’s such that 1ᵀB+Bm < QTO. In this regime,

the outcome of game in θ is fully characterized from 1. Hence, at the stage

43



of selecting Bi’s, player i faces payoff

πi(Bi,B−i) = P(θNE; B)x?i (θ
NE; B)− γiBi

= (α− β1
ᵀ
B)Bi − γiBi, (3.13)

where γi > 0 represents return on investment of a risk-free asset. Then,

requiring each player to maximize (3.13) yields

B?
i (1

ᵀ
B−i) =

α− β1ᵀB−i
2β

− γi
2β
, i = 1, . . . , N, (3.14)

which is the Cournot best response of player i to the budgets of all other

players. Summing over i’s in (3.14) yields budget

B?
i =

α + 1ᵀγ

β(N + 1)
− γi
β
, (3.15)

for every CTS player i. It is straightforward to verify that the budgets

computed by (3.15) satisfy the requirement 1ᵀ B? + B?
m < α/β, for any

γm > 0. Then, the CTS schedule is given by

QCTS =
Nα

(N + 1)β
− 1ᵀγ

(N + 1)β
, (3.16)

which approaches QTO as N → ∞. The previous discussion draws interest-

ing parallels with earlier works that have established that quantity/capacity

precommitment and Bertrand competition yield Cournot outcomes [55, 56].

Notice that if players are strategic only in θ, then N = 2 would suffice to

restore competition, provided sufficient liquidity. However, if CTS bidders

were to strategically select Bi’s prior to bidding in the market, then N = 2

would no longer suffice to yield the efficient schedule. The previous discus-

sion reveals that supply function competition in scalar-parameterized offers,

behaves as Bertrand competition in θ and as Cournot competition in B.

Constructing the more general framework to establish the conditions under

which the previous equivalence holds, is an interesting direction for future

research.
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3.4.2 Learning Equilibria Through Repeated Play

Nash equilibria characterize how the incentives of market participants are ori-

ented. However, the power of said equilibria to predict market outcomes may

appear limited in that players are endowed with intelligence over their oppo-

nents’ payoff and the system conditions to compute such an equilibrium. In

practice, players interact repeatedly exploring the market environment while

facing a noisy reward. Motivated to investigate if players can learn equilibria

through repeated play, we study the game dynamics where bidders adopt

action-value methods [57] to update their bids. More precisely, we imple-

ment an upper confidence bound (UCB) algorithm for each bidder. In such

a setting, each player is agnostic to the presence of other players and the SOs’

clearing process, i.e., they endogenize these as part of the environment that

yields a random reward. UCB is a popular reinforcement learning algorithm

that achieves logarithmic regret [58, 59] in static environments and balances

between exploration and exploitation. In each round (an instance of a CTS

market), each player selects the action that has the maximum observed payoff

thus far plus some exploration bonus.

The game proceeds as follows: at each round, each bidder chooses θ from

a finite set of actions Θ := {θ1, . . . , θM}. Each bidder maintains a vector

R ∈ RM of average rewards from each action and the number of times

T ∈ NM each action is chosen, where N denotes the set of naturals. Here,

the reward equals the revenue less the transaction cost from the CTS market.

Bidders initialize R by selecting every action (possible bid from Θ) at least

once. Upon bidding θk ∈ Θ at a certain round, say she receives the reward

rk from the CTS market. Then, the bidder updates T k and Rk as

T k ← T k + 1, Rk ← Rk +
1

T k
(
rk −Rk

)
. (3.17)

Then, the bidder bids the action θk, where

k = argmax
j∈{1,...,M}

{
Rj + ρ

√
ln (1ᵀT)/T j

}
. (3.18)

The parameter ρ > 0 controls the degree of exploration. The larger the ρ,

the player is eager to explore actions that have not been tried often enough.

The smaller the ρ, the player tends to choose an action largely based on the
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(a) Intermediate liquidity (b) High liquidity

Figure 3.4: Plot of cumulative percentage of times the Nash action is chosen
across 3000 games for bidders 1 ( ) and 5 ( ). Bidder 5 is marginal
for (a) and inframarginal for (b). After 3000 games, bidders 1-5 respectively
select θNE in (99.9, 92.1, 99.9, 99.6, 99.2)% games in (a) and (90.1, 99.9, 86.4,
92.4, 88.2)% games in (b).

(a) Tie-line schedules (b) Price spread

Figure 3.5: Comparison of tie-line schedules and price spreads for a highly
( ) and intermediately liquid ( ) CTS market.

average reward seen thus far.

We utilize historical CTS data from the NYISO and ISONE markets to

compute the affine price spread that yields QTO = 1493 MW. We con-

sider repeated play of the CTS game with five participants, first with B =

(298, 223, 194, 149, 893) and then with B = (596, 522, 640, 373, 893). The

first example corresponds to an intermediate liquidity regime with θNE =

(0, 0, 0, 0, 4882). The second example belongs to the high liquidity category

for which θNE = (0, 0, 0, 0, 0). In our simulations, we use ρ = 2 following

[57, Chapter 2]. Each CTS bidder chooses from ten θ’s in Θ = [0, 6000] that

includes the optimal actions. Figure 3.4 shows percentages of optimal actions

selected by bidders in a total of 3000 games for the high and intermediate

liquidity regimes.

In the intermediate regime, the pivotal and inframarginal players act in

a rather “greedy” fashion, exploiting their optimal action north of 99% of

the games. This implies that the observed reward from playing the optimal

action is large enough, even as the exploration bonus of other actions in-
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creases. Bidder 5 loses their role as the marginal player when the liquidity

is high. In this regime, players are slower to discover their optimal actions,

although selection percentages are north of 88% of the games. Our numerical

experiments clearly demonstrate that even in a setting where players know

little to nothing about the game setting, they are able to discover and play

equilibrium actions (in majority of the games) through repeated play. This

experiment lends credence to the conclusions from our equilibrium analysis.

Indeed, QCTS/QTO in Figure 3.5 remains close to unity and price spreads are

below $2/MWh in most games for a highly liquid CTS market. A liquidity re-

duction of around 40% has palpable effects on market performance, although

in aggregate, the players have the capacity to meet QTO. In particular, the

price spread for intermediate liquidity is more than $6/MWh higher than the

highly liquid case and QCTS/QTO remains well below 80%. This experiment

highlights how rise of pivotal players exercising market power exploiting the

lack of liquidity can impact market performance.

3.5 Interactions with Virtual Trading in Energy

Markets

CTS performance can be influenced by uneconomic bidding that aims to

benefit financial positions of virtual transactions in energy markets. An

example of said transactions are up-to-congestion (UTC) virtual bids [60].

A UTC is a bid in the day-ahead market to purchase congestion and losses

between two nodes within each area. The UTC bid consists of a specified

source and sink location together with a price spread that identifies how much

the participant is willing to pay for congestion and losses between source and

sink. The payoff of a UTC bid depends on the real-time and day-ahead prices

at the specified locations.

Bidding behavior in CTS markets impacts CTS outcomes, that in turn

affect price movements in both areas. Said price movements influence the

return from UTC positions. Thus, bidders with existing UTC portfolios can

engage in uneconomic bidding behavior. Here, we utilize our game model

to illustrate one such case, where UTC positions negatively impact CTS

performance. We remark that price manipulation via uneconomic virtual

transactions has emerged as a central policy concern for FERC; several high-
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profile enforcement cases have ended in multi-million dollar settlements [61].

Denote by fki , the UTC megawatt position of CTS bidder i from an internal

node k inside area b to the CTS trading location. Let Pkb denote the LMP at

node k in area b. Denote by Pk,DAb and PDA
b the day-ahead prices at internal

node k and CTS trading location, respectively. Then, the payoff of bidder i

from their UTC positions is given by∑
k

[
(Pb − Pkb )− (PDA

b − Pk,DAb )
]
fki , (3.19)

where the sum is taken with k ranging over buses within area b. The CTS

outcome will not affect day-ahead prices, but it does influence real-time prices

at other locations inside each area. We have assumed so far that Pb − Pa
has an affine dependence on Q, the amount that flows from bus a to bus b.

Assume a similar affine dependence

Pb(Q)− Pkb (Q) = αkin − βkinQ

between the CTS trading location and an internal node k in area b. Albeit

simplistic, this model is enough to reveal the impact of UTCs on CTS mar-

kets. To illustrate the coupling between UTC positions and CTS market,

consider the joint payoff from them for bidder i in

π̃i(θi,θ−i) = (α− βQ)Bi − θi︸ ︷︷ ︸
from CTS

+
∑

k(α
k
in − βkinQ)fki − (PDA

b − Pk,DAb )fki︸ ︷︷ ︸
from UTC

, (3.20)

where Q depends on CTS market clearing with bids θ and liquidities B.

Formally, call this game GUTC (B, c, α, β, f , αin, βin) with payoffs in (3.20).

Here, αin, βin, f collect the respective variables across all internal buses. Our

next result characterizes the market outcome with UTC positions.

Proposition 2. The game GUTC (B, 0, α, β, f , αin, βin) admits a unique Nash

equilibrium if f is elementwise non-negative, for which the tie-line schedule
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at the equilibrium is

QCTS =


QTO, if 1ᵀB− B̃m ≥ α/β,

1
2

(
QTO + 1ᵀB− B̃m

)
, if |1ᵀB− α/β| < B̃m,

1ᵀB, otherwise,

where B̃i = Bi +
∑

k(β
k
in/β)fki for i = 1, . . . , N and m is the only player with

maximal B̃m.

The proof of Proposition 2 is provided in Section 3.7. The result reveals

that the bidder with maximum combined CTS and UTC position emerges

as the pivotal player in this market. Moreover, B̃m ≥ Bm dictates that less

power is scheduled to flow in the tie-line when bidders have such positions.

This results from the incentives of the pivotal player who benefits from higher

prices at the importing region b’s CTS bus as that yields a higher UTC payoff.

In fact, the difference in the tie-line schedules with and without UTC, grows

with B̃m −Bm that is directly proportional to the UTC positions. Opposite

conclusions can be drawn if we consider players with UTC positions that

source at area b’s proxy bus.

The following example illustrates the shift in market power and scheduling

efficiency when participants hold UTCs. Consider the CTS market in Section

3.4.2 where the fifth bidder is pivotal in the intermediate liquidity regime.

At the equilibrium, QCTS = 1176 MW. Assume that the first bidder holds a

UTC f1 = 800 MW to an internal bus for which αin = 35.7 and βin = 0.02.

Then, B̃ = [1018, 463, 193, 149, 893]. Notice that bidder one emerges as the

new marginal bidder and has incentive to bid in a way that leads to less

power being scheduled to flow into area b. Indeed, the new tie-line schedule

is QCTS = 1113 MW, 63 MW less than CTS without UTCs, falling even

shorter of QTO = 1493 MW.

3.6 Impact of Forecast Errors and Transaction Costs

Our analysis of the CTS game so far has assumed that players and the SOs

have perfect forecasts into the price spread function. In practice, tie-line

scheduling takes place with a lead time to power delivery, meaning that
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there is an inherent uncertainty in the price spread when these markets are

convened. To model this uncertainty, assume that the SOs conjecture an

affine price spread function

PSO(Q) = αSO − βSOQ

with αSO, βSO > 0. The SOs use this spread to clear the CTS market as in

(3.3). Let the realized price difference be

P?(Q) = α? − β?Q

with α?, β? > 0. Then, the TO schedule and the optimal tie-line schedule,

respectively, are given by

QTO = αSO/βSO and Q? = α?/β?.

Modeling the uncertainty explicitly at the time of scheduling reveals that QTO

may not equal Q?, the ex-post optimal tie-line schedule. Our interest lies in

analyzing if strategic behavior of bidders in the CTS market can correct the

errors in SOs’ forecasts. Do bidders draw the outcome closer to Q? than QTO

or do they drive it further away as a result of their strategic interaction? We

answer this question through a game-theoretic study. We also derive insights

into how nonzero transaction fees (c > 0) affect these conclusions.

To isolate the impacts of uncertainty and transaction fees, we analyze the

game under a simpler setting where the bidders are homogeneous, each with

liquidity B > 0 and conjectured price spread P(Q) = α− βQ with α, β > 0.

Notice that bidders’ conjectured optimal schedule α/β may be different from

both QTO and Q?. We assume here that players share a common belief

that the market operates at an intermediate liquidity where the aggregate

liquidity NB is close to their conjectured optimal tie-line schedule α/β, i.e.,

NB = α/β +O(1/N). (3.21)

Under such an assumption, bidder i conjectures the market price from bid-
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ding θ with liquidities B = B1 to be

p (θ, B1) =
1

2

(
P(NB) +

√
P2(NB) + 4β1ᵀθ

)
=
√
β1ᵀθ +O(1/N),

which yields the following perceived payoff for bidder i.

πi(θi,θ−i) = p(θ,B)B − θi − c
(
B − θi

p (θ, B1)

)
≈
√
β1ᵀθB − θi − c

(
B − θi√

β1ᵀθ

)
. (3.22)

Call the CTS game with conjectured price spreads Gconj(B, c, α, β, αSO, βSO),

where α, β satisfy (3.21) and the payoffs are given by (3.22). Assuming that

all players offer based on an equilibrium profile for this game, the SOs then

solve the CTS flow allocation problem in (3.3) with PSO to ultimately com-

pute the tie-line schedule. Our next result characterizes both a (symmetric)

equilibrium profile and the resulting tie-line schedule.

Proposition 3. The CTS game Gconj(B, c, α, β, αSO, βSO) admits a unique

symmetric Nash equilibrium given by θNEi = γ2

4Nβ
for i = 1, . . . , N , for which

the tie-line schedule at equilibrium is

QCTS =
1

2

QTO +NB −
√

(QTO −NB)2 +
γ2

ββSO

 ,
where γ := c(2− 1/N) + βB.

The proof of Proposition 3 is provided in Section 3.7. Notice that players

bid solely based on their own conjectures. The tie-line schedule, however,

depends on the conjectures of both the bidders and the SOs. This result will

allow us to study the effect of price spread forecasts and transaction costs on

the scheduling efficiency in the sequel.

The lack of knowledge of Q? by the SOs and market participants prompts

us to investigate whether CTS can yield a more efficient schedule than the

pure SO-driven TO. Proposition 3 implies QCTS ≤ QTO, meaning that CTS

cannot yield a more efficient schedule than TO if QTO < Q?. Hence, CTS
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can only outperform TO when the SOs’ forecast overestimates QTO. In this

regime, Figure 3.1 yields that QCTS is always closer to Q? when Q? ≤ QTO/2.

Outside of this setting, the outcome of CTS depends on the liquidity and

conjectures of players. Specifically, if NB ∈ A1 ∪ A2, defined in Figure 3.6,

QCTS is closer to Q? than QTO, if

γ2

ββSO
≤ 8 (QTO −Q?) (QTO − 2Q? +NB) . (3.23)

Such a premise appears to run counter to the intuition that TO is optimal.

This situation can only arise under uncertainty where SOs make serious fore-

cast errors in the expected price spread. Surprisingly, forecast errors are

not that rare, according to [43], where the error in SOs’ point forecast for

the price spread between NYISO and ISO-NE averaged $2.42/MWh. Notice

how, in this liquidity regime, the presence of transaction fees makes it harder

to satisfy (3.23). This is intuitively correct since transaction fees drive the

tie-line schedule toward smaller values, as established in Proposition 3.

Figure 3.6: Ability of market participants to correct SO’s forecast error de-
pends on liquidity and transactions costs.

When NB ∈ A3 ∪ A4, liquidity is sufficiently high and the presence of

costs might improve scheduling efficiency since players bid higher prices to

counter costs. Overall, players ability to correct SOs’ forecast is somewhat

limited and relies on many qualifications, indicating that the SOs forecasts

and systematic bias plays a vital role in scheduling efficiency. Moving bid

submittal and clearing timelines closer to power delivery should improve the

efficiency of CTS.

Proposition 3 suggests that incentives of CTS bidders are aligned in a way

that allows them to correct SOs’ forecast errors in some settings. Can players

learn such equilibria through repeated play? We employ the learning frame-

work in Section 3.4.2, where players have their bids cleared against (αSO, βSO)

that are perturbed from (α?, β?) learned from historical data. That is, in ev-

ery round, bidders receive reward from the ex-post price spread described by
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Figure 3.7: The trajectory of CTS schedules cleared against SO’s forecasted
prices with 10% error with c = 0 and c = $8/MWh.

P?. The trajectory of tie-line schedules in Figure 3.7 with c = 0 reveals that

bidding behavior of players results in CTS schedules consistently closer to

the ex-post optimal than TO. Despite the persistent forecast error, bidders

correct the tie-line schedule to an extent by seeking actions that maximize

their observed reward.

The relation in (3.23) reveals that presence of nonzero transaction fees c

make it more difficult for CTS market to drive the outcome closer to the

ex-post optimal as γ increases with c. Bidders reacting to observed rewards

with c = $8/MWh in Figure 3.7 yield a CTS schedule farther from Q?,

seeking actions that yield higher prices but smaller schedules. This result

corroborates our theoretical finding that transaction fees impede bidders’

ability to correct SOs’ forecast errors.

(a) (b)

Figure 3.8: Plot (a) depicts the time series of spread between NYISO and
PJM proxy buses in 2018 (absolute mean = 8.92 $/MWh, std. deviation =
22.11 $/MWh). Plot (b) shows the same between NYISO and ISO-NE for
the same year (mean = 0.44, absolute mean = 5.59 $/MWh, std. dev. =
18.14 $/MWh).
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Notice that equilibrium bid grows with c, per Proposition 3. With c >

0, bidders are reluctant to offer their entire liquidity. This prevents the

price spread from converging to zero, even if the market is liquid. Moreover,

transaction fees make it less attractive for CTS bidders overall, hurting long-

term liquidity of the CTS market. Figure 3.8a indicates that the price spread

in the CTS market between NYISO and PJM exhibits longer excursions

from zero and higher volatility compared to that between NYISO and ISO-

NE, depicted in Figure 3.8b. The average absolute spread between NYISO

and PJM is approximately $3.3/MWh higher than that between NYISO and

ISO-NE. We surmise that transaction fees between NYISO and PJM and

the lack thereof between NYISO and ISO-NE are largely responsible for this

difference.

3.7 Proofs

3.7.1 Proof of Theorem 4

We break the proof into two parts—for c > 0 and c = 0. We argue that

G(B, c) is a concave game with a compact strategy set Θ in each case. Then,

the rest follows from Rosen’s result in [48, Theorem 1].

Case with c > 0: Notice that 1ᵀθ > 0 for all θ ∈ Θ. The objective function

of (3.3) can be shown to be strictly concave for all θ 6= 0 (the Hessian is

negative definite), meaning that if a solution to the maximization problem

exists, then it is unique. The first-order optimality conditions of (3.3) yield

that such an optimal allocation x? must satisfy

P(1
ᵀ
x?)− θi

Bi − x?i
= 0, ∀i. (3.24)

Summing the above relation over i, we get

P(QCTS) =
1ᵀθ

1ᵀB−QCTS
. (3.25)

Since P is strictly decreasing with P(0) > 0, the strictly increasing function

of QCTS that grows to ∞ at 1ᵀB in the RHS of (3.25) must intersect P at a

unique point. Thus, QCTS is uniquely defined for each θ ∈ Θ, and so is x?

54



identified by

x?i = Bi −
θi

1ᵀθ
(1

ᵀ
B−QCTS). (3.26)

To establish that G(B, c) is a concave game, we now establish that the payoffs

π(θi,θ−i) in (3.8) are continuous is θ and concave in θi. Notice that the

unique optimal allocation x? is continuous in θ, owing to Berge’s maximum

theorem [62], implying the same for QCTS. In turn, that proves the continuity

of πi in θ. Next, we prove that πi is concave in θi, by showing that P(QCTS)

is concave and x?i is convex in θi.

First, we show that P(QCTS) is concave. Notice that

∂2

∂θ2i
P(QCTS) = P ′′

(QCTS)

(
∂QCTS

∂θi

)2

+ P ′(QCTS)
∂2QCTS

∂θ2i
.

Since P is concave and strictly decreasing, it suffices to show that QCTS is

convex in θi to conclude that ∂2

∂θ2i
P(QCTS) ≤ 0 and hence, P(QCTS) is concave

in θi.

To prove the convexity of QCTS in θi, rewrite (3.25) as g(QCTS) = 1ᵀ θ,

where

g(QCTS) := (1
ᵀ
B−QCTS)P(QCTS). (3.27)

Now, g(0) > 0 and g is a continuous and strictly decreasing function of its

argument. Also, g is convex because

g′′(QCTS) = P ′′(QCTS)(1
ᵀ
B−QCTS)− 2P ′(QCTS) ≥ 0, (3.28)

where the inequality follows from (3.9), the strictly decreasing and concave

nature of P , and the non-negativity of 1ᵀB−QCTS. These derivatives exist,

owing to the implicit function theorem [63]. Then, QCTS is the inverse of a

decreasing convex function, and is therefore decreasing convex itself in 1ᵀθ,

and therefore in θi. This completes the proof of the concavity of P(QCTS).
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Next, we show that x?i is convex in θi. From (3.26), we get

∂x?i
∂θi

= − 1ᵀθ−i

(1ᵀθ)2
(1

ᵀ
B−QCTS) +

θi
1ᵀθ

∂QCTS

∂θi
, (3.29)

∂2x?i
∂θ2i

= 2
1ᵀθ−i

(1ᵀθ)3
(1

ᵀ
B−QCTS) + 2

1ᵀθ−i

(1ᵀθ)2
∂QCTS

∂θi

+
θi

1ᵀθ

∂2QCTS

∂θ2i
. (3.30)

Again, the implicit function theorem guarantees that these derivatives ex-

ist for θ away from the origin. The last term in (3.30) is non-negative by

convexity of Q. Therefore, we require the sum of the remaining terms to be

non-negative or
1ᵀB−QCTS

1ᵀθ
≥ −∂QCTS(θ; B)

∂θi
.

From (3.27) we have

1ᵀB−QCTS

1ᵀθ
=

1

P(QCTS)

≥ 1

P(QCTS)− P ′(QCTS)(1ᵀB−QCTS)

= −∂QCTS(θ,B)

∂θi
,

where the inequality follows from the fact that P ′(QCTS)(1ᵀB−QCTS) < 0.

This finishes the proof of πi being concave in θi.

Case with c = 0: The payoff πi is continuous in θ and concave in θi for all

θ > 0. We extend the same to θ = 0 with c = 0. With zero costs, we have

πi(θi,θ−i) = P(QCTS(θ; B))Bi − θi. (3.31)

It suffices to argue that QCTS is continuous at θ = 0. Recall that for 1ᵀθ > 0,

QCTS is given by the solution of

1
ᵀ
θ = (1

ᵀ
B−QCTS)P(QCTS). (3.32)

First, assume that 1ᵀB < QTO. Then, P(QCTS) ≥ P(1ᵀB) > 0 since P is

strictly decreasing. Consider a sequence θk → 0 as k →∞. Then, the LHS

of (3.32) vanishes. Therefore, the RHS must vanish as well. Since P does
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not vanish, we must have QCTS(θk) → 1ᵀ B = QCTS(0) as required. Now,

consider the situation where 1ᵀB > QTO. In this case, QCTS ≤ QTO < 1ᵀB.

Consider the sequence θk → 0 as k → ∞. As the LHS of (3.32) vanishes,

P must vanish in the RHS. Therefore, P(QCTS(θk)) → 0 or QCTS(θk) →
P−1(0) = QTO = QCTS(0), as required for the case with 1ᵀ B > QTO. The

case with 1ᵀ B = QTO is trivially satisfied by the same line of arguments.

Hence, QCTS(θ; B) is continuous in θ at the origin. This completes the proof.

3.7.2 Proof of Proposition 1

Existence of the Nash equilibrium follows from Theorem 4. Solving (3.3) we

find that QCTS(θ; B) is given by

QCTS(θ; B) =
α + β1ᵀB

2β
− 1

2β

[
P2
(
1
ᵀ
B
)

+ 4β1
ᵀ
θ
]1/2

. (3.33)

The payoff for player i is given by

πi(θi,θ−i) = (α− βQCTS(θ; B))Bi − θi

=
Bi

2

(
P(1

ᵀ
B) +

[
P2(1

ᵀ
B) + 4β1

ᵀ
θ
]1/2)− θi. (3.34)

The payoff is continuous in θ−i and strictly concave in θi. The strategy

space of each player is [0, αBi]. A bid profile θNE =
(
θNE1 , . . . , θNEN

)
is a Nash

equilibrium if and only if

∂πi(θi,θ−i)

∂θi

∣∣∣∣
θNE

≤ 0, if 0 ≤ θNEi < αBi (3.35a)

∂πi(θi,θ−i)

∂θi

∣∣∣∣
θNE

≥ 0, if 0 < θNEi ≤ αBi, (3.35b)

where the above derivative is given by

∂πi(θi,θ−i)

∂θi
=

βBi

[P2(1ᵀB) + 4β1ᵀθ]1/2
− 1. (3.36)

From (3.36) we deduce that the payoff derivative cannot vanish for more

than one player. Moreover, no player would bid θNEi = αBi since that yields

negative payoff and each player profitably deviates by infinitesimally decreas-
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ing θi. From the previous discussion and the following observation

∂πm(θm,θ−m)

∂θm
>
∂πi(θi,θ−i)

∂θi
, i 6= m (3.37)

we conclude that θNE−m = 0. In search for positive θm > 0 we find that

• If |1ᵀB− α/β| < Bm, then

θNE
m =

β2B2
m − P2(1ᵀB)

4β
> 0. (3.38)

• Otherwise, θNEm = 0 since (3.38) yields a negative value.

To prove the bounds on ηCTS(B) first note that the social welfare attains its

maximum at Q = QTO with

W(QTO) =
α2

2β
. (3.39)

Hence, in the high liquidity regime, i.e., 1ᵀB−Bm ≥ α/β, QCTS = QTO and

ηCTS(B) = 1. In the intermediate regime, the social welfare at QCTS is

W(QCTS) =
α

2

(
α

β
+ 1

ᵀ
B−m

)
− β

8

(
α

β
+ 1

ᵀ
B−m

)2

=
3

4

(
α2

2β

)
+

1ᵀB−m
4

(
α− 1

2
β1

ᵀ
B−m

)
>

3

4
W(QTO).

(3.40)

Finally, in the low liquidity regime, i.e., 1ᵀB +Bm ≤ α/β, we have

W(QCTS)

W(QTO)
=

1

α2

(
2β(1

ᵀ
B)

(
α− β

2
1
ᵀ
B

))
=

2β1ᵀB

α
− β2(1ᵀB)2

α2
= 2z − z2.

(3.41)

This completes the proof.
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3.7.3 Proof of Proposition 2

It is easy to verify that (3.20) is concave in θi for fixed θ−i and f non-

negative. Moreover, Q is strictly decreasing in θi and as θi grows large the

price spreads approach the limiting values α and αk. Hence, in (3.20) the

first two terms converge to constant values with the affine term approaching

negative infinity as θi grows unbounded. Therefore, there exists θmax
i such

that (3.20) becomes negative for θi ≥ θmax
i . As such, we restrict our attention

for a Nash equilibrium within the compact interval [0, θmax
i ]. Existence of a

Nash equilibrium for GUTC
(
B̃, 0, α, β, αk, βk

)
is established by invoking [48,

Theorem 1]. A bid profile θNE =
(
θNE1 , . . . , θNEN

)
is a Nash equilibrium if and

only if (3.35) are satisfied where πi is replaced with π̃i and αBi with θmax
i .

The payoff derivative is given by

∂π̃i(θi,θ−i)

∂θi
=

β
(
Bi +

∑
k
βk
in

β
fki

)
[P2(1ᵀB) + 4β1ᵀθ]1/2

− 1

=
βB̃i

[P2(1ᵀB) + 4β1ᵀθ]1/2
− 1. (3.42)

The rest of proof is similar to that of Proposition 1.

3.7.4 Proof of Proposition 3

We are in search for a symmetric equilibrium for Gconj(B, c, α, β, αSO, βSO).

From first-order conditions we find that the payoff’s derivative is given by

∂πi(θi,θ−i)

∂θi
=

βB

2p (θ, B1)
− 1 + c

[
1

p (θ, B1)
− θi

2p (θ, B1) 1ᵀθ

]
, (3.43)

where p (θ, B1) =
√
β1ᵀθ. For θNEi > 0 we require (3.43) to vanish, yielding

the following
θNEi

1ᵀθNE
=
βB

c
+ 2− 2

c

√
β1ᵀθ. (3.44)

Summing (3.44) over i’s we find

√
1ᵀθNE =

1

N
√
β

(
NBβ

2
+
c

2
(2N − 1)

)
> 0. (3.45)
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From (3.45) and (3.44) we find that

θNEi =
1

4Nβ

(
βB + c(2− 1

N
)

)2

, (3.46)

which is strictly positive. The solution of (3.3) with PSO yields the CTS

schedule

QCTS =
1

2
(QTO +NB)− 1

2βSO

√
(αSO − βSONB)2 + 4βSO1ᵀθ. (3.47)

Substituting (3.46) in (3.47) we obtain the expression in Proposition 3.

3.8 Summary

We presented theoretical framework to model CTS as a game among arbi-

trage bidders who compete through scalar-parameterized transport offers.

To the best of our knowledge, this is the first work that provides a concrete

mathematical formulation to model CTS as a game. We established the exis-

tence of Nash equilibria for this game and study the impact of various factors

on the nature of said equilibria to offer insights into the CTS market. We

showed that when transaction costs (levied on a per-megawatt hour basis on

bidders) are absent, then a highly liquid CTS market is efficient. Market effi-

ciency degrades with liquidity shortfall, exhibiting bounded efficiency loss for

intermediate liquidity and unbounded losses in low liquidity regimes. Second,

with transaction costs, CTS fails to eradicate the price spread between ad-

jacent markets even with a liquid market, implying that such costs undercut

the vision behind the market design. Third, we showed that SOs’ estimate

of the price spread plays a central role in the efficiency of CTS markets in

that bidders have limited ability to correct the effects of SOs’ forecast errors.

Fourth, portfolios of virtual trasactions such as up-to-congestion (UTC) bids

held by CTS bidders can impact CTS market outcomes, revealing the de-

pendency of efficiency of these inter-area markets on other energy markets.

Our equilibrium analysis reveals how the strategic incentives in CTS markets

are oriented but does not illustrate if bidders can learn equilibrium behavior

through repeated participation in these markets. We simulate repeated play

using historical data from the NYISO–ISO-NE market. In particular, we
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allow bidders to update their bids through a well-known upper confidence

bound (UCB) algorithm that has been very well studied in the reinforce-

ment learning literature. Our simulations confirm that our conclusions from

equilibrium analysis continue to hold in a statistical sense in our numerical

experiments.
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CHAPTER 4

PRICING IN NON-CONVEX
ELECTRICITY MARKETS

The design of participation mechanisms for electricity markets must take

into consideration the aspects of the physical grid that determine the fea-

sible power flows across the system. In Section ?? we adopted a convex

model based on a lossless, linearized power flow model and derived prices for

electricity based from the optimal dual multipliers of nodal power balance

constraints. However, this model ignores key properties of the power system

such as commitment decisions and non-convexities arising from the AC power

flow model. In this chapter, we study price formation for electricity markets

under a non-convex power flow model, which has received less consideration.

4.1 Sources of Non-Convexities

The core dispatch model in organized wholesale electricity markets relies

on a bid-based, security-constrained problem with a linearized power flow

model. LMPs stand on sound economic principles when the market-clearing

problem is convex. Derived as the optimal dual multipliers from the popular

DC approximation dispatch [64], LMPs exhibit several desirable properties.

For example, they adequately incentivize market participants to follow the

dispatch prescribed by the SO. Moreover, the SO never runs cash-negative

after settling the payments with the market participants. See [65, 66] for

details.

The core model for settlement design via LMPs ignores key properties

of the power system. For example, using only the LMP, a generation unit

may not be able to recover its as-bid cost including no-load and startup

costs. Incorporation of unit commitment decisions render the market clearing

problem non-convex. In this case, there may not exist a set of nodally uniform

prices that support a market equilibrium, leading to revenue shortages for
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generation units that subsequently require out-of-market payments for them

to follow the SO-prescribed dispatch. A long literature has emerged already

to tackle non-convexities from unit commitment considerations, e.g., see [67,

68, 69, 70, 71, 72]. Unfortunately, such considerations do not define the only

source of non-convexity in electricity pricing.

In this thesis, we focus on price formation in electricity markets with non-

convexities in the market clearing problem that arise from an AC power flow

model. Opposed to commitment considerations, this non-convexity is not a

consequence of the cost structures of assets, but rather stems from the nature

of the Kirchhoff’s laws that govern the underlying power network. There

is an increasing interest in the power industry to efficiently and optimally

solve the non-convex market clearing problem with AC power flow, e.g., see

recent efforts under the ongoing ARPA-E GO competition. As pricing under

AC power flow models is gaining traction [73], we are motivated to design

and analyze meaningful prices that can accompany such a dispatch. To

that end, we formulate the economic dispatch problem with AC power flow

equations and derive electricity prices from optimal dual multipliers of its

convex semidefinite relaxation.

Linearized (real) power flow models such as DC approximations or lo-

cal linearizations around an operating point have long been used to design

prices in market environments. Some of these models ignore losses and reac-

tive power considerations, making the settlement design somewhat divorced

from the physics of the power grid. Ad hoc measures to incorporate losses

are known to distort price signals, e.g., see [74]. The motivation behind

explicitly incorporating reactive power in the pricing model is justified by

two major trends. Declining natural gas prices and environmental regula-

tions have caused baseload generation units that have historically provided

reactive power support (e.g. coal plants) to run at economic loss or even

plan retirement. Second, the deepening penetration of distributed genera-

tion has increased focus on ensuring reactive power capability exists given

that high solar generation requires more reactive power. These trends—which

are likely to continue—have resulted in substantial out-of-market payments

in energy uplift, e.g. PJM paid $199 million in 2018 according to [75]. As

the Federal Energy Regulatory Commission (FERC) focuses on price for-

mation and reactive power compensation in the era of increasing renewable

generation [76], the need to incorporate reactive power as an explicit product

63



with transparent price signals becomes compelling. By nature, our convex

relaxation-based locational marginal prices (RLMPs) can accommodate AC

power flow models in their full generality. As such, RLMPs assign prices to

both real and reactive power, bringing reactive power compensation into the

fold of competitive markets.

Semidefinite programming (SDP) based convex relaxation of economic dis-

patch problems has its origins in [77]. Popularized by [78], it has been ana-

lyzed in great detail in [79, 80, 81, 82, 83, 84], among others. In this thesis, we

focus on RLMPs derived from this SDP relaxation. Moreover, we show that

RLMPs exhibit properties of LMPs when the duality gap of the non-convex

economic dispatch problem vanishes. Specifically, they incentivize market

participants to follow the SO prescribed dispatch and the SO remains sol-

vent after settling payments with the participants (under mild conditions).

When the aforementioned duality gap is nonzero, the absence of a market

equilibrium may provide incentives for certain generators to deviate from

the SO prescribed dispatch signal. In such an event, side payments become

necessary, which are undesirable for a number a reasons as highlighted in

a recent order by the Federal Energy Regulatory Commission (FERC) [85].

We prove that RLMPs minimize a specific form of side payments necessary

to provide dispatch-following incentives to market participants. These side

payments are the sum of the lost opportunity cost for the generators and

the product revenue shortfall, which arise due to network constraints. This

result bears a striking resemblance to the properties of convex hull pricing

(CHPs) that have been proposed and analyzed in [72, 86, 70] to tackle non-

convexity due to commitment decisions. RLMPs, on the other hand, handle

the non-convexity that arises due to power flow equations.

4.2 The Non-Convex Electricity Market Model

Consider an electric power network on n buses and m transmission lines. Let

V ∈ Cn denote the vector of nodal voltage phasors, where C is the set of

complex numbers. Denote by yk`, the admittance of the line joining buses k

and `.

The current flowing from bus k toward an adjacent bus ` is given by
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(Vk − V`)yk`, yielding

pk` + iqk` = Vk(Vk − V`)HyHk` (4.1)

as the apparent power flow from bus k to bus `. The notation uH stands

for the conjugate transpose of u and i :=
√
−1. More succinctly, the above

relation can be written as

pk` + iqk` = VHΦk`V + iVHΨk`V, (4.2)

where Φk` and Ψk` are n × n Hermitian matrices with all zeros except the

following entries:

[Φk`]kk :=
1

2
(yk` + yHk`), [Φk`]k` = [Φk`]

H
`k := −1

2
yk`,

[Ψk`]kk :=
1

2i
(yHk` − yk`), [Ψk`]k` := [Ψk`]

H
`k :=

1

2i
yk`.

The two summands in the right-hand side (RHS) of (4.2) define the real

and reactive power flows from bus k to bus `, respectively. Assume that the

real power flows on the lines are constrained as

pkl ≤ fk` (4.3)

for a flow limit fk` > 0. Such limits typically arise from thermal considera-

tions, but may also serve as proxies for stability constraints.1 Assume that

ykk is the shunt admittance at bus k. Then, the apparent power injection at

bus k becomes

pk + iqk = V H
k Vky

H
kk +

∑
`∼k

(pk` + iqk`)

= VHΦkV + iVHΨkV,

1Line flow constraints are often formulated over the apparent power flow as p2k` +
q2k` ≤ f2k`. These alternate formulations ultimately seek to constrain the magnitude of the
current flowing over the transmission line. The formulation in (4.3) can alternately encode
constraints on line current magnitudes.
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where

Φk :=
1

2

(
ykk + yHkk

)
1k1

H
k +

∑
`∼k

Φk`,

Ψk :=
1

2i

(
yHkk − ykk

)
1k1

H
k +

∑
`∼k

Ψk`

and 1k ∈ Cn is the vector of all zeros, except the k-th entry that is unity.

The notation ` ∼ k indicates that a transmission line connects buses ` and

k in the power network. Voltage magnitudes across the network are deemed

to remain close to rated voltage levels. We model such constraints at each

bus k as vk ≤ |Vk| ≤ vk that is equivalent to

v2k ≤ VH1k1
H
kV ≤ v2k. (4.4)

Consider two assets connected at each bus – an uncontrollable asset whose

apparent power draw is fixed and known and a controllable asset whose

power injection can vary within known capacity limits. Let pDk and qDk ,

respectively, denote the nominal real and reactive power draws at bus k

from the uncontrollable asset. Similarly, let pGk and qGk denote the real and

reactive power generation at bus k, respectively, that vary within known

capacity limits as pGk ∈ [p
k
, pk] and qGk ∈ [q

k
, qk]. Associated with that

generation is a convex dispatch cost ck(p
G
k , q

G
k ). Assume henceforth that ck is

jointly convex in its arguments. Such costs in wholesale markets are inferred

from supply offers and demand bids. Uncontrollable assets represent the

collective inelastic power demands at a bus. Generators and proxy demand

resources comprise controllable assets. There may be one, more than one,

or no controllable and uncontrollable assets at each bus, but we assume one

asset of each kind to simplify notation.

The SO seeks to compute a dispatch that minimizes the aggregate dispatch

costs from the collection of grid-connected controllable assets and meets the

power requirements of the uncontrollable ones, meeting the engineering con-
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straints of the power network as follows:

PAC : minimize
n∑
k=1

ck(p
G
k , q

G
k ),

subject to pGk − pDk = VHΦkV, (4.5a)

qGk − qDk = VHΨkV, (4.5b)

VHΦk`V ≤ fk`, (4.5c)

p
k
≤ pGk ≤ pk, q

k
≤ qGk ≤ qk, (4.5d)

v2k ≤ VH1k1
H
kV ≤ v2k (4.5e)

for k = 1, . . . , n, ` ∼ k

over the variables pG,qG and V. The boldfaced symbols collect the corre-

sponding variables across the network. In PAC, (4.5a) and (4.5b) enforce the

power balance at each bus, (4.5c) limits the power flows over each transmis-

sion line, (4.5d) defines capacity limits for the power production from dis-

patchable assets, and finally, (4.5e) defines bounds on voltage magnitudes.

The above market clearing problem is an instance of an optimal power flow

(OPF) problem with AC power flow. PAC is nonconvex, owing to quadratic

equalities. In Section 4.3 we ask: how should we price such a dispatch?

4.3 Relaxation-Based Locational Marginal Prices

We associate nodal prices to real and reactive powers based on a semidefinite

programming (SDP) based convex relaxation of PAC in PSDP in (4.6) that

seeks to optimize the same objective function as PAC, but over a convex

superset of the feasible set of PAC. To arrive at the relaxation, notice that

VHMV = Tr (MVVH) = Tr (MW)

for any M ∈ Cn×n and W = VVH. Here, Tr stands for the trace operator.

The above representation reduces quadratic forms in V to linear forms in

W ∈ Cn×n. Also, any W that admits the representation W = VVH is a

rank-1 positive semidefinite matrix (henceforth denoted W � 0). Therefore,

one can reformulate PAC by replacing all quadratic forms in V by linear
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expressions in W and enforce W to be a rank-1 positive semidefinite matrix.

This reformulation encodes the nonconvexity of PAC in the rank constraint.

Drop this constraint to arrive at the following SDP relaxation of PAC:

PSDP : minimize
n∑
k=1

ck(p
G
k , q

G
k ),

subject to pGk − pDk = Tr (ΦkW), (4.6a)

qGk − qDk = Tr (ΨkW), (4.6b)

Tr (Φk`W) ≤ fk`, (4.6c)

p
k
≤ pGk ≤ pk, qk ≤ qGk ≤ qk, (4.6d)

v2k ≤ Tr (1k1
H
kW) ≤ v2k, (4.6e)

W � 0, (4.6f)

for k = 1, . . . , n, ` ∼ k

over the variables W,pG,qG. For any variable z in PSDP, we use the notation

z? to denote z at an optimum.

We now define prices using the optimal Lagrange multipliers from PSDP.

The prices we advocate are locational in nature, i.e., they vary based on

location within the power network. However, the prices are uniform across

assets connected at the same bus. Toward that goal, associate the multipliers

λpk and λqk to the real and reactive power balance constraints in (4.6a) and

(4.6b), respectively. Similarly, associate µk` to the one in (4.6c). Assign µpk, µ
p
k

to the upper and lower limits, respectively, on the real power generation in

(4.6d), and µqk, µ
q
k

to the respective limits on the reactive power generation

in (4.6d). Define µvk, µ
v
k
, respectively, as the multipliers for the upper and

lower bounds on voltage magnitudes in (4.6e). Finally, associate the matrix

U ∈ Cn×n as the multiplier for (4.6f).

Definition 1. Define λp,?k and λq,?k , the optimal Lagrange multipliers from

PSDP for the real and reactive power balance constraints at bus k, respectively,

as the prices for real and reactive power at bus k.

The market proceeds as follows. The SO collects bids and offers from

market participants and solves the market clearing problem PAC to compute

the dispatch decisions pG,? and qG,?. Then, the SO solves PSDP and computes
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the optimal Lagrange multipliers λp,? and λq,? as the RLMPs. Under our

pricing scheme, the controllable asset at bus k produces pG,?k and qG,?k and

collects the payment

πGk := λp,?k pG,?k + λq,?k qG,?k

from the SO. Further, the uncontrollable asset with its demand pDk and qDk
pays

πDk := λp,?k pDk + λq,?k qDk

to the SO. What justifies RLMPs for price formation in electricity markets?

We describe a wish-list of properties for market mechanisms and argue that

RLMPs exhibit a number of these desirable properties, thus providing the

rationale behind our proposed mechanism.

1. Efficient Market Equilibrium: The dispatch is said to be efficient and

clears the market, if it optimally solves PAC. It is individually ratio-

nal, if the SO prescribed dispatch indeed maximizes the profit of a

controllable asset, given the prices. Said mathematically, the dispatch(
pG,?k , qG,?k

)
must solve

maximize
pGk ,q

G
k

λp,?k pGk + λq,?k qGk − ck(pGk , qGk ),

subject to p
k
≤ pGk ≤ pk, q

k
≤ qGk ≤ qk,

(4.7)

given (λp,?k , λq,?k ). A controllable asset then has no incentive to devi-

ate from its prescribed dispatch, given the prices. A pricing scheme

is nodally uniform if all assets connected at a bus pay or are paid at

the same price. Thus, co-located assets do not have incentives to trade

among themselves. A market mechanism supports an efficient mar-

ket equilibrium if the dispatch is efficient, clears the market, and is

individually rational, given nodally uniform prices.

2. Side Payment Minimization: When the dispatch mechanism incorpo-

rates non-convexities, it is typically challenging to find a set of nodally

uniform prices that adequately incentivize all assets to follow the SO-

prescribed dispatch. The SOs then provide side-payments to control-

lable assets to deter possible deviations. Such payments are often

socialized among end-use customers. Ideally, the market mechanism
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should minimize such out-of-market settlements in aggregate to in-

crease market transparency. Lost opportunity costs constitute a specific

form of side-payment, defined as

LOC(λp, λq) :=
n∑
k=1

πopt
k (λpk, λ

q
k)− πSO

k (λpk, λ
q
k), (4.8)

where πopt
k (λpk, λ

q
k) is the optimal cost of (4.7) with (λp,?k , λq,?k ) replaced

with (λpk, λ
q
k) and

πSO
k (λpk, λ

q
k) := λpkp

G,?
k + λqkq

G,?
k − ck(pG,?k , qG,?k ). (4.9)

Said differently, given the electricity prices, πSO
k denotes the profit of the

controllable asset at bus k from following the SO prescribed dispatch,

while πopt
k is the maximum profit that asset can garner.

3. Revenue Adequacy: A market mechanism is revenue adequate if the

rents collected from power sales are enough to cover the rents payable

to suppliers, i.e., the merchandising surplus defined as

MS :=
n∑
k=1

(
πGk − πDk

)
(4.10)

is non-negative. Non-negativity of MS ensures the solvency of the SO

after each market clearing.

4.4 Properties of RLMPs

Having described the qualities we seek in a market mechanism, we now char-

acterize the properties of RLMPs in Theorem 5, the proof of which relies

on duality theory of semidefinite programming. Assume throughout that

PSDP satisfies Slater’s condition. To present the result, we need the following
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definition.

PRS(µ, µv, µv,U) := VH,?UV? +
m∑

k`=1

µk`
(
fk` −VH,?Φk`V

?
)

+
n∑
k=1

µvk
(
v2k − |V ?

k |2
)

+
n∑
k=1

µv
k

(
|V ?
k |2 − v2k

) (4.11)

for µ ≥ 0, µv ≥ 0, µv ≥ 0,U � 0 as the product revenue shortfall, where V?

constitutes an optimal solution of PAC.

Theorem 5. PSDP is the dual of the dual problem of PAC, and the duality

gap of PAC is given by

minimum
λp,λq ,U,
µ,µv ,µv

LOC (λp, λq) + PRS(µ, µv, µv,U),

subject to U =
n∑
k=1

λpkΦk +
n∑
k=1

λqkΨk +
m∑

k`=1

µk`Φk`

+
n∑
k=1

(
µvk − µvk

)
1k1

H
k ,

µ ≥ 0, µv ≥ 0, µv ≥ 0, U � 0.

When the duality gap is zero (rank W? = 1 in PSDP), then the proposed

market mechanism supports an efficient market equilibrium. Moreover, if the

voltage lower limit constraint is non-binding at all buses, i.e., Tr (1k1
T
kW?) >

v2k for k = 1, . . . , n, then the mechanism is revenue adequate.

The fact that PSDP is the double dual of PAC is well known, e.g., see [78, 87].

We include it in the result for completeness. The proof of the duality gap

in Theorem 5 is provided in Section 4.7. For a proof on revenue adequacy

and market equilibrium we refer the reader to [88]. Theorem 5 reveals that

when the duality gap is nonzero, RLMPs seek to minimize the sum of two

terms that are individually non-negative—the lost opportunity cost (LOC)

and the product revenue shortfall (PRS), very similar in spirit to convex hull

pricing (CHP). See [86, 72] for comparison. Having LOC as a component

implies that RLMP in a way attempts to minimize side payments necessary

to incentivize controllable assets to follow the SO’s dispatch signals, thereby

increasing market transparency. The economic interpretation of PRS remains

challenging—a feature that is again common to both RLMP and CHP. A

71



nonzero PRS can give rise to counter-intuitive situations where prices can

be positive even with non-binding constraints. For example, one can end

up with µ?k` > 0 from PSDP together with fk` > VH,?Φk`V
? from PAC. In

such an event, the SO will garner congestion revenue, even when the line

may not be congested at an optimal dispatch. This again is a property

that CHP exhibits. Notice that PRS in (4.11) collects terms that appear in

complementary slackness conditions for PAC. However, the primal and the

dual variables come from two different problems. Thus, when the duality gap

is nonzero, one cannot expect the complementary slackness-like condition to

hold. Theorem 5 indicates that RLMP tries to force PRS towards zero,

similar in spirit to CHP. These parallels between CHP and RLMP are not

surprising, given that both advocate pricing based on the dual (or the double

dual) of the nonconvex market clearing problem, albeit to tackle two different

kinds of nonconvexities. Understanding how RLMPs compare to the optimal

dual multipliers of a local optimum of the dispatch problem is an interesting

subject for future research.

When the duality gap is zero, Theorem 5 establishes that RLMPs have

similar properties as LMPs. No controllable asset has incentive to deviate

from the dispatch described by the optimal solution of PAC. Under the addi-

tional condition of non-binding lower bounds for voltage constraints at each

bus, the payments from uncontrollable assets cover the rents of those that

are controllable. Given the strong coupling between reactive power injection

and voltage magnitudes, one expects non-negative MS with adequate reac-

tive power support. For illustrative examples on the fact that non-binding

lower voltage limit is sufficient but not necessary, we refer the reader to [88].

Despite progress in wholesale electricity markets, the low-voltage distribu-

tion grid has been largely excluded from day-ahead and real-time markets.

The role of distribution grids is largely passive with commercial and residen-

tial customers exposed to fixed or time-of-use rates that do not reflect real

time conditions of the system. However, rapid proliferation of distributed

energy resources (DERs) and the aim to harness demand flexibility of end-

use customers have motivated research in defining appropriate price signals

for compensating energy transactions in distribution networks (e.g., see [89],

[90] and [91]). Suggested distribution LMPs (DLMPs) aim to reflect the lo-

cational value of DERs and physics of the network as discussed in [92] and

[93]. We argue that RLMPs from PSDP become the second-order cone pro-
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gramming (SOCP) based DLMPs in [90] over radial (acyclic) distribution

grids. Indeed, in [88, 94] we show that RLMPs restricted to radial networks

coincides with DLMPs. Such prices are locational in nature and compensate

market participants for both real and reactive power.

Our exposition in [94] focus on the mathematical foundations of DLMPs

and sidestep a range of issues surrounding the adoption of such prices in

practice. For example, what is the right trading platform that needs to be

established and what products should be traded in such platforms that DERs

can participate in? How should such platforms coordinate their operations

with wholesale markets governed by transmission system operators? See [95]

and [96] for insightful discussions on the same. We align with the view in [23]

to consider a retail market operated by an independent distribution system

operator (DSO) responsible for the dispatch and pricing of DERs, but leave

the specifics of a coordinated wholesale-retail market design to a future effort.

4.5 Practical Considerations for Market Adoption

RLMPs associate prices for real and reactive power, thereby making reactive

power compensation a part of competitive market processes. Creation of

markets for reactive power has led to celebrated debates in the last two

decades, e.g., see [97, 98, 99]. Reactive power is alleged to not “travel too

far” and hence, a market is often deemed unnecessary. However, real and

reactive power are intimately coupled with each other through the power flow

equations. Therefore, pricing one and not the other ignores that coupling.

Inadequate reactive power resources, especially under line/generator failure

scenarios (contingencies), can lead to brown and blackouts (see [100]). To

keep the notation simple, we have not modeled contingencies in formulating

PAC/PSDP. That extension, however does not offer any conceptual difficulties.

With such an extension, a competitive market for both real and reactive

power will systematize the procurement process for both.

Pricing via RLMPs requires the SO to solve PSDP. SDPs are known to

scale poorly with problem dimension and pose serious algorithmic challenges

to possible adoption of RLMPs. The difficulty typically arises from the need

to solve large linear system of equations within interior-point methods to

solve PSDP that require O(n3) operations. Such scaling is prohibitive for
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practical power systems. In [80, 83], it has been shown that PSDP can be

equivalently formulated in terms of semidefinite matrices corresponding to

maximal cliques of chordal extensions of the sparse power network graph.

The size of the largest maximal clique then determines the size of the semidef-

inite matrices involved in the computational step, and also the size of the

linear systems solved at each iteration. In other words, the sparsity of the

power network allows orders of magnitude speedups in algorithms for PSDP.

While algorithms to solve PSDP have come a long way (see [101, 84]), addi-

tional research is required to make it scalable for market adoption. Surpris-

ingly enough, CHPs have faced the same difficulty in tractable computation,

although for a completely different reason (see [70, 69]).

There are additional concerns in adopting RLMPs for day-ahead markets.

Algorithms for market clearing with linearized power flows and unit com-

mitment decisions lead to mixed-integer linear programs (MILPs). Software

for MILP is much more mature than the nonlinear counterpart (see [102]).

Thus, adoption of RLMP for day-ahead markets will impose a heavy com-

putational burden on market clearing software. In addition, one needs a way

to enhance RLMP to price commitment decisions—a topic we are eager to

pursue in future work.

4.6 Illustrative Examples

In this section, we report results from numerical experiments on different

power network examples to illustrate the behavior of RLMPs as well as to

discuss main insights from our theoretical results. In our first experiment,

we compute the RLMPs on the IEEE 30-bus test system adopted from Mat-

power, developed by [103]. Reactive power demands are computed from the

real power demands, assuming a lagging power factor of 0.9. The result-

ing RLMPs for real and reactive power across the network are illustrated

through heatmaps in Figures 4.1a and 4.1b respectively. An increase in real

and reactive power demands at buses 29 and 30 demonstrate the locational

nature of these prices. In particular, once the real power demand on bus 30

exceeds the flow limit on branch 29-30, the prices for both real and reactive

power at buses 29 and 30 significantly exceed those at other locations in the

network, as Figures 4.1c and 4.1d reveal. In effect, these prices reflect that in
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the presence of congestion it becomes more expensive to supply demand at

buses 29 and 30. We then narrow the voltage magnitude limits on a subset

of nodes; the effect on RLMPs is illustrated in Figures 4.1e and 4.1f for real

and reactive power prices, respectively. The impact is significantly larger

on reactive power prices than on real power prices. Intuitively, maintaining

the voltage level within acceptable bounds across the network requires suffi-

cient injections of reactive power in the appropriate locations on the network.

Thus, enforcing stricter voltage limits, increases demand for reactive power

injections and therefore their RLMPs. For further insights on RLMPs as well

as their applications to distribution grids see [88, 94].

4.7 Proof of Theorem 5

The proof proceeds in four steps. The first step establishes that the dual

program of PAC coincides with the dual of PSDP. This part of the proof is

provided in [88]. In the second step, we compute the duality gap of PAC. We

find that the duality gap constitutes of two terms: the LOC and PRS. The

proof of this step proceeds as follows. Define the partial Lagrangian of PAC

as

LV (pG,qG,V,λp,λq,µ,µv,µv) :=
n∑
k=1

ck(p
G
k , q

G
k )

−
n∑
k=1

λpk
(
pGk − pDk −VHΦkV

)
−

n∑
k=1

λqk
(
qGk − qDk −VHΨkV

)
+

m∑
k`=1

µk`
(
VHΦk`V − fk`

)
+

n∑
k=1

µvk
(
VH1k1

H
kV − v2k

)
−

n∑
k=1

µv
k

(
VH1k1

H
kV − v2k

)
,

and the set S as

S :=
{(

pG,qG
)
| p ≤ pG ≤ p, q ≤ qG ≤ q

}
. (4.12)
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Then, the dual program of PAC is given by

maximize
λp,λq ,
µ,µv ,µv

minimum
V,

(pG,qG)∈S

LV (pG,qG,V,λp,λq,µ,µv,µv),

subject to µ ≥ 0, µv ≥ 0, µv ≥ 0.

(4.13)

In the above problem, the inner minimization with respect to V amounts to

minimizing VHUV, where

U :=
n∑
k=1

λpkΦk +
n∑
k=1

λqkΨk +
m∑

k`=1

µk`Φk` +
n∑
k=1

(
µvk − µvk

)
1k1

H
k . (4.14)

It equals −∞ unless U � 0. Thus, (4.13) can be written as

maximize
λp,λq ,U,
µ,µv ,µv

minimum
(pG,qG)∈S

n∑
k=1

[
ck(p

G
k , q

G
k )− λpkpGk − λqkqGk

]
+

n∑
k=1

(
λpkp

D
k + λqkq

D
k

)
−

m∑
k`=1

µk`fk`

−
n∑
k=1

(
µvkv

2
k − µvkv

2
k

)
,

subject to µ ≥ 0, µv ≥ 0, µv ≥ 0, U � 0, (4.14).

(4.15)

Therefore, (4.15) defines the common dual program of PAC and PSDP. With

Slater’s condition, strong duality holds for PSDP, and hence, the optimal cost

of PSDP is the same as that of (4.15). Call this cost c∗SDP.

Next, consider an optimal solution
(
pG,?,qG,?,V?

)
of PAC with an optimal

cost

c∗AC =
n∑
k=1

ck

(
pG,?k , qG,?k

)
. (4.16)

Then, the nodal demands satisfy

pDk = pG,?k −VH,?ΦkV
?, qDk = qG,?k −VH,?ΨkV

?. (4.17)
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Utilizing (4.16) and (4.17), the objective function in (4.15) can be written as

c∗AC +
n∑
k=1

[
ck(p

G
k , q

G
k )− λpkpGk − λqkqGk

]
+

n∑
k=1

[
λpkp

G,?
k + λqkq

G,?
k − ck(pG,?k , qG,?k )

]
−

m∑
k`=1

µk`fk` +
n∑
k=1

(
µv
k
v2k − µvkv2k

)
−

n∑
k=1

[
λpkV

H,?ΦkV
? + λqkV

H,?ΨkV
?
]
,

that using the notation in (4.9) allows us to rearrange (4.15) as

c∗AC − c∗SDP = −maximum
λp,λq ,U
µ,µv ,µv

n∑
k=1

[
−πopt(λpk, λ

q
k) + πSOk (λpk, λ

q
k)
]

−
m∑

k`=1

µk`fk` +
n∑
k=1

(
µv
k
v2k − µvkv2k

)
−

n∑
k=1

[
λpkV

H,?ΦkV
? + λqkV

H,?ΨkV
?
]
,

subject to µ ≥ 0, µv ≥ 0, µv ≥ 0, U � 0, (4.14)

= minimum
λp,λq ,
µ,µv ,µv

LOC (λp,λq) + η(λp,λq,µ,µv,µv,U)

subject to µ ≥ 0, µv ≥ 0, µv ≥ 0, U � 0, (4.14),

where η is given by

η(λp,λq,µ,µv,µv,U) :=
m∑

k`=1

µk`fk` −
n∑
k=1

(
µv
k
v2k − µvkv2k

)
+

n∑
k=1

λpkV
H,?ΦkV

? +
n∑
k=1

λqkV
H,?ΨkV

?.

It remains to show that η indeed equals PRS. To that end, utilize the defini-
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tion of U in (4.14) to get

η(λp,λq,µ,µv,µv,U) =
m∑

k`=1

µk`fk` −
n∑
k=1

(
µv
k
v2k − µvkv2k

)
+ VH,?UV? −

m∑
k`=1

µk`V
H,?Φk`V

? −
n∑
k=1

(
µvk − µvk

)
VH,?1k1

H
kV?

=
m∑

k`=1

µk`fk` −
n∑
k=1

(
µv
k
v2k − µvkv2k

)
+ VH,?UV?

−
m∑

k`=1

µk`p
?
k` −

n∑
k=1

(
µvk − µvk

)
|Vk|2

= PRS
(
µ,µv,µv,U

)
,

where the last line follows from the definition of PRS in (4.11). This com-

pletes the derivation of the duality gap of PAC.

Steps 3 and 4 show that when the relaxation is exact or equivalently when

rank W? = 1, prices defined as the Langrange of PSDP support an efficient

market equilibrium. Moreover, when the voltage lower bound is inactive,

revenue adequacy is of the SO is guaranteed. The proof of these steps is

provided in [88].

4.8 Summary

The non-convex nature of the market clearing problem PAC with AC power

flow introduces challenges in defining appropriate price signals to compensate

grid-connected assets in electricity markets. In this chapter, we addressed

the question: what price signals are deemed meaningful for market clearing

with AC power flow? We proposed and analyzed relaxation-based locational

marginal prices (RLMPs) for real and reactive power, based on optimal dual

multipliers of the SDP relaxation of the market clearing problem. Our mar-

ket model relies on a central entity, the system operator, that determines the

dispatch for all grid-connected assets from the solution of PAC while the com-

pensation of each market participant is derived from the optimal Lagrange

multipliers of PSDP. We showed that when the duality gap of the market

clearing problem is zero, RLMPs support an efficient market equilibrium

and the mechanism is revenue adequate under mild conditions—properties
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that are reminiscent of LMPs defined with linear power flow models. With

nonzero duality gap, we proved that RLMPs possess properties similar to

convex hull prices. We also argued that RLMPs adapted to acyclic distribu-

tion networks define distribution LMPs (DLMPs) proposed in the literature.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Plots (a), (b) show heatmaps of RLMP on the 30-bus IEEE
network. Plots (c), (d) are derived with pD26 = 7.5, qD26 = 3.3, pD29 = 12.2,
qD29 = 4.9, pD30 = 16.1, and qD30 = 5.9. Plots (e), (f) are derived with vk = 0.99,
vk = 1.01 for k = 24, . . . , 30. Prices are in $/MWh.
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CHAPTER 5

A COMPETITIVE ELECTRICITY
MARKET FOR DISTRIBUTION GRIDS

In this chapter, we extend the electricity market model and pricing mecha-

nism developed in Chapter 4 to a multi-phase, unbalanced distribution grid

together with the demand bids and supply offers introduced in Chapter 2.

RLMPs together with scalar-parameterized offers/bids serve as the vehicle

to design a comprehensive framework for competitive electricity markets at

the retail sector.

5.1 Why Markets for Electricity Retail?

The current state of distribution grids is passive. Low-voltage customers con-

sume power and DERs inject power whenever it becomes available without

any coordination with the rest of the system. It is then, the responsibility of

the distribution system operator (DSO) to ensure network constraints while

the SO at the transmission level ensures sufficient reserves to meet imbal-

ances in supply and demand. Retail and commercial customers are largely

excluded from any market process since they are exposed to fixed time-of-

use rates that do not reflect the real-time conditions of the system. The

paradigm shift envisioned in recent works [104, 90] entails a move toward ac-

tive participation of low-voltage suppliers and consumers to potential market

mechanisms designed for the retail side of the grid. This shift is propelled by

the rapid proliferation of DERs in low and medium voltage distribution grids,

which has generated considerable interest in designing appropriate price sig-

nals for distribution networks, e.g., see [89, 91, 23, 105].

The first fundamental question that emerges is what price signals are

deemed appropriate and meaningful to compensate such resources and mo-

tivate them to offer their services to the grid. To this end, we utilize the

concept of RLMPs developed in Chapter 4. Specifically, we consider a cen-

81



tral dispatch problem for a local market in the low voltage grid administered

by the DSO. The DSO clears the market for real and reactive power and

determines the DLMPs at every node in the distribution grid. In this mar-

ket, generation assets submit supply offers and consumers submit demand

bids. The DSO determines the cleared bids and offers over a particular time

horizon.

In contrast to the bulk power system, where linearized lossless power flow

models are often deemed acceptable, distribution networks must explicitly

account for reactive power flows and voltage considerations. In particular,

distribution grids typically have lines with relatively high resistance to reac-

tance ratios, and reactive power transactions play a crucial role in maintain-

ing voltage magnitudes within tight bounds. Hence, the analysis of DLMPs

becomes more complicated as we cannot ignore losses and reactive power—

often a source of non-linearities in the dispatch model. However, the radial

topology of distribution grids implies that loop flows, which have lead to

heated debates surrounding LMPs, are less of a concern in DLMPs. The

central dispatch model considered here, captures such characteristics of dis-

tribution grids. Specifically, in Section 5.2 we set up the network model that

constitutes the backbone of the central dispatch problem. We define DLMPs

as the optimal Lagrange multipliers of a semidefinite relaxation of the origi-

nal dispatch problem. When market actors compete in scalar-parameterized

offers/bids, we show that DLMPs support the efficient dispatch when the

relaxation is exact.

5.2 Three-Phase, Unbalanced Distribution Grid Model

Distribution grids in practice are often multi-phase with a radial topology. In

a distribution network, components such as capacitor banks and tap-changing

transformers play a vital role in maintaining voltage magnitudes within speci-

fied limits. In this thesis, we ignore the tap-changing transformers and model

the distribution grid as a three-phase network with shunt elements at each

node. We also include controllable and uncontrollable assets operated by

asset-owners at the various nodes of the network.

Throughout, let R and C denote the sets of real and complex numbers,

respectively. Let Hn×n denote the space of all n-by-n Hermitian matrices. For
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y ∈ C, denote its real and imaginary parts by <(x) and =(y), respectively,

and i :=
√
−1. For any scalar, vector, or matrix A, let Aᵀand AH denote its

transpose and conjugate transpose, respectively. Throughout Chapter 5 we

slightly abuse notation and do not use boldface to denote vector quantities

as we did in previous chapters. For a column vector A, let diag(A) denote

a diagonal matrix with entries of A on the diagonal. For a square matrix

A, let diag(A) denote a column vector consisted of its diagonal entries. Let

Tr (A) denote the trace of a square matrix A.

Let N = {0, 1, ..., n} denote the set of nodes in a multi-phase radial distri-

bution network. Represent the network by a directed graph with E as the

collections of directed edges. For i, j ∈ N, the edge i → j ∈ E represents

a line joining nodes i and j. We assume that all the nodes i ∈ N and lines

i→ j ∈ E have three phases: a, b, c collectively defined by Φ = {a, b, c}. For

i ∈ N and φ ∈ Φ, let V φ
i denote the voltage phasor on phase φ at bus i. For

i → j ∈ E, let Iφij denote the phase φ current on the line from node i to j.

Define vectors Vi := [V a
i , V

b
i , V

c
i ]ᵀ, Iij := [Iaij, I

b
ij, I

c
ij]

ᵀ. Let symmetric matrix

yi := ibi ∈ C3×3 denote the shunt admittance at node i, and symmetric

matrix zij := rij + ixij ∈ C3×3 denote the series impedance of line i → j.

If a particular phase is missing on certain node or line, the corresponding

entries in current/power vectors and impedance/admittance matrices are set

to zero.

We adopt a multi-phase, unbalanced distribution network model presented

in [106] with some modifications. In this thesis, we ignore the delta-connected

variables. Thermal considerations are included in this thesis as limits on both

sending and receiving ends for real power on each line in E. The network

should satisfy the following constraints:

1. Ohm’s law:

Vi − Vj = zijIij, ∀i→ j ∈ E. (5.1)

2. Definition of auxiliary variables:

lij = IijI
H
ij , Sij = ViI

H
ij , ∀i→ j ∈ E. (5.2)
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3. Power balance:

sGi −sDi =
∑
j:i→j

diag(Sij)−
∑
k:k→i

diag(Ski−zkilki)+diag(ViV
H
i y

H
i ), ∀i ∈ N.

(5.3)

4. Thermal constraints:

diag(Pij) ≤ fij, diag(<(zijlij)− Pij) ≤ fij. (5.4)

5. Voltage magnitude:

V φ
i ≤ |V φ

i | ≤ V
φ

i , ∀φ ∈ Φ. (5.5)

We introduce the following auxiliary variable for the voltage at node i

wi := ViV
H
i ∈ H3×3, ∀i ∈ N. (5.6)

Notice that diag(wi) denotes the squared magnitude of three phases of

voltage Vi. The voltage constraint in (5.5) becomes

vi ≤ diag(wi) ≤ vi, (5.7)

where the limits vi and vi are defined as:

vi =
[
(V a

i )
2, (V b

i)
2, (V c

i)
2
]ᵀ
, ∀i ∈ N

vi =
[
(V

a

i )
2, (V

b

i)
2, (V

c

i)
2
]ᵀ
, ∀i ∈ N. (5.8)

Given the definition of wi and utilizing (5.1) we obtain:

wj = (Vi − zijIij)(Vi − zijIij)H

= ViV
H
i + zijIijI

H
ijz

H
ij − ViIHijzHij − zijIijV H

i

= wi − (Sijz
H
ij + zijS

H
ij) + zijlijz

H
ij. (5.9)

We can rewrite (5.3) in terms of real and reactive power balance con-

straints. Define the real and imaginary parts of the following auxiliary vari-

ables:
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Sij := Pij + iQij, (5.10)

wi := wR
i + iwI

i , (5.11)

lij := lRij + ilIij. (5.12)

Since wi, lij are Hermitian, the following properties hold

(wR
i )

ᵀ
= wR

i , (wI
i)

ᵀ
= −wI

i ,

(lRij)
ᵀ
= lRij, (lIij)

ᵀ
= −lIij.

(5.13)

Then, the nodal power balance constraints in (5.3) can be equivalently

written as

pGi − pDi = diag(wI
ibi) +

∑
j:i→j

diag(Pij)−
∑
k:k→i

diag
(
Pki − rkilRki + xkil

I
ki

)
.

(5.14)

qGi − qDi = − diag(wR
i bi) +

∑
j:i→j

diag(Qij)−
∑
k:k→i

diag
(
Qki − xkilRki − rkilIki

)
.

(5.15)

In (5.4), note that the real part of zijlij can be explicitly written as

<(zijlij) = rijl
R
ij − xijlIij. (5.16)

Moreover, since diag(wi) denotes squared magnitude of three phase voltages

at node i, it is equivalent to diag(wR
i ).

We associate with each node i a set J (i) of controllable generation re-

sources with three-phase apparent power injection sGk := pGk + iqGk ∈ C3 for

k ∈ J (i). Moreover, we assume that a set I(i) of consumers is connected

at bus i drawing power demand sDk := pDk + iqDk ∈ C3 for k ∈ I(i). Assume

each generation resource can produce power within some capacity limits:

pG
k
≤ pGk ≤ pGk ,

qG
k
≤ qGk ≤ qGk ,

(5.17)

for every k ∈ J (i). Without loss of generality, assume pG
k

= qG
k

= 0. We

model both inelastic and price responsive loads. To this end, let pD
k

and

qD
k

denote the minimum demand for real and reactive power that must be
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supplied to consumer k ∈ I(i). Finally, assume each generation asset incurs

costs Ck associated with production of amount pGk and each consumer receives

utility Uk from meeting load pDk .

5.3 Distribution Locational Marginal Prices

Assume the DSO has knowledge on the private costs and utilities of market

participants. Then, the market allocation would be determined from the

solution to the following dispatch problem:

PAC : maximize
∑
k∈I

Uk(p
D
k )−

∑
k∈J

Ck(p
G
k ),

subject to wj = wi − (Sijz
H
ij + zijS

H
ij) + zijlijz

H
ij, (5.18a)∑

k∈J (i)

pGk −
∑
k∈I(i)

pDk = diag(wI
ibi) +

∑
j:i→j

diag(Pij)

−
∑
k:k→i

diag
(
Pki − rkilRki + xkil

I
ki

)
, (5.18b)∑

k∈J (i)

qGk −
∑
k∈I(i)

qDk = − diag(wR
i bi) +

∑
j:i→j

diag(Qij)

−
∑
k:k→i

diag
(
Qki − xkilRki − rkilIki

)
, (5.18c)

diag(Pij) ≤ fij, (5.18d)

diag
(
rijl

R
ij − xijlIij − Pij

)
≤ fij, (5.18e)

vi ≤ diag(wR
i ) ≤ vi, (5.18f)

0 ≤ pGk ≤ pGk , k ∈ J (i) (5.18g)

0 ≤ qGk ≤ qGk , k ∈ J (i) (5.18h)

pDk ≥ pD
k
, qDk ≥ qD

k
, k ∈ I(i) (5.18i)[

wi Sij

SH
ij lij

]
� 0, (5.18j)

rank

[
wi Sij

SH
ij lij

]
= 1, (5.18k)

for all i ∈ N, i→ j ∈ E,
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over decision variables pGk , q
G
k , p

D
k , q

D
k ∈ R3 and Pij, Qij, l

R
ij, l

I
ij, w

R
i , w

I
i ∈ R3×3.

Note that (5.18j)-(5.18k) ensure that the network constraints formulated in

the auxiliary variables in PAC are equivalent to (5.1)-(5.5). This reformula-

tion is useful in order to derive the convex surrogate of PAC via semidefinite

relaxation. Notice that [
wi Sij

SH
ij lij

]
=

[
Vi

Iij

][
Vi

Iij

]H
, (5.19)

which is consistent with the definition of the auxiliary variables wi, lij and

explains why the semidefinite constraint (5.18j) and the rank-1 constraint

(5.18k) must hold. The non-convexity of the dispatch problem in (5.18)

lies in the rank-1 condition (5.18k). When the dispatch problem is non-

convex, there may not exist a set of prices such that market participants are

incentivized to follow the DSO-prescribed dispatch [74, 72, 86]. To get around

this difficulty, we propose prices derived as the optimal dual multipliers of a

convex relaxation of (5.18). In particular, dropping the non-convex, rank-1

constraint we arrive at the following relaxation of (5.18):

PSDP : maximize
∑
k∈I

Uk(p
D
k )−

∑
k∈J

Ck(p
G
k ), (5.20a)

subject to (5.18a)− (5.18j) (5.20b)

for all i ∈ N, i→ j ∈ E.

When the optimal solution of PSDP satisfies the rank-1 condition in (5.18k)

of PAC, then we say the SDP relaxation is exact and an unique voltage and

current vector (V ?, I?) can be recovered from the auxiliary variables (w?, l?)

[107]. Associate Lagrange multipliers λpi , λ
q
i ∈ R3 with the real and reactive

power balance constraints (5.18b)-(5.18c), respectively.

Definition 2. The relaxation-based DLMPs for multi-phase, real and reactive

power at node i ∈ N are defined as the optimal Lagrange multipliers λp,?i and

λq,?i obtained from the solution of PSDP.

The problem with PSDP is that the DSO is agnostic to the the true utilities

and cost functions of market participants. Hence, we require suppliers and

consumers to submit offers and bids to reveal their preferences to the DSO.

To this end, in Section 5.4 we exploit the family of scalar-parameterized
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supply offers/bids to arrive at an optimal solution of PSDP.

5.4 Two-Sided Electricity Market for Distribution

Grids

We consider a market mechanism based on scalar-parameterized supply offers

and demand bids introduced in Chapter 2. Specifically, let generation asset

owner k connected at node i submit to the DSO a multi-phase offer θGk ∈ R3
+

with the understanding that they are willing to supply up to

pGk := pGk − θGk � λpk, ∀ k ∈ J (i), (5.21)

when faced with the a positive, multi-phase price λpi at node i. In (5.21),

a�b denotes the Hadamard division of vectors a and b. When θGk = 0, power

producer i submit their full generation capacity, and ever decreasing values as

θGk grows large. We assume that each power supplier submits only offers for

real power; there are no offers for reactive power in the market. Similarly, let

consumer k connected at node i submit to the DSO the multi-phase demand

bid θDk ∈ R3
+ with the understanding that they are willing to consume up to

pDk := pD
k

+ θDk � λpk, ∀ k ∈ I(i), (5.22)

given price vector λpk. Notice that the pDk is a function of the price at bus i and

consists of the inelastic demand pD
k

and the price-responsive part θDk �λpk. The

higher the market price, the lower the desired quantity by power consumer

k located at node i. Again, we assume that there are no demand bids for

reactive power. However, consumers (producers) pay (are paid) the DSO for

the reactive power they consume (supply). This is a standard assumption

in the design of retail electricity markets [90]. Given the supply offers and

demand bids, the DSO seeks to solve a central dispatch problem with the

objective to maximize the induced social welfare while respecting various

network and individual participant’s constraints. Formally,
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Pθ : maximize
∑
k∈I

∫ pDk

pD
k

θDk
zk − pDk

dzk −
∑
k∈J

∫ pGk

0

θGk
pGk − zk

dzk, (5.23a)

subject to (5.18a)− (5.18j) (5.23b)

for all i ∈ N, i→ j ∈ E.

Our goal is to investigate whether, given (θDk , θ
G
k ) from each individual partic-

ipant’s profit maximization problem, there exist prices (λp, λq) such that the

resulting allocations (pGk , q
G
k ) and (pDk , q

D
k ) are solutions to PSDP. Moreover,

if said dispatch satisfies the rank-1 condition, then the market mechanism in

(5.23) yields efficient allocations, i.e., allocations that solve PAC. We formal-

ize the previous discussion in the following definition.

Definition 3. The supply offer profile (θG, qG), demand bid profile (θD, qD)

together with prices (λp, λq) constitute a market equilibrium if they satisfy the

following conditions:

• Individual rationality for all controllable assets: At each node i ∈ N,

given prices λpi , λ
q
i , controllable asset k ∈ J (i) maximize their payoff,

i.e.,

θGk , q
G
k ∈argmax

{
λp,

ᵀ
i

(
pGk − θGk � λpi

)
+ λq,

ᵀ
i qGk − Ck(pGk − θGk � λpi )

|0 ≤ θGk ≤ θG,max
k , 0 ≤ qGk ≤ qGk

}
. (5.24)

Similarly, demand k ∈ I(i) maximize their payoff

θDk , q
D
k ∈argmax

{
Uk(p

D

k
+ θDk � λpi )− (λpi )

ᵀ
(
pD
k

+ θDk � λpi
)
− (λqi )

ᵀ
qDk

|θDk ≥ 0, qDk ≥ qD
k

}
. (5.25)

• Market clearing condition: The dispatch
∑

k∈J (i) S(θGk , λ
p
i ) + iqGk meets

the power demands
∑

k∈I(i)D(θDk , λ
p
i )+iqDk at each node i ∈ N over the

network and induce feasible power flows, i.e., there exist wi, Pij, Qij, lij

such that
(
S(θGk , λ

p
i ), q

G
k , D(θDk , λ

p
i ), q

D
k , wi, Pij, Qij, lij

)
satisfy (5.18a)-

(5.18j) for all k ∈ J (i), I(i), i ∈ N, i→ j ∈ E.

• The DSO solves Pθ: For every k ∈ J (i), I(i), i ∈ N, i → j ∈ E, there
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exist wi, Pij, Qij, lij such that
(
S(θGk , λ

p
i ), q

G
k , D(θDk , λ

p
i ), q

D
k , wi, Pij, Qij, lij

)
optimizes Pθ.

The second property that we seek in a pricing mechanism is revenue ade-

quacy. We formally describe this in the following definition.

Definition 4. The prescribed dispatch (pGk , q
G
k , p

D
k , q

D
k ) and prices (λpi , λ

q
i ) for

k ∈ I(i),J (i) and i ∈ N define a revenue adequate market mechanism if the

merchandizing surplus (MS) defined by

MS :=
∑
i∈N

λp,ᵀi
∑
k∈I(i)

pDk −
∑
k∈J (i)

pGk

+ λq,
ᵀ

i

∑
k∈I(i)

qDk −
∑
k∈J (i)

qGk


(5.26)

is non-negative.

We now present our main result.

Theorem 6. Let the multi-phase, unbalanced dispatch problem PAC be strictly

feasible. There exist prices (λp, λq) such that
(
θG, qG, θD, qD, λp, λq

)
consti-

tute a market equilibrium. Moreover, the following assertions hold:

• For every i ∈ N, i→ j ∈ E, the dispatch (pGk , q
G
k , p

D
k , q

D
k , wi, Pij, Qij, lij),

where pGk = S(θGk , λ
p
i ), for k ∈ J (i) and pDk = D(θDk , λ

p
k), for k ∈ I(i),

is an optimal solution to PSDP.

• If the optimal solution of PSDP satisfies the rank-1 condition in (5.18k),

then
(
θG, qG, θD, qD, λp, λq

)
support an efficient market equilibrium.

The proof of Theorem 6 is provided in Section 5.5. Theorem 6 establishes a

fundamental property of DLMPs: they always support an optimal dispatch of

PSDP, and an efficient dispatch whenever the relaxation is exact. This implies

that, given DLMPs, each market participant has no incentive to deviate from

the DSO-prescribed dispatch. This result demonstrates that said DLMPs

together with the bid/offer structures, constitute a promising mechanism for

the design of retail electricity markets. However, in addition to support of

efficient market equilibria, said mechanism must yield non-negative MS. We

relegate the proof of revenue adequacy to future efforts.

In terms of physical intuition, numerical studies on distribution feeders are

required to illustrate how voltage constraints, congestion and losses influence
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said DLMPs. In [106], the authors perform numerical simulations of PSDP

(including delta-connected loads) and demonstrate numerical exactness of

the relaxed model with respect to voltages and branch flows. This indicates

that one can recover the values of (V ?, I?) that are optimal for PAC, which

provides validity to the central dispatch modeled considered in Section 5.3.

Understanding conditions for which the semidefinite relaxation of PAC is ex-

act, is beyond the scope of this thesis. Interested readers are referred to

[106, 108, 109] and references therein for insightful discussions.

Our exposition focuses on the mathematical foundations of DLMPs and

sidesteps a range of issues surrounding the adoption of such prices in practice.

For example, what is the right trading platform that needs to be established

and what products should be traded in such platforms that DERs can par-

ticipate in? How should such platforms coordinate their operations with

wholesale markets governed by transmission system operators? See [95] and

[96] for insightful discussions on the same. We align with the view in [23] to

consider a retail market operated by an independent distribution system op-

erator (DSO) responsible for the dispatch and pricing of DERs, but leave the

specifics of a coordinated wholesale-retail market design to a future effort.

5.5 Proof of Theorem 6

We begin by proving the first assertion. To show that at a market equilib-

rium, defined in Definition 3, the resulting allocation is an optimal dispatch

of PSDP, we utilize the KKT conditions of PSDP and show they are equivalent

to those satisfied by a market equilibrium.

To motivate the proof, we first write the complex constraints in PSDP as

real-valued constraints. Given (5.10)-(5.12), complex constraint (5.18a) can

be written as two real-valued constraints, representing the real and imaginary

parts respectively

wR
j =wR

i − (Pijrij +Qijxij + rijP
ᵀ
ij + xijQ

ᵀ
ij )

+ (rijl
R
ijrij + rijl

I
ijxij + xijl

R
ijxij − xijlIijrij), (5.27)

wI
j =wI

i − (xijP
ᵀ
ij − Pijxij +Qijrij − rijQᵀ

ij )

+ (rijl
I
ijrij − rijlRijxij + xijl

R
ijrij + xijl

I
ijxij). (5.28)
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For all i ∈ N and i→ j ∈ E, associate Lagrange multiplier vectors λpi , λ
q
i to

the real and reactive power constraints (5.18b)-(5.18c) in PSDP, respectively.

Similarly, associate vectors αij, α
′
ij to the line thermal limits (5.18d)-(5.18e).

Assign vectors µpk, µ
p
k
, µqk, µ

q
k

to the upper and lower bounds on real and re-

active power generation (5.18g)-(5.18h), respectively. Associate Lagrange

multipliers γd
k
, δdk with demand lower limits in (5.18i). Define vectors µwi , µ

w
i

as the multipliers for the squared voltage upper and lower constraints in

(5.18f). For (5.27)-(5.28), let matrices νRij , ν
I
ij be the multipliers, respectively.

Finally, we assign matrix σij as the multiplier for the positive semi-definite

constraint (5.18j), where σij is partitioned into four 3-by-3 matrices as:

σij :=

[
σwij σSij

σS,Hij σlij

]
. (5.29)

Also, we define the following:

σwij := σw,Rij + iσw,Iij , σlij := σl,Rij + iσl,Iij , (5.30)

σSij := σS,Rij + iσS,Iij . (5.31)

Since wi, lij are Hermitian matrices, their corresponding multipliers σwij and

σlij are also Hermitian. Then, σw,Rij , σl,Rij are symmetric, and σw,Iij , σ
l,I
ij are

skew-symmetric. Given (5.10)-(5.12), the term associated with the semi-

definite constraint (5.18j) in the Lagrangian of problem (5.20) is essentially

real-valued as shown:

Tr
(
σwijwi + σSijS

H
ij + σS,Hij Sij + σijlij

)
= Tr

((
σw,Rij + iσw,Iij

) (
wR
i + iwI

i

)
+
(
σS,Rij + iσS,Iij

)
(
P>ij − iQ>ij

)
+
(
σS,R,>ij − iσS,I,>ij

)
(Pij + iQij)

+
(
σl,Rij + iσl,Iij

) (
lRij + ilIij

))
= Tr

(
σw,Rij wR

i − σw,Iij w
I
i + σl,Rij l

R
ij − σl,Iij lIij + 2

(
σS,Rij P>ij

+σS,Iij Q
>
ij

)
+ i
(
σw,Iij w

R
i + σw,Rij wI

i + σl,Iij l
R
ij + σl,Rij l

I
ij

))
= Tr

(
σw,Rij wR

i − σw,Iij w
I
i + σl,Rij l

R
ij − σl,Iij lIij + 2

(
σS,Rij P>ij

+σS,Iij Q
>
ij

))
. (5.32)
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The last equality follows from

Tr (X) := Tr
(
σw,Iij w

R
i + σw,Rij wI

i + σl,Iij l
R
ij + σl,Rij l

I
ij

)
= Tr

((
σw,Iij w

R
i + σw,Rij wI

i + σl,Iij l
R
ij + σl,Rij l

I
ij

)>)
= −Tr

(
σw,Iij w

R
i + σw,Rij wI

i + σl,Iij l
R
ij + σl,Rij l

I
ij

)
= −Tr (X) = 0. (5.33)

Since PSDP is convex, the Slater’s condition holds and the Karush-Kuhn-

Tucker (KKT) optimality conditions in Figure 5.1 are necessary and suffi-

cient. The KKT conditions are all real-valued. Notation 0n×m denotes an

n-by-m matrix with zero entries.

From Definition 3, in order for (θG, qG, θD, qD, λp, λq) to be a market equi-

librium, the following conditions must hold.

For each generation asset k ∈ J (i), the optimality conditions yield:

1. Primal feasibility:

0 ≤ θGk ≤ θG,max
k , 0 ≤ qGk ≤ qGk . (5.36)

2. Dual feasibility:

µθ
k
, µθk, µ

q

k
, µqk ≥ 0. (5.37)

3. Gradient conditions:

∇pGk
Ck
(
S(θGk , λ

p
i )
)≤ λpi , 0 ≤ θGk < θG,max

k ,

≥ λpi , 0 < θGk ≤ θG,max
k ,

∀ k ∈ J (i) (5.38)

λqi − µqk + µq
k

= 0, ∀ k ∈ J (i). (5.39)

4. Complementary slackness:

µθk(θ
G,max
k − θGk ) = 0, µθ

k
θGk = 0, µqk(q

G
k − qGk ) = 0, µq

k
qGk = 0. (5.40)

For each consumer k ∈ I(i), the optimality conditions yield:

1. Primal feasibility:

θDk ≥ 0, qDk ≥ qD
k
. (5.41)
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2. Dual feasibility:

γθ
k
≥ 0, δdk ≥ 0. (5.42)

3. Gradient conditions:

∇pDk
Uk
(
D(θDk , λ

p
i )
)≤ λpi , θDk ≥ 0,

= λpi , θDk > 0,
∀ k ∈ I(i) (5.43)

λqi − δdk = 0, ∀ k ∈ I(i). (5.44)

4. Complementary slackness:

γθ
k
θDk = 0, δdk(q

D
k − qDk ) = 0. (5.45)

At a market equilibrium, the DSO solves Pθ. The KKT for Pθ yield:

1. Primal feasibility: (5.18a)-(5.18j), for i ∈ N, i→∈ E.

2. Dual feasibility: αij, α
′
ij, µ

w
i , µ

w
i
≥ 0, σij � 0.

3. Gradient conditions: (5.34a), (5.34b), (5.34g), (5.34h), (5.34i), (5.34j)

together with

pGk = pGk − θGk � λpi (5.46a)

pDk = pD
k

+ θDk � λpi . (5.46b)

4. Complementary slackness: (5.35a), (5.35e), (5.35f).

Complementary slackness of Pθ together with (5.40) and (5.45) are equiv-

alent to (5.35a)-(5.35f) under the maps (5.46a) and (5.46b). Specifically, it

is not hard to see that µθ
k
λpi = µpk, µ

θ
kλ

p
i = µp

k
, γθ

k
λpi = γd

k
. The rest of the

dual variables are the same. Primal feasibility of Pθ together with (5.36) and

(5.41) are equivalent to primal feasibility conditions of PSDP. Dual feasibility

of Pθ together with (5.37) and (5.42) are equivalent to dual feasibility condi-

tions of PSDP. Finally, (5.38),(5.39), (5.43), (5.44) together with the gradient

conditions of Pθ, are equivalent (5.34c)-(5.34f). The previous discussion es-

tablishes that at a market equilibrium, the resulting allocation is an optimal

solution to PSDP. If at the given solution, the rank-1 condition is also satis-

fied, then the duality gap of PAC and PSDP is zero and the optimal allocation
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from PSDP is also an optimal solution of PAC. Hence, (θg, qG, θD, qD, λp, λq)

supports an efficient allocation. This completes the proof.

5.6 Summary

We presented a central dispatch model for multi-phase, unbalanced distribu-

tion grids. The dispatch model incorporates multi-phase, supply offers and

demand bids from market participants connected at the low-voltage end of

the grid. A central market-maker, the DSO, determines the allocation for

real and reactive power at each node of the grid together with the DLMPs,

which are used to compensate resources at every location. We showed that

when market actors compete in scalar-parameterized offers/bids and the re-

laxation is exact, DLMPs support efficient market equilibria. This result

demonstrates the applicability of said offers/bids in a wide range of market

settings and competition models. In future efforts, we aim to establish the

revenue adequacy of proposed DLMPs and perform numerical simulations to

reveal how structural network characteristics impact the behavior of DLMPs.
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Primal feasibility conditions: (5.18a)-(5.18j), for i ∈ N, i→∈ E.

Dual feasibility conditions: α?ij , α
′,?
ij , µ

p,?
i , µq,?k , µp,?k , µq,?k , γd,?k , δd,?k , µw,?i , µw,?

i
≥

0, σ?ij � 0.
Gradient conditions: For i ∈ N, i→ j ∈ E,

diag(λp,?i − λ
p,?
j ) + diag(α?ij − α′,?ij )− (νR,?ij + νR,?,

ᵀ
ij )rij + (νI,?ij − ν

I,?,ᵀ
ij )xij

+2σS,R,?ij = 03×3, (5.34a)

diag(λq,?i − λ
q,?
j )− (νR,?ij + νR,?,

ᵀ
ij )xij + (νI,?,

ᵀ
ij − νI,?ij )rij + 2σS,I,?ij = 03×3,

(5.34b)

∇pGk Ck(p
G,?
k )

{
≤ λp,?i , 0 < pG,?k ≤ pGk
≥ λp,?i , 0 ≤ pG,?k < pGk

∀ k ∈ J (i), (5.34c)

λq,?i − µ
q,?
k + µq,?

k
= 0, ∀k ∈ J (i), (5.34d)

∇pDk Uk(p
D,?
k )

{
≤ λp,?k , pD,?k ≥ pD

k

= λp,?i , pD,?k > pD
k

, ∀ k ∈ I(i), (5.34e)

λq,?i − δ
d,?
k = 0, ∀ k ∈ I(i), (5.34f)

−diag(λq,?i )bi + diag(µw,?i − µw,?
i

) +
∑
j:i→j

νR,?ij + σw,R,?,
ᵀ

ij −
∑
k:k→i

νR,?ki = 03×3,

(5.34g)

diag(λp,?i )bi +
∑
j:i→j

νI,?ij −
∑
k:k→i

νI,?ki −
∑
j:i→j

σw,I,?,
ᵀ

ij = 03×3, (5.34h)

rij diag(λp,?j ) + xij diag(λq,?j ) + rij diag(α′,?ij ) + rijν
R,?
ij rij + xijν

R,?
ij xij

−rijνI,?ij xij + xijν
I,?
ij rij + σl,R,?,

ᵀ
ij = 03×3, (5.34i)

−xij diag(λp,?j ) + rij diag(λq,?j )− xij diag(α′,?ij ) + rijν
R,?
ij xij − xijνR,?ij rij

+rijν
I,?
ij rij + xijν

I,?
ij xij − σ

l,I,?,ᵀ
ij = 03×3, (5.34j)

Complementary slackness conditions: For i ∈ N, i→ j ∈ E,

diag(α?ij)
ᵀ
(

diag(P ?ij)− fij
)

= diag(α′,?ij )
ᵀ
(

diag(rijl
R,?
ij − xijl

I,?
ij − P ?ij)− fij

)
= 03×1, (5.35a)

diag(µp,?k )
ᵀ
(pG,?k − pGk ) = diag(µp,?

k
)
ᵀ
(pG
k
− pG,?k ) = 03×1, (5.35b)

diag(µq,?k )
ᵀ
(qG,?k − qGk ) = diag(µq,?

k
)
ᵀ
(qG
k
− qG,?k ) = 03×1, (5.35c)

(γd,?
k

)
ᵀ
(
pD,?k − pD

k

)
= 0, (δd,?k )

ᵀ
(
qD,?k − qD

k

)
= 0, (5.35d)

diag(µw,?i )
ᵀ
(

diag(wR,?
i )− vi

)
= diag(µw,?

i
)
ᵀ
(
vi − diag(wR,?

i )
)

= 03×1,

(5.35e)

Tr

{
σw,R,?ij wR,?

i − σw,I,?ij wI,?
i + 2(σS,R,?ij P ?,

ᵀ
ij + σS,I,?ij Q?,

ᵀ
ij ) + σl,R,?ij lR,?ij − σ

l,I,?
ij lI,?ij

}
= 0. (5.35f)

Figure 5.1: The KKT optimality conditions for (5.20).
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CHAPTER 6

CONCLUSION AND FUTURE
DIRECTIONS

This thesis presented allocation and pricing mechanisms for competitive elec-

tricity markets. The market allocation mechanism is based on a particular

family of scalar-parameterized supply offers and demand bids. Under these

offer/bid structures, we analyzed a generic, two-sided market and demon-

strated a number of useful properties including support for efficient market

allocations, existence of a unique Nash equilibrium and its explicit charac-

terization, and bounded efficiency loss and price markup at the equilibrium.

We demonstrated how scalar-parameterized mechanisms adequately capture

the primary means by which market power is exercised in electricity markets,

e.g., through the economic withholding of generation capacity. This allowed

us to extend the two-sided competition model over a power network with

additional considerations on network security and reliability.

We demonstrated the analytical strengths of scalar-parameterized offers in

the study of inter-regional electricity markets where these offers are utilized to

model a game among pure price-arbitrageurs. Support for efficient outcomes

together with efficiency bounds under strategic interactions are demonstrated

when players face affine price spreads. In addition, through application of

reinforcement learning algorithms we showed that computed Nash equilibria

can be learned by the players in a setting of imperfect information.

A comprehensive competition framework for electricity markets cannot ig-

nore the underlying physics of power grids and security considerations. Mo-

tivated by the increased customer participation at the low-voltage side of

the grid, we explored pricing mechanisms when the central dispatch problem

incorporates losses, reactive power and voltage constraints—sources of non-

linearities and non-convexities. To this end, we exploited semidefinite relax-

ations of the optimal power flow problem to leverage the extensive literature

on pricing based on duality theory. We proposed and analyzed relaxation-

based LMPs (RLMPs) and illustrated a number of key properties that ren-
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der RLMPs meaningful price signals to compensate electricity market actors.

Moving toward the design of a retail electricity market, we utilized RLMPs

together with scalar-parameterized offers/bids, and explicitly constructed the

central market clearing problem solved by a distribution market maker. We

defined prices for real and reactive power, referred to as DLMPs, and showed

that such prices together with the offer-based participation mechanism, sup-

port efficient market allocations.

There are several interesting directions for future research. First, with

regard to the two-sided competition model with scalar-parameterized of-

fers/bids, a study of the market outcomes when only one group (suppliers

or consumers) are strategic would provide further insights on the nature of

competition. We analyzed one-sided competition under affine demand func-

tions in Chapter 3. Perhaps exploration of strategic interactions under other

families of demand functions would reveal further properties of said offer

structures. We briefly explored how, under certain conditions, competition

in scalar-parameterized supply functions sustains Cournot outcomes, draw-

ing interesting parallels with existing literature on pure price competition

models. Establishing the general framework and conditions under which

scalar-parameterized supply function competition yields similar outcomes to

Bertrand-Cournot models, is another interesting direction for future research.

Moreover, understanding how uncertainty on the maximum production ca-

pacity and/or minimum inelastic demand affects dispatch solutions would

provide useful insights in electricity market design, given the deepening pen-

etration of stochastic renewable generation.

The development of a systematic framework for a retail market that lever-

ages our RLMP-based DLMPs with a clearly defined role for the DSO and

the information exchanged with the SO, is another direction for future re-

search. Furthermore, we plan to combine our analysis on RLMPs with that

of CHPs analyzed by [72] and [86] to account for non-convexity in market

clearing problems that arise due to power flow equations and integer commit-

ment decisions. Finally, we intend to establish a general theory of pricing in

non-convex markets along the lines of [110] to include non-convexity due to

physical constraints of an underlying network. Such an analysis has potential

applications beyond electricity markets, e.g., for gas networks as in [111].
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