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ABSTRACT

The problem of accurately estimating and characterizing different mutations

in the viral genomes present within a population is of great importance in

tracking and mitigating the spread of the virus and is made difficult by the

lack of a sufficient number of sequenced genomes especially during the early

stages of an outbreak. We consider the problem of determining the muta-

tional support and distribution of mutations in the SARS-Cov-2 genome and

its open reading frames (ORFs). The mutational support refers to the un-

known number of sites that are mutated among all the viral strains present

in a population. The support and distribution of mutations can be used to

guide primer selection for RT-PCR test kits, study the virulence of the virus,

discover adaptation mechanisms deployed by the virus to evade the host

immune system, as well as to identify new strains that might be circulat-

ing in the population early on. We propose new state-of-the-art polynomial

estimation techniques using weighted and regularized Chebyshev approxima-

tions for small-sample mutational support estimation and we use a modified

Good-Turing estimator for distribution estimation. Our differential analysis

of mutations in various population subgroups (based on data retrieved from

GISAID repository) revealed several important differences including those in

the ORF6 and ORF7a regions for older versus younger patients, ORF1b and

ORF10 regions for females versus males and in several ORFs for Asia versus

Europe and North America. We also found no significant mutations in the

primer regions from ORF N chosen by CDC for RT-PCR test kits in any of

the subpopulations, which is important for reliability of the test results.
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CHAPTER 1

INTRODUCTION

Viruses undergo frequent mutations introduced mostly during the replica-

tion of their genetic material, a process that is prone to errors. Some of

these mutations provide survival advantage to the virus by helping it evade

the immune system of the host, thus becoming more widespread in the pop-

ulation. The rates of mutations are different for various different viruses

and have been extensively explored in virology literature in the past [1, 2].

RNA viruses are known to mutate faster than DNA viruses, as are single

stranded viruses compared to double stranded ones. This is due to inaccu-

rate RNA duplication compared to DNA and general structural instability

of single stranded genomes [3]. An inverse correlation between the length

of the viral genome and the rate of mutation has also been documented.

Viruses with shorter genomes mutate much more rapidly than their longer

counterparts [4].

The host immune system has memory of viruses it has already encountered

and if the host is exposed to such a virus, the immune system proceeds swiftly

to eliminate it. However, the virus can mutate and if the rate if mutation

is sufficiently high, it can make it harder for the host immune system to

identify it, thus slowing down the immune response. This phenomenon is

known as antigenic drift. This gives fast mutating viruses more time to

replicate and spread, and by evading the host immune system such viruses

pose a great health risk [5, 6]. On the other hand, some recent studies have

shown that high rates of mutation can also be detrimental to survival of the

virus on short time scales by triggering a rapid innate immune response by

the host [7]. Thus, the mutational landscape of a virus is closely related to

its potential to spread among a population and a virus may need to explore

a significant number of mutations in its attempt to successfully infect a large

number of hosts [8, 9, 10]. However, our understanding of the causes of

elevated mutation rates and their correlation with clinical outcomes is still
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limited. Accurately determining the mutation rates and the distribution

of mutations is an important first step in the direction of addressing these

questions.

A number of different definitions of viral “mutation rate” can be found in

the literature [1, 11]. Genomic mutation rate represents the average number

of positions at which each viral genome differs from its ancestral genome and

is calculated as a product of the per-nucleotide mutation rate and the length

of the genome. The per-nucleotide mutation rate of RNA viruses lies in the

range 10−6 − 10−4 [11]. Even though it is known that replication errors are

not the only source of mutations in viral genomes, replication error rates

and mutation rates of viruses are often used interchangeably. Some studies

estimate the counts of mutations in sequenced genomes using the genomes

of the first infected individual (Patient 0) or, more frequently, the first indi-

vidual that was sequenced (Patient 1) as a reference. The genomic mutation

rate of SARS-Cov-2 is estimated to be 2-3 mutations a month [12]. Since

a large carrier population can harbor viruses with widely different mutation

rates, it is more challenging to define the genomic mutation rate for such a

population.

To define the mutational support of a virus we use the viral genome of

Patient 1 as a reference and index all locations along the genome. The muta-

tional support of a single viral genomic sequence equals the set of locations

where it disagrees with the reference. The size of the mutational support

hence equals the Hamming distance between the reference and the sequence

under consideration. The mutational support of a population (henceforth,

mutational support) of viral genomes equals the size of the union of the in-

dividual mutational supports. Only a subset of the infected patient’s viral

genomes is sequenced at any given time, therefore we do not observe the

mutational support of a population directly and estimation methods need to

be employed. We can count the number of mutations present in at least one

of the sequenced samples, however a simple count based estimator (maxi-

mum likelihood estimator) gives good performance only in cases where the

number of samples sequenced is significantly larger than the length of the

viral genome. In the absence of sufficient number of sequenced samples, the

maximum likelihood estimator may return highly inaccurate estimates due to

unobserved mutations. This phenomenon, known as the small-sample effect,

has been extensively researched in the machine learning community [13, 14].
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Nevertheless, to the best of our knowledge, the problems of mutational sup-

port and mutational distribution estimation in the small-sample regime have

not been addressed in the virology literature. We argue that this problem

is of significant relevance as its successful solution may be used to assess

the virulence of the virus, guide primer selection for real-time RT-PCR tests

during the early stages of an outbreak and correlate mutational rates with

elevated risks of heavy symptoms.

Our contributions are two-fold. First, we present new machine learning

methods for determining the unknown support of mutations and their distri-

butions given sequencing data from a limited number of Covid-19 patients.

The methods use efficient polynomial class estimators and exhibit state-of-

the art performance on synthetic datasets. The actual genomic datasets

are retrieved from the Global Influenza Surveillance Aid (GISAID) reposi-

tory during the early stages of the Covid-19 outbreak. In our initial anal-

ysis, we only use < 9, 000 samples, which is a significantly smaller number

than the length of the SARS-Cov-2 genome which roughly equals 30, 000.

The approach is based on weighted Chebyshev polynomial estimators and

adapted Good-Turing distribution estimators, and its accuracy is evaluated

based on larger sample set sizes retrieved on later dates. Second, the mu-

tational supports are estimated for three different population types, namely

according to geographic region (Asia, Europe, North America (NA)), gender

(female/male) and age (< 55, > 55). For European samples retrieved at a

later time stage, estimates for females of age < 55 versus males of age > 55

were analyzed as well. The estimates are used to predict mutational hotspots

and compare the genomic loci with highest mutation frequency in different

subpopulations. For the latter task, we further process the results by using

the Jaccard distance as well as the symmetric Kullback-Leibler divergence.

Furthermore, to determine if the mutation rates are appropriately low in

genomic regions harboring primers used for real-time reverse-transcriptase

polymerase chain reaction (RT-PCR) testing [15], we separately scrutinize

the N ORF of SARS-Cov-2 samples.

Our analysis reveals several important biological findings. The predicted

mutational supports exhibit significant differences in the ORF6 and ORF7a

regions in older versus younger patients, and in the ORF1b and ORF10 re-

gions in females versus males. The mutational support of the ORF1b region

for young females is almost twice that of old males, while old males have
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a significantly larger mutational supports for genes S and ORF10. Given

that young females are much less likely to develop severe symptoms than

old males, the identified potential high-mutation regions may be further ex-

amined to identify their potential role in the spread and severity/potency of

the virus. Furthermore, it is important to observe that the variance of the

support is extremely high in the ORF8 region, close to 200 times higher for

patients above 55 years of age compared to patients below 55 years of age.

Less surprisingly, there also exist statistically significant differences in the

ORFs of Asian versus European and NA samples in the ORF1a,b and other

ORFs. Second, despite the fact that we predict that the N region of SARS-

Cov-2 will have a very large mutational support, almost all high-probability

mutations fall outside of the two regions of paired primers recommended by

the CDC for RT-PCR testing.

The remainder of the thesis is organized as follows. In Chapter 2, we

describe the data acquisition process, the pre-processing tasks as well as our

new small-sample support and distribution estimation algorithms. Chapter

3 contains the most relevant results and the discussion of their biological

relevance, and Chapter 4 concludes the work.

4



CHAPTER 2

MATERIALS AND METHODS

We first describe the organization of the SARS-Cov-2 genome, followed by

the data acquisition from GISAID, data pre-processing as well as the en-

tire work-flow pipeline we developed for our analysis. Finally, we describe

our polynomial based small-sample support estimator and a modified Good-

Turing estimator for distribution estimation.

2.1 Organization of the SARS-Cov-2 genome

A breakdown of the genomic structure of SARS-Cov-2 is depicted in Fig-

ure 2.1, and described in detail in [16] and [17]. Understanding the roles

played by various ORFs of the viral genome is of importance as it allows one

to put the results of the mutational support analysis into proper context:

Mutational variability in certain ORFs of different host subpopulations may

be indicative of different innate immune responses and evading mechanisms

employed by the virus.
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Figure 2.1: Organization of the SARS-Cov-2 genome. (Wuhan-Hu-1,
GenBank MN908947)

Typically, coronaviruses have genomes including at least six open reading

frames (ORFs). ORF1a and ORF1b constitute the longest component of
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the genomes and are responsible for encoding two polypeptides, pp1a and

pp1ab, which are jointly used to create a family of NSP proteins. This

family of polypeptides includes replicase-transcriptase proteins, responsible

for promoting cellular mRNA degradation and blocking the translation pro-

cess in host cells, thereby impairing the operation of the immune response

and proofreading. The pp1a/b polypeptides are functionally combined using

proteases, such as the native chymotrypsin-like protease. Viral structural

proteins are encoded by the sgRNA region, and include the ORF2 or spike

(S), ORF5 or membrane (M), ORF4 or envelope (E), and nucleocapsid (N)

proteins, as well proteins encoded by the ORF10 sequence. ORF3a encodes

a membrane protein that interacts with proteins encoded by ORFs M, S and

E and is believed to play an important role in viral release and the generation

of cytokine storm; on the other hand, ORF3b encodes proteins that block

the induction of interferons with antiviral activity. The ORF6 products are

important virulence factors that enable the virus to escape detection by the

immune system of the host.

For real time RT-PCR testing and detection of Covid-19, the oligonu-

cleotide primers and probes are selected from the nucleocapsid (N) gene

region (per CDC guidelines for the United States [18]), and as provided

in panels produced by Integrated DNA Technologies (IDT), including two

primer pairs/probe sets. As a control, additional primer/probe sets are used

such as the human RNase P gene (RP) which is also included in the panel.

Countries like Germany and China have adopted primers from other genomic

regions, as outlined in [15]. For individual testing for Covid-19 in the United

States, it is of special interest to predict mutation rates in the N region of the

genome [15]. High-rate mutations in this region may cause highly undesirable

false negatives in the test outcomes. ORF7a encodes for a membrane protein

while ORF7b is believed to act as a viral attenuation factor and contributor

in human infectivity, similarly to the protein encoded by ORF8. The ORF9b

has the role to impede mitochondrial morphology and function and disable

the interferon response of the host, while ORF9c appears to block important

signaling pathways of the host [17].
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2.2 Data acquisition

For the proposed analyses, we used data from the GISAID EpiCoV database [19]

which contains sequenced viral strains collected from patients across the

world. We downloaded the data at three time points, starting from 04-

03-2020, continuing on 04-10-2020 and finishing on 04-14-2020. We then

revisited the repository on 10-20-2020 to further evaluate the quality of our

predictions regarding the mutational supports. At that point of time, 9, 271

samples from Asia and more than 30, 000 samples from NA and 85, 000 sam-

ples from Europe were available.

For samples made available in April as well as in September 2020, we

filtered the datasets only to include nearly-complete samples, i.e., those of

length > 29, 000 nts, resulting in a number of samples summarized in Ta-

ble 2.1. We also downloaded the associated metadata used for patient sub-

typing. Note that we used results obtained early in the monitoring process

in order to evaluate our small-sample estimation schemes. Table 2.1 provides

the number of samples available within different categories for each of the

three time points.

Table 2.1: Number of samples available for different phenotype classes and data
retrieved on three different dates, 04-03-2020, 04-10-2020 and 04-14-2020.

Date Age Gender Region Total # of samples
> 55 < 55 Male Female Asia Europe NA

04-03 909 1,477 1,349 1,061 510 1,695 818 3,511
04-10 2,373 1,850 2,315 1,956 615 3,194 1,147 5,650
04-14 3,047 3,231 3,526 2,817 636 5,890 1,774 8,893

As the first step in our analysis, we used the sequence alignment soft-

ware MUSCLE [20] to perform pairwise alignment of all the samples with

the SARS-Cov-2 sequence of Patient 1, published under the name Wuhan-

Hu-1, admitted to the Central Hospital of Wuhan on December 26, 2019

(GenBank accession number MN909847). Furthermore, we also performed

alignment with respect to Patient 1 of two additional continents, Europe

and NA. The latter alignment was performed to better determine how the

mutational support and mutational distribution depends on a particular ge-

ographic context.

For each aligned pair of samples, we generated a “mutation profile,” a list
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containing the positions in the reference genome in which the patient aligned

to the reference has a substitution mutation. We did not perform multiple

sequence alignment in order to assess the mutation landscape as we need to

analyze each patient data separately (each patient and her/his mutations are

treated as one sample in the estimation procedure). The mutational profile

lists are subsequently aggregated over all the patient samples, resulting in

a histogram of mutations across all positions in the viral reference genome.

The aggregate profiles are further partitioned according to the 11 genes they

are located in on the viral genome depicted in Figure 2.1. The total count

of mutations for each location in each gene is used as a sufficient statistic for

estimating the mutational support and the distribution of the mutations in

each of the 11 genes. The analytic pipeline used is depicted in Figure 2.2.

Figure 2.2: The data analysis flowchart: Viral sequencing data is retrieved
from the GISAID repository and then aligned against the genome of
Patient 1 or regional Patient 1 in a pairwise fashion. The substitutions at
different genomic locations for all analyzed pairs of samples are counted
and used as sufficient statistics for the estimation procedures.

To adjust for alignment artifacts introduced by sequencing errors, dropouts

and alignment gaps, we removed all gaps encountered in the prefixes and

suffixes and sufficiently long gaps (> 10 nts) within the actual alignments.

Most gaps are encountered at the 5’UTR and 3’UTR regions of the genome,

as may be expected from outputs of global alignment algorithms.
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As there exists a large body of evidence of stratified susceptibility and

severity of symptoms across different racial, age and gender groups [21, 22],

we performed four different types of mutational support and distribution

analyses. In the first set of tests, we split the patient mutation histograms

based on gender (male/female), based on age (under 55/over 55) and based

on the geographic location (Asia/ NA/ Europe). The age threshold was set

by taking into consideration available sample sizes needed for the analysis

and the age profile of patients available on GISAID; the threshold also reflects

different risk groups for the development of severe symptoms. In addition,

we performed the same analysis for a combination of patient features for

settings with sufficiently many samples available early in the pandemic, such

as males above 55 years of age/females below 55 years of age, from Europe.

Note that in all the described cases, “geographic location” refers to the region

of infection of the patient and not the region where he/she was tested and

the sample was sequenced.

Since the number of samples per population type may vary significantly,

we performed two tests. In one test we used all samples available, while

in another we adjusted for difference in sizes of the sets by subsampling the

larger of the two classes to make the sample sets of equal sizes. The number of

samples available for various patient subgroups is listed in Table 2.1. For data

obtained on 04-03-2020, we used all the samples available for all the classes,

without balancing the class sizes. For data retrieved on 04-10-2020 and 04-

14-2020, we balanced the classes by subsampling from the larger of the two

classes for both age- and gender-based subtypes. For different geographical

regions, on 04-10-2020, we used all 615 samples from Asia and subsampled

Europe and NA to 1000 samples each. Similarly, we used all 636 samples

from Asia and subsampled Europe and NA to 1, 774 samples each, for data

retrieved on 04-14-2020. It is important to point out that by performing

the experiments with different sample set sizes one can compare the quality

of the estimates obtained using samples from the early stages of epidemics

and those obtained from later stages when more information about individual

viral sequences is available. Furthermore, the new machine learning methods

outlined in Sections 2.3 and 2.4 apply to any other viral or bacterial dataset

collection with the obviously required modifications to account for the genetic

profile of the microorganisms.
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2.3 New small-sample support estimators

We focus on the polynomial approximation approach put forward in [23], and

significantly improve on it in practice by introducing new weighted Cheby-

shev polynomial optimization techniques largely unknown in the machine

learning and computational biology community [24]. The weighted approx-

imation method can be seamlessly combined with regularization techniques

that use the variance of the estimator in a way that complements features

used in maximum likelihood (ML) estimation [25]; and with semi-infinite

programming (SIP) solvers that produce the parameters of the estimator.

The SIP methods can be solved consistently and highly efficiently through

discretization resulting in a small linear program (LP) of size decreasing with

the number of samples. Interestingly, despite the fact that our estimators are

constructed using an LP as is the case for the best performing ML-based ap-

proach [26], the ML-LP formulation has a number of variables and constraints

that actually increase with the number of samples; this difference makes our

estimator significantly more efficient as is needed for large scale estimation

processes like the ones described in this work, in addition to improving their

performance.

Next, we provide a detailed description of our polynomial estimation method.

Recall that the support of a discrete probability distribution is defined as the

number of symbols with positive probability of occurrence. We define the

mutational support of a virus as the total number of genomic sites mutated

in any viral genome in any individual (observed or unobserved due to lim-

ited testing), compared to a reference genome. As already pointed out, in our

case the reference is the genome of Patient 1, the first sequenced SARS-Cov-2

genome or the genome of regional Patient 1.

The most commonly used techniques for support and distribution estima-

tion are ML methods which directly use the empirical counts of the symbols

to determine the support or probabilities of interest. It is well known that

ML approaches perform poorly for large alphabet sizes (supports) when only

a small number of samples from the distribution is available. In this case,

they fail to account for samples that have never been observed due to limited

sampling. To see why this is the case, assume that we observe 10 samples

from a distribution supported on {1, . . . , 100}. Clearly, with only 10 samples

available, our best possible guess for the support size will be the number of
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distinct symbols observed which is a number ≤ 10 and far from the correct

value 100.

The problem of estimating the support of an unknown probability distri-

bution or estimating the distribution itself in the context of small-sample

sets has a long history. The first line of work in this area is attributed to

Laplace, as described in [27], who introduced a class of smoothed distribu-

tion estimators termed add 1 (or more generally, add constant c estimators).

These estimators adjust the counts of observed symbols in order to account

for the unseen symbols.

Let P = (p1, p2, . . .) be a discrete distribution over some finite alphabet

and let xn be a vector of i.i.d. samples drawn according to the distribu-

tion P . The problem of interest is to estimate the support size, defined as

S(P ) =
∑

i 1{pi>0}. We use S instead of S(P ) to avoid notational clutter.

An important assumption used in our estimation methods is that the mini-

mum non-zero probability of the distribution P is greater than 1
k
, for some

k ∈ R+, i.e., inf{p ∈ P | p > 0} > 1
k
. We let Dk denote the space of all prob-

ability distributions satisfying inf{p ∈ P | p > 0} > 1
k
. A sufficient statistic

for xn is the empirical distribution (i.e., histogram) n = (n1, n2, . . .), where

ni =
∑n

j=1 1{xj=i} and 1A stands for the indicator function of the event A.

To determine the quality of an estimator, we use the most frequently stud-

ied risk model, the minmax risk under normalized squared loss, defined as

R∗(k, n) = inf
Ŝ

sup
P∈Dk

E

( Ŝ(N)− S
k

)2
 . (2.1)

We seek a support estimator Ŝ that minimizes

sup
P∈Dk

E

( Ŝ(N)− S
k

)2
 = sup

P∈Dk

[
E2

(
Ŝ(N)− S

k

)
+ var

(
Ŝ(N)− S

k

)]
.

(2.2)

The first term within the supremum captures the expected bias of the estima-

tor Ŝ. The second term represents the variance of the estimator Ŝ. A“good”

estimator should jointly balance out the worst-case contributions of the bias

and variance (note that for the case that only the bias is considered directly,

and the variance accommodated for by modifying the bias-optimized solu-
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tion, the underlying estimator was analyzed in [23]).

To introduce our method, we first describe the class of polynomial estima-

tors. Given a positive integer parameter L, we say that an estimator Ŝ is

a polynomial class estimator with a threshold parameter L (i.e., a Poly(L)

estimator) if it takes the form Ŝ =
∑

i gL(ni), where gL is defined as

gL(j) =

ajj! + 1, if j < L

1, otherwise.
(2.3)

The coefficients a satisfy aj ∈ R and a0 = −1, (since this choice ensures that

gL(0) = 0) and have to be optimized in order to minimize the risk. One can

associate an estimator Ŝ with its corresponding coefficients a, i.e.,

Poly(L) =

{
a ∈ RL+1|a0 = −1

}
.

The authors of [23] proposed using a special form of polynomial estimators

in which the coefficients aj correspond to scaled evaluations of a Chebyshev

polynomial of order L. The Chebyshev polynomial of the first kind of degree

L is defined as

TL(x) = cos(L arccos(x)) =
zL + z−L

2
,

where z is the solution of the quadratic equation z + z−1 = 2x. The polyno-

mial TL is bounded in the interval [−1, 1] and may be scaled and shifted to

lie in an arbitrary interval [l, r] based on

RL(x) = −
TL(2x−r−l

r−l )

TL(−r−l
r−l )

,
L∑
j=0

ãjx
j.

Clearly, RL(0) = −1 and ã0 = −1.

The Chebyshev polynomial estimator is an estimator for which

ãj =
R

(j)
L (0)

j!
, (2.4)
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and it takes the form S̃ =
∑

i g̃L(ni), where

g̃L(j) =

ãjj! + 1, if j < L,

1, otherwise,
(2.5)

with L , bc0 log kc, [l, r] ,
[n
k
, c1 log k

]
. (2.6)

The choice values of the constants c0 and c1 are c0 = 0.558 and c1 = 0.5

and they are obtained based on an analysis of the bias and variance of the

estimator.

The estimator S̃ above is order-optimal in the exponent under the unbi-

ased risk. Thus, the estimator can be improved by selecting coefficients of

Poly(L) that jointly optimize the bias and variance term in the risk. We show

how to accomplish this task by rewriting the original minmax problem as a

regularized exponentially weighted Chebyshev approximation problem [24].

In order to jointly optimize the bias and variance term in the squared loss,

we start by directly analyzing supP∈Dk E
(
S−Ŝ
k

)2
. Classical Poissonization

arguments lead to

E

(
S − Ŝ
k

)2

=
1

k2

{ ∑
i:λi>0

( L∑
l=0

e−λia2l λ
l
il!

)
+

∑
i 6=j:λiλj>0

(
e−λiPL(λi, a)

)(
e−λjPL(λj, a)

)}
,

where PL(λ, a) ,
∑L

l=0 alλ
l. Taking the supremum over Dk we can bound

the risk as

≤ sup
λ:λi∈[nk ,n]

1

k2

{ ∑
i:λi>0

( L∑
l=0

e−λia2l λ
l
il!

)
+

∑
i 6=j:λiλj>0

(
e−λiPL(λi, a)

)(
e−λjPL(λj, a)

)}

≤ sup
λ∈[n

k
,n]

{
1

k

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λPL(λ, a)

)2}
.

In the above inequality, we used the Cauchy-Bunyakovsky-Schwarz inequal-

ity, the fact that S ≤ k and

(∑L
l=0 e

−λa2l λ
ll!

)
> 0, for all λ > 0. Hence,
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the optimization problem for the coefficients of the polynomial estimator at

hand reads as

inf
a∈Poly(L)

sup
λ∈[n

k
,n]

{
1

k

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λPL(λ,a)

)2}
. (2.7)

Problem (2.7) represents an instance of a regularized weighted Chebyshev

approximation problem. If we ignore the first term in (2.7), the optimization

problem becomes

inf
a∈Poly(L)

sup
λ∈[n

k
,n]

(
e−λPL(λ, a)

)2

.

The term e−λPL(λ, a) corresponds to the bias of the estimator. It is straight-

forward to see that the optimal choice of a for the above problem is a solution

to

inf
a∈Poly(L)

sup
λ∈[n

k
,n]

∣∣∣∣e−λPL(λ, a)

∣∣∣∣. (2.8)

The first term 1
k

(∑L
l=0 e

−λa2l λ
ll!

)
, which corresponds to the variance, may

be written as

1

k

( L∑
l=0

e−λa2l λ
ll!

)
= aTM(λ)a

, ||a||2M(λ),M(λ) ,
e−λ

k
Diag(λ00!, λ11!, ..., λLL!).

Clearly, ||.||M(λ) is a valid norm, and consequently, the first term in (2.7) can

be viewed as a regularizer.

Simple algebra reveals that

sup
P∈Dk

1

k
|E(S − Ŝ(N))| ≤ sup

λ∈[n
k
,n]
|e−λPL(λ,a)| (2.9)

≤ e−
n
k sup
λ∈[n

k
,n]
|PL(λ,a)| = e−

n
k sup
λ∈[n

k
,n]
|
L∑
l=0

alλ
l|, (2.10)

where (2.9) is equivalent to (2.8), while (2.10) resembles the problem studied

in [23], except for a different optimization interval used within the supremum

(the authors of [23] choose a shorter interval in order to decrease the contri-
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bution of the variance to the loss). Hence, optimizing (2.9) should produce

an estimator with smaller bias as the exponential weight is inherent to the

formulation. The modified bound in (2.10) is minimized with respect to the

coefficients a, using the minmax property of Chebyshev polynomials [28, 29],

resulting in ã.

To solve (2.7), we more closely examine some results known about weighted

Chebyshev approximations [29] and semi-infinite programs. Solving for the

problem directly is difficult, so we instead resort to numerically solving the

epigraph formulation of problem (2.7) and proving that the numerical solu-

tion is asymptotically consistent.

The epigraph formulation of (2.7) is of the form ([30], Section 6.1)

min
t,a1,...,aL

t subject to{
1

k

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λPL(λ, a)

)2}
≤ t,∀λ ∈ [

n

k
, n],with a0 = −1.

(2.11)

Note that (2.11) is a semi-infinite programming problem. There are many

algorithms that can be used to numerically solve (2.11), such as the dis-

cretization method, and the central cutting plane, KKT reduction and SQP

reduction methods [31, 32]. For simplicity, we focus on the discretization

method. For this purpose, we first form a grid of the interval [n
k
, n] involv-

ing s points, denoted by Grid([n
k
, n], s). Problem (2.11) may consequently

be viewed as an LP with infinitely many quadratic constraints, which is not

solvable. Hence, instead of addressing (2.11), we focus on solving the relaxed

problem

min
t,a1,...,aL

t subject to

{
1

k

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λPL(λ, a)

)2}
≤ t,

∀λ ∈ Grid([
n

k
, n], s),with a0 = −1.

(2.12)

The solution of the relaxed problem is asymptotically consistent with the

solution of the original problem (i.e., as s goes to infinity, the optimal values of

the objectives of the original and relaxed problem are equal). Problem (2.12)

is an LP with a finite number of quadratic constraints that may be solved

using standard optimization tools. Unfortunately, the number of constraints
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scales with the length of the grid interval, which in the case of interest is linear

in n. This is an undesired feature of the approach, but it may be mitigated

through the following theorem which demonstrates that an optimal solution

of the problem may be found over an interval of length proportional to the

significantly smaller value log k, where k
log k

. n is the fundamental bound

for support estimation. We relegate the proof to Appendix A.

Theorem. For any a ∈ Poly(L) and L = bc0 log kc, and c0 = 0.558, let

g(a, λ) =
1

k

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λPL(λ, a)

)2

.

Then, we have

sup
λ∈[n

k
,n]
g(a, λ) =

supλ∈[n
k
,6.5L] g(a, λ) if nk ≤ 6.5L

g(a, nk ) if nk > 6.5L.

Remark. In weighted approximation theory [24], the problem of bounding

the interval over which the supremum is achieved is a topic of significant

interest, with many important available results. For example, if we ignore

the regularization term, we can directly use the Mhaskar-Saff theorem to

reduce the length of the interval in the supremum to π
2
L. Our Theorem

shows that even when a regularization term is present, we can still restrict

the length of the interval to 6.5L. Our proof differs from that of the more

general Mhaskar-Saff theorem, since we exploit the specific structure of the

problem.

The optimization problem we need to solve to determine our estimator

therefore reads as

min
t,a1,...,aL

t subject to{
1

k

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λPL(λ, a)

)2}
≤ t,

∀λ ∈ Grid([
n

k
, 6.5L], s),with a0 = −1.

(2.13)

Since L = bc0 log kc, the length of the optimization interval in (2.13) is

proportional to log k.

It seems intuitive to assume that as s grows, the solution of the relaxed
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semi-infinite program approaches the optimal solution of the original prob-

lem (2.11). This intuition can be rigorously justified for the case of objective

functions and constraints that are “well-behaved,” as defined in [33] and [34].

The first line of work describes the conditions needed for convergence, while

the second establishes the convergence rate given that the discretized solver

converges. We use these results in conjunction with a number of properties

of our objective SIP to establish the claim in the following theorem. The

proof is relegated to Appendix A.

Theorem. Let s be the number of uniformly placed grid points on the inter-

val (2.13), and let d ,
6.5L−n

k

s−1 be the length of the discretization interval.

As d → 0, the optimal objective value td of the discretized SIP (2.13) con-

verges to the optimal objective value of the original SIP t?. Moreover, the

optimal solution is unique a?. The convergence rate of td to t? equals O(d2).

If the optimal solution of the SIP is a strict minimum of order one (i.e., if

t−t? ≥ C||a−a?|| for some constant C > 0 and for all feasible neighborhoods

of a?), then the solution of the discretized SIP also converges to an optimal

solution with rate O(d2).

In summary, for given parameters k and n, and sample count histogramsN ,

we obtain the optimal coefficients of our polynomial estimators by solving the

small LP program described above. An example of our polynomial estimator

(henceforth termed Regularized Weighted Chebyshev (RWC) estimator) and

its scaled coefficients gL is shown in Figure 2.3, along with a corresponding

example of a Chebyshev estimator (termed the Wu-Yang (WY) estimator).

It is easily observed that the coefficients of the two estimators exhibit very

different behaviors: Unlike the Chebyshev case, for which the coefficients

have to alternate in sign, our estimators are not constrained to obey this

pattern.

Remark. It is important to point out that the RWC estimators are “ad-

ditive”: They operate on each symbol separately and the contributions of

symbols are linearly combined to obtain the overall support estimate.

We conclude by observing that our RWC estimator can be further (heuris-

tically) improved in practice by optimizing it with respect to a minmax risk

that involves a different scaling factor in the denominator. This estimator,

termed the RWC-S estimator (to indicate that the scaling is performed us-

ing the result of a naive support estimator) is described in more detail in

17



0 1 2 3 4 5 6 7

j

-8

-6

-4

-2

0

2

4

6

8

10

g
L
(j
)

Coefficients of g
L

RWC

WY

Figure 2.3: The function gL for RWC and WY estimator. The parameter
setting used for the illustration is n = k = 106 and c0 = 0.558.

Appendix A.

2.4 Small-sample distribution estimation

By far the most frequently used method for distribution estimation in the

small-sample regime is the Good-Turing estimator [13], which tries to account

for the unseen by adjusting the counts (histograms) of the actually observed

symbols. In a slightly modified form the method may be described as follows.

For a sequence xn of length n over an unknown finite alphabet, we once again

let ni denote the number of times a symbol i appears in xn. Furthermore,

we let ϕt stand for the count of counts, i.e., the number of symbols that

appear t times in xn. The estimator proposed in [14] combines the Good-

Turing and ML estimators, the latter being used for the frequently observed

symbols. For symbols that appear t times, if ϕt+1 > Ω(t), then the Good-

Turing estimate is used to determine the underlying total probability mass,

otherwise the ML estimator is used instead. More precisely, for a symbol

appearing t times, if ϕt+1 > t we use the Good-Turing estimator, otherwise

we use the ML estimator. If ni = t, the estimated probability of the symbol

i is computed according to

pi =

 t
η
, if t > ϕt+1,

ϕt+1+1
ϕt

t+1
η
, otherwise,
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where η is a normalization term that ensures that the obtained values are

probability masses. The term ϕt+1 used in the Good-Turing estimator is

replaced by ϕt+1 + 1 so that every symbol has a nonzero probability.

The modified Good-Turing estimator is used instead of the classical Good-

Turing estimator as the latter is known to poorly estimate the probabilities

of high frequency symbols. Modifications of the Good-Turing estimator that

take sampling artifacts/errors into account are also available, and are imple-

mented as described in [35, 36].

2.5 The performance of RWC estimators on synthetic

data

Consider a finite alphabet S = {1, . . . , S}. Assume that the probability of

symbol i ∈ S equals pi and that you can randomly sample symbols from

the alphabet with replacement and record the distribution histogram of N

observed symbols. The question of interest is how accurately one can estimate

S based on N samples and the parameter k dictating the smallest nonzero

probability of the distribution.

For simplicity, assume that the alphabet is S = {1, 2, · · · , 10} and that

pi =
i∑10
j=1 j

=
i

55
, i ∈ {1, 2, · · · , 10}.

Clearly, S = 10 and k = 55. For the RWC and RWC-S estimators, we

choose L = b0.558 log kc = 2. Now assume we draw n = 6 samples from the

alphabet according to the specified distribution. In this case, the values of

gL for the RWC-S estimator are given in Table 2.2.

Table 2.2: The gL values corresponding to the RWC-S estimator for
different distinct symbol counts: Note that Ŝc denotes the naive estimator
(i.e., the estimator equal to the count of different symbols).

Ŝc = 1 Ŝc = 2 Ŝc = 3 Ŝc = 4 Ŝc = 5 Ŝc = 6
gL(0) 0 0 0 0 0 0
gL(1) 1.8128 2.4819 2.9427 3.2422 3.4367 3.5758
gL(2) 1.8128 2.3967 1.7205 1.0699 0.5556 0.1663

gL(j),∀j ≥ 3 1 1 1 1 1 1
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Consider all possible histograms of n = 6 symbols in this setting, sum-

marized in Table 2.3. We can clearly see that except for the case N =

[1, 1, 1, 1, 1, 1], our estimator provides a significantly better support estima-

tion result. Note that the histogram N = [1, 1, 1, 1, 1, 1] arises only with

very small probability (9%), and this probability significantly decreases as

n, S, k increase. Nevertheless, even in this case, the risk (mean-square error

normalized by S2) of our RWC-S estimator equals 0.2186 while that of the

naive estimator equals 0.319.

Table 2.3: The estimated supports produced by the RWC-S and naive estimators
for all possible histogram inputs. The probability of each histogram is computed
via a Monte Carlo method with 106 independent trials. Bold numbers indicate
the best estimation result compared to the ground truth.

Histogram N [1,1,2,2] [1,1,1,1,2] [1,1,1,3] [1,2,3] [1,5] [1,1,4]
RWC-S 8.6242 14.3034 10.7266 5.6632 3.4819 6.8854
Naive 4 5 4 3 2 3

Probability 0.2633 0.3792 0.1374 0.0801 0.0021 0.0253
Histogram N [2,2,2] [3,3] [2,4] [6] [1,1,1,1,1,1]

RWC-S 5.1615 2 2.7205 1 21.4548
Naive 3 2 2 1 6

Probability 0.0171 0.0025 0.0043 0.0001 0.0886

We also tested the performance of the estimators on significantly larger

sets of synthetic data for which the ground truth distributions and their

supports are known. In particular, we compared the RWC method with the

Good-Turing (GT) estimator, the WY estimator of [23], the PJW estimator

described in [37] and the HOSW estimator of [38]. We did not compare

our method with the estimators introduced in [26, 39] due to their high

computational complexity [38].

We considered six different distributions: the uniform distribution with

pi = 1
k
, the Zipf distributions with pi ∝ i−α, and α equal to 1.5, 1, 0.5 or

0.25, and the Benford distribution with pi ∝ log(i + 1) − log(i). We choose

the support sizes for the Zipf and Benford distribution so that the minimum

non-zero probability mass is roughly 10−6. We run the estimator 100 times

to calculate the risk. For both approximation-based estimators, we fix c0 to

be 0.558. With our proposed method, we solve (2.13) on a grid with s = 1000

points on the proposed interval [n
k
, 6.5L]. For the estimator described in [23],

we set c1 = 0.5 according to the recommendation made in the cited paper.
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Figure 2.4: Comparison of worst case risks for different ground truth
distributions and estimators. In our simulations we set n = k = 106 and
c0 = 0.558.

The GT method used for comparison first estimates the total probability

of seen symbols (e.g., sample coverage) according to Ĉ = 1 − h1
n
, and then

estimates the support size according to ŜGT = Ŝc

Ĉ
; here, Ŝc stands for the

(naive) counting estimator. Note that h1 equals the number of different

alphabet symbols observed only once in the n samples.

Figure 2.4(a) shows that the RWC estimator has a significantly better

worst-case performance than all other methods when tested on the above

described collection of distributions, provided that n ≥ 0.2k. Also, both

RWC and WY estimators have significantly better error exponents compared

to the GT, PJW and HOSW estimators. The GT and PJW estimators

perform better than RWC if n . k
log k

, which confirms the results of our

theoretical analysis as well.

In the second set of experiments, we change the normalization from (1/k)2
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to (1/S)2 as was also done in [38]. The RWC-S estimator minimizes an upper

bound on the worst-case risk E
(
Ŝ−S
S

)2
. As already pointed out, a detailed

description of this algorithm and an intuitive explanation of why it outper-

forms the RWC method is provided in Appendix A. Figures 2.4(b) illustrate

that our RWC-S estimator significantly outperforms all other estimators with

respect to the worst-case risk normalized by S2. Moreover, the RWC-S esti-

mator outperforms all known estimators on almost all tested distributions.

As illustrated in Figure 2.4(c) we see that a classical Chebyshev approxima-

tion introduces a larger bias than our RWC method whenever the underlying

distribution is close to uniform (i.e., when λ ∼ n
k

= 1). This phenomenon

persists even when regularizations is taken into account.

Another common approach to testing support estimators on real data is to

estimate the number of distinct words in selected books [26, 23]. Books are

chosen as ground truth test cases as the words in a text are not independent

and identically distributed (i.i.d.) and hence provide a means to test the

performance of estimators optimized for i.i.d. settings. The performance of

our approach and those of prior works on Hamlet and Macbeth can be found

in Appendix B. In the experiments, we randomly sampled words in the

text with replacement and used the obtained counts to estimate the number

of distinct words. For simplicity, we set k to the total number of words.

For example, as the total number of words in Hamlet equals 30, 364, we set

k = 30, 364. Once again, our method significantly outperforms all other

competitive techniques both in terms of convergence rate and the accuracy

of the estimated support for all experiments.

The details about data acquisition pipeline, alignment software and imple-

mentations of the RWC and RWC-S algorithms may be found at the following

GitHub repository: https://github.com/rana95vishal/Mutational-lan

dscape-SARS-Cov-2
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CHAPTER 3

RESULTS AND DISCUSSION

We proceed to apply our small-sample support and distribution estimation

methods on GISAID SARS-Cov-2 genomic datasets. The underlying assump-

tion is that there exists a “ground truth” distribution of mutations, and that

most of the mutations cannot be observed due to limited testing. Our studies

of the mutational support and mutation distribution are conducted for dif-

ferent patient subpopulations and all ORFs separately in order to determine

potential subpopulation differences. As already pointed out, the estimators

to be used are additive implying that estimates for individual genes may be

summed to obtain the estimate for the whole genome.

First, we observe that by the last small-sample data collection date re-

ported in this thesis, 04-14-2020, the average number of mutations with

respect to the reference was 7.93 (for male patients) and 7.96 (for female

patients). This difference is statistically insignificant. For patients older

than 55 years, this number was 7.33 while for those younger than 55 the

recorded values were significantly higher, amounting to 8.377. For three dif-

ferent continents, Asia, Europe and NA, the average number of mutations

recorded equaled 13.51, 6.67, and 6.68, respectively. The average number of

mutations per patient in Asia is almost twice as large as the corresponding

numbers in Europe and NA, which is indicative of the fact that the outbreak

started in Asia and that the virus may have been present in the population

significantly longer than in Europe and NA. In all cases, the total number

of recorded mutations across all patients is too small to allow for accurate

prediction of the actual mutational support using frequency methods.
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3.1 Mutational support estimation

The first set of results pertains to data collected at a very early stage of

the pandemic (04-03-2020) that did not include sufficiently many samples to

allow for sample set sizes to be evened out through subsampling. Therefore,

for this analysis, all available samples are included, which may create biases

due to sample set size differences. The results are listed in Tables 3.1, 3.2 and

3.3. They illustrate the difference in the support estimates for two different

age groups, genders and three geographic regions. The nonuniform sample

size artifacts do not obscure the most important findings regarding mutation

rates in different genes across different age groups, gender and geographic

region - the same trends persist even when significantly more samples are

used in the analysis, as described next.

Table 3.1: Support sizes of different age groups based on 909 samples for
individuals over 55 years of age and 1, 477 samples below 55 years of age. The
data was obtained from GISAID by 04-03-2020 and includes all the samples for
the two categories available at the given date. ORF1ab and N are shown in
bold due to their large length and relevance in testing, respectively.

Gene ML RWC RWC-S Maximum Support
Symbol > 55 < 55 > 55 < 55 > 55 < 55 All Ages
ORF1a 625 764 1,280 1,544 1,209 1,454 13,203
ORF1b 276 616 570 1,301 514 1,223 8,087

S 160 218 291 420 277 375 3,822
ORF3a 55 73 103 132 92 121 828

E 14 13 23 23 23 22 228
M 34 35 58 63 54 55 669

ORF6 11 25 19 42 19 42 186
ORF7a 24 27 41 45 39 44 366
ORF8 340 340 87 344 235 343 366

N 66 110 108 197 97 172 1,260
ORF10 26 29 29 53 33 53 117

Tables 3.4, 3.5 and 3.6 list the results analogous to those reported for 04-

03-2020, obtained using datasets retrieved on 04-10-2020. The datasets were

sufficiently large to allow for random subsampling to obtain equal sample set

sizes for all subpopulations considered (excluding Asia).

Based on the results of Table 3.4, we see that the mutational supports in

populations of different age (cutoff at 55 years) differ substantially for the
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Table 3.2: Support sizes based on 1, 349 male and 1, 061 female samples. The data
was obtained from GISAID by 04-03-2020 and includes all the samples for the two
categories available. ORF1ab and N are shown in bold due to their large length
and relevance in testing, respectively.

Gene ML RWC RWC-S Maximum Support
Symbol Male Female Male Female Male Female Both Genders
ORF1a 854 702 1,807 1,468 1,702 1,388 13,203
ORF1b 348 594 690 1,307 640 1,234 8,087

S 225 186 447 359 405 329 3,822
ORF3a 68 61 132 111 115 99 828

E 18 10 30 18 29 18 228
M 37 36 62 68 57 60 669

ORF6 13 27 22 49 21 50 186
ORF7a 32 21 55 38 53 38 366
ORF8 340 341 344 592 343 458 366

N 96 85 165 143 146 129 1,260
ORF10 26 10 30 17 29 17 117

Table 3.3: Support sizes for different geographical regions based on 510 samples
from Asia, 1, 695 from Europe and 818 from NA. The data was obtained from
GISAID by 04-03-2020 and includes all the samples for the three categories
available at the given date. ORF1ab and N are shown in bold due to their large
length and relevance in testing, respectively. Maximum support for all the genes
is the same as shown in previous tables.

Gene ML RWC RWC-S
Symbol Asia Europe NA Asia Europe NA Asia Europe NA
ORF1a 770 757 397 1,645 1,558 776 1,603 1,455 720
ORF1b 279 590 205 566 1,251 372 553 1,159 345

S 168 181 131 321 345 254 313 309 230
ORF3a 84 62 38 158 113 71 154 100 63

E 37 11 6 66 19 9 65 19 9
M 30 29 15 53 49 25 50 44 24

ORF6 2 28 5 2 46 8 2 45 7
ORF7a 108 38 49 215 66 90 214 65 89
ORF8 340 27 19 341 46 26 342 43 28

N 53 90 68 93 152 122 85 137 114
ORF10 10 25 9 18 28 15 17 27 14

ORF3a, ORF6 and ORF7a regions (note that ORF1ab and N are shown in

bold in every table due to their large length and relevance in testing, re-
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Table 3.4: Support sizes of different age groups based on 1, 850 samples from
each group. The data was retrieved from GISAID on 04-10-2020. The
mutational supports between the two groups differ substantially for the genes
shown in italics. ORF1ab and N are shown in bold due to their large length
and relevance in testing, respectively.

Gene ML RWC RWC-S Maximum Support
Name > 55 < 55 > 55 < 55 > 55 < 55 All Ages

ORF1a 996 934 2,039 1,857 1,896 1,743 13, 203
ORF1b 499 484 991 965 924 896 8,087

S 265 279 490 547 458 501 3,822
ORF3a 104 79 188 138 171 124 828

E 23 19 36 33 36 32 228
M 55 47 98 86 92 77 669

ORF6 38 26 65 43 64 41 186
ORF7a 60 31 108 50 103 49 366
ORF8 340 341 93 342 236 343 366

N 140 163 248 294 223 265 1,260
ORF10 31 28 35 49 39 50 117

Table 3.5: Support sizes for different genders based on 1, 956 samples for each
group. The data was retrieved from GISAID on 04-10-2020. The mutational
supports between the two groups differ substantially for the genes shown in italics.
ORF1ab and N are shown in bold due to their large length and relevance in testing,
respectively.

Gene ML RWC RWC-S Maximum Support
Name Male Female Male Female Male Female Both Genders

ORF1a 1,071 1,115 2,176 2,313 2,055 2,175 13,203
ORF1b 500 804 1,013 1,721 941 1,621 8,087

S 283 293 551 562 509 519 3,822
ORF3a 114 99 216 175 190 158 828

E 24 14 37 23 36 22 228
M 52 56 87 101 82 94 669

ORF6 42 30 75 51 74 50 186
ORF7a 42 51 74 87 71 84 366
ORF8 341 342 344 345 344 345 366

N 143 162 251 282 226 259 1,260
ORF10 29 12 33 20 32 19 117

spectively). For ORF7a, the older population exhibits almost twice as many

mutations as the younger population, while for ORF6 and ORF3a the cor-

responding numbers are 1.5 and 1.4, respectively; the estimated mutational
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Table 3.6: Support size for three different geographic regions based on 615
samples from Asia and 1, 000 samples from Europe and NA each. The data was
retrieved from GISAID on 04-10-2020. The mutational supports between the
three groups differ substantially for the genes shown in italics. ORF1ab and N
are shown in bold due to their large length and relevance in testing, respectively.
Maximum support for all the genes is the same as shown in previous tables.

Gene ML RWC RWC-S
Name Asia Europe NA Asia Europe NA Asia Europe NA

ORF1a 827 504 470 1,768 975 948 1,725 919 874
ORF1b 308 271 244 631 531 478 611 491 432

S 182 163 142 352 336 269 340 293 243
ORF3a 91 56 39 174 96 74 168 85 63

E 37 12 14 66 21 24 65 21 24
M 31 23 17 55 38 28 52 35 27

ORF6 3 48 15 3 87 26 3 86 25
ORF7a 109 63 51 216 118 94 214 116 93
ORF8 340 19 21 335 29 31 339 29 31

N 58 72 77 96 121 137 91 108 129
ORF10 10 26 7 18 48 10 17 48 10

supports of the ORF6 and ORF7a regions are close to 1/3 of the whole gene

length for individuals older than 55 years. The mutational differences in the

ORF6 and ORF7a region persist with an increase in the number of samples

(see the Additional Table C.1), with an estimated mutational support for

the former region equal to almost 1/2 of the gene length. Furthermore, addi-

tional differences are observed in the M region which were not apparent when

using smaller sample set sizes. The protein encoded by ORF6 was studied

in depth during the SARS epidemics [40] and it has been established that

the ORF6 protein impairs the nuclear import complex formation (control-

ling the transport of innate immune regulatory cargo to the nucleus of cells

capable of increasing antiviral defenses). The protein encoded by ORF7a

has been implicated in inhibiting bone marrow stromal antigen 2 virion teth-

ering [41]. Bone marrow stromal antigen 2, also known as tetherin, is an

interferon-induced protein which, when expressed, reduces the release of en-

veloped viral particles. The significant number of predicted mutations in the

ORF7a region of older patients suggests a similar observation as that made

for the ORF3a region - a possible effort by the virus to disable or strongly

impair the function of the tetherin antigen.
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The results pertaining to female/male patients differ significantly from

those pertaining to different age groups. The results are listed in Table 3.5,

and imply strong differences in the mutation rates of the ORF1b and ORF10

regions. The mutational support of ORF1b in the female population is 1, 621

compared to 941 in the male population, which amounts to a 8.4% difference

with respect to the length of the ORF. A similar result is true for the ORF10

region, for which no well-understood functions are known. Some recent re-

sults suggest, based on different evidence, that ORF10 encodes a functional

protein in SARS-CoV-2 and that positive selection is driving the evolution

of this region [42].

The above described differences persist with increased sample set sizes.

The estimated mutational support for ORF1b is 24% and 16% of the length

of the region, and for ORF10 18% and 32% of the length of the region, for

females and males, respectively (see the Additional Table C.2). Smaller yet

possibly relevant differences are also observed for the ORF3a and M regions,

but these do not persist with increased sample set sizes.

For samples obtained from Asia, Europe and NA the results show that

despite the number of samples for Asia being significantly smaller than that

of Europe and NA, the predicted mutational support in all regions is signif-

icantly higher except for the N and ORF6 genes (with only 3 mutations ob-

served in the ORF6 gene). This is particularly the case for ORF3a and ORF8,

where the mutation rates are more than 2 and 10-fold higher in Asian pa-

tients, respectively. It is reasonable to assume that these regions are mutated

early on in an epidemic and tend to “accumulate” the number of mutations.

Also, the significant differences suggest that the epidemic started significantly

earlier in Asia than Europe and NA. The ORF3a region is known to encode

for a protein that activates the NLRP3 inflammasome [43]. ORF3a proteins

are activators of pro-IL-1β gene transcription and protein maturation that

trigger activation of the NLRP3 inflammasome. The inflammasome has a

dual role of boosting the host defense and driving pathologic inflammation.

Based on our findings, one possible explanation for the high mutation rate in

this region in older populations is that the virus trying to disable the host’s

immune system and increase its virulence. Recent results show that the

ORF8 protein may be acquired from SARS-related coronaviruses present in

bats [44], which could explain the large difference in the mutational support

through “adaptation” in a human host (for patients in Asia). The increase

28



in the number of samples available for analysis shows that significant dif-

ferences in the mutation support of the E, M, ORF6, ORF7a and ORF10

regions exist as well.

Additional Tables C.1, C.2 and C.3 show the trends of increase for the

mutational support with increased sample sizes. For data collected by 04-

14-2020, this includes roughly 9, 000 samples. All sample set sizes used are

equal (except for Asia, for which the sample set sizes available are signifi-

cantly smaller), therefore allowing for fair comparisons. Additional Table C.1

illustrates that when the sample set sizes are equal, no significant differences

are observed in the mutational supports of disparate age groups except in

the E, ORF6, ORF7a and ORF8 regions. Given that the difference in the

number of mutations in the ORF7a regions persists for several data acquisi-

tion dates, the finding appears to be sample-size independent. On the other

hand, the significant differences in the number of mutations in the E region

is only evident when sufficiently many samples are available. The E region

contains the code for the encapsulation protein of viral RNA, in addition to

some spike proteins. In older subjects, this region is subjected to a signif-

icantly larger number of mutations than in other groups. This may imply

that immunity in elder patients may be dependent on generating antibodies

for the encapsulation proteins. Clearly, no conclusive explanation is possible

based on limited data sets but the results suggest performing further sam-

pling and analysis for this particular ORF in older patients. Although it has

been observed that the immune responses of individuals vary significantly

due to the initial viral load, physical health, and the hosts microbiome, no

definite link between these features and the mutation rates in the above re-

gion can be established due to lack of supporting clinical data at GISAID

and other Covid-19 data repositories.

Additional Table C.2 illustrates surprisingly few differences in the muta-

tional supports of male and female patients once a sufficiently large number

of samples is available: Exceptions are the ORF1b and ORF10 regions. For

different geographic regions, the most significant difference observed pertains

to the ORF8 region, where samples from Asia exhibit a roughly one order

of magnitude larger number of mutations compared to those for samples se-

quenced in Europe and NA. There also exists a marked difference in the

mutational support of ORF7a between patients from Europe on one side and

patients from Asia and NA on the other (i.e., a roughly two-fold difference
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for Europe and NA).

Figure 3.1: Support sizes for all genes and for different groups along with
their standard deviation estimates. The estimates are based on data
collected by 04-14-2020 and should provide the most accurate assessment of
the mutation rate in the small-sample regimes investigated. Estimates are
based on 3, 047 samples each for patients above 55 and below 55 years of
age, 2, 817 samples each for male and female patients and 1, 774 each for
patients exposed in Europe and North America.

Ten additional data collection days (starting on 04-03-2020, ending on

04-14-2020) lead to more than twice the samples, and the results for the

latter date are shown in Figure 3.1 along with the standard deviations of

the estimators. Note that in order to estimate the variance of an estimator,

one needs to subsample the data which requires more samples to start with;

hence, the standard deviation is only evaluated for all samples available by 04-
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14-2020. The additional data samples show that the N region of the SARC-

Cov-2 genome exhibits a much more significant increase in mutations than

could have been predicted from early small-set sample sizes, amounting to

roughly an average of 23% of the genome, across populations. This finding is

significant as it suggests that genomic regions used as identifiers for the virus

may mutate much faster than predicted based on small preliminary sample

set information. Nevertheless, the N1 and N2 regions used as primer targets

for RT-PCR testing (the use of region N3 as a primer has been discontinued)

appear to be largely unmutated. This is illustrated in the Additional Table

C.11 which lists a total of only 8 mutations observed in these regions in the

SARS-Cov-2 genomes of US patients. Similar results for mutations in viral

genomes of patients from China are presented in Additional Table C.12.

Table 3.7 provides results for a finer partition of test samples into two

categories, one including males over 55 years of age and another females

below 55 years of age, with both populations sampled from Europe. The first

category has been empirically observed to be at higher risk of infection and

for exhibiting more severe symptoms [22]. Substantial mutational differences

are observed in the ORF1b, S and ORF10 regions. The differences in the

ORF1b and ORF10 genes appear to be mostly gender specific, while the

age factor may contribute to the differences in the mutation rates of the S

region. Another important finding is that the mutational support of ORF1b

is almost twice as large in the low risk population compared to the high risk

population. This result may imply that the large mutational support is a

result of a highly competitive virus-host interaction which forces the virus to

mutate the proteins encoded by ORF1b in order to gain an advantage over

the host’s immune system.

Figure 3.1 shows the mutational support sizes, along with the standard

deviations of the estimates for six different patient categories. Since the true

distribution of mutations of various groups of patients is not known, one can-

not directly calculate the standard deviation of the support sizes produced by

our estimator. To compute the standard deviation, we therefore subsample

85% of the available samples and compute the support size for the returned

aggregate mutation profile. Our samples are chosen randomly and uniformly

over the whole period of data collection, and for each month of data collec-

tion samples are retrieved separately and in proportion to the total number

of samples available for that month. Since the number of samples collected
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and made available during the months of December and January is small,

we group these two months together in the subsampling process. Subsam-

pling is repeated 100 times resulting in 100 aggregate mutation profiles and

corresponding support size estimates.

The mutational supports generated by our procedure have variances that

demonstrate good concentration of the estimates; some exceptions exist,

though, and are most likely not a consequence of the estimation procedure it-

self but rather an indicator of disparately collected datasets or some unknown

governing biological process. The latter is supported in part by previously

observed high rates of mutations in certain SARS-Cov-2 genes [45, 46]. The

results for ORF8 are particularly interesting because the corresponding stan-

dard deviations of the mutational support vary significantly across different

categories of patients: The standard deviation of the support size is close to

200 times higher for patients above 55 years of age than patients below 55

years of age.

We also performed a collection of tests in which alignments and mu-

tational counts were performed with respect to the first sample from the

same geographical region. Hence, for patients from Asia, the alignments

and mutation counts are still performed with respect to the genome of the

Wuhan-Hu-1 patient. For NA, we used the sample USA/WA1/2020 with ID

EPI ISL 404895, while for Europe we used the sample France/IDF0372/2020

with ID EPI ISL 406596, both being the chronologically first samples from

NA and Europe available at GISAID. For this study, we only used samples

retrieved by 04-14-2020. The results are available in Additional Tables C.4-

C.7. As expected, the mutational support estimates are lower for both the

NA and European sample sets. However, one important and interesting ex-

ception pertains to the estimates for the gene N regions and samples from

Europe, as well as samples for males above 55 from Europe, which are higher

for the alignment and mutation counts performed with respect to Patient

1 in Europe. The same is true for mutational support estimates for gene

N and under gender stratification. Additional differences were observed in

the mutational support of the ORF6a and ORF7 regions in younger females

versus older males when focusing on patients from Europe only and when us-

ing Patient 1 from Europe as the alignment reference. These results suggest

different mutational patterns for viruses hosted by high-risk populations in

Europe versus those in NA and Asia.
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Table 3.7: Support size differences between males above 55 years of age and
females below 55 years of age from Europe based on 1, 078 samples in each
group. The data was retrieved from GISAID by 04-14-2020. The
mutational supports between the two groups differ substantially for genes
with values shown in italics. ORF1ab and N are shown in bold due to their
large length and relevance in testing, respectively. Maximum support for all
the genes is the same as shown in previous tables.

Gene ML RWC RWC-S
Symbol M, > 55 F, < 55 M, > 55 F, < 55 M, > 55 F, < 55
ORF1a 588 670 1,159 1,374 1,078 1,294
ORF1b 349 553 686 1,189 638 1,117

S 209 166 420 329 387 296
ORF3a 76 61 138 104 124 96

E 10 9 17 15 16 14
M 27 33 45 58 40 52

ORF6 15 28 25 47 24 48
ORF7a 31 23 54 36 52 36
ORF8 27 28 45 48 43 46

N 110 108 197 199 178 183
ORF10 27 5 28 7 33 7

It is important to note that for some genes and patient categories it appears

the RWC estimates roughly double those of the ML estimator, but this is

not a general trend of the analysis. For example, the mutational support

estimates for ORF8 for male and female are approximately equal to ML

estimates (Table 3.5) and more pronounced differences exist across the whole

subpopulation spectrum. Similar trends are observed for ORF6 in Asian

subjects, and ORF10 across different subpopulations. Furthermore, although

the naive ML estimates may lead to similar conclusions regarding

the trends of mutations in some ORFs, the degree of the trend

and the scale of the mutation rates within different regions cannot

be fully understood through the use of ML estimates only. As an

illustrative example, the ML estimator implies that there is no difference in

the mutational supports of the ORF8 region in young versus old patients

(Table 3.4), as the values equal 340 and 341, respectively. On the other

hand, the RWC-S estimator predicts mutational supports of 236 and 343,

respectively, which show a very different stratification.

We conclude by pointing out that one way to validate the results for our
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support estimation methods is to compare the results of the ML mutation

counts at a later date with the computed estimates. We compare the mu-

tational supports using the small-sample techniques and the data collected

by 04-10-2020 with the actual count (ML estimates) generated from data re-

trieved by 04-14-2020. In this time period, the number of samples increased

by roughly 3, 000, as may be seen from Table 2.1. The results are listed in

Table 3.8. As may be seen, the estimates obtained based on data acquired

by 04-10-2020 for Europe and NA and all open reading frames are excellent

matches for the actual counts obtained by 04-14-2020, indicating that the

number of samples was sufficient to predict the growth trend. Much more

significant differences are observed for Asia, which can clearly be attributed

to the very small sample sizes available from that continent on both 04-10-

2020 and 04-14-2020 or potential strong correlations between the mutations

in the three aforementioned regions. Other categories that are of interest in-

volve male/female patients for which the actual counts from 04-14-2020 are

significantly smaller than the estimates. This is indicative of a large number

of potentially unseen mutations harbored by these populations.

Finally, Table 3.9 shows the support estimates for samples from patients

from Asia for a more recent date of data collection, 10-20-2020. In this case,

almost 10, 000 samples from Asia were readily available which allows one to

get significantly improved results for ML estimators. As may be seen, the

differences between ML and RWC-S values are significantly smaller, and for

some reason even close to equal when a very different trend was true for

data collected in April. In particular, the ratio of the number of estimated

mutations in the ORF E region for the RWC-S and ML method was close

to 1.76 in April, and only 1.24 in October. Similar findings are apparent for

other ORFs.

3.2 Distribution estimation

Next, we report on the distribution of mutations in the ORF1a,b and N re-

gions of the SARS-Cov-2 virus obtained using the Good-Turing estimator

and once again focus on the traits of different subpopulations. We focus

on these regions as the first two regions are the longest genes while the N

region is of importance for Covid-19 testing in NA. As may be seen from
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Table 3.8: Comparison of small-sample estimates of RWC-S based on data
retrieved by 04-10-2020 and the ML estimates based on data retrieved by
04-14-2020.

Gene Method-Date Asia Europe NA > 55 < 55 Male Female

ORF1a
RWC-S (04-10) 1,725 919 874 1,896 1,743 2,055 2,175

ML (04-14) 835 911 804 1,488 1,439 1,478 1,456

ORF1b
RWC-S (04-10) 611 491 432 924 896 941 1,621

ML (04-14) 316 477 403 787 953 705 991

S
RWC-S (04-10) 340 293 243 458 501 509 519

ML (04-14) 188 246 209 431 400 405 389

ORF3a
RWC-S (04-10) 168 85 63 171 124 190 158

ML (04-14) 93 99 81 156 165 169 140

E
RWC-S (04-10) 65 21 24 36 32 36 22

ML (04-14) 36 15 15 43 26 30 36

M
RWC-S (04-10) 52 35 27 92 77 82 94

ML (04-14) 31 51 28 79 62 67 69

ORF6
RWC-S (04-10) 3 86 25 64 41 74 50

ML (04-14) 3 52 21 53 32 50 40

ORF7a
RWC-S (04-10) 214 116 93 103 49 71 84

ML (04-14) 109 66 135 86 66 68 72

ORF8
RWC-S (04-10) 339 29 31 236 343 344 345

ML (04-14) 340 32 29 341 343 343 342

N
RWC-S (04-10) 91 108 129 223 265 226 259

ML (04-14) 60 139 138 201 219 195 204

ORF10
RWC-S (04-10) 17 48 10 39 50 32 19

ML (04-14) 11 30 10 35 33 31 13

Figures 3.2 and 3.3 there is a surprisingly small difference in the distribution

of the top-20 mutated sites across different age and gender groups, except for

a marked difference in the largest probability (in particular, in the N region

for populations partitioned according to age and populations partitioned ac-

cording to gender when including larger sample sets from 04-14-2020 as seen

in Figure B.2). This is especially the case for samples partitioned according

to gender, despite the fact that the number of mutations in female subjects

in the ORF1b region was close to twice as large as that in male subjects.

In addition, the probability of having a mutation at the highest probabil-

ity sites is significantly larger in “younger” than “older” populations. The

trend remains the same for data collected by 04-14-2020 as supported by

the results in Figure B.2. Figure B.3 gives similar results for alignment per-
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Table 3.9: ML and RWC-S estimates for mutational support in ORFs of
patients from Asia based on data collected by 10-20-2020. At that date,
substantially more samples (9, 271) were available for analysis. The
standard deviation values are given in parentheses.

ORF1a ORF1b S ORF3a E M

ML
5,020 2,691 1,418 464 115 188
(77) (42) (27) (19) (3) (4)

RWC-S
8,481 4,435 2,227 674 143 262
(152) (80) (61) (34) (5) (8)
ORF6 ORF7a ORF8 N ORF10

ML
90 304 363 510 45
(3) (9) (1) (6) (2)

RWC-S
112 333 361 711 61
(7) (15) (7) (14) (3)

formed against the first sequenced patient from each region. The situation

is completely different when comparing the distributions of mutations across

different geographic regions (Figure 3.4), where there are significant differ-

ences in the distributions as one would expect. To compactly summarize

the differences in the distributions, we also computed all three pairwise sym-

metric Kulback-Leibler (KL) divergences for the normalized top-20 mutation

probabilities as described below. We also list the Jaccard distances between

the sets of 20 most frequently mutated sites.

The distributions of mutations only reveal the statistical landscape of the

mutation sites but not their exact locations in the genome. The actual mu-

tated sites in the SARS-Cov-2 genomes are depicted in Figures 3.5 and 3.6, in

addition to a more detailed set of results presented in the Figures B.4 and B.5.

We selected the latest retrieval data for this analysis as it most accurately

reflects the positions undergoing most frequent mutations; we also focused on

two cohorts of patients for which the mutational landscapes differ the most.

The positional stratification of mutations is significant for patients from dif-

ferent continents, especially in the N region of the SARS-Cov-2 genome. The

largest spread of probability mass is (as expected) observed for patients from

Asia which is indicative of the larger exploration rate for mutations in the

region where the outbreak originated.

Additional Table C.8 lists the 10 most frequently mutated sites in the

ORF1a region of all previously analyzed patients categories when alignment
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(a) Mutations in the ORF1a region. (b) Mutations in the ORF1b region.

(c) Mutations in the N region.

Figure 3.2: Comparison of the estimated distributions of mutations in
adults <55 of age and adults >55 of age tested by 04-10-2020. Almost all
the probability mass is concentrated on five sites. The biggest observed
difference occurs in the N region.

is performed with respect to the first patient sequenced in the geographic

region. For the age and gender groupings, as expected, the top-ten sites

are the same except for one difference encountered in both cases (shown in

bold). A mutation in position 8, 781 of Asian and NA viral samples appears

with high frequency but is surprisingly not present in the list of top mutated

sites in the European population. Similarly, Additional Table C.9 lists the 10

most frequently mutated sites in the ORF1b region of all previously analyzed

patients categories. As one may expect from the differences in the mutational

support, the frequent sites of mutations differ significantly more in this region

for different age groups, gender and continents when compared to the ORF1a

region. This is especially the case when viewing the results for different

geographic regions as except for the top-ranked site and one more site (i.e.,

sites 14, 407 and 14, 804); all other locations are different. This suggests
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(a) Mutations in the ORF1a region. (b) Mutations in the ORF1b region.

(c) Mutations in the N region.

Figure 3.3: Comparison of the estimated distributions of mutations in male
and female test subjects tested by 04-10-2020. The distributions exhibit no
difference except on two sites in the N region.

very different evolution patterns of the virus in the ORF1b genomic region

at different regional sites, and more similar mutational patterns for different

gender and age categories. Additional Table C.10 suggests significantly fewer

stratifications in the mutations of different patient groups in the N region.

Gender and age do not appear to play a major role, but marked differences

are observed in patients from Asia, Europe and NA (the sites mutated in two

regions but not in the third are shown in italics). Given the large differences

in the mutational sites of patients across different continents in the N region it

comes as no surprise that different primers for RT-PCR testing were selected

for Asia, Europe and NA. The sites selected for forward and reverse primers

by the CDC, i.e., the N1 and N2 region, do not contain a significant number

of mutations, as may be easily seen from Additional Table C.11. Similar

observations are true for the primers selected in China (Additional Table

C.12).

38



(a) Mutations in the ORF1a region . (b) Mutations in the ORF1b region.

(c) Mutations in the N region.

Figure 3.4: Differences in the estimated distributions of mutations for
different geographic regions based on subjects tested by 04-10-2020. The
distributions differ significantly.

Summarizing the Differences in the Distributions Using the
Symmetric KL Divergence and the Jaccard Distance

The symmetric KL divergence between two discrete probability distributions

p and q is defined as

Ds(p, q) = D(p||q) +D(q||p), D(p||q) =
∑
i

pi log
pi
qi
.

For the mutation distributions pertaining to Europe-NA, Europe-Asia and

Asia-NA, the KL divergences equal 0.672, 0.316 and 0.376 (ORF1a), 0.491,

0.435 and 0.646 (ORF1b), 0.293, 1.021 and 0.303 (N), respectively, for data

collected by 04-14-2020. These results indicate that the largest differences in

the distributions in the ORF1a region exist between Europe and NA, while

the largest differences in the ORF1b region exist between Asia and NA. For
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Figure 3.5: Positions of mutations in the SARS-Cov-2 genome for patients
across three different continents, for data collected by 04-14-2020. The
height of the bar is proportional to the estimated probability of mutation.

Figure 3.6: Positions of mutations in the SARS-Cov-2 genome for European
females of age < 55 and males of age > 55 collected by 04-14-2020. The
height of the bar is proportional to the estimated probability.

the N region, a significant difference between the distributions of mutations is

observed between Europe and Asia, and at this point, no simple explanation

for this finding is possible. Similarly, the corresponding KL divergences based

on the samples collected by 04-10-2020 equal 0.788 (which is significantly

larger than the one predicted based on data collected on 04-14-2020), 0.328

and 0.371 (ORF1a), 0.743 (which is significantly larger than the one predicted

based on data collected on 04-14-2020), 0.615 and 0.0.755 (ORF1b), 0.315,

0.893 and 0.248 (N), respectively. The results for the KL divergences for the

N regions suggest relatively small changes in the distribution of mutations in

the N region, and larger changes in the ORF1a and ORF1b regions, which
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is expected.

Since the previously described distribution estimates do not convey the

information about the locations of the highest mutated sites but only their

frequency of mutations, we also list the Jaccard distances of the sets of mu-

tations specific to each tested subpopulation. For two sets Σ1 and Σ2 over

the same ground set Σ, the Jaccard distance J(Σ1,Σ2) is defined as:

J(Σ1,Σ2) = 1− Σ1 ∩ Σ2

Σ1 ∪ Σ2

.

As may be seen from Table 3.10, the largest distances are observed in

the E and ORF10 regions, in the first case when comparing patients from

Asia and Europe and in the second case when comparing younger female and

older males in Europe. The distances in the N region seem to be significantly

smaller, especially between the two categories of patients from Europe. The

results for the ORF10 region are rather surprising as they indicate the high-

est possible difference is observed between males and females on the same

continent despite these differences being uniformly small for all other open

reading frames. As already pointed out, the function of the ORF10 reading

frame is currently unknown but given the marked mutational profiles in high-

risk and low-risk profiles it is highly likely that this gene plays an important

role in guiding disease symptoms. The exact same trends are observed when

using alignments with respect to Patient 1 from the underlying geographic

region, as listed in Additional Table C.13.
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Table 3.10: The Jaccard distance between sets of mutations from different
pairs of geographic regions, based on alignments with respect to Patient 1
from Wuhan. Values in italics are the smallest in the category, while values
in bold are the largest.

ORF1a ORF1b S ORF3a E M
Asia - Europe 0.91 0.95 0.91 0.92 0.98 0.92
Europe-NA 0.88 0.89 0.88 0.84 0.89 0.89
Asia - NA 0.91 0.95 0.92 0.95 0.91 0.89
Male >55 - Female
< 55 (Europe)

0.85 0.87 0.85 0.73 0.88 0.75

ORF6 ORF7a ORF8 N ORF10
Asia - Europe 0.96 0.74 0.91 0.86 0.89
Europe-NA 0.86 0.91 0.89 0.82 0.95
Asia - NA 0.96 0.89 0.92 0.87 0.89
Male >55 - Female
< 55 (Europe)

0.87 0.83 0.83 0.77 0.97
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CHAPTER 4

CONCLUSION

The problem of determining mutational support and distribution of a virus

is crucial for accessing its virulence and for primer selection for real time

RT-PCR kits, especially during early stages of a pandemic when insufficient

information is available about the virus. An accurate estimate of possible

mutations in the viral genome in the absence of a sufficiently large database

is important for an early understanding of the adaptation mechanisms em-

ployed by the virus as well as the potential differences in its impact on diverse

subpopulations. In this thesis, we presented a novel, state-of-the-art estima-

tor for support estimation for the small-sample regime and benchmarked it

against existing estimators. We also adapted the Good-Turing estimator for

distribution estimation.

We used our estimators for a differential analysis on mutations in the

SARS-Cov-2 genome among various population groups including male/female,

older/younger and different geographic locations. We observed significant dif-

ferences in the mutational support of ORF6 and ORF7a between older and

younger patients as well as differences in ORF1b and ORF10 between males

and females. We also noted that these differences persist with increase in

number of samples available. Given that these ORFs play important biologi-

cal roles in the spread and evolution of the virus, these differences can provide

significant insights into why different population groups are impacted differ-

ently by the virus. Furthermore, we discovered differences in mutational

support among all ORFs while comparing between different geographical

locations. Our analysis showed that patients from Asia had comparatively

higher mutational support than those from Europe and North America, which

can potentially indicate that the virus was in circulation much earlier than

expected. We validated our results by comparing the support estimate re-

turned by our estimators on 04-10-2020 with ML estimates from 04-14-2020

as well as comparing the two estimators on a much larger sample set obtained
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on 10-20-2020.

We observed that even though the N region of the SARS-CoV-2 genome has

a high number of mutations, only a few mutations lay in the primer regions

for real time RT-PCR kits recommended by CDC for testing in the USA.

This is important because frequent mutations in the primer regions can po-

tentially lead to high rates of false negative results. Finally, we compared the

distributions of mutations among various population groups and computed

pairwise symmetric Kulback-Leibler divergences for normalized top-20 mu-

tated positions as well as Jaccard distance for the sets of all mutations for

each population. We emphasize that our estimators are general enough to be

adapted for the genomes of any microorganism, making it extremely useful

in the early stages for any future outbreak as well.
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APPENDIX A

PROOFS

A.1 Proof of the theorem establishing the length of the

optimization interval

To prove the result, we need to show that ∀λ ≥ 6.5L, ∂
∂λ
g(a, λ) < 0. The

derivative of the first term in g equals

∂

∂λ

1

k

( L∑
l=0

e−λa2l λ
ll!

)
=

1

k

( L∑
l=0

(
l

λ
− 1)e−λa2l λ

ll!

)
.

Clearly, the right-hand side in the above expression is negative for all λ > L.

The second term of the derivative equals

∂

∂λ

(
e−λ

L∑
l=0

alλ
l

)2

= 2

(
e−λ

L∑
l=0

alλ
l

)(
− e−λ

L∑
l=0

alλ
l + e−λ

L∑
l=0

l

λ
alλ

l

)

= 2e−2λ
( L∑

l=0

alλ
l

)( L∑
l=0

(
l

λ
− 1)alλ

l

)
.

To analyze the two terms of the derivative, we introduce the vectors y, z,1

and the diagonal matrix D according to

y = (a0λ
0, a1λ

1, ..., aLλ
L)T ,

z = ((
0

λ
− 1), (

1

λ
− 1), ..., (

L

λ
− 1))T ,

1 = (1, 1, ..., 1)T ,

Dii = (−1 +
i− 1

λ
)
(i− 1)!

λ(i−1)
.
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Consequently, we have

∂

∂λ

1

k

( L∑
l=0

e−λa2l λ
ll!

)
=
e−λ

k
yTDy,

∂

∂λ

(
e−λ

L∑
l=0

alλ
l

)2

= 2e−2λyT1zTy = e−2λyT (1zT + z1T )y.

Therefore,

∂

∂λ
g(a, λ) = e−2λyT

(
eλ

k
D + (1zT + z1T )

)
y.

To show that ∂
∂λ
g(a, λ) < 0 for all polynomials of degree L whenever λ > CL,

we show that the matrix
(
eλ

k
D + (1zT + z1T )

)
is negative-definite whenever

λ > CL, for some constant C > 0. It suffices to show that the sum of the

maximum eigenvalues of eλ

k
D and (1zT + z1T ) is negative, since eλ

k
D is a

diagonal matrix. Thus, we turn our attention to determining the maximum

eigenvalues of these two matrices. For eλ

k
D, the maximum eigenvalue satisfies

eλ

k
max

i∈{0,1,...,L}

(
−1 +

i

λ

)
i!

λi
≤ − e

λ

2k
min

i∈{0,1,...,L}

i!

λi
,

since for λ > 2L, one has (−1 + i
λ
) ≤ −1

2
. When λ > L, it is clear that i!

λi
is

decreasing in i, for i ∈ {0, 1, ..., L}, so that

min
i∈{0,1,...,L}

i!

λi
=
L!

λL
≥
(
L

eλ

)L
.

The last inequality is a consequence of Stirling’s formula, which asserts that

n! ≥ (n
e
)n. Combining the above expressions, we obtain

eλ

k
max

i∈{0,1,...,L}

(
−1 +

i

λ

)
i!

λi
≤ − e

λ

2k

(
L

eλ

)L
.

Next, we derive an upper bound on maximum eigenvalue of the second ma-

trix. The i, j entry of the matrix (1zT + z1T ) equals i+j−2
λ
− 2, and all these

values are negative when λ > L. Moreover, it is clear that the matrix of

interest has rank equal to 2. Therefore, the matrix has exactly two nonzero

eigenvalues.

46



Let A = −(1zT + z1T ). All entries of A are positive whenever λ > L. By

Gershgorin’s theorem, we can upper bound the maximum eigenvalues of the

matrix A by its maximum row sum. It is obvious that the maximum row

sum equals

2(L+ 1)− L(L+ 1)

2λ
.

Moreover, the trace of A equals

2(L+ 1)− L(L+ 1)

λ
.

This implies that the minimum eigenvalue of A is lower bounded by −L(L+1)
2λ

,

which directly implies that the maximum eigenvalue of (1zT + z1T ) is upper

bounded by L(L+1)
2λ

.

Summing up the two previously derived upper bounds gives

h(λ) , − e
λ

2k

(
L

eλ

)L
+
L(L+ 1)

2λ
,

whenever λ > 2L. Note that h(λ) < 0 is equivalent to

L(L+ 1)

2λ
<
eλ

2k

(
L

eλ

)L
⇔ log(L) + log(L+ 1) + log(k)− L log(L) + L < λ+ log(λ)− L log(λ).

(A.1)

The function λ + log(λ) − L log(λ) is nondecreasing in λ whenever λ > L

since

d

dλ
(λ+ log(λ)− L log(λ)) = 1− L− 1

λ
.

By the definition of L = bc0 log(k)c, we also have log(k) ≤ L+1
c0

. Using

log(x + 1) ≤ x, which holds ∀x ≥ 1. Hence ∀λ > CL where C > 2, the

sufficient condition for (A.1) to hold is

log(L) + L+
L+ 1

c0
− L log(L) + L < CL+ log(CL)− L log(CL).
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Rearranging terms leads to(
C − log(C)− 2− 1

c0

)
L+ log(C) >

1

c0
.

Sufficient conditions that ensure that the above inequality holds are log(C) ≥
1
c0

and (C−log(C)−2− 1
c0

) > 0. The first condition implies C ≥ e
1
c0 = 6.0021,

while the second condition holds with C = 6.5, for which the first condition

is also satisfied. This completes the proof.

A.2 Proof of the convergence rate of the discretized

SIP

The proof consists of two parts. In the first part, we establish the conditions

for convergence, while in the second part, we determine the convergence rate.

For simplicity, we present the proofs for the case without Poisson repeats.

We then outline how the analysis can be modified to account for the repeats.

A.2.1 Proof of convergence

We start by introducing the relevant terminology. Let Π ⊂ RL+1 be a closed

set of parameters, and let f be a continuous functional on Π. Assume that

B ⊂ R is compact and that g : Π 7→ C(B) is a continuous mapping from Π

into C(B), where C(B) is the space of continuous functions over B equipped

with the supremum norm || · ||∞. For each D ⊂ B let

M(D) = {c ∈ Π| g(c, x) ≤ 0, x ∈ D}

denote the set of feasible points of the optimization problem

min f(c) over c ∈M(D).

Assuming that M(D) 6= ∅, let

µ(D) = inf{f(c)|c ∈M(D)},
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and define the level set

Level(c0, D) = {c ∈ Π| f(c) ≤ f(c0)} ∩M(D).

We also make the following two assumptions:

� Assumption 1: Fine grid Let N0 = N ∪ {0}. There exists a sequence

{Bi} of compact subsets of B with Bi ⊂ Bi+1, i ∈ N0, for which

limi→∞ h(Bi, B) = 0, such that

h(Bi, B) = sup
x∈B

inf
y∈Bi
||x− y||.

� Assumption 2: Bounded level set M(B) is nonempty, and there exists

a c0 ∈M(B) such that the level set Level(c0, B0) is bounded and hence

compact in RL+1.

Convergence of the discretized method, Theorem 2.1 from [33]:

Under Assumptions 1 and 2, the solution of the discretized problem con-

verges to the optimal solution. More formally, we have

µ(Bi) ≤ µ(Bi+1) ≤ µ(B),∀t ∈ N0

lim
i→∞

µ(Bi) = µ(B).

If c∗ is the unique optimal solution of the original problem, and c∗i is the

optimal solution of the discretized relaxation with grid Bi, then

lim
i→∞
||c∗ − c∗i ||2 = 0.

It is straightforward to see that our chosen grid is arbitrary fine. Hence, we

only need to prove that there exists a c0 such that the level set Level(c0, D)

is bounded.

Let c = (a; t) and note that in our setting, f(c) = t. Rewrite g(c, λ) in

matrix form as

g(c, λ) = aTM(λ)a + aTΛΛTa− t,
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where

Λ , e−λ(λ0, λ1, ..., λL)T .

Note that only a1, ...aL are allowed to vary since we fixed a0 = −1. Obviously,

ΛΛT is positive semi-definite and the previously introduced M(λ) is positive

definite for all λ > 0. Since the constraints on g are positive definite with

respect to a1, ...aL, g is coercive in a1, ...aL. Furthermore, for any given t,

the set of feasible coefficients a1, ...aL is bounded. Therefore, given a t0, the

level set Level(c0, B0) is bounded. This ensures that Assumption 1 holds for

our optimization problem.

Next, we prove the uniqueness of the optimal solution c?. Note that prov-

ing this result is equivalent to proving the uniqueness of a?. Hence, we once

again refer to the original minmax formulation of our problem,

inf
a:a0=−1

sup
λ∈[n

k
,6.5L]

aT (M(λ) + ΛΛT )a , inf
a:a0=−1

sup
λ∈[n

k
,6.5L]

hλ(a). (A.2)

Clearly, ∀λ ∈ [n
k
, 6.5L], the function hλ(a) is strictly convex since (M(λ) +

ΛΛT ) � 0, ∀λ ∈ [n
k
, 6.5L]. Taking the supremum over λ preserves strict

convexity since ∀θ ∈ (0, 1), one has

sup
λ∈[n

k
,6.5L]

hλ(θx + (1− θ)y)

< sup
λ∈[n

k
,6.5L]

θhλ(x) + (1− θ)hλ(y)

≤ sup
λ∈[n

k
,6.5L]

θhλ(x) + sup
λ′∈[n

k
,6.5L]

(1− θ)hλ′(y).

Hence supλ∈[n
k
,6.5L] hλ(a) is strictly convex, which consequently implies the

uniqueness of a? and hence c?.

For the case of samples passed through a Poisson channel, it is not hard to

see that the constraints are again strictly convex in a, where one need only

replace M(λ),Λ by

1

k
e−λ(1−e

−η)Diag(0!η0M
(0)
N∗(0), 1!η1M

(1)
N∗(0), ..., L!ηLM

(L)
N∗ (0))

e−λ(1−e
−η)(η0M

(0)
N∗(0), η1M

(1)
N∗(0), ..., ηLM

(L)
N∗ (0))T
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respectively. Thus, a similar analysis is possible and the details are omitted.

The proof above along with the previous observation proves the convergence

result.

A.2.2 Proof for the convergence rate

In what follows, and for reasons of simplicity, we omit the constraint a0 = −1

in the SIP formulation. The described proof only requires small modifications

to accommodate a0 = −1.

Recall that we used Bd to denote the grid with grid spacing d. In order to

use the results in [34], we require the convergence assumptions below.

� Assumption 3: Let c̄ be a local minimizer of an SIP. There exists a local

solution cd of the discretized SIP with grid Bd such that

||cd − c̄|| → 0.

This assumption is satisfied for the SIP of interest as shown in the first

part of the proof.

� Assumption 4: The following hold true:

– There is a neighborhood Ū of c̄ such that the function ∂2

∂λ2
g(c, λ)

is continuous on Ū ×B.

– The set B is compact, nonempty and explicitly given as the so-

lution set of a set of inequalities, B = {λ ∈ R|vi(λ) ≤ 0, i ∈ I},
where I is a finite index set and vi ∈ C2(B).

– For any λ̄ ∈ B, the vectors ∂
∂λ
vi(λ̄), i ∈ {i ∈ I|vi(λ̄) = 0} are

linearly independent.

Recall that our objective is of the form

g(c, λ) = aTM(λ)a + aTΛΛTa− t,
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where

Λ , e−λ(λ0, λ1, ..., λL)T , c = (a; t),

M(λ) ,
e−λ

k
Diag(λ00!, λ11!, ..., λLL!).

It is straightforward to see that the first condition in Assumption 4

holds. For the second condition, recall that B = [n
k
, 6.5L]. Hence,

the second condition can be satisfied by choosing I = {1}, v1(λ) =

(λ − n
k
)(λ − 6.5L). Since we only have one variable v1, it is also easy

to see that the third condition is met.

� Assumption 5: The set B satisfies Assumption 4 and all the sets Bd

contain the boundary points n
k
, 6.5L.

This assumption also clearly holds for the grid of choice. Note that

it is crucial to include the boundary points for the proof in [34] to be

applicable.

� Assumption 6: ∇cg(c, λ) is continuous on Ū × B, where Ū is a neigh-

borhood of c̄. Moreover, there exists a vector ξ such that

∇cg(c̄, λ)T ξ ≤ −1, ∀λ ∈ B.

Note that ∇cg(c, λ) = [∇ag(c, λ);∇tg(c, λ)] and

∇ag(c, λ) = 2(M(λ) + ΛΛT )a.

Also note that ∀λ ∈ B, M(λ)+ΛΛT is positive definite. Hence choosing

ξ to be colinear with and of the same direction as [−aT 1]T , as well as

of sufficiently large norm, will allow us to satisfy the inequality

∇cg(c̄, λ)T ξ ≤ −1, ∀λ ∈ B.

Hence, Assumption 6 holds as well. The next results follow from the

above assumptions and observations, and the results in [34].

(Corollary 1 in [34]) Let td be the optimal objective value of the discretized

SIP used for support estimation with the grid Bd, and let t? be the optimal
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objective value for the original SIP. Since Assumptions 3-6 hold, then for

some c3 > 0 and d sufficiently small, we have

0 ≤ t? − td ≤ c3d
2.

Consequently, td → t? with a convergence rate of O(d2).

(Theorem 2 in [34]) Assume that all assumptions in Corollary 1 above

hold. If there exists a constant c4 > 0 such that

t− t̄ ≥ c4||c− c̄||, ∀c ∈M(B) ∩ Ū ,

then for sufficiently small d and σ > 0 we have

||cd − c̄|| ≤ σd2.

This result implies that if c̄ is also a strict minimum of order one, then

the solution of the discretized SIP converges to that of the original SIP with

rate O(d2). For the Poisson repeat channel, the constraints are also strictly

convex in a. Therefore, a similar analysis is possible and the details are

omitted once again. Combining these results completes the proof.

A.3 Additional theoretical results

The result described in the main text follows from Theorem 6.2 in [24].

(Theorem 6.2 from [24]) Let W (x) = exp(−Q(x)) be a weight function,

where Q : R 7→ [0,∞) is even, convex, diverging for x→∞, and such that

0 = Q(0) < Q(x), ∀x 6= 0.

Then, for any polynomial P (x) of degree ≤ L, not identical to zero, one has

sup
x∈R
|P (x)W (x)| = sup

x∈[−ML,ML]

|P (x)W (x)|,

sup
x∈R\[−ML,ML]

|P (x)W (x)| < sup
x∈[−ML,ML]

|P (x)W (x)|.

Here, ML stands for the Mhaskar-Rakhmanov-Saff (MSF) number, which is
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the smallest positive root of the integral equation

L =
2

π

∫ 1

0

MLtQ
′(MLt)√

1− t2
dt. (A.3)

In our setting, the weight equals exp(−x). Solving (A.3) gives us an MSF

number equal to ML = π
2
L. Thus, we can restrict our optimization interval

to [n
k
, π
2
L+ n

k
]. If there is no regularization term, the optimal interval reduces

to [n
k
, π
2
L+ n

k
].

A.4 Construction of the RWC-S estimator

We introduce the optimization problem needed for minimizing the riskE
(
S−Ŝ
S

)2
.

Poissonization arguments once again establish that

E

(
S − Ŝ
S

)2

=
1

S2

{∑
i∈L

( L∑
l=0

e−λia2l λ
l
il!

)
+
∑
i 6=j∈L

(
e−λi

L∑
l=0

alλ
l
i

)(
e−λj

L∑
l=0

alλ
l
j

)}
.

Taking the supremum over Dk, one can further upper bound the risk as

≤ sup
λ`∈[nk ,n], `∈L

1

S2

{∑
i∈L

( L∑
l=0

e−λia2l λ
l
il!

)
+
∑
i 6=j∈L

(
e−λi

L∑
l=0

alλ
l
i

)(
e−λj

L∑
l=0

alλ
l
j

)}

≤ sup
λ∈[n

k
,n]

{
1

S

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λ

L∑
l=0

alλ
l

)2}

≤ sup
λ∈[n

k
,n]

{
1

Ŝc

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λ

L∑
l=0

alλ
l

)2}
, (A.4)

where the last inequality is due to the fact that Ŝc ≤ S. Note that the

only difference between (A.4) and the corresponding optimization problem

described in the main text is in terms of changing the normalization from 1/k

to 1/Ŝc in the first term. The expression (A.4) is optimized by the solution

of the following problem:
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min
t,a∈Poly(L)

t s.t.{
1

Ŝc

( L∑
l=0

e−λa2l λ
ll!

)
+

(
e−λ

L∑
l=0

alλ
l

)2}
≤ t, ∀λ ∈ Grid([

n

k
, 6.5L], s).

(A.5)
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APPENDIX B

ADDITIONAL FIGURES

This appendix provides additional figures and results.
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Figure B.1: Comparison of performance of various estimators on non-i.i.d.
data with ground truth. The results are obtained over 100 independent
trials. (a) and (b) show the mean and standard deviation of the estimators,
while (c) and (d) show the MSE normalized by S2.
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Figure B.2: Comparison of mutations in various groups of patients based on
the data collected by 04-14-2020. All the alignments were performed with
respect to Patient 1 Wuhan-Hu-1.
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Figure B.3: Comparison of mutations in various groups of patients based on
the data collected by 04-14-2020. All the alignments were performed with
respect to the first sequenced patient 1 in the corresponding region.
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Figure B.4: Positions of mutations in the SARS-Cov-2 genome with high
probability of mutations in patients from different categories based on data
collected by 04-14-2020. The height of the bar is proportional to the
probability of the mutation. All the alignments were performed with
respect to Patient 1 Wuhan-Hu-1.

Figure B.5: Positions of mutations in the SARS-Cov-2 genome with high
probability of mutations in patients from different categories based on data
collected by 04-14-2020. The height of the bar is proportional to the
probability of the mutation. All the alignments were performed with
respect to the first sequenced patient 1 in the corresponding region.
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APPENDIX C

ADDITIONAL TABLES

Additional tables have been provided in a separate Excel file - Supplemen-

tary tables.xlsx.
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