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ABSTRACT 

 

The lack of knowledge of limiting factors and optimal management practices at the field 

level is one of the main reasons for the inefficient use of inputs and low productivity, profitability, 

and sustainability of agricultural systems. Agricultural research aims to update and improve crop 

management recommendations to match the spatiotemporal variability and the dynamism of 

production systems. The advances in remote sensing, precision agriculture, the adoption of 

information and communication technologies by farmers, and the ability to collect and process 

large amounts of data create an opportunity to reimagine agricultural research and extension. 

Advanced data analysis methods are needed to take full advantage of the new data sources and 

other technological innovations. Therefore, the objectives of this Ph.D. research were i) to develop 

an image-based high-throughput phenotyping system for evaluating soybean maturity in breeding 

programs, ii) investigate the spatial variability of optimal input rates in on-farm precision 

experimentation and the potential economic benefit of site-specific input management, iii) develop 

a data-driven decision support system for maize in Mexico 

The first chapter addresses the need for scalable and accurate methods to develop imagery-

based high-throughput phenotyping in breeding programs. Images were acquired with unmanned 

aerial vehicles twice a week, starting when the earlier lines began maturation until the latest ones 

were mature. Two complementary convolutional neural networks were developed to predict the 

maturity date. The first using a single date, and the second using the five best image dates identified 

by the first model. The proposed neural network architectures were validated using more than 

15,000 ground truth observations from five trials, including data from three growing seasons and 

two countries. The trained model showed good generalization capability with a root mean squared 

error lower than two days in four out of five trials. Four methods of estimating prediction 

uncertainty showed potential at identifying different sources of errors in the maturity date 

predictions. The architecture developed solves limitations of previous research and can be used at 

scale in commercial breeding programs. 

The second chapter demonstrates how on-farm precision experimentation can be a valuable 

tool for estimating in-field variation of optimal input rates and improving agronomic decisions. 

Within-field variability of crop yield levels has been extensively investigated, but the spatial 
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variability of crop yield responses to agronomic treatments is less understood. Mixed 

geographically weighted regression models were used to estimate local yield response functions. 

The methodology was applied to investigate the spatial variability in corn response to nitrogen and 

seed rates in four cornfields in Illinois, USA. The results showed that spatial heterogeneity of 

model parameters was significant in all four fields evaluated. On average, the root mean squared 

error of the fitted yield decreased from 1.2 Mg ha-1 in the non-spatial global model to 0.7 Mg ha-1 

in the geographically weighted regression model, and the r-squared increased from 10% to 68%. 

The average potential gain of using optimized uniform rates of seed and nitrogen was US$ 65.00 

ha-1, while the added potential gain of the site-specific application was US$ 58.00 ha-1. The 

reported results encourage more research on response-based input management recommendations 

instead of the still widespread focus on yield-based algorithms. 

The third chapter integrates domain knowledge and explainable machine learning methods 

to optimize management decisions using observational data. The data comes from the Sustainable 

Modernization of Traditional Agriculture (MasAgro) project in the southern state of Chiapas - 

Mexico. The dataset was assembled using field observations, including yield, cultivars and 

management, and environment variables from soil mapping and gridded weather datasets. Random 

forest models were trained with the dataset and explained up to 75% of the variation. However, 

the ability of the model to predict crop performance in future weather scenarios was limited. 

Overall, nitrogen was the management decision that influenced yields the most, with different 

yield responses depending on the year and variety. This research exemplifies the use of explainable 

machine learning to offer farmers the opportunity to benchmark their management decisions with 

peers in similar growing conditions and visualize what would have happened if they made different 

decisions. 
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"All models are wrong, but some are useful!" 

George Box 
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HIGH-THROUGHPUT PHENOTYPING OF SOYBEAN MATURITY USING TIME 

SERIES UAV IMAGERY AND CONVOLUTIONAL NEURAL NETWORKS 

ABSTRACT 

Soybean maturity is a trait of critical importance for the development of new soybean 

cultivars, nevertheless, its characterization based on visual ratings has many challenges. 

Unmanned aerial vehicles (UAVs) imagery-based high-throughput phenotyping methodologies 

have been proposed as an alternative to the traditional visual ratings of pod senescence. However, 

the lack of scalable and accurate methods to extract the desired information from the images 

remains a significant bottleneck in breeding programs. The objective of this study was to develop 

an image-based high-throughput phenotyping system for evaluating soybean maturity in breeding 

programs. Images were acquired twice a week, starting when the earlier lines began maturation 

until the latest ones were mature. Two complementary convolutional neural networks (CNN) were 

developed to predict the maturity date. The first using a single date, and the second using the five 

best image dates identified by the first model. The proposed CNN architecture was validated using 

more than 15,000 ground truth observations from five trials, including data from three growing 

seasons and two countries. The trained model showed good generalization capability with a root 

mean squared error lower than two days in four out of five trials. Four methods of estimating 

prediction uncertainty showed potential at identifying different sources of errors in the maturity 

date predictions. The architecture developed solves limitations of previous research and can be 

used at scale in commercial breeding programs. 

INTRODUCTION 

As the most important source of plant protein in the world, soybean (Glycine max L.) is 

widely grown and heavily traded and plays a significant role in global food security (Hartman et 

al., 2011). In this context, crop breeding aims to increase the grain yield potential and improve the 

adaptation of new cultivars to environmental changes. Improving traits of interest, such as grain 
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yield, depends on the ability to accurately assess the phenotype of a large number of experimental 

lines developed annually from breeding populations (Cobb et al., 2013; Liu et al., 2020). However, 

the labor-intensive and costly nature of classical phenotyping limits its implementation when large 

populations are used. This may result in breeders not selecting potentially valuable germplasm and 

reduced genetic gain (Moreira et al., 2019; Morales et al., 2020). 

Among the many plant phenotyping tasks, the most critical phenological traits 

characterized in breeding programs are usually emergence, flowering, and physiological maturity 

(Reynolds et al., 2020). In soybean, physiological maturity or the R8 stage is defined as the date 

when 95% of the pods have reached their mature color (Fehr et al., 1977). For soybean, maturity 

is especially important because, besides defining the crop cycle length, many management 

decisions are associated with it. The ideal cultivar for a given region is the one that can take full 

advantage of the growing season to maximize yields, but at the same time avoids delayed harvest, 

which increases risks and costs. In most cases, if all other characteristics are the same, relatively 

early-maturity cultivars are preferred. One of the reasons for this preference is for better 

management of soybean diseases, especially Asian soybean rust. The shorter growing cycle 

decreases the time for epidemic development, thus preventing yield loss by the disease (Koga et 

al., 2014). Besides the actual costs, the cycle length is also associated with opportunity costs. The 

possibility of successful development of a second cash crop or a cover crop is increased when early 

maturity cultivars are used, which can be an important step towards the sustainable intensification 

of production (Andrea et al., 2020). The accurate measurement of maturity is also important in 

breeding trials. Only the performance of experimental lines that have similar maturity dates should 

be directly compared. This information is also used to take into account the effects that earlier 

maturing lines may have on the neighboring plots (Reynolds et al., 2020). 

Soybean phenology is directly affected by the interactions of photoperiod and temperature, 

therefore, one observation of cycle length from a single year and location is insufficient to 

characterize a cultivar. This led to the development of the relative maturity concept, which is a 

rating system designed to account for all of the factors that affect the number of days from 

emergence to maturity and allow for comparisons of cultivars that were not directly compared in 

tests (Alliprandini et al., 2009; Song et al., 2019). Maturity groups are estimated by comparing 

experimental lines to well-known cultivars grown in the same conditions. The choice of these 
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references is usually guided by published lists of the most stable cultivars and, consequently, of 

the most suitable check genotypes for each maturity group (Alliprandini et al., 2009; Mourtzinis 

and Conley, 2017; Zdziarski et al., 2018). 

The technological advances in other breeding sciences such as marker-assisted selection 

and genomic selection, where phenotyping provides critical information for developing and testing 

statistical models, has increased the demand for phenotypic data resulting in phenotyping 

becoming the major bottleneck of plant breeding (Araus et al., 2018). In this context, the term 

high-throughput field phenotyping (HTFP) is used to refer to the field-based phenotyping 

platforms developed to deliver the necessary throughput for large scale experiments and to provide 

an accurate depiction of trait performance in real-world environments (Yu et al., 2016). Most 

HTFP technologies are based on remote sensing, taking advantage of light and other properties 

that can be measured without direct contact (Araus et al., 2018). Recent advances in proximal 

remote sensing, in which sensors are usually a few meters from the plants, paired with new sensors 

and computer science applications, has enabled cost-effective HTFP (Moreira et al., 2019). Among 

the many options of remote sensing platforms, unmanned aerial vehicles (UAVs) equipped with 

different sensors have received considerable attention recently. UAVs have become an important 

approach for fast and non-destructive HTFP due to their growing autonomy, reliability, decreasing 

cost, flexible and convenient operation, on-demand access to data, and high spatial resolution 

(Yang et al., 2017; Araus et al., 2018). RGB (red-green-blue) cameras are the most commonly 

used sensor due to their lower cost and much higher resolution when compared with multispectral 

cameras (Araus et al., 2018). These factors contribute to the fact that UAVs equipped with RGB 

cameras are currently the most affordable and widely adopted proximal sensing based HTFP tools 

(Reynolds et al., 2019; Borra-Serrano et al., 2020). 

The costs associated with image capture represent a limited fraction of the overall cost of 

HTFP. The massive number of images produced and the intense computational requirements to 

accurately locate images and extract data for corresponding experimental units contribute to a 

significant increase in the cost of the analysis (Tsaftaris et al., 2016; Reynolds et al., 2019). Routine 

use of phenotypic data for breeding decisions requires a rapid data turnaround, and image 

processing remains a significant bottleneck in breeding programs (Morales et al., 2020). Systems 

for data management, including user-friendly components for data modeling and integration, are 
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fundamental for the adoption of these technologies (Araus et al., 2018). The phenotyping pipeline 

also has to include metadata and integrate other sources of information following best practices 

and interoperability guidelines (Schnaufer et al., 2020). 

Recently, free and open-source alternatives such as the Open Drone Map integrated into 

cloud computing platforms have been made available, which helps to reduce the costs of mosaicing 

the images (Ampatzidis et al., 2020). This makes the construction of the orthomosaic mostly an 

automated process, which is similar to the needs of many other scientific uses. However, the 

delineation of experimental units and the extraction of plot-level features poses additional 

difficulties in processing the information from HTFP platforms (Matias et al., 2020). These 

challenges have been addressed in recent publications, with optimized methods for semi-automatic 

detection of the microplots (Khan and Miklavcic, 2019; Tresch et al., 2019) and open-source 

software packages in python (Chen and Zhang, 2020) and R (Matias et al., 2020). Another 

contribution that can improve the usefulness of the data collected is the projection of individual 

microplots generated from the orthomosaic back onto the raw aerial UAV images. This allows the 

final plot image to retain higher quality and allows the extraction of many replicates from the 

overlapping images, resulting in several plot images of different perspectives from the same 

sampling date (Tresch et al., 2019; Moreira et al., 2019). This is also an essential step towards 

direct georeferencing the geometric position of the microplot in the raw image, avoiding the 

expenses related to building the orthomosaic and allowing high accuracy with smaller overlaps so 

that the time and amount of redundant data is minimized (Zhou et al., 2019). 

Another strategy to simplify the processing is to move from the image to an aggregated 

value early in the pipeline. The use of vegetation indices and other averages of reflectance from 

all pixels in the plot is widespread. From a computer vision perspective, this is the equivalent of 

using handcrafted features to reduce the dimensionality of the data. Recently, methods that 

automate feature extraction integrated with the final classification or regression model have been 

shown to outperform classic feature extraction in many image processing tasks such as image 

classification/regression, object recognition, and image segmentation (Jiang and Li, 2020). Within 

machine learning, the term deep neural networks is used to characterize models in which many 

layers are sequentially stacked together, allowing the model to learn hierarchical features that 

encode the information in the image in lower dimensions. In this way, the features are learned 
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automatically from input data. Deep convolutional neural networks (CNNs) have become the most 

common type of deep learning model for image analysis. CNNs are especially well-suited for these 

tasks because they take advantage of the spatial structure of the pixels. The kernels are shared 

across all the image positions, which dramatically reduces the number of parameters to be learned, 

improves computational performance, reduces the risk of overfitting, and requires fewer examples 

for training. CNNs have been successfully applied in plant phenotyping for plant stress evaluation, 

plant development, and postharvest quality assessment (Jiang and Li, 2020). 

The training of most deep learning models is supervised, thus requiring a great number of 

training examples with annotated labels. The availability of annotated data is among the main 

limitations to the use of these advanced supervised algorithms in plant phenotyping problems 

(Tsaftaris et al., 2016; Araus et al., 2018). For example, the availability of several large, annotated 

image datasets for plant stress classification accelerated the evaluation of various CNNs for stress 

phenotyping (Jiang and Li, 2020). Although the number of publicly available datasets and the 

diversity of phenotyping tasks covered is growing (David et al., 2020; Dobrescu et al., 2020), there 

are still many tasks that have yet to be addressed. In general, these datasets have been used to 

compare new CNN architectures and to pretrain CNNs models to be used in transfer learning. 

However, training a robust model for field applications still requires a great effort to prepare the 

dataset. For some traits, such as grain yield, ground truth data can only be obtained in the field 

because the phenotype cannot be directly observed in the image (Maimaitijiang et al., 2020). When 

the large number of observations needed is not met, strategies such as synthetic data augmentation 

may be used to improve the robustness of models trained with fewer examples (Jiang and Li, 

2020). 

In most published research, the features chosen to build maturity prediction models are 

related to the canopy reflectance. Because pod maturity and canopy senescence are usually well 

correlated, it is possible to estimate the plant maturity level based on the spectral reflectance (Zhou 

et al., 2019). However, physiological maturity, defined by the R8 stage, is assigned by the pod 

maturity and not by the canopy senescence. Delayed leaf senescence, green stems, and the presence 

of weeds may cause significant errors in the predictions based only on canopy reflectance. This 

may explain why transformations applied to high-resolution images that extract additional color 

and texture information may improve the precision and accuracy of the predicted values (Yuan et 
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al., 2019). The robustness of the model may also be affected by variation in reflectance during the 

acquisition of the images. Factors such as the relative position between the sun and the camera, 

cloudiness, and the image stitching process that may cause artifacts such as blurred portions of the 

orthomosaic, are some examples (Zhou et al., 2019). 

Increasing the robustness of the model to the factors listed above may require the use of 

additional features and more observations during the training. The use of synthetic data 

augmentation could substantially increase the sample size and the variation within the 

observations. However, the augmented images are still highly correlated, presenting potential 

problems due to overfitting (Jiang and Li, 2020). Even though the use of specific features and 

variable selection based on expert knowledge may be preferred when the biological interpretation 

of the parameters is important (Borra-Serrano et al., 2020), the use of models with automatic 

feature extraction may increase the accuracy of the model (Jiang and Li, 2020). CNNs have 

become state of the art in many computer vision tasks, with an increasing number of applications 

in plant phenotyping tasks such as plant stress detection (Jiang and Li, 2020). Recently, CNNs 

have also been applied to monitoring the phenology in rice and wheat crops (Wang et al., 2019; 

Yang et al., 2020). However, this type of advanced model still needs to be validated for predicting 

physiological maturity in soybean breeding programs using an HTFP approach. 

Working with time-series of images poses additional challenges to the phenotyping 

pipeline, mainly because it is difficult to assure consistency of reflectance values and spatial 

alignment over time. Some researchers have focused on analyzing individual dates to overcome 

this challenge, however, these algorithms may lack generalization robustness and lose accuracy 

drastically when applied in other experiments (Yu et al., 2016). The importance of multi-temporal 

data to describe crop growth and to predict specific parameters such as maturity is well recognized 

(Borra-Serrano et al., 2020). The number of available image dates, and the intervals between dates, 

may also be different from one trial to another. This requires a great deal of flexibility in the model 

so that it can be tested in other locations. The resolution of the images, which is a function of flight 

height and sensor characteristics, can also vary and therefore pose additional challenges for the 

model generalization. 

In order to decrease the cost of dating tens of thousands of plots in the field, there is a need 

to improve the tools to predict the maturity date of soybean progenies in breeding programs. UAV-



7 
 

based imagery is the most promising candidate for this task (Yu et al., 2016; Zhou et al., 2019). 

However, there are still many challenges and bottlenecks with the tools used to extract the desired 

information from the images. These tools could be significantly enhanced by incorporating the 

latest scientific developments in other areas into an integrated, cost-efficient, robust, flexible, and 

scalable high-throughput phenotyping pipeline. Therefore, the objective of this study was to 

develop a high-throughput phenotyping system based on aerial images for evaluating soybean 

maturity in breeding trials. 

MATERIALS AND METHODS 

Experimental Setup 

Five trials were conducted in partnership with public and private breeding programs. Each 

trial was comprised of various blocks with experimental lines in different generations of the 

selection cycle (Figure 1.1). A summary of the trials is presented in Table 1.1. The ground truth 

maturity date (GTM), equivalent to the R8 phenological stage, was recorded by field visits every 

three or four days, starting at the end of the growing season when the early lines achieved maturity. 

About 5% of the plots were used as checks, and for these, the maturity group (MG) was known. 

Only the plots with GTM were used for training and evaluating the models. The total number of 

plots is included to allow realistic estimates of image acquisition and storage space requirements 

for different plot sizes and experiment scales. 

Table 1.1. Field trials from different breeding programs used for data collection. 

Trial Year Location Plot Length 
(m) 

Plot Width 
(m) #Plot* #GTM * 

T1 2018 Savoy, IL-USA 2.2 1 × 0.76 9360 9230 
T2 2019 Champaign, IL-USA 5.5 2 × 0.76 8608 1421 
T3 2019 Arcola, IL-USA 5.5 2 × 0.76 6272 1408 
T4 2019 Litchfield, IL-USA 5.5 2 × 0.76 6400 883 
T5 2019 Rolândia, PR-Brazil 5.5 2 × 0.50 7170 2680 

* #Plot: total number of plots in the trial; #GTM: number of plots with ground truth maturity date observations. 
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Figure 1.1. Example of soybean breeding field trial (T4) with the layout of plots overlaid on top of the UAV mosaic 
from images acquired 112 days after seeding. 

Image Acquisition 

Images were acquired using DJI Phantom 4 Professional UAVs (SZ DJI Technology Co., 

Ltd., Shenzhen, China), with the built-in 20 MP RGB camera (DJI FC6310) and GPS. The camera 

has a field of view (FOV) of 84o, and an image resolution of 5472 × 3648 pixels, which were stored 

as JPEG compressed files with an average size of 8 MB. All images were acquired at a flight height 

of 80 m, yielding a ground sample distance (GSD) of 25 mm/pixel. The image overlap was set to 

80% to the front and 60% to the side. The setting up of the flight plan and the acquisition of the 

images usually took less than one hour, unless there were clouds shading the trials. In such 

conditions, the flights were paused and resumed. The acquisition of the images followed a similar 

schedule of the field visits to record GTM data, with about two images per week recorded from 

the beginning of leaf senescence in the early lines until the latest lines matured (Figure 1.2). 

Therefore, the number of flight dates varied according to the range of maturity present in each 

trial. A summary of the image acquisition step is presented in Table 1.2. 
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The reduction in data size from the raw images to the image representing each plot for each 

date is about 20 times. Half of this reduction came from the areas not occupied by plots, such as 

the paths and borders. However, the most significant reduction of about ten times is from the 

elimination of overlaps. 

 
Figure 1.2. Distribution of ground truth maturity dates and image acquisition dates (blue dots) in each trial. 

Table 1.2. Image acquisition details and total storage used for each breeding trial. 
Trial Images Dates Height (px/plot) Width (px/plot) Raw Data (GB) Processed Data (GB) 

T1 100 9 32 96 7.2 0.1 
T2 250 10 64 224 20 0.53 
T3 150 9 64 224 10.8 0.32 
T4 200 6 64 224 9.6 0.22 
T5 200 12 40 224 19.2 0.3 

Image Processing 

After the acquisition, the images were processed using the commercial photogrammetry 

software (Metashape v1.6, Agisoft LLC, St. Petersburg, Russia). The images were matched with 

the high accuracy setting, followed by the construction of a dense cloud, the digital elevation map, 

and the orthomosaic. A total of 12 to 18 ground control points (GCPs) were used in each trial. The 

targets were placed in the field before the first flight and kept in place until the last flight. The 

coordinates of the markers were extracted from the first date orthomosaic and used in all 

subsequent dates. In this way, the points are not necessarily globally accurate, but they ensure the 

temporal consistency of the images. The first image was also used for manual alignment of the 

trial layout using QGIS software (QGIS Development Team, 2020). The georeferenced 

orthomosaic was exported to a three-band (RGB) GeoTIFF file and used to extract the image for 
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each plot using the python packages "geopandas" and "rasterio". Each individual orthophoto was 

also exported and used to extract replicated observations for each plot. 

Resolution 

Another important aspect of the images that may affect the model is resolution. Images 

with downsampled resolution simulating a GSD of 50, 100, and 750 mm/pixel were used to train 

and compare models. The images were resized accordingly and then compressed to JPEG. For 

training the model, after decompressing the images, they were scaled back to the original 

resolution in order to use the same model architecture (Figure 1.3). The visual difference between 

images with a GSD of 25 and 50 mm/px is very subtle. With 100 mm/px, the difference becomes 

more evident. The images at 750 mm/px lose all texture information. These were used to help 

understand the importance of color versus texture and other high-level features. 

 
Figure 1.3. Time series of plot images with resolution of 25 mm/px (top left), 50 mm/px (top right), 100 mm/px 
(bottom left), and 750 mm/px (bottom right). 

Data Augmentation 

One of the disadvantages of using low-cost RGB sensors is their sensitivity to variation in 

light conditions (Figure 1.4). This motivated the comparison of different data augmentation 

strategies to improve the model's robustness. The first type of image augmentation consisted of 

digital transformations of the images by applying variation in contrast and luminosity. On the other 

hand, the availability of many replicates from each plot may be seen as more natural data 

augmentation. The availability of many replicates can reproduce geometric errors, distortions, blur, 

and shadow effects that are hard to reproduce with synthetic data augmentation. Therefore, three 

different strategies of augmentation were compared: no augmentation, synthetic data 

augmentation, and using the image replicates. At this time, the image digital numbers stored as 
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8bit integers were converted to 32-bit floats and scaled from the original range (0–255) to have 

zero mean and unit variance. 

 
Figure 1.4. Examples of image variations caused by shadows, out of focus images and direct reflection of sunlight 
(top), and differences found among replicated images of the same plot (bottom). 

Model Development 

The model was developed with two steps: The architectures used are referred to as single-

date (SD) and multi-date (MD) models. In the first step, the model takes one image and predicts 

the maturity date. The variable ground truth difference (GTDiff), was calculated to represent the 

difference between the GTM date and the image acquisition date. A set of SD models were trained 

using 10-fold cross-validation with GTM data for each trial. The predictions in the test set 

(PREDDiff) were then used to calculate the average root mean squared error (RMSE) for each 

trial: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =   ��1
𝑛𝑛
�∑ �𝐷𝐷𝐷𝐷𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐷𝐷𝐷𝐷𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜�

2𝑛𝑛
𝑖𝑖=1        [ 1.1 ] 

 
where: DOYpred and DOYobs are the days of the year in which maturity was predicted and 

observed, respectively. This allowed the estimation of which GTDiff interval provided the best 

accuracy in the prediction. The image with the PREDDiff closer to the best GTDiff, and the two 

images acquired immediately before and after were selected for the next step. The MD model uses 

the features extracted by the SD at the layer before the predictions, instead of running the model 

again over the full images, which reduces the number of parameters to be trained. In this way, the 
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SD model, which has more parameters, can be trained with a greater number of observations and 

data variation, while the MD model only uses a small number of extracted features and few 

parameters to refine the prediction. 

Single-Date Model Architecture 

Based on the layers used and the intention behind their use, the architecture for the SD 

model can be divided into two groups. In the first group, each block contains a 2D convolution 

with 3 × 3 kernels, a max-pooling layer that halves the number of pixels in the output, a dropout 

layer, and a rectified linear activation function (RELU) activation. The convolutions are zero-

padded to keep the output sizes the same as the inputs. This block is repeated sequentially five 

times. Therefore, the output has its spatial dimensions reduced by a factor of 25 or 32 times. The 

dimensions shown in Figure 1.5 are valid for input sizes used in the largest plots. The main purpose 

of this group of operations is to extract meaningful spatial information and condense it in a lower 

resolution representation. The next block contains only convolutions with 1 × 1 kernel sizes 

followed by a dropout layer. Therefore, only the different features of the same pixel are used to 

calculate the values in the next layer. This block is repeated sequentially four times to obtain the 

output. The output is then subtracted from the image acquisition date to generate the prediction. 

This second block does not change the spatial dimension of the output, but it forces the information 

to be represented by lower-dimensional spaces since the number of channels is being reduced. The 

result from the layer immediately before the output will be used as features to the temporal model. 

The reasoning behind the choice to use 1 × 1 convolutions instead of flattening the features was to 

conserve the variability within the plot to be used in one of the estimates of model uncertainty 

later. By subtracting the image acquisition date, internally, the model is learning to estimate the 

difference between the maturity date and the date the image was taken. 

 
Figure 1.5. Schematic representation of the single date convolutional neural network architecture. The numbers 
represent the dimensions of the tensors and the names in the boxes are the operations applied. 
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Multi-Date Model Architecture 

The architecture for the MD model was developed to operate over groups of five images, 

selected from the results of the SD model. The difference between the day of the year (DOY) of 

each image and the DOY of the central image was concatenated as an additional feature for each 

image. The difference date from the center image is always zero and can be omitted. However, it 

is easier to keep it and have all tensors with the same dimensions. Therefore, six features from 

each of the five images were concatenated into the 30 features that were used as inputs in the MD 

model. In case the acquisition dates span through two different years, as happens, for instance, in 

the South Hemisphere where maturity starts in December, the DOY from the previous year can be 

negative, or on the contrary, it can be extended beyond 365 for the next year. It is also possible to 

use days after planting or emergence instead of the day of the year. Because the value is subtracted 

before entering the model and is added back at the end, it is only the intervals that matter. The 

architecture used in the MD model is straightforward and follows the same layers of the second 

block in the single date model (Figure 1.6). To keep the number of parameters to be trained to a 

minimum, the convolutions with 1 × 1 kernel sizes followed by a dropout layer were repeated 

sequentially three times. The output is then subtracted from the DOY of the central image to 

generate the final prediction. The order in which the DOY is subtracted and then added back may 

not be very intuitive. However, this is necessary to keep the same relationship when the difference 

is greater because the image was taken earlier or when the soybean line presents delayed maturity. 

 
Figure 1.6. Schematic representation of the multi-date convolutional neural network architecture. The numbers 
represent the dimensions of the tensors, and the names in the boxes are the operations applied. The DOY stands for 
the day of the year. 
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Model Parameters 

The distribution of the parameters in each step of the model is presented in Table 1.3. The 

total number of parameters for the full model was 5682, which characterizes a small and light-

weight model, with more observations available than parameters to be estimated. This number is 

the same independent of the size of the input images. The number of parameters in the SD model 

was 5131, while the number of parameters in the MD model was 551. The last number represents 

the effective samples to train the MD model, which is about 10% of the available data to train the 

SD model. 

Table 1.3. Details of model architecture and number of parameters in each layer. 
Layer Kernel Dim Tensor Shape Param # 

Conv2D-S1 [3,3,3] [-1, 3, h, w] 112 
Conv2D-S2 [4,3,3] [-1, 4, h/2, w/2] 222 
Conv2D-S3 [6,3,3] [-1, 6, h/4, w/4] 440 
Conv2D-S4 [8,3,3] [-1, 8, h/8, w/8] 730 
Conv2D-S5 [10,3,3] [-1, 10, h/16, w/16] 2912 
Conv2D-S6 [32,1,1] [-1, 32, h/32, w/32] 528 
Conv2D-S7 [16,1,1] [-1, 16, h/32, w/32] 136 
Conv2D-S8 [8,1,1] [-1, 8, h/32, w/32] 45 
Conv2D-S9 [5,1,1] [-1, 5, h/32, w/32] 6 

Total SD  [-1, 1, h/32, w/32] 5131 
Conv2D-M1 [30,1,1] [-1, 30, h/32, w/32] 465 
Conv2D-M2 [15,1,1] [-1, 15, h/32, w/32] 80 
Conv2D-M3 [5,1,1] [-1, 5, h/32, w/32] 6 

Total MD  [-1, 1, h/32, w/32] 551 
Total   5682 

Model Training 

The training and testing were performed in a computer equipped with an Intel i7 processor 

(Intel Corporation, Santa Clara, CA, USA) and an NVIDIA Quadro P4000 GPU (NVIDIA, Santa 

Clara, CA, USA) with 8GB memory using the PyTorch deep learning package v. 1.5 (Paszke et 

al., 2019). The Adam optimizer, with a learning rate of 0.001 was used. The RMSE was used as 

the loss function (Equation [1.1]). The models were trained using a 10% dropout rate. The models 

were trained to a maximum of 100 epochs, using early stopping criteria to monitor the validation 

set and stop training after the loss did not decrease for 10 consecutive epochs. The architectures 

and hyper-parameters were fine-tuned based on the amount of data available and the overall results 

in the validation sets. 
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Model Validation 

The dataset was split into three different sets used for training, validation, and testing. The 

validation set is primarily used for early stopping the model. All metrics presented are calculated 

over the test set. All comparisons were made using 10-fold cross-validation so that all data were 

evaluated in all sets. The data split was set to 80% for the training set, 10% for the validation set, 

and 10% for the test set. The split was fully randomized, which represents the most common 

method used in the literature. The models trained in one trial were also tested in all other trials. 

Testing in different trials assures more independence of the testing set and reflects a more desirable 

model. 

Model Uncertainty 

In the proposed architecture using only convolutional layers, every 32 × 32 pixels in the 

input will produce one pixel in the output. The final prediction is taken as the average of the pixels 

in the prediction. The standard deviation of the predictions is used as an estimate of model 

uncertainty due to within plot variability. As a consequence of the 10-fold cross-validation, there 

were ten resulting models for each trial. The standard deviation of these predictions was also 

evaluated as a metric of uncertainty. 

The use of replicated images was also evaluated at test time to estimate the uncertainty 

caused by variation in light intensity and the overall aspect of the images. This also reflects some 

of the uncertainty due to the geometric differences in the images, since the distortions are greater 

for plots close to the borders of the images. Finally, multiple predictions with dropout layers 

enabled at test time were also used to estimate the uncertainty of the model parameters and 

architecture. The standard deviation of the predictions with the image replicates, and dropout 

enabled was computed with 10 random initializations for each plot and method. The four estimates 

of uncertainty were compared with the average error at a trial level and also correlated to the 

absolute error of each plot. 
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RESULTS 

Single Date Model 

In four of the five trials, the lowest RMSE was observed when the images were acquired 

about one week before maturity, while for T5 the lowest error was obtained when the images were 

taken about two weeks prior to maturity (Figure 1.7). Looking at the images of T5, it was noted 

that in many plots the plants were lodged on the neighboring plots. Furthermore, it was noted that 

weed growth occurred simultaneously with the crop senescence, and most importantly, leaf 

retention after pod senescence. These factors contributed to larger errors when the used images are 

taken closer to senescence. So, even though under optimal experimental conditions, images close 

to maturity would be preferred, the confounding factors could affect the predicted values and 

increase the error. When considering all data, the errors remain relatively low for about 12 days 

before maturity; outside of this range, the errors increase substantially. Based on these 

observations, the value of the GTDiff was set to −6, meaning that from all the available image 

dates, the one that predicted maturity would occur about 6 days after the acquisition was used as 

the center image. The two images acquired immediately before and after this center image usually 

fell within this 12 day time window. The choice of five images was based mostly on the minimum 

number of images usually available for the trials. Choosing a fewer number of images may degrade 

the performance; this is because at prediction time the GTM value is unknown, and the estimates 

from individual images are used to find the center image. The use of more images confers 

robustness to the model, in case the choice of images was not optimal. 
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Figure 1.7. Prediction performance measured by the root mean squared error (RMSE) as a function of the difference 
between the image acquisition date and the ground truth maturity date. The shaded area represents the time window 
comprising the five images with the least error. 

 

Overall Performance 

The overall performance of the models trained and evaluated within the same trial indicated 

an RMSE inferior to 2 days in all trials except T5, in which the RMSE was about 3 days (Figure 

1.8). The lower performance in the last trial is attributed to the lower quality of image acquisition, 

with more shadows, and to the higher frequency of lines with leaf retention. The performance of 

models trained in other trials and seasons varied among trials. For most cases with high RMSE 

there was a bias of a few days in the distributions of predicted and observed values. This could be 

due to some offset in the relationship of leaf senescence and pod senescence caused by 

environmental factors and their interaction with the genotype. Part of this bias may also be due to 

differences in the GTM data acquisition, since the maturity date is an estimate subject to human 

error. The bias in the raw predictions was corrected using the information from the reference check 

plots, which greatly reduced the extremely high values of RMSE. 
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Figure 1.8. Prediction performance measured by the root mean squared error (RMSE) for the raw model outputs and 
after the correction using the check plots. 

When evaluating the RMSE of the adjusted maturity dates, the models showed good 

generalization (Figure 1.9). It can be noted that the number of model parameters and dropout were 

effective at avoiding overfitting, since the validation loss did not show any trend to increase within 

the number of epochs used. The RMSE values were lower when the conditions were similar, but 

the increased errors when the conditions of the trial changed. For example, all models performed 

well in trials T2, T3, and T4, which had good quality images and no confounding factors in the 

trial. However, all the models that were trained in other trials, had higher errors in T1. One reason 

for that was due to the emergence of a new generation of seedlings after the harvest of the earlier 

maturing lines. This caused some plots to be green again in the last two acquisition dates. Even 

though this effect added a low error, considering that the predictions in the single date model were 

good enough to choose the early images, under other conditions, few large errors could cause an 

overall increase in the RMSE. 
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Figure 1.9. Prediction performance measured by the root mean squared error (RMSE) as a function of the number of 
iterations (epochs) for the training and validation data sets. 

 

Resolution 

The effect of resolution was small, resulting in similar model performance in most trials 

with variations between 25 and 100 mm/px (Figure 1.10). The most significant increase in the 

RMSE was observed in T1 with the lowest resolution (750 mm/px). This shows that the features 

learned by the model in T1 depend on the texture of images and not only on the color. For the other 

trials, the small differences may be related to the number of observations used to train the model, 

which were five to 10 times fewer than what was available for T1. The trials in which the quality 

of resolution was less important also had more problems with out of focus images such as the 

examples shown earlier (Figure 1.4). It is also important to note that even with the best resolution 

(25 mm/px), the pods cannot be distinguished from the leaves, which would be necessary to 

improve the models when germplasm expressing leaf retention is present in the trials. 
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Figure 1.10. Prediction performance measured by the root mean squared error (RMSE) as related to simulated image 
resolutions. 

 

Data Augmentation 

The two strategies of data augmentation used to train the models did not improve the 

results, compared to no data augmentation (Figure 1.11). Overall, the use of synthetic 

augmentation decreased model performance when it was evaluated at the same trial, and even 

more, when it was evaluated in the other trials. The use of the image replicates had mixed results, 

with increased generalization when the model was tested in other trials in a few cases, but with 

decreased performance being still more frequent. These results give further evidence to what was 

observed from the image resolution analysis. Since the model relies mostly on the average color 

of each image, applying augmentation techniques that change the color of the images (brightness, 

contrast), leads to a decrease in the model accuracy. In contrast, the augmentation technique has 

had more success in other computer vision problems, where more complex features related to 

image texture and shape of objects are more important than color. 
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Figure 1.11. Prediction performance measured by the root mean squared error (RMSE) as related to different data 
augmentation strategies. 

Uncertainty 

The standard deviation of the within-plot predictions (spatial) was more related to the data 

used for training than the trial in which the predictions were made (Figure 1.12). The values were 

lower than 1 day for models trained in trials with bigger plots and higher than 1 day for the models 

trained in T1 and T5. The standard deviation of using models trained with different subsets of the 

data (folds) showed a clear difference towards lower RMSE when the model included data from 

the same trial and when it did not. There was also a distinction between two groups of trials, as 

models trained in T2, T3, or T4 had lower variation when tested within this group but higher values 

when tested in T1 or T5, and vice-versa. The standard deviation of using image replicates was 

lower than 1 day for all trials except in T2, for which its values were higher than the uncertainty 

estimated by other methods. The standard deviation of predictions with dropout layers enabled 

was usually higher than the other methods, but similar for all trials and models. 
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Figure 1.12. Standard deviation of maturity predictions using different methods to estimate uncertainty. 

The correlations between the standard deviation of predictions and the absolute error varied 

from −0.1 to 0.3 depending on the trial and the model (Figure 1.13). In most scenarios the 

correlation was positive, although some negative values were observed, mostly when using 

dropout. The overall correlation was higher in T1 and lower in T2, independently of the method. 

Using dropout presented mixed results, with the best correlation when the model trained in T2 was 

used in T3. Using the replicates produced the best results in T1 and T5. 
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Figure 1.13. Correlation between the standard deviation and the absolute error of maturity predictions using different 
methods to estimate uncertainty. 

DISCUSSION 

The maturity prediction was framed as a regression model, aiming to predict the maturity 

date as a continuous variable, instead of classifying each plant row as mature or immature for a 

given date (Yu et al., 2016). This eliminates the need for post-processing steps before getting the 

final result. It also makes it easy to include local information from the check plots in a simple 

linear regression to account for the environmental factors and assign the maturity group. Reporting 

the results in terms of the RMSE enables a better evaluation of the model than using classification 

accuracy, as images taken far from the maturity date are easier to classify but do not contribute to 

improved model performance. 

The overall performance of the model was superior to what has been reported in previous 

studies. One study, using partial least square regression (PLSR) and three vegetation indices to 

predict maturity in a diverse set of soybean genotypes, achieved an RMSE of 5.19 days 

(Christenson et al., 2016). Another recent study, also using PLSR models and 130 handcrafted 

features from five-band multispectral images, achieved an RMSE of 1.4 days (Zhou et al., 2019). 
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However, this study used 326 GTM observations with a range of maturity dates of only 10 days, 

which makes low RMSE easier to achieve. The relatively low importance of image resolution, 

which is an indicator of the importance of using CNN as feature extractors, shows that this was 

not the main reason to explain the good performance of the model. 

The CNN model can learn how to extract the best combination of features. This flexibility 

would allow using the model for the extraction of many traits of interest at the same time. For 

example, the same model could be trained to predict maturity date, senescence rate, lodging and 

pubescence color. The importance of image resolution and the automated feature extraction with 

CNNs was demonstrated in a similar study in rice (Yang et al., 2020). In that study, the accuracy 

of the phenological stages estimation was higher with image resolutions of 20–40 mm/px and 

decreased sharply when they were reduced to 80–160 mm/px. The maturity in rice is observed in 

the panicles, which are at the top of the canopy, more visible in the images than the soybean pods, 

which are in the middle of the canopy. Therefore, it is likely that the best resolution tested in this 

work (25 mm/px) is still too coarse to allow the model to learn any feature specific to the pods, 

which is an explanation for why there was little impact of reductions in resolution. A future 

research direction could be to evaluate the importance of much higher resolutions, which could be 

obtained with lower flying altitudes or using autonomous ground vehicles (Young et al., 2019). 

Contrary to the expected, using replicated observations from different images of the same 

plot did not increase the model performance. More surprising, applying synthetic data 

augmentation markedly decreased the model performance in most cases. This result is mostly 

attributed to the relative importance of color, rather than more complex plant features. Another 

reason for the low performance when using augmentation may be the simultaneous use of dropout. 

Some works have shown that for most models there is an equivalence between dropout and data 

augmentation (Zhao et al., 2019), both introducing some randomness to reduce the risk of 

overfitting. Since dropout was used in all models, it is possible that the combination of dropout 

and data augmentation created excessive randomness, reducing the effectiveness of the model 

training. Considering that dropout is easier to implement and does not require assumptions about 

what types of augmentation are meaningful, this would be preferred instead of data augmentation. 

However, a more thorough evaluation of hyper-parameters could be done in future research to 

confirm these findings. 
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Developing a model with low prediction error using RGB images makes it more likely to 

be used due to the low cost. Besides, an RMSE of about 1.5 to 2.0 days is usually considered the 

acceptable limit in breeding programs (Zhou et al., 2019). Considering that errors above this limit 

were observed in T5, the use of multispectral images could provide better results when leaf 

retention is a significant concern. The challenge to correctly predict maturity in plots where plants 

with mature pods still retain green leaves has been previously reported (Yu et al., 2016). This type 

of error is more important than a random error because some lines consistently would have higher 

errors than others, possibly affecting the selection decisions. Future works to predict physiological 

maturity should consider foliar retention as a trait to be analyzed. Another consideration is what 

stage maturities should be predicted or visually rated in breeding programs. Breeders will develop 

and test tens of thousands of experimental lines annually and evaluate them in small plots. It is 

very labor-intensive to evaluate all of these lines visually for maturity, and it is not critically 

important to obtain accurate maturity estimates at this stage as the estimates are used to place lines 

in tests with similar maturities. Predicting maturities with a UAV would most benefit breeding 

programs at this stage. At later stages of breeding programs, more accurate estimates are needed 

so that the maturity groups of cultivars can be determined. 

One particularity of the proposed architecture is the use of only convolutional layers instead 

of using fully connected layers for the final prediction. Although this is common in semantic 

segmentation tasks, it is less used for regression tasks. The goal of applying this strategy in this 

context was also different. Rather than improving performance, the main purpose was to add 

flexibility and to estimate prediction uncertainty due to within plot variability. This was 

demonstrated in Figure 1.13, and was helpful to identify the sources of prediction errors in some 

plots (Figure 1.14). In a similar way, the use of image replicates also identified an overall higher 

uncertainty in T2 and was positively correlated with errors of individual plots in T1. Therefore, 

the different methods of uncertainty estimation can be used for two different purposes. The first is 

to evaluate the overall quality of the images and procedures used at the trial level, which can 

identify problems with image stitching or radiometric calibration. The second use is to select 

individual plots in which the error is likely to be higher, which should be targeted for new data 

acquisition in order to improve the model. 
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Figure 1.14. Examples of replicated images from trial T5 illustrating leaf retention, weeds, and influence from 
neighboring plots. 

Another source of uncertainty comes from the imprecision of GTM ratings, and is related 

to the observation frequency, the experience level of the people collecting the data, and the number 

of people taking notes for the same field. In order to estimate this source of uncertainty it would 

be necessary to conduct independent maturity assessments by different people in the same plots 

with a higher frequency of field visits, ideally daily. This is beyond the scope of this work and is 

left as a suggestion for future research. 

Most of the processing time is spent preparing the images for each plot and training the 

models, but making the predictions is actually very fast. With more than one thousand predictions 

per second, in the hardware used, using the GPU, this shows the potential scalability of the method 

once other bottlenecks in image processing are solved. Fast predictions are also important to enable 

the test time augmentation and evaluate the model uncertainty. The ability to understand when the 

predictions fail is one of the foundations for model improvement. This also opens the possibility 

of using model ensembles to improve predictions and to better identify the uncertainty 

(Lakshminarayanan et al., 2017). 

CONCLUSIONS 

The strategy of choosing a subset of images that contribute the most to model accuracy 

proved to be successful in conferring flexibility to the model. Models trained in other trials and 

years, with different plot sizes and image acquisition intervals, were able to predict soybean 

maturity date with an RMSE lower than 2.0 days in four out of five trials. Compared to previous 
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studies, additional challenges were addressed, focusing on the scalability of the proposed solutions. 

This was possible after using more than 15,000 ground truth maturity date observations from five 

trials, including data from three growing seasons and two countries. Data augmentation did not 

improve model performance and was harmful in many cases. Changing the resolution of images 

did not affect model performance. Model performance decreased when tested in trials with 

conditions unseen during training. Using ground truth information from check plots helped to 

correct for environmental bias. Four methods of estimating prediction uncertainty showed 

potential at identifying different sources of errors in the maturity date predictions. The main 

challenge remaining to improve model accuracy is the low correlation between leaf senescence 

and pod senescence for some genotypes. 
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     SPATIAL VARIABILITY OF CROP RESPONSES TO AGRONOMIC INPUTS IN 

ON-FARM PRECISION EXPERIMENTATION 

ABSTRACT 

Within-field variability of crop yield levels has been extensively investigated, but the 

spatial variability of crop yield responses to agronomic treatments is less understood. On-farm 

precision experimentation (OFPE) can be a valuable tool for the estimation of in-field variation of 

optimal input rates and thus improve agronomic decisions. Therefore, the objectives of this study 

were to investigate the spatial variability of optimal input rates in OFPE and the potential economic 

benefit of site-specific input management. Mixed geographically weighted regression (GWR) 

models were used to estimate local yield response functions. The methodology was applied to 

investigate the spatial variability in corn response to nitrogen and seed rates in four cornfields in 

Illinois, USA. The results showed that spatial heterogeneity of model parameters was significant 

in all four fields evaluated. On average, the RMSE of the fitted yield decreased from 1.2 Mg ha-1 

in the non-spatial global model to 0.7 Mg ha-1 in the GWR model, and the r-squared increased 

from 10% to 68%. The average potential gain of using optimized uniform rates of seed and 

nitrogen was US$ 65.00 ha-1, while the added potential gain of the site-specific application was 

US$ 58.00 ha-1. The combination of OFPE and GWR proved to be an effective tool for testing 

precision agriculture's central hypothesis of whether optimal input application rates display 

adequate spatial variability to justify the costs of the variable rate technology itself. The reported 

results encourage more research on response-based input management recommendations instead 

of the still widespread focus on yield-based algorithms. 

INTRODUCTION 

Site-specific technologies, including yield monitoring, remote sensing imaging, and 

variable rate input application, have become increasingly available to farmers in recent decades. 

Additionally, many farmers have access to software tools to process this information and use it to 
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guide site-specific management decisions. This decision-making process is based primarily on the 

knowledge about yield response to crop input management in agronomic trials, which involve 

changing management practices and subsequent monitoring of the effects on the system output 

(Pringle et al. 2004).  

The potential for economic gains from the implementation of site-specific crop 

management technologies depends on the assumption that yield response to an agronomic input 

can be described as a function of managed input strategies, field characteristics, and weather. 

Because field characteristics are spatially dependent, how yields respond to managed inputs 

changes over space the shape of the traditional "yield curve" plot with input application rate on the 

horizontal axis and yield on the vertical axis will vary among sites within a field) (Bullock and 

Bullock, 1994). However, most variable rate recommendations are calculated using the same 

methods, and calibrations developed for uniform field management. These are based on agronomic 

trials that are usually planned to be representative of the conditions in the geographical region of 

interest to the researchers aiming to infer the management insights coming from small-scale plots 

to larger regions. To make the recommendations more accessible to users, these models are usually 

very simplified versions of the true yield response function (Morris et al., 2018). In the case of 

nitrogen fertilizer, this simplification has led to the widespread use of yield levels as a proxy for 

estimating the optimal input application rates, even though academic research provides only weak 

evidence of any correlation between yield levels and economically optimal input application rates 

(Scharf et al., 2006; Bachmaier and Gandorfer, 2009; Rodriguez et al., 2019). 

To improve site-specific management requires information about how crop yield responds 

to varying treatments and how those responses vary over space (Bullock and Bullock, 1994). 

Variable-rate technology can be used to systematically control input levels in highly mechanized, 

large-scale production systems (Piepho et al., 2011). In addition, these operations make possible 

the running of large-scale, on-farm precision experiments (OFPE), that generate large amounts of 

site-specific response data, which can be used to understand the spatial variation of optimal input 

application rates (Bullock et al., 2019).  Moreover, because OFPE data are gathered in the same 

fields for which management recommendations are desired, field and site-specific yield response 

functions can be estimated. Thus, the ultimate purpose of OFPE is to develop site-specific input 

applications (Piepho et al., 2011). OFPEs also allow testing the fundamental hypothesis of 



34 
 

precision agriculture, which is that the rate at which inputs are applied can be profitably varied 

within fields to match site-specific requirements (Lark and Wheeler, 2003; Bachmaier and 

Gandorfer, 2009). Of course, estimating site-specific yield response requires spatial data analysis 

(Hurley et al., 2005; Bullock et al., 2007). 

Most of the examples of OFPE consider only the effect of a single factor on crop yield 

(Kindred et al. 2017; Piepho et al. 2011; Pringle et al. 2004). The statistical analysis of this type 

of trial often involves using geostatistical interpolation methods to estimate the effects of all tested 

treatment levels in all points of a regular grid. With that, yield estimates for each treatment level 

are obtained not only for the treatment tested on that point but for all other treatments as well. Then 

local response function parameters need to be estimated using the interpolated values for each 

point in the interpolated grid. The confidence of each estimate will depend on the distance of 

neighboring experimental units with the same treatment level, and for that, systematic designs are 

preferable over randomized designs (Pringle et al. 2004).  

The main limitation of these geostatistical methods is that they rely on interpolating yield 

maps using only one level of the treatment. If the treatment has five levels, for example, only 20% 

of the data is used at every interpolation. In a factorial design with four levels of the first treatment 

and five levels of the second, totaling twenty combinations, only 5% of the observations would be 

used in each one of the twenty interpolations. Due to the suboptimal use of the neighboring plots 

in the estimation of the yield response function parameters, the geostatistical interpolation is not 

well suited for the analysis of continuous variables and factorial designs with many levels (Pringle 

et al. 2004). 

Most spatial inference methods, including most generalized least square and spatial 

econometrics methods, were developed to focus on the implications of spatial dependence 

(Anselin, 2010). However, spatial heterogeneity has been overlooked, even though it is crucially 

important to model spatial data appropriately (Geniaux and Martinetti, 2018; Murakami and 

Griffith, 2019). 

To model the spatial heterogeneity as local yield responses, it is necessary to have some 

local variable as an input, either as part of the design or some covariable that was measured in the 

field (Bachmaier and Gandorfer, 2009; Thöle et al., 2013). Besides the need for additional data, 

the main limitation of this approach is that the results will be dependent on the correlation between 
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the covariables and the yield response. The hypotheses that can be tested with such a model are 

restricted to whether the yield response function has any interaction with the spatial covariables, 

but it is not possible to test whether there is significant spatial variability in the parameters of the 

yield response function itself. Since there will always remain variables that can not be observed, 

drawing conclusions based only on the known variables may lead to wrong generalizations. 

In recent years, spatially varying coefficient (SVC) models have attracted considerable 

attention in various fields of applied sciences. However, their use in agronomic research is still 

limited (Cai et al. 2014; Murakami et al. 2018; Trevisan, et al. 2019a). These methods have been 

proposed to investigate the spatial variability or no stationarity of coefficient estimates in 

regression models. In other words, SVC methods are equivalent to the direct estimation of the site-

specific yield production function parameters. The estimates, along with associated inference 

diagnostics, can be mapped to the original measurement locations or a new set of locations. Among 

the SVC models, the geographically weighted regression (GWR) has been one of the methods 

commonly applied. In the GWR, the parameters of the models vary in space and can be mapped 

and interpreted as a spatial variable (Brunsdon et al., 1996; Fotheringham, 1997).  

The GWR method allows the specification of more complex and less restrictive models, in 

which all parameters are estimated for each location. The neighboring points are included in the 

estimation even if they are from different treatment levels by applying weighted least squares 

estimation to neighboring subsamples. Weights are estimated via a distance-decay kernel, similar 

to the weights given by the semivariogram to neighbors in kriging interpolation. 

Therefore, this study proposes to integrate the recent advances in precision agriculture and 

methods of spatial analysis to develop a new methodology for understanding the spatial variability 

of crop responses, and thereby test the viability and profitability of precision agriculture. The 

novelty of the proposed methodology is the use of GWR as a data analysis technique applied to 

OFPE, without the need for spatial covariates. The hypothesis being tested is that the yield 

response function with spatially varying coefficients is adequate relative to the alternative of using 

a yield response function with only global parameters. The specific objectives of this study were 

to investigate the spatial variability of optimal input application rates, and the potential economic 

benefit of joint use of OFPE and site-specific management. 
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MATERIALS AND METHODS 

OFPE design 

The fields used to generate the datasets for this study come from Data-Intensive Farm-

Management (DIFM) project on-farm field trials. DIFM is a multi-university project supported by 

the United States Department of Agriculture - National Institute of Food and Agriculture (USDA 

– NIFA) to use precision agriculture technology to generate original, high-quality, full-field, on-

farm trial data at low cost (Bullock et al. 2019). Four Illinois fields representing typical U.S. Corn 

Belt maize production systems were used for the trials (Table 2.1), with Fields 1 and 2 hosting 

trials in 2017, and Fields 3 and 4 in 2018. 

Table 2.1. Description of the four cornfields used for the on-farm precision experimentation. 

Field* Year Location Area (ha) Elev. (m) Exp. Units Dim. (m) Obs. Units 

Field 1 2017 Effingham – IL 17 180 322 88 X 6 2898 

Field 2 2017 Moultrie – IL 32 210 208 85 X 18 3276 

Field 3 2018 Effingham – IL 12 175 234 82 X 6 3137 

Field 4 2018 Effingham – IL 20 192 128 86 X 18 2816 

*Elev: elevation; Exp. Units: number of experimental units in the trial design; Dim: plot dimensions; Obs. Units: 
number of observations in the final dataset after aggregation of raw observations into regular polygons. 

The OFPEs were designed to generate data for localized estimation of crop response to 

guide site-specific crop management (Piepho et al., 2011). Each experiment had two managed 

input factors, seeding rate (S) and nitrogen fertilizer application rate (N), with at least four levels 

of each factor. The allocation of the rates in the experimental units followed a completely 

randomized factorial design replicated over the entire field. 

All treatment levels were implemented in the field using variable rate planters and fertilizer 

applicators. Each experimental unit (“plot”) was given a dimension to fit the swath width of the 

machinery available (Table 2.1). The ranges of variation for the tested rates were chosen according 

to the producer’s experience and expectations for the field, typically allowing a 20% variation in 

each direction around the status quo rate (Table 2.2). Other farming practices were kept constant 

throughout the field and were conducted by the farmers by standard protocols for the region. 
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Table 2.2. Treatment rates and yield of the four Illinois cornfields used in the OFPE trials. 

Field* 
Seed Rate Base N Total N  Yield 

(kseed ha-1) (levels) (kg ha-1) (kg ha-1) (levels)  (count) (Mg ha-1) 

Field 1 66 – 96 4 30 164 – 232 7  9562 11.2 (1.7) 

Field 2 76 – 96 4 62 190 - 257 4  13311 11.9 (0.4) 

Field 3 67 – 89 5 52 208 - 275 6  7109 9.8 (1.8) 

Field 4 67 – 91 4 179 179 - 246 4  11612 13.5 (1.3) 

*Base N: nitrogen rate applied at a uniform rate, at or before planting.  Total N: total nitrogen rate consisting of the 
base N added to the experimental rates applied at side-dressing. Yield: grain yield estimated by the yield monitor 
system; the count represents the number of raw sensor observations, followed by the average yield and the standard 
deviation within parenthesis. 

Data analysis 

Treatment applications were monitored using the feedback sensors in the variable rate 

applicators, generating the as-applied data. The as-applied data was filtered to remove extreme 

values, defined as values distant from the average more than three times the interquartile range. 

Yield data were collected during harvest using combine yield monitoring systems. Yield data were 

filtered to remove global and spatial outliers, taking into account the boundary of the plots 

(Trevisan et al. 2019b). The data from the headlands and borders of the field were also discarded. 

Each plot was subdivided into ten to twenty smaller regular polygons, depending on the 

plot’s original length (Figure 2.1). The area of observational units was constant within each field 

and ranged from 37 m2 to 87 m2 among fields because of differing machinery dimensions.  The 

average value of all points within a polygon was used as the observational unit in the final dataset, 

which in each field consisted of approximately 3000 observations (Table 2.1). 

All steps and models were individually applied to each field. Letting I represent the exact 

number of observations in a field, with observations are indexed by i = 1, …, I. Let the (longitude, 

latitude) geographic coordinates of the centroid of an observational unit (a “point”) be denoted (li, 

ti). Based on weighted least squares, the GWR method modifies the estimates of the regression 

coefficients as a function of the geographic position (li, ti). In matrix notation, the regression 

coefficients were estimated by Equation [2.1]: 

b(li, ti ) =  (XʹG(li, ti)X)−1 XʹG(li, ti)Y,       [2.1] 



38 
 

where Y is the (I × 1) vector whose components are the 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑑𝑑𝑖𝑖, and Xi is the (I × 1) vector 

of the values of the  J explanatory variable at the location (li, ti).  X is the (I × 𝐽𝐽) matrix in which 

Xi is the ith column, for i = 1, …, I. In this notation, the GWR model incorporates local variation 

in the estimated coefficients b(li, ti) using a geographic weighting matrix G(li, ti). This diagonal 

matrix incorporates the distance dij between predictors Xi at (li, ti) and dependent observations Yj 

at the location (lj, tj). As dij increases, the explanatory variables are expected to decrease in 

influence over the response variable (Plant, 2012). 

 
Figure 2.1. Examples of spatial data collected in one of the OFPE trials and the units used to aggregate the information. 

One particular case of GWR is the moving window regression, which applies ordinary least 

squares estimation to neighboring subsamples by specifying a kernel weighting scheme in which 

all weights are equal to one within the kernel and zero otherwise (Lloyd, 2009). Using distance-

decay weighting provides added flexibility to local regression modeling, allowing more data to 

have local influence, and tends to yield more smoothly varying coefficient surfaces. This decay is 

captured by elements gij of a matrix G, for example, as would be defined by the Gaussian spatial 

kernel function gij in Equation [2.2]: 

𝑔𝑔𝑖𝑖𝑖𝑖(𝑌𝑌𝑖𝑖 , 𝑡𝑡𝑖𝑖 ) =  𝑌𝑌𝑒𝑒𝑒𝑒 �−0.5 �𝑝𝑝𝑖𝑖𝑖𝑖
ℎ
�
2
�       [2.2] 

Function gij calculates the weights given to the regression points at each location, with a 

bandwidth h adjusted by cross-validation and selected based on the corrected Akaike information 

criterion (AICc) (Lu et al., 2018).  In addition to the Gaussian, the exponential and the bi-square 
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spatial kernels were also compared. The spatial kernel can use a fixed distance for the bandwidth 

h, or it can be adapted at each location to include a minimum number of neighbors. Although the 

observations in the final dataset were regularly spaced in the field, an adaptive distance bandwidth 

was chosen to improve the results at the borders of the experiment, where a fixed kernel would 

include fewer observations. An example of the weights at one location is presented in Figure 2.2. 

 
Figure 2.2. Illustration of the weights given to neighbor points for the parameter estimates at the center of the field 
using a Gaussian kernel. NR stands for nitrogen rate and represents the input variation according to the trial design. 

Literature often suggests that non-linear functions such as the quadratic-plateau function, 

are more suited to describe yield response in corn than are their linear-in-variables counterparts 

(Scharf et al., 2005; Pahlmann et al., 2016). Although nonlinear-in-variables models may be 

necessary for describing the response to a wide range of rates, a linear-in-variables function can 

be an adequate approximation over a sufficiently small subset of the function’s domain. Since, as 

was the case in the experiments reported here, the ranges of rates tested in whole field OFPEs are 

restricted to reduce potential profit losses caused by experimental rates being far different from 

economically suboptimal rates, linear-in-variables models may be deemed best after the trade-off 

between goodness-of-fit and research expenses is considered. The polynomial function in Equation 

[2.3] presents the full model considered to describe yield response for each field: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0(𝑖𝑖) + 𝛽𝛽1(𝑖𝑖). 𝑅𝑅𝑖𝑖 + 𝛽𝛽2(𝑖𝑖).𝑁𝑁𝑖𝑖 + 𝛽𝛽3(𝑖𝑖). 𝑅𝑅𝑖𝑖 .𝑁𝑁𝑖𝑖 + 𝛽𝛽4(𝑖𝑖). 𝑅𝑅𝑖𝑖2 + 𝛽𝛽5(𝑖𝑖).𝑁𝑁𝑖𝑖2             +

 𝛽𝛽6(𝑖𝑖). 𝑅𝑅𝑖𝑖2.𝑁𝑁𝑖𝑖 + 𝛽𝛽7(𝑖𝑖). 𝑅𝑅𝑖𝑖 .𝑁𝑁𝑖𝑖2 + 𝛽𝛽8(𝑖𝑖). 𝑅𝑅𝑖𝑖2.𝑁𝑁𝑖𝑖2 + 𝜀𝜀𝑖𝑖 .                                       [2.3] 
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In Equation [2.3], Yi is the observed yield, Si is the seed rate, and Ni is the nitrogen fertilizer 

application rate at a location i ∈ {1, …, I}. The βs in Equation [2.3] can assume values according 

to one of the three scenarios: 

 a) βk(i) = 0 for all i, which is equivalent to dropping term k from the model (where term 1 is 

Si, term 2 is Ni, etc.);  

b) βk(1) = … =  βk(1) ≠ 0, which makes term k a global variable, also denoted as βk g;  

c) βk(m) ≠  βk(n) for some m, n ∈ {1, …, I}, which makes term k a local variable, also denoted 

as βk l.  

The standard GWR considers that all model parameters vary spatially, meaning that case 

“c” is assumed for every k. But in the research reported here, a mixed GWR model was applied, 

meaning that case “b” could hold for some k and case “c” for others—that is, that some terms could 

be local and others global. By limiting the number of coefficients that can vary over space, the 

mixed GWR approach can sidestep multicollinearity problems, which can lead to artificial spatial 

patterns of the coefficients (Geniaux and Martinetti, 2018). This could be a problem, for example, 

when including coefficients of both the linear and the quadratic terms, for example, β1(i) and β4(i) 

in Equation [2.3], as spatially varying.  It has also been demonstrated that setting some parameters 

of a yield response function to a common value for all subareas within a field and year can improve 

both the goodness of fit and interpretability of a model (Bachmaier and Gandorfer, 2012; Pahlmann 

et al., 2016). Based on these recommendations and to reduce the number of scenarios tested, model 

selection was performed setting all interaction and higher-order terms (i.e., terms 3, …, 8) as global 

variables. 

The mixed GWR was also used to test whether a local parameter was needed for the 

intercept, Si, and Ni terms in Equation [2.3]. Model selection was based on the AICc criterion (Lu 

et al., 2018). The change in the root mean squared error (RMSE) when a term was added as a local 

or a global variable was used to represent a term’s importance. The significance of the coefficient 

at each location was also tested using the p-values from pseudo-t-tests, with the alpha adjusted by 

the Fotheringham-Byrne method (Lu et al., 2014). 
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The “MGWRSAR” R package (Geniaux and Martinetti, 2018) was used for model 

calibration and the term inclusion. The “GWmodel” R package (Gollini et al., 2015) was used to 

provide additional diagnostics and to test parameter significance at every location. Both packages 

were used because MGWRSAR computed the results much faster, which was especially important 

for testing multiple values of kernel type, bandwidth, and parameters in the model, while 

GWmodel provided more detailed output. 

Comparison of optimal rate scenarios 

Table 2.3 summarizes the equations used to compare optimal rates under the various 

scenarios.  The assumptions described above about coefficients implied location-specific yield 

response functions fi(N, S), where units for yield, N, and S were (𝑅𝑅𝑔𝑔 ℎ𝑎𝑎−1), (𝑘𝑘𝑔𝑔 ℎ𝑎𝑎−1), and 

(𝑘𝑘𝑘𝑘𝑌𝑌𝑌𝑌𝑑𝑑 ℎ𝑎𝑎−1), where kseed denotes thousands of seeds. The status quo seed rate Ssq and nitrogen 

fertilizer application rate Nsq were those that the producers said they would have applied had they 

not taken part in the on-farm precision experiments. 

The following prices were used to calculate the economically optimal rates: corn price of 

p = US$ 160.00 Mg-1 (US$ 4.00 bu-1), corn seed price of wS = US$ 3.50 kseed-1, and nitrogen price 

of wN = US$ 0.88 kg-1 (US$ 0.40 lb-1). These values imply approximate price ratios wS/p = 0.022 

Mg kseed-1 (0.88 bu kseed-1), and wN/p = 0.0055 Mg kg-1 (0.10 bu lb-1). The quantitative results 

reported below were calculated by replacing the expected yield response function fi(N, S) in Table 

3 with the predicted expected yield response function in Eq. 3, and solving the maximization 

problems using standard first-order conditions from multivariate calculus, obtaining the values of 

the arguments S and N that maximize (argmax) the expected net revenue function (Bullock and 

Bullock 1994). In these scenarios, it is assumed that all equipment needed is already available at 

no extra cost. For simplicity, costs associated with information management and data processing 

are also not considered in the economic analysis. The calculations were conducted with base 

functions in the R software package (R Core Team, 2020). 
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Table 2.3. Summary of the equations used in the comparison of optimal rates scenarios. 
Equation Description 

𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑁𝑁, 𝑅𝑅) the expected yield response function 
𝑦𝑦𝑖𝑖
𝑜𝑜𝑠𝑠 = 𝑓𝑓𝑖𝑖(𝑁𝑁𝑜𝑜𝑠𝑠, 𝑅𝑅𝑜𝑜𝑠𝑠) status quo expected yield also referred to as reference yield 

𝑟𝑟𝑖𝑖
𝑜𝑜𝑠𝑠 = 𝑒𝑒𝑦𝑦𝑖𝑖

𝑜𝑜𝑠𝑠 − 𝑤𝑤𝑁𝑁𝑁𝑁𝑜𝑜𝑠𝑠 − 𝑤𝑤𝑆𝑆𝑅𝑅𝑜𝑜𝑠𝑠 status quo expected net revenue 
𝑟𝑟𝑖𝑖(𝑁𝑁, 𝑅𝑅) =  (𝑒𝑒𝑓𝑓𝑖𝑖(𝑁𝑁, 𝑅𝑅) − 𝑤𝑤𝑁𝑁𝑁𝑁 − 𝑤𝑤𝑆𝑆𝑅𝑅) the expected net revenue function 

∆𝑟𝑟𝑖𝑖(𝑁𝑁, 𝑅𝑅) = 𝑟𝑟𝑖𝑖(𝑁𝑁, 𝑅𝑅) −  𝑟𝑟𝑖𝑖
𝑜𝑜𝑠𝑠 expected net revenue loss (gain if < 0) function 

(𝑁𝑁𝑢𝑢, 𝑅𝑅𝑢𝑢) = argmax
(𝑁𝑁,𝑆𝑆)

�� 𝑟𝑟𝑖𝑖(𝑁𝑁, 𝑅𝑅)
𝐼𝐼

𝑖𝑖=1
� optimal nitrogen fertilizer and seeding plan under uniform 

management 
𝑦𝑦𝑖𝑖𝑢𝑢 = 𝑓𝑓𝑖𝑖(𝑁𝑁𝑢𝑢, 𝑅𝑅𝑢𝑢) expected yield under optimal uniform management 

𝑟𝑟𝑖𝑖𝑢𝑢∗ = 𝑒𝑒𝑦𝑦𝑖𝑖𝑢𝑢 − 𝑤𝑤𝑁𝑁𝑁𝑁𝑢𝑢 − 𝑤𝑤𝑆𝑆𝑅𝑅𝑢𝑢 expected net revenue under optimal uniform management 
(𝑁𝑁𝑖𝑖∗, 𝑅𝑅𝑖𝑖∗) = argmax

(𝑁𝑁,𝑆𝑆)
{[𝑟𝑟𝑖𝑖(𝑁𝑁, 𝑅𝑅)]} the optimal site-specific management plan 

𝑦𝑦𝑖𝑖∗ = 𝑓𝑓𝑖𝑖(𝑁𝑁𝑖𝑖∗, 𝑅𝑅𝑖𝑖∗) expected yield under optimal site-specific management 
𝑟𝑟𝑖𝑖𝑜𝑜𝑜𝑜∗ = 𝑒𝑒𝑦𝑦𝑖𝑖∗ − 𝑤𝑤𝑁𝑁𝑁𝑁𝑖𝑖∗ − 𝑤𝑤𝑆𝑆𝑅𝑅𝑖𝑖∗ expected net revenue under optimal site-specific management 

∆𝑟𝑟𝑖𝑖𝑢𝑢+ = 𝑟𝑟𝑖𝑖𝑢𝑢∗ − 𝑟𝑟𝑖𝑖
𝑜𝑜𝑠𝑠 expected net revenue increase due to optimal uniform management 

∆𝑟𝑟𝑖𝑖𝑜𝑜𝑜𝑜+ = 𝑟𝑟𝑖𝑖𝑜𝑜𝑜𝑜 − 𝑟𝑟𝑖𝑖
𝑜𝑜𝑠𝑠 expected net revenue increase due to optimal site-specific 

management 

RESULTS AND DISCUSSION 

OFPE implementation 

Variable-rate applicators generally apply inputs with some degree of error, rarely exactly 

matching the target rate.  Nevertheless, monitors can record very accurately the “as-applied” and 

“as-planted” rates, which are the actual rates at which the inputs “went into the ground”. Therefore, 

the as-planted and as-applied maps presented highly accurate implementations of the trial designs 

(Figure 2.3a,b). Historically, the main reason for using the targeted rates or grouping the as-applied 

rates into a few levels was to analyze variance using treatments as categorical variables. Since the 

proposed methodology treats treatments as continuous variables in all steps, such categorization 

was not necessary. 

The yield maps of the four fields reveal that most yield variation could be attributed to 

factors other than the treatment rates since there are no obvious patterns of treatment-yield relations 

(Figure 2.3c). Field 1 presents a wide range of yield values, but not a clear spatial structure of the 

variability. Yields in Field 2 were the most spatially homogeneous among the four, with a yield 

range of only 2.0 Mg ha-1. Spatial variability is more evident in Fields 3 and 4, with Field 3 on 

average producing the lowest yields and Field 4 the highest. 
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The factorial combinations of the experiment’s several nitrogen and seed rates resulted in 

many (N, S) treatment levels in each field’s trial design, making a visual interpretation of the results 

difficult. The quality of the yield data is currently a major concern in OFPE and also affect how 

the results look in the map.  Errors in yield data can come from the different lengths of time needed 

for combines’ internal threshing mechanisms to process the grains, which can reduce the contrast 

between the yields at different input rates (Lark et al., 1997; Lark and Wheeler, 2003). To improve 

yield data quality, the convoluted yield monitoring process was taken into account in trial design, 

with plot lengths sufficiently long to allow the harvester to pass through any treatment plot for at 

least 30 seconds.  Therefore, the effects of the yield convolution in the treatment transition zones 

were considered to be small, since most of the points included in each location were outside of the 

transition zones. To maintain methodological simplicity, the points in the transitions were kept in 

the data analyzed, and no explicit effect was included in the model. The importance of these effects 

should be explored in future research. 

 

Figure 2.3. Spatial distribution of (a) as-planted seed rates (kseed ha-1), (b) as-applied nitrogen rates (kg ha-1), and (c) 
corn yield (Mg ha-1), as registered by the yield monitor and aggregated to each observational unit in the four on-farm 
precision experiments. 
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The dispersion of yield values for the same input rate is much higher in OFPE than what is 

commonly observed in small plot research (Figure 2.4). The noise in the data comes from many 

sources, including the errors associated with the yield monitoring process and the spatial variability 

of yield that would be observed even if inputs were applied at a uniform rate throughout the field.  

The only scenario in which an overall response can be observed was for the nitrogen rate in Field 

1. The distribution of points also supports the decision of using linear regression to represent the 

yield responses. 

 
Figure 2.4. Scatterplots of the relationship between (a) yield and as-planted seed rates, and (b) yield and as-applied 
nitrogen rates, in the four on-farm precision experiments. 

GWR results 

The optimal bandwidth converged to about the same number of neighbors independently 

of the kernel type and the field. This optimal bandwidth determined that between 200 and 300 

parameters were necessary for the Gaussian and exponential kernels, and the number of parameters 

in the bi-square kernel was between 1000 and 1500. There are indications in the literature that the 

cross-validation tends to lead to an overfitted model with a too-small bandwidth, which can lead 

to instability and overestimation of the spatial variability in the fitted parameters (Murakami et al., 
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2018). This seemed to be the case for the bi-square kernel. The Gaussian kernel presented lower 

AICc than the exponential in all fields, and it was therefore selected for subsequent steps. 

In each field, the optimal size of the adaptive bandwidth parameter was found to allow the 

inclusion of about twenty neighbors. With the Gaussian kernel, these twenty neighbors captured 

about 67% of the total weights, and another eighty neighboring observations were needed to 

capture 99% of the total weights (Figure 2.2). The convergence to the same bandwidth size even 

though the support area of the observation units varied from 37 to 87 m2, further demonstrates the 

cross-validation used to optimize the bandwidth is taking into account the variance-bias trade-off 

more than the spatial variability of the inputs (Lu et al., 2018; Murakami et al., 2018).  A discussion 

of alternative methods of parameter estimation is beyond the scope of the present article, but these 

nuances of the GWR method may significantly impact results and should be further explored. 

A summary of the comparisons between the fitted GWR model and the alternative model 

using ordinary least squares (OLS) is presented in Table 2.4. The AICc and BIC values show that 

the GWR model fits the data significantly better than does the OLS model. The largest difference 

was observed in Field 3, where the RMSE decreased from 1.88 Mg ha-1 to 0.81 Mg ha-1.  

The relative importance of each variable, as measured by the relative decrease in the 

RMSE, is one of the keys to understanding why there is such a significant difference between the 

two models (Figure 2.5). The spatially varying intercept (𝛽𝛽0) explained 25% to 50% of observed 

yield variability; this percentage is related to the spatial structure of the field variability. For 

example, Field 3 had the most extensive range of the predicted reference yield and was also the 

field for which 𝛽𝛽0 explained most of the variability. Comparing the results in Table 2.4 and Figure 

2.5, it becomes evident that the explanatory power of the GWR model is also more related to the 

spatial structure of the yield variability than to the magnitude of the crop response to the treatments.  

The global response caused a reduction in the RMSE greater than the local terms only in 

explaining the variability of the responses for seed rate (𝛽𝛽1𝑔𝑔 >  𝛽𝛽1𝑙𝑙) in Field 4 and nitrogen rate 

(𝛽𝛽2𝑔𝑔 >  𝛽𝛽2𝑙𝑙) in Field 1. For all other field and input combinations, the local terms were more 

prominent in explaining yield than the global terms. The spatial variability in response to S and N 

were consistent across all fields, with 𝛽𝛽1𝑙𝑙 explaining on average 3% and 𝛽𝛽2𝑙𝑙 explaining on average 

5% of the total variability. The unexplained variations, represented by the error term, are caused 



46 
 

mainly by the short distance variance caused by the noise in the yield monitoring system, and by 

other sources of variation such as crop damage by machinery and yield losses caused by pests and 

diseases. 

Table 2.4. Summary statistics for the yield response models fitted for each field.  
Field* Model DF ENP AICc BIC RMSE R-squared 

Field 1 
OLS 2889 9 46556 46574 1.23 0.21 

GWR 2701 197 44969 46081 0.87 0.60 

Field 2 
OLS 3267 9 47092 47111 0.53 0.04 

GWR 3042 234 43922 45276 0.30 0.69 

Field 3 
OLS 3128 9 53083 53101 1.88 0.03 

GWR 2876 261 48349 49846 0.81 0.82 

Field 4 
OLS 2807 9 45346 45364 1.25 0.14 

GWR 2625 191 43357 44428 0.82 0.63 
*OLS: ordinary least squares; GWR: mixed geographically weighted regression; DF: degrees of freedom; ENP: 
effective number of parameters; AICc: corrected Akaike information criteria; BIC: Bayesian information criteria; 
RMSE: root mean squared error. 

The outcome of accounting for most of the yield variability by the variation in factors other 

than controllable inputs have been reported in other studies (Kindred et al., 2017). The limited 

range of variation in the treatment rates, in comparison to what is used in small plots, also plays a 

significant role in the explanatory power of the model. While in small plot trials, the nitrogen rates 

may vary from zero to twice the usual rates (0 to 200% of the status quo rate), in the OFPE reported 

here, the variation was of only 20% (80% to 120% of the status quo rate). The small range of 

variation in N and S rates, coupled with the broader importance of spatial effects, the large number 

of observations, and the spatial correlation between observations make the analysis and 

interpretation of OFPE results challenging. Initially, input ranges were chosen in an attempt to 

minimize field implementation costs and encourage farmer’s participation. Trial design scenarios 

with more extensive input rate ranges are planned in future studies. 
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Figure 2.5. Decrease relative RMSE with the inclusion of each variable in the regression model in the four on-farm 
precision experiments. For interpretation of the terms, refer to Eq. 3. 

Although the 𝛽𝛽1 and 𝛽𝛽2 coefficients explained only about 10% of yield variation, these are 

the most important model parameters from a crop management perspective and they will be the 

focus of the discussion (Figure 2.6). The values of 𝛽𝛽1ranged from about −150 to 150 kg kseed-1.  

If coefficients βk = 0 for k = 3, 4, …, 8, then β1 represents the change in the expected yield in kg 

ha-1 when the seed rate is increased by 1.0 kseed ha-1 (the marginal expected product of kseed), 

and 𝛽𝛽2 represents the marginal expected product of N. Since the grain equivalent cost of increasing 

the seed rate by 1.0 kseed ha-1 is about 22 kg ha-1 (buying one kseed costs wS = $3.50, and selling 

22 kg (i.e., 0.022 Mg) of grain provides 160×0.022 ≈ $3.50 in revenue). Thus, the “break-even” 

marginal product of kseed is 𝛽𝛽1𝑜𝑜𝑝𝑝 = 22 kg ha-1. It is also possible to compare the distributions 

between fields, evidencing, for example, that Field 3 has a wider variation than Field 2. Similar 

results can be seen for the 𝛽𝛽2 values, with an overall range within -40 to 40 kg kg-1. The grain-

equivalent cost of increasing the nitrogen rate by 1.0 kg ha-1 is wN/p ≈ $5.50 kg ha-1, which, if β3 

= … = β8 = 0, is the break-even marginal product of nitrogen, called  𝛽𝛽2𝑜𝑜𝑝𝑝. 
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Figure 2.6. Frequency distribution of the fitted parameters of local yield response to (a) as-planted seed rates, and (b) 
as-applied nitrogen rates, in the four on-farm precision experiments. 

The spatial variation of 𝛽𝛽1 and 𝛽𝛽2 can also be interpreted as proxies or latent variables that 

account for the combined effects that crop development, soil parameters, weather factors, and their 

interactions exert on the crop response to each input. The use of proxies of yield response is a 

common practice in most of the agronomic recommendations, since measuring all the factors 

influencing yields is either prohibitively expensive or virtually impossible. To be effective, the 

proxy variable has to be well correlated with the crop response, which may not always be the case 

for variables such as electrical conductivity or vegetation indices. The advantage of this type of 

OFPE and the GWR analysis is that the crop itself is used as a “sensor” to estimate the spatial 

variabilities of the crop response and the optimal rates. The use of soil and weather characteristics 

may still be necessary for modeling yield response under different growing conditions, such as in 

other fields and years. The main difference is that the focus is no longer yield prediction; instead, 

the target variable could be the yield response, optimal rates, or simply the  𝛽𝛽1 and 𝛽𝛽2. 

The distribution of these parameters is the main difference between the yield response 

functions in each location, and are the main drivers of the differences in optimal input rates. 
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Therefore, the statistical significance of these variations is strong evidence of the within-field 

spatial variability of crop responses to agronomic inputs. The maps in Figure 2.7 show the regions 

where that was the case. The significance is reflected in the raw p-values, and in the p-values 

adjusted by the Fotheringham-Byrne procedure (Lu et al., 2014). The percentage of locations with 

significantly different yield responses to (N, S) varies among fields, with Field 3 showing the most 

substantial variation. With the conservative protection given by the Fotheringham-Byrne 

procedure, less than 10% of the locations remain as significant in Fields 1 and 2. In general, no 

more than 50% of the locations are significantly different from the average. If temporal variability 

can be ignored, these maps could be used as management zones, clearly showing which parts 

would benefit the most from site-specific management. Considering temporal variability is 

possible, but beyond the scope of the research reported here. 

 

 

Figure 2.7. Spatial distribution of the statistical significance of the fitted parameters of local yield response to (a) seed 
rates (𝛽𝛽1), and (b) nitrogen rates (𝛽𝛽2), in the four on-farm precision experiments. Darker colors represent positive 
values, and lighter colors represent negative values of the parameters. “Pfb” denotes the p-value adjusted by the 
Fotheringham-Byrne procedure. 
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Comparison of crop management scenarios 

The predicted yields at the status quo rates showed smooth variations across the field 

(Figure 2.8). These are the best estimations of the reference yield, and the variation is mainly due 

to differences in soil parameters, which affect yield both directly and indirectly through 

interactions among soil characteristics and weather. 

 
Figure 2.8. Spatial distribution of predicted corn yield (Mg ha-1) if a uniform status quo rate of seed and nitrogen had 
been used on each of the four fields in the on-farm precision experiments. 

 

The estimated optimal seed rates ranged from less than 70 kseed ha-1 to the maximum of 

the experimental seed rates, slightly more than 90 kseed ha-1 (Figure 2.9a). The number of fields 

evaluated was not sufficient to conclude how weather influenced crop response variability in each 

year. By examining the cumulative frequency distributions of optimal seed rates (Figure 2.9a), it 

is possible to conclude that the optimal rate was lower than the status quo rate in over 85% of Field 

2, but in less than 15% of Field 3. The range of variation in optimal nitrogen rates was about 100 

kg ha-1 for Field 3 and only 40 kg ha-1 for Field 1 (Figure 2.9b). However, the optimal nitrogen 

rate was higher than the status quo rate in the totality of Field 1, and the estimates of optimum 

rates were limited by the maximum rates used in the experiment, thus restricting the perceived 

variability. 
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Figure 2.9. Cumulative frequency distribution of optimal (a) seed and (b) nitrogen rates. Dashed vertical lines 
represent the fields' status quo rates. 

For the four fields’ geographic regions, the Maximum Return to Nitrogen MRTN 

program’s recommended rates, which are the “best practices” promoted by several midwestern 

universities, ranged between 180 and 220 kg ha-1 (Sawyer et al., 2006). For Fields 2 and 4, the 

higher end of this range contained this study’s estimated economically optimal N rates.  However, 

the empirical results predict that Fields 1 and 3 could have benefitted from even higher rates. Note 

that Field 3 had the lowest yields (Table 2.2) and the highest optimal nitrogen rates among the four 

fields, providing additional evidence against yield-based N management recommendation 

algorithms. 

The patterns of the spatial variability for the optimal rates of seed and nitrogen (Figure 

2.10a,b) are consistent with the significance of the local coefficients presented in Figure 2.7. In 

some regions, there is an indication of a weak negative correlation between both inputs, with low 

optimal seed rates being more frequently associated with higher optimal nitrogen rates. There were 

also many locations where the optimal rates were either high or low for both inputs. It is possible 

that in the regions with a negative correlation, the main driver for the optimal nitrogen rates was 

the soil availability, while in the region with a positive correlation, the main driver was the plant 

demand (Morris et al., 2018). For the reasons outlined above, understanding the reasons behind 

the crop response is important, and a key limitation of GWR analysis is that it cannot provide such 

understanding. To draw robust conclusions about the causes of yield response, more fields and 

weather scenarios should be investigated, and formal statistical methods need to be applied.  This 

is left for future research. 
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Figure 2.10. Spatial distribution of predicted optimal rates for (a) seed (kseed ha-1), and (b) nitrogen (kg ha-1) and 
predicted corn yield (Mg ha-1) if the optimized rates of seed and nitrogen had been used in the fields. 

The resulting range of the spatial variability of optimal input rates was shorter than the 

range of the reference yield variability. This again raises questions about the efficacy of using 

yield-based management zones to establish prescriptions for variable rate input rate management; 

for the four fields examined here, yield-based algorithms would recommend similar management 

strategies for areas having similar yields but different yield responses to managed inputs 

(Rodriguez et al., 2019). The results also provide an understanding of why other strategies, such 

as the nitrogen-rich strip and the ramped calibration methods used to calibrate sensor-based 

nitrogen applications, often fail to provide reliable nitrogen requirement predictions (Roberts et 
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al., 2011; Colaço and Bramley, 2019). Since they are allocated with no previous knowledge of 

crop response, and the range of the spatial variability is limited, recommendations based on the 

nitrogen-rich strip will be highly variable, depending on the field to which it was applied. 

Figure 2.11 illustrates the impact of using site-specifically optimized input rates. The 

difference between the reference yield and the optimized yield reflects the potential for improving 

yields by applying site-specifically according to the optimal rate of each portion of the field. There 

are no distinguishable differences in yield for the different scenarios in Field 2, indicating the 

status quo rates were already close to the optimal uniform rates for the whole field. The yield 

improvements were also observed in the high yielding areas of Field 1. The more compact the 

distributions are, the smaller is the yield variability. Comparing the cumulative frequency 

distribution of the reference yield and the optimized yield for Field 1, it is also possible to note 

that the variability of the optimized yields is higher than the variability in the reference yield. This 

shows that the objective of variable rate application is not to make the yield more homogenous, 

but rather to accept the spatial variability and take advantage of it by maximizing profits at every 

location within the field. 

The spatial variability of the optimized yields (Figure 2.10c) closely follows the variations 

in the reference yield (Figure 2.8). This is related to the observation that most of the yield 

variability cannot be explained by controllable inputs (Kindred et al., 2017). In some areas, such 

as in Field 4, it is possible to observe some “hot-spots” with high yields, associated with high 

optimal rates of the inputs (Figure 2.10). These are the locations where the local estimates of crop 

response had the higher values and could be due to a combination of factors that make those areas 

highly responsive, or due to random chance and the noise in the measurements. Statistical methods 

such as bootstrap may be used to estimate the confidence intervals of these estimations and refine 

the local predictions by excluding some observations from the analysis (Harris et al., 2017). 
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Figure 2.11. Cumulative frequency distribution of yields comparing the observed yield, the expected yield if the status 
quo rates had been applied and, the expected yield if the optimized rates of seed and nitrogen had been applied in each 
field. 

Economic results 

The estimation of any opportunity index of the potential economic benefits of spatially 

adjusting crop inputs requires the spatial resolution used to characterize the variability to be 

compatible with the resolution at which the recommendations can be applied (Leroux and Tisseyre, 

2018). The economic opportunity presented here implicitly considers the machinery sizes as given 

in the analysis because the spatial resolution of the data was defined by the ability of the available 

machinery to apply the assigned treatments. 

Adjusting the uniform rates of both inputs would have an economic impact substantially 

greater than the loss of revenue due to the suboptimal trial rates, except for Field 4, (Table 2.5). 

Considering the eight possible combinations of fields and inputs, in five of them, profits from the 

status quo rate were within US$ 11.00 from the maximized profit. The spatial homogeneity of 

Fields 1 and 2 resulted in small differences in the local yield response to the agronomic inputs. For 

Fields 3 and 4, taking into account the spatial variability of optimal rates would have generated a 

positive economic impact greater than adjusting the optimal uniform rate for both seed and 

nitrogen rates. The average increase in net revenue of using the site-specific optimal seed and 

nitrogen rates would be US$ 17.00 ha-1 and US$ 36.00 ha-1, respectively. These results are similar 

to the overall average profit of US$ 30.00 ha-1 reported with the use of crop sensors to drive 

variable rate nitrogen application (Colaço and Bramley, 2018).  
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Table 2.5. Summary of net revenue losses due to yield loss in suboptimal treatment rates, and potential economic 
benefits if an optimized uniform or variable rate had been used instead of the farmer’s status quo rates. 

Field* Revenue 
losses 

 Optimal uniform rate  Optimal variable rate  VR-UR 

 SR NR SRNR  SR NR SRNR  SR NR SRNR 

Field 1 -17  43 129 137  55 131 169  12 2 32 

Field 2 -7  11 11 27  19 18 39  8 7 13 

Field 3 -9  1 58 79  34 122 181  32 64 102 

Field 4 -41  11 3 16  28 76 103  17 73 87 
*All values are in US$ ha-1 at a corn price of US$ 160.00 Mg-1 (US$ 4.00 bu-1). SR: seed rate; NR: nitrogen rate; 
SRNR: seed and nitrogen rate; VR-UR: Difference in profit of applying the optimal variable rate compared to a 
uniform optimal rate. 

Although the number of fields used in this work was adequate for demonstrating the 

method and making initial considerations, the extrapolation of these results will require more data. 

Nevertheless, the tendency of OFPE resulting in higher economic benefits on fields with higher 

yield variability, even though yield levels and optimal input rates are not necessarily correlated, is 

a promising result. This tendency means that fields with higher yield variability should be 

prioritized for the implementation of whole field OFPE, while in fields with less variability, the 

experiments may be replicated only in a small part of the field. 

The main question that remains is the extent to which the results from one year of data can 

be used to guide the decisions of the next year, especially considering that some input strategies, 

such as seed rate, cannot be changed in-season. Answering that question requires knowledge of 

the temporal stability in the spatial variability of crop responses to each input, which is not 

extensively explored in the scientific literature. The majority of the related studies focus only on 

the temporal stability of the spatial variability in yields, which interacted with the weather of each 

growing season (Maestrini and Basso, 2018). Many studies and reviews have focused on within- 

and among-field variations in optimal nitrogen rates, and have concluded that most of the 

variability is related to dynamic variables, such as precipitation and temperature (Puntel et al., 

2019); and their interaction with field-specific variables, such as previous crop, tillage practice, 

soil drainage class, and N form and timing (Morris et al., 2018; Tao et al., 2018). 

In terms of the model described in Equation [3], the results available in the literature 

suggest that at least the global 𝛽𝛽𝑘𝑘 will be season-specific, and therefore may need to be adjusted 

for every season. Depending on the degree of temporal variability in 𝛽𝛽1 and 𝛽𝛽2, there could be no 

need to repeat the whole field experiment every year. Instead, a small subset of plots in 
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representative areas of the field could be used to adjust the other parameters of the equation. Even 

more promising, the season-specific parameters may be adjusted by the use of other tools such as 

crop modeling systems and pre-plant soil nitrate tests. Optimizing the trial designs to account for 

the temporal variability should also be explored in future research. The relative importance of 

temporal and spatial variability in the overall crop response variability is likely to be different for 

each field, crop and, input considered. The methods presented here have the potential to be applied 

in many other scenarios to improve management decisions by accounting for these sources of 

variability. 

CONCLUSIONS 

The main contribution of this work is to demonstrate an alternative method to test and 

characterize the spatial variability of crop response to inputs. The combination of OFPE and GWR 

proved to be an effective methodology to test precision agriculture central hypothesis’ of whether 

there is significant within-field variability in optimal rates. It also allows changing the focus from 

yield-based to response-based variable-rate prescriptions for crop input application. Future 

research on trial design and models with spatially varying coefficients for OFPE is advised. 

Incorporating spatial heterogeneity of yield responses into model parameters improved 

model performance in all four fields evaluated. On average, the RMSE of the fitted yield decreased 

from 1.2 Mg ha-1 in the non-spatial model to 0.7 Mg ha-1 in the GWR model, and the r-squared 

increased from 10% to 68%. In 10% to 50% of the observations, the coefficients of the local 

parameters were found to be significantly different from the average, providing further evidence 

of the need for increased knowledge about local yield response functions. 

In Fields 1 and 2 the greatest benefits of OFPE would come from optimizing the field’s 

uniform rate, while in Fields 3 and 4 the highest revenue increases would account for the spatial 

variability in crop response, and implementing the site-specifically optimal variable rates would 

result in the highest increase in revenue. The average potential gain of using optimized uniform 

rates of seed and nitrogen was US$ 65.00 ha-1, while the added potential gain of using variable 

rate application was US$ 58.00 ha-1. 
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DEVELOPMENT OF A DATA-DRIVEN DECISION SUPPORT SYSTEM FOR MAIZE 

IN MEXICO 

ABSTRACT 

 

The need to improve management decisions in crop production systems has not been fully 

achieved by conventional agricultural research and extension methodologies, especially in more 

complex agricultural production systems of small farms in tropical regions. Machine learning 

methods offer a promising alternative to model the relationships between environmental and 

management variables with crop yields, which can be embedded into decision support tools to 

provide recommendations to crop advisors and farmers. However, trusting the model predictions 

without understanding what type of relationships they learned is not advisable. Therefore, it 

becomes essential to explain why individual predictions were made and the factors that contribute 

the most to those predictions. The objective of this work was to develop a data-driven decision 

support system for maize in Mexico. The data comes from the Sustainable Modernization of 

Traditional Agriculture (MasAgro) project in the southern state of Chiapas. The dataset was 

assembled using field observations, including yield, cultivars and management, and environment 

variables from soil mapping and gridded weather datasets. Random forest models were trained 

with the dataset and explained up to 75% of the variation. However, the ability of the model to 

predict crop performance in future weather scenarios was limited. Domain knowledge and 

explainable machine learning methods allowed the use of the model as a source of information to 

create and validate hypotheses. Overall, nitrogen was the management decision that influenced 

yields the most, with different yield responses depending on the year and variety. This research 

exemplifies the use of explainable machine learning to offer farmers the opportunity to benchmark 

their management decisions with peers in similar growing conditions and visualize what would 

have happened if they made different decisions. 
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INTRODUCTION 

Crop management recommendations should align production systems and environmental 

characteristics. The lack of knowledge of limiting factors and is one of the main reasons for the 

inefficient use of inputs and low productivity and profitability of agricultural systems. 

Traditionally, this knowledge has been generated with small-plots highly controlled agricultural 

experimentation. The results from these small -scale experiments are then diffused to farmers with 

linear extension services (Chambers and Jiggins, 1987). Although this agricultural research and 

extension methodology helped improve many production systems worldwide, it has faced 

limitations in many contexts, especially in more complex agricultural production systems of small 

farms in tropical regions. This complexity extends beyond the main production factors (genetics, 

environment, management), including access to resources, vulnerability to risk, labor supply, 

market opportunities, household needs, management ability, and cultural beliefs (Wortmann et al., 

2020).  

The development of farmer participatory research and plant breeding (Humphries et al., 

2015; Camacho-Villa et al., 2016; Snapp et al., 2019; Eldon et al., 2020), the use of crowdsourced 

data from the farmers (Schmidt et al., 2018; van Frank et al., 2019), along with the ability to collect 

and process large amounts of data (Donnet et al., 2017; Cui et al., 2018), and the adoption of 

information and communication technologies by farmers (Steinke et al., 2020), creates an 

opportunity to reimagine agricultural research and extension. Using enough data, proper analytical 

methods, and efficient, scalable tools, it is possible to deliver information and recommendations 

specific to each farmer's field (Jiménez et al., 2019). Effectively, these innovations enable the 

diversity of treatment responses in heterogeneous agricultural production systems to be embraced 

rather than avoided (Vanlauwe et al., 2019). 

The focus of research innovations in highly mechanized extensive production systems has 

been on better accounting for the within-field spatial variability of optimal management decisions 

(Bullock et al., 2019; Barbosa et al., 2020; Trevisan et al., 2020). However, in the smallholder 

production environment, the between-field spatial variability and the temporal variability are 

substantially more important (Jiménez et al., 2019; Vanlauwe et al., 2019; Eldon et al., 2020). The 

temporal variability of optimal crop management strategies is mainly a function of the weather 

and its interactions with the soil and crop genetics. The year-to-year variations in growing 



64 
 

conditions increase the challenges of making decisions that result in the best outcome. The effects 

of climate change and weather variability have caused adverse impacts on agricultural production 

and food security in recent years (de Sousa et al., 2018; Westermann et al., 2018). Even though 

farmers cannot control the weather, knowing how it interacts with factors that can be managed is 

useful to help them decide on the management strategies to be adopted. Changing the planting date 

or choosing cultivars more adapted to the expected weather are strategies that can usually be 

implemented at low cost and result in higher returns (Delerce et al., 2016). Many climate-smart 

adaptation strategies have been suggested. However, their acceptance depends on context-specific 

recommendations.  

In this context, the Sustainable Modernization of Traditional Agriculture (MasAgro) in 

Mexico is a large-scale program that goes beyond participatory plant breeding and addresses the 

whole production system, emphasizing crop management and conservation agriculture practices 

(Camacho-Villa et al., 2016). The MasAgro project started in 2010 aiming to increase maize 

productivity of rain-fed areas in Mexico and enhance the country's maize self-sufficiency as a joint 

effort between the International Maize and Wheat Improvement Center (CIMMYT) and the 

Mexican Government's Secretariat of Agriculture, Livestock, Rural Development, Fisheries and 

Food (SAGARPA). The maize cropping systems in Mexico are heterogeneous, with approximately 

6 million hectares of maize covering seven different rain-fed maize growing regions. Farmers in 

Mexico have been growing maize for centuries and have been adjusting their practices to optimize 

their results for multiple purposes under diverse growing conditions. In general, there are two types 

of maize farmers, the traditional and the commercial, who apply different management practices 

(Donnet et al., 2017). This unique dataset capturing the diversity of Mexican agriculture represents 

many opportunities to showcase the use of data-driven decision support systems to address the 

need for time and location-specific recommendations. 

Mobile phone-based services have been considered an ideal tool to complement traditional 

extension services and enable smallholder farmers to access context-specific information, 

increasing their decision-making capacities (Inwood and Dale, 2019; Ortiz-Crespo et al., 2020). 

As part of the MasAgro effort, CIMMYT and the International Institute for Applied Systems 

Analysis (IIASA) developed the smartphone application AgroTutor (Bayas et al., 2020). It is freely 

available, allowing farmers to geolocate and register plots by using the phone GPS and collect in-
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situ information like soil management and yield data, which are then used to develop and improve 

models. In return, farmers have access to highly specific and timely agricultural recommendations, 

potential yield and financial information, historical and forecasted weather data, and other 

agricultural information sources (Bayas et al., 2020).  

The models relating environmental and management variables to crop yield powering the 

recommendations offered to crop advisors and farmers in this type of decision support tool can 

usually be separated into statistical and analytical crop models (Jones et al., 2017). Analytical crop 

models are dynamic system simulations based on the physiological processes driving crop growth 

and development. These models' results can be accurate, but only if the model parameters are 

correctly calibrated, which requires data not measurable by farmers. In general, those models have 

been used to estimate potential production, which serves as a benchmarking tool to compare the 

farmer's results with what was possible with perfect management decisions, to compute resource 

use efficiency indicators, and to conduct yield gap analysis (Bayas et al., 2020; Riccetto et al., 

2020). 

 Historically, statistical models have been more frequent in controlled experiments to 

understand the optimal management decisions for a single production factor, such as the variety 

and the amount of fertilizer. The use of these methods requires a pre-defined trial design and 

assumes identical and independently distributed residuals. Applying these same methods with on-

farm trials and field production data is challenging because most of the data have no replication or 

randomization and can even be entirely observational, in which no deliberate treatment was 

applied. The differences in the spatial and temporal resolution of data sources and spatiotemporal 

correlation add other layers of complexity. However, in recent years the increased ability to collect 

large amounts of observational data in farmers' fields and the advances in statistical learning 

methods renewed the research community interest in this topic. Many studies combining multiple 

sources of information and expert-guided machine learning (ML) methods have offered 

alternatives to understand these observational datasets and uncover relationships that can be used 

to predict crop yields and optimize crop management decisions (Delerce et al., 2016; Dorado et 

al., 2018; Jiménez et al., 2019). 

These works follow a similar structure, in which a model is fitted to minimize the yield 

prediction error. Then different optimization techniques are used to derive the best management 
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practices. In most of these, the authors reiterate the importance of expert knowledge to validate the 

results since they are often not meaningful (Jiménez et al., 2019). One of the reasons the model 

results may be misleading is the presence of spurious correlations among the variables used, which 

may be caused by other factors that were not measured or not included in the model. This shows a 

significant difference between the two groups of tools used to create decision support systems. 

While analytical crop models rely on causation, the statistical crop models rely almost exclusively 

on correlation (Jones et al., 2017). In many cases, the relationships learned by the model would be 

considered by humans as cheating rather than valid problem-solving (Lapuschkin et al., 2019). 

Similar limitations in using ML models have been identified in other fields of research, 

with models and algorithms leading to severe violations of fairness and ethical principles, which 

raised legal exigences and prohibitions in their use (Goodman and Flaxman, 2017). Explainable 

ML can be defined as using domain knowledge to explain black-box model decisions with a certain 

level of detail, making systems more understandable and transparent, and is considered a 

prerequisite to ensure the results' scientific consistency (Roscher et al., 2020). These concepts have 

been recently incorporated in agriculture research using ML methods for yield prediction and land 

use classification (Campos-Taberner et al., 2020; Wolanin et al., 2020). One of the advantages of 

explainable ML is the possibility of using the model as a source of information to create and 

validate hypotheses, which can be particularly useful in agricultural research (Lorentzen and 

Mayer, 2020). 

OBJECTIVES 

The main objective of this work was to develop a data-driven decision support system tool 

based on machine learning methods and multiple years of field data from the MasAgro project in 

Chiapas - Mexico to help farmers increase agriculture profitability and sustainability. 

The specific objectives were: 

• To develop machine learning-based models to represent the spatial and temporal 

variability of alternative management decisions based on observational data; 

• To develop tools to evaluate model accuracy and uncertainty and to explain and 

visualize the results; 
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MATERIAL AND METHODS 

Dataset 

The data used in this work comes from the MasAgro project (Donnet et al., 2017). The 

program, which consists of 12 innovation hubs located strategically throughout Mexico, seeks to 

integrate farmers and local and regional value-chain actors with an innovation system approach. 

The hubs comprise four levels of agronomic experimentation: research platforms are typical on-

station controlled experiments; demonstration modules are on farmers' land and involve side-by-

side fields comparisons of different technologies and management practices; extension areas are 

fields where farmers have implemented management changes after testing them in demonstration 

modules; impact areas are other places where farmers adopted MasAgro's innovations without 

being directly connected to the hubs (Molina-Maturano et al., 2020). The research platforms follow 

a valid statistical design and aim to test a specific hypothesis. The impact areas often do not have 

information about all the farmers' practices, thus have limited value to model yield response. 

Therefore, the data used in this work comes from the demonstration modules and extension areas, 

which lack the replications needed in classical statistical models while still useful for ML models. 

The dataset consists of eight years of field records of maize production by Mexican farmers 

in the state of Chiapas. Crop production in this hub is characterized by rainfed maize farming 

systems with a mix of small-scale low-input self-consumption farmers and medium-scale medium-

input mechanized semi-commercial farmers selling to local markets (Camacho-Villa et al., 2016). 

These two systems were differentiated in the dataset by the use of landraces in the low-input 

systems and the use of hybrids in the medium and high-input systems and are used as synonyms 

in this text. Each observation represents one crop event, from planting to harvesting, with a set of 

correspondent practices in one parcel of land, which was usually a small field (< 5 ha) or part of 

the field for a given season (year). The variables consisted mainly of the harvested yield, the variety 

or hybrid planted, the tillage method, and the fertilizer rates used (Table 3.1 and 3.2). The data was 

filtered to remove points with coordinates outside of the boundaries of the state, the observation 

with missing data for the variables used, and some extreme values. In the case of nitrogen, the 

observations with zero rate were also excluded because they likely represented missing data. Data 
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wrangling was performed using the R software version 4.1 (R Core Team, 2020) and the package 

"dplyr" (Wickham et al., 2020). 

Soil information was obtained from a polygon map of soil units with functional properties 

constructed using soil samples from Mexico's National Institute of Statistics and Geography 

(INEGI) open-access datasets (Delerce, 2018). The point coordinates from the field observations 

were spatially overlaid in the soil map polygons using the R software package "sf" (Pebesma, 

2018). The soil attributes clay, cation exchange capacity (CEC), soil organic matter (SOM), and 

pH were extracted. Elevation and slope were derived from SRTM digital elevation data (Jarvis et 

al., 2008). 

The weather dataset was assembled using DAYMET gridded daily surface weather data 

with 1 km spatial resolution (Thornton et al., 2016). The point coordinates from the field 

observations were spatially overlaid in the DAYMET gridded data using the R software package 

"raster" (Hijmans, 2020).  The values correspondent to each pixel for precipitation, solar radiation, 

maximum temperature, minimum temperature, and vapor pressure were extracted. The daily data 

were aggregated into ten-day intervals to reduce the number of features used in the model. The 

weather data were organized according to the planting dates, starting 60 days before planting and 

running up to 240 days after planting, thus creating 30 new features for each variable. 

Model fitting 

The models were fitted using the random forest algorithm implemented in the R software 

package "ranger" (Wright and Ziegler, 2017). A grid search of hyperparameters was performed 

based on the cross-validation errors. Two different strategies of k-fold cross-validation were tested. 

The first assigns the data into testing and validation sets randomly, while the second used leave-

one-year-out cross-validation, such that data from one year was used only for validation in each 

fold (Qin et al., 2018). Model training and cross-validation were performed with the help of the R 

software package "mlr3" (Lang et al., 2019). Different sets of features were also considered, which 

evaluated model performance with only controllable and static variables that do not change with 

time (cultivar, management, soil, topography) or with the inclusion of temporally dynamic 

variables, either represented by the weather features or the year as a categorical variable. Years 

were treated as a categorical factor with unordered levels. The time series was too short to only 
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use observations from the past in the comparisons, although it is not possible to use future years 

to predict the past in practice. The yield was used as the dependent variable in all models, which 

were trained to minimize the mean squared error between the observed and predicted yields. Model 

performance was always evaluated in the testing set and was aggregated over the seven folds of 

the cross-validation. 

Interpretability and visualization 

Explainable machine learning is a relatively new area (Roscher et al., 2020). Methods are 

continually being updated, and new tools developed. The methods used in this work were selected 

based on their usefulness to extract meaningful information from the models and the wide 

availability of software implementations (Lorentzen and Mayer, 2020). Whenever possible, the 

interpretation methods were compared to those used in the more rigorous modeling framework of 

mixed models and other standard statistical tools. 

For the purpose of developing a decision support system, model interpretation aims to 

answer questions such as which features (crop event characteristics) contributed the most to the 

explanatory or predictive power of the model, what would happen if the values of selected features 

were changed, and why a particular value was predicted for a specific crop event. These questions 

relate to the decomposition of model predictions variability into different explanatory variables 

and their interactions, either at the dataset level or to the level of individual observations. The 

general idea of decomposing the variance is similar to the analysis of variance (ANOVA) 

performed with statistical models. The lack of statistical design and the inability to test if residuals 

are independent and identically distributed is replaced to some extent by the use of permutations, 

conditional probabilities, and domain knowledge. More specifically, variable importance, 

interaction strength, partial dependence profiles, and variable attributions were calculated using 

the R software packages "DALEX" (Biecek, 2018) and "flashlight" (Lorentzen and Mayer, 2020). 

The graphical visualization of results was prepared using the R software packages "ggplot2" 

(Wickham, 2016).  
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RESULTS 

Descriptive statistics 

After removing crop events with missing values, the dataset had 4585 observations 

encompassing seven years (Table 3.1). The yield values ranged from 0.1 to 10.0 Mg ha-1, with 

75% of the values lower than 5.0 Mg ha-1 and an average of 3.6 Mg ha-1. The variation in elevation 

was equally remarkable, ranging from almost sea level to about 3000 m, although observations 

were concentrated around the median of 700 m. The planting dates had a standard deviation of 20 

days, with some observations up to five months apart from others. There were considerable 

differences between the number of observations recorded in some years, with a smaller number in 

2014. It is also possible to observe that the operations shifted to later dates in some years, especially 

in 2015 (Figure 3.1). The total season duration had an average of 175 days. It is important to note 

that the corn is kept in the field for long periods after physiological maturity until it is used for 

self-consumption or sold in local markets. Therefore, the season length is not a good representation 

of the growing period. 

More than 25% of farmers did not use phosphorus fertilizer, while more than 50% did not 

use potassium fertilizer. The average nitrogen rate was 110 kg ha-1, with some farmers applying 

up to tripled this average amount. There were also some observations without any nitrogen 

application. Most zero nitrogen rates were attributed to farmers not reporting the application or 

applying nitrogen from other sources such as manure. This led to the decision to remove 

observations with zero nitrogen rates. The weather variables include the overall values of 300 days 

distributed in 30 features each, therefore extending beyond the growing season and not 

representing the conditions in which plants were growing. 

Most of the observations came from recent years (2016-2018), and about two-thirds were 

from production systems using hybrids (Table 3.2). Conventional tillage was the most common, 

followed by no-till. A total of 250 unique cultivars were recorded, with many of them in low 

frequency. After removing cultivars with a frequency lower than 50, there were ten hybrids and 

five landraces remaining in the dataset, with a total of 3761 observations (Figure 3.2). The number 

of observations for each cultivar greatly changes between years. For example, most of the 

observations for DEKALB 370 were in 2012, and most of the observations for DEKALB 7500 
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were in 2015. This type of unbalanced distribution is common in observational datasets and needs 

to be taken into consideration when interpreting the model. The temporal distribution of landraces 

is more stable over time, apart from 2013 and 2015 that had only hybrids. The yields from the 

landraces were about half of what was usually obtained with hybrids (Figure 3.3). The lowest 

yields in the landraces were observed in 2014, while for the hybrids, 2015 was the worse year. 

There are almost no landraces observations in 2015, so it is not possible to tell whether yields in 

the landrace system would be even lower in 2015 than they were in 2014. 

There is a clear separation in the spatial distribution of system type and maize yield (Figure 

3.4). The central west part of the state is characterized by medium-scale medium-input mechanized 

semi-commercial farmers selling to local markets, using mainly hybrids. The north and east 

municipalities are characterized by small-scale low-input self-consumption farmers using mainly 

landraces (Camacho-Villa et al., 2016). The yields follow the same pattern, with most observations 

in the range of 1.6 to 3.0 Mg ha-1 for the landrace system and 4.2 to 5.3 Mg ha-1 in the hybrids. 

Table 3.1. Descriptive statistics of the numerical variables in the dataset of maize crop events using seven years of 
field observations from Chiapas – Mexico. 

Variable Mean SD* P0 P25 P50 P75 P100 Hist 
Yield (Mg ha-1) 3.6 1.9 0.1 1.9 3.6 5.0 9.8 ▆▆▇▂▁ 
Elevation (m) 884 443 7 592 712 1079 2849 ▃▇▂▁▁ 
Slope (%) 6.0 6.8 0 1.3 3.0 8.7 61.2 ▇▂▁▁▁ 
Clay (%) 30 10 5 23 28 37 57 ▁▆▇▃▂ 
CEC (cmolc dm-3) 22.7 7.4 4.3 16.2 21.1 27.6 50.8 ▁▇▅▂▁ 
SOM (%) 1.6 0.9 0.3 1.0 1.2 2.0 4.0 ▇▇▃▂▂ 
PH 6.8 0.7 4.9 6.6 6.8 7.3 8.3 ▁▂▇▃▃ 
Planting (DOY) 165 22 91 153 167 180 242 ▁▃▇▃▁ 
Nitrogen (kg ha-1) 109 64 0 64 110 156 349 ▆▇▆▁▁ 
Phosphorus (kg ha-1) 23 26 0 0 23 46 143 ▇▃▁▁▁ 
Potassium (kg ha-1) 9 17 0 0 0 12 100 ▇▂▁▁▁ 
Precipitation (mm day-1) 4.05 4.86 0 0 2.1 6.8 54.9 ▇▁▁▁▁ 
Solar Rad. (MJ m-2 day-1) 17.7 2.8 6.8 15.6 17.4 19.5 26.8 ▁▂▇▃▁ 
Max Temp. (Co) 29.8 2.5 16.6 28.4 30.2 31.5 39.2 ▁▁▇▇▁ 
Min Temp. (Co) 17.4 3.1 -2.1 15.5 18.0 19.7 36.2 ▁▁▇▁▁ 
Vapor Press. (Pa) 1761 628 252 1336 1900 2240 6452 ▃▇▁▁▁ 

*SD: standard deviation; P0 – P100: data distribution percentiles; DOY: day of the year. 
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Figure 3.1. Temporal distribution of planting and harvesting maize crop events in seven years of field observations 
from Chiapas – Mexico. 

Table 3.2. Descriptive statistics of the categorical variables in the dataset of maize crop events using seven years of 
field observations from Chiapas – Mexico. 

Variable Number of levels Most frequent  

Year 7 2017: 960, 2016: 816, 2018: 807, 2012: 723 
System 2 Hybrid: 3034, Landrace: 1551 
Cultivar 250 CRIOLLO: 629, P4082W: 420 
Tillage 3 Convention: 2092, No-till: 1634, Reduced: 859 

 

 
Figure 3.2. Temporal distribution of most commonly observed maize cultivars in seven years of field observations 
from Chiapas – Mexico. 
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Figure 3.3. Temporal distribution of maize yield in seven years of field observations from Chiapas – Mexico. 

 
Figure 3.4. Spatial distribution of system type and maze yield using seven years of field observations from Chiapas – 
Mexico. 

Model performance 

After optimizing the hyperparameters, the final random forest models were trained with 

250 trees and a minimum of 5 observations per node. The cross-validation in the first row of figures 

(Figure 3.5a-c) was performed with validation sets chosen randomly, while the figures at the 

bottom (Figure 3.5d-e) used the leave-one-year-out cross-validation. The overall root mean 

squared error (RMSE) in the random cross-validation was 0.92 Mg ha-1, increasing to 1.16 Mg ha-

1 using the cross-validation by year. At the same time, the r-squared decreased from 0.75 to 0.60. 

The performance differences were similar, whether only static features were used or including 
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either year or weather variables as dynamic features. The first row's model performance is useful 

for describing the importance of variables (descriptive analytics). 

In contrast, the second is a better representation of the model performance in future years 

(predictive analytics). It is important to understand the purpose of the model to decide on the best 

way to validate it. In this case, the geographic area of interest was defined as roughly the same 

area where the data was collected. There is also a clear spatial separation of observations from 

different systems (Figure 3.4), so that enforcing spatial clusters to split the data would not make 

sense (Valavi et al., 2019). 

Although the model's overall predictive performance still explained 60% of the variation, 

it is also essential to know the performance when isolating the most important non-controllable 

factors. In the years highlighted, 2016 is an example of a year in which the model had a good 

performance in both cross-validation scenarios, while 2015 is an example of poor results in the 

leave-one-year-out cross-validation. The observed yields were usually lower than the model 

predicted. The differences could be caused by some feature that wasn't part of the model, such as 

a high insect or disease incidence, or even due to some combination of feature values not 

previously observed, such as a drought in a critical time for crop development. 

Adding weather variables increased model accuracy slightly in the random cross-

validation, although including year as a factor increased it even more (Figure 3.6). However, when 

the cross-validation was performed using years as a grouping variable, the inclusion of weather 

variables did not improve the models. The predictions were low for years 2012 in Landrace 

systems and 2015 in Hybrid systems. The negative values of r-square show that model predictions 

were worse than using just the average of past observations. The relative trends in performance 

were maintained for the two types of cross-validation, with a significant decrease when the cross-

validation was performed grouping by years. This shows that models could be helpful when years 

are similar to previous years included in the model, while their usefulness in years with extreme 

weather or other significant differences may be limited. Therefore, most of the remaining results 

in this paper focus on these models' explanatory power to understand the factors influencing yields. 
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Figure 3.5. Scatterplots of predicted and observed maize yield in five random-forest models with different input 
features (a,d: baseline; b,e: addition of weather features; c: addition of year and planting date) and cross-validation 
methods (a,b,c: random split;  d,e: grouped by year) using seven years of field observations from Chiapas – Mexico. 

 
Figure 3.6. Model performance represented by the r-squared values for the maize yield predictions by five random-
forest models with different input features (a,d: baseline; b,e: addition of weather features; c: addition of year and 
planting date) and cross-validation methods (a,b,c: random split;  d,e: grouped by year) using seven years of field 
observations from Chiapas – Mexico. 
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Feature importance 

The interpretation of feature importance is similar to that of classical analysis of variance 

(ANOVA). The variables' overall effects are decomposed into main effects and interactions, which 

in turn is used to decide how to decompose the interactions and which posthoc tests are appropriate. 

In ML terms, the ranking of variable importance and interaction strength helps select how to further 

perform model exploration. Many of the ANOVA simplifications depend on the assumptions of 

normally independent and identically distributed residuals, which are most likely broken in the 

observational data without any trial design being used. In this case, the assumptions are overcome 

by cross-validation procedures, which works to maintain the model's validity in observations never 

seen by the model. Therefore, the interpretation of the model relies also upon domain knowledge 

to filter which hypotheses are meaningful from those that are impaired by the lack of independence. 

The feature importance is measured by the decrease in model performance when one of the 

features' values are randomly permuted. A larger reduction means the feature is more important 

for model predictions. The most critical feature in the model trained with the full dataset was the 

system (Figure 3.7). This is consistent with what has been observed in the distributions of yield 

values (Figure 3.3 and 3.4). Nitrogen was the second most important variable, followed by the 

temporal variability represented by the year. The interaction strength measures how much of the 

variability can not be explained by the additive main effect, which indicates to what extent a feature 

interacts in the model with all the other features (Friedman and Popescu, 2008). The order of 

variables was similar when looking at the overall interaction strength (Figure 3.8). More than 20% 

of the variation explained by system and year comes from their interactions with other variables. 

On the other hand, it also means that almost 80% of the contribution is the main effect. Since the 

system had the largest contribution and the most important interactions, separate analyses were 

conducted with each subset. 
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Figure 3.7. Overall feature importance per variable in the random forest model used to predict field observations of 
maize yield in Chiapas – Mexico, from 2012 to 2018. 

 
Figure 3.8. Overall interaction strength per variable in the random forest model used to predict field observations of 
maize yield in Chiapas – Mexico, from 2012 to 2018. 

In the high-input (hybrid) system, the temporal variability represented by year was the most 

important feature, followed by nitrogen and variety (Figure 3.9). The order of variables was similar 

when looking at the overall interaction strength (Figure 3.10). Almost 40% of the variation 

explained by year and more than 30% for nitrogen comes from their interactions with other 

variables. As the number of features increases, higher-level interactions are possible. However, 

they tend to be lower in magnitude and hard to explain. This was the reason the full dataset was 

split into two groups, and then the two-way interactions were decomposed. The most important 

pairwise interaction was phosphorus and year (Figure 3.11). This turned up to be of little practical 

importance because the data was inflated with zeros, and the interaction was related to the few 

high rates observed in some years. The following interactions were further investigated: variety 

with year, variety with nitrogen, and nitrogen with year.  
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Figure 3.9. Overall feature importance per variable in the random forest model used to predict maize yield in the high-
inputs system in Chiapas – Mexico, from 2012 to 2018. 

 
Figure 3.10. Overall interaction strength per variable in the random forest model used to predict maize yield in the 
high-inputs system in Chiapas – Mexico, from 2012 to 2018. 

 
Figure 3.11. Pairwise interaction strength per variable combination in the random forest model used to predict maize 
yield in the high-inputs system in Chiapas – Mexico, from 2012 to 2018. 
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Slope and elevation were among the most important variables in the low-input system 

(Figure 3.12), which account for more than only the topographical characteristics but are instead 

a proxy for other variables not included in the model. These are related to logistics, access to 

extension services and inputs, the feasibility of mechanization, and soil degradation. Even though 

these are environmental variables that cannot be changed, some of the underlying factors that they 

may be correlated with can change over time. Nitrogen, planting date, and year completed the list 

of the most important variables with similar values. As in the high-input system, the interactions 

again followed almost the same order as the main effects (Figure 3.13), with nitrogen and planting 

date as the most important interactions from the management group of variables. Their interactions 

were mainly with temporal variability (Figure 3.14). Therefore, the interactions that were further 

explored were planting date with year and nitrogen with year. 

 
Figure 3.12. Overall feature importance per variable in the random forest model used to predict maize yield in the 
low-inputs system in Chiapas – Mexico, from 2012 to 2018. 

 
Figure 3.13. Overall interaction strength per variable in the random forest model used to predict maize yield in the 
low-inputs system in Chiapas – Mexico, from 2012 to 2018. 



80 
 

 
Figure 3.14. Pairwise interaction strength per variable combination in the random forest model used to predict maize 
yield in the low-inputs system in Chiapas – Mexico, from 2012 to 2018. 

Yield response 

Partial dependences were used to calculate yield response to changes in each variable. The 

approach is analogous to the best linear unbiased prediction analysis (BLUP) used in classical 

statistical models (mixed models). Both methods are designed to calculate expected values when 

controlling for all other effects included in the model (Montesinos-López et al., 2019). However, 

only a subset of all factors that may affect yields was effectively being controlled. Grouped partial 

dependence plots were used to evaluate the most important interactions from a model and 

management perspective. The yield responses were generated by fixing all other factors and 

running predictions for each observation's possible nitrogen rates (Figure 3.15). Then the predicted 

yield response curves were averaged for each variety. This can be used to characterize how each 

variety responds to increased nitrogen rates, which, after including costs, would allow the 

estimation of the economically optimum nitrogen rates. The cultivars can be characterized 

according to their yields with limited or sufficient levels of nitrogen (Mastrodomenico et al., 

2018b). For example, the hybrid RW4000 shows the highest yields up to 200 kg ha-1 of nitrogen 

fertilizer, showing small yield gains with increased nitrogen rates. This hybrid has a high nitrogen 

use efficiency and would probably be the best choice overall because it can deliver high yields 

with fewer inputs. Another good example is the hybrid DEKALB 370, which also has low 

responsiveness to nitrogen, and the economically optimum nitrogen rates would be lower. 

However, the yield potential of this hybrid is limited, which limits its use. Finally, DEKALB 395 

and P4082W are the most responsive hybrids, requiring higher nitrogen rates to express their full 

potential since yields increased by more than 20% when N rates go from 100 to 200 kg ha-1. 
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There are clear differences in yield responses to N among years (Figure 3.16), with higher 

responses in 2015 and 2017 and lower responses in 2012 and 2014. Interestingly, 2015 and 2017 

were opposite years in terms of yield potential (main effect), but the optimum nitrogen rates were 

high in both years, confirming that yield potential is not a good predictor of economically optimum 

nitrogen rates (Rodriguez et al., 2019). It is important to remember that these are overall 

observations, which are somehow affected by each year's specific observations. Similar to what 

can be observed for the cultivars, the yield response in the range of 50 to 100 kg ha-1 is almost flat. 

This may be explained by the correlation between practices, where farmers apply low rates of 

synthetic fertilizer when they expect a low response to it, for example, when a legume was the 

previous crop was a legume, using other nitrogen sources, or when they have soils with more 

organic matter. Similarly, it is also possible that those using more than 100 kg ha-1 are also more 

likely to adopt other practices that increase yields, such as applying fungicides and better weed 

control, and some of the yield increase is due to correlated practices rather than nitrogen alone. 

Most of the interaction seen in the hybrids with years was due to the low yields observed 

in 2015 (Figure 3.17). The hybrid DEKALB 7500 moved from being an average to the lowest-

yielding variety, while DEKALB 370 was more stable in this bad year, moving from the lowest 

yield to about the average. Looking at yield stability and nitrogen response, DEKALB 370 can be 

considered a typical workhorse hybrid (Mastrodomenico et al., 2018a). Since stability is one of 

the MasAgro program's objectives, recommending cultivars that do not perform the best but are 

more stable may be desirable. This form of bet-hedging or risk-averse portfolio optimization could 

also be essential to guarantee genetic diversity if some disease appears. 

In the low-input system, the year's main effect appears much larger than any interactions 

(Figure 3.18). For example, the yield in 2012 was double that in 2014, no matter how much 

nitrogen was used. The year 2013 was the only one in which a clear interaction appears, with no 

response in the range tested. This result is not reliable because there were no landrace observations 

this year. It would be advisable to remove factor levels when the number of observations is lower 

than a certain threshold. The decision to keep all levels here was to show that the model 

interpretation needs to consider the distribution of observations used. This applies to the range 

tested as well. That is the reason to keep the marks along the x-axis to show for which value 

observations were available. Combining the marks with each year's colors is also possible but 
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becomes uninformative with a static graph because many symbols would overlap. Using 

interactive plots provides a richer experience to interpret the models and is advisable whenever 

possible. 

 

 
Figure 3.15. Partial dependence plots for the yield response to nitrogen rates in different maize hybrids cultivated in 
Chiapas – Mexico, from 2012 to 2018. The marks on the x-axis represent the distribution of nitrogen rates tested.  

 
Figure 3.16. Partial dependence plots for maize yield response to nitrogen rates in different years in Chiapas – Mexico. 
The marks on the x-axis represent the distribution of nitrogen rates tested. 
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Figure 3.17. Partial dependence plots for maize yield response of hybrids in seven years in Chiapas – Mexico.  

The planting date and year interactions were more about how yield responded to planting 

delays than which planting date maximized yields (Figure 3.19). Although plating after July 1st 

provided consistently higher yields, delaying planting may have some tradeoffs. Usually, early 

harvests achieve higher marketing prices. The pressure to have the food ready when people need 

it may also favor earlier planting dates. On the other hand, later planting requires less storage time, 

which could reduce storage losses. Since the variations were small, the use of more than one 

planting date may be advisable for reducing risk by diversification and accounting for needs other 

than grain yield. 

 
Figure 3.18. Partial dependence plots for maize yield response to nitrogen rates over seven years in the low-inputs 
system in Chiapas – Mexico. The marks on the x-axis represent the distribution of nitrogen rates tested. 
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Figure 3.19. Partial dependence plots for maize yield response to planting dates over seven years in the low-inputs 
system in Chiapas – Mexico. The marks on the x-axis represent the distribution of nitrogen rates tested. 

Feature contribution 

This section focus on explanations for single crop events. The breakdown of feature 

contributions explains how each combination of variable and value for a given observation 

contributed to the model prediction for that same observation. The values represent the change in 

the prediction when comparing the conditional probability, sequentially fixing the value of one 

variable at a time, with the original prediction. Since the models are not additive, due to the 

interactions, the order in which the variables are fixed will affect the result. To solve this, the 

process is repeated, permuting the order of variables. In both examples (Figure 3.20 and Figure 

3.21), in the graph on the left side, the contributions are based on permutations of the order of 

variables. The variables are then ordered by their absolute importance. The graph on the right side 

represents one of the possible explanations for that same observation. In this case, the 

interpretation of the order is different, with each level down representing the contribution of the 

variable-value pair given that all other variables on top were already fixed. 

In the high-input system example (Figure 3.20), the year was the most critical feature. 

Fixing the nitrogen rate at 188 increased the prediction by about 120 kg ha-1, compared to the 

average prediction when using the actual rates in each observation. The bar represents the main 

effect, while the boxplot represents the variation from the interaction with changes in other 

variables. In the low-input system example (Figure 3.21), the three most important features are 

environmental variables that cannot be controlled. In the third position, the nitrogen rate was the 
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most important management variable, with a positive contribution. Tillage type, planting date, and 

potassium rate reduced the yield. 

The interpretation has to be done carefully because the contribution depends on the 

importance of the feature and also on the value itself. The farther from the average, the more 

critical it will be. This also means that variables with small contributions may still be optimized. 

This tool is also valuable for interactive visualization, allowing the user to fix environment 

variables' values and test what would happen by changing management variables. This can also be 

aided by partial dependence curves for each variable, specific for this observation rather than 

aggregated. This would also allow the visualization of an optimized version of management and 

to compare with what the model suggested would be the best decisions. 

 

 
Figure 3.20. Feature contribution in the maize yield prediction of one randomly selected observation using the random 
forest model for the high-input system in Chiapas – Mexico.  The left side reports the uncertainty in the contributions 
based on permutations in the order of variables, while the right side represents one of the possible explanations for 
that same observation. 

 
Figure 3.21. Feature contribution in the maize yield prediction of one randomly selected observation using the random 
forest model for the low-inputs system in Chiapas – Mexico. The left side reports the uncertainty in the contributions 
based on permutations in the order of variables, while the right side represents one of the possible explanations for 
that same observation. 
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DISCUSSION 

Model performance 

Although there are more than four thousand observations, there are inherent correlations 

between different groups of data points. This causes many observations to be correlated, and the 

correct number of genuinely independent observations would be much smaller. Even though 

different planting dates and regions contribute to more independent observations from a weather 

perspective, there is considerably more similarity among observations from the same year, thus 

making predictions into future years challenging. Temporal correlation is probably the most 

important factor explaining the reduction in model performance in some years (Figure 3.6).  From 

a management perspective, the interaction between weather and management decisions is more 

important since the weather effect itself is a non-controllable factor (Jiménez et al., 2016). 

However, from a statistical perspective, the analysis of interactions requires a greater number of 

observations than what would be necessary to achieve the same statistical power looking only at 

the main effects (Rothery et al., 2003).   

The number of independent observations from on-farm research trials has also been a 

limiting factor in other studies (Eldon et al., 2020). The authors also pointed out that the number 

of observations available in their study was sufficient to test existing general management 

recommendations and even resulted in new ones, but they were not enough to develop site-specific 

recommendations. Researches have demonstrated that yield prediction errors using ML models 

decreased by 10%–40%  as the training dataset increased from 0.5 to 1.8 million data points, thus 

showing the importance of having more observations (Shahhosseini et al., 2019). 

Another aspect of weather data related to the number of observations is its high 

dimensionality. Including daily data as individual features should provide the maximum 

explanatory power in the model. However, the total number of features would be greater than the 

number of observations in the dataset, thus diluting each feature's effect and leading to unstable 

model training. On the other side, using only the growing season average would not represent the 

growing conditions in critical stages of plant development such as flowering. The aggregation of 

weather variables into ten-day intervals was an attempt to use a reasonable number of features. 

Other dimensionality reduction or feature engineering techniques may provide better results. 
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Temporal convolutional networks have achieved state-of-the-art status in many time-series 

problems (Hewage et al., 2020; Wu et al., 2020). Although temporal convolutional networks could 

be used to learn these features automatically in an end-to-end fashion, a much larger number of 

observations would be needed.  

Integration of ML methods with mechanistic crop simulation models is probably one of 

the best alternatives to reduce the dimensionality of the data without losing important information 

(Langensiepen et al., 2020). Crop simulation models are skillful in using weather variables, but it 

is difficult to properly calibrate all parameters and to represent management differences within the 

models (Leng and Hall, 2020). Different ways have been proposed to integrate crop simulation 

models with ML into hybrid models that are superior to both. One way to integrate both approaches 

is to use crop simulation models results as additional features that incorporate the weather 

variability more efficiently in the model. This strategy has been shown to improve wheat yield 

projections in Australia, using a combination of the process-based APSIM model and a Random 

Forest ML model (Feng et al., 2020). Because there are still interactions with other environmental 

variables and management decisions, instead of using only the yield potential, a handful of 

different scenarios could be simulated and included as additional features. 

An alternative to this scenario is to use the crop simulation models to generate the ground 

truth data and then train ML models based on this. This approach has been used to provide reliable 

estimates of model performance (Shahhosseini et al., 2019; Yamamoto, 2019; Saikai et al., 2020). 

One less explored possibility derived from this would be to apply transfer-learning techniques 

using ML models pre-trained with synthetic data. This could allow most of the model parameters 

to be trained in synthetic data generated with the crop simulation models and only a small part of 

the parameters to be trained with field data, thus allowing more complex models to be trained with 

a small number of observations (Kim et al., 2019). There are clearly many opportunities for the 

integration of data-driven and science-based methodologies (Messina et al., 2020). 

Dataset quality 

One of the challenges with this dataset was the number of different cultivars. Random 

Forest models cannot handle categorical variables with many factor levels efficiently because each 

factor level is represented internally as an additional feature. Keeping low-frequency factor levels 
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in the training dataset increases computational time. Other ML methods, such as neural networks, 

can handle this type of data more efficiently using categorical embeddings (Khaki et al., 2020). 

However, future predictions would still be limited to the same cultivars used in training. Ideally, 

the conversion from a single categorical variable to a series of numerical features should be 

performed before training the model in a way that could be applied to new cultivars. A practical 

method to achieve this would be to replace the variety with features describing its main agronomic 

characteristics, such as cycle length, fertility requirements, and disease tolerances. 

The uncertainties of the information available also accentuate the challenge of modeling 

the genetic effect. The name attributed to some cultivars may not represent a single genetic 

material, as some farmers may store the grain to use as seeds and attribute the same name, although 

it is no longer the original hybrid. This happens even more intensely with the landraces. The same 

landrace commonly denominated Criollo is likely to encompass many different genetics depending 

on the region. 

Part of the effect of slope and elevation and the lack of clear interactions between landrace 

cultivars and elevation is attributed to the poor discrimination of different landrace populations in 

the present dataset. Early researches conducted in the same region found that environmental 

differences are the primary factor determining the overall pattern of maize genetic variability, but 

even social origin had a significant effect on maize populations in all environments (Brush and 

Perales, 2007). A study evaluating 21 populations of maize landrace populations from three 

altitudinal ranges in the same region concluded that cultivars did not perform well planted in 

different elevations  (Mercer et al., 2008). The performance was especially poor when highland 

landraces (>2000 m) were cultivated in midland sites (1200–2000 m), which is a concerning signal 

of poor adaptation to climate change (Mercer and Perales, 2010). Within a limited latitude and 

time range, the elevation is also strongly correlated with temperature, and other weather variables, 

which could also explain why including weather variables in the model did not improve model 

performance since most of the weather effect could be already explained by the topographical 

variables. Increased temperatures are expected to be the main factor reducing rainfed maize yields 

under future scenarios (Ureta et al., 2020). Therefore, relying on elevation to make predictions is 

risky because it does not account for the temporal variability in temperatures, which were probably 

less important in the seven years spanning the training data than the spatial variability. 
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Although there were some issues with the variety and fertilizer data from the field 

observations, the overall quality of these variables was superior to the data obtained from other 

sources. This becomes clear when comparing the general low importance of soil and weather 

variables in the models (Figure 3.7) with the usually large effects in other works (Khaki and Wang, 

2019; Ureta et al., 2020). The importance of high-resolution characterization of the environment 

has been discussed mostly in the context of crop breeding (Resende et al., 2020). Researchers 

recognize the need to increase the resolution to the level of specific experimental plots and 

individual plants, which requires the development of low-cost, high-throughput envirotyping 

platforms (Xu, 2016). These needs extend beyond lineage selections, reaching the last step of 

breeding programs to recommend the most suitable cultivars for each environment. The 

development and use of these platforms would greatly benefit this type of data-driven approach.  

With increased data quality, environmental variables and interactions would be expected 

to become more important in the model, which would allow more accurate recommendations. The 

main limitation with gridded weather datasets is usually precipitation, which in turn is one of the 

most critical factors in rainfed agriculture (Feng et al., 2020; Ureta et al., 2020). Better radar and 

satellite data may provide improved data in the near future. However, the spatial variability of rain 

is so intense, occurring in short distances, that low-cost devices to measure precipitation at the 

field level could still be crucial. 

Improved envirotyping data quality includes location-specific data to represent each field 

and more variables to represent chemical, physical, and biological soil quality. An evaluation of 

236 soil samples taken in Vilaflores, a municipality in Chiapas with 25000 ha of maize production, 

revealed coefficients of variation greater than 100% for most soil attributes. The majority of 

samples were low in potassium and organic matter, and 40% of the sites were below the critical 

limit of 15 ppm of phosphorus (López Báez et al., 2019). Recent research in the same area has 

identified soil compaction as one of the main constraints to maize production. The decrease of soil 

porosity as a result of the compaction was correlated to yields losses, which in years with drought 

events in the crop’s critical period reduced maize yields up to 58% (López Báez et al., 2018). 

Evaluating only the amount of fertilizer applied without information about the soil nutrient 

contents can be misleading because there is an inverse correlation between the amount of fertilizer 

used and soil fertility. However, the yields may still be lower in poor soil with more fertilizer than 



90 
 

in more fertile soils with less fertilizer, effectively creating a negative correlation between applied 

fertilizer and yield.  Phosphorus and potassium's low importance in the models reflects the lack of 

knowledge about these nutrients' soil levels and their low variability within the dataset. Acquiring 

the right and accurate information remains a significant challenge to the development of decision 

support systems and the adoption of prediction methods (Messina et al., 2020). 

Delivering results 

The most interesting results at the dataset level were the interactions between genotypes 

and N rates. The differences in nitrogen use efficiency indicate an excellent opportunity to make 

better choices within the currently available hybrids and develop new cultivars that are more 

productive and require fewer inputs (Mastrodomenico et al., 2018a). It is important to note that 

these are aggregated results, and the best hybrid on average may not be the same as the more 

frequent best hybrid for each location since there are higher-level interactions that are not 

considered. A comparison of genotype performance from on-farm trials and on-station trials found 

similar results in precision of a single plot, but with significant interaction effects between 

genotype and trial system (Schmidt et al., 2018). The interactions are likely caused by uncontrolled 

differences in management between the research stations and farmer's fields. A similar effect is 

likely to occur with the results of this research, which advises for careful considerations when 

translating model results into field recommendations since many essential factors were left out of 

the model. These factors could be tolerance or resistance to insects and diseases, for example. 

These aspects are crucial in the context of on-farm experimentation. Some authors have 

argued that management history and biological factors are rarely described, although these are 

important descriptors of the research population and therefore needed to establish the populations 

for which studies seek to generalize their findings (Kool et al., 2020). Others have argued that it is 

useful to look at the actual crop yield effects at the whole system rather than control how the crop 

is managed because those differences represent the real world (Coe et al., 2019). Based on this 

work's results, it is important to be explicit with how the data was collected, how the model was 

trained, and the intended use of the results. Communicating the strengths and weaknesses of the 

methods employed helps set the right level of expectations and build trust over time, which is 

necessary to allow for new iterations of model improvements. It is essential to accept the 

limitations in using the model as a prescriptive system and reiterate how the resulting 
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recommendations can be used as suggestions for further testing. One of the goals of a decision 

support system is to encourage farmers to make personalized decisions based on a set of adaptive 

options and on factors that are not well captured by agronomic research (Eldon et al., 2020). 

The decisions to decompose the system interaction were motivated both by its interaction 

strength in the model and the known differences between the two systems that are not easily 

captured with the variables used. Governmental agriculture programs have played an essential role 

in fostering the adoption of high-yielding hybrids, while cultural preferences have encouraged 

landrace retention (Bellon and Hellin, 2011; Hoogendoorn et al., 2018). The farmers using 

landraces are unlikely to switch to hybrids just because they are more productive. Even if there 

were no cultural barriers, input-intensive practices are unlikely to be cost-effective for many 

subsistence farmers (Eldon et al., 2020). Rather than suggesting optimal management practices, 

this research exemplifies the use of explainable ML to offer farmers the opportunity of 

benchmarking their management decisions with peers in similar growing conditions (Figure 3.20 

and 3.21) and visualize expected outcomes if different decisions were made. The next step to 

ensure that farmers have access to the information would be to deploy interactive versions of these 

tools in smartphone applications such as AgroTutor (Bayas et al., 2020). 

 

CONCLUSIONS 

 

Using the random forest algorithm, machine learning models explained up to 75% of the 

variation of maize yield in various environments and cropping systems scenarios in Chiapas. The 

variance explained for years not seen during training dropped to 60%. The model performance 

further decreased when evaluated in a specific system and year combinations. The ability to use 

the model to predict crop performance in future weather scenarios is still limited. The main 

challenges faced during model development were the high dimensionality of weather variables and 

the unbalanced spatial and temporal distribution of the cultivars. The total number of independent 

observations limits the use of more complex models. There are opportunities to integrate machine 

learning and crop simulation models to solve these challenges. 
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Domain knowledge and explainable machine learning methods allowed the use of the 

model as a source of information to create and validate hypotheses. Feature importance and 

interaction strength were used to identify the most critical variables. Partial dependence plots were 

used to determine the trends in the main interactions. Nitrogen was the management decision that 

influenced yields the most, with different yield responses depending on the year and variety. The 

differences in nitrogen use efficiency indicate an excellent opportunity to make better choices 

within the currently available hybrids and develop new cultivars that are more productive and 

require fewer inputs. Breakdown plots were used to reveal contributions and uncertainties at the 

individual observation level. This can allow each farmer to answer why they obtained a particular 

result and what would have happened if they made different decisions. 
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CONCLUSIONS AND DISCUSSION 

 

This work's main contribution is to offer flexible alternatives to analyze datasets and 

answer questions that challenge most of the traditional statistical methods in different contexts. 

This flexibility can be seen in using the same model with varying inputs, relying on the spatial 

dependence without using covariables, and analyzing observational data that lacks independence. 

The discussion of the results focused on aspects that are overlooked in most publications. The 

emphasis on model performance in different years and locations and understanding the main 

factors contributing to decreased performance (Chapter 1 and 3) illustrates the importance of 

explainable machine learning. 

Different uncertainty estimation methods (Chapter 1) were used to evaluate the overall 

quality of the data at the trial level and select individual plots in which the error is likely to be 

higher, which should be targeted for new ground truth data acquisition in order to improve the 

model. The ability to understand when the predictions fail is one of the foundations for model 

improvement. Although the methods were tested within a plant breeding context, there are many 

possibilities to use the same tools to collect higher resolution data and improve on-farm precision 

experimentation (Chapter 2). 

The combination of on-farm precision experimentation and geographically weighted 

regression proved to be an effective methodology to test precision agriculture central hypothesis’ 

of whether there is significant within-field variability in optimal rates (Chapter 2). The results also 

allowed decomposing the expected benefits from improved management of temporal variability 

(optimizing the average rate) and spatial variability (variable-rate application). Yield is the most 

common dependent variable used to evaluate the effect of agronomic treatments. However, the 

yield is the result of many interactions between production factors, and most of those cannot be 

directly controlled by decision-makers. The literature is full of examples of research that implicitly 

or explicitly assume that yield variability is directly associated with variations in optimum 

management decisions. The methodology presented in Chapter 2 avoids these assumptions and 
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gives some evidence that they are inappropriate. Yield response, that is, how the yield change 

when an alternative management decision is tested, should be the focus of the research.  

This also raises the concern that evaluating model performance by how well the yield 

variation was explained is not aligned with the objective of using the results to optimize 

management decisions. In the models used in Chapter 2, the spatial variability of the intercept is 

more important to overall model performance than all higher-level parameters combined. 

However, improving the estimates of the intercept does not help to improve recommendations. 

The same applies to the observational data used in Chapter 3. Improved model performance from 

additional non-controllable production factors will only be meaningful to decision-makers if they 

change yield response to management decisions. 

Prescriptive analytics is considered the ultimate level of data analysis, the hardest to 

achieve, but also the most valuable. All the limitations identified in this research showed that there 

is still a long way to achieve this level in agriculture, especially with more complex production 

systems. In the meantime, working with farmers, understanding their needs, and offering them the 

opportunity of benchmarking their management decisions with peers in similar growing conditions 

and visualize expected outcomes if different decisions were made is the most promising strategy. 
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