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ABSTRACT

In recent years, deep neural network models gained popularity as a modeling

approach for many speech processing tasks including automatic speech recog-

nition (ASR) and spoken language understanding (SLU). In this dissertation,

there are two main goals. The first goal is to propose modeling approaches in

order to learn speaker embeddings for speaker adaptation or to learn seman-

tic speech embeddings. The second goal is to introduce training objectives

that achieve fairness for the ASR and SLU problems. In the case of speaker

adaptation, we introduce an auxiliary network to an ASR model and learn

to simultaneously detect speaker changes and adapt to the speaker in an un-

supervised way. We show that this joint model leads to lower error rates as

compared to a two-step approach where the signal is segmented into single

speaker regions and then fed into an adaptation model. We then reformulate

the speaker adaptation problem from a counterfactual fairness point-of-view

and introduce objective functions to match the ASR performance of the in-

dividuals in the dataset to that of their counterfactual counterparts. We

show that we can achieve lower error rate in an ASR system while reducing

the performance disparity between protected groups. In the second half of

the dissertation, we focus on SLU and tackle two problems associated with

SLU datasets. The first SLU problem is the lack of large speech corpora.

To handle this issue, we propose to use available non-parallel text data so

that we can leverage the information in text to guide learning of the speech

embeddings. We show that this technique increases the intent classification

accuracy as compared to a speech-only system. The second SLU problem is

the label imbalance problem in the datasets, which is also related to fairness

since a model trained on skewed data usually leads to biased results. To

achieve fair SLU, we propose to maximize the F-measure instead of conven-

tional cross-entropy minimization and show that it is possible to increase the

number of classes with nonzero recall. In the last two chapters, we provide
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additional discussions on the impact of these projects from both technical and

social perspectives, propose directions for future research and summarize the

findings.
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CHAPTER 1

INTRODUCTION

In the last decade, deep neural networks (DNNs) have gained popularity

as the modeling approach for many applications including automatic speech

recognition (ASR) [1] and end-to-end spoken language understanding (SLU)

[2]. In supervised training schemes, the main idea is to represent the input

to output mapping usually using a highly nonlinear function of intermediate

representations generated at the hidden layers of a neural network. These

representations are also called embeddings. Learning embeddings is a very

broad topic, hence, it covers much more than the scope of this dissertation. In

this work, we specifically focus on ASR and SLU tasks, and propose modeling

and training techniques.

The increasing popularity of machine learning applications has raised con-

cerns about their bias and fairness [3, 4, 5]. There are many causes of unfair-

ness of machine learning applications including but not limited to dataset

bias due to historical and societal reasons, measurement bias, algorithmic

bias, evaluation bias, etc. [6]. As a machine learning application, ASR

is also subject to fairness concerns. For example, there have been studies

showing that there is usually a performance gap between male and female

speakers [7, 8] as well as black and white speakers [9]. In an SLU application,

the problem usually arises from having highly imbalanced datasets in which

most of the data belongs to a single class and rare classes have only a few

examples. Therefore, the second objective of this dissertation is to learn fair

speech embeddings. We will achieve this goal by introducing fair training

criteria for the ASR and SLU tasks.

In the case of ASR, our main task is to modify the model such that its

performance is relatively robust to the changes due to varying speaker char-

acteristics; i.e., our task is speaker adaptation. Most of the existing speaker

adaptation methods assume that the input speech is pre-segmented into

single-speaker regions. However, in the case of rapid speaker turns or on-
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line applications, it might be necessary to process unsegmented speech files

on-the-fly. Hence, we propose a speaker adaptation method to handle such

cases. We also provide a new framework to approach the speaker adaptation

problem which is inspired by the fairness literature. In this work, we try

reducing the ASR performance gap between certain protected groups.

In the case of SLU, our focus is on end-to-end (E2E) speech-to-intent and

speech-to-image object mapping without performing ASR explicitly. Since

most SLU corpora have limited amounts of speech, we propose a method

to leverage a non-parallel text corpus. These SLU corpora are also highly

label-imbalanced which causes bias towards certain labels in the output. In

order to make them fair to the minority classes, we propose an empirical

F-measure optimization method to train E2E SLU systems.

The motivations behind working particularly on ASR and SLU tasks are

the following:

• ASR is one of the most common applications of speech processing and

with the introduction of smart devices, they started to become part of

the daily life.

– Among ASR problems, we particularly focus on speaker adapta-

tion because its effect is immediately experienced by the end-user.

For example, if we take a pre-trained English ASR system such as

the ASpIRE model [10] and try to transcribe non-native female

speech (such as a sentence uttered by the author), we easily see

that the system does not produce the desired outcome. Consider-

ing the user satisfaction, we believe that speaker adaptation is an

important problem in ASR.

• As for the SLU task, our ultimate goal is to achieve high quality human-

machine verbal interaction which means that we need to teach machines

how to understand speech so that it can take actions accordingly, such

as answering a question by the user or turning off the lights at home.

– SLU also entails many subproblems. Here we focus on model-

ing and training approaches. We focus on speech-to-dialog act,

speech-to-intent and speech-to-object problems which can be sim-

ply named as utterance classification tasks rather than, for in-

stance, slot-filling.
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– We also restrict ourselves to E2E speech-to-concept models as

we are trying to learn speech embeddings rather than perform

the conventional two-step ASR + NLP approach. The reasons

for avoiding the conventional approach will be discussed in Sec-

tion 2.2.

The main contributions of this work can be summarized as follows:

1. A speaker adaptation model that can handle utterances with speaker

change in the input speech signal,

2. A counterfactually fair algorithm to train a speaker adaptation model,

3. A multi-view approach for end-to-end SLU to make use of text data in

speech-to-concept tasks,

4. A method to empirically optimize a neural network with respect to

the F-measure so that we can prevent the model from neglecting the

minority classes.

Table 1.1: Summary of the chapters in terms of tasks and proposals

Task Model Criterion
Speaker
adaptation

An auxiliary network
(Ch. 3)

Counterfactual posterior
matching (Ch. 4)

E2E SLU A multi-view network
(Ch. 5)

Deep F-measure
(Ch. 6)

As mentioned above, in this dissertation, we focus on two major speech

tasks, namely, speaker adaptation for ASR and E2E SLU. For each of these

machine learning tasks, we first propose a novel model to tackle certain prob-

lems of these tasks and then we propose a training criterion to achieve fairness

in these tasks. This structure is summarized in Table 1.1. Chapter 3 will

introduce an auxiliary network that performs speaker adaptation, then this

model will be combined with a speaker attention mechanism to perform joint

speaker change detection and speaker adaptation. We will show that even

though we do not explicitly make use of the change point information during

training, we can learn to detect speaker changes while reducing the ASR error

rate. Chapter 4 will describe a fair training method inspired from the coun-

terfactual fairness of [11]. Chapter 5 will switch to the E2E SLU problem
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and propose a multi-view model that allows us to use non-parallel text data

to improve speech-only SLU. We will show that using a large amount of text

to pre-train a shared classifier improves the speech-only speech-to-concept

classification performance. Chapter 6 will introduce an objective function

that trains a DNN to maximize an approximate F-measure instead of accu-

racy. The newly proposed deep F-measure achieves accuracy comparable to

that of standard cross-entropy based training while increasing the coverage;

i.e., the number of classes with nonzero recall.

The rest of this dissertation is organized as follows: Chapter 2 will present

a summary of related prior work on speaker adaptation, E2E SLU and fair-

ness in machine learning. As shown in Table 1.1, Chapters 3-6 are the core

chapters, each of which introduces the problem, proposes the model and pro-

vides experimental results. Chapter 7 discusses the findings and the general

impact of this research as well as the directions for future work. Chapter 8

summarizes the contributions and concludes this dissertation.
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CHAPTER 2

BACKGROUND

This chapter summarizes the prior work related to speaker adaptation and

E2E SLU techniques developed in this dissertation. As we will propose a

method for combining speaker change detection with speaker adaptation, we

will also briefly summarize speaker change detection methods. In addition to

these tasks, we will also focus on training fair models and will briefly review

the fairness literature in machine learning.

2.1 Speaker Adaptation and Change Detection

2.1.1 Speaker Adaptation for ASR

Although DNNs have been successfully used in ASR systems, their perfor-

mance is still affected by the variability inherent in speech. One of the main

sources of variability is the mismatch between training and test speakers.

Techniques proposed to alleviate this problem include using speaker-informed

input features to the DNNs [12, 13], adapting the model structure [14, 15] and

using auxiliary adaptation models or features [16, 17, 18, 19, 20, 21, 22, 23].

From a different perspective, adaptation methods can also be classified as su-

pervised or unsupervised based on whether they use additional text or labels

for the test data in addition to audio.

In input feature adaptation systems, features are normalized using a trans-

form such as feature-space maximum likelihood linear regression (fMLLR) [24,

12] or the features are augmented with speaker specific features such as i-

vectors [25, 13]. Other methods modify the speaker independent DNN model

by introducing speaker adaptive layers [26]. For example, [27] investigates

the use of learning an affine transform after long short-term memory (LSTM)

activations at different layers of the network. Alternatively, the network
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structure is kept the same but the weights are adapted based on speak-

ers [14]. Recently, auxiliary feature or auxiliary network based adaptation

methods have become more popular as these methods usually require little

or no adaptation data [21]. Such approaches extract speaker invariant in-

termediate features by adversarial training [19, 20]. In these systems, the

auxiliary network performs speaker classification whereas the main network

performs phone/senone classification. Auxiliary feature based systems are

usually developed using sequence summary vectors [28] and they are often

applied only to the fully-connected (FC) layers. However, recently some

methods are extended for the adaptation of the LSTM layers. For example,

in [21], the sequence summary idea is applied in an encoder-decoder based

end-to-end framework.

One method for speaker adaptation is to use speaker embeddings to aug-

ment the input features or intermediate activations of the original system.

These embeddings can be i-vectors, summary vectors [28, 21] generated by

an auxiliary network or a speaker vector read from a memory block [29, 30].

Another method for speaker adaptation is to provide speaker codes to a

main network to adjust the weights of a layer. These speaker codes can be i-

vectors or they can be learned discriminatively. A supervised way of learning

speaker codes for speaker adaptation of DNN-HMM systems is proposed

in [16, 18]. Using speaker codes, these techniques learn a bias for the sigmoid

nonlinearities at the output of FC layers. Parametrization of nonlinearities is

also proposed in [31] but their method adjusts the learned sigmoid or rectified

linear unit (ReLU) layers without a speaker code.

A different version of using speaker codes is to learn an affine transforma-

tion for the LSTM activations. In [22], i-vectors are input to an auxiliary

control network that computes a weight and a bias vector. Then, these i-

vector dependent transformations are applied to the main network layers.

Wcontrol = Wwi+ bw (2.1)

bcontrol = Wbi+ bb (2.2)

ĥ = diag(Wcontrol)h+ bcontrol, (2.3)

where Ww, bw,Wb, bb parametrize the adaptive weight and bias according to

the i-vector i and h, ĥ denote unadapted and adapted LSTM activations.

Another extension of this idea is studied in [27] where they adapt bidirec-
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tional LSTM (BLSTM) layers by having a separate affine transformation

for the forward and backward LSTM activations. All of these methods are

supervised, in the sense that they require a certain amount of data known

to be the utterances of the same test speaker, although no reference text

transcription is required.

Our earlier work on adaptation by speaker-aware offsets [23, 32] can also

be grouped under the affine transformation category where speaker embed-

dings generated through an auxiliary network are used as bias vectors and

subtracted from main network activations. As compared to [23, 32], in the

current work, we investigate more general affine transformations. We also

experiment with adding a nonlinearity to the transformation.

Given that i-vectors are commonly used in adaptation experiments, we use

them for comparison to our proposed approaches. We discuss the estimation

of these features in the following subsection.

i-vectors

Extraction of i-vectors [25] aims at modeling speaker and environment vari-

ability using a total variability matrix and a total factor. I-vectors are mainly

used in speaker identification applications. In such systems, i-vectors are

compared using cosine similarity to achieve matching with the known speak-

ers. Although the extracted i-vectors are used to represent speakers, in [25]

it is discussed that there are still channel variation effects between different

recordings of the same speaker and therefore the i-vectors should be projected

onto spaces where there is greater separation between the vectors of differ-

ent speakers and smaller distances between the vectors of the same speaker.

These projection techniques include within-class covariance normalization

(WCCN) and linear discriminant analysis (LDA).

Consider the representation of an utterance as a supervector M , created

by concatenating the mean vectors of a speaker dependent Gaussian mixture

model (GMM). The idea of i-vector is to express the utterance supervector

M as a linear combination of a vector in speaker and environment depen-

dent space and a speaker and environment independent supervector which

is usually determined by a universal background model (UBM) [25]. This

UBM is a GMM trained on all available training data in a speaker indepen-

dent manner and the supervector is constructed by concatenating the mean
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vectors of the Gaussians in the mixture. If the UBM supervector is denoted

by m, then the utterance supervector can be decomposed as

M = m+ V i, (2.4)

where V is a low rank matrix characterizing the speaker and environment

space and w has a N (0, I) prior distribution. The components of w are

called total factors and the vector w is called identity vector or i-vector [25].

Extraction of i-vectors consists of estimating the matrix V and computing w.

The total variability matrix V is the so-called eigenvoice matrix [33] which

is part of the factor analysis of the vector. Let there be L speech feature

vectors {x1, x2, · · · , xL} each of which has dimension F and let the UBM

GMM Ω have C components. The required statistics are

Nc(u) =
L∑
t=1

P (c|xt,Ω) (2.5)

F̃c(u) =
L∑
t=1

P (c|xt,Ω)(xt −mc) (2.6)

S̃c(u) = diag

(
L∑
t=1

P (c|xt,Ω)(xt −mc)(xt −mc)
T

)
(2.7)

N(u) = [N1, N2, . . . , NC ]T (2.8)

F (u) = [F̃1, F̃2, . . . , F̃C ]T (2.9)

S(u) =


S̃1

. . .

S̃C

 , (2.10)

where c is the Gaussian component index, u is the utterance index, P (c|xt,Ω)

is the posterior probability of the Gaussian component c given xt and the

model parameters Ω, and superscript T denotes transposition. Equation (2.6)

is the centralized version of the mean estimation formula in Baum-Welch

training of GMM and mc is the mean vector of the UBM mixture compo-

nent c. Using these Baum-Welch statistics, inverse covariance of the speaker

factors lV (u) and other statistics which are based on accumulation over all
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utterances are computed:

lV (u) = I + V TΣ−1N(u)V (2.11)

Ac =
∑
u

Nc(u)l−1V (u) (2.12)

D =
∑
u

F (u)
(
l−1V (u)V TΣ−1F (u)

)T
= [D1, . . . , DC ]T, (2.13)

where Σ−1 is the inverse of the UBM covariance matrix. Estimation of V

starts with an initial guess and then Eqs. (2.11)-(2.14) are used to update

the value of V for a certain number of iterations.

V =


V1
...

VC

 =


A−11 D1

...

A−1C DC

 . (2.14)

Once V is computed, the i-vector i is obtained by using Baum-Welch statis-

tics which have similarities with maximum likelihood estimation of GMMs.

As in the estimation of V , Nc(u) and F̃c(u) are computed first and then the

i-vector i is computed by

i = (I + V TΣ−1N(u)V )−1V TΣ−1F̃ (u). (2.15)

Here, N(u) is a CF × CF dimensional diagonal matrix with the diagonals

NcI where I is the identity matrix of dimension F , and F̃ (u) is concatenation

of F̃c(u). Σ is a diagonal covariance matrix estimated by the factor analysis

which is described in [33].

x-vectors

In recent years, neural network based speaker embeddings have started to

outperform i-vectors in speaker recognition. Hence they have also become

popular for speaker adaptation. One of the most widely used network-based

speaker embedding is the x-vector [34, 35]. The main idea in this case is

to train a speaker classifier on a dataset with large number of speakers and

compute statistics over intermediate layer activations to get the speaker em-

beddings. In particular, in [34], a time delayed neural network followed by a

statistics pooling layer, which computes the mean and standard deviation of
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its inputs and concatenates them, and two FC layers are used to construct

a speaker classifier. The network is trained with cross-entropy objective and

the embeddings are computed by taking the activations from either of the

FC layers. This embedding is an utterance-level embedding instead of a

frame-level one.

2.1.2 End-to-end ASR and CTC Loss

In recent years, the availability of very large speech corpora and increased

computation power has led speech researchers to investigate E2E approaches

for ASR. The main goal of these systems is to map the speech signal or

acoustic features into characters or words directly, which eliminates the need

for linguistic knowledge such as the lexicon. There are several paradigms for

end-to-end ASR, including CTC-based models [36], RNN transducers [37],

purely attention-based transducers [38], and joint models that combine CTC

with encoder-decoder models [39]. In this study, we will focus on CTC-based

models, which we will review next.

Neural network training using CTC loss [40], which was proposed for

sequence-to-sequence labeling tasks, has become one of the major approaches

for end-to-end ASR systems [36, 41]. For a given acoustic feature sequence

x = [x1, x2, . . . , xT ] where T is the total duration and an output sequence,

in our case a character sequence, c = [c1, c2, . . . , cL], where L is the sequence

length which is shorter than the input sequence, i.e. L ≤ T , the goal is to

write the probability of the output sequence given the input sequence. Since

the sequences are usually of different lengths, the probability is decomposed

into possible alignment paths π between input and output. Suppose that a

neural network generates per-frame softmax outputs y = [y1, y2, . . . , yT ] for

the input x, then

P (c|x) =
∑

π:l(π)=c

P (π|x) (2.16)

=
∑

π:l(π)=c

∏
t

P (yt(πt)|x). (2.17)

The network φ that generates the softmax outputs y = φ(x) is trained by
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minimizing the negative log-likelihood, denoted by LCTC, as

LCTC(x, c) = − logsumexp
π:l(π)=c

∑
t

logP (yt(πt)|x). (2.18)

As shown in [40], these probabilities can be computed using a forward-

backward algorithm. The algorithm first starts with augmenting the original

sequence with a special blank symbol (−) and produces a new augmented

sequence l′ = [−, c1,−, c2,−, . . . ,−, cL,−] of length 2L + 1; then using the

forward and backward variables α and β, the total probability of the observed

sequence c can be written using any t as

P (c|x) =
∑

s∈{1,...,2L+1}

αt(s)βt(s), (2.19)

or specifically for the last time index T as

P (c|x) = αT (|l′| − 1) + αT (|l′|), (2.20)

where |l′| = 2L+ 1 denotes the length of l′.

Even though E2E systems are usually trained on very large corpora and

considered to be more robust to speaker variability, there are studies which

address the speaker adaptation problem for E2E ASR systems. These ideas

either originate from speaker adaptation of conventional systems such as fea-

ture normalization or appending i-vectors to the inputs [42, 43], adversarial

training approaches [44], or memory based architectures [29].

2.1.3 Speaker Change Detection

Speaker change detection is the task of finding the time instances in audio

recordings when a different speaker starts to speak. One general approach to

this problem is to use a distance-based method. These methods extract fea-

tures using sliding windows, compare feature representations of consecutive

windows using a distance measure and then threshold the distance [45].

On the other hand, model-based approaches fit a model to the features of

individual segments and their concatenation, and choose the hypothesis with

a higher score; this score can be the Bayesian information criterion (BIC) [46]

or Gaussian likelihood score [47].
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Among the most commonly used features to represent speaker characteris-

tics of a speech segment are i-vectors [25]. Although i-vectors have been suc-

cessfully used in speaker verification applications, reliability of these vectors

depends on segment duration [48, 49]. For shorter segments, it is harder to es-

timate the i-vectors. In order to solve this problem, short speech segments are

often clustered using BIC, Gaussian divergence [50] or x-means [51, 52] prior

to computing the i-vector. However, these clustering methods are mainly

designed for offline processing and cannot be used in low-latency applica-

tions [51].

Recently, neural network based speaker embeddings have been used as an

alternative [53, 54] or as complementary features [34] to i-vectors. Stud-

ies have shown that network based embeddings can achieve better perfor-

mance than using BIC based approaches on mel-frequency cepstral coeffi-

cients (MFCCs) [53, 54] or filterbank coefficients [55]. In [34], network em-

beddings are used in a speaker classification task with a probabilistic linear

discriminant analysis backend and have been shown to achieve better per-

formance than i-vectors especially when the inputs are short (<10 s). These

embedding networks are trained using multiclass cross-entropy for speaker

classification using a large number of speakers [34, 55], using contrastive

loss on two inputs processed in a Siamese architecture [56] or using triplet

loss [53]. In order to map variable length sequences to fixed dimensional

embeddings, LSTM [57] layers are usually employed.

In addition to generating embeddings, neural networks have also been used

in E2E speaker change detection systems [54, 58, 59, 60] where the change de-

cision is made at the end of a network instead of thresholding a distance mea-

sure. These systems can be classified into cases where the problem is reduced

to taking two speech segments as input and comparing them [54, 58] or de-

ciding if there is a change point within a given single speech segment [59, 60].

The networks that compare two segments usually have a Siamese structure

where the initial few layers processing the two inputs share their weights. A

similar structure is also usually used in embedding generating networks where

the training objective consists of comparing the features extracted from the

shared Siamese layers.
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2.2 Spoken Language Understanding

The goal of SLU is to extract the meaning of the spoken content. The

“meaning” could be the underlying intent of the speaker, the speech act, the

object described in a sentence or the goal could be to achieve slot-filling.

Conventional SLU systems first convert the speech signal into text using an

ASR system and then the text is processed by an NLP system to get the

“meaning”. Early systems usually extract lexical, prosodic features or word

n-grams and use statistical modeling techniques such as hidden Markov mod-

els [61] to classify the speech features. Alternatively, CRFs [62] or SVMs [63]

are used to classify the representations obtained from ASR output lattices.

There are also NLP studies which assume that an ASR system already gen-

erated the text and then the NLP model focuses on text-based SLU. These

works are usually based on classifying word representations. For example,

in [64], 1-hot vectors or embeddings such as word2vec [65] are used for SLU.

Recently, more powerful embeddings such as BERT embeddings [66] are used

for joint intent classification and slot-filling [67].

One advantage of the two-step approach is that ASR and NLP components

can be trained separately on different datasets. However, there are several

disadvantages of this two-step approach:

1. Separately optimized ASR and NLP models may not give the optimal

solution for the end-to-end problem, i.e. speech-to-concept (intent,

slots, entities, etc.).

2. There is error propagation in the cascaded system. ASR output will

have errors which will result in noisy text input to the NLP component

which is usually trained on clean text data.

3. For some languages, it may not be possible to train an ASR system,

necessitating methods directly applicable to speech signals.

4. Speech carries additional information such as pitch, prosody, etc., that

reveals the emotion of the speaker that could help identify the intent

better. Since text modality lacks these additional cues, text based SLU

systems cannot make use of these cues.

In order to mitigate these disadvantages of the two-step approach, E2E SLU

approaches have become popular in recent years.
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E2E approaches for SLU include [2, 68, 69, 70]. Most of these approaches

require large amounts of labeled speech data to achieve good performance.

In [68], the authors attempt to predict intent labels directly from log-mel fea-

tures. Although the speech-only accuracy is lower than a cascaded ASR+SLU

system performance, the ASR+SLU degrades when tested with ASR based

text. In [71], the authors aim at finding compact speech representations

instead of using acoustic features directly to improve speech-only SLU. An

encoder-decoder framework is used in [2], where the decoder is conditioned

on the audio transcript. The authors conclude that having an intermediate

text representation yields better performance than simply classifying acous-

tic features without any constraint. In our experiments, we also make similar

observations and therefore use a text-based classifier pretraining to guide a

subsequent speech-only training.

None of the mentioned studies tackle the problem of having non-parallel

text and speech. In [69], an E2E approach for slot filling is introduced and

the authors apply transfer learning starting from word recognition and going

to named entity recognition and then slot filling to deal with data scarcity

problem. However, they still require speech and the corresponding text to

train the initial model and also labeled data for additional tasks. Another

transfer learning approach is used in [70] where the authors first train a

word recognizer and use it as a feature extractor or fine-tune those layers

on the slot-filling task. Although the word recognizer and the SLU classifier

can be trained on different datasets, the recognition system still requires

large amounts of parallel speech and text. In [72], a cascaded approach is

used where grapheme posteriors are generated from speech features and then

the posterior features are classified. Although the graphemic part can be

separately trained on an ASR corpus, and the SLU part on a text based

dataset, this model still requires large amounts of parallel data.

In the SLU task, we focus on three application areas, namely, dialog act

recognition, intent classification and speech-to-image label. In dialog act

recognition, each utterance represents a speech act such as appreciation,

disagreement, w-question. These acts are related to the speech acts of [73]

or the illocutionary forces of [74]. On the other hand, intent classification

aims at finding the effect that the speaker wants to convey to the listener

[75, 76]. The third task is a dataset dependent problem. Consider a spoken

image captioning dataset where each image comes with a spoken caption.
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Then the image label which usually corresponds to the main object in the

image becomes the theme of the spoken content. Our goal is to identify the

image label given the spoken caption. We apply this to the SpeechCOCO

dataset [77].

2.3 Fairness in Machine Learning

It has been observed that machine learning models are liable to making unfair

decisions [78] due to various reasons including data bias, missing data from

certain groups and algorithmic bias. To evaluate the unfairness in machine

learning, several fairness criteria have been defined. An overview of some

of these criteria is provided in [79]; several that are most relevant to this

work will be described below after presenting a general classification of these

objectives.

The problem of how to define fairness in machine learning was perhaps

first considered by Pearl [80], who published causal machine learning models

based on an earlier statistical analysis of college admissions data [81]. In this

study, there was an explicit comparison between a broad definition of fairness,

comparable to what is currently called group fairness such as demographic

parity [82], versus the modern concept of individual fairness [83].

In the last decade, several interpretations of fairness have led to various

definitions which are usually grouped into two major categories:

1. Group fairness measures: Demographic parity [83], equalized odds [84],

equal opportunity [84], and conditional statistical parity [85] are among

these measures which aim at treating different groups equally.

2. Individual fairness measures: Fairness through awareness [83], fairness

through unawareness (blindness) [86] and counterfactual fairness [11]

are among these measures which aim at producing similar outcomes for

similar individuals.

There are theoretical results showing that some of these constraints cannot

be achieved simultaneously, which is also called the “impossibility theorem

of fairness” [87, 88]. It states that “no more than one of the three fairness

metrics of demographic parity, predictive parity and equalized odds can hold

at the same time for a well calibrated classifier” [88]. There is also a debate
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on whether there is a conflict between individual and group fairness [89].

Another source of debate is whether these constraints must inherently lead

to a reduction in the original performance criterion such as the accuracy of a

model [90]. In our work, we will focus on individualized versions of equalized

odds and equal opportunity, and also counterfactual fairness which we will

review next.

According to [84], equalized odds is defined as the condition in which

a predictor Ŷ of an outcome Y is conditionally independent of the sensitive

attribute A given Y . Although it is applicable to the cases where Y belongs to

a binary, multi-class, or continuous spaces, especially for the case where the

outcome and the attribute are binary, equalized odds reduce to the following:

For y ∈ {0, 1},

P (Ŷ =1|A=0, Y =y) = P (Ŷ =1|A=1, Y =y). (2.21)

In [84], equal opportunity for a binary predictor is defined as

P (Ŷ =1|A=0, Y =1) = P (Ŷ =1|A=1, Y =1). (2.22)

Here, the outcome Ŷ = 1 is defined to be “advantaged,” and hence Eq. (2.22)

“requires non-discrimination only within the ‘advantaged’ outcome group.”

Since this definition only requires matching of true positives instead of the

outcome distribution, it is a weaker criterion as compared to the equalized

odds.

Equalized odds and equal opportunity can be classified as group fairness

criteria [83], in that they measure fairness by comparing outcome proba-

bilities aggregated across all members of a group. In contrast, individual

fairness criteria seek to enforce similar treatment of similar individuals, by

specifying that the difference in outcomes must be smaller than the differ-

ence between individuals. Suppose that u, v ∈ U are individuals, and that

the classifier M is defined as the mapping M : U →M, whereM is the set of

distributions over outcomes. Assume the existence of metrics d : U ×U → <
and D :M×M→ <; according to [83], individual fairness requires that

D(Mu,Mv) ≤ d(u, v). (2.23)

In [11], the notion of counterfactual fairness is introduced which states
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that if we intervene with a sensitive attribute A ∈ A, the probability of

outcomes should match. More formally, for a, a′ ∈ A,

P (ŶA←a|X=x,A=a) = P (ŶA←a′ |X=x,A=a), (2.24)

where A ← a shows the intervention that A is assigned to a according to

do-calculus [91] while predicting Ŷ , and a′ is the counterfactual value which

is also an element in the domain of the sensitive attribute A, i.e. A. In

other words, counterfactual fairness states that irrespective of the sensitive

attribute such as gender, race, etc., and the ground truth value of the out-

come, the predicted outcome probabilities should match.

Given a causal graph explaining a problem, the three main steps of coun-

terfactual inference are abduction, action and prediction. The abduction

and prediction steps require separation of the attributes, X, into those that

are causally dependent on A (the descendants, Xd) and those with no such

causal dependence (the non-descendants, Xn, possibly including unobserved

latent variables). In the abduction step, given the prior of the latent variables

and the observations, the posterior of the latent variables are computed. In

the action step, intervention is applied. In the prediction step, the resulting

distribution for the variables except the intervened and latent variables is

computed using the results from first two steps.

Counterfactual fairness may be defined to be either a group-fairness or

an individual-fairness criterion [92], depending on whether or not the met-

ric d(u, v) in Eq. (2.23) considers any of the descendant attributes, Xd. In

the context of speaker adaptation, for example, consider pitch. A speaker’s

observed pitch frequency, Xd, is causally dependent on gender, but is also

causally dependent on an unobservable set of latent variables Xn including,

for example, the speaker’s vocalis mass relative to others of the same gender,

the speaker’s habitual prosody, and the speaker’s prosody in the observed

utterance. A metric d(u, v) that measures differences in Xd will rarely con-

sider men and women to be similar, but a metric measuring differences in

Xn might more frequently find men and women to be comparable.

Recently, there have been studies in computer vision [93, 94] and natural

language processing [95, 96] which use the abducted distribution of the resid-

ual variable, together with counterfactually modified sensitive attributes, to

generate a counterfactual dataset, which is then used to train the model.
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However, to our knowledge, our study is the first proposal for counterfactual

training for ASR.

Individual fairness is appropriate in speech recognition because speech sig-

nals are highly speaker dependent. Hence, achieving similar group level er-

ror rates does not guarantee individual-level performance due to within-class

variability of individuals. For example, two female speakers belonging to the

same race can have highly different pitch; therefore, we cannot treat these

two speakers in the same way in terms of ASR.

At the same time, individual fairness at the level of descendant attributes

(e.g., absolute pitch) is uninteresting, because it is the status quo: identical

speech signals already produce identical outcomes. It is more interesting to

consider individualized counterfactual fairness, i.e., individual fairness

with respect to the non-descendants of A. As in recent papers in natural lan-

guage processing [95] and computer vision [94], similarity of latent attributes

(d(u, v)) is judged by counterfactual signal generation, and is used to enforce

similarity of classifier outcomes (D(Mu,Mv)).

The criteria mentioned above are mainly concerned with accuracy rates,

precision or the error rates which are usually defined through true positives

TP , false positives FP , true negatives TN and false negatives FN . However,

there are other measures which combine these statistics; e.g., the F-measure

takes the harmonic mean of precision and recall. As will be discussed in

Chapter 6, in our SLU problems, the datasets are highly imbalanced. For

instance, the ATIS dataset has roughly 75% “flight” intent which means that

if we are not careful about modeling, we can easily output one label all the

time and achieve 75% accuracy, but under this condition, F-measure will be

quite low. Hence, as a new fairness objective, we propose to maximize F-

measure to achieve fairness in the E2E SLU problem for imbalanced datasets.

First, consider the binary classification problem. Given the true positive

(TP ), false positive (FP ) and false negative (FN) counts for a test dataset,

precision (Prec) and recall (Rec) of the model can be written as follows:

Prec =
TP

TP + FP
and Rec =

TP

TP + FN
. (2.25)

Given these definitions, Fθ measure is defined as a weighted harmonic mean
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of precision and recall [97]

Fθ =
(1 + θ2)Prec · Rec

θ2Prec + Rec
. (2.26)

If we substitute the precision and recall expressions to the above equation,

we can also write the Fθ measure as

Fθ =
(1 + θ2)TP

θ2(TP + FN) + (TP + FP )
. (2.27)

For the multi-class classification case, there are several ways of computing

the Fθ-measure. We can compute the average precision and recall over all

classes and then take their harmonic mean to get the micro-Fθ-measure.

Alternatively, we compute the class-wise Fθ-measures and take the average

over classes to get the average-Fθ-measure. In this work, we optimize the

latter. Suppose that there are K classes and Nk denotes the number of data

points from class k, then the average Fθ is computed as

Fθ =
1

K

K∑
k=1

(1 + θ2)TP (k)

θ2Nk + (TP (k) + FP (k))
. (2.28)

Note that the Nk term corresponds to (TP (k) + FN(k)).

There have been several studies on F-measure maximization [98, 99, 100,

101, 102, 103]. These models usually focus on binary classification using

non-neural-network models: a situation in which the problem of F-measure

optimization reduces to the problem of learning a threshold on the scores

computed by the model to make a decision. We are aware of one study [102]

that performs F-measure optimization for convolutional neural networks, but

again, using a system that generates several binary classification outputs in

parallel; in this scenario, F-measure optimization reduces to the task of tun-

ing the thresholds of individual binary classifiers in order to maximize a

weighted log likelihood. However, true multi-class classification, using the

softmax output of the neural network, requires a modified definition of the

F-measure. There is no threshold that can be tuned; instead, F-measure

optimization requires optimizing the model itself to generate “better” scores

in terms of the F-measure. Model versus threshold optimization is the fun-

damental difference between our study and the previous ones.

19



CHAPTER 3

SPEAKER EMBEDDINGS FOR SPEAKER
ADAPTATION

In this chapter, we will first review our adaptation method proposed in [23,

32] and then extend its application to the cases where a speaker change occurs

in the input utterance as it appears in [104]. The basic idea is to combine the

Siamese network idea with the auxiliary network using a speaker attention

mechanism. We will present our results in terms of ASR and speaker change

detection performance. We will show that although we do not explicitly use

the speaker change information during training, the model learns to detect

the speaker changes.

3.1 Introduction

As in many machine learning applications, ASR performance degrades on

unseen data, especially on inputs from unseen speakers. This is largely due

to the significant acoustic variations found in speech signals produced by dif-

ferent individuals even when they speak the same words. Physical differences

between individuals such as vocal tract length, and idiolectal differences such

as region and social grouping, affect the way we speak. These factors con-

tribute to changes in prosody and segmental articulation along with other

variations. To alleviate this problem, several methods have been proposed

as discussed in Chapter 2.

Most of the existing speaker adaptation systems assume that the input

utterances are pre-segmented into single-speaker regions and adaptation is

usually applied to these regions. However, in an online application or in

cases where there are rapid speaker changes such as in dialogues, this two-

step approach will take longer than having a single joint network that detects

speaker changes and adapts simultaneously. The online scheme also requires

an unsupervised speaker adaptation as we do not have access to speaker
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Figure 3.1: Flowchart of the adaptation by speaker-aware offsets method
of [32]

identity during test time.

In this chapter, the problem we address is whether we can construct a single

acoustic model that can detect the speaker change and automatically adapt

to different speakers simultaneously. In order to develop such a system, we

combine ideas from neural network based speaker change detection [105] and

unsupervised speaker adaptation by an auxiliary network [23, 32]. The key

novel contribution of this work is a method that moves the speaker-change

decision inside the speech recognition system, in the form of a soft-decision

speaker-attention layer. The method then trains the speaker-attention layer

explicitly in order to minimize the ASR error rate. The speaker-attention

layer is used to accumulate a soft-decision speaker embedding, and from that

point onward, the network behaves similarly to [32]. In addition to the mean

normalization proposed in [32], we also investigate an affine and a nonlinear

transformation of these activations that depend on the speaker embedding

generated by the auxiliary network. We also show that the learned speaker

embeddings can be used for speaker segmentation although we do not explic-

itly train the network with this objective.
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3.2 An Auxiliary Network for Speaker Adaptation

The current auxiliary network is an extension of our previous work on aux-

iliary network based speaker adaptation [23, 32] which performs speaker de-

pendent mean removal from the main network activations. As shown in

Fig. 3.1, the architecture consists of a main network that performs senone

classification for ASR. An auxiliary network consisting of FC layers is then

attached at the output of one of the LSTM layers of the main network which

splits the network into the lower ML and upper MU parts. The auxiliary net-

work in the previous studies is trained to reconstruct the speaker, (speaker,

phone) and (speaker, senone)-level averages of the LSTM outputs (ms, msp,

and msq in Fig. 3.1). The last FC layer before the output layers from the

auxiliary network is used to extract a speaker-aware vector and then this

vector is transformed by an affine layer to get speaker-aware offsets. This

corresponds to adapting the bias of the LSTM output depending on auxil-

iary network predictions of the speaker, phone, and senone. Let h denote

the LSTM activations from the last LSTM in the lower part of the main net-

work, and z denote the last FC layer output of the auxiliary network, then

the speaker-aware offset oaux and the normalized (adapted) LSTM activations

ĥ are determined by

oaux = Wauxz + baux (3.1)

ĥ = h− oaux. (3.2)

It has been shown that this method achieves better performance than

adapting the input features using fMLLR. However, it assumes that inputs

are pre-segmented by speaker and cannot handle utterances with change

points in them. Hence, it requires pre-processing by an additional online

speaker change detection module.

3.3 Joint Speaker Adaptation and Speaker Change

Detection

The proposed model shown in Fig. 3.2 extends the auxiliary network de-

scribed above by introducing a speaker attention mechanism. Thus, it achieves
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simultaneous ASR and speaker change detection. In the proposed model,

similar to Fig. 3.1, we split the main network into ML and MU at the end of

l-th LSTM layer (l = 1 in the figure) at which point we attach the auxiliary

network. On the other hand, as compared to Fig. 3.1, in Fig. 3.2, the auxiliary

network does not have any output layers. Instead, it has a speaker attention

layer that produces the parameters for segment level transformation. Since

we do not have the auxiliary outputs in the system, during training, we only

backpropagate the senone classification cross-entropy loss and we do not ap-

ply multitask objective based learning in the new model as compared to the

model described in Section 3.2.

The goal of the similarity based speaker attention layer introduced here

is to emulate the distance based comparison of segment embeddings in a

Siamese network where the embeddings are produced by a shared network.

In our case, ML and the auxiliary layers act as these shared layers. Instead

of making hard change decisions, we leave them soft and compute speaker-

aware vectors which are in turn used to determine the transformation for the

main network activations in a nonlinear fashion as we describe next.

Consider an input acoustic feature sequence [x1, x2, . . . , xT ] processed by

l LSTM layers which generate activations [hl1, h
l
2, . . . , h

l
T ] at the end. We

then pass these activations to the auxiliary network. The auxiliary network

transforms its inputs using FC layers followed by nonlinearity, and after its

final FC layer, it applies average pooling over time with a window of length
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Figure 3.3: Steps for computing the segment dependent weight and bias

Tw and shift Ts, here we take Ts = Tw. This operation gives us representative

embeddings for the segment corresponding to each window.

Suppose that [z1, . . . , zN ] denote the average activations at the end of pool-

ing for each window where N = T−Tw+Ts
Ts

denotes the total number of win-

dows in the utterance. Then, soft speaker change detection is performed by

an attention mechanism:

ψ(zi, zj) = ReLU(zi · zj) (3.3)

αi,j =
ψ(zi, zj)∑
j′ ψ(zi, zj′)

. (3.4)

Instead of Eq. (3.4), softmax type of normalization can also be used. How-

ever, our experiments showed that the version in Eq. (3.4) performs better.

The speaker code for the i-th subsegment, si, is then computed by

si =
N∑
j=1

αi,jzj. (3.5)

These steps are visualized in Fig. 3.3. After frame-level activations have been

computed at the end of the auxiliary network, average-pooled activations zi

are estimated corresponding to each segment. Speaker embeddings si are

then estimated based on soft alignment α values. Using this speaker code si,

we apply either an affine (either bias-only or weight and bias) or a nonlinear

transformation to the main network activations h. In the first case, we use
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si as speaker offsets and remove them from the main network activations as

in [32]:

ĥt = ht − si, t ∈ [iTs, (i+ 1)Ts). (3.6)

In the second case, we apply an affine transformation where the weight and

bias are parametrized by Ww, bw,Wb and bb. These give us the segment-

specific weight and bias Wi, bi (also shown in Fig. 3.3).

Wi = Wwsi + bw (3.7)

bi = Wbsi + bb. (3.8)

We then apply the segment-dependent affine transformation to h in the fol-

lowing way:

ĥt = diag(Wi)ht + bi, t ∈ [iTs, (i+ 1)Ts). (3.9)

In the third case, we apply a nonlinearity after the affine transformation,

thus the relation between h and ĥ becomes the following:

ĥt = tanh(diag(Wi)ht + bi), t ∈ [iTs, (i+ 1)Ts). (3.10)

Here the parameters to be learned are the parameters of the auxiliary network

that generate the zi’s, and also Ww, bw,Wb, and bb. As will be shown in the

experiments, we found that nonlinear transform is the most effective one

among these three options.

Training of the model starts with training the main network without the

auxiliary one using cross-entropy as the objective function. We then train

the parameters of the auxiliary network by either freezing the main network

or fine-tuning the ML part of the network. This second phase training is

performed on utterances with change point in them. Our training objective

for training the auxiliary network is still the cross-entropy from the main

network without an additional multitask loss.

As will be shown in the next section, the proposed model achieves not only

unsupervised speaker adaptation but also online speaker change detection,

thanks to the speaker attention layer, even though it is not explicitly trained

to detect them. Therefore, this joint model combines and extends the two
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Table 3.1: Amount of training, heldout and test data for main network
training for BN and SWB datasets

BN SWB
Speakers Duration (hr) Speakers Duration (hr)

Train 2201 104.1 519 257.0
Heldout 275 19.2 90 5.0
Test 275 11.8 40 2.1

separate systems described above.

3.4 Experiments

Experiments are performed on the Broadcast News (HUB4, BN) [106, 107]

and Switchboard (SWB) datasets [108]. The main network is trained with

single speaker segments based on the speaker labels available in either dataset.

Train, heldout and test speaker sets are disjoint and include 2201, 275, and

275 speakers for BN and 519, 90, and 40 for SWB, respectively. Total dura-

tions of the subsets are given in Table 3.1.

In order to construct training data with change points, we first identify

audio segments that have a change point within them. Speech segments that

border the change point are limited to be no more than 1 s apart. This

allows us to filter out examples with advertisement, music or large segments

of silence in between speech regions. We then create utterances that contain

the change point and span several words to the left and right of the change

point, possibly ending up with incomplete sentences. The average duration

of an individual utterance with a change point is 11.8 s/11.5 s/10.3 s for BN

train/heldout/test data, and 8.29 s/8.24 s/7.67 s for SWB train/heldout/test

data. Table 3.2 and Table 3.3 show the total duration of the training, heldout

and test sets (in hr) and also report the average durations of the first and

second speakers per utterance (in s) along with their standard deviations

for the BN and SWB data, respectively. In order not to bias the system

from detecting changes only towards one side of the midpoint, we have tried

to balance the average duration per side as shown in the third and fourth

columns of Tables 3.2 and 3.3. For BN, when sampling utterances with

change points, we end up with a speaker overlap between train and test
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Table 3.2: Amount of training, heldout and test data for auxiliary network
training and average (± stdev) speaker 1 and speaker 2 durations per
utterance for the BN dataset

Duration (hr) S1 dur/utt (s) S2 dur/utt (s)

Train 40.9 5.8 (± 2.2) 6.0 (± 2.2)
Heldout 20.6 5.7 (± 2.4) 5.8 (± 2.4)
Test 4.4 5.0 (± 3.1) 5.3 (± 3.2)

Table 3.3: Amount of training, heldout and test data for auxiliary network
training and average (± stdev) speaker 1 and speaker 2 durations per
utterance for the SWB dataset

Duration (hr) S1 dur/utt (s) S2 dur/utt (s)

Train 152.5 3.95 (± 2.7) 4.34 (± 2.8)
Heldout 6.1 3.93 (± 2.7) 4.31 (± 2.9)
Test 1.1 3.46 (± 2.4) 4.21 (± 3.1)

sets. However, we make sure that at least one of the speakers in each test

utterance is from the original test set (one of the 275 speakers in the test

data shown in Table 3.1). For SWB, we sampled the change points from the

Hub5-2000 test set [109] which was pre-segmented automatically at speaker

change points for ASR.

Figure 3.4 provides an example utterance from the BN dataset which is a

part of the following dialog:

– A: I’m very disheartened to hear that it has been grounded.

– B: Do you feel safe when you fly?

Figure 3.5 shows the spectrogram of the waveform shown in Fig. 3.4. Es-

pecially in the spectrogram, it hard to discern the speaker change by a simple

inspection. In our problem, we are not given the exact change point, yet, we

are trying to adapt on-the-fly even if the first and last parts of the utterance

are spoken by different people.

The input speech features that we use are 40-d log-mel features normal-

ized by a global mean and variance normalization followed by utterance-level

mean normalization. The main network consists of three LSTM layers fol-

lowed by two FC layers and a softmax layer for the outputs. LSTMs are

unidirectional and they have 128 units per layer for BN and 256 for SWB.

27



0 1 2 3 4 5
Time (s)

0.4

0.2

0.0

0.2

Figure 3.4: Waveform of an utterance with a speaker change point. The red
line shows the change point location.
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Figure 3.5: Spectrogram of the utterance shown in Fig. 3.4

The widths of the FC layers are 256 and 512, and the output layer size is

2000 which is also the number of senones modeled by the system. The main

network is trained for 40 epochs with a decaying learning rate after the 10th

epoch. The initial learning rate is set to 0.001. Main network parameters are

optimized using the Adam optimizer [110] with the cross-entropy objective.

PyTorch [111] is used for neural network training.

The auxiliary network consists of three FC layers with rectified linear unit

nonlinearity except the last layer which has linear activations. The layer

widths are 512, 256 and 128. With these settings, the sizes of Ww,Wb become

128× 128 for BN, 256× 128 for SWB, and the sizes of bw, bb are 128 or 256.

The main network is first trained on single speaker segments before we split

the network to the lower ML and upper MU parts and attach the auxiliary

network to the main network such that it takes input from ML. Training of

the auxiliary network is done on segments with one speaker change point

in them. However, during training we do not explicitly use information

about the change point location; instead, attention-based speaker vectors

are computed during training (Eq. (3.5)) with Ts = Tw = 100 frames.

Training of the auxiliary network is done under two conditions: 1) the
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main network is frozen and only the parameters of the auxiliary network are

trained using the gradient flow from the main network output layer, 2) we

fine-tune ML along with the auxiliary network parameters using the gradient

flow from the main network output layer.

We evaluate the system performance in terms of its speaker adaptation

capabilities for ASR and also its accuracy in detecting change points at the

output of the auxiliary network. In the following subsections, we present

these two sets of results.

3.4.1 Speaker Adaptation for ASR

Table 3.4 shows the word error rate (WER) of the main and the augmented

networks on both the BN and SWB test sets on test utterances with change

point in them. The first row shows the performance when we do not apply

any adaptation strategy to the main network which is trained only on single

speaker segments. This unadapted main network achieves 14.3% test WER

on BN and 17.1% on SWB if tested on single speaker segments (Table 3.1 test

set). However, as shown in the table, when tested on segments with a change

point (Table 3.2 and Table 3.3 test sets), the performance degrades to a WER

of 23.2% for BN and 25.1% for SWB. After training the main network, we

choose the adaptation layer, here l = 1, and split the main network into

lower ML and upper MU parts. Additional experiments showed that l = 1 is

the most effective layer which aligns with the observations made in [32]. As

we will investigate a speaker dependent transformation of the main network

activations, in the second row of Table 3.4, we show the performance when we

add an additional nonlinear transformation layer to the main network. This

layer is applied to the output of layer l and consists of an affine transform

followed by tanh nonlinearity. This increases the number of parameters of the

network and reduces the WER on the test data. In the third and fourth rows,

we fine-tune either ML alone or along with MU on multi-speaker segments,

without the additional nonlinear layer in the main network. This adaptation

achieves about 1.7% absolute reduction in the WER for BN and 2.5% for

SWB. We then compare the performance of the augmented system which

includes the auxiliary network. If we freeze the main network and train only

the auxiliary layers, we get 21.8% for BN and 22.1% for SWB which are
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Table 3.4: WERs of the unadapted and adapted models on the test
segments with a change point

Network Adaptation BN SWB

Main - 23.2‡ 25.1‡

Main Nonlinear transform layer 22.4‡ 22.6†

Main Fine-tune ML 21.9‡ 22.6†

Main Fine-tune ML + MU 21.5‡ 22.6†

Augmented Auxiliary net 21.8‡ 22.1
Augmented Auxiliary net + fine-tune ML 20.9 21.6

Table 3.5: WERs of the adapted models on the test segments according to
the transformation type: mean removal (Eq. (3.6)), affine transform
(Eq. (3.9)), nonlinear transform (Eq. (3.10))

Adaptation Transform BN SWB

Auxiliary net Mean removal 22.0 22.7
Auxiliary net Affine 21.8 21.8
Auxiliary net Nonlinear 21.8 22.1

Auxiliary net + fine-tune ML Mean removal 21.7‡ 22.0
Auxiliary net + fine-tune ML Affine 21.3‡ 21.8
Auxiliary net + fine-tune ML Nonlinear 20.9 21.6

comparable to fine-tuning ML of the main network. If we fine-tune ML along

with the auxiliary network, then we further reduce the WER to 20.9% for

BN and to 21.6% for SWB which are even lower than the case where we fine-

tune the whole main network on the training data with change points. These

results show that the proposed approach achieves adaptation significantly

better than the unadapted network and it achieves 0.6% and 1.0% absolute

reduction in WER as compared to fine-tuning the main network on data with

speaker change for BN and SWB datasets, respectively. In this table and in

the subsequent WER tables, we computed the statistical significance between

the best system in a given column and the rest. We denote statistically worse

systems with superscript † and ‡ at a p-value of (< 0.01) and (< 0.001),

respectively. These computations are based on the Matched Pair Sentence

Segment (MAPSSWE) test of the sc stats software [112].

In Table 3.5, we investigate the type of transformation used on the LSTM

output. As discussed in Section 3.3, we either have a segment-dependent

mean removal (only bias adaptation), an affine transformation or a nonlinear
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Table 3.6: WERs of the augmented model on the test segments based on
the choice of the change point in the auxiliary network

Adaptation Change point type BN SWB

Auxiliary net True 21.8 21.9
Auxiliary net Soft 21.8 22.1
Auxiliary net Hard 22.1† 22.3

Auxiliary net + fine-tune ML True 20.9 22.2
Auxiliary net + fine-tune ML Soft 20.9 21.6
Auxiliary net + fine-tune ML Hard 21.2† 22.3†

transformation. As shown, WER improves when ML is fine-tuned; either

with or without fine-tuning, the affine transform and the nonlinear transform

have lower WER than the mean removal (21.7% → 20.9% for BN with fine-

tuning and 22.0%→21.6% for SWB with fine-tuning). In the sequel, unless

otherwise stated, we will use the nonlinear version of adaptation since it

resulted in the lowest WER on both datasets.

Next, we compare the effect of the segmentation type on the augmented

model in Table 3.6. In these experiments, we either used the ground truth

speaker boundary to get the average activations from the auxiliary network,

or we used the soft alignments as described in Section 3.3, or we hardened

the soft alignments to get a change point. In the first and third cases where

we have an explicit decision about the change point, say at frame I ∗ Ts,
we now have only two windows rather than N and hence we compute two

averages, one for the first speaker s1 and one for the second speaker s2 in the

utterance:

s1 =
I∑
j=1

zj (3.11)

s2 =
N∑

j=I+1

zj. (3.12)

Equations (3.7)-(3.10) are then applied to s1 and s2. In the soft alignment

case, we allowed each segment to generate a separate speaker embedding

using the attention mechanism of Eqs. (3.3)–(3.5). Decision hardening in the

third case is achieved by taking the least similar consecutive segments.

Table 3.6 shows the WERs of the augmented systems depending on the
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choice of change point type (true/soft/hard) for both datasets. Note that in a

real test condition, true change points will not be available and hence this first

case is not practical. As shown in Table 3.6, with soft alignments, we achieve

WERs similar to those of the case where we use the ground truth boundaries

for BN. The WER difference between the true and soft alignments is on the

order of 0.01%, and hence it is not visible in the table for BN, whereas for

SWB we see that soft alignments perform better than true changepoints on

the SWB data. This shows an advantage of the proposed approach where we

do not explicitly need the true change point during test time. Hardening of

the soft alignments corresponds to finding the consecutive frame pairs that

are the least similar with respect to the inner product. The precision of hard

change points is not as good as the ground truth, which increases the WER

as compared to the true change points up to 0.3% absolute (21.8→22.1 for

auxiliary net on BN). When we compare soft versus hard decisions, we see

that soft decisions outperform hard decisions significantly. We hypothesize

that this is probably the result of a training and test mismatch, given that

training is always done with soft change points. When we compare auxiliary

network adaptation with and without fine-tuning of ML, we see that fine-

tuning uniformly lowers WER for soft change points, and is found to be

statistically significant at the level of p<0.01, but does not always lower

WER in the case of hard or true change points.

3.4.2 Speaker Change Detection

Given that the soft change detection performs well in terms of WER as

shown in Table 3.6, we now evaluate the speaker change detection accuracy of

the proposed system and compare it to three different speaker segmentation

methods including the Siamese network based, i-vector based and x-vector

based segmentation.

For the Siamese embedding and i-vector systems, experiments on the

Broadcast News dataset used the best model architecture from [105], trained

on 2 s-long segments. For SWB experiments, we trained a new Siamese model

from scratch on the SWB dataset. Given the short duration of various seg-

ments, the i-vector based method tends to result in worse accuracy than the

Siamese one. For both of these methods, we take our multi-speaker test seg-
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ments and extract 2 s-long windows with a shift of 1 s. Then for each window

we either feed them to the Siamese network or, for the i-vector case, con-

catenate the i-vectors of consecutive windows and feed to the same/different

classifier. Based on the classifier decisions, we determine the change points.

For the BN x-vector system, we use the scripts from the Kaldi [113] x-

vector example package to train an x-vector model on the BN single speaker

segments. We then use the trained model to extract x-vectors and segment

the test data using PLDA scoring and clustering scripts. Although during

test time we give the true number of speakers within an audio file (which

consists of several test segments), the x-vector system tends to oversegment

the test data. On the other hand, for SWB data, we make use of a pretrained

model available online [35, 114, 115]. Note that this model is trained not

only on SWB data but also on NIST SRE data and on additional copies of

the training data by adding noise and reverberation to the original datasets

[35, 114, 115].

In this subsection, we will argue that our proposed system not only allows

for ASR adaptation but also performs speaker change detection. For change

detection, we neglect the MU part of the network and only take the last

hidden layer of the auxiliary network. Speaker change detection accuracy

is measured as the fraction of speaker change points detected within 1 s of

the true changepoint, averaged over the multi-speaker test segments. The

speaker embedding layer of our joint adaptation network is used to compute

two different types of speaker changepoints. In the “unconstrained” case,

a speaker changepoint is detected every time the dissimilarity between two

consecutive speaker embeddings, as computed by the same/different classifier

network, exceeds a threshold; thus, any given multi-speaker test segment may

have zero, one, or more than one detected changepoints. In the “constrained”

case, exactly one speaker change point is detected per test segment, at the

start time of the window with the largest speaker embedding dissimilarity.

Table 3.7 compares the accuracy of our proposed method with those of the

Siamese embeddings [105], i-vector and x-vector [35] based speaker change

detection for BN data. In this table, we report accuracy for both constrained

and unconstrained conditions. In the unconstrained case, we do not constrain

the number of segments within an utterance which may result in either no

detection or oversegmentation. In the constrained case, we make sure that

exactly one change point is detected. This constraint is imposed to the
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Table 3.7: Speaker change detection accuracy (%) of x-vectors, i-vectors,
Siamese network of [105] and the proposed systems on BN data

Segmentation System Unconstrained Constrained

x-vector 38.2 65.0
i-vector 43.0 63.8
Siamese net 45.5 64.2
Auxiliary net 51.4 68.2
Auxiliary net + fine-tune ML 51.5 71.3

Table 3.8: Speaker change detection accuracy (%) of x-vectors, i-vectors,
Siamese network of [105] and the proposed systems on SWB data

Segmentation System Unconstrained Constrained

x-vector (augmented training) 40.2 85.7
i-vector 25.9 69.7
Siamese net 25.6 72.6
Auxiliary net 46.6 70.5
Auxiliary net + fine-tune ML 39.2 73.1

x-vector system by choosing the most dissimilar pair based on the PLDA

scores. For i-vector and Siamese networks, the decision is made by selecting

the different pair with the highest confidence score. For the proposed method,

we choose the least similar pair of windows. Since the unconstrained case

has many false positives, it results in lower accuracy than the constrained

case. As shown in the table, in both cases, the proposed methods achieve

higher accuracy. Although the alternative methods are trained explicitly to

perform speaker change detection task or classification task, our proposed

method, which did not use the explicit speaker boundaries during training

time, performs better than the explicit models in both cases. Especially, in

the unconstrained case, we get up to 34.8% (38.2 → 51.5) relatively higher

accuracy as compared to the x-vector setup.

Table 3.8 shows the speaker change detection performance of systems on

SWB data. The proposed method outperforms i-vectors and the Siamese

network, but does not outperform x-vectors. As noted in the table, this x-

vector embedding for SWB was trained using additional data from the NIST

SRE datasets, and using data augmentation [35, 114, 115]; the ability of the

x-vector system to leverage external datasets and augmented pre-training is

an advantage not offered by the proposed system.
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3.4.3 Discussion

In conventional ASR systems, audio files with multiple speakers are first seg-

mented at speaker boundaries before decoding. This helps reduce errors,

especially those from feature normalization mismatch when mean-variance

statistics are estimated across speaker segments that have different acous-

tic characteristics. Decoding multi-speaker speech input without any pre-

segmentation (decode([speakerA - speakerB]) where “-” denotes speaker

change) versus concatenating the outputs of decode([speakerA]) and decode

([speakerB]) can hence result in different WERs. The latter case, where

separate speaker based decodes are performed after segmentation, usually

performs better with a lower WER. In the following discussion, we compare

this two-step approach, i.e. segmentation followed by ASR, with the pro-

posed method which can handle inputs with speaker change points. Given

the inherent soft speaker attention mechanism integrated in the proposed

method, we hypothesize that the auxiliary network system can effectively

decode multi-speaker utterances without the need of an external segmenter.

In order to segment the test data with speaker change points, we use the

x-vector based, i-vector based, Siamese network based decisions and hard

decisions generated from the soft change points of the auxiliary network as

discussed in Section 3.4.2 from the constrained setting. Once we get the

single-speaker segments, we decode these with the unadapted main network

and report results. We also use this change point information and perform

a guided decoding (which was described in Eqs. (3.11) and (3.12)) of the

best adapted model (Auxiliary network with fine-tuning of ML). Finally, we

compare these results with the soft alignment based decoding.

Table 3.9 shows the WERs on the BN test set. The first column denotes

the type of segmenter, the second column is the set of WER results from the

unadapted model and the last column is from the proposed model. For com-

parison, we include a final row, which shows the proposed joint soft change

detection and adaptation result. This result is identical to the last row of

Table 3.4. The main observation is that segmentation followed by unadapted

ASR performs at least 0.9% worse in absolute terms than using the adaptive

model. Differences in the change detection accuracy affect performance as

seen in the WER differences while using the unadapted model. When decod-

ing with the proposed model, however, we do not see significant differences
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Table 3.9: WER with hard changepoints vs. soft changepoints: Speaker
segmentation followed by speaker adaptation, BN test data. Last row is the
soft-changepoint WER, from Table 3.4.

Segmentation system Unadapted model Proposed system

x-vector 23.2‡ 21.2
i-vector 22.6 21.2
Siamese net 22.7† 21.1
Auxiliary net 22.4† 21.1
Auxiliary net + fine-tune ML 22.1 21.2

Soft changepoints - 20.9

across various segmentation systems, indicating that the network is robust

to the precision of the change detector. Another observation is that the pro-

posed system with soft detection achieves even lower WER than the two-step

approach (the second or third column of the Table 3.9 versus 20.9%).

Table 3.10 shows the ASR performance based on the same five speaker seg-

mentation methods for the SWB test set. Again, we see that adapted ASR

has at least 1.6% better performance than the unadapted ASR which takes

segmented speech signals generated by various diarization systems. Even if

we had a good segmentation, for example with the augmented x-vector sys-

tem, the unadapted ASR performs at 24.3% WER. On the other hand, when

we use the proposed adaptation strategy, even without having a good seg-

menter, we achieve 22.3% WER, which corresponds to a 2% absolute WER

gain. Moreover, if we use the proposed system with soft changepoints, we get

21.6% which brings 0.7% additional absolute reduction in WER. In terms of

statistical significance, there is not a difference among i-vector, Siamese and

auxiliary networks. However, at the level of p=0.01, we have statistically sig-

nificant improvement between using hard change points versus soft decisions

(22.3% versus 21.6%).

These results combined with the speaker change results show that with the

proposed method, a single neural network can be used to transcribe speech,

while at the same time, implicitly detecting change points. This is in contrast

to conventional two-step approaches where we first explicitly segment the

utterances and then use an ASR system for transcription. Additionally, the

WER performance of the proposed method is also better than the traditional

two-step approach, making the approach suitable also for online decoding
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Table 3.10: WER with hard changepoints vs. soft changepoints: Speaker
segmentation followed by speaker adaptation, SWB test data. Last row is
soft-changepoint WER, from Table 3.4.

Segmentation system Unadapted model Proposed system

x-vector (augmented training) 24.3 22.7‡

i-vector 27.0‡ 22.2
Siamese net 27.0‡ 22.0
Auxiliary net 27.3‡ 22.2
Auxiliary net + fine-tune ML 27.2‡ 22.3‡

Soft changepoints 21.6

applications like closed captioning of broadcast news where both ASR and

speaker change detection are needed in a single pass.
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CHAPTER 4

COUNTERFACTUALLY FAIR SPEAKER
ADAPTATION

This chapter will introduce a counterfactual training method for speaker

adaptation of E2E ASR systems. Although there are studies on counter-

factual fairness in computer vision [93, 94] and natural language process-

ing [95, 96], to our knowledge, this is the first proposal for speech processing.

We formulate the speaker adaptation problem as the following: Suppose

that each speaker in the dataset has a counterfactual twin from the opposite

gender (or a different protected attribute) and speaking exactly the same

words. Then, irrespective of the gender (or a protected attribute), we would

like to identify the words being spoken in the same way. This formulation

fits to the counterfactual framework and can be combined with individualized

versions of group fairness measures. We start from the proposal of [116], and

modify it for the ASR task and propose the counterfactual equal opportunity

and the counterfactual equal posterior in this chapter.

4.1 Introduction

As an important machine learning application, ASR is subject to fairness con-

cerns. Various studies have shown concerns regarding the performance gap

between male and female speakers [7] as well as black and white speakers [9].

Because of the power of modern speaker adaptation methods [13, 28, 117],

the unfairness of ASR is usually cast as a problem of unfair training corpora,

e.g., the study in [8] describes the under-performance of ASR for female

speakers as a natural consequence of the under-representation of women in

ASR training corpora. Counterfactual fairness provides an alternative ap-

proach: if two speakers speak the same sentence, with the same prosody and

articulatory clarity, counterfactual fairness suggests that they should achieve

similar ASR outcomes.
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In this chapter, we frame the speaker adaptation problem from a counter-

factual fairness point-of-view. We train the ASR so that it generates equiva-

lent output label distributions for counterfactual speakers whose voices have

been resampled with different sensitive attributes, but are otherwise identical

in every respect that is not causally dependent on the sensitive attribute.

We can summarize the main contributions of this chapter as follows:

• Introduction of a speaker adaptation algorithm using an individualized

counterfactual fairness criterion.

• Derivation of a counterfactually fair E2E ASR training method based

on the sequence classification criterion CTC [40].

• Empirical comparison of three variants of our proposed counterfactually

fair CTC, including an equal-odds variant based on [116], a method

based on posterior matching, and a method based on matching the

CTC loss.

4.2 Individual Equalized Counterfactual Odds

In [116], counterfactual fairness is combined with equalized odds in order to

introduce individual equalized counterfactual odds:

P (ŶA←a|X=x, YA←a=y, A=a) = P (ŶA←a′ |X=x, YA←a′ =y, A=a), (4.1)

which must be satisfied for all x ∈ X , y ∈ Y , and a ∈ A.

The authors propose enforcing Eq. (4.1) using the counterfactual equal

odds training criterion, which, for binary outcomes with tabular data, can

be written as:

LCFEOdd =J(φ(x, a), y) + λCFLCF

+ λCLM

∑
a′

1[a 6= a′]1[y = yA←a′ ](∆σ)2, (4.2)

where J is binary cross-entropy, and φ(x, a) is the classifier output given

observation x and sensitive attribute a. Weight parameters λCF and λCLM

scale the contributions of the counterfactual loss (LCF) and the counterfactual

logit matching loss, respectively. (A ← a′) denotes the do action, which
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corresponds to generating the counterfactual, a and a′ denote the true and

counterfactual sensitive attribute, and 1 is the indicator function. Using σ−1

to denote the logit function, the terms LCF and ∆σ are defined as:

LCF =
∑
a′

1[a 6= a′]J(φ(xA←a′ , a
′), yA←a′), (4.3)

∆σ =σ−1(φ(xA←a′ , a
′))− σ−1(φ(x, a)). (4.4)

One point to note is that even though Eq. (4.1) uses conditioning on the

true Y , the logit pairing term (Eq. (4.4)) does not explicitly depend on Y

because when we consider the forward pass, the softmax output from the

neural network will give us only the probability P (Ŷ |X = x,A = a) rather

than P (Ŷ |X = x,A = a, Y = y).

Another observation is that the formulation above is for the binary classi-

fier which means that equating the logit terms

σ−1(Ŷ = 0|X,A) = log
P (Ŷ = 0|X,A)

1− P (Ŷ = 0|X,A)
= log

P (Ŷ = 0|X,A)

P (Ŷ = 1|X,A)
(4.5)

σ−1(Ŷ = 1|X,A) = log
P (Ŷ = 1|X,A)

P (Ŷ = 0|X,A)
= −σ−1(Ŷ = 0|X,A) (4.6)

between real and counterfactual inputs would mean matching the log-proba-

bility terms logP (Ŷ |X,A) since if we match either of Eq. (4.5) or Eq. (4.6),

it will imply the other equality. Now, if we consider ASR or specifically the

character recognition problem, we have a multi-class classifier (K > 2) and

the logit terms become

σ−1(Ŷ = k|X,A) = log
P (Ŷ = k|X,A)

1− P (Ŷ = k|X,A)
= log

P (Ŷ = k|X,A)

P (Ŷ 6= k|X,A)
. (4.7)

If we achieve the perfect match of the logits (∀k ∈ {0, . . . , K − 1}), then

this would again imply equality of log-probabilities resulting from the real

and counterfactual inputs. However, during training the difference between

real and counterfactual outputs will not be 0 for all k. Since the goal is to

match probabilities and since it is also easier to compute the log-softmax as

compared to the logits for the multi-class case, we will use the log-softmax

outputs (logP (Ŷ = k|X,A)) in the constraint rather than the logits in the

experiments.
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4.3 Individual Counterfactual Equal Opportunity

Using a similar reasoning as Eq. (4.1), we provide a relaxed version of equal-

ized counterfactual odds which we call counterfactual equal opportunity:

P (ŶA←a=y|X=x, YA←a=y, A=a) = P (ŶA←a′ =y|X=x, YA←a′ =y, A=a).

(4.8)

This equation can be interpreted as only requiring similarity between the

probabilities of correct outcomes (predicted outcome matches ground truth)

given factual and counterfactual individuals. If, in Eq. (4.2), we replace the

logit pairing term with the difference of the CTC losses between the factual

individual, x, and the counterfactual individual, xA←a′ , we arrive at the loss

function for counterfactual equal opportunity for ASR:

LCFEOpp =J(φ(x, a), y) + λCFLCF

+ λCCM

∑
a′

1[a 6= a′]1[y = yA←a′ ](∆LCTC)2 (4.9)

∆LCTC =LCTC(φ(xA←a′ , a
′), y)− LCTC(φ(x, a), y), (4.10)

where λCCM denotes the counterfactual CTC loss matching factor which is a

hyper-parameter.

4.4 Counterfactual Posterior Matching

Let us revisit the proposal in Section 4.2. It tries closing the difference in

P (Ŷ |X,A) between the real and counterfactual outputs. Using conditional

probabilities, we can write it as follows:

P (Ŷ |X=x,A=a) =
∑
y∈Y

P (Ŷ |X=x,A=a, Y=y)P (Y=y|X=x,A=a). (4.11)

Here Y is the all possible transcriptions that we can get given X,A. For a

signal with T frames this would mean all possible character sequences up to

length T for the given set of K characters. This space is very large and it is

computationally hard to compute all possible posteriors. One simplification

is to assume that P (Y |X=x,A=a) = 1[Y=c|X=x,A=a] where c is the
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ground truth character sequence. With this assumption, we will reach to the

proposal of this section:

P (Ŷ |X=x,A=a) =
∑
y∈Y

P (Ŷ |X=x,A=a, Y=y)1[Y=c|X=x,A=a] (4.12)

= P (Ŷ |X=x,A=a, Y=c). (4.13)

In other words, as in Eq. (4.1), the goal is to match the posterior probabil-

ity of Ŷ after observing the target outcome Y . With the above assumption,

this corresponds to the probability of characters at the softmax layer after

observing the true ground truth sequence. In the case of CTC, this would be

the character posteriors P (Ŷt = k|X = x,A = a, Y = y). Then, the objective

function becomes

LCFPM =J(φ(x, a), y) + λCFLCF

+ λCPM

∑
a′

1[a 6= a′]1[y = yA←a′ ](∆γ)2 (4.14)

where

∆γ = γ(φ(xA←a′ , a
′), y)− γ(φ(x, a), y) (4.15)

γ(ŷ, y) = P (Ŷ = ŷ|X = x, Y = y, A = a). (4.16)

When the main objective function J is the CTC loss, then the posterior

probability γ can be obtained using the forward and backward variables of

CTC loss computation. Let αt(s) and βt(s) denote the CTC path at time

t passing through the index s of the blank symbol augmented ground truth

label sequence l′. The posterior of passing through s at time t then becomes

γt(s) =
αt(s)βt(s)∑
s′ αt(s

′)βt(s′)
. (4.17)

In order to get the character (k) posteriors at each time index t, we need to

sum over s indices such that l′(s) = k:

γ(ŷt = k, yt = k) =
∑

s:l′(s)=k

γt(s). (4.18)
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Table 4.1: Duration of male and female speech in hours depending on the
data split

Subset Male Female Total

Train 9.8 11.2 21
Dev 2.5 2.2 4.7
Test 2.8 1.9 4.7

In the experiments, we directly try matching the γt(s)’s (or log γt(s)) as

they will lead to equality of γ(ŷt = k, yt = k). We will test the simplification

mentioned above by comparing Eq. (4.14) to Eqs. (4.2) and (4.9). We will

see that the simplification hurts the final performance but it still works better

than the equal opportunity relaxation of Section 4.3.

In order to train an E2E ASR model with the above objectives, we need

the counterfactual counterparts of each utterance in our dataset. This is a

challenging subproblem because a) counterfactuals do not exist in the real

world, b) especially in free-form speech such as interviews (as opposed to

read speech), it is hard to obtain parallel datasets in which two different

people utter the same words in a similar manner. Hence, we need to generate

utterances as if the speaker were from the opposite gender while keeping the

spoken content the same. In our experiments, we use the TimeGAN model

proposed for generation of sequential data [118]. As this model explicitly uses

the global attribute, it allows us to change the speaker gender label which

is our sensitive global attribute per data point. Details of this model will be

provided in the next section.

4.5 Experiments

We performed our experiments on the Corpus of Regional African American

Language (CORAAL) [119]. The dataset is split into train, development,

and test sets based on the speakers. All speakers in the datasets are alpha-

betically sorted and the utterances belonging to the first 64 male and 64

female speakers are used for training. From the remaining set, 8 male and 8

female speakers are used in development set and the remaining 14 male and 6

female speakers’ utterances are used for test purposes. Table 4.1 summarizes

the total duration per gender in terms of hours.
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Figure 4.1: The auto-encoder model used to generate counterfactual
examples

The baseline system is a DeepSpeech2 model [120] trained on the CORAAL

dataset with CTC loss. Input features are log magnitude spectrograms ex-

tracted from 20 ms windows with 10 ms skip, and a Hamming window is used

for shaping the time-domain data. Our network outputs are English alphabet

characters along with blank, apostrophe and the end-of-sentence token. The

baseline DeepSpeech2 model has two convolutional layers, each with batch

normalization and tanh activation. The convolution kernel sizes are 41× 11

and 21 × 11 respectively. These layers are followed by 5 batch-normalized

bidirectional LSTM layers with 768 cells, whose output is fed into an FC

layer. The baseline model is trained for 30 epochs with Adam optimization,

batch-size 16 and learning rate of 0.001. All models are implemented using

PyTorch [111] and each one ran on a single Nvidia Tesla V100 GPU.

In order to generate the counterfactual inputs for training, we used the

auto-encoder part of the TimeGAN model [118]. As shown in Fig. 4.1, this

model takes the input audio features (x) and a global attribute (s) of the

input, encodes them in to hidden vectors and then tries recovering both the

input features and the attribute separately. In our implementation, the en-

coder takes one-hot representation of speaker gender, and uses an embedding

layer. These 256 dimensional embedded speaker vectors are then appended

to the acoustic features which in turn are passed through a 2-layer LSTM

network with 256 cells per layer. The decoder takes the output of the en-

coder and generates two types of outputs: A 2-layer FC network with ReLU
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Figure 4.2: Reconstructed spectra (t: time, f: frequency) for a sample
development set utterance. Top row: reconstruction based on the true
gender (female) attribute, Middle row: reconstruction when we change the
gender to male, Bottom row: difference between first two rows.

activations maps speaker embeddings back to the one-hot representation (ŝ),

while in the second output layer (x̂), we map hidden vectors into acoustic

feature vectors by processing them with a 2-layer LSTM with 256 cells per

layer followed by a FC layer. This network is trained using a multi-task

loss where the components are the L2-distance between reconstructed fea-

tures and the ground truth features and the L2-distance between estimated

and the ground truth speaker attribute one-hot vectors. This network is

trained using batch-size 16, learning rate 0.001, with Adam optimization for

50 epochs on the CORAAL training set. Once this model is learned, coun-

terfactual examples are generated by switching the gender variable in the

one-hot speaker attribute vector and providing the original speech features

as input.

The proposed ASR models are then trained on original features and the
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Figure 4.3: CER gap for genders from the unadapted model and
log-probability matching approaches

counterfactual data. This model is a DeepSpeech2 model similar to the

baseline but trained from scratch with the proposed objectives instead of

just CTC.

We compared the performances of the ASR systems based on the overall

character error rate (CER) on the test data, the CER difference between

male and female speakers and also the standard deviation of CER across

all test speakers. We tested the significance of the CER difference between

models using NIST’s SCLITE toolkit, MAPSSWE method [112] and reported

models with significant change at p-value of 0.001 when applicable.

4.5.1 Results

In this section, we will give an example input pair for our counterfactual

training algorithm, and then show the results from our ASR experiments.

In Fig. 4.2, we show example outputs from the model described in Fig. 4.1.

The top spectrogram belongs to reconstructed version of the original utter-

ance from a female speaker. The middle one shows the spectrogram when

we abduct bottleneck autoencoder features from the female speaker, change

the (s) variable to male, and then reconstruct. Since it is hard to see the

differences between these two spectra, we also include the difference between

them in the bottom row. It can be observed that differences between the
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Figure 4.4: Standard deviation of the CER over all speakers from the
unadapted model and log-probability matching approaches

spectrograms are near zero at most frequencies, but show negative and posi-

tive deviations from zero in closely spaced narrow frequency bands where the

voice conversion has shifted energy to a lower frequency in order to model

the shift from female to male.

Initially, we performed two types of ASR experiments. In the first set of

experiments, our aim is to determine if the middle term in Eqs. (4.2), i.e.,

the CTC loss due to the counterfactual input, is crucial. The counterfactual

log-probability matching model (Eq. (4.2)) is trained under two conditions,

λCF ∈ {0, 1}, each while sweeping the log-probability matching weight (λCLM)

from 0.01 to 100. Figures 4.3 and 4.4 show the CER difference between

males and females, and the standard deviation of CER across test speakers,

respectively. As we observe from these figures, the log-probability matching

approach, including the loss term due to the counterfactual input (denoted

as λCF = 1 in the legend), has a larger gap between gender groups and

also a larger standard deviation. Therefore, in the subsequent experiments,

we set λCF = 0. Interestingly, irrespective of λCF, for most values of λCLM

that we have tested, the gap and the standard deviation were higher as

compared to the baseline model which was only trained with CTC loss on

the original input features. Reduced male-female gap was only observed

when we increased λCLM over 100.

In the second set of experiments, our goal is to compare the unadapted
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baseline, counterfactual log-probability matching (CF-LogProb), counterfac-

tual CTC loss matching (CF-CTC) and the proposed log character posterior

matching (CF-Post) models. As mentioned above, here we set λCF = 0 and

only sweep the λ corresponding to the last term in Eqs. (4.2), (4.9) and

(4.14) (respectively λCLM, λCCM, or λCPM). Figure 4.5 compares the average

CER of the four models as a function of λ. Figure 4.6 shows the CER gap

between male and female, and Fig. 4.7 shows the inter-speaker standard

deviation of CER.

In terms of the overall CER (Fig. 4.5), only the log-probability matching

approach achieves significantly lower CER than the baseline for most values

of λ. The log posterior matching performs similarly to the baseline for small

values of λ, but when λ reaches 100, it performs significantly worse than the

baseline. On the other hand, the CTC loss matching approach results in a

large increase in the CER as we increase the weight of the counterfactual

fairness term λ.

In Fig. 4.6, we compare the CER gap between males and females. Al-

though the CTC matching approach has a lower gap (fairer) than the other

two approaches, it has much higher overall CER (lower accuracy) as we

show in Fig. 4.5. The LogProb approach performs similarly to the baseline

at λ = 100 whereas the log-posterior matching has slightly higher gap than

the baseline.
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Figure 4.6: CER gap for genders from the unadapted model, counterfactual
log-probability matching, CTC matching and posterior matching
approaches

In Fig. 4.7, we compare the standard deviation of CERs from different

models. As expected, the curves usually have downward slopes because as

we increase the weight of fairness λ, we should achieve fairer outcomes, i.e.

lower inter-speaker standard deviation. When λ < 10 all three approaches

have higher standard deviation as compared to the baseline and the posterior

matching approach has the smallest deviation. When λ = 100, CTC and

posterior matching approaches perform better than the baseline but they

come at the expense of having higher CER as shown in Fig. 4.5. Although

the log-probability matching method has lower male-female gap in Fig. 4.6

at λ = 100, we see that the standard deviation of CER is not lower than the

baseline.

Although the log-posterior approach has a higher standard deviation, it

has smaller CER increase as compared to the CTC matching approach. This

might be related to the fact that equal opportunity (CTC matching) is weaker

than the equal odds (log-posterior matching) criterion. If we compare log-

posterior vs. log-probability matching, even though the latter has higher

standard deviation at λ = 100, the CER is still lower than the baseline so

it might be argued that the log-probability matching approach is the most

effective one in practice. Hence, the remaining experiments will be based on

the log-probability matching approach.

As the inter-speaker standard deviations of the log-probability matching
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Figure 4.7: Standard deviation of the CER over all speakers from the
unadapted model, counterfactual log-probability matching, CTC matching
and posterior matching approaches

experiments are higher with a decreasing trend, we also investigated larger

values of λCLM. As shown in Figs. 4.8-4.10, for λ = 200 and 300, we still

operate at a CER value lower than the baseline while improving the fairness

in terms of the male-female CER gap and the standard deviation. Especially,

λ = 300 provides a good operating point with the largest improvement in

fairness while maintaining low CER.

In the experiments described above, the protected attribute was always

gender. However, CORAAL dataset comes with the speaker metadata in-

cluding their age and education groups which can also be considered as pro-

tected attributes. In the sequel, we will investigate the cases where the

protected attribute is age or education group rather than gender. In these

experiments, we still use the auto-encoder model described in Fig. 4.1 except

that the number of possible attributes changes depending on the experiment.

For example, in the age group experiments, we have 10 classes as there are

5 age groups from two genders. Having 10 classes instead of 5 allows us to

keep the gender attribute the same while generating the counterfactual data

from a different age group.

As we can see from Table 4.2, when λCLM ∈ {200, 300}, we operate at an

equal or lower CER level than the baseline while reducing the inter-speaker

standard deviation of the CER. Although we focus on age group as the

protected group, we are able to reduce the gender gap in these experiments.
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Table 4.2: CER statistics from the counterfactual log-probability matching
experiments where age is the protected attribute. CORAAL test data only
contains speakers from age groups 2, 3 and 4.

Model CER Stdev M F M-F Age2 Age3 Age4

Baseline 38.0 8.3 44 32.6 11.4 39.5 42.7 38.9
CF-Age-λ = 200 36.2 8.2 41.6 31.2 10.4 37.1 40.9 36.7
CF-Age-λ = 300 38.0 7.8 43.2 33.3 9.9 38.9 42.7 38.3
CF-Age-λ = 500 45.5 6.8 49.9 41.6 8.3 46.5 49.9 45.2
CF-Age-λ = 1000 86.7 1.4 86.8 87 -0.2 87.2 87.7 85.7

When we look at the average CER per age group in the test set, we also see

a decrease for λCLM ∈ {200, 300}. As the regularization gets stronger, i.e., λ

gets larger, we further reduce the standard deviation but we observe higher

CERs.

Next, we will investigate the case where the protected attribute is the

education level of the speaker. According to the results shown in Table 4.3,

when we have λCLM = 200, we operate at a lower CER than the baseline

while having lower inter-speaker standard deviation. For comparison, we

also include the male/female and age group statistics in each case. As we

can see, when λCLM = 200, we are able to reduce the gender gap, as well as

the CERs per age group. Since there are many education categories, those

statistics are not provided in the table. However, if we look at the data,
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Figure 4.9: CER gap for genders from the unadapted model, and
counterfactual log-probability matching for various values of λ

we also observe some decrease in CER for each education category. We will

provide further discussion in the next section.

Table 4.3: CER statistics from the counterfactual log-probability matching
experiments on CORAAL where education category is the protected
attribute

Model CER Stdev M F M-F Age2 Age3 Age4

Baseline 38.0 8.3 44.0 32.6 11.4 39.5 42.7 38.9
CF-Edu-λ = 100 34.7 8.3 40.2 29.8 10.4 35.3 39.7 35.5
CF-Edu-λ = 200 37.5 7.6 42.4 33.3 9.1 38.0 42.4 37.8
CF-Edu-λ = 300 53.6 5.3 56.7 50.9 5.8 54.2 57.2 52.9

The experiments described above are on the CORAAL dataset. In the

next experiment, we will experiment on a standard American English dataset,

namely, 100 hr subset of LibriSpeech [121]. This dataset contains only gender

information of the speaker, hence we will only test the performance when the

protected attribute is gender. The experimental procedure is similar to the

CORAAL dataset except that we train the auto-encoder on LibriSpeech train

dataset. Table 4.4 shows the CER performance on LibriSpeech. Since the

LibriSpeech is a larger dataset with read speech, in general, we operate at

a lower CER level as compared to CORAAL. Since earlier, we observe that

in counterfactual gender experiments, the optimal λ is 300, for LibriSpeech
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Figure 4.10: Standard deviation of the CER over all speakers from the
unadapted model, and counterfactual log-probability matching for various
values of λ

we also try values 300 and 500. When λ = 300, we do observe reduction

in both the overall CER as well as the inter-speaker standard deviation.

Furthermore, we reduce the gender gap from 1.7% to 1.4%.

Table 4.4: CER statistics from the counterfactual log-probability matching
experiments on LibriSpeech when the protected attribute is gender

Model CER Stdev M F F-M

Baseline 9.8 2.9 8.9 10.6 1.7
CF-Gender-λ = 300 9.6 2.6 8.8 10.2 1.4
CF-Gender-λ = 500 10.3 2.8 9.5 10.9 1.4

4.5.2 Discussion

Systems described above are trained with an individual fairness objective,

but results are reported using group disparity (overall male CER vs. female

CER). This is mainly because counterfactuals do not really exist. In order to

compensate for that, we included the standard deviation across all speakers

as a proxy for the individual differences. A full discussion of whether there is

a trade-off between individual and group fairness is out of scope of this study

and we refer to [89] for a relevant discussion. One way to investigate the im-
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provement in individual differences is to look at the CER differences between

a speaker and their counterfactual realizations. Next, we will visualize these

results on CORAAL dataset.

In Figs. 4.11-4.13, we show the total CER difference between real and

counterfactual categories where the categories are gender, age, and education,

respectively. In each case, the left subfigure shows the absolute CER gap from

the baseline system and the right figure shows that of the log-probability

matching system. Colors in the figures are shaded such that same colors in

left and right subfigures correspond to the same level of difference. In all

three figures, we see that the model obtained from counterfactual training

has lower CER differences between categories. The differences are an order

of magnitude lower than that of the baseline.
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Figure 4.11: Average individual CER differences between real and
counterfactual genders on CORAAL

Especially in the CTC loss matching experiments, we saw a trade-off be-

tween accuracy and fairness. Based on the discussion in [90] which states

that “there exist ideal distributions where fairness and accuracy can be in

accord,” we may speculate that our train-test split does not follow the ideal

distribution. If we look at Table 4.1, we see that the training and test sets are

highly mismatched for two reasons: 1) test speakers are completely unknown

during training, 2) the ratio of total duration of male and female speech dif-

fers in train and test subsets, in that training data have more female speech

whereas the test data have more male speech.

It is interesting to note that although in standard American English datasets

such as LibriSpeech (100 hr subset) [121], we observe that males have lower
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Figure 4.12: Average individual CER differences between real and
counterfactual age groups on CORAAL
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Figure 4.13: Average individual CER differences between real and
counterfactual education groups on CORAAL

CER than females (8.9% vs. 10.6%, in our own experiments), in the African

American dataset (20 hr) that we use, we observe the opposite: male speak-

ers have 44% CER, while female speakers have 32.6%. One explanation

for females having overall lower CER is that there is more female speech

in the training set. Another explanation can be based on social linguistics;

there are studies showing that female speakers will use a higher propor-

tion of more standard forms than male speakers to avoid the stigma of a

non-standard form, while male speakers may prefer to preserve their iden-

tity [122]. This may lead to heavier use of standard American by female

speakers in CORAAL, as compared to a wider variety of African American
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vernacular styles used by males. We provide example utterances from male

and female speakers from both datasets below:

• CORAAL-male: Cause you know, we didn’t never have to tan so we

didn’t never even sit out in the sun.

• CORAAL-female: But it’s just not a safe space to have open and honest

race discussions so I don’t even go there.

– LibriSpeech-male: The music came nearer and he recalled the words of

Shelley’s fragment upon the Moon wandering companionless pale for

weariness

– LibriSpeech-female: Then she gave Rosalie back her magic ring thank-

ing the kind witch for all she had done for them.

In the CORAAL male utterance example, we see double negation, casual

forms, etc. This observation is not specific to this particular example; we

observe very frequent use of ‘you know’s or other casual forms among males.

Another observation is that, in our test split, the average education level

for females is higher than that for male speakers. As the education levels

get higher, we usually see lower error rates. This imbalance could also ex-

plain the reason behind the lower error rates for females in CORAAL. The

male-female gap for LibriSpeech is less obvious (only around 1.5%). This is

partially due to having a balanced amount of speech from each group. One

possible explanation for lower performance for females may be attributed to

the observation that female speech is more variable within this group. For ex-

ample, if we look at gender specific standard deviations of CERs, we see that

they are 2.4 and 3.2 for males and females, respectively. This may support

our hypothesis that female speech is more variable at least in this particular

setting. The example utterances above also explain the performance level

difference between CORAAL and LibriSpeech; the former is based on con-

versational speech from interviews whereas the latter is read speech obtained

from book readings.

In summary, in this chapter, we investigated the ASR speaker adaptation

problem from an individualized counterfactual fairness point-of-view. We

propose that for any given individual, if this person were from a different

protected group such as the opposite gender, but spoke the same words with
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similar rhythm and intonation, fair ASR should estimate the same characters

as its output. We formulated this as an additional loss term that is added

to the CTC loss due to the original input. We compared three approaches:

matching the log softmax output from the ASR model, matching the CTC

loss and matching the log posterior of characters given the ground truth

sequence. We argue that these last two correspond to the individualized

counterfactual equal opportunity and equal odds, respectively. In the exper-

iments on CORAAL, we showed that there is generally a trade-off between

the CER and fairness of the system. Especially, in the case of CTC loss

matching, the CER increased significantly while achieving fairness. On the

other hand, in the log-probability matching experiments, for certain values

of λ, we were able to operate at a lower CER while reducing the standard

deviation (unfairness). We verified the effectiveness of the proposed adapta-

tion approach for different protected attributes (gender, age and education

level) on an African American dataset as well as on a standard American

English dataset.
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CHAPTER 5

END-TO-END SPOKEN LANGUAGE
UNDERSTANDING

In this chapter, the focus is on E2E SLU. We will introduce a method that

takes advantage of non-parallel text data to learn better speech-to-concept

models. We will demonstrate the performance on the speech-to-dialog act

and speech-to-intent classification. This chapter is mainly based on our pre-

vious work [123].

5.1 Introduction

Speech understanding is a major component of human-machine interactions

and its quality affects the user experience. Conventional speech understand-

ing systems rely on a two-step approach where the speech signals are con-

verted into text using an ASR system and then an NLP system is applied to

understand intents, to fill the slots or to detect named entities [62, 63]. How-

ever, this two-step approach suffers from error-propagation due to imperfect

ASR systems and also from non-optimality as ASR and NLP systems are

trained separately with different objectives. Moreover, for many of the world

languages, there is insufficient data to train reliable ASR systems [124, 125].

Therefore, there is an interest in approaches which can directly use speech

input to achieve the understanding task without using intermediate ASR

transcripts [2, 68, 69, 70].

Given that the variability in speech signals is larger than that of the

text inputs, and also the fact that recent text-based embeddings such as

BERT [66] achieve state-of-the-art performance in NLP tasks, the perfor-

mance of text based SLU systems is usually better than that of correspond-

ing speech based systems. To improve the performance of speech-only based

systems it would therefore be useful to utilize the complimentary informa-

tion present in text based representations. For many training approaches,
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although parallel speech and text data would be required to integrate such

information, with multiview based techniques we can train systems with non-

parallel data. Systems trained in this fashion also have an advantage of being

able to use any one of the two modalities at test time.

In this chapter, we focus on two goals for learning SLU systems with non-

parallel data using speech-only dialog act as an example task. First, we

propose a multimodal (speech and text) approach for dialog act recognition

based on a multiview training approach. In many practical scenarios, we

have large amounts external text data but limited amount of speech data

with the corresponding text for dialog act recognition. Therefore, our goal is

to show how we can improve speech-only performance by incorporating text

information during training, especially in the non-parallel text case in the

multiview approach. The main idea of the proposed multiview system is that

we try to tie the speech and text encodings using a shared classifier. Second,

if we are given an ASR system during training time, we try to identify the

best way of utilizing information in the ASR model to train a speech-based

dialog act recognition system.

5.2 Multiview Training

As observed in earlier studies, achieving good performance in a speech-only

E2E SLU system is difficult especially with limited amounts of data. It

has also been shown that multimodal approaches usually improve results as

compared to unimodal systems [126, 23]. When labeled text data is available

for a task, we therefore hypothesize that it will be useful to improve the

speech-based system.

One direct way of utilizing two modalities is to append the features in the

system either at the input or at an intermediate level. However, training

such a system requires parallel data corresponding to the same sample at

both training and test time, whereas—especially during test time—we lack

access to text data for speech-based dialog act recognition.

To handle the non-parallel data case, we propose a multiview learning

technique which consists of two unimodal branches which are coupled. The

unimodal systems take either text or speech as input and produce dialog act

labels. They consist of an encoder and a classifier. In this work, we used
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Figure 5.1: Multiview approach

BERT [66] embeddings as text features and MFCCs or ASR-derived acoustic

embeddings as speech features to the unimodal systems.

Our proposed model shown in Fig. 5.1, processes speech and text informa-

tion separately using two branches. We try to force the learned embeddings

to be similar by using a shared classifier on both branches. The system can

be thought of as an inverted Siamese network because of the shared classifi-

cation parts in the two branches. This structure allows us to partially train

the model using one modality without parallel speech and text data. This

model is also practical as it allows to use speech data during test time.

Training of the multiview model is summarized in Algorithm 1. We start

with training the encoder and classifier with the rich-resource (text) modality.

Then we freeze the classifier and train the encoder on the other modality

(speech) and in the final step we fine-tune both branches using parallel data

while still sharing the classifier between the two branches. If there is no

parallel-date available, we skip the fine-tuning step. At the end, we report

the speech branch accuracy.
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Algorithm 1 Training steps of the multiview system

Input: Labeled text-only, speech-only and parallel data

Output: Dialog act labels per utterance and overall accuracy

1: Train the text branch using text-only data

2: Freeze the classifier

3: Train the speech encoder with fixed classifier on speech-only data

4: if parallel data exists, then

5: Fine-tune the encoders and the classifier on parallel data

6: end if

7: Test the speech branch alone

8: return Speech branch accuracy

5.3 Experiments

Experiments are performed on the Switchboard Dialog Act Corpus (SWDA)

[127, 128]. The labels in the dataset are originally associated with text rather

than speech. To use both speech and text modalities, we first create a match-

ing speech corpus by finding the corresponding speech segments from the

original Switchboard dataset based on forced alignments. Although we have

parallel data in many practical settings, we only have non-parallel speech and

text. We simulated this non-parallel setting by splitting the training data

into text-only, speech-only and parallel portions where the amounts of total

training, heldout and test sets are determined based on the division of [61].

In the first set of experiments, we used MFCCs with delta and double delta

features as speech input. For text input, we extracted BERT embeddings [66]

from a pretrained model on the true transcripts.

In multiview systems, the speech encoder consists of 3 BLSTM layers each

of size 128 followed by 2 fully-connected layers of size 64. The text encoder

consists of 2 BLSTM layers each with 128 units followed by a single fully-

connected layer. In both branches transition from the BLSTM layer to the

fully-connected layers is achieved by averaging over time. The classifier has

3 fully-connected layers with rectified linear unit nonlinearity.

Figure 5.2 compares the classification accuracies of four speech-only sys-

tems depending on the amount of non-parallel (NP) speech data used in

training. The baseline is the case where we train the speech branch on low
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Figure 5.2: Classification accuracy versus the amount of non-parallel (NP)
speech data when inputs are MFCCs

amounts of NP speech data (NP speech). Next, we combine the NP speech

data with the speech portion of the parallel (P) data and train the speech

branch on that set (NP+P speech). As the amount of data is larger in this

situation, we achieve higher accuracy than the baseline. In multiview train-

ing, we first train the rich-resource text branch with NP data. We then freeze

the classifier and train speech encoder on non-parallel speech data (“Speech

after text” corresponds to the model at the end of Step 3 in Algorithm 1).

As seen from the figure, pretraining the classifier on text and then learning

the speech encoder on NP data performs better than training the speech

model on NP+P data. We then fine-tune both text and speech branches

using the limited amount of parallel text and speech (“Speech after parallel”

corresponds to the model at the end of Step 5 in Algorithm 1). For the cases

where we have more than 30 hours of speech, fine-tuning step does not bring

any benefit. However, when we have less than 30 hours of speech, fine-tuning

with parallel data improves the accuracy as compared to “Speech after text”.

In the fine-tuning stage we adjust both the encoders and the classifier whereas

in “Speech after text”, we only learn the encoder with classifier fixed.

Since multiview system allows us to test the system using unimodal data,

we also report the text-only performance of the systems. Table 5.1 shows the

classification accuracy of both speech and text branch after all training steps.
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Table 5.1: Amount of non-parallel data (hr) to pretrain the branches and
the accuracy of the text-only, speech-only and ASR-text based testing of
the multiview model for the MFCC-based setup

Training condition (in hr) Test Accuracy
Text Speech Parallel Text Speech ASR-text

60 60 14.5 0.675 0.547 0.541
70 50 14.5 0.685 0.549 0.548
80 40 14.5 0.679 0.526 0.552
90 30 14.5 0.673 0.533 0.539

100 20 14.5 0.677 0.523 0.546
110 10 14.5 0.654 0.512 0.536

The speech accuracies in the table correspond to “Speech after parallel”

curve in Fig. 5.2. Although training is performed on true transcript text, in

practical scenarios we usually do not have the true text during test time but

only ASR outputs. Therefore, we also show the results of testing the text

branch with ASR-based text. We see how the mismatch between noisy and

clean text affects the classification accuracy. We see that although true-text

based testing gives above 65% performance, ASR-text based testing lowers

the accuracy to that of the speech-only testing. Another disadvantage of

ASR based testing is that it requires a language model in addition to an

acoustic model whereas in the speech-only E2E classification, all we need is

the acoustic features.

When we compare “NP speech” and “Speech after parallel” setups, for the

low-resource case, we get 5-40% relative improvement in accuracy after fine-

tuning with parallel data. The gain reaches to 40% (0.363 to 0.512) when we

have only 10 hours of non-parallel speech at the beginning.

For the conditions achieving 40% relative improvement, which is the 10

hours of non-parallel speech scenario, we plot the distance between the text

and speech embeddings to see if the proposed approach can tie them together

using a shared classifier. If the hypothesis holds, then the distances after

training should be smaller than the distance of the unimodal systems. As

shown in Fig. 5.3, after applying either “Speech after text” or the “Speech

after parallel” method, we get smaller distances between embeddings as they

are mostly below the diagonal.

These results confirm several hypotheses. First, simple acoustic features
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Figure 5.3: Distance comparison between text and speech embeddings
before and after multiview training

are harder to classify than text embeddings such as BERT. Second, although

a text-based system works well if tested on true text, in practice we do

not have access to that information and hence need to resort to ASR-based

noisy text which deteriorates the results to the level of speech-only testing.

Third, non-parallel text data can be used to guide learning speech encodings

and it helps improve speech-only performance. Although we do not have

the state-of-the-art results on the text branch [129], we can still improve

the speech-only performance in the proposed multiview architecture. Our

speech-only performance on the other hand achieves better than the best

speech-only system reported in [61], which is at 38.9%.

As discussed in [61], even if two sentences are the same, depending on

the context, the output classes can change in the dialog. Therefore, one

method to further improve the speech-only performance is to use the context

or the history of the dialog acts while making class decisions. Our initial

experiments on using context, not presented in this dissertation, show that

we can improve the accuracy further.

Another way of increasing the performance is to improve the speech fea-

tures fed into the system. Note that text representations come from a pre-

trained BERT model; however, in the first set of experiments, speech features

were MFCCs. Even though ASR text-based testing performs poorly, in the

cases where we have access to an neural network based acoustic model, we can

utilize it as a feature extractor. In the second set of experiments, we took an

ASR model trained on the Switchboard dataset [130], and extracted speech

features from the LSTM output of that acoustic model. We then repeated
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Figure 5.4: Classification accuracy versus the amount of non-parallel (NP)
speech data when inputs are ASR based embeddings

the first set of experiments using these ASR-based speech features. As shown

in Fig. 5.4, when we have sufficient amount of speech data, the unimodal

speech-only training achieves above 60% accuracy. Our observations from

the first experiments still hold for this case; i.e., text-based pretraining of

the classifier and then learning the speech encoder (Speech after text) helps

improve the performance and in the very low-resource case (less than 30

hours), additional fine-tuning (Speech after parallel) with the parallel data

helps further increase the accuracy.

In Table 5.2, we report the true text and ASR-text based testing of the

multiview model for the second set of experiments performed on ASR-based

speech embeddings. In terms of the results, the major difference between

the previous experiment and the current one is that here, speech-only re-

sults approach to the true text based performance and they are significantly

better than ASR-text based testing. This shows that we can achieve bet-

ter performance than an ASR+NLP system with speech-only training when

ASR-based speech embeddings are used.

When we compare “NP speech” and “Speech after parallel” setups, for the

low-resource case, we get between 5% and 20% relative improvement in accu-

racy after fine-tuning with parallel data. The largest gain is observed when

we have 10 hours of non-parallel speech data (0.516 to 0.620). Although the
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Table 5.2: Amount of non-parallel data (hr) to pretrain the branches and
the accuracy of the text-only, speech-only and ASR-text based testing of
the multiview model for the ASR embedding-based setup

Training condition (in hr) Test Accuracy
Text Speech Parallel Text Speech ASR-text

60 60 14.5 0.677 0.630 0.549
70 50 14.5 0.688 0.640 0.549
80 40 14.5 0.672 0.628 0.535
90 30 14.5 0.681 0.626 0.558

100 20 14.5 0.682 0.627 0.556
110 10 14.5 0.672 0.620 0.543

relative improvements are not as large as the first experiments, the absolute

accuracies are much better in this case. If we compare ASR text-based test-

ing to the speech-only testing case, we achieve about 15% improvement in

accuracy (roughly from 0.55 to 0.63).

We also performed multiview experiments on the ATIS speech-to-intent

classification task. Table 5.3 shows the text-based accuracy, speech accuracy

after multiview training and speech accuracy after parallel training. We

compare three models: the first one is a speech-only model mapping speech

utterances into intent with a classifier, the second one is the multiview model

on the original dataset which has parallel text and speech, and the third

model is also a multiview model but trained on non-parallel text and speech.

In the last one, non-parallel text is obtained by augmenting the text data

using a template structure. We identified the list of airports, cities and dates

in the dataset, then for each text sentence in the dataset we checked if one

of these fields exists in that sentence; if that is the case, we generated a copy

of the sentence by replacing the name with one of the available ones without

changing the label. For instance, given an utterance such as “I would like

to fly from New York to Boston.”, we generated an additional sentence such

as “I would like to fly from New York to Chicago.” as Chicago is one of the

possible city names in the dataset. Note that this does not affect the label,

both of these sentences have the “flight” intent.

As shown in Table 5.3, multiview training even without any text augmen-

tation helps improve the speech-to-intent classification accuracy from 67% to

76.5%. If we use augmented text for multiview training, we observe that we
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Table 5.3: Multiview training experiments on the ATIS speech-to-intent
dataset, numbers denote the accuracy

Model Text Speech Speech after Parallel

Speech-only - 0.670 -
Multiview 0.861 0.765 0.733
Multiview with text augmentation 0.940 0.796 0.805

further increase the speech performance to 79.6%. If we also perform parallel

training after this, then the accuracy becomes 80.5%.

With the experiments on two datasets, we showed that we can leverage

non-parallel text data to help learn better speech embeddings in the speech-

to-dialog act and speech-to-intent classification problems. We also showed

that phonetically-aware speech embeddings from an ASR system can further

help increase the final speech-to-concept performance.
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CHAPTER 6

FAIR SPOKEN LANGUAGE
UNDERSTANDING WITH DEEP

F-MEASURE

In this chapter, we will propose an empirical method for optimizing the Fθ-

measure in a DNN-based system. We will demonstrate the performance on

both benchmark socio-economic datasets and on speech-to-intent and speech-

to-image object tasks. This chapter is mainly based on our previous work

in [131].

6.1 Introduction

Many machine learning datasets have a label imbalance or dataset bias prob-

lem. In many cases, either data is harder to collect for certain classes or the

data collection phase is biased itself such that bias is introduced to the col-

lected dataset. Typical training algorithms, optimized in order to minimize

error, tend to do so by exacerbating bias, e.g., by providing higher recall and

precision to the majority class than to minority classes. Therefore, the label

imbalance problem raises the concern about fairness of machine learning sys-

tems in general [4, 84, 132]. SLU problems often suffer from label imbalance,

in ways that may hide important errors from the designers of SLU systems.

Consider an SLU dataset such as Air Traffic Information Systems (ATIS)

[133] and the speech-to-intent detection problem on this dataset. About

75% of the dataset carries the intent of searching for a flight, while con-

versely, some minority intent classes are represented by only a single training

example; this is a severe label imbalance problem. Suppose that we train a

model without any concerns about fairness or imbalance. The model will very

likely learn to output the “flight” intent all the time, yielding an accuracy of

75% which is not low and could be acceptable depending on the application.

Considering that there are roughly 30 classes in the whole dataset, one class

will have a recall of 1.0 and precision of 0.75, and the remaining 29 classes
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will have both recall and precision of 0.0. In such a scenario, the F-measure,

which is a harmonic average of precision and recall, will be 0.86 for the most

common class and 0.0 for the rest, giving an average of 0.03 which is not

acceptable in many cases.

In this chapter, our goal is to design a loss function to maximize the F-

measure instead of the accuracy for DNNs. Our methods are tested on two

standard socioeconomic classification problems from the literature on fairness

(the UCI [134] Adult [135] and Communities and Crime [136] tasks), and on

two SLU tasks (intent classification in ATIS, and detection of the named

object in spoken captions that name only one object from the Speech-COCO

dataset [77]). On the SLU tasks, we perform E2E SLU, i.e., we directly

map speech input to the labels instead of performing ASR followed by NLP.

We pose the SLU problems as multi-class classification tasks and use the

softmax output from the DNN, making it possible to apply the same op-

timization criterion to both the socioeconomic and SLU learning problems.

We approximate the F-measure with a differentiable function of the softmax

activations so that we can use the standard backpropagation algorithm [137]

to train the DNN.

6.2 Deep F-measure Maximization

As mentioned in Chapter 2, Fθ measure is defined as

Fθ =
(1 + θ2)TP

θ2(TP + FN) + (TP + FP )
(6.1)

for binary classification. In the multi-class case, we focus on the average

per-class F-measure:

Fθ =
1

K

K∑
k=1

(1 + θ2)TP (k)

θ2Nk + (TP (k) + FP (k))
, (6.2)

where Nk term corresponds to (TP (k) + FN(k)).
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6.2.1 Empirical Optimization of Fθ

Earlier works on Fθ-measure have focused on learning a threshold for making

a decision for the binary classification problem. On the other hand, in the

case of multi-class classification with DNNs, the class decision is made by

taking the softmax at the output layer and then by choosing the class with

the highest softmax activation. Therefore, in Fθ maximization with neural

networks, we do not aim at identifying the threshold but designing a loss

function that is differentiable so that we can use the backpropagation method

to learn the DNN model parameters.

Equation (6.2) contains counting which is expressed using indicator func-

tions that are not differentiable. For example, given that the softmax activa-

tions for the nth data point, or token, are ŷn(k), k = 1, 2, · · · , K and that yn

is the one-hot representation of the true label, the number of true positives

for a certain class k is written as

TP (k) =
∑
n

1[arg max yn = k ∧ arg max ŷn = k], (6.3)

where the indicator function 1 is not differentiable. Therefore, we need a dif-

ferentiable approximation for Fθ. To achieve this, instead of the hard counts,

we use the soft counts which are obtained from the softmax activations. To

make the largest activations equal to 1, we do the following normalization on

the activations for each token:

ŷ′n =
ŷn

maxk ŷn(k)
. (6.4)

Using these soft counts, we approximate the terms in Eq. (6.2) as

TP (k) ≈
∑
n∈Sk

ŷ′n(k) (6.5)

TP (k) + FP (k) ≈
∑
n∈S

ŷ′n(k), (6.6)

where Sk denotes the set of indices for data tokens with label k and S is

the set of all indices in the dataset. We do not approximate Nk as it is

determined directly from the dataset. Thus, our loss function becomes the
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negative of the approximate Fθ:

L = − 1

K

K∑
k=1

(1 + θ2)
∑

n∈Sk
ŷ′n(k)

θ2Nk +
∑

n∈S ŷ
′
n(k)

. (6.7)

Since ŷ′n is a differentiable function of ŷn, it is also differentiable with respect

to the DNN model parameters. Hence, we can learn the network weights by

backpropagating the derivatives of the loss function in Eq. (6.7). The loss

function in Eq. (6.7) is not specific to fully-connected neural networks but

can be used for any neural network with a softmax output layer.

In the approximations given in Eqs. (6.5) and (6.6), instead of ŷ′, we could

have used ŷ directly, or we could have computed the softmax by first scaling

the pre-softmax activations by a constant to increase the sharpness of the final

activations. However, in our experiments, we saw that the approximations

proposed in the equations above performed the best.

6.3 Experiments

In this section, we will describe two sets of experiments. Although our main

focus will be on dealing with dataset bias in SLU systems, the first set of

experiments will be on smaller datasets for non-speech, binary classification

tasks. These are usually used as benchmark tasks as they reflect some societal

bias. The second set of experiments will be on speech-to-intent and speech-to-

concept classification which are both multi-class classification tasks. Details

of the models and the results will be presented in the following subsections.

6.3.1 Experiments on Socioeconomic Data

The first set of experiments is performed on non-speech tasks. The goal here

is to show whether the proposed method is providing any gains as compared

to cross-entropy based training. Since the dataset bias is usually discussed

in the realm of socioeconomic data with certain protected attributes such as

race, gender, age-group etc., we first want to investigate whether we achieve

an improvement in these tasks. For this task, we use two datasets from the

UCI repository [134], namely, Adult [135] and Communities and Crime [136].
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Table 6.1: Binary classification performance on two UCI datasets

Data Loss Prec Rec Micro-F1 Avg-F1 Accu.

Adult
xent 0.7977 0.6193 0.6973 0.6389 0.8085
deepF 0.8196 0.6170 0.7040 0.6361 0.8107

C&C
xent 0.7422 0.7075 0.7245 0.7206 0.7940
deepF 0.7541 0.7319 0.7428 0.7413 0.8040

In the Adult dataset, given the personal attributes (age, race, marital sta-

tus, education level, etc.) of a person, the goal is to estimate whether the

person has an income over $50K/year. The majority class, i.e. individuals

with income less than $50K/year, comprises 76% of the data points. In the

Communities and Crime (C&C) dataset, the goal is to detect if a community

has a high crime rate where, as described in [138, 139], we define “high crime

rate” to mean a crime rate above the 70th percentile of the training dataset.

The majority class, i.e., low crime-rate, comprises 70% of the samples.

Both the Adult and C&C tasks are two-class problems, for which a stan-

dard F-measure is well-defined. Our interest is the maximization of a multi-

class F-measure; therefore, the F-measures of both majority and minority

classes are first computed, and then averaged as shown in Eq. (6.7).

In both tasks, we use fully-connected neural networks with 16 units per

layer. The numbers of layers are 7 and 4 for the Adult, and C&C datasets,

respectively. The output is a softmax layer with 2 units. As a baseline, we

use the models trained with cross-entropy loss and compare them to models

trained by the proposed deep Fθ loss. Table 6.1 shows the average precision,

average recall, micro-F1 and classification accuracy for both cross-entropy

model (xent) and the proposed model (deepF) for both datasets where we

take θ = 1. For both datasets, we improve the micro-F1 and accuracy. For

the C&C dataset, we also see improvement in the average-F1 score.

6.3.2 Experiments on Spoken Language Understanding

The second set of experiments is on speech related tasks. We investigate

direct speech-to-meaning systems where instead of the conventional two-step

process (ASR+NLP), our goal is to directly understand the speech signal in

an E2E framework. For the SLU problem, we run experiments on two tasks:
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Table 6.2: Number of classes and the frequency (in %) of the most frequent
top-3 classes for ATIS and Speech-COCO datasets based on the training
data

Data #Classes Top1 Top2 Top3

ATIS 29 73.7 8.5 5.1
Speech-COCO 80 22.6 3.5 3.1

speech-to-intent detection and speech-to-concept classification, both of which

are multi-class classification problems. We work on the ATIS dataset [133]

for the speech-to-intent task, where the intents are “searching for a flight”,

“getting airport information”, “local transportation options”, etc. There are

29 intents in the whole dataset 8 of which do not appear in the training

set. For the speech-to-concept task, we use the Speech-COCO dataset [77].

This dataset consists of synthesized speech signals for the image captions in

the MS-COCO dataset [140]. We define the task to be mapping the spoken

image captions to the image label. There are 80 classes in the dataset.

In Table 6.2, we show the number of classes and the frequency of the most

common three labels in both ATIS and Speech-COCO training sets. As

shown in this table, the classes are highly imbalanced and we have dataset

bias. Given these statistics, a model that always predicts the majority class

will have 73.7% and 22.6% accuracy on the ATIS and Speech-COCO training

datasets, respectively. If we compute the micro-F1 for such models, they will

be 0.0293 for ATIS and 0.0046 for Speech-COCO, which are very low (less

than 3%), and these numbers will get even lower for datasets with more

classes. Especially, in the ATIS case, we see that relatively high accuracy

does not necessarily mean a classifier that is fair to all classes.

E2E SLU has gained interest as a means to overcome the error propagation

problem, in which speech transcription errors cause speech understanding er-

rors [2, 71, 68, 69, 70, 123]. This work uses the speech branch of the multiview

model described in [123] which consists of a BLSTM based encoder and a

classifier with fully-connected layers (Fig. 6.1). Since our focus is on designing

the loss function for F-measure maximization, we keep the DNN architecture

otherwise identical to that used in [123], and use speech-only training instead

of the multi-task training protocol described in [123]. For ATIS experiments,

the model has a single BLSTM layer with 128 units and two fully-connected

layers with 64 units each. For Speech-COCO experiments, the model has 2
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Figure 6.1: Our E2E SLU architecture based on [123]

Table 6.3: Multi-class classification performance (precision, recall,
micro-F1, average-F1, accuracy and coverage) on E2E SLU problems for
different models (M1: ReLU nonlinearity, M2: leaky ReLU nonlinearity)

M1 - ReLU nonlinearity M2 - leaky ReLU nonlinearity
Data Loss Prec Rec Mic-F1 Avg-F1 Accu C Prec Rec Mic-F1 Avg-F1 Accu C

ATIS
xent 0.0244 0.0345 0.0286 0.0286 0.7772 1 0.0313 0.0362 0.0336 0.0332 0.6697 2
deepF 0.0520 0.0554 0.0536 0.0516 0.6484 4 0.1054 0.0936 0.0991 0.0947 0.7447 5

COCO
xent 0.1992 0.2268 0.2121 0.1956 0.3538 50 0.3876 0.3716 0.3794 0.3509 0.4473 74
deepF 0.2539 0.3137 0.2807 0.2676 0.3264 79 0.3927 0.3994 0.3960 0.3895 0.4439 79

BLSTM layers with 128 units each and two fully-connected hidden layers with

128 and 64 nodes. The dataset comes with train and validation splits; we

reserve 25% of the training subset as our development set. In both cases, we

experiment with ReLU and leaky ReLU non-linearity for the fully-connected

layers, we set the learning rate to 0.001, and we use Adam optimizer.

In Table 6.3, we show the average precision, average recall, micro-F1,

average-F1, accuracy and coverage. We define the coverage as the number of

classes with non-zero recall. This is an indicator of fairness as it highlights

the very low number of classes that have non-zero recall under a standard

cross-entropy training paradigm. We report the results on both ATIS and

Speech-COCO datasets. Training with cross-entropy loss is compared to

training with the proposed Fθ measure (with θ = 1). We first experiment

with model 1 (M1) that has ReLU non-linearity. For both datasets, we see

that deep F-measure maximization (deepF) results in higher micro-F1 and

average-F1 as compared to the cross-entropy (xent) model. In both cases, we

also see that we increase the coverage significantly. Especially, on the ATIS

dataset, we see that the cross-entropy model only outputs the majority class

label. On the other hand, the deepF model has a coverage of 4 which shows

that it is able to output labels from different classes. On the Speech-COCO

dataset, with the deepF model, we cover almost all classes (79 out of 80).

However, we also observe that there is a trade-off between coverage and ac-
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curacy. While trying to cover different classes, the model misses some of

the majority class data points which leads to slightly lower accuracy as com-

pared to the cross-entropy model. This is an expected outcome as the deep

F-measure optimization aims at achieving better F-measure without paying

attention to the overall accuracy. If our goal is fairness, and if the difference

in accuracy is not large, deepF may still be the preferred approach. When

we trained M1 for larger θ (more emphasis on recall), we saw that ReLU neu-

rons start to die and hence lead to the degenerate solution, i.e., outputting

the majority class label. Therefore, we also perform experiments with leaky

ReLU (model 2, M2). With M2, we observe better baselines with the cross-

entropy objective. However, our previous conclusions still hold: deepF leads

to higher F-measure and increased coverage.

In Fig. 6.2, we show the average-Fθ and micro-F1 obtained from M2 for

ATIS and Speech-COCO datasets, for different values of θ. Note that in the

case of cross-entropy training, we only train a single model, then compute

its Fθ for different values of θ. On the other hand, we train a model for each

θ in the case of deep F-measure maximization. The cross-entropy system

is trained for 25 epochs. The deep-F system is trained for 15 epochs using

cross-entropy, then for 10 epochs using the Fθ measure.

Results on the ATIS dataset (lower half of the results in Fig. 6.2) show

that the proposed deep F-measure maximization approach leads to 6-8%

absolutely higher micro-F1 and average-Fθ as compared to the cross-entropy

model for a wide range of θ. By comparing M2 results in Table 6.3 to Fig. 6.2,

it is possible to compare the sizes of the improvements in coverage (about

3-fold improvement at θ = 1) and in F1. Micro-F1 improves by a factor of

2.9 at θ = 1, and by a factor of 3.2 at θ = 4 (from 0.0359 to 0.1161). These

results suggest that increasing coverage has a large (up to 8% absolute) effect

on the micro-F1.

As shown in upper half of the Fig. 6.2, for the Speech-COCO dataset, F-

measures are around 35-40%. On this dataset, deep F-measure maximization

still performs better (up to 5% absolute) than the cross-entropy loss when

θ < 4 and there is not a significant difference in the F-measure for different θ.

However, when θ ≥ 4, the performance starts to fall below the cross-entropy

model. Still, if we look at the coverage for these models, we see that it is 79

which is higher than that of the cross-entropy model. This means that we

have nonzero recall for more classes but the individual F-measures per class
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are, on average, lower than their cross-entropy counterparts.
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CHAPTER 7

DISCUSSION

As mentioned in the Introduction (Chapter 1), learning speech embeddings is

a very general topic and we cannot cover all the aspects in a single thesis. It is

possible to learn the embeddings in various ways such as assuming a distance

measure and mapping the inputs to a space where this distance measure has a

physical meaning, using a structured model that is crafted towards extracting

a certain type of knowledge (e.g., speaker characteristics), or designing an

objective function such that the model, and hence the embeddings from that

model, would be meaningful. In this dissertation, we particularly followed

the last two approaches for each of the problems at hand, namely ASR and

SLU. In each case, we provided a model and an objective, which led to four

standalone projects that we discussed in Chapters 3-6.

This chapter will focus on possible impacts of the proposed models or

algorithms in various domains. Once deployed on a real ASR or an SLU

system, the major impact will be the increase in user satisfaction from the

human-computer interaction (HCI) system. In addition, the fairness compo-

nent will also have societal and psychological impacts on the users. We will

then discuss future directions in which these studies can possibly lead.

7.1 Research Impact

The joint speaker change detection and adaptation method proposed in

Chapter 3 could be utilized in streaming ASR systems. Conventional sys-

tems perform these two tasks separately which causes delay in the output.

However, when there are frequent speaker changes in the input signal or in a

dialog in which one speaker speaks only for short intervals, it would be faster

to process the data in one pass rather than splitting the data into small sin-

gle speaker regions. As shown in the experimental results, this method also
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reduces the WER which increases the user satisfaction of the ASR system

which could be deployed into a mobile device or a home assistant such as

Amazon Alexa or Google Home.

In Chapter 3, we showed that we reduce the WER using the proposed

auxiliary network in a hybrid DNN-HMM model but the proposal does not

assume the type of ASR, i.e. it is equally applicable to the E2E ASR systems.

In later experiments, we tried using the auxiliary network in the DeepSpeech

based E2E ASR model of Chapter 4, and we observed that the auxiliary

model still lowers the WER. This supports the claim that the auxiliary net-

work idea is agnostic to the exact network architecture. On the other hand,

when we evaluated the speaker level WERs of this model on the CORAAL

dataset, we observed that the WER reduction for female speakers was greater

than that for the male speakers. This resulted in a larger standard devia-

tion of WER across test speakers as compared to the unadapted baseline

model. This shows that fairness against speaker differences is not completely

achieved by the auxiliary model and supports the necessity of a fair algorithm

for speaker adaptation.

As discussed in Chapter 4, it is possible to approach the adaptation from

a fair machine learning perspective. This means that we can reduce the

error rate gap between genders, races, or dialects and improve inclusiveness

of ASR systems. This in turn leads to covering more users with better ASR

quality which promotes equality, diversity and authenticity. Especially, the

last point has social and economic consequences. For example, there are

studies showing that the African American community tends to code-switch

to “proper” or standard English in formal settings or in their work life in

order to advance their careers. There are discussions on the implications

of this forced code-switching such as change in self-image (self-confidence,

identity, being respected by others) which can lead to mental issues, as well

as economic impacts such as not getting the raise or promotion they deserve.

Given that standard ASR systems are usually trained on American English,

African American users may not find the commercial ASR systems useful for

them. However, if we can make the ASR model fair, we can alleviate some

of these problems.

The equity theory proposed by Adams [141] suggests that the perceived

fairness of people depends on how their outcome-to-input ratio compares

with their perception of other people’s ratios. This theory, which is im-
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portant for social psychology, also affects how people feel, think and behave

[142]. Consider the following scenario: Two females, one black and one white,

want to test a device that supports voice commands; they speak the same

sentence but in the first trial the black female’s speech is not understood

by the machine and she tries several times until she achieves her goal. On

the other hand, for the same voice command, one iteration is sufficient for

the white speaker. From the black person’s perspective, she got the same

outcome as the white female at the expense of more input, i.e. more rep-

etitions. Hence the perceived outcome-to-input ratio is lower for the black

female as compared to her white friend. This causes perceived unfairness

and dissatisfaction from the service.

As summarized in [143], emotional reactions to unfairness are closely re-

lated to stress and can therefore lead to physical changes as part of the general

stress response such as high blood pressure. Negative emotions such as anger

are also dominant responses to unfairness. Sustained negative feelings and

stress response can eventually lead to other physical and mental problems

in the long term. We think that having fair machine learning systems can

prevent a (small) part of injustice and can contribute to the well-being of

individuals and minorities.

As for the theory of counterfactual training, whether there must be a trade-

off between accuracy and fairness is also under discussion; these are especially

hard to prove mathematically for a complex problem such as ASR. Although

we empirically observed that there is usually a trade-off for two solutions

(CTC matching and posterior matching), in the logit matching experiments,

we were able to find a set of hyperparameters where we can have both low

CER and low gender disparity as compared to a baseline model. This might

suggest that the trade-off is not a must but further evaluations might be

necessary.

It is usually harder to obtain speech recordings as compared to text data as

speech carries identity information which causes privacy concerns. Therefore,

we think that the method proposed in Chapter 5 will be helpful for languages

that have limited amount of speech but large amounts of text data. The

reason for focusing on E2E SLU was that we wanted to bypass the ASR+NLP

approach. In Chapter 5, we showed the performance gap between ground

truth text and ASR text based performances which suggests the importance

of the E2E approach. Such an approach would possibly reduce the latency
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as we do not require a full ASR decode. This can lead to faster interaction

and shorter wait time to get a response from a smart device and also lead

to smoother or more natural verbal communication between humans and

machines.

Even though we proposed the multi-view training for the text and speech

modalities, in a separate study [144] we showed that we can also use this

idea with video and speech modalities for the purpose of audio-visual cross-

modal speaker verification, i.e. matching faces with voices. In that study, we

showed that we can achieve accuracy comparable to the existing methods on

the VoxCeleb1 and VoxCeleb2 datasets. Hence the main training framework

is applicable to different modalities.

In Chapter 6, although our focus was on SLU, the proposed method,

namely the deep F-measure, is a general technique that can be used for

an arbitrary network performing multi-class classification using a softmax

output layer. We supported this claim by showing results on socio-economic

datasets as well as speech. We think that deep-F-measure would be helpful

for the cases where the training dataset is highly imbalanced and it is hard

either to collect additional data for certain classes or to augment the dataset.

The foregoing discussion is related to responsibility from both the re-

searcher’s and user’s perspective. In order to conduct responsible research,

one dimension is to be inclusive as described in [145]. The chapters on fair-

ness (Chapters 4 and 6) were part of this effort. Although we discussed the

positive sides of the proposed research such as increased user satisfaction

from an HCI system, we should also warn the users about possible nega-

tive impacts. For instance, when the user enjoys the conversation with the

machine, they will tend to use the device more frequently which could pos-

sibly lead to the general problems associated with overuse of digital devices.

Some of these effects are psychological (distraction, expectation of instant

gratification, narcissism), social (isolation, deficit in social skills) or physical

(hearing and vision problems, neck strain, less active life) [146]. From the

user’s point of view, they should be aware of these possible outcomes and

use digital devices responsibly.
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7.2 Future Directions

In this section, we will provide possible future directions that can have a

short or a long time-span. The short-term directions mainly involve straight-

forward extensions of the current experiments or the settings, whereas the

long-term ones correspond to more open problems and research questions

that would be more involved.

7.2.1 Short-term Directions

One obvious extension of the auxiliary network proposed in Chapter 3 is

to try the model on E2E ASR systems. In our fairness experiments, we

started investigating this in the case of DeepSpeech2 model and we indeed

observed gains in the accuracy. In order to show the effectiveness in the

case of E2E models, we may also want to experiment with larger datasets

(e.g. larger than 1000 hours of speech). This dissertation has reported our

experimentation with utterances containing a single change point. However,

the model is flexible to handle multiple change points and further tests can

be performed on multi-turn utterances.

Our starting point for speaker adaptation was the failure of ASR systems

on non-native speech. Hence, it might be useful to test the proposed model

on accented speech and provide modifications to the model if necessary.

In Chapter 4, we proposed the counterfactual training to reduce the gender

gap, age group and education group gaps. However, the idea is applicable

to other dimensions of the speakers such as race or socio-economic status.

We have ongoing efforts to investigate these aspects, specifically the dialect

difference. One challenge of these is to generate realistic counterfactuals in

the case of speech.

To answer concerns regarding whether the regularization effect of the coun-

terfactual loss functions will disappear in the case of large datasets could also

be a subject of a study. These models can be trained on large speech cor-

pora. We also have ongoing efforts on experimenting with stronger baselines

trained on larger datasets.

In Chapter 5, the multiview model provided a way to learn text-like speech

embeddings through a shared classifier. Due to limited amount of non-

English SLU corpora, we performed all SLU experiments on English speech.
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It would be useful to test the proposal on other languages where we could

have more text data than speech.

In the case of Deep-F training, one analysis that could be important for

supporting our claims is to measure the performance gain with respect to

the skewness of the label distribution. This type of analysis may give better

insights about the accuracy vs. fairness trade-offs.

7.2.2 Long-term Directions

In Section 7.1, one motivation for simultaneously performing speaker change

detection and speaker adaptation is given as the ability to use it in online

systems. One caveat is that in its current form, the auxiliary model needs to

wait until the end of the utterance so that it can make comparisons between

speech segments; hence, there will still be some delay in processing. However,

by reducing the look-ahead duration for the purposes of comparison, the delay

might be reduced. Such a study can bridge the gap between the proposed

model and a real-life implementation.

Speaker variability affects most of the speech applications, and SLU is

one of those. Therefore, it is possible to introduce the speaker adaptation

method of this work to the SLU task. Especially, the auxiliary model is an

unsupervised adaptation method and can be applied to the SLU datasets,

which usually do not contain speaker labels, to improve their accuracy. Such

a study will also combine the two application areas discussed in this disser-

tation.

In this dissertation, we focused on learning embeddings geared towards

specific applications. It would be interesting to see if we can learn generic

speech embeddings from a single model that can perform ASR and SLU

simultaneously depending on the output structure. There are some studies

making use of multi-tasking, such as [147, 148], but they are not yet as

popular as the task-specific systems. This holistic way of learning speech

embeddings is a general line of research that can be handled in the future.

In our applications, our focus was mainly on English datasets. However,

to be inclusive, it is important to provide such tools for non-English datasets.

This fact proposes learning possibly multi-lingual speech embeddings. Espe-

cially, learning multi-lingual semantic speech embeddings would be a large
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and interesting research question.

The counterfactual speaker adaptation method proposed in Chapter 4 re-

lies on the generation of counterfactuals, i.e. voice conversion or speech gen-

eration for non-existing speakers. Although there are several proposals for

time sequence generation or zero-shot voice conversion, these are still open

issues that can be addressed in the future.

In Chapter 5, we proposed the multiview model to learn text-like speech

embeddings through a shared classifier from non-parallel data. However, we

could have imposed additional constraints on the embeddings to map speech

and text to the same space. For example, there are cross-modal studies in

image and voice or image and text. Those methods usually require parallel

data but coming up with solutions without this constraint is a direction for

future research.

Due to the shared classifier structure, it might be argued that the multi-

view model requires having similar labels for different modalities. The prob-

lem of having an open-domain evaluation, i.e., handling unseen classes in the

classifier, is currently an open problem and subject to future research.

In our SLU studies, we tackled the problems that require classifying the

spoken sentence into a label such as the intent. However, SLU is a much

more general problem than utterance classification; e.g., consider the slot-

filling problem. It might be interesting to see if the embeddings learned

from a model such as the proposed multi-view model can also be useful for

slot-filling tasks.

The deep F-measure proposed in Chapter 6 is based on the soft-counts

idea which can be improved by finding other differentiable ways of obtaining

the statistics such as TP, FP, TN and FN based on the ground truth. In

addition, the current proposal was highly empirical. It might be useful to

show the theoretical reasons underlying this mechanism or to provide an

alternative differentiable F-measure approximation derived from theory. This

could provide theoretical guarantees or bounds that could make it easier to

compare with the conventional objective functions such as cross-entropy.

One general note is that although we did not use speaker labels in Chap-

ter 3, Chapters 4-6 assume that labels corresponding to the task are available.

Therefore, we mainly worked on supervised learning of embeddings. Given

the fact that data collection and labeling are expensive tasks, semi-supervised

or unsupervised learning of these embeddings is a major direction for future
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research. However, this could bring complications especially in the case of

fairness because some fairness criteria depend on conditioning on the true

label which will not be available in an unsupervised setting. This may lead

to proposals for fair and unsupervised learning. At this point, the fairness of

unsupervised systems is not well-defined and merits investigation.
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CHAPTER 8

CONCLUSIONS

In this dissertation, we discussed two application areas of speech processing,

namely ASR and SLU. We mainly focused on speaker adaptation for ASR

and E2E SLU. Since we are trying to map speech input to a set of outputs

through neural networks, the overarching theme of this work was learning

speech embeddings. We also discussed that there are concerns for fairness in

these applications, and we proposed some novel ways of learning fair speech

embeddings in these problems.

In Chapter 3, we introduced an auxiliary network for speaker adaptation

and then combined it with the speaker attention mechanism in order to si-

multaneously detect speaker changes and adapt to the speaker. We showed

that even if we did not use the change point information and speaker la-

bels during training, the model was able to learn to detect speaker changes.

This gave us a way to process the multi-speaker input on-the-fly instead of

performing change detection followed by speaker adaptation.

In Chapter 4, we proposed a speaker adaptation approach based on the

counterfactual fairness paradigm. Specifically, we derived the individualized

counterfactual equal odds and equal opportunity loss functions for E2E ASR.

The former led to the matching of the character posterior probabilities of the

real and the counterfactual inputs given the ground truth sequence, and the

latter led to the matching of the CTC losses. We observed that there is

usually a trade-off between accuracy and fairness of the ASR system. Still,

in the logit matching experiments, we observed that it is possible to reduce

the standard deviation of the CER for the test speakers as well as the overall

CER.

In Chapter 5, we proposed a multi-view approach that uses a shared clas-

sifier on top of separate speech and text encoders. The training algorithm

allowed us to use non-parallel text to first train the text branch which later

guided learning of the speech embeddings. We showed that if we have a large
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amount of text and limited amount of speech, we can improve the speech-to-

concept performance in an E2E SLU system.

In Chapter 6, we observed that in the case of highly label imbalanced

datasets, optimizing for prediction accuracy is not fair to the minority classes.

To solve this problem, we proposed that we should maximize the F-measure

instead of accuracy. Then the problem became finding a differentiable ap-

proximation to the F-measure so that we can use it with backpropagation.

We proposed the soft counts idea to calculate this approximation, and we

showed that we increase the number of classes with non-zero recall as com-

pared to a standard cross-entropy based training.

In Chapter 7, we discussed several implications of the above-mentioned

studies and provided directions for possible future research. In terms of

impact, the direct implication is an increase in user satisfaction from verbal

HCI systems such as home assistant devices. Learning fair embeddings also

has a more general impact on society and the well-being of individuals. In

terms of future research, we discussed some straightforward extensions of

the current studies and also suggested learning speech embeddings in a semi-

supervised or unsupervised manner.

There have been many studies on speaker adaptation and cross-modal

training; hence, our proposals may just be small additional steps in these

areas. We believe that the main novelty of this work was learning fair speech

embeddings. Therefore, we hope that the fairness aspect of this research

effort invites other researchers to think about this social aspect of speech

processing.
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