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Abstract 

Soft mobile robots offer unique benefits as they are highly adaptable to the terrain of 

travel and safe for interaction with humans. However, the lack of autonomy currently limits 

their practical applications. Autonomous navigation has been well studied for conventional 

rigid-bodied robots; however, it is underrepresented in the soft mobile robot research 

community. Its implementation in soft robots comes with multiple challenges. However, the 

major challenge is the significant motion uncertainties due to the robot compliance, ground 

interactions, and limited available sensing. These uncertainties prevent high-level control 

implementation, such as autonomous navigation, to be performed successfully. Therefore, 

soft robots require robust design methods, as well as path following and path planning 

algorithms, to mitigate these uncertainties and enable autonomy. 

This dissertation develops and implements autonomous navigation for a novel 

origami-enabled soft crawling autonomous robot called OSCAR. In order to implement 

autonomous navigation, it first mitigates the OSCAR’s motion uncertainties by a multi-step 

iterative design process. Analysis has shown that OSCAR’s motion uncertainties are the 

result of: (i) the ground-feet interaction, (ii) effectiveness of low-level closed-loop control 

and, (iii) variability in the manufacturing assembly process. The iterative control-oriented 

design allows a robust and reliable OSCAR performance and enables high-level path 

following control implementation. To design and implement path following control, this 

research presents an idealized kinematic model and introduces an empirically based 

correction to make the model predictions match the experimental data. The dissertation 

investigates two separate path following controllers: a model-based pure pursuit and a 

feedback controller. The controllers are investigated in both simulation and experiment and 

the need for feedback is clearly demonstrated. Finally, this research presents the path 
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planning in order to complete OSCAR’s autonomous navigation. The simulation and 

experimental results show that OSCAR can accurately navigate in 2D environment, while 

avoiding static obstacles. Lastly, the coupled locomotion of multiple OSCARs demonstrates 

an extension of functionality and expands the potential design and operation space for this 

promising type of soft robot. 
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Chapter 1     

Introduction 

1.1 Motivation and Background 

Soft robotics is a relatively young, rapidly emerging, field of robotics that offers unique 

solutions that are hard to achieve with traditional rigid-bodied robots [1], [2]. In contrast to 

conventional robots, composed of rigid links connected at discrete joints, soft robots have 

compliant bodies. Compliance makes soft robots safe for close interaction with humans or the 

environment, thereby potentially closing the gap between robots and humans during operation. 

Unlike rigid-bodied robots, soft ones can deform and absorb the impact energy in case of 

collision, minimizing the risk of injury. This makes them prominent candidates for applications 

in the human-assistive and wearable technologies [3]. Moreover, body compliance allows soft 

robots higher adaptability to complex unstructured environments [4], better ability to grasp 

unknown objects [5], and improved navigation in confined spaces [6].  

This dissertation is specifically interested in soft mobile robots, as their intrinsic safety 

and adaptability open an invaluable potential for their applications in real-world tasks, such as 

search-and-rescue, surveillance, in-pipe inspection, and medicine [7]. More specifically, our 

focus is an emerging class of origami-enabled mobile robots [8]. While preserving compliance, 

origami-enabled robots have improved locomotion and performance compared to more 

traditional hydraulically or pneumatically actuated soft mobile robots. Additionally, due to the 

origami fabrication process specifics, they are faster to prototype and manufacture, and their 

design is easily scalable and customizable. 
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However, the current state-of-art soft mobile robots are currently limited in practical 

applications. The main reason for that is the absence of task-level control, such as autonomous 

navigation that would enable the robots’ operation in real tasks. Despite a large body of literature 

on soft robot designs [2], [8], due to the field novelty, there is still minimal research conducted 

on soft robot autonomous navigation. This fundamental challenge outlines a need for developing 

a soft robot navigation control framework and tools to advance the field. 

1.1.1 Soft Mobile Robots 

The current state-of-art in soft robotics has a vast diversity of nature-inspired designs 

which we can categorize into (i) stationary manipulators/grippers and (ii) mobile robots. While 

soft manipulators, such as the octopus-arm-inspired manipulator in [9], and the grippers in [5], 

exhibit great grasping adaptability and have been actively studied, we are particularly interested 

in soft mobile robots. Some examples of existing robots include multi-gait quadrupeds [4], [10], 

worm- and caterpillar-inspired robots [6],[11]–[13], and snake-inspired robots [14], [15]. Besides 

animal-inspired gates, some robots locomote by jumping [16], rolling [17], and growing [18]. In 

addition to terrestrial robots, there are underwater robots, such as a manta-ray robot [19], an 

octopus robot [20], and a fish robot [21], which closely resemble biological species. A more 

detailed review of soft robot designs at the time of writing of this thesis can be found in [2], [3], 

[7], [22], with the main locomotion schemes summarized in [23]. 

Soft mobile robot designs have proven themselves uniquely capable of adapting to tasks 

[4],[21], traveling across multiple uneven terrains [17], accommodating a variety of 

environmental conditions, e.g., snow and fire [10], and resistance to high-force mechanical 

damage [10],[13]. For example, the quadruped robot in [4] adapted to crawl into a narrow gap (2 

cm) underneath a given obstacle in order to surpass it. The caterpillar robot (GoQBot) in [12] 

and fish robot in [21] demonstrated agile escape response maneuvers that are as efficient as their 

biological inspirations. 

Soft robots are actuated by multiple sources [3] that include, but are not limited to: 

pneumatic, hydraulic, thermal, electric, and bio-hybrid actuation. Due to their large actuation 

force, high work/power density at the actuator, and fast response times, the pneumatic and 

hydraulic actuation schemes prevail in the field [7]. Such actuation is done in quadruped robots 
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[4], [10], snake robots [14], [24], and a fish robot [21] as examples. Despite pneumatic and 

hydraulic actuation advantages, untethered locomotion in such robots is a challenge due to the 

need to embed power sources on board [2]. While the actuation can be power dense, in terms of 

Watts/liter, these hydraulic and pneumatic systems require significant power sources to generate 

the high pressure fluid and these sources are typically much larger than the actuators.  Therefore, 

although pumps and additional hardware for pressurizing working fluid can be placed on board, 

e.g., in [4], [21], [24], the size and weight of the overall system may limit the robots’ 

performance [7]. Alternative solutions can be provided by other actuation sources listed above. 

However, they result in slower time response and a great deal of physical design complexity to 

embed them in the robot. In contrast, untethered actuation is not an issue for a new class of 

origami-enabled soft mobile robots. 

1.1.2 Origami-Enabled Mobile Robots 

Origami-enabled robots are an emerging class of soft mobile robots [1], [8]. Origami are 

complex shape 3D structures fabricated by folding from a planar, often composite, sheet. These 

structural systems are light-weight, easy to design, scale, and fabricate; in addition,  they can 

achieve complex functionalities such as self-assembly [25],[26], locomotion [27], and 

manipulation [28]–[30]. Furthermore, origami robots’ locomotion agility can potentially surpass 

traditional soft mobile robots [8] due to the overall lower power density requirement. 

Examples of mobile origami-enabled robots include digestible robots [25], [31], milli-

robots [32], worm-inspired robots [6], [33], a snake-inspired robot [27] and kirigami crawling 

robots [34], [35]. Kirigami robots are a subclass of origami robots, where the structure is 

achieved by internal cutting instead of folding. Origami mobile robots’ actuation is done by a 

variety of means: electric servomotors, tendon-driven systems, shape-memory alloys (SMA), or 

external stimuli, e.g., the magnetic fields in [25], [31]. These robots can utilize multi-locomotion 

gaits to traverse across different terrains, as demonstrated by the milli-robot in [32]. Due to 

origami’s scalability property, meaning the geometric shapes are independent of size, their scales 

vary significantly from millimeter to meter size. These robots have promising applications in 

minimally-invasive medical surgeries [25], [31], in-pipe inspections, and search-and-rescue 

missions [33]. A more comprehensive review of the origami robots can be found in [8]. 
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1.2 Research Objectives 

1.2.1 Problem Statement 

Despite the recent advances in design and locomotion, control implementation in soft 

mobile robots comes with three significant challenges. The main challenge is the soft robot 

motion uncertainties, which are caused by two reasons: 

1. Robot compliance, including compliant interaction with the environment. Although 

compliance allows soft robot functionality, it also makes soft robots 

underactuated. This means that in addition to having n degrees of freedom, 

there are extra ‘passive’ degrees of freedom which result in uncertainty, 

possibly significant, in the resulting robot motion [2]. Therefore, control 

implementation becomes more challenging for soft robots than compared to 

their rigid counterparts. Although motion uncertainty cannot be completely 

eliminated, it can be mitigated with careful design. 

2. Lack of proprioceptive sensing and closed-loop control in soft mobile robots. Due to 

their compliance, soft robots require different sensors than conventional rigid 

robots [3]. For example, these sensors need to be deformable to match the 

robot compliance [36]. As a result, soft mobile robots predominantly operate in 

open loop; i.e., their actuators are first characterized statically. Then, the robots 

locomote by executing a sequence of predetermined inputs or motion 

primitives. One example is the pneumatic RUBIC robot rolling locomotion in 

[17]. Sensor design and feedback control efforts are currently minimal in soft 

mobile robots. Preliminary efforts include magnetic curvature sensors for 

feedback control of pneumatic bending actuators in [15]. However, overall 

efforts in the field are not as developed as for other classes of rigid robots and 

without proprioceptive sensing and closed-loop actuators control it is hard to 

achieve precise robot motion.  

Additionally, soft mobile robot models are not readily available. In well-studied 

traditional rigid robots, models are derived by standard methods, such as forward kinematics in 
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rigid link robots or rigid-body analysis in mobile robots [37]. In the current state of the field, soft 

robot models are unique and highly dependent on the robot design and actuation type.  

Finally, there is a limited number of studies on autonomous navigation 

implementation. From currently published research in the soft robotics field, only 25% focus on 

mobile robots, and less than 5% of the overall research addresses untethered gait control (Fig. 

1.1). Due to a lack of readily available sensors, models, and motion uncertainties, work on 

autonomous navigation of soft mobile robots is highly limited.  

 

Figure 1.1 The number of publications in the field of soft robotics in range 2010-2020, 

obtained from the Web of Science (http://apps.webofknowledge.com/).  The field is 

categorized into two main areas: static manipulators and grippers, and mobile robots 

Although the work on autonomous navigation is limited there has been some prior 

autonomous navigation. One example has been demonstrated by an untethered pneumatic snake 

robot in [24]. This work uses a bi-directional A* planner for path planning, and iterative learning 

control (ILC) for path following. Although ILC demonstrates great results for repetitive tasks 

[38], application of ILC for path following is impractical, as the autonomous navigation naturally 

involves changing environments and terrains for exploration. Therefore, different control 

approaches for path following should be investigated. In another example, path calculation as a 

part of path planning has been done for obstacle-aided navigation in a soft tip-growing vine robot 

[39]. Despite the vine robot being a continuum robot, its application area is similar to mobile 

robots, which is navigation through environment with obstacles. This work focuses on pre-



 6  

calculating joint points (buckles) for the vine robot to reach a goal position based on information 

about the environment. Later these joints will be mechanically made on the robot backbone 

before its deployment.  

To summarize, autonomous navigation is currently underrepresented in the mobile soft 

robotics space; in several articles, it is often included only when outlining future research 

direction for soft mobile robotics [2], [7]. The main steps required to achieve autonomous 

navigation in soft robots include robust design methods, sensing, path following, and path 

planning.  

1.2.2 Dissertation Scope 

This dissertation develops an autonomous navigation framework for the novel Origami-

enabled Soft Crawling Autonomous Robot (OSCAR), shown in Fig. 1.2, under the problem 

statements listed above. The final goal is achieved in the following five objectives, where the 

first four develop and experimentally validate the autonomous navigation for a single OSCAR: 

1. Control-oriented OSCAR design. This objective considers an iterative robot design, 

which is a key enabler of OSCAR’s autonomous navigation. As it will be 

shown in Chapter 2, OSCAR suffers from significant motion uncertainties 

caused by the feet and ground interaction, the low-level control, and the 

assembly process. An iterative design allows to mitigate these uncertainties and 

achieve a reliable robot performance. Thus, it enables the high-level path 

following control implementation.  

2. OSCAR kinematic model, which is based on OSCAR’s geometry. It is used in the 

path following control design and implementation. 

3. Path following control, which is done by two different controllers: an adopted 

model-based pure pursuit and a proportional feedback controller. Both 

controllers are experimentally validated in the designed experimental setup, 

which performs robot localization. 

4. Path planning. This objective considers the application of hybrid A* approach to 

planning OSCAR path. This part experimentally validates the autonomous 
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navigation framework for two different scenarios with the feedback path 

following controller. 

5. OSCAR coupled multi-segment locomotion. This last objective extends OSCAR 

functionality by introducing a modular approach to the OSCAR robot concept. 

It studies its coupled locomotion of two coupled OSCARs. The modularity 

allows OSCAR to move separately, as in parts 1-4, or as a single coupled 

robot. Moreover, the coupled robot can reconfigure its body in the presence of 

faulty segments or certain types of obstacles. 

The aforementioned research objectives outline the overall goal of autonomous 

navigation implementation for OSCAR and creates a design and control framework for other 

origami-enabled mobile robots. 

 

Figure 1.2 OSCAR: Origami-enabled Soft Crawling Autonomous Robot 

1.3 Organization of Dissertation  

The remainder of the dissertation is organized as follows. Chapters 2 and 3 present the 

OSCAR iterative control-oriented design process. Included in Chapter 3 is the last part of the 

robot design, which is OSCAR low-level closed-loop control. Also, Chapter 3 presents the 

experimental setup that has been used for all the experiments in this thesis. The OSCAR two-part 

kinematic model is presented in Chapter 4. Then, Chapters 5 and 6 develop autonomous 

navigation for a single robot. In particular, Chapter 5 presents the path following control, and 

Chapter 6 presents the path planning algorithm. Then, the autonomous navigation is 

experimentally validated in Chapter 6, with the controller from Chapter 5. Chapter 7 presents the 
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coordinated navigation of a two-segment robot composed of two OSCARs. Finally, Chapter 8 

provides concluding remarks and suggestions for future work. 
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Chapter 2     

OSCAR Control-Oriented Design 

2.1 Design Challenges 

A major challenge preventing the development of autonomous navigation in soft mobile 

robots is motion uncertainties. This chapter presents a control-oriented design of a 

novel Origami-enabled Soft Autonomous Crawling Robot (OSCAR) (Fig. 2.1), which solves this 

problem. OSCAR’s motion uncertainties result from its compliant elements, the interaction 

between its feet and the ground, and lack of proprioceptive sensing, as demonstrated in the initial 

robot design shown in Fig. 2.2 [40]–[42]. Mitigating uncertainties through an iterative robot 

design is one of the major contributions of this work. This was accomplished via the following 

processes, which are detailed in this chapter and Chapter 3: 

• Iterative design of the robot feet; 

• Alignment of the robot plates using an improved assembly process; 

• Measuring the angular input to the origami towers using encoders; 

• Closed-loop low-level servo angular position control. 

As a result of following these processes, we have achieved a soft mobile robot design 

capable of accurately following the reference path and performing autonomous navigation as 

described in Chapters 5 and 6. 
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Figure 2.1  OSCAR’s exploded view drawing showing its main components; the actual 

robot is shown in Fig. 2.3 

 

Figure 2.2 Initial robot design called PERI: (a) main components; (b) top view. Image is 

adapted from [41] 
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2.2 OSCAR 

OSCAR is an origami-enabled soft crawling robot inspired by the caterpillar crawling 

locomotion. Its exploded view is shown in Fig. 2.1, and the actual robot is shown in Fig. 2.3. The 

OSCAR’s main components are two opposite chirality origami towers. They act as linear 

actuators when given a rotational input [40]. Each origami tower consists of six identical origami 

cells made with a Kresling pattern [43] and each tower has relief cuts between every two 

consecutive cells to allow turning (Fig. 2.3, b). The direction of creases in the cell’s Kresling 

pattern determines the tower’s chirality, i.e., positive or negative. 

 

Figure 2.3  OSCAR: a) main components; b) side view 

The origami towers are rigidly attached to the front plate by a set of acrylic plates from 

one end and are driven by servo motors from the opposite end. These are continuous rotation 

servos mounted at the robot back plate. The towers expand or contract with provided servo 

rotation, resulting in the robot body expansion or contraction. OSCAR’s height and width are 72 
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mm and 106 mm, respectively. Its length in the fully contracted and fully expanded states is 95 

mm and 155 mm, respectively. The rotational input to the origami towers is measured by 

magnetic encoders; see details in Fig. 2.4. Their angular resolution is 0.02 degrees. 

 

 

Figure 2.4 Drawing of a servo with a magnetic encoder. The encoder sensor is mounted 

rigidly at the back plate (grey), and its magnetic ring is mounted at the servo horn to 

measure angles. To ensure sensor alignment with respect to the ring, it is installed on the 

acrylic mounting plate; then on the back plate, which has alignment elements  

In order to locomote, OSCAR utilizes anisotropic friction feet. Anisotropic friction-based 

locomotion is common in earthworms and caterpillars; some examples of such feet 

implementation in soft robots are listed in [23]. These feet provide low friction in one direction 

and high friction in the other in order to prevent backward slippage during locomotion [44].  

When the OSCAR’s front or back plate moves forward, its feet operate under low friction. When 

the plate moves backward, its feet operate under high friction. Together, anisotropic friction feet 

and the consecutive origami towers’ expansion and contraction enable OSCAR’s crawling 

motion. Both OSCAR’s front and back plates are 3D printed on an Ultimaker printer with PLA 

material.  

OSCAR can traverse a 2D plane by executing forward, left, and right turning motions. 

Consider servo angular inputs to the origami towers for robot expansion to be  1 2
T

  , where 

1  and 2  are inputs to the left and right tower, respectively. When the angular inputs are equal, 
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OSCAR moves forward. When the inputs are different, OSCAR turns. In all cases, zero angular 

inputs result in the robot’s contraction. 

In its initial design, shown in Fig. 2.2, the robot had protective plastic bellows (PET) that 

encased the origami towers. Its main function was to provide torsional rigidity to the robot, i.e., 

to prevent front and back plates from pivoting in the X-Z plane during locomotion. The robot 

cannot locomote without some form of torsional rigidity with respect to the ground plane. 

However, the bellows had a major drawback: they also produced torsional rigidity in the X-Y 

plane, which led to resistance to turning. This drawback has been addressed by substituting 

bellows with stabilizers in the final design (Fig. 2.1 and Fig. 2.3). 

The following sections consider individual OSCAR components in sufficient detail to 

allow future readers to replicate the design. Its electronics and low-level servo position control 

are covered in Chapter 3.  

2.3 Origami Towers 

The origami towers are the OSCAR’s main components, and they are made of 163 g/m2 

Neenah paper. They are fabricated by cutting crease patterns with a laser cutter (Epilog), and 

then folding and gluing them into their final assembled state. Figure 2.5 shows the towers in the 

fully contracted and fully expanded states. Each tower has a 3D printed servo horn connector at 

one end and a paper disk connector at the other end which attaches the tower to the front plate 

(Fig. 2.6). The servo connector rigidly connects the origami tower to a custom-made 3D printed 

servo horn by two M1.6 screws. The two opposite chirality towers are mounted in OSCAR such 

that their creases form a triangle directed toward the front plate from a top view (see Fig. 2.7). 

 

Figure 2.5 Origami tower: (a) at the fully contracted state; (b) at fully expanded state  
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Figure 2.6 Origami tower with attached connectors  

 

Figure 2.7 OSCAR’s top view showing the direction of creases in the opposite chirality 

origami towers 

Each origami Kresling cell has a 5-sided polygon at its base. Applying a rotational input 

causes the cell to expand according to the function presented in Fig. 2.8. This function represents 

the relationship between the angular input to the cell and its height. The function has been 

numerically calculated  based on the origami cell’s geometry in [45].  
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Figure 2.8 Origami cell expansion depicted as function of applied angle α and cell height l. 

Maximum cell’s height is 15 mm and it corresponds to the input angle 0.6283 rad. Image is 

taken from [41]  

2.4 Robot Locomotion and Iterative Feet Design 

2.4.1 Robot Crawling Locomotion 

Anisotropic friction feet are potentially the most critical design aspect for the OSCAR’s 

crawling locomotion (Fig. 2.1). Ideally, these feet provide low friction in the forward direction 

and high friction in the backward direction to prevent backward slippage.  

Considering ideal feet behavior, OSCAR’s locomotion can be described as follows (Fig. 

2.9). Starting from the fully contracted state, the towers expand due to the applied servo rotation. 

As a result, the robot front plate moves forward while the back plate stays fixed due to the high 

friction deployed at the robot feet, allowing the robot to expand. Then, during contraction, the 

front plate remains fixed due to the high friction side of the robot feet being deployed, while the 

back plate moves forward. Upon contraction, the robot returns to a fully contracted state, and the 

cycle repeats. 
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Figure 2.9 OSCAR’ crawling locomotion schematic 

2.4.2 Iterative Feet Design 

In practice, the feet’s anisotropic friction and their interaction with the environment are 

far from ideal. In fact, it is one of the main contributors to the OSCAR’s motion uncertainties. 

As a result of non-ideal friction, the back plate slides backward during expansion, and the front 

plate slides backward during contraction, although they are assumed to be stationary in theory. 

Thus, the robot motion becomes highly uncertain and hard to control. To minimize uncertainties 

due to foot slippage, several design iterations have been investigated since introducing the initial 

wedge feet design in [41], [42]. 

A timeline of feet design iterations (Fig. 2.10) includes the following designs: 

D1. Anisotropic friction wedges (three per plate); 

D2. Wheels with ratchet mechanism (two per plate); 

D3. Combination of (D1) and wheels of (D2), but without ratchet mechanism (two wheels 

and one wedge per plate); 

D4. Sliding ratchet feet (two per plate).  
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Figure 2.10 Timeline of the foot design evolution with description of performance 

improvement 

Besides significantly mitigating the backward slippage, the feet design iterations also 

focused on improving the robot’s turning capabilities, as shown in Fig. 2.10. A lower turn radius 

corresponds to a higher curvature turn. In all designs, switching between low and high friction 

states is passive due to inertia (D1, D2, D4) or mechanical design (D2). All of the feet shown in 

Fig. 2.10 have been 3D printed on an Objet260 printer with VeroWhite and TangoBlack 

materials. 

Figure 2.11 shows images of the different foot designs implemented on the OSCAR.  As 

can be seen, the early designs still have the bellows attached; however, it is removed in a later 

design to enhance robot maneuverability. With the simple wedge foot design (D1), the robot had 

three feet per plate: one wedge at the center and two wedges at the sides (Fig. 2.11, left). When 

the plate moved forward, the wedge foot deploys a low friction side (VeroWhite). Conversely, 

when the plate moved backward, the wedge foot switches to the high friction side (TangoBlack). 
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Although these feet have high durability, their deployment is unreliable; i.e., in some cases, the 

high friction side remained undeployed during backward motion resulting in high backward 

slippage and robot low turning capability (i.e., large turning radius).  

 

 

Figure 2.11 Foot designs D1-D3 implemented on the robot. Shown here is an intermediate 

robot design with bellows 

Therefore, to address the wedge feet’s passive deployment problem, wheels with a ratchet 

mechanism (D2) were implemented (Fig. 2.11, center). Each foot has a wheel with six ratchets 

on its inner surface and a static axle with three pawls (Fig. 2.10). The wheel can freely rotate in 

the forward direction, while pawls stop it from moving backward. Although (D2) decreased 

backward slippage and improved turning, these feet have high friction during the desired low 

friction operation, as the pawls are in constant contact with the wheel. A further disadvantage of 

(D2) is fast pawl deterioration and wear since these are 3D printed out of relatively soft material. 

Therefore, a combination of two wheels and and a wedge (D3) was proposed. These feet 

combine the advantages of the two previous designs, as two wheels at the plate’s sides allow 

better turning, while a single wedge at the center provides passive friction switching (Fig. 2.11, 

right). Nevertheless, this design resulted in unreliable friction switching similar to what was 

observed in D1. Thus, the final design of sliding ratchet feet (D4) has been implemented. 

The sliding ratchet foot mechanism (D4) resembles a ratchet mechanism with a ratchet 

wheel freely sliding between two states: a locked and a free-rotation position (Fig. 2.12). 

Switching between these states happens passively due to inertia and ground friction during the 

plate’s motion. Therefore, when the robot plate moves forward, the ratchet wheel slides back to a 

position where it can freely rotate, providing low friction for the forward motion (Fig. 2.12, a). 

Conversely, when the plate is forced to move backward by the origami towers’ contraction, the 
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ratchet wheel encounters two pawls and stops. In the locked position, the feet provide high 

friction preventing undesirable plate backward slippage (Fig. 2.12, b). 

 

Figure 2.12 Sliding ratchet foot: (a) low friction situational deployment during plate 

forward motion; (b) high friction situational deployment during the plate backward motion  

Due to its robust friction switching mechanism, the sliding ratchet feet have significantly 

decreased the backward slippage and improved OSCAR’s turning compared to all the previous 

feet designs (see Fig. 2.10). 

2.4.3 Stabilizers 

Stabilizers prevent the plates from pivoting in the X-Z plane around the instantaneous 

ground connection point when in motion (Fig. 2.13). The stabilizers are freely rotating wheels 

offset by 11 mm from the plate horizontally and by 1.5 mm from the ground vertically to 

guarantee the grip between feet and ground. Two stabilizers per plate are used. As shown in Fig. 

2.13, when the towers are actuated, they generate a pulling force that causes the plate to pivot 

about the foot ground connection point. Stabilizers limit plate pivoting in the X-Z plane and 

ensure that there is the robot-surface interaction. Previous OSCAR designs utilized the 

aforementioned bellows (Fig. 2.2) to stiffen the robot chassis and minimize the pivoting of the 

plates during contraction and extension of the towers. However, the stiffness penalty in turning 

was too high for the bellows to be functionally useful. Therefore, the stabilizers were the better 

design choice. 
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Figure 2.13 Stabilizers: (a) functionality; (b) implementation 

2.5 Motivation for the Assembly Guide and Analysis of Low-Level 

Closed-Loop Control 

The finalized OSCAR design used for autonomous control studies in this thesis and 

shown in Fig. 2.3, was built in Fall 2019. It had the low-level closed-loop servo position control 

to control tower rotation and, hence, robot expansion and contraction. The proportional-integral 

(PI) controllers with saturation based integral anti-windup have been used for this servo position 

control (see Chapter 3, (3.2)-(3.5)). In initial approaches, the controllers track step angular 

reference inputs provided to the robot.  

With the finalized design, we conducted several initial path following experiments. The 

results showing OSCAR’s trajectories and orientations are presented in Fig. 2.14. In these 

experiments, OSCAR attempted to follow a straight reference path, starting with an initial offset 

in the y-direction relative to the path. The robot was expected to converge to the path, i.e., its 

position error and orientation error should decrease with time. Here, we are focused on robot 

performance, so details on the applied path following controllers are omitted. The robot position 

is tracked in the experimental setup, explained in Chapter 3.  
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Figure 2.14 Straight line (red) path following with the robot starting at an initial offset in y-

direction: (a) in open-loop; (b) with feedback path following controller. Dotted black and 

blue lines are robot trajectories in the correct and faulty cases; solid black and blue lines 

are robot orientations 

 

Figure 2.15 Angular control inputs for the path following in open-loop (a) and with 

proportional feedback (b). Angular inputs in (a) are used in both faulty and correct 

performances in Fig. 2.8, a. Angular inputs for Fig. 2.8, b are shown in (b); inputs are 

similar for both faulty and correct performances  

Although design changes performed in previous sections significantly improved OSCAR 

performance, significant motion uncertainties were still present in experimental results. Figure 

2.14(a) shows the path following with an open loop set of servo commands. These servo 
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commands were computed based on the system model and resulted in desired angular inputs 

provided in Fig. 2.15(a). Figure 2.14(b) shows the path following with a closed loop proportional 

feedback controller that is based on path displacement error and orientation error.  A similar one 

will be detailed and designed in Chapter 5. The same or similar angular inputs are provided in all 

experiments, as shown in Fig. 2.15, (a) and (b), respectively. In both cases, the robot does not 

perform like the simulation predicts.  The ability to follow the path is poor for even the best 

performing robot response.  In the case of a poorly performing, or faulty, robot response, the 

orientation or position can even diverge from the predicted response and have an opposite sign. 

The reason for this is that there are significant uncertainties in the robot behavior.  Due to 

these uncertainties, the robot cannot follow the reference path reliably, even with the feedback 

controller. After much investigation, it was found that there was variation in the OSCAR 

dependent on how it was assembled. In short, robot design is important; equally important is 

robot manufacturing.  Manufacturing and assembly matter a great deal.  This motivated the 

development of the OSCAR’s assembly guide, presented in the following section, and the low-

level servo control analysis covered in Chapter 3, which together mitigated these remaining 

uncertainties. 

2.6 OSCAR’s Assembly Guide 

2.6.1 Assembly Guide  

As illustrated above, a major contributor to OSCAR’s motion uncertainties is the 

assembly process. It directly affects OSCAR’s feet-ground interaction. Due to the origami 

towers’ compliance, the front and back plate alignment to the ground is very difficult to 

guarantee during the assembly process. As a result, plates can tilt about the X-axis, which was 

observed and measured experimentally on OSCAR in early assembly efforts. This tilt causes 

uneven friction between the robot feet and the ground with some feet being slightly lifted off the 

ground.  Clearly, this misalignment between the robots’ warped plane and the X-Y plane of the 

ground environment leads to non-ideal robot-ground interaction. 

The existing assembly challenges can be summarized in the following list: 
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• Front and back plate misalignment in the Y and Z directions. Due to 

the individual towers’ compliance, the front and back plates’ 

alignments to each other (in the Y direction) and the ground (in the Z-

direction) are impossible to guarantee without external means during 

the assembly process.  

• Front and back plate tilting caused by servos initialization. Once the 

origami towers are fixed in the front plate, any pre-stress in towers 

results in the front and back plates’ tilting to the ground. This pre-

stress can be caused by sudden servo motion during the robot 

initialization. The sudden servo motion can be caused when the servos 

are initially powered on. This phenomenon is due to the low-level 

servo controllers and is common among small-scale continuous 

rotation servos. 

• The robot’s fully contracted length should be consistent for each robot 

assembly to guarantee the performance repeatability.  

To address these problems, a custom-designed and custom-built assembly guide has been 

developed and constructed. The 3D printed assembly guide (Fig. 2.16) aligns both the front and 

back plates in the X-Y and X-Z planes with a distance between them equal to the origami 

towers’ fully contracted length in the X direction. This distance is set to 41dl mm= . The guide 

prevents the front and back plates from tilting around the X axis, while the assembly process 

outlined below prevents plates’ tilting due to servos during robot initialization. As a result, the 

assembled robot has much improved evenness in the surface friction among all the feet and the 

ground. 
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Figure 2.16 Assembly guide. The front and back plate’s alignment in the X-Z plane is 

achieved by setting the plates’ left faces against the red shaded areas, thus aligning them 

along the red line. Alignment in the X-Y plane is provided by contact of plates’ bottom 

surfaces with the green shaded areas. The front and back plates are aligned parallel to each 

other in the Y-Z plane along the green lines. The front plate is aligned in the Y-Z plane by 

contact with the blue shaded area; the same holds for the back plate. Once aligned, the 

front plate is fixed by the fixtures in Fig. 2.17, and set screws fix the back plate. 

 

Figure 2.17 Side view of fixture used for holding the front plate in the assembly guide 

2.6.2 OSCAR’s Assembly Process 

The following is presented to capture for the reader details that, while conceptually quite 

simple, have a large effect on the overall robot performance. The assembly process with the 

designed guide includes the following steps: 

 



 25  

 

Figure 2.18 OSCAR in the assembly guide. The servo horns are centered for easy 

monitoring of servo positions during robot initialization  

1. Front and back plates need to be pre-assembled. All the robot components need to be 

installed on the front and back plates. This includes the origami towers being 

installed on the back plate but left disconnected from the front plate.  

2. The front and back plates need to be lined up to the left side of the assembly guide 

and fixed in the guide, as shown in Fig. 2.18. After being fixed, plates are 

aligned in the X-Y and X-Z planes. The detailed description can be found in 

Fig. 2.16. The origami towers’ free ends need to be set in the untightened 

acrylic plates at the front plate. With applied servo rotation, towers can freely 

rotate without expanding. 

3. The robot should be initialized by turning on the power source and microcontroller. 

During initialization, servo horns should be centered, as shown in Fig. 2.18. A 

single cycle of expansion and contraction inputs must be applied to the origami 

towers. The last step is not required but is believed to remove any accumulated 

stress in the origami towers and help self-center them. 
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4. The LabVIEW virtual instrument (VI) that localizes and controls OSCAR needs to be 

started, see ‘Main VI.vi’ in Appendix A. The robot re-initializes when the VI 

starts and this leads to the previously discussed sudden servo motions. As 

detailed in the experimental setup in Chapter 3, there is a microcontroller 

interface between the LabVIEW VI and the low-level servos.  Manually press 

and hold the microcontroller ‘reset’ button and move servos to their centered 

positions.  

5. Finally, the origami towers’ ends need to be fixed into the acrylic plates in the robot 

front plate, finishing the assembly. We can now release the fixtures holding the 

front and back plates in place. 

To prevent tilting or deviations that can occur with use, and to maximize experimental 

repeatability, OSCAR is reassembled before each experiment. This means that steps from 2 to 5 

are repeated before each experimental session. The reassembly takes on average 2 minutes and is 

not time-consuming. Different types of micro-size motors could be used in the future to prevent 

the reassembly process need. 

2.7 Chapter Summary 

The control-oriented design has been a crucial part of this research, as it enabled the 

OSCAR’s autonomous navigation. The iterative design process helped to eliminate the motion 

uncertainties present in OSCAR. Hence, OSCAR could be controlled by high-level control. The 

OSCAR’s motion uncertainties are caused by (i) its feet and the ground interaction and (ii) 

OSCAR’s low-level control. This chapter presents the feet design and assembly process that 

addresses the motion uncertainties due to the feet and ground interaction. The low-level control 

involves the experimental setup, and hence, it is presented in Chapter 3. The steps presented in 

this chapter are vital for understanding the robot details and practical challenges.  Additionally, 

they should serve as a guide for future designs for this class of origami-enabled mobile robots. 
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Chapter 3     

Experimental Testbed 

3.1 Testbed Components 

Experiments in this work are conducted on a testbed designed specifically for OSCAR. 

The testbed is used to perform robot localization and to implement the path following control 

algorithms. It has an extruded aluminum frame that holds a camera mounted on its top, as shown 

in the schematics in Fig. 3.1. The camera has a ‘god’s eye view’ of the robot’s operational 

workspace. The testbed workspace surface is prepared to be spatially uniform with sufficient 

traction. The picture of the actual testbed is shown in Fig. 3.3.  

The camera is used for robot localization, which is performed via image processing 

algorithm developed specifically for OSCAR and covered in detail in Section 3.2. The camera 

captures the image of the robot in the operational workspace and sends it to the PC during the 

experiments, see flowchart in Fig. 3.2. The PC operating the testbed runs the image processing 

software that localizes the robot. The designed software identifies the robot position and 

orientation through markers placed on the robot (Fig. 3.4). Afterwards, the control algorithm 

calculates the robot inputs. The testbed operation is described in Section 3.3. All software is 

implemented in the LabVIEW NI Virtual Instrument (VI). The VI details are provided in 

Appendix A. 

The camera used is an LI-OV5640-USB-72 camera from Leopard Imaging, which has a 

USB 2.0 interface. It has a resolution of 1280 960  pixels at a selected speed of 30 frames per 

second. The camera is raised from the robot workspace by 623.6zh mm= , measured between the 

front of the camera lens and workspace surface (Fig. 3.1). At this distance, it provides a 
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resolution of 1.13 mm and 1 mm in the x and y-direction, respectively, for measurements done in 

the plane of the robot markers. The markers, shown in Fig. 3.4, have a size of 16.7 16.7 mm ; 

thus, the camera resolution provides 6% error for marker identification. It is sufficient for the 

current application. 

 

Figure 3.1  Schematic drawing of the experimental testbed (the PC and robot power supply 

are not shown) 

 

Figure 3.2  Flow chart of the testbed operation 
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Figure 3.3  Experimental testbed 

The camera has been calibrated with respect to the operational workspace using a 

standard calibration grid provided by LabVIEW NI. During calibration, the calibration grid 

covered all the surface of the operational workspace. The camera lens has some distortion, which 

has also been compensated by the calibration. The resulting measurement error is 0.4 mm in both 

x and y-directions, and the camera coordinate frame is as shown in Fig. 3.1. 

The operational workspace has dimensions 1219.2 914.4 mm  (or 4 3  ). Considering 

the OSCAR dimensions ( )95 106 mm  at the fully contracted state, the testbed allows for 12 

robot body lengths. However, the actual operational workspace is limited to the calibrated image 

size captured by the camera. Furthermore, the measurements are done in the plane of the robot 

markers. Therefore, the resulting actual workspace has a size of 700 250 mm  in the markers’ 

plane, as shown in Fig. 3.6. Therefore, the actual workspace covers only 7 robot body lengths. 

This is a limitation for the current OSCAR experiments, as will be seen in Chapter 5. We are 

able to compensate for this limitation by concatenating multiple experiments to create a larger 

workspace. Future efforts requiring a larger workspace would necessitate new hardware, 

including a wider camera field of view with retained or improved resolution. 
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Figure 3.4  OSCAR markers (in 1:1 scale): (top) for front plate; (bottom) for back plate  

Additionally, the testbed includes an offboard power supply for OSCAR, which provides 

a 5.5 V constant voltage to the servos and current ranging from 0 to 1.2 A. OSCAR has as an 

offboard Arduino microcontroller (Fig. 3.3). It implements a low-level closed-loop servo 

position control, as shown in Fig. 3.2 and covered in detail in Section 3.4. The tethered 

configuration is chosen over the untethered one for ease when conducting experiments, as our 

primary goal is to demonstrate the feasibility of autonomous navigation. These offboard 

elements could be miniaturized and placed on board. Untethered locomotion was previously 

demonstrated in [40] and [46]. 

Table 2.1 OSCAR Electronic Components 

Component Details Quantity 

Motor • Feetech FS90R (Polulu) 

• Continuous rotation servos 

2 

Encoder • Sensor RLC2HD (RLS) 

• Magnetic ring MR026C016B036B02  

(RLS) 

2 

2 

Encoder counter • Dual LS7366R Encoder Counter 

(SuperDroid Robots) 

• SPI communication 

1 

Microcontroller (off board) • RedBoard for Arduino (SparkFun) 

• USB connection to PC 

1 

Power source (off board) • B&K Precision 1900 

• 5.5V constant voltage input 

1 
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As stated in Chapter 2, the angular inputs to the origami towers are measured by the 

incremental magnetic encoders. In order to read their data, the encoders are interfaced with the 

robot microcontroller through a counter. The counter is placed onboard of OSCAR. All OSCAR 

electronic components are listed in Table 2.1. 

3.2 Image Processing Software 

In order to perform localization, OSCAR has four planar black-and-white markers (Fig. 

3.4) placed on top of the robot plates, as shown Fig. 2.3 and Fig. 3.3. Two markers per plate are 

used to determine both position and orientation of the plate. The markers have unique geometric 

shapes: circles for the front plate and triangles for the back plate. This allows the front and back 

plates’ positions to be distinguished from each other in the developed algorithm. 

Alternative solutions for the robot localization could be the commercially available 

motion capture systems, such as the ones provided by OptiTrack and VICON. These systems use 

infrared (IR) cameras and track the subjects by following reflective markers. As markers reflect 

the emitted IR light, these systems can localize the robot in 3D space. However, the listed motion 

capture systems are expensive as they require multiple cameras and need a larger operational 

space than what is currently available for OSCAR at the writing of this thesis.  Another 

alternative low-cost localization method is done by using fiducial markers, e.g., AprilTag [47]. 

AprilTag uses square black-and-white QR-code like markers tracked by the camera with the 

provided software. However, these markers require a larger area than the area available at the top 

of the robot plate and may result in erroneous measurements, as stated in [48]. 

The developed LabVIEW-based image processing algorithm utilizes a geometric 

matching algorithm from the NI Vision toolbox to identify the robot markers. This algorithm 

allows marker identification regardless of its rotation, displacement, and changing light 

conditions. Details on the developed algorithm are provided in Appendix A. The marker 

templates, shown in Fig. 3.5, are created beforehand to apply geometric matching. The template 

is a sample image of the marker that contains information about its geometric shape, size, and 

centroid position.  
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Figure 3.5  Marker templates: (left) for front plate; (right) for back plate  

 

Figure 3.6  Processed image with identified markers 

The localization is performed in a three-step process. First, the RGB image taken by a 

camera is processed to leave only the marker-sized areas. In this process, the RGB image is 

converted to greyscale and then to binary format. After that, the image is filtered to leave only 

marker-sized areas, called particles. Then, the geometric matching matches these particles with 

marker templates by comparing their shapes. To speed up the localization process, we identify 

only one of the markers per plate and locate the second marker in a circular area (green line) 

around it in the processed image (Fig. 3.6). Upon matching, marker positions are found in the 

global camera coordinate frame, shown in Fig. 3.1. Finally, with two known marker positions per 

plate, the corresponding plate centroid position and orientation are calculated.  

The resulting position error is 0.7 mm in both x and y-directions, and the orientation error 

is 1 degree. The errors have been calculated based on camera calibration error being scaled by 

the factor of 0.865. This scaling factor was empirically found to convert the measurement from 

the operational workspace plane to the markers’ plane.  
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3.3 Testbed Operation 

As described in Chapter 2, OSCAR locomotes by consecutively expanding and 

contracting its body with provided control inputs. These inputs are the servos’ reference angles 

 1 2
T

  . We can define a locomotion cycle as one consecutive expansion and contraction of 

the robot body. After each locomotion cycle, OSCAR returns to its fully contracted state. 

Therefore, as OSCAR moves, two distinctive states could be identified: a fully expanded state 

and a fully contracted state (Fig. 3.7). For the control purposes, the OSCAR’s measured state is 

defined as a front plate’s centroid position and orientation, i.e.,  
T

p x y = , measured in the 

global coordinate frame shown in Fig. 3.1. 

As shown in Fig. 3.2, when OSCAR returns to its fully contracted state, the camera takes 

an image of the robot’s operational workspace. Then, the image processing software localizes the 

robot. The defined state  
T

kp x y = is the robot state for the the current locomotion cycle, 

where k indicates the index of the current locomotion cycle. Based on the identified robot 

position and orientation, the control inputs for the current locomotion cycle  1 2
T

k
   are 

defined by either the path-following controller or by the user input. These control inputs are then 

sent to the robot microcontroller via a tethered serial connection. The robot microcontroller 

implements a low-level servo position control, described below, and the robot expands. To 

measure forward displacement and characterize the backward slippage, the localization is 

repeated at the robot’s fully expanded state, see Fig. 3.7 (middle). In this case, the robot receives 

the zero angular reference servo inputs for contraction, i.e.,    1 2 0 0
T

  = . The robot 

returns to the fully contracted state, see Fig. 3.7 (bottom). The above process repeats for the next 

expansion and contraction cycle. 
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Figure 3.7  Sequence of video frames depicting OSCAR locomotion 

3.4 OSCAR Low-Level Servo Position Control 

Low-level closed-loop servo position control is critical to perform OSCAR’s path 

following and path planning. The low-level closed loop control reduces servo position 

uncertainty and enables repeatable expansion and contraction cycles. The low-level control 

provides a controlled expansion and contraction of the origami towers by providing closed-loop 

control of the servos’ rotational position. Since it is closed loop, any disturbances or motor 

nonlinearities can be compensated. The resulting predictability of the servo motion is a key 

enabler of the OSCAR’s path following ability. 

This section first describes the PI control architecture and then highlights the importance 

of the constant velocity during expansion and contraction. 
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3.4.1 Proportional-Integral (PI) Servo Position Controller 

The continuous rotation servo motor operates with a PWM input signal, which regulates 

the servo angular velocity. The servo motor can be approximated as a first-order transfer 

function [49] with the PWM signal duty cycle as an input and the angular velocity as an output 

 ( )
( )

( ) 1

s K
G s

U s s


= =
 +

  (3.1) 

In this transfer function, the coefficient 17.879K =  and time constant 0.0278 =  sec are 

identified from a set of servo step responses based on the encoder data. Figure 3.8 compares step 

responses of identified model and data for an input ( )90 / 90,u u = − where 120u =  is in the 

Arduino command.  It should be noted, there is a small-time delay that is ignored in the 

identified model. The data samples are collected every 5 ms.  

 

Figure 3.8  Step response of identified transfer function 

The servos’ angular positions are controlled by proportional-integral (PI) controllers. For 

the origami towers’ safety, the servo position is regulated to within 2  degrees of the angular 

reference input. The PI controller has the following standard form in continuous time, 

 ( ) ( )
0

t

p Iu t k e k e d  = +    (3.2) 
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where refe  = −  is the error between reference and measured angles, Pk  and Ik  are 

proportional and integral gains, respectively. The control input ( )u t  is bounded by (3.3) and 

subjected to limitation, or saturation, on the integrator term to prevent windup (3.4). Future work 

could develop a formal anti-windup algorithm but for the purpose of this investigation the 

saturation approach was sufficient. 

 u u u       (3.3) 

 ( )
0

t

Ik e d     (3.4) 

The controller gains were initially estimated by MATLAB’s built-in ‘pidtool’ designer 

using the plant transfer function (3.2). After implementation, the gains were manually re-tuned to 

improve performance. The tuning goal was to remove the servos’ steady-state chattering and 

prevent accidental towers’ over-expansion and over-contraction due to closed-loop overshoot. 

This overshoot was observed in early OSCAR tests and led to premature fatigue, wear, and 

failure of origami towers. The final controller gains in (3.2) in discrete time are 0.6pk =  and 

0.4Ik = . The values of limits in (3.3) and (3.4) are 0.2u = − , 0.2u =  and 0.1 = . 

The servos have a deadband near zero angular speed inputs that affect the low-level 

controller performance, as described in subsection 3.4.2. The deadbands have been manually 

aligned to be in a range  , − , and a deadband compensation scheme d (3.6) has been added to 

enhance the controller performance. The final form of control input is  

 ( )90 1u s u d= +  +   (3.5) 

where u  is a PWM signal, 1s =   indicates tower chirality and  

 
0

0

if u
d

if u





 
= 

−  
 . (3.6) 

The multiplier 90 is added in (3.5), as the PWM input signal is given in the Arduino 

command, where 90u = corresponds to zero angular velocity.  
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3.4.2 Motion Symmetry by the Low-Level Controllers 

This subsection analyzes the low-level controller performance by studying the OSCAR 

displacement data for the range of available static angular inputs chosen below. The data has 

been collected in the experimental setup and is shown in Fig. 3.10. 

The range of available OSCAR angular inputs is defined by their ratio  2 1 1 ,r r  = , 

where r is the maximum angular ratio. Here, the ratios 2 1 1 r  =  and 2 1 r  = correspond to 

the maximum left and right turns, respectively. The ratio 2 1 1  =  is a straight motion. The 

theoretically possible maximum angular input to the tower is max 216 = , and the maximum 

angular input ratio is 1.8r =  based on robot construction. However, the implemented upper 

limits are set to 1.6r =  and max 180 =  in the tradeoff between performance and the hardware 

safety. Tower expansion to its physical limit may result in accumulated cyclic wear so a safety 

margin is built in.  

The data presented in Fig. 3.10 corresponds to angular ratios approximately 

( )1, 1 2, 1 4r r= . OSCAR starts at the origin    0 0 0 0
T T

p x y = = , and it performs 

12k =  locomotion cycles with given reference angles in all experiments. Markers show OSCAR 

positions after each expansion and contraction, and lines denote OSCAR trajectories. When the 

two origami towers expand or contract non-uniformly, they result in significant motion 

uncertainties, as demonstrated in Fig. 3.10(a). To achieve uniformity, two main changes have 

been introduced to the low-level controller: (i) deadband alignment and compensation; (ii) ramp 

reference angular inputs.  

As OSCAR has the opposite chirality origami towers, the servos must rotate in opposite 

directions to expand or contract the robot body. If the existing servos deadbands are misaligned, 

the two towers result in expanding and contracting non-uniformly. The solid lines in Fig. 3.10(a) 

show the resulting robot motion.  Without deadband corrections, the robot trajectories are 

significantly biased to the right of the horizontal axis for the same left and right turns inputs. The 

displacement becomes more symmetric with deadbands being manually aligned and 

compensated by (3.5)-(3.6) (dotted lines in Fig. 3.10(a)). 
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Further, a more constant and uniform speed in both towers during expansion and 

contraction is achieved by providing a ramp reference input instead of a step in the low-level PI 

controllers. The ramp reference input is a ramp signal until it reaches the desired reference value, 

as can be seen in Fig. 3.9(b). The ramp slope is 5.9 rad/sec. This experimentally determined 

value for the tower expansion/contraction speed provides the best OSCAR performance. 

However, it a subject to change for different robot designs.  

Figure 3.9 compares responses of the low-level PI controllers (3.5) with a step and ramp 

reference angular inputs. A single locomotion cycle is shown. For comparison purposes, the 

desired reference angles are equal during expansion 1 2 150 deg. = =  A first-order filter is 

applied to reference angles. 

With a step reference angle in Fig. 3.9(a), the robot PWM becomes saturated at its 

maximum value. Therefore, as the towers expand in opposite directions, even small 

misalignments of the servo deadbands cause differences in servo speeds at saturation. As can be 

seen in Fig. 3.9(a), the two servo speeds are different during contraction. Thus, it results in a 

robot displacement bias, as demonstrated in experimental data (dotted lines) in Fig. 3.10(a). In 

contrast, with the ramp reference input, the controller tracks both desired position and slope, as 

shown in Fig. 3.9(b). It results in uniform tower expansion and contraction, which leads to the 

symmetry in the robot displacement, as demonstrated in experimental data in Fig. 3.10(b). 

 

 

Figure 3.9  Reference angle tracking with low-level controller: (a) with step reference 

input; (b) with ramp reference input 
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Figure 3.10  OSCAR displacement data collected for static angular inputs: (a) with step 

reference input in the low-level controller; (b) with ramp angular input in the low-level 

controller. The angular input values are shown in the legend, where each pair denotes the 

left and right servo angles, respectively 
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Chapter 4         

OSCAR’s Kinematic Model 

Unlike rigid-bodied robots, soft robots lack the readily available standardized models that 

can be used for high-level control development [2]. As mentioned in Chapter 1, the soft robotics 

include a wide variety of individual designs. Therefore, it is a challenge to create a standard 

model, and, as a result, each robot type generates its own model structure, as will be done here. 

This work develops and utilizes the OSCAR’s kinematic model that was developed and 

presented in [41], [42], [50]. Since OSCAR’s motion is sufficiently slow, any motion dynamics 

are not considered. The kinematic model is used in the path following control design and path 

planning covered in Chapters 5 and 6.  

This Chapter is organized into two sections. The first section derives the kinematic model 

under idealized assumptions. Then, the second section validates the kinematic model against 

experimental data. Based on this validation, a correction is introduced to the kinematic model to 

represent the experimental data. As will be shown, this correction has a significant effect on 

model validity and also highlights one of the key challenges of working with soft origami robots: 

model uncertainty. 

4.1 Kinematic Model 

4.1.1 Kinematic Model Overview 

Despite OSCAR’s soft nature, its motion can be approximated using rigid body motion. 

OSCAR locomotes by consecutively expanding and contracting its body. As defined in Chapter 

3, the locomotion cycle is a single expansion and contraction of the OSCAR’s body. After each 
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locomotion cycle, OSCAR returns to the fully contracted state. Therefore, its motion can be 

described as a rigid body translating discretely between locomotion cycles, where the rigid body 

is OSCAR at the fully contracted state. 

 

Figure 4.1 Kinematic model consists of two submodels: a lumped kinematic submodel (a) 

and a segmented kinematic submodel (b). The model on the left represents OSCAR’s 

motion as a rigid body motion from point kp  to point 1kp + . The model on the right solves a 

vector loop corresponding to the robot at the fully expanded state. A vector  

 1
T

b kp p dx dl dy+ = +  in (b) is derived from (a). Based on the assumptions (A1)-(A2), 

OSCAR’s body expands along the arc from the point bp  at the back plate to point 1kp + , 

which defines the orientation increment d .  

To describe motion, a local coordinate frame is assigned at the centroid of the front plate, 

as shown in Fig. 4.1. The corresponding robot state is a position and orientation of the local 

coordinate frame, i.e.,  
T

k k
p x y = , where k denotes an index of the current locomotion 

cycle. Hence, the OSCAR’s motion can be described as a rigid body motion of point kp  moving 

between locomotion cycles.  

The kinematic model consists of two submodels: a lumped kinematic submodel (LKS) 

and a segmented kinematic submodel (SKS) [41]. They are shown graphically in Fig. 4.1, with 

their hierarchy shown in Fig. 4.2. The LKS is a simplified kinematic model that computes the 
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robot state after the current locomotion cycle 1kp + , based on the known current state kp . 

Instead, the SKS is a detailed kinematic model that analyzes state 1kp +  by considering individual 

origami cell expansions. The SKS computes the required servo angular inputs  1 2
T

k
u  =  to 

achieve the state 1kp + , given from the LKS. Together, the LKS and SKS convert the arc radius 

R  and distance ds  (see Fig. 4.1) into the robot state 1kp +  and angular inputs to origami towers 

, 1,2i i = . 

 

Figure 4.2 Kinematic model hierarchy. Image is taken from [41] 

Conversely, the inverse kinematic model (blue arrows in Fig. 4.2) calculates the robot 

position 1kp + , its turn radius R , and total forward displacement ds  for given angular inputs 

, 1,2i i = . 

4.1.2 Kinematic Model Idealized Assumptions 

The kinematic model is derived under the following idealized assumptions: 

A1. Ideal feet friction: The feet have no-backward slippage. 

A2. Angular input is evenly distributed: All origami cells within a corresponding origami 

tower expand equally during robot expansion.  

Due to the ideal friction assumption (A1), the kinematic model assumes the back plate 

does not slip backward and remains fixed during the robot expansion, and only the front plate 

moves forward. Then, during contraction, the front plate remains fixed, and only the back plate 

moves forward. Thus, the robot position 1kp +  corresponds to the robot’s fully expanded position 

during the kth locomotion cycle. Due to the equal input distribution assumption (A2), the robot 
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body expands along a prescribed arc, starting from the back plate’s center bp  to the point 1kp +  

(Fig. 4.1). 

4.1.3 Lumped Kinematic Submodel (LKS) 

The lumped kinematic submodel (LKS) describes a rigid body OSCAR’s motion from 

known state kp  to 1kp +  along the arc of radius R  with total displacement ds  (Fig. 4.1). 

Therefore, the robot state 1kp +  is equal to 

 1k k

dx

p p dy

d

+

 
 

= +
 
  

  (4.1) 

where dx , dy and d  are the state increments for the current locomotion cycle k . According to 

Fig. 4.1(a), the state increments can be expressed as 

 cos
2

dx ds
 

=  
 

  (4.2) 

 

2

sin
2 2

ds
dy ds

R

 
= = 

 
  (4.3) 

 2arctan
dy

d
dx dl


 

=  
+ 

  (4.4) 

where dl  is the robot length at the fully contracted state, and   is the total turn angle 

 2arcsin
2

ds

R
 =   (4.5) 

According to the local coordinate frame notation, the left turn corresponds to an 

orientation increment, while the right turn corresponds to an orientation decrement.  

4.1.4 Segmented Kinematic Submodel (SKS) 

In the segmented kinematic submodel (SKS), the expansion of individual origami cells 

defines the angular inputs for the servos , 1,2i i =  for the kth locomotion cycle. The SKS solves 



 44  

a vector loop system, which represents OSCAR in its expanded state; this is illustrated in the 

right-hand side of Fig. 4.1. In this vector loop, every two consecutive origami cells are 

represented by rigid links of variable length given by vectors  , 1, 6i iR . The origami towers’ 

relief cuts are represented as pin joints that allow two connected vectors rotation with respect to 

each other. The remaining vectors  , 7, 8i iR  are rigid links of known lengths constrained by 

the front and back plates. 

Therefore, the vector loop of OSCAR’s expanded state can be described by a set of 

equations: 

 
1 2 3 7 8 1

4 5 6 7 8 1

1 2 1 2 0

1 2 1 2 0

b k

b k

p p

p p

+

+

+ + − − − =

+ + − + − =

R R R R R

R R R R R
  (4.6) 

where the vector  1
T

b kp p dx dl dy+ = +  with given position increments (4.2)-(4.3). Each 

vector iR  has a length il  and orientation i  defined similarly as for vector 1R  in Fig.4.1(b). 

Equation (4.6) can be expressed as ,x y -axis projections in a form 
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( )
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  (4.7) 

Equations (4.7) should satisfy the following set of geometric constraints 

 
1 2 3

4 5 6

l l l

l l l

= =

= =
  (4.8) 
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− = −
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  (4.9) 
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and following physical constraints based on OSCAR’s design parameters 

 7 8 44l l mm= =   (4.11) 

   30 , 1,6il mm i    (4.12) 

   1 19 , 1,2,4,5i i i + −     (4.13) 

The constraint in (4.8) implies that the angular input i  is evenly distributed among the 

total number N  of cells in a tower, 6N = . Similarly, the orientation increment d  from (4.4) is 

evenly distributed between two pin joints in the corresponding tower in (4.9). Vectors adjacent to 

the front and back plates are perpendicular to the plates, to represent the physical assembly. 

Equation (4.11) indicates the distance between two origami towers. Finally, (4.12) and (4.13) 

imply that the link lengths il  and angles 1i i + −  at relief cuts are limited by their maximum 

allowable physical values. 

The system of nonlinear algebraic equations with corresponding constraints (4.7)-(4.13) 

is solved numerically for the unknown link lengths and orientations, il  and i , using the fmincon 

function in MATLAB. Based on assumption (A2), the servo inputs are given by 

 
( )

( )

1 1

2 4

2

2

N l

N l

 

 

=

=
  (4.14) 

Here, ( )   is the input angle to an individual origami cell as the function of the origami cell’s 

length [40]. This function is represented graphically in Fig. 2.8 in Chapter 2. 

4.2 Kinematic Model Validation 

This section presents the kinematic model validation for the experimental data shown in 

Fig. 3.10 in Chapter 3. While the kinematic model assumes ideal friction at the feet on the robot, 

some backward slippage is unavoidable in the actual feet even with the optimized designs, as 

highlighted in Chapter 2. This nonideal friction causes small backward slippage of the back plate 

during expansion. Hence, the front plate’s total forward displacement is decreased from the 

idealized kinematic representation. For the same reason, the front plate slips backward by some 
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amount during contraction. Therefore, the actual robot state, defined at the front plate, is 

unavoidably overestimated by the kinematic model prediction (Fig. 4.3). Moreover, the slippage, 

and hence the model accuracy, is highly dependent on the interaction between the environment 

and the robot feet. Therefore, it is entirely feasible that this could change during locomotion as 

the ground environment changes which presents an inherent challenge for a controller. 

To validate the kinematic model, the inverse SKS outputs have been compared with 

experimental data. Here, the experimental data contains OSCAR’s displacement and orientation 

changes for the range of static angular inputs  1 2
T

  that cover the OSCAR’s achievable 

workspace. Due to the nonideal friction, the robot has losses in the incrementing between cycles 

of both predicted displacement and orientation. To adjust for that and match the data, the 

following empirical correction has been introduced to the inverse SKS outputs 

 d d  =   (4.15) 

 
( )

( )

2 2

2 2

cos
2

sin
2

d
dx dx dl dy dl

d
dy dx dl dy





= + + −

= + +

  (4.16) 

where  
T

dx dy d  are position and orientation increments output by the SKS inverse for the 

angular inputs  1 2
T

  . These angular inputs are the same as those from experimental data 

because the servo motor closed loop ensures the motors achieve their desired rotational positions. 

Here,   is the empirically determined efficiency factor for the orientation increment, 0.15 = , 

and dl  is the corrected length of the fully-contracted origami towers, 41dl mm= . The dl  is 

applied instead of dl  in (4.4)-(4.7) in the corrected kinematic model. 

In the above equations, (4.15) accounts for the robot orientation loss by calculating an 

adjusted orientation increment d , while (4.16) adjusts the state increments to reflect that in 

adjusted displacements ( ),dx dy . As stated above, OSCAR has only a 15 % turning efficiency 

compared of the ideal model being 100%. The displacement loss is accounted by dl , whose 

adjusted value is stated above. In the ideal kinematic model, 23dl mm=  [41]. The experimental 
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value of 41dl mm= is found by measuring the contracted origami towers’ length in the assembly 

guide (see Chapter 2). 

Comparison of the experimental data with the ideal (before correction) and corrected 

kinematic model is presented in Fig. 4.3 and Fig. 4.4, respectively. The inverse SKS has been 

used for comparison. As can be seen, the ideal kinematic model (green dashed lines) 

significantly overpredicts the experimental data (dotted lines) (Fig. 4.3). Instead, the corrected 

kinematic model (grey dashed lines), i.e., with applied (4.15)-(4.16), accurately matches the 

experimental data (dotted lines), as shown in Fig. 4.4. As can be seen, the corrected model 

predictions remain close to the actual OSCAR motion across multiple locomotion cycles. 

 

Figure 4.3 Comparison of experimental data and ideal kinematic model predictions for the 

same angular inputs. The angular inputs (in degrees) are listed on the right 
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Figure 4.4 Comparison of experimental data and corrected kinematic model predictions for 

the same angular inputs. The angular inputs (in degrees) are listed in the column on the 

bottom left 

The OSCAR’s achievable workspaces for the ideal kinematic model (left) and the 

corrected kinematic model (right) are shown for comparison in Fig. 4.5. The OSCAR’s 

achievable workspace is defined as a set of all positions that it can achieve within a single 

locomotion cycle. The (0,0) origin points in Fig. 4.5 indicate the front plate’s center at its initial 

state, and green arcs show their trajectory during the locomotion cycle. The results in Fig. 4.5 

demonstrate, quite dramatically, the reduction in the workspace due to the reduced locomotion 

efficiency which is due in large part to the robot environment interaction. As a result of the 

displacement and orientation losses, the corrected workspace (right) is significantly narrower 

than the ideal one (left) and the maximum distance per locomotion cycle is 30-50 % smaller. The 

net knowledge result is that the actual motion capability of the physical robot is significantly less 

than what would be predicted by an idealized model. This information is very valuable because it 

feeds the motion planning algorithms, so they only ask for robot motions that stay within the 

robot’s achievable constraints. 
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Figure 4.5 Comparison of achievable workspace for ideal kinematic model (a) and 

corrected kinematic model (b) 

To apply the above correction in the forward kinematic model, (4.15) is inverted and 

(4.16) is reevaluated for the state increments 
T

dx dy d 
  from the LKS 

 ( )1d d  =   (4.17) 
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  (4.18) 

Then, the updated state increments from (4.17) and (4.18) are used in the SKS to calculate the 

required angular inputs. 
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Chapter 5         

Path Following Control  

5.1 Motivation 

The path tracking or motion control is the central aspect of autonomous navigation [51]. 

This problem can be formulated as path following or trajectory tracking. In path following, the 

robot has to reach and follow a given geometric path without necessarily concerning itself with 

timing along the path. Instead, in trajectory tracking, the robot needs to follow a trajectory, a 

geometric path with associated timing law. Both problems have been well understood and 

studied for rigid-body robots, like autonomous vehicles or rigid mobile robots, as reviewed 

below.  

In rigid-bodied mobile robots, the path tracking controllers continuously determine 

steering angle and velocity inputs to allow the reference path following. The existing control 

solutions have been reviewed in [52], as well as in [53] and [54]. The most widely implemented 

class of controllers is the geometric controllers, which utilize the system’s geometric model. As a 

result, they are both simple to implement and efficient [52], [54]. The most popular geometric 

controller is a pure pursuit [55], [56]. In this method, the robot is constantly pursuing a reference 

point on the path ahead of the robot. Another example of the geometric control is the Stanley 

controller [57]. It utilizes the lateral and heading errors to the reference path in the steering angle 

control law. Besides the geometric controllers, there is the class of kinematic controllers. These 

are the feedback controllers based on the kinematic model, e.g., as presented in [53]. In most 

controllers, the kinematic bicycle model is used. The geometric and kinematic controllers are 

designed for path tracking in moderate conditions and may not be suited for path tracking in 
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high-speed conditions, as they ignore rigid-body robot dynamics. Instead, the dynamic 

controllers account for the system dynamics. However, they are computationally expensive and 

should be selected based on a tradeoff between the model fidelity and computational complexity. 

The variety of control methods also include classical controllers, such as PID and sliding model 

control (SMC), as well as optimal and adaptive controllers, such as linear-quadratic regulators 

(LQR) and model reference adaptive controllers (MRAC), as listed in [52]. These controllers 

show good path following but have challenges in parameter tuning (PID) and may be sensitive to 

path curvature variation (SMC, adaptive controllers). Additionally, path following has been 

realized with the model predictive controllers (MPC). MPC predicts system behavior for a short 

time prediction horizon by solving an optimization problem. It then, selects the control input for 

a single time step and repeats the calculation. A linear MPC allows path tracking for limited 

conditions, while nonlinear MPC may allow accurate path following over a wide range of 

dynamics and operating conditions. However, it is computationally expensive as it requires 

solving a nonlinear optimization problem at each step, which limits its application. To address 

this problem, nonlinear system dynamics has been linearized at each step and linear MPC was 

applied at each step in [58]. The advantages and drawbacks of all categories of controllers have 

been summarized in a table in [52]. 

Task-level motion control is still underrepresented in soft mobile robots, as reviewed in 

Chapter 1. Due to their compliance, these robots are underactuated. They suffer from motion and 

model uncertainties, which leads to additional challenges for their autonomous navigation 

compared to the rigid-bodied robots. Hence, designing the controller enabling accurate path 

following is crucial for soft robots’ autonomous navigation. In OSCAR, the previously 

mentioned uncertainties have been addressed in the earlier chapters. Since OSCAR has a 

relatively slow motion, in this thesis we focus on the path following and consider the trajectory 

tracking to be out of scope. 

The path following control problem is formulated as follows in this work. Given a 

reference path as a set of waypoints, 
2

pathp   in the global coordinate frame, the robot should 

converge to and follow the path [51]. By utilizing the rigid body approximation for OSCAR’s 

motion, described in Chapter 4, control algorithms traditionally used in the rigid-bodied robots 
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can be adapted to OSCAR. This work employs two path following controllers: an adapted 

model-based pure pursuit controller and a proportional feedback controller. 

5.2 Model-Based Open-Loop Pure Pursuit Controller 

As stated above, the pure pursuit controller is one of the most popular and effective 

controllers for rigid-bodied robots, due to its computational simplicity and robustness [52],[59]. 

The pure pursuit continuously regulates the robot steering angle by fitting an arc between its 

current position and the goal point on the path. The goal point is found at a specified lookahead 

distance L  from the robot’s current position. The resulting arc curvature defines the steering 

angle [4]. 

 

Figure 5.1 Pure pursuit controller schematic  

Similarly, for OSCAR, an arc is fitted between its current position kp  and the goal point 

goalp  located in the lookahead distance L  on the path, as shown in Fig. 5.1. Geometrically, 

sin
y

L



=  and sin

2
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 = . Therefore, the resulting arc has a radius 
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=


  (5.1)  
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where y  is the lateral error to goalp  in the robot’s local coordinate frame. Equation (5.1) is 

subjected to the minimum radius constraint 

 minR R   (5.2)  

which results from the robot’s achievable workspace, shown in Fig. 4.5. This constraint 

represents the limits of the robot maximum curvature turn, as max min1c R= . 

To adapt the pure pursuit for OSCAR, its motion within a single locomotion cycle along 

the defined arc is considered, as shown in Fig. 5.1. The displacement ds  defines the robot’s 

motion. The ds  is a user-defined constant parameter, also constrained by the achievable 

workspace  max0,ds ds . The outputs R  and ds of the pure pursuit algorithm are substituted 

to the kinematic model to determine the angular inputs  1 2

T

k
  . Since the kinematic model is a 

part of the resulting controller, the adopted pure pursuit is an open-loop controller. During path 

following, the controller iteratively computes the angular inputs for each locomotion cycle. 

5.3 Proportional Feedback Controller 

The feedback path following controller in this work has the separate longitudinal and 

lateral control inputs that are coupled to calculate the robot’s angular inputs. This is analogous to 

the path following in the rigid-bodied robots, where the decoupled longitudinal control input 

corresponds to the forward speed and the lateral control input regulates the steering angle to 

compensate the lateral error to the path [60]. Here, the longitudinal and lateral directions 

correspond to the x and y-axes of the local coordinate frame, as shown in Fig. 5.2. Assuming the 

robot moves with a constant speed, its longitudinal control input is constant 

 , ,maxx k xu u=   (5.3)  

where   is a constant chosen to be in  0,1  , and ,maxxu  is the maximum longitudinal input, 

equal to the maximum angular input to the origami tower, ,max maxxu = . The subscript k indicates 

the index of the current locomotion cycle. 

The lateral control input is defined by a proportional controller 
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 , ,y k p y ku K e=   (5.4)  

where pK  is a controller gain and ,y ke  is the lateral error defined between a point along the x-

direction in the preview distance D and the path, as shown in Fig. 5.2. Here, the preview distance 

D is a user-controlled tunable parameter, tuned to tradeoff the controller aggressiveness with 

stability. 

 

Figure 5.2 Lateral error in the feedback controller 

The control inputs in (5.3) and (5.4) are coupled with the angular inputs to the origami 

towers according to 
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Equation (5.5) states that the angular inputs’ average is proportional to the robot forward 

displacement, denoted by the longitudinal control input ,x ku , while their difference corresponds 

to the turning motion, denoted by the lateral control input ,y ku . Based on (5.5), the angular 

inputs to the kth locomotion cycle are 
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  (5.6)  

The calculated angles are subjected to the following set of constraints 

 max0 , 1,2i i   =   (5.7)  
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r




    (5.8) 

which states that the reference angular input to the origami tower must be positive and bounded 

(5.7). Moreover, the angular ratio should be limited (5.8). Here, r is the maximum angular ratio 

and it corresponds to the maximum right turn. The ratio 1/ r  corresponds to the maximum left 

turn. In these constraints, max 180 =  and 1.6r = , as stated in Chapter 3. Based on (5.6), the 

constraint in (5.7) can be expressed as 

 
, ,
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y k x k

r
u u
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−


+
 . (5.9) 

5.4 Simulation and Experimental Results 

The designed path following controllers’ performance has been investigated for the 

straight horizontal reference path. For this case study, OSCAR starts at some initial offset in the 

y-direction from the path. Its initial state is approximately  0 0 60 6
T

p = − in all 

experiments and simulations; the units are mm and radians, respectively. OSCAR has to 

converge to and follow the reference path with bounded position and orientation errors.  

5.4.1 Controllers’ Performance with the Ideal Kinematic Model  

In the simulation, the pure pursuit has a lookahead distance 110L =  mm and a forward 

displacement 48ds =  mm. The robot minimum turn radius is min 110R = mm derived from the 

ideal achievable workspace, shown in Fig. 4.5(a). The feedback controller has an empirically 

determined gain 0.7pK = and preview distance 100D = mm. In all simulations and experiments 

presented in this Chapter, the longitudinal input constant in the feedback controller is 0.8 = , 

and forward displacement ds  in the pure pursuit is tuned to match the resulting forward 

displacement in the feedback controller. All the control parameters were tuned for the best 

performance in terms of overshoot and convergence to the path for the given operating 

conditions. 

The path following simulation results with both controllers using the ideal kinematic 

model are shown in Fig. 5.3. The robot acts in an ideal way in simulation, so the robot plant and 
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kinematic model corrections, (4.15)-(4.16) and (4.17)-(4.18), respectively, are not needed. As 

shown in Fig. 5.3, the robot acquires and follows the path with both controllers.  

 

Figure 5.3 Simulation results for the path following with the ideal kinematic model  

 

Figure 5.4 Robot trajectory with the pure pursuit controller with the ideal kinematic 

model. Due to modeling errors, OSCAR’s trajectory (green) diverges from the path (red) 

and simulation (black). Purple and pink solid lines show the robot orientation at the initial 

and final states, respectively  

However, as shown in Fig. 5.4, the experimental results are not analogous to those 

predicted by simulation. The experimental validation of the pure pursuit shows that the robot 

diverges from the path, due to significant modeling errors in the ideal kinematic model and 

motion uncertainties present in the robot. The adopted pure pursuit is an open-loop controller 

that relies solely on a kinematic model. Since the idealized kinematic model does not account for 

the system inefficiencies and losses, primarily due to the robot-environment interaction, it 
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overpredicts the robot state at each cycle and greatly diminishes the pure pursuit path acquisition 

and tracking performance. This illustrates the need for the previously mentioned corrections in 

the kinematic model. 

5.4.2 Pure Pursuit Performance with the Corrected Kinematic Model  

In the pure pursuit with the applied correction in the kinematic model, the controller 

gains are 100L = mm and 30ds = mm. These values were determined empirically. The 

minimum turn radius is min 200R = mm due to the corrected kinematic model.  

 

Figure 5.5 (a) Robot trajectory with the pure pursuit controller with the corrected 

kinematic model. Purple and pink solid lines show the robot orientation at the initial and 

final states, respectively. (b) Trajectory divergence for the three consecutive experiments  

Fig. 5.5(a) presents the simulation and experimental results with the corrections.  

Although the performance is much better than the un-corrected approach, the robot still cannot 
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acquire and follow a path.  The experimental behavior deviates from the simulated behavior due 

to remaining uncertainty between the modeled and actual system. To demonstrate the variability 

of the results, three consecutive experiments are shown in Fig. 5.5(b). As can be seen, the 

variability is not repeatable from one experiment to the next.  This indicates that the robot-terrain 

interaction is very difficult to capture and use for pure-pursuit.  

The analysis shows that the OSCAR has significant motion uncertainties caused 

primarily by its interaction with the ground and secondarily by some uncertainty in the origami 

towers’ compliance. As a result, there is a strong need for the feedback controller. 

5.4.3 Experimental Results for the Feedback Controller 

For the experimental studies with the feedback controller, the gain and preview distance 

are empirically tuned to 0.7pK =  and 250D =  mm, respectively. Figure 5.6 shows the 

comparison of the experimental and simulation results, obtained with the corrected kinematic 

model that accounts for motion inefficiencies. The results of two combined experiments are 

presented in Fig. 5.6(a). Due to the limited workspace in the experimental setup, the overall 

response has to be done in two sequential phases. In Fig. 5.6(a), the first experiment is started 

and run to the 600+mm (x-axis) limit of our experimental workspace. Then, the final values of 

the robot orientation and y-axis offset from the first experiment are used for the second 

experiment starting at beginning of the x-axis.  This can be done since the robot dynamics are not 

a significant factor. Stitching the two responses together gives the overall response in Fig. 5.6(a). 

The experimental results illustrate that the feedback controller allows the robot to acquire 

and follow a path despite the present motion uncertainties. Their relative amount can be observed 

by comparison of simulation and experimental results. In the experiment, the robot has a larger 

overshoot than predicted in simulation but the steady-state error in the y-direction remains within 

measurement error of the simulated result, which is acceptable. The larger overshoot is caused by 

unknown uncertainties not captured in simulation. Additionally, the experiment 1 and 2 have 

been conducted three times to verify the repeatability of the controller performance results, as 

shown in Fig. 5.6 (b) and (c). 
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Figure 5.6 Robot trajectory with the feedback controller: (a) combined experimental 

results showing the robot acquiring and following the path. The robot final orientation in 

experiment 1 matches the initial orientation in the experiment 2. (b) and (c) show the robot 

trajectory repeatability with the feedback controller for three trials in settings of 

experiment 1 and 2, respectively  

The angular inputs for simulation and combined experiments 1 and 2 are shown in Fig. 

5.7. The rest of the experiments in Fig. 5.6 (b) and (c) have similar inputs and thus are not 

shown. The presented angles in Fig 5.7 are expansion inputs shown for each locomotion cycle. 

As can be seen, the angular inputs are initially saturated, as the robot makes maximum allowed 

left turns ( )1 2   to converge to the path in both simulation and experiment. As the robot 

approaches the path (see the second half of experiment 1 and beginning of experiment 2 in Fig. 
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5.6 and Fig. 5.7), it corrects for overshoot by making the right turns ( )2 1  . In the simulation, 

the predicted overshoot is smaller than in the experiment, and therefore, almost no right turns are 

needed. As the robot converges to and moves along the path, both simulation and experimental 

angular inputs become the same.  

 

Figure 5.7 Angular inputs for path following with feedback controller in Fig. 5.6(a) 

5.5 Chapter Summary 

As demonstrated in this Chapter, path following is feasible for the given class of soft 

origami robots. Two path following efforts were initiated in this work. One used a well-known 

model-based pure pursuit controller, and the other was a simple feedback controller using a 

lookahead distance. In the simulation, both worked well enough to be a viable path following 

approach. However, the uncertainties prevalent in the overall system drastically reduced the 

efficacy of the open-loop model-based approach.  These uncertainties included the robot-terrain 

interaction, the origami-tower flexibility, as well as lower-level uncertainties in items such as 

servo deadband that were dealt with in Chapter 3. The results given here indicate that feedback 

control for path acquisition and path following is a strict requirement for future autonomous 

navigation of soft origami robots. The feedback controller is used in the OSCAR autonomous 

navigation experiments in Chapter 6, where it demonstrated accurate path tracking and static 

obstacle avoidance. 
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Chapter 6     

Path Planning and Autonomous Navigation for 

OSCAR 

6.1 Motivation 

The robot requires three main components to enable autonomous navigation commonly 

known as perception, planning, and control [61], [62]. The perception is the ability to receive 

information about the robot’s current state and environment. With a known state and 

environment, planning allows the robot to plan a collision-free path to its goal configuration 

intelligently. Finally, the robot executes this path using a controller. 

As explained in Chapter 3, OSCAR has offboarded localization in the experimental setup 

to determine its state. Also, OSCAR has a path following controller to follow a provided 

reference path, as presented and tested in Chapter 5. Therefore, the only missing part in the 

autonomous navigation framework is path planning, the subject of this chapter. 

6.2 Background 

Before describing the path planning algorithms investigated, let us first introduce the 

essential concepts. Commonly, the rigid-body robot configuration is defined by its planar 

position and orientation, i.e.,   ,
T

p x y p C=   [63]. Then, the configuration space C  is a 

space of all configurations [64]. In this case,  )2 0, 2C =  , which defines the robot motion 

by planar translation and 2D rotation. The path planning is performed in the configuration space, 

where the robot is simplified to a point denoting its current configuration. 
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Consider static obstacles , 1,...,iO i n=  in the robot workspace 
2W  . These obstacles 

are rigid body objects in the workspace W . We define the robot shape to be ( )R p  at 

configuration p . Then, the obstacles in configuration space can be defined as  

 ( ) , 1,...,i iCO p C R p O i n=    =   (6.1) 

The free configuration space is the configuration space without obstacles, i.e., 

1

\ .
n

free i
i

C C CO
=

=  Thus, for collision avoidance the path planning should be done in freeC  [64]. 

Generally, the path planning problem can be formulated as planning a feasible path from 

the initial configuration 0p  to the given final configuration Goalp  while avoiding obstacles. The 

obstacles could be static and/or dynamic. Feasibility means the robot can execute the path, i.e., 

the path should satisfy the robot motion constraints. Additionally, the path optimality could be 

imposed, which means that the planned path should be optimal (i.e., minimize a cost function) 

[53]. 

For planning the path, the configuration space is often discretized into a grid that forms a 

graph. The graph ( ),G v e  is a structure that consists of vertices v V and edges e E , where the 

edges connect two adjacent vertices. For example, for two vertices 1v  and 2v , the edge is a pair 

( )1 2,v v . A single vertex can have multiple edges. In the discretized configuration space, the 

resulting grid nodes form graph vertices, and the pairs of adjacent nodes form graph edges. The 

resulting graph is presented as an occupancy grid [65]. The occupancy grid contains information 

about obstacles, such that the grid cells that are occupied by obstacles are marked as unavailable. 

Path planning has been an active research area for rigid-bodied mobile robots, like 

autonomous vehicles. The existing motion planning algorithms are reviewed in [53], [61], [66]. 

These methods can be categorized into the following three categories: 

1. Graph-search methods discretize the continuous configuration space and represent it 

as a graph, as described above. The algorithm then searches the graph to find 

the minimum cost path by growing a search tree [53]. The graph-search 

methods include Dijkstra’s algorithm [67], the A* algorithm [68], its variation 
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called the hybrid A* algorithm [69], and the D* algorithm [70], among others. 

Additionally, these methods include state lattice-search methods, where the 

graph is obtained by uniformly discretizing the configuration space with a set 

of motion primitives. The resulting graph is called a state lattice, over which 

the above search methods are applied. The graph-search methods are 

guaranteed to find a path if one exists. However, the deterministic sampling of 

the whole configuration space in these algorithms makes the search problem 

computationally complex for high-dimension or large-sized configuration 

spaces.  

2. Incremental-search methods plan a path by randomly sampling the configuration 

space and incrementally building the graph [61],[66]. When the graph is large 

enough to connect the start and goal region, the search method traces graph 

nodes from the start to goal configurations and outputs the resulting path. 

Examples of the incremental-search methods are probabilistic road maps 

(PRM) [71] and rapidly exploring random tree (RRT) methods, e.g., RRT [63] 

and RRT* [72].  Due to random sampling, these methods find solutions faster 

than graph-search methods for the high-dimension configuration spaces. These 

spaces include, for example, velocity or acceleration as additional states in the 

configuration space. However, their computational time can be unbounded if 

the solution does not exist or if the search is not guided correctly by the 

heuristic that drives the random sampling [53]. 

3. Variational methods solve the non-linear trajectory optimization problem in the space 

of parametrized curves to find a path. These methods divide into direct and 

indirect methods based on how the optimization problem is solved [73]. As 

highlighted in [53], variational methods converge to local minima solutions. 

The appropriate initial guess is needed to obtain the global minimum solution.  

Given a well-defined workspace and static obstacles, the hybrid A* path planning 

algorithm has been chosen in the proposed framework for its simplicity and ease of 

implementation. Hybrid A* allows for planning a smooth path while satisfying OSCAR motion 

constraints. It is explained in detail in the following section. 
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6.3 Hybrid A* Planner 

The hybrid A* method is a graph search algorithm designed for robots with non-

holonomic motion constraints, e.g., autonomous cars [69], [74]. The non-holonomic constraint 

means that the robot cannot directly move laterally, as its lateral motion is coupled with the 

forward displacement [63]. The hybrid A* planner was first used in an autonomous car Junior 

during the DARPA Urban Challenge in 2007 [69]. Unlike other discrete graph search algorithms, 

e.g., Dijkstra’s and A*, hybrid A* plans a path in the continuous space, making the planned path 

feasible for a non-holonomic robot [69]. 

To accommodate the non-holonomic constraint, the hybrid A* grows the search tree 

along a set of precomputed motion primitives ( ),   , obtained by discretizing the available 

range of motion. Here,   is a multiple of discretization steps and   is the current orientation. It 

is represented by the set of arcs of fixed length, as shown in Fig. 6.1. The algorithm’s 

pseudocode is presented in Algorithm 1, adopted from [74]. 

 

Figure 6.1 Graphical explanation of hybrid A* path planning algorithm 

Consider the configuration space is discretized into a grid and given by an occupancy 

map m  (Fig. 6.1). For a 2D position x  of the current configuration p , its corresponding 

discrete position on the map (denoted by a hat) is 

 ( )ˆ /mx x o = −   (6.2) 

where mo  is the map origin, and  is the map resolution. The discrete position is stored 

alongside the actual position, where the discrete position is used for collision avoidance 
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checking. It is also used to update the nodes already existing in the graph with the same discrete 

position if the new nodes have a lower cost. During the search, the node expands (i.e., search tree 

grows) from the actual position, ensuring path feasibility. 

The algorithm uses two cost functions: cost-to-come ( ),sg p p , which is an accumulated 

cost from the start to the current node, and cost-to-go ( ), Goalh p p , called a heuristic. The 

heuristic is a distance estimate from the current to the goal node. The valid heuristic needs to be 

admissible, i.e., it should be a lower bound of the true cost [63]. An example of a valid heuristic 

is the 2D Euclidian distance between the two given nodes. The heuristic is critical for the search, 

as it guides the algorithm and avoids expanding nodes far from the optimal path. Thus, it reduces 

the computational time to find a path. The total cost at each node is defined as a sum 

 ( ) ( ) ( ), ,s Goalf p g p p h p p= +   (6.3) 

Based on the above, each node of the search tree can be fully defined by 

 ( )ˆˆ, , , , , pp x x g f n=   (6.4) 

where x̂  and ̂  are discrete position and orientation; x is an actual position; ,g f  are cost-to-

come and total cost, respectively; and pn  is a predecessor node. Here, the discrete and actual 

orientations are the same ̂ = , assuming ˆ
s s =  [74]. The information about the predecessor 

node is stored in order to reconstruct the resulting path if it exists. Finally, the algorithm utilizes 

two sets: an open set Q  containing adjacent nodes of already expanded nodes and a closed set 

R  of all processed nodes.  

Given the initial configuration sp , the algorithm defines the start node of the search 

graph; see line 1 in Algorithm 1. This node has zero cost-to-come and no predecessor. The 

algorithm then pushes node sp  into the open set Q  and defines an empty set R. Line 4 starts the 

while loop, which terminates if path from the sp  to Goalp is found or no path exists. Inside the 

loop, the node p with the lowest f value is selected from Q. When node p is expanded, it is 

moved from the set Q to the set R (lines 6 and 7). If p is in the region of Goalp , then the planned 

path is reconstructed through the predecessor list starting from the node p.  
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Otherwise, the successor p  of p will be generated from the motion primitives’ set. If the 

successor is in collision with the obstacle, it will be discarded and added to the closed set R. The 

corresponding search tree branch will be pruned (deleted) [75]. Alternatively, it will be 

compared with elements of Q. If there is a node in Q  with the same discrete position as p , the 

cost-to-come g  will be calculated and compared to that of the existing node in Q (line 16). Here, 

( ),l p p  is the length of the motion primitive [75]. If g  is lower than g , the existing node in Q 

will be replaced by p . The node p  has predecessor p and calculated costs f  and h . 

Otherwise, the node p  will be added to Q if it is not in Q. These steps will repeat until all 

motion primitives are expanded from p and processed.  

Finally, the iterations will continue until the path is found (line 9), or there are no more 

elements in Q. In the latter case, the algorithm returns that there is no path found (line 26).  

Algorithm 1: Hybrid A* search [74] 

1. ( )( )ˆˆ , , , 0, , ,s s s s sp x x h x G −  

2.  sQ p  

3. R =  

4. while Q    do 

5.         p   node with minimum f value in Q  

6.         \{ }Q Q p  

7.         { }R R p  

8.          if  Goalp p=  then 

9.                return reconstructed path to Goalp via predecessor list of p 

10.          else 

11.                for all   do 

12.                      p succeeding state of p using ( ),    

13.                      if ( )x̂m p = obstacle then 

14.                            { }R R p  

15.                      else if  ˆ ˆ: x xp Q p p  =  then 

16.                            ( ) ( ),g g p l p p = +  

17.                             if g g  value of existing node in Q then 

18.                                   replace existing node in Q with p  

19.                             end if 

20.                      else  

21.                              Q Q p  
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22.                        end if 

23.                end for  

24.          end if 

25. end while 

26. return no path found 

 

The hybrid A* search algorithm is well-informed due to the heuristic use and thus has 

fast convergence to the solution. The resulting path is feasible, and it lies in the neighborhood of 

the global optimum solution [69]. A similar algorithm called a bi-directional hybrid A* is used in 

the soft snake robot path planning [24]. In the bi-directional method, the search tree grows from 

both start and goal positions. When the two search trees become close, their branches are 

connected to form a complete path. 

6.4 Path Planning Results 

The path planning with a hybrid A* planner is done in the MATLAB Navigation 

Toolbox. The OSCAR range of motion is limited by the minimum turn radius constraint 

 
minR R   (6.5)  

where min 467.7R =  mm from the robot’s achievable workspace in Fig. 4.4, b. The length of 

each motion primitive is equal to the total robot displacement in a single locomotion cycle, 

which is 30ds =  mm, as chosen in Chapter 5. Both minR  and ds  are inputs to the planner tool. 

Finally, the set of motion primitives, defined by (6.5) and ds , is discretized into 19n =  motion 

primitives to satisfy a requirement of being an odd number in order to smooth the planned path.  

In the current study, only circular obstacles are considered, as shown in Fig.6.2(a). They 

are specified by the coordinates of their center (x, y) and a radius r. For collision avoidance 

purposes, additional tunable clearance space of size df is added around obstacles; in this work we 

specify 65df = mm. This distance accommodates half of the robot width plus an additional 11 

% of the robot width to accommodate estimated motion uncertainty. Thus, the obstacle has a 

total radius ( )r df+  in the workspace occupancy map, as shown in Fig.6.2(b). The workspace 

discretization in the occupancy map is 1 mm. 
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Two path planning scenarios have been investigated and presented to illustrate the 

OSCAR autonomous navigation framework. One of the scenario schematics is shown in Fig. 6.3. 

OSCAR starts with a zero-degree orientation with respect to the positive x-axis at its initial 

configuration, and it must plan an S-shaped path to reach a goal configuration while avoiding 

static obstacles in the workspace. In the goal configuration, OSCAR should have a zero-degree 

orientation as well. The second scenario is a mirrored version of the first one about the x-axis. 

These scenarios are chosen as they allow demonstration of OSCAR’s ability to complete 

complex maneuvers. 

 

Figure 6.2 Obstacles: (a) real size in a workspace and (b) in an occupancy map. In (b), 

obstacles have added clearance around them for collision avoidance purposes during the 

planning 

 

Figure 6.3 Autonomous navigation scenario schematics 
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6.4.1 Scenario 1 

The OSCAR initial and goal configurations are  0 10 200 0
T

p =  and 

 1200 5 0
T

Goalp = , respectively. Units are mm and radians. The obstacle center locations 

and radii are specified in Table 6.1. The resulting planned path ,exp1refP  is shown in Fig. 6.4. As 

can be seen, due to the robot’s achievable workspace limitations, the planned path is close to the 

second obstacle. However, accommodated clearance space will allow safe collision avoidance, as 

will be shown in the experimental results.  

Table 6.1 Obstacles in scenario 1 

  x (mm) y (mm) R (mm) 

Obstacle 1 150 70 20 

Obstacle 2 550 150 20 

 

 

Figure 6.4 Path planned for the first scenario from the start (green) to goal (red) 

configurations. Black shaded circles are the obstacles with added clearance space, and light 

blue lines are nodes expanded by the planner 

6.4.2 Scenario 2 

The OSCAR initial and goal configurations are  0 10 5 0
T

p =  and 

 1200 200 0
T

Goalp = , respectively. The obstacles are specified in Table 6.2. In this 
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experiment, a third obstacle is added to obtain a straight path for 800x  mm, similar to Fig. 6.4. 

The resulting planned path ,exp2refP is shown in Fig. 6.5.  

Table 6.2 Obstacles in scenario 2 

  x (mm) y (mm) R (mm) 

Obstacle 1 150 110 20 

Obstacle 2 550 50 20 

Obstacle 3 800 285 20 

 

 

Figure 6.5 Path planned for the second scenario from the start (green) to goal (red) 

configurations. Black shaded circles are the obstacles with added clearance space, and light 

blue lines are nodes expanded by the planner 

6.5 OSCAR Autonomous Navigation Experiments 

In the OSCAR autonomous navigation framework, path planning is done in advance, as 

shown in Section 6.4. The planned path is then tracked by the feedback path following controller, 

designed in Chapter 5. The results of the OSCAR’s autonomous navigation are presented below. 

The obstacles are not present in the experiments, but the clearance space accommodates a safe 

distance to the obstacles.  

As part of the future work, OSCAR’s autonomous navigation framework could be 

extended to include navigation in the presence of dynamic obstacles. These scenarios would 

correspond to the real-world environment, where the obstacles are not static. In this case, the 

path planning has to be modified. If the obstacles and their trajectories are known, the free 
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configuration space can be modified to accommodate these trajectories. Then, the path planning 

using the above method could be performed [63]. Instead, if the obstacle motion is unknown, the 

initial path should be planned first and local replanning is required for collision avoidance as the 

robot moves to the goal [53].  

6.5.1 Scenario 1 

Due to the experimental setup’s workspace limitation, the planned path ,exp1refP  has been 

divided into two parts, as shown in Table 6.3. Two-part experiments have been conducted and 

merged, similar to Chapter 5. During part 1 experiments, the reference path has been extended to 

include the remainder of ,exp1refP  as the virtual path. The virtual path is used as a reference by the 

path following controller to calculate control inputs when the actual path ends, but the robot has 

not reached a point ,1,ref gp . Similarly, during part 2 experiments, the reference path has a virtual 

path: a straight line of length 400mm with the orientation of Goalp . 

Table 6.3 Reference paths for two parts of scenario 1 

 Start Configuration Goal Configuration 

Part 1  0 10 200 0
T

p =
  ,1, 636.8 29.21 0.2353

T
ref gp = −

 

Part 2  ,1, 636.8 29.21 0.2353
T

ref sp = −
 

 1200 5 0
T

Goalp =
 

 

The autonomous navigation results are shown in Fig. 6.6 to Fig. 6.9. Here, the simulation 

and experimental results for part 1 are shown first separately in Fig. 6.6 and Fig. 6.7, and then 

together in Fig. 6.8 to demonstrate the similarities and draw conclusions. As can be seen, the 

robot avoids obstacles and follows the reference path accurately in both simulation and 

experiment, see Fig. 6.6 and Fig. 6.7, respectively. In Fig. 6.7, the robot body (grey shaded area), 

corresponding to front plate motion, is plotted to demonstrate obstacle avoidance. The obstacles 

in their actual size are shown in pink color.  
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Figure 6.6 OSCAR trajectory in simulation in part 1 of scenario 1.  The red dashed lines 

show the robot’s initial and final configurations in the reference path; a fully contracted 

robot state is shown. Obstacles in actual size (without clearance space) are shown in pink. 

 

Figure 6.7 OSCAR trajectory in experiments in part 1 of scenario 1.  The red and black 

dashed lines show the robot’s configurations in the reference path and experiment 1. The 

robot body motion (grey shaded area) in experiment 1 demonstrates obstacle avoidance. 

Four trials show the repeatability of the results 
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Figure 6.8 Combined simulation and experimental results for part 1 of scenario 1 

 

Figure 6.9 Simulation and experimental results for OSCAR trajectory in part 2 of the 

scenario 1. Here, red and black dashed lines show the robot configuration in reference path 

and experiment 5, respectively. The robot body motion (grey shaded area) in experiment 5 

demonstrates obstacle avoidance. Four trials show the repeatability of the results 
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Additionally, the robot configurations in the reference path (red dashed line) and 

experiment 1 (black dashed line) are shown at the initial and final states. These demonstrate the 

similarities between robot position and orientation in the reference path and experiment. The 

combined experimental and simulation results are shown in Fig. 6.8. As can be seen, the OSCAR 

trajectory matches the simulation.  The same is shown in Fig. 6.9 for part 2 of scenario 1. Four 

trials have been conducted in each case to show the results’ repeatability. 

In order to merge the results of part 1 and part 2, the final state at experiment 1 in part 1 

is used as an initial state for all part 2 experiments. It should be noted that based on the final state 

position in experiment 1, the reference path for part 2 has been chosen in Table 6.3. The merged 

results of experiment 1 of part 1 and experiment 5 of part 2 are shown in Fig. 6.10. These results 

demonstrate a complete OSCAR trajectory for scenario 1. 

 

Figure 6.10 Coupled results of OSCAR trajectory in scenario 1. The final state in 

experiment 1 matches the initial state of experiment 5 

The comparison of angular inputs for simulation and experiments 1 and 5 are shown in 

Fig. 6.11 and Fig. 6.12, respectively. As can be seen, the experimental angular inputs align well 

with the simulation. However, as expected, the experimental inputs are slightly larger than in 

simulation, as the robot needs to compensate for some unknown uncertainties.  

In more detail, in Fig. 6.11, to follow a curved path in scenario 1, the robot initially 

makes right turns ( 1 2  ) until 13k =  locomotion cycle in the experiment and 15k =  in 

simulation, then it makes left turns ( )2 1  . As the robot converges to the straight-line path in 

scenario 1, the difference between angular inputs decreases, as shown in Fig. 6.12.  
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Figure 6.11 Angular inputs for part 1 in scenario 1 

 

Figure 6.12 Angular inputs for part 2 in scenario 1 

6.5.2 Scenario 2 

As in Scenario 1, the planned path ,exp2refP  has been divided, as shown in Table 6.4. 

Here, the initial state of the reference path for part 2 is chosen based on the final state in 

experiments of part 1, as described in previous section. It should be noted that the reference path 

has been shifted by y=200 mm to make the robot ‘centered’ to the experimental setup’s camera. 
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Table 6.4 Reference paths for two parts of scenario 2 

 Start Configuration Goal Configuration 

Part 1  0 10 195 0
T

p = −
  ,2, 642 33.89 0.2587

T
ref gp = −

 

Part 2  ,2, 642 33.89 0.2587
T

ref sp = −
 

 1200 0 0
T

Goalp =
 

 

The OSCAR’s autonomous navigation results for two parts are shown in Fig. 6.13 and 

Fig. 6.14. The final state in experiment 9 in Fig. 6.13 is used as the initial state for all part 2 

experiments in Fig. 6.14. The virtual paths are taken similar to Scenario 1. As can be seen, the 

robot (grey shaded area) safely avoids the obstacles and follows the reference path in both 

simulation and experiment. Four trials demonstrate the results’ repeatability in each part. The 

coupled results of parts 1 and 2 are shown in Fig. 6.15. 

 

Figure 6.13 OSCAR trajectory in part 1 of the scenario 2. Here, red and black dashed lines 

show the robot configuration in reference path and experiment 9. The robot body motion 

(grey shaded area) in experiment 9 demonstrates the obstacle avoidance. Four trials show 

the results repeatability 
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Figure 6.14 OSCAR trajectory in part 2 of the scenario 2. Here, red and black dashed lines 

show the robot configuration in reference path and experiment 13. The robot body motion 

(grey shaded area) in experiment 13 demonstrates the obstacle avoidance. Four trials show 

the results repeatability 

 

Figure 6.15 Coupled results of OSCAR trajectory in scenario 2. The final state in 

experiment 9 of part 1 matches the initial state of experiment 13 of part 2 

The comparison of the angular inputs for simulation and experiments 9 and 13 are shown 

in Fig. 6.16 and Fig. 6.17, respectively. Simular conclusions as in Scenario 1 could be drawn. 
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Figure 6.16 Angular inputs for part 1 in scenario 2 

 

Figure 6.17 Angular inputs for part 2 in scenario 2 

6.6 Chapter Summary 

This chapter concludes the autonomous navigation framework for OSCAR and 

demonstrates its ability to autonomously navigate complex paths in the 2D terrain with static 

obstacles. It is one of the main contributions of this work, showing the soft mobile robots’ ability 

to accurately follow the complex reference paths.  
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The presented framework uses a hybrid A* algorithm for path planning and the 

proportional feedback controller for path following. The perception is accomplished externally in 

the experimental setup. The hybrid A* planner accommodates the robot motion constraints, and 

the feedback controller allows to accurately follow the path due to the presented robot design 

accurately. Additionally, clearance space around obstacles allows safe collision avoidance in the 

planned path. Future work may include autonomous navigation in the presence of dynamic 

obstacles. 

Chapter 7 expands the presented framework to include multi-segment OSCAR coupled 

locomotion, as it would expand and augment OSCAR functionality. 
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Chapter 7    

Coupled Locomotion Strategy 

7.1 Motivation 

The modular self-reconfigurable robots have attracted researchers in the robotics field for 

their high versatility and robustness [76],[77]. These robots consist of multiple segments 

(modules) of the same or different functionality, e.g., [78]–[80]. With each segment being 

independent, the modular robot can reconfigure itself to adapt its shape for a task, e.g., it can 

make a chain structure for crawling and rolling and a lattice structure for walking. Additionally, 

the modularity allows the robot to self-repair. If one of the segments is faulty, the robot can 

disconnect it and reconfigure itself to include only the functional segments to continue the 

mission. Hence, these robots could be viable and efficient in such applications as search-and-

rescue or unknown area exploration. 

Similarly, multiple OSCARs can be arranged into a metameric robot to utilize the 

modular robots’ benefits. Metameric means multiple similar segments arranged in series. In the 

metameric robot, an individual OSCAR is referred to as a segment. Many of the existing soft 

metameric robots, such as the origami-ball earthworm-like robot in [6], have rigidly attached 

segments that cannot be decoupled. Each OSCAR segment can move independently, or they can 

reconfigure and assemble into a metameric robot. This would allow greater task adaptability in 

certain real applications, such as search-and-rescue or area exploration, compared to the existing 

soft robots.  

This chapter describes and validates the coupled locomotion strategy of the two-segment 

robot as the basic building block to metameric locomotion with the OSCAR concept.  It could 
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readily be extended to include a larger number of segments in the future. Section 7.2 describes 

the locomotion strategy for the coupled OSCAR segments. The passive docking mechanism used 

to connect the segments is described in Section 7.2.2. Section 7.3 demonstrates the effectiveness 

of the locomotion strategy.  

7.2 Proposed Coupled Locomotion Strategy 

7.2.1 Coupled Locomotion Strategy 

The proposed coupled locomotion strategy is inspired by the earthworm locomotion. This 

locomotion has been widely used in soft mobile robots [22]; examples include an origami-ball 

earthworm-like robot in [6], meshworm [13], and softworm [81]. An earthworm is a true 

metameric animal. Separated by septa, its segments can be actuated independently. Each 

segment has two antagonistic groups of muscles: longitudinal and circular muscles [82]. When 

the longitudinal muscles contract, the segment shortens, and its diameter increases. Instead, when 

the circular muscles contract, the segment elongates, and its diameter decreases. Each segment 

has the bristle-like setae that perform an anisotropic friction function, and these setae were the 

inspiration for OSCAR’s foot designs. When the segment contracts, the setae anchor it to the 

ground providing high friction. When the segment elongates forward, they slide and provide low 

friction. 

The earthworm locomotes by coordinated segments’ expansion and contraction, called 

the retrograde peristalsis wave [82]. The wave travels from the head to tail segment along the 

body, resulting in the forward motion. It is schematically shown in Fig. 7.1(a) for the three-

segment earthworm moving to the right. The figure is adapted from [23]. As can be seen, when 

the head segment 1 elongates, the rear segment 3 contracts and anchors to the ground with setae. 

The middle segment 2 remains at rest. Then, the head segment 1 contracts, and adjacent to it 

segment 2 elongates simultaneously. This wave of contraction and elongation of two adjacent 

segments, called a peristalsis wave, travels back to the tail segment 3, facilitating a total forward 

displacement x . Then, the cycle repeats. 

Similarly, the coupled two-segment OSCAR locomotion is schematically presented in 

Fig. 7.1(b). Unlike the actual earthworm, OSCAR does not actuate in the radial direction. 
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Instead, high ground friction is provided by the anisotropic friction feet. Therefore, the segment 

height in OSCAR’s schematics does not change. In Fig. 7.1, (b), to show a coordinated transition 

of low and high friction in the feet, low and high feet friction are shown by black shaded circles 

and triangles, respectively.  

 

Figure 7.1 (a) Schematics of the earthworm-like locomotion, adapted from [23]; (b) coupled 

two-segment OSCAR locomotion strategy 

The locomotion can be described as follows. Starting from the initial state, where both 

segments are at rest, the head segment 1 expands. Due to the generated forces from the origami 

towers, the front plate moves forward due to its feet having low friction, while the back plate 

stays fixed due to its feet having high friction. Then, segment 1 contracts, and segment 2 expands 

simultaneously. During that motion, the front plate of segment 1 and the back plate of segment 2 

stay fixed due to the feet’s high friction. Both connected plates in the middle have low friction 

and, thus, they move forward. Following that, segment 2 contracts, while segment 1 expands. 

During this motion, the two connected plates in the middle have high friction at their feet and, 

thus, anchor to the ground. It allows the front plate of segment 1 and the back plate of segment 2 

to move forward. The last two steps then iterate in a cycle, each time resulting in the 

displacement x .  



 83  

Let denote the fully contracted segment state as 0, and the fully expanded state as 1. 

Then, transition 0 1→  corresponds to expansion and 1 0→  corresponds to contraction. The 

coupled locomotion can then be described as the following sequence 

( ) ( ) ( ) ( )0,0 0,1 1,0 0,1 ...→ → → → , where the states ( )1,0  and ( )0,1  repeat in a cycle. 

The locomotion strategy is experimentally validated in Section 7.3. 

7.2.2 Docking Mechanism 

The passive docking mechanism for the two segments’ connection is shown in Fig. 7.2. 

To realize it, the front and back plates at the connection are modified from those presented in 

Fig. 2.3. The front plate with connection mechanism has six strong permanent neodymium 

magnets evenly spaced on two disks (Fig. 7.2 (a)), and the back-plate has a detachable cover 

with the same number of magnets (Fig. 7.2 (b)) oriented in the opposite north-south magnet pole 

orientation from the front plate. When two robots are close to each other, they can passively dock 

due to the magnetic attraction. The resulting pulling force between connected plates is 11.2 N. 

This docking mechanism could be extended to include a segmentation functionality, 

which could be realized by the actuation of the front plate’s disks. Disks are placed on bearings 

for low friction. Since the back plate is static at the connection, the front plate’s disks could 

rotate and detach two connected segments. Such segmentation is energy-efficient, as the magnet 

sheer force is significantly lower than the pulling force. The disks rotate in the opposite 

directions for stability during the possible segmentation. The proposed docking and segmentation 

mechanism has been realized previously in other robotic applications. It was done for a single 

tower robot in [46], where an active plate had a single disk and shape memory alloy (SMA) 

actuators were used for segmentation. A similar magnetic docking and segmentation mechanism 

has been implemented in [5]. Finally, in [78], magnetic docking and SMA-based segmentation 

by translation have been demonstrated. These prior efforts add to the confidence in the chosen 

design for docking and segmentation used here. 
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Figure 7.2 Docking mechanism: (a) front plate of segment 2 and (b) back plate of segment 1  

7.3 Coupled Locomotion Strategy Validation 

The two-segment OSCAR robot is shown in Fig. 7.3. It has the markers on the front plate 

of segment 1 and on the back plate of segment 2 to characterize its total displacement. Each 

segment has an offboard microcontroller. The low-level servo position controller from Chapter 3 

controls segment expansion and contraction. For the coupled 1D locomotion, the selected 

angular expansion inputs have been set at    1 2 170 170
T T

  =  degrees, and the angular 

contraction inputs have been set at    1 2 0 0
T T

  = degrees.  
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Figure 7.3 Two-segment robot at the fully contracted state (top view) 

The coupled locomotion data has been collected in the experimental setup previously 

described. However, the LabVIEW VI sent the angular inputs to each of the separate OSCAR 

microcontrollers through separate tethered connections. An additional GoPro camera has been 

used to record the video at 30 frames per second. It was located next to the testbed’s primary 

camera and had a ‘god’s eye’ view of the workspace. 

The resulting coupled locomotion is shown as a sequence of video frames in Fig. 7.4. 

Each frame shows the segments at either fully expanded and fully contracted states. Starting 

from the fully contracted initial state (Fig. 7.3), the expansion inputs are sent to segment 1, i.e., 

( ) ( )0,0 0,1→ . This is illustrated in Fig. 7.4 (top). Following that, segment 2 expands, and 

segment 1 contracts, i.e., ( ) ( )0,1 1,0→ , as shown in Fig. 7.4 (middle). Then, segment 2 

contracts, and segment 1 expands, i.e., ( ) ( )1,0 0,1→ , as shown in Fig. 7.4 (bottom). The last 

two steps repeat in a cycle while the robot locomotes. 
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Figure 7.4 Sequence of video frames depicting the coupled locomotion 

 

Figure 7.5 Coupled robot trajectory. Here, the highlighted areas show examples of 

backward slippage of front plate during contraction (red boxes) and backward slippage of 

back plate during expansion (green boxes)   
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Figure 7.6 Displacement time history. Highlighted areas shown for two cycles only 

correspond to the actuation times during two alternating states: (a) segment 1 - expansion 

and segment 2 - contraction; (b) segment 1 - contraction and segment 2 – expansion 

Figure 7.5 shows the resulting robot trajectory, which corresponds to the centroids of the 

front plate of segment 1 and the back plate of segment 2. As can be seen, although not 

constrained in the y-direction, the robot moves straight. The total maximum deviation in the y-

direction for the segment 1 front plate is 12 mm, and for the segment 2 back plate it is 7 mm 

during a total 400 mm displacement along the x-axis. 

The displacement time history is shown in Fig. 7.6, starting from 5t s= . It is obtained by 

processing recorded video frames in MATLAB. The time history plot shows the centroids of the 

front and back plates of segments 1 and 2, respectively, as in Fig. 7.5. Also, it presents the 

displacement of the back plate of segment 1. The highlighted areas correspond to actuation time 

periods during each locomotion state: (a) the expansion of segment 1 and contraction of segment 

2, and (b) the contraction of segment 1 and the expansion of segment 2. The flat areas 

correspond to wait times for the next state. As can be seen, during (a), both front and back plates 

of segments 1 and 2 move forward, while the connected plates in the middle remain. As 

explained in subsection 7.2.1, due to segment 1 expansion, its front plate moves forward caused 

by low feet friction, and the back plate remains fixed due to high feet friction. For similar 

reasons, the back plate of segment 2 moves forward, and its front plate remains fixed during 
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contraction. Then, during (b), the connected plates in the middle move forward, caused by both 

contraction of segment 1 and the expansion of segment 2. The front and back plates of segments 

1 and 2 are supposed to remain fixed. However, as can be seen, they have some backward 

slippage, as also shown in Fig. 7.4 and Fig. 7.5. The amount of backward slippage is comparable 

to a single uncoupled OCSAR. 

7.4 Chapter Summary 

The coupled multi-segment locomotion presented in this chapter is a valuable study for 

the OSCAR autonomous navigation framework. With the proposed coupled locomotion strategy, 

OSCAR is able to navigate both autonomously and in a metameric configuration. Thus, it would 

potentially increase OSCAR’s flexibility and usefulness compared to existing soft mobile 

metameric robots in real applications. As stated earlier, the existing soft metameric robots in the 

literature, as the writing of this thesis, cannot be decoupled. As demonstrated here, the two-

segment robot can effectively locomote with the proposed coupled locomotion strategy. 

Moreover, the coupled robot can be expanded to include more segments. Similarly, two 

segments should be actuated simultaneously, and the resulting wave of expansion and 

contraction should travel from the head to tail segment. 
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Chapter 8     

Conclusions and Future Work 

8.1 Summary of Research Contributions 

In the current state of the art in soft robotics, autonomous navigation is a goal that has not 

been demonstrated well or often. Unlike rigid-bodied robots, soft robots suffer from motion 

uncertainties caused by their compliance and interaction with the environment. Therefore, the 

implementation of autonomous navigation for soft robots is considerably more challenging than 

for their rigid-bodied counterparts. This research develops, implements, and demonstrates an 

autonomous navigation approach for the novel origami-enabled soft crawling robot OSCAR. 

The overall research approach can be divided into five main parts: (i) control-oriented 

iterative robot design; (ii) kinematic model development; (iii) path following controller design; 

(iv) path planning; and (v) OSCAR’s multi-segment locomotion. The first four parts develop and 

experimentally validate the autonomous navigation for a single OSCAR. The fifth part extends 

OSCAR’s functionality by introducing a modular approach to combining multiple OSCARs.  

This lays the foundation for more complex soft robotic efforts in the future.  

Chapters 2 and 3 cover the iterative robot design, which was a significant contribution to 

this thesis, as it allowed for effective OSCAR autonomous navigation. As described in Chapter 

2, initial OSCAR designs suffered from significant motion uncertainties caused by its foot-

ground interaction, the low-level servo control, and the assembly process induced misalignment. 

The presented iterative design approach mitigated these uncertainties. It can be summarized here 

in three main efforts: 
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4. Iterative foot design (Chapter 2) allowed for a reliable and robust switching between 

a high and low friction ground interaction. After several iterations, the final 

design utilized a sliding ratchet foot to maximize effectiveness. These feet 

minimized undesirable backward slippage due to enhanced traction and 

improved OSCAR’s locomotion capabilities both in straight line motion and 

turning. 

5. The low-level closed-loop servo position control (Chapter 3) significantly reduced the 

motion uncertainties caused by the non-uniform expansion and contraction of 

two origami towers. The initial low-level controllers were simple proportional-

integral (PI) controllers. They control the angular position of the servos, 

thereby actuating the towers to expand and contract. When implemented on the 

tower actuation, the initial controllers did not achieve repeatable tower 

response which led to significant challenges in OSCAR control. To allow 

uniform and repeatable actuation of the origami towers, the feedback 

controllers for the servos implemented ramp reference positional inputs instead 

of the original step reference. This can be thought of as rate-limiting any 

reference positions that would come to the servos. Additionally, the 

controller’s identified the existence of significant servo dead-band that had to 

be compensated in the controller to achieve adequate functionality. 

6. OSCAR assembly process (Chapter 2) addresses uncertainties due to the non-uniform 

foot-ground interaction caused by misalignment of OSCAR’s front and back 

plates.  This is, effectively, a manufacturing issue which arose because each 

OSCAR is a hand-built custom robot and there was significant variation. The 

refined assembly process, with the custom-designed and custom-built assembly 

guide, mitigated these uncertainties to provide a robot with consistent 

performance necessary for path following control. 

The resulting OSCAR has a robust and repeatable performance validated by the 

symmetric motion for the left and right turns with the same angular inputs, shown in Chapter 3. 

It enabled an application of high-level path following control. All the experiments in this work 

are conducted in the experimental setup presented in Chapter 3. The setup’s primary purpose is 
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robot localization. It is done with the developed marker localization algorithm that was detailed 

in the chapter. 

Chapter 4 presents the two-part OSCAR kinematic model, which includes the lumped 

kinematic submodel (LKS) and the segmented kinematic submodel (SKS). These two models 

work together to relate origami tower actuation to robot motion in the planar workspace.  The 

LKS is a simplified model that converts the given desired radius of turn and displacement into 

OSCAR position increments. The SKS is a detailed model that considers the origami cell 

geometry. It converts the position increments from the LKS into the angular inputs required to 

achieve the desired displacement. This kinematic model is ideal and does not account for the 

actual robot losses. To accommodate these losses, this chapter introduces the empirically based 

correction. The correction aligns model predictions with the experimental data. The resulting 

corrected model has been used for the simulation in Chapters 5 and 6. 

Chapter 5 presents the path following control. Its purpose is to calculate the OSCAR 

angular inputs to follow a reference path. Due to the foot-ground interaction uncertainties, the 

path following is crucial for autonomous navigation in soft robots. This chapter presents two 

controllers: a model-based pure pursuit and a feedback controller. Adapted from the well-known 

pure pursuit method, a model-based pure pursuit is an open-loop controller. It uses the kinematic 

model to calculate angular inputs. The proportional feedback controller is based on the measured 

lateral error to the path. This chapter validates both controllers in simulation and experiment. The 

chosen case study is a straight path with a robot having an initial offset from the path. As shown 

experimentally, the pure pursuit has a poor performance in experiments due to OSCAR’s 

uncertainties in the terrain interactions. The feedback controller, due to direct output 

measurement, demonstrates a very accurate path following in comparison with the open-loop 

controller. 

Chapter 6 presents the path planning approach and demonstrates complete autonomous 

navigation for a single OSCAR. The path planning is done by the hybrid A* planner. Unlike 

other path planners, hybrid A* accounts for OSCAR motion constraints and outputs a feasible 

path. In this framework, the hybrid A* planner plans the path offline. Then, OSCAR uses a 

feedback path-following controller to follow it. The autonomous navigation has been validated 

for two case scenarios with static obstacle avoidance in both simulation and experiment. 
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Finally, Chapter 7 presents the two-segment OSCAR coupled locomotion. The 

locomotion strategy is bio-inspired by the behavior of an earthworm. It is done by simultaneous 

expansion of one segment and the other segment’s contraction that are then alternated. As shown 

experimentally, this gait allows effective locomotion of the coupled robot. The chapter also 

presents a passive docking mechanism for the segment connection. The modular approach allows 

OSCAR to navigate both separately and in a coupled configuration. Thus, the OSCAR has higher 

adaptability for future practical applications, where the OSCAR needs to reconfigure its shape. 

In conclusion, this framework presents effective autonomous navigation for OSCAR, a 

novel origami-enabled soft crawling autonomous robot. Thus, this work narrows the gap between 

soft robots and their practical applications. The final OSCAR has a robust and reliable 

performance under the conditions used in this research. It can accurately navigate a 2D space 

while avoiding static obstacles. It can follow a complex path and it can converge to that path if it 

is offset from the path to start with.  

8.2 Future Work 

This research is an initial work validating the OSCAR concept for autonomous 

navigation. As such, it is acknowledged to be a significant step in what could be many future 

investigations for this class of robots.  One of the shortcomings of the current robot, due to 

complexity management concerns is that OSCAR was tethered and had the sensing information 

coming from offboard. This was all done to minimize the complexity since it was challenging 

enough to achieve reliable locomotion in the physical OSCAR. Also, this work considers cases 

with static obstacle avoidance only. This research could be built upon and extended to achieve 

the untethered OSCAR, navigating a 2D or 3D terrain with multiple moving obstacles. 

Therefore, future work could be organized as follows: 

1. From the design perspective, untethered locomotion should be added by embedding 

the power sources and microcontroller on board. Additionally, actuation for 

segmentation should be added to fully utilize the modularity capabilities. With 

added segmentation, coupled segments could be separated on demand. 

Moreover, the structural components, such as origami towers, could be 

fabricated from different material to increase robot durability for possible 
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applications in harsh conditions. Finally, the additional onboard sensors, e.g., 

vision, could be added to enable truly autonomous navigation without the need 

for the external components of the current experimental setup. Since the robot 

is origami-based, it could be easily scaled up or down as needed; although this 

may necessitate a redesign of the material used in the towers and the actuation 

mechanisms. 

2. From the autonomy perspective, navigation and collision avoidance in the presence of 

moving obstacles could be investigated to advance OSCAR’s capabilities. In 

this case, path planning should be done online to allow active re-planning for 

obstacle avoidance. Moreover, autonomous navigation could be studied for 

multiple robots simultaneously. Additionally, OSCAR could be used as a soft 

robotic research platform to investigate the efficiency of other path-following 

and path planning methods in soft mobile robots. These studies could be done 

both in simulation and experiment, using either the robot kinematic model or 

the actual OSCAR. Finally, navigation through 3D terrain could be conducted 

experimentally to investigate OSCAR effectiveness in managing terrain 

changes. 

3. From the modular robotics perspective, complex scenarios, where both decoupled and 

coupled locomotion are present, could be investigated. In this initial attempt, 

these actions are shown in separate experiments. Additionally, only a coupled 

straight locomotion is demonstrated this thesis.  Having a high-level controller 

for OSCAR modularity combined with path planning and following could be 

investigated in future work. This could include 2D trajectories where the robot 

segments disengage and engage to navigate around obstacles.  Modularity 

could be also extended to include larger number of coupled segments, which 

would allow to add additional locomotion gaits to the robot. With sufficient 

segments, multi-module OSCARs could even surround objects and perform 

manipulation tasks as well as locomotion tasks. This is a very rich and open 

area for research in multi-module soft robotics. 
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4. Finally, due to its cost-efficiency, OSCAR could be adapted to be used as a research 

or educational platform for origami-enabled soft mobile robots. For example, 

this would be an outstanding way to perform STEM outreach to K-12 students 

because of the multiple different aspects of engineering that would be 

involved. 
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Appendix A     

LabVIEW VIs for the Robot Operation 

This appendix provides an in-detail description of the LabVIEW-based testbed control. It 

first details the camera calibration process. The camera is used for robot localization. Then, it 

describes the steps for the image processing algorithm used in robot localization. Finally, it 

details the main VI for the robot control in the testbed. 

A.1 Camera calibration 

Camera calibration is required in order to measure the robot’s position in the global 

coordinate frame. Calibration must be updated when the distance between the workspace and the 

camera or the camera itself is changed. The required LabVIEW toolboxes are NI Vision and NI 

Vision Development Module. 

 

Step 1. For new calibration, the calibration grid covering the whole workspace area 

should be placed in the testbed. The standard LabVIEW grid template 20x20 cm can be found in 

the following directory: 

‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary> 

LabVIEW> Camera Calibration’ 

The calibration grid resolution is 10x10 mm. 

 

Step 2. To create new calibration open ‘Camera control.vi’ in the above directory. 

This VI uses two Express VIs: Image Acquisition and Vision Assistant, as shown in Fig. 

A.1. The Image Acquisition Express VI configures camera settings. It is used in all LabVIEW 



 101  

VIs designed for the robot. The Vision Assistant Express VI calibrates camera and configures the 

robot localization algorithm. 

 

Figure A.1 Block diagram of ‘Camera control.vi’ 

Step 3. Double click and open Image Acquisition Express VI. In the configuration box, 

the following settings are selected to set up the camera:  

• Select Acquisition Source: a current camera  

• Select Acquisition Type: ‘Continuous Acquisition with inline processing’ with ‘Acquire 

most recent image’ in the acquire image type box. 

• Configure Acquisition Settings: current image quality is 1280x960 in MJPG format; the 

speed is 30 frames per second; mode is manual. 

• Configure Image Lodging settings:  

By default, ‘Enable Image Lodging’ is not selected. For the new calibration, enable 

‘Enable Image Lodging’ to save images from the camera (‘PNG’ format) and select the 

file path to store them. Run the Camera Control VI to acquire images of the calibration 

grid. 

• Select Controls/Indicators: ‘Frame Rate’ could be optionally selected in the ‘Indicator 

area’ box. 

 

Step 4. Double click and open Vision Assistant Express VI. This Express VI configures an 

image processing algorithm for robot localization, and its interface is shown in Fig. A.2. 
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Figure A.2 Vision Assistant Express VI window 

1. Workspace image; this image will be updated after each step of the algorithm is 

applied. 

2. Image processing algorithm steps.  

3. When selected, each step opens its configuration dialog box on the left, shown in 3. 

 

Step 5. Open ‘Image Calibration 1’ and select ‘New Calibration’ to set up new 

calibration. Otherwise, the path to the existing calibration is selected. It can be edited in the ‘Edit 

Calibration.’  

In the new calibration dialog toolbox, configure the following: 

• Select Calibration Type: select ‘Distortion Model (Grid)’ to remove fisheye lens 

distortion. 

• Select Image Source: the image of the acquired calibration grid (see Fig. A.2). 
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• Extract Grid Features: select look for ‘Dark objects’ for the grid dots filtering and 

‘Local Threshold: BG Correction’ as a method.  

The extracted grid dots become highlighted in blue. To tune the detected grid 

dots, adjust ‘Dot Area’ and ‘Valid Circularity.’  

      

Figure A.3 Settings for calibration grid dots (left) and extracted grid dots (right) 

• Specify Grid Parameters: set according to the calibration grid resolution to 10x10 

mm. 

• Review Calibration Results: adjust the distortion model by moving a slider and 

looking at the mean error (see Fig. A.4, left). The calibration grid with the applied 

distortion model, represented by the red vectors at each dot, is shown in Fig. A.4, 

right. 

  

Figure A.4 Calibration model settings (left) and workspace image (right) 

Save the resulting calibration file in a ‘PNG’ format. 

A.2 Image Processing Algorithm 

The image processing for the robot localization is first performed in Vision Acquisition 

Express VI (Fig. A.2). The algorithm includes the following operations, see Fig. A.5. 
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Figure A.5 Block diagram of the image processing algorithm operations 

Step 1. Configure the image processing algorithm in Vision Acquisition Express VI and 

create the marker templates.  

As shown in Fig. A.5, the algorithm has the following steps, starting from the original 

camera image: 

• Color Plane Extraction 

It converts the original RGB camera image (Fig. A.4) to a gray scale (8-bit) 

image. Select ‘HSL Luminance Plane’. 

• Image calibration 

Select a path to a calibration file from Section A.1. 

• Image correction 

This step applies image correction based on the current calibration and removes 

camera distortion. Select ‘bi-linear’ interpolation type. The corrected image is 

shown in Fig. A.4 (right). 

• Threshold 

Thresholding converts a grayscale image to a binary format (0 or 1). It isolates the 

objects that need to be kept in the processed image (makes value 1) and removes 

everything else (makes value 0). We need to keep only the robot markers, as 

shown in Fig. A.6 (right). Select look for ‘Bright Objects,’ ‘Manual Threshold’ 

method, and adjust the lower bound value for thresholding objects until the 

markers only are left. 
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Figure A.6 RGB image of workspace (left); binary image after correction and threshold 

steps (right) 

• Binary image inversion  

This step flips values of 0 and 1 to apply further steps of the algorithm, i.e., it 

converts Fig. A.6 (right) to Fig. A.7 (left). 

• Particle filter 

This step filters the remaining particles (areas to keep in the image) to keep only 

front and back plates’ markers. Select ‘Area,’ ‘Real World,’ and enter the area’s 

minimum and maximum values. The particles in this range will be left, as shown 

in Fig. A.7 (right). 

  

Figure A.7 Image after binary inversion (left); image after applied particle filter (right) 

• Lookup Table  
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Select ‘Equalize’ in the dialog box. After this step, marker areas will become 

white color on a black background.  

• Front and back markers (Geometric Matching) 

These steps create or adjust the robot marker templates. To create or adjust the 

template for the front plate marker, open the Specification tab (Fig. A.8). When 

creating a new marker template, align the marker contour (green) with the marker 

shape, and place the origin in the center; see Fig. A.9. The same steps hold for the 

back plate marker. Save marker template files in ‘PNG’ format. 

 

Figure A.8 Specification tab in geometric matching 

     

Figure A.9 Marker templates: for front plate (left) and for back plate (right) 

Notes:  

Simple geometric shape markers of black color on a white background with distinctive 

shapes should be selected. Here, the circle markers for the front plate and triangle markers for the 

back plate are used. The front plate markers are our main focus; they always result in the correct 
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detection. The back plate marker may rarely remain undetected even after advanced option 

tuning. This could be resolved by the marker size increase or a higher resolution camera. 

 

After the marker is created, make the region of interest (ROI), where the algorithm looks 

for a marker, to the whole image area. Two markers per template are looked for with rotation and 

scaling in ranges [0 360] degrees and [0.9 1.1], respectively, as shown in Fig. A.8. The Vision 

Assistant uses preset parameters for marker detection. If markers are undetected, tune advanced 

options in the ‘Options’ tab. It is done in the robot control VI to improve marker detection. 

 

Figure A.10 Processed image showing the identified markers on a black background 

The processed image is shown in Fig. A.10. The algorithm outputs are the front and back 

plate markers’ positions in ‘Calibrated Matches.’ The positions are in the global coordinate 

frame as defined in the calibration. 

 

Step 2. Convert Vision Assistant VI to a subVI and update settings in the Vision 

Processing (subVI) and the robot control VI (described in the next section).  

To improve the localization process performance in the main robot control VI, the Vision 

Assistant Express VI is converted to a Vision Processing (SubVI). In this subVI, two markers per 

plate are located using the following steps: 

• First, the algorithm finds one marker (match) per plate, with the ROI being the 

whole image. The marker’s position is x. 
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• Then, it defines a new ROI as a torus with a center in x, see Fig. A.11. Its inner 

radius is slightly larger than the marker radius, and its outer radius is 

approximately the robot width. Finally, it finds the second marker in this area. 

This localization process prevents localization errors and reduces image processing run-

time. When two markers are searched simultaneously, the resulting matches could be 

erroneously located at the same position. 

 

Figure A.11 Fragment of the final processed image with identified markers 

To update Vision Processing (SubVI), create a copy of ‘Vision_Control.vi.’ In the opened 

copy, right-click on the Vision Assistant Express VI and select ‘Open Front Panel’, which will 

convert it into a subVI. From a created subVI, update the following settings in the Vision 

Processing (SubVI): coordinate frame origin, range threshold, and inputs for particle filter. If 

markers are not detected, lower the minimum bound in the particle filter. 

The Vision Processing (SubVI) is located in the following directory: 

‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary> 

LabVIEW> Main code V7_2>Vision’ 

The main robot control VI, called ‘Main VI.vi’, is located in the following directory: 

‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary> 

LabVIEW> Main code V7_2’ 

Update the following settings in the front panel of ‘Main VI.vi’: 

• Update the path names for new calibration and front and back plate marker 

templates. Once updated, right-click and select Data Operation / Make current 

value Default. 
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• Update settings for the front and back plate markers. Settings are the clusters with 

multiple inputs (see their fragment in Fig. A.12); update all changed inputs. To do 

that, convert ‘Constant’ input into ‘Control’ in the copy of ‘Vision_Control.vi’ 

and compare with settings in the ‘Main VI.vi’. 

 

Figure A.12 Marker settings inputs on the front panel in ‘Main.vi’ 

• Change ROI for the whole image if the camera or image quality is changed. 

 

Step 3. Localization Validation  

The following sequence of steps could be used to validate the marker localization: 

a) Display the corrected image of the calibration grid in ‘Main VI.vi’ and check if the 

grid dots could be connected into straight lines. If not, update calibration. 

b) Run ‘Main VI.vi,’ and if marker positions are not identified, check marker visibility 

in the processed image. If some markers are missing, lower the ‘min bound’ in the 

particle filter. However, a small value may result in other objects being present in the 

processed image, which is undesirable. If markers remain unidentified, adjust 

advanced settings in step 1, Front and back markers (Geometric matching), and copy 

them to ‘Main VI.vi.’ 

c) Validate measurements by the following process: 

• Place the center of the robot front plate at (0,0). To do that, with the calibration 

grid being in the workspace, find origin (0,0) in LabVIEW and the corresponding 

point in the workspace. 

• Move robot by 100 mm in the x-direction from 0 to 600 mm and verify 

measurements in LabVIEW. Repeat this process for the y-axis for the range from  

-200 to 200 mm. 
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A.3 Robot Control Main VI Operation 

The robot in the testbed is operated by the ‘Main VI.vi.’ This VI implements the 

described above localization, path following controller and sends the angular inputs to the 

OSCAR microcontroller, as has been described in Chapter 3 and detailed in Fig. 3.2. The ‘Main 

VI.vi’ is located in: 

 ‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary> 

LabVIEW> Main Code V7_2’ 

Its front panel has the following inputs: 

• settings for the front and back marker search (see Fig. A.12);  

• paths for the calibration and marker template files;  

• Arduino serial communication inputs; 

and the following main outputs: 

• the processed image with identified markers (see Fig. A.11);  

• the x-y robot’s displacement plot (in mm);  

• four marker positions in the global coordinate frame, called ‘Calibrated matches.’ 

The flow of ‘Main VI.vi’s block diagram is as follows. 

1. During initialization, the VI opens the calibration and the front and back marker 

templates. 

      

Figure A.13 Initialization subVIs 

Also, it establishes the serial communication with the robot microcontroller. When the 

following message appears, the robot servos should be reset according to the assembly process 

described in Section 2.6.2, Chapter 2. After the assembled robot is placed in the testbed 

workspace, press ‘OK’ to finish the initialization. 
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Figure A.14 Dialog message for completing the robot assembly 

2. In the main while loop, following the flow chart in Fig. 3.2, the camera takes the 

image, and robot localization is performed. The marker positions are scaled to 

translate measurements from the workspace plane to the robot markers’ plane.  

 

Figure A.15 Image processing and scaling subVIs 

The scaling factor is uniform for both the x and y-axis and is equal to 0.865. The factor is 

defined experimentally by comparing the actual distance between markers and the one obtained 

in LabVIEW VI. The scaling needs to be updated for changes in the robot height. 

3. Then, the robot’s front plate orientation is calculated based on the front plate markers’ 

positions, assuming the robot moves in the positive x-axis. The orientation calculation 

should be adjusted if the robot moves in a different direction. 

 

Figure A.16 Front plate orientation calculation 

4. After that, the angular inputs are defined by either the path following controller or a 

user input for the robot expansion, which is shown in the ‘true’ case below. The path 

following controller is developed in MATLAB Simulink. The robot contraction 
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corresponds to the ‘false’ case, where the angular inputs are    1 2 0 0  = deg. If the 

angular inputs need to be constant, disconnect 1  (phi1) and 2  (phi2) outputs of the 

feedback path following controller and substitute desired values. 

 

Figure A.17 Angular inputs the robot calculation 

The reference path for the path following controller is obtained in advance by the path 

planning step, done in MATLAB. The reference path (’path.txt’) and its length (‘npath.txt’) 

should be provided in the VI folder. The provided reference path is augmented with the virtual 

path at its end. Therefore, the actual path length (‘npath.txt’) is specified as a second input. 

5. The angular inputs are sent to the robot microcontroller via the Visa Write function. 

When the robot completes expansion or contraction, it sends a flag to the VI through 

the Visa Read function. 

6. Finally, the position and angular inputs data is saved in ‘Saving Data (SubVI).’  

Then, steps 2-6 repeat until the ‘Stop’ button is pressed on the front panel. After the 

experiment, data is saved in the ‘Experimental Data’ folder. The ‘Path Following Experiment 

Journal.xlsx’ file keeps the information about all experiments. 
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Appendix B     

OSCAR Low-Level Control Code  

This following Arduino code implements the OSCAR closed-loop low-level control. It 

regulates servos angular positions with PI controllers. The code inputs are reference servo angles 

 1 2  . The reference inputs to the controllers are ramp signals of slope 5.9 rad/s, as shown in 

Fig. 3.9 in Chapter 3. The input signal has a first-order filter  

 ( )
1

0.05 1
G s

s
=

+
  (C.1)  

Starting at the fully contracted robot state, send expansion angular inputs through serial 

communication. When the robot expands, send the angular inputs for contraction. The servos are 

attached to pins 9 and 10 of the robot microcontroller. Pin layout for encoder data reading (from 

LS7366 encoder counter board) is specified below. 

B.1 Arduino Code 

/* Closed-loop servos’ position control of the OSCAR 
 * Encoder data reading is based on Dual LS7366 Quadrature Counter Test Code by Jason 
Traud on https://github.com/SuperDroidRobots/Encoder-Buffer-Breakout/  
 
   Pins layout: 
   LS7366 Breakout    -------------   Arduino Microcontroller 
   -----------------                    ------- 
            MOSI   -------------------   SDO (D11) 
            MISO   -------------------   SDI (D12) 
            SCK    -------------------   SCK (D13) 
            SS1    -------------------   SS1 (D7) 
            SS2    -------------------   SS2 (D8) 
            GND    -------------------   GND 
            VDD    -------------------   VCC (5.0V) 
*/ 
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#include <SPI.h> 
#include <Servo.h> 
 
Servo Servo1; 
Servo Servo2; 
 
// Slave Select pins for encoders 1 and 2: 
const int slaveSelectEnc1 = 7; 
const int slaveSelectEnc2 = 8; 
 
// Current encoder count: 
signed long encoder1count = 0; 
signed long encoder2count = 0; 
 
// Variables: 
float f1 = 0.095162581964040;     // Filter gain 
float f2 = 0.904837418035960;     // Filter gain 
 
int k1 =  1;     // Origami tower chirality servo 1 
int k2 = -1;     // Origami tower chirality servo 2 
 
unsigned long previousMillis = 0; 
unsigned long prevMillis = 0; 
int var = 0; 
boolean LEDstate = 0; 
 
// Servo 1: 
unsigned int phiMotor1 = 0; 
float angle_des1 = 0; 
float angle1 = 0; 
float myAng1 = 0; 
unsigned int u_PWM1 = 90; 
unsigned int u_PWM1_prev = 0; 
float ang_print1 = 0; 
 
float e_int_prev1 = 0; 
float e_prev1 = 0; 
 
// Servo 2: 
unsigned int phiMotor2 = 0; 
float angle_des2 = 0; 
float angle2 = 0; 
float myAng2 = 0; 
unsigned int u_PWM2 = 90; 
unsigned int u_PWM2_prev = 0; 
float ang_print2 = 0; 
 
float e_int_prev2 = 0; 
float e_prev2 = 0; 
 
float g11 = 2;     // Servo deadband coefficient 
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void setup() { 
  Serial.begin(9600); 
  initEncoders(); 
  clearEncoderCount(); 
 
  Servo1.attach(9); 
  Servo2.attach(10); 
  Servo1.write(u_PWM1); 
  Servo2.write(u_PWM2); 
} 
 
void loop() { 
   
  switch (var) { // Case 0: read angular inputs; Case 1: expansion or contraction. 
After case 1 completes, it sends flag '1' to serial port and returns to case 0.  
    case 0: 
      if (Serial.available() > 0) { 
        phiMotor1 = Serial.parseInt(); 
        phiMotor2 = Serial.parseInt(); 
         
        if (phiMotor1 > 190) { // Maximum origami tower input angle = 190 deg. 
          phiMotor1 = 190; 
        } 
        if (phiMotor2 > 190) { 
          phiMotor2 = 190; 
        } 
        // Reference angles: 
        angle1 = phiMotor1 * PI / 180; 
        angle2 = phiMotor2 * PI / 180; 
         
        var = 1; 
         
        // Current angles: 
        ang_print1 = myAng1; 
        ang_print2 = myAng2; 
      } 
      break; 
    case 1: 
      if ((u_PWM1 - u_PWM1_prev == 0) && (abs(angle1 - myAng1) < 0.05) && (u_PWM2 - 
u_PWM2_prev == 0) && (abs(angle2 - myAng2) < 0.05)) { 
         
        // Delay 500 ms after expansion/contraction (to not immediately contract): 
        prevMillis = millis(); 
        while (millis() - prevMillis < 500) { 
          ControlPosition(angle1, angle2); 
        } 
         
        var = 0; 
        Serial.println(1); // Flag 
         
      } 
      break; 
  } 
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  u_PWM1_prev = u_PWM1; 
  u_PWM2_prev = u_PWM2; 
   
  ControlPosition(angle1, angle2); 
} 
 
 
unsigned int PIcontrol(int k, float angle_d, float myAngf, float &e_int_prev, float 
&e_prev) { 
  float e = (angle_d - myAngf); 
  float e_int = e_int_prev + 0.005 * (e + e_prev) / 2.0;  // Tustin rule 
  float u_int = 0.4 * e_int; 
 
  if (abs(u_int) > 0.1) {     // Integral anti-wind-up 
    e_int = e_prev; 
  } 
 
  float u = 0.6 * e + u_int; 
 
  // Control input saturation: 
  if (u > 0.20) { 
    u = 0.20;  
    e_int = e_int_prev; 
  } 
  else if (u < -0.20) { 
    u = -0.20; 
    e_int = e_int_prev; 
  } 
 
  int u_c =  k * u * 90;      // Control input to servo 
   
  // Servo deadband compensation (88...92 = '0' speed): 
  if (u_c > 0) { 
    u_c = u_c + g11;          // Equivalent to 92 
  } 
  else if (u_c < 0) { 
    u_c = u_c - g11;          // Equivalent to 88 
  } 
 
  unsigned int u_pwm = 90 + u_c;  
  e_int_prev = e_int; 
  e_prev = e; 
 
  return u_pwm; 
} 
 
void ControlPosition (float ang1, float ang2) { 
 
  if (millis() - previousMillis >= 5) { 
    previousMillis = millis(); 
 
    // First-order filter on angle: 
    float angle_des_updated1 = f1 * ang1 + f2 * angle_des1; 
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    float angle_des_updated2 = f1 * ang2 + f2 * angle_des2; 
 
    //Rate limiter on desired angle – ramp input: 
    if (abs(angle_des_updated1 - angle_des1) * 2000 > 59) { //5.9*10 for integer 
      if ((angle_des_updated1 - angle_des1) > 0) { 
        angle_des_updated1 = angle_des1 + 0.0295; // 0.0295 = speed*dt = 5.9rad/s*5ms 
      } 
      else { 
        angle_des_updated1 = angle_des1 - 0.0295; 
      } 
    } 
    if (abs(angle_des_updated2 - angle_des2) * 2000 > 59) {  
      if (angle_des_updated2 - angle_des2 > 0) { 
        angle_des_updated2 = angle_des2 + 0.0295; 
      } 
      else { 
        angle_des_updated2 = angle_des2 - 0.0295; 
      } 
    } 
 
    myAng1 = k1 * (readEncoder(1) * 2 * PI / 18000.00); 
    myAng2 = k2 * (readEncoder(2) * 2 * PI / 18000.00); 
 
    u_PWM1 = PIcontrol(k1, angle_des1, myAng1, e_int_prev1, e_prev1); 
    u_PWM2 = PIcontrol(k2, angle_des2, myAng2, e_int_prev2, e_prev2); 
 
    Servo1.write(u_PWM1); 
    Servo2.write(u_PWM2); 
 
    angle_des1 = angle_des_updated1; 
    angle_des2 = angle_des_updated2; 
  } 
} 
 
 
// Following functions from Dual LS7366 Quadrature Counter Test Code by Jason Traud: 
void initEncoders() { 
  // Set slave selects as outputs 
  pinMode(slaveSelectEnc1, OUTPUT); 
  pinMode(slaveSelectEnc2, OUTPUT); 
 
  // Raise select pins 
  // Communication begins when you drop the individual select signals 
  digitalWrite(slaveSelectEnc1, HIGH); 
  digitalWrite(slaveSelectEnc2, HIGH); 
 
  SPI.begin(); 
 
  // Initialize encoder 1 
  //    x4 quatrature count mode (four counts per quadrature cycle) 
  digitalWrite(slaveSelectEnc1, LOW);       // Begin SPI conversation 
  SPI.transfer(0x88);                       // Write to MDR0 
  SPI.transfer(0x03);                       // Configure to 4 byte mode 
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  digitalWrite(slaveSelectEnc1, HIGH);      // Terminate SPI conversation 
 
  // Initialize encoder 2 
  // Same as encoder 1: 
  digitalWrite(slaveSelectEnc2, LOW);       // Begin SPI conversation 
  SPI.transfer(0x88);                       // Write to MDR0 
  SPI.transfer(0x03);                       // Configure to 4 byte mode 
  digitalWrite(slaveSelectEnc2, HIGH);      // Terminate SPI conversation 
} 
 
long readEncoder(int encoder) { 
 
  // Initialize temporary variables for SPI read 
  unsigned int count_1, count_2, count_3, count_4; 
  long count_value; 
 
  // Read encoder 1 
  if (encoder == 1) { 
    digitalWrite(slaveSelectEnc1, LOW);     // Begin SPI conversation 
    SPI.transfer(0x60);                     // Request count 
    count_1 = SPI.transfer(0x00);           // Read highest order byte 
    count_2 = SPI.transfer(0x00); 
    count_3 = SPI.transfer(0x00); 
    count_4 = SPI.transfer(0x00);           // Read lowest order byte 
    digitalWrite(slaveSelectEnc1, HIGH);    // Terminate SPI conversation 
  } 
 
  // Read encoder 2 
  else if (encoder == 2) { 
    digitalWrite(slaveSelectEnc2, LOW);     // Begin SPI conversation 
    SPI.transfer(0x60);                      // Request count 
    count_1 = SPI.transfer(0x00);           // Read highest order byte 
    count_2 = SPI.transfer(0x00); 
    count_3 = SPI.transfer(0x00); 
    count_4 = SPI.transfer(0x00);           // Read lowest order byte 
    digitalWrite(slaveSelectEnc2, HIGH);    // Terminate SPI conversation 
  } 
 
  // Calculate encoder count 
  count_value = (count_1 << 8) + count_2; 
  count_value = (count_value << 8) + count_3; 
  count_value = (count_value << 8) + count_4; 
 
  return count_value; 
} 
 
void clearEncoderCount() { 
 
  // Set encoder1's data register to 0 
  digitalWrite(slaveSelectEnc1, LOW);     // Begin SPI conversation 
  // Write to DTR 
  SPI.transfer(0x98); 
  // Load data 
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  SPI.transfer(0x00);  // Highest order byte 
  SPI.transfer(0x00); 
  SPI.transfer(0x00); 
  SPI.transfer(0x00);  // lowest order byte 
  digitalWrite(slaveSelectEnc1, HIGH);    // Terminate SPI conversation 
 
  delayMicroseconds(100);  // provides some breathing room between SPI conversations 
 
  // Set encoder1's current data register to center 
  digitalWrite(slaveSelectEnc1, LOW);     // Begin SPI conversation 
  SPI.transfer(0xE0); 
  digitalWrite(slaveSelectEnc1, HIGH);    // Terminate SPI conversation 
 
  // Set encoder2's data register to 0 
  digitalWrite(slaveSelectEnc2, LOW);     // Begin SPI conversation 
  // Write to DTR 
  SPI.transfer(0x98); 
  // Load data 
  SPI.transfer(0x00);  // Highest order byte 
  SPI.transfer(0x00); 
  SPI.transfer(0x00); 
  SPI.transfer(0x00);  // lowest order byte 
  digitalWrite(slaveSelectEnc2, HIGH);    // Terminate SPI conversation 
 
  delayMicroseconds(100);  // provides some breathing room between SPI conversations 
 
  // Set encoder2's current data register to center 
  digitalWrite(slaveSelectEnc2, LOW);     // Begin SPI conversation 
  SPI.transfer(0xE0); 
  digitalWrite(slaveSelectEnc2, HIGH);    // Terminate SPI conversation 

} 
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Appendix C     

Robot Kinematic Model 

The following code is a robot corrected kinematic model implemented in Simulink 

MATLAB. Given the current robot state, the model calculates the robot state after a single 

locomotion cycle for provided angular inputs. The robot state is defined as a front plate centroid 

position and orientation. 

C.1 Robot Kinematic Model 

function [x_new, theta_new] = fcn(phi1, phi2, x_cur, theta_cur, k_loss1) 
% Inverse kinematics in the robot coordinate frame (wrt to origin being 

current front plate location) 
coder.extrinsic('InverseAnalyticalKinematic1'); 

  
X = [0;0]; % wrt to origin being current front plate location 
Y = [0;0]; % wrt to origin being current front plate location 
theta = [0;0]; % Orientation 
index = 2; 

  
%% Given constants: 
N = 6;                   % Number of cells 
cellrelief = 2;          % Number of relief cuts 
link_plate = 44;         % Distance between the towers 

  
Lmin = 41; %35-12;       % Length of towers at contracted state 
lmax = cellrelief*15;                       
linitial = Lmin/(N/cellrelief); 
deltathetamax = 0.3316; 

  
%Knowns for a single Kresling origami cell (experiment) 
alphamax = 0.6283;  % Maximum angle (rad) 
stepsize = 200;     % Number of defined increments of cell expansion 

  
% Kresling cell geometry from Pagano Newton-Rhapson geometrical vector loop 

solution 
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alphas     = linspace(0,alphamax,stepsize); 
heights    = 1000*[6.98047095132836e-09, …, 0.015]; % Set of values 

heightfunction = pchip(alphas,heights); % Cell height function 

 

%% Calculate robot position and orientation for given input angles: 
dx     = 0; 
dy     = 0; 
theta7 = 0; 

  
if (phi1==0)&&(phi2==0) 
    Lleft  = Lmin/(N/cellrelief); 
    Lright = Lmin/(N/cellrelief); 
else 
    Lleft  = (ppval(heightfunction,(phi1/N)))*2; 
    Lright = (ppval(heightfunction,(phi2/N)))*2; 
end 

  
l1 = Lleft;   % length of vector of two adjacent cells in the left tower 
l4 = Lright;  % length of vector of two adjacent cells in the right tower 

  
[theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft, ... 

Lright, dx, dy] = InverseAnalyticalKinematic1(N,cellrelief, ... 

link_plate,X,Y,theta,index, l1,l4); 

  
% Kinematic model correction: 
ddx = zeros(2,1); 
ddtheta     = (theta7 - pi)*(1 - k_loss1); % k_loss1 = 0.85 
ddx(1)      = sqrt((dx + Lmin)^2 + dy^2)*cos(ddtheta/2) - Lmin; 
ddx(2)      = sqrt((dx + Lmin)^2 + dy^2)*sin(ddtheta/2); 

  
% Rotation from local robot coord. to global coordinate frame: 
R10       = [cos(theta_cur) -sin(theta_cur); sin(theta_cur) cos(theta_cur)]; 

 
x_new     = x_cur + R10*ddx;      % Robot position 
theta_new = theta_cur + ddtheta;  % Robot orientation 

 

C.2 InverseAnalyticalKinematic1.m 

function [theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft,... 

Lright, x2, y2] = InverseAnalyticalKinematic1(N,cellrelief,... 

link_plate,X,Y,theta,index, l1,l4) 

% This function was originally created by Kimberly Gustafson in Fall 2018 

Lmin = 41; %35-12; 
lmax = cellrelief*15; 
linitial = Lmin/(N/cellrelief); 
deltathetamax = 0.3316; 

  
% Knowns for a single Kresling origami cell (experiment) 
alphamax = 0.6283; % Maximum rotation of a single Kresling origami cell (rad) 
stepsize = 200;    % Number of defined increments of Kresling cell expansion 
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% Kresling cell geometry from Pagano Newton-Rhapson geometrical vector loop 

solution 
alphas = linspace(0,alphamax,stepsize); 
heights = 1000*[6.98047095132836e-09,…, 0.015]; 
heightfunction = pchip(alphas,heights);     % Cell height function 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% Solve Vector Loop Equation %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% With Constraints 
theta8 = theta(index-1);       % Previous front plate angle 
theta1 = theta8 + (pi/2); 
 

Xback = X(index-1)+Lmin*sin(theta8-(pi/2)); % Back plate center 
Yback = Y(index-1)+Lmin*cos(theta8-(pi/2)); 

  
fun1 = @(s)((l1*cos(theta1)+l1*cos(s(1))+l1*cos(s(2))- ...  

(link_plate/2)*cos(s(3))-(link_plate/2)*cos(theta8)-s(5)+Yback)^2)+... 

((l1*sin(theta1)+l1*sin(s(1))+l1*sin(s(2))-(link_plate/2)*sin(s(3))-...  

(link_plate/2)*sin(theta8)-s(4)+Xback)^2)+((l4*cos(theta1)+ ... 

l4*cos(s(1))+l4*cos(s(2))+(link_plate/2)*cos(s(3))+(link_plate/2)*... 

cos(theta8)-s(5)+Yback)^2)+((l4*sin(theta1)+l4*sin(s(1))+... 

l4*sin(s(2))+(link_plate/2)*sin(s(3))+(link_plate/2)*sin(theta8)-... 

s(4)+Xback)^2); 

 

lb = [-pi,-pi,-pi, -10,-100]; 
ub = [pi,pi,(3/2)*pi, 100,100]; 
s0 = [0 0 0 0 0]; 
A = [-1 1 0 0 0; 1 0 0 0 0]; 
b = [deltathetamax, deltathetamax+theta1]; 
Aeq = [2,-1,0,0,0;0,-1,1,0,0]; 
beq = [theta1;pi/2]; 
options = optimoptions('patternsearch','MeshTolerance',1e-10,... 

'StepTolerance', 1e-10); 
s = patternsearch(fun1,s0,A,b,Aeq,beq,lb,ub, options); 

  
theta2 = s(1); 
theta3 = s(2); 
theta7 = s(3); 
x2     = s(4); 
y2     = s(5); 
theta4 = theta1; 
theta5 = theta2; 
theta6 = theta3; 

  
Lleft = l1; 
Lright = l4; 

 
end 



 123  

Appendix D     

Path Following Simulation 

The following codes are the pure pursuit and feedback path following controller models 

implemented in Simulink MATLAB. For path following simulation, the controllers are simulated 

together with the robot kinematic model. For experiments, the codes have been copied to the 

‘Main VI.vi.’ 

D.1 PurePursuitController.m 

function [x_new, theta_new, s_new, phi_left, phi_right, pGoal, R] = ...  

fcn(x_cur, path, theta_cur, s, k_loss,inputs) 

coder.extrinsic('AnalyticalKinematic'); 

  

Rmin = inputs(1); % Minimum radius of turn from the robot workspace 

ds   = inputs(2); % Max robot forward motion 

L    = inputs(3); % Lookahead distance 

npath = length(path); 

  

% Initial conditions: 

dl     = 41; %35-12;  % Length of the fully contracted origami towers 

  

% Initialization: 

pGoalL = [0;0]; 

phi_left  = 0; 

phi_right = 0; 

theta7    = 0; 

  

% Rotation matrices: 

R01 = [cos(theta_cur)  sin(theta_cur); -sin(theta_cur) cos(theta_cur)];  

R10 = [cos(theta_cur) -sin(theta_cur);  sin(theta_cur) cos(theta_cur)]; 

 

% Transform from global to local coordinate frame: 

xL = R01*x_cur; 

pathL = (R01*path')'; 

  

if xL(1) <= pathL(end,1) % If the path exists apply pure pursuit 
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    % Find a goal point on the path: 

    distNorm = zeros(npath,1); 

    distNorm(s:end) = sqrt((path(s:end,1)- x_cur(1)).^2 +(path(s:end,2)- ... 

x_cur(2)).^2); 

    [c,p] = min(distNorm(s:end)); 

    if c(1)>L 

        s = s-1 + p(1); 

        s_new = s; 

        % Interpolate a virtual point in L from robot (ONLY when robot  

        directed toward the path): 

        pGoal = x_cur + L*[cos(theta_cur); sin(theta_cur)]; 

    else 

        i = 0; 

        % Find path point: 

        for j = s:length(distNorm)-1 

            if distNorm(j)<=L && distNorm(j+1)>L % When robot on path 

                i = j; 

                break; 

            end 

        end 

        if (i == 0) % When robot close to end of path 

            pGoal = path(end,:)'; 

            s_new = npath; 

        else 

            if distNorm(j) == L 

                pGoal = path(j,:)'; 

            else 

                % Interpolate path point: 

                dpGoal=interpPath((path(j,:)'-x_cur),(path(j+1,:)'-x_cur),L); 

                pGoal = x_cur + dpGoal; 

            end 

            s_new = i; 

        end 

    end 

     

    e = R01*(pGoal - x_cur); 

    dy_path = e(2); 

     

 

    %% Apply pure pursuit (calculate radius of turn in local coordinates):  

    R = L^2/(2*dy_path); 

    if abs(R)<Rmin       % Turn constraint 

        R = sign(R)*Rmin; 

    end     

    omega_prime = 2*asin(ds/(2*R)); 

     

    %% Calculate the next robot position: 

    dx = ds*cos(omega_prime/2); 

    dy = ds*sin(omega_prime/2); 

    dtheta = 2*atan2(dy,(dx+dl)); 

     

    x_newL = xL+ [dx;dy]; 

    x_new  = R10*x_newL; 

    theta_new = theta_cur + dtheta; 
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    dth = dtheta/(1-k_loss);  % Correction factor k_loss 

    dxc = sqrt((dx + dl)^2+dy^2)*cos(dth/2) - dl; 

    dyc = sqrt((dx + dl)^2+dy^2)*sin(dth/2); 

     

    %% Calculate angular inputs with segmented kinematic model: 

    %% Input Parameters: 

    X = [0; dxc];   % x for the center of the front plate (mm) 

    Y = [0;-dyc];   % y for the center of the front plate (mm) 

    theta = [0;0];  % Orientation of the front plate 

    N = 6;            % Number of Kresling cells per tower 

    cellrelief = 2;   % Number of cells between relief cuts 

    link_plate = 44;  % Distance between origami towers (mm) 

     

    [theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft, ... 

Lright,phi_left,phi_right] = AnalyticalKinematic(N,cellrelief, ... 

link_plate,X,Y,theta,2); 

     

    % Check orientation increment (dtheta) calculation 

    % dtheta - (theta7 - pi) 

else 

    x_new = x_cur; 

    theta_new = theta_cur; 

    s_new = s; 

    phi_left = 0; 

    phi_right = 0; 

    pGoal = [0; 0]; 

    R = 0; 

end 

  

 

function p = interpPath(a,b,L) 

% Finds the interpolated path point between a and b in lookahead distance L 

from the current location, assuming the current location is at [0,0] of local 

coord. frame 

  

% Equations (2),(3) are substituted to 1 and solved for u 

% p(1)^2 + p(2)^2 = L^2;       (1) 

% a(1)*(1-u) + u*b(1) = p(1)   (2) 

% a(2)*(1-u) + u*b(2) = p(2)   (3) 

  

a1 = (b(1) - a(1))^2 + (b(2) - a(2))^2; 

b1 = 2*(a(1)*b(1) + a(2)*b(2) - a(1)^2 - a(2)^2); 

c1 = a(1)^2 + a(2)^2 - L^2; 

  

% Solve a1* u^2 + b1*u + c1 = 0, 0<=u<=1 

% Calculate u and p: 

u1 = (-b1+ sqrt(b1^2 - 4*a1*c1))/(2*a1); 

u2 = (-b1- sqrt(b1^2 - 4*a1*c1))/(2*a1); 

if u1>=0 

    u = u1; 

else 

    u = u2; 

end 

p = [a(1) a(2)]'*(1 - u) + u*[b(1) b(2)]'; 
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D.2 AnalyticKinematic.m 

function [theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft, ... 

Lright,phi_left,phi_right] = AnalyticalKinematic(N,cellrelief, ... 

link_plate,X,Y,theta,index) 

% This function was originally written by Kimberly Gustafson, Fall 2018 

 

Lmin = 41;%35-12; 

lmax = cellrelief*15; 

linitial = Lmin/(N/cellrelief); 

deltathetamax = 0.3316; 

 

% Knowns for a single Kresling origami cell (experiment) 

alphamax = 0.6283;  % Maximum rotation (rad) 

stepsize = 200;     % Number of defined increments of cell expansion 

 

% Kresling cell geometry from Pagano, Newton-Rhapson geometrical vector loop 

solution 

alphas = linspace(0,alphamax,stepsize); 

heights = 1000*[6.98047095132836e-09, …, 0.015]; 

heightfunction = pchip(heights,alphas); % Cell height 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%% Solve Vector Loop Equation %%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% With Constraints 

theta8 = theta(index-1);     % Previous front plate angle 

theta1 = theta8 + (pi/2); 

 

Xback = X(index-1)+Lmin*sin(theta8-(pi/2)); 

Yback = Y(index-1)+Lmin*cos(theta8-(pi/2)); 

 

fun1 = @(s)((s(1)*cos(theta1)+s(1)*cos(s(3))+s(1)*cos(s(4))-

(link_plate/2)*cos(s(5))-(link_plate/2)*cos(theta8)-Y(index)+Yback)^2)+ ... 

           ((s(1)*sin(theta1)+s(1)*sin(s(3))+s(1)*sin(s(4))-

(link_plate/2)*sin(s(5))-(link_plate/2)*sin(theta8)-X(index)+Xback)^2)+ ... 

((s(2)*cos(theta1)+s(2)*cos(s(3))+s(2)*cos(s(4))+(link_plate/2)*cos(s(5))+(li

nk_plate/2)*cos(theta8)-Y(index)+Yback)^2)+ ... 

((s(2)*sin(theta1)+s(2)*sin(s(3))+s(2)*sin(s(4))+(link_plate/2)*sin(s(5))+(li

nk_plate/2)*sin(theta8)-X(index)+Xback)^2); 

 

lb = [linitial,linitial,-pi,-pi,-pi]; 

ub = [100,100,pi,pi,(3/2)*pi]; 

s0 = [0 0 0 0 0]; 

A = []; 

b = []; 

Aeq = [0,0,2,-1,0;0,0,0,-1,1]; 

beq = [theta1;pi/2]; 

s = fmincon(fun1,s0,A,b,Aeq,beq,lb,ub); 

 

Lleft = s(1); 

Lright = s(2); 

theta2 = s(3); 

theta3 = s(4); 
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theta7 = s(5); 

 

theta4 = theta1; 

theta5 = theta2; 

theta6 = theta3; 

 

phi_left = ((ppval(heightfunction,(real(Lleft)/cellrelief)))*N); 

phi_right = ((ppval(heightfunction,(real(Lright)/cellrelief)))*N); 

 

end 

 

 

D.3 FeedbackController.m 

function [phi1, phi2, s_new] = fcn(path, x_cur, theta_cur, inputs, s,npath) 
% Path following controller calculates angular inputs to robot based on 
% constant longitudinal control (ux) and lateral proportional control(uy) 
% Lateral error is found in 'preview' distance D 
% Path input is path_aug = path + virtual path(interpolation for the path 

end), npath=length(path) 

  
% Gains 
kpy       = inputs(1);    % p-gain for lateral control 
D         = inputs(3);    % preview distance 
c         = 0.8;            
% Upper bounds 
phi_max   = 180;          % maximum servo angle for tower expansion 
ux_max    = phi_max;      % maximum longitudinal motion 
phi_ratio = 1.6;          % maximum angle ratio from the robot workspace;  

ideal is 1.8033 
% Longitudinal control input 
ux        = c*ux_max; 
uy_max    = ux*(phi_ratio - 1)/(1 + phi_ratio);  % turn constraint 

  
% Convert to the local coordinate frame: 
R01 = [cos(theta_cur) sin(theta_cur); -sin(theta_cur) cos(theta_cur)]; 
pathL = (R01*path')'; 
xL = R01*x_cur; 

  
if (s==0)                 % protection if s becomes zero 
    s = 1;                % s is current ref. path point index 
end 

  
% Feedback controller: 
if (xL(1) <= pathL(npath,1)) 
    j = s;               % starting from current path index 
    k = -1;              % set initial value for k 

 
    % Point in 'preview' distance D from robot: 

    c0 = x_cur + D*[cos(theta_cur) sin(theta_cur)]';  
    while (k<0)||(k>1) 
        if path(j+1,1)<path(j,1) 
            k = abs((path(j+1, :) - path(j, :))*(c0 - path(j,:)'))/...  
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(norm(path(j+1, :) - path(j, :)))^2; 
        else 
            k = (path(j+1, :) - path(j, :))*(c0 - path(j,:)')/...  

(norm(path(j+1, :) - path(j, :)))^2; 
        end 
        if (k>1) 
            j = j+1;  % update the path point index 
        elseif (k<0) 
            k = 0; 
        end 
    end 
    c1 = ((1 - k)*path(j,:) + k*path(j+1,:))'; 
    eyL = [0 1]*R01*(c1 - c0); 

     
    % Lateral error: 
    ey = norm(c0 - c1)*sign(eyL); 

 
    s_new = j; 

 
    % Lateral control input: 
    uy = kpy * ey; 
    % Turn constraint 
    if  abs(uy) > uy_max     
        uy = sign(uy)*uy_max; 
    end 

     
    %% Servo angles (phi): 
    A = 1/2*[1 1; -1 1];        
    phi = A\[ux; uy]; 
    phi1 = phi(1);      % (deg.) 
    phi2 = phi(2);      % (deg.) 

     
    %% Delete this for LabVIEW implementation: 
    phi1 = phi1*pi/180; 
    phi2 = phi2*pi/180; 
else                          % After path is finished 
    phi1 = 0; 
    phi2 = 0; 
    s_new = s; 
end 
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Appendix E     

Path Planning Implementation 

The path planning is done by a hybrid A* planner in MATLAB. To plan a path, we first 

create a workspace cost map with obstacles, then call a planner. The reference path is divided 

into two parts due to workspace limitation. Each part path is augmented with virtual points and 

transformed into a text file for implementation in ‘Main VI.vi.’ 

E.1 PotentialFieldFunction.mlx 

% Creating cost map for hybrid A* planner (x,y in mm): 

x_map0 = [0; 0]       % min 

x_map  = [1300; 400]  % max 

res    = 1   % mm 

x = x_map0(1):res:x_map(1); 

y = x_map0(2):res:x_map(2); 

costVal = zeros(length(y), length(x)); 

 

% Adding circular obstacles to map: 

X_obst = [150, 70; % center (mm) 

          550, 150]; 

R_obst = [20;20]; % radius (mm) 

 

for i = 1:length(R_obst) 

    df = 65; % bound around obstacle 

    costVal = obstacleToMap(R_obst(i),X_obst(:,i),costVal,res,x_map0,... 

x_map, df) 

end 

 

surf(costVal, 'EdgeColor', 'none') 
xlabel('x(mm)'); ylabel('y(mm)'); zlabel('Cost'); 

 

% Obstacle to map: 

function costValOut = obstacleToMap(r_obst,x_obst,costVal,res,x_map0,... 

x_map, df) 

x1 = floor((x_obst(1)–r_obst)/res)–2*res–df :res: ... 

floor((x_obst(1)+r_obst)/res)+2*res+df; 
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% exclude values out of the map boundaries: 

k = (x1>=x_map0(1)) & (x1<=x_map(1)); 

x = x1(k); 

 

y1 = floor((x_obst(2)–r_obst)/res)–2*res–df :res: ... 

floor((x_obst(2)+r_obst)/res)+2*res+df; 

% exclude values out of the map boundaries: 

k = (y1>=x_map0(1)) & (y1<=x_map(1)); 

y = y1(k); 

 

for i =1:length(x) % update cost 

    for i =1:length(x) 

        d_obst = sqrt((x(i)-x_obst(1))^2+(y(j)-x_obst(2))^2)-r_obst; 

        if d_obst <=0 % cost value inside obstacle 

            costVal(length(costVal(:,1)) - y(j), x(i)) = 1; 

        elseif (d_obst >0 && d_obst <= df) 

            alpha = 1; 

            costVal(length(costVal(:,1)) - y(j), x(i)) = ... 

alpha/(alpha + d_obst); 

        end 

     end 

end 

costValOut = costVal; 

end 

E.2 Planner_HybridAstar.mlx 

% Create an obstacle cost map 

PotentialFieldFunction 

% Create a binaryOccupancyMap with cost values (0 or 1) 

map = binaryOccupancyMap(costVal); 

% Create a stateValidator object for collision checking 

validator = validatorOccupancyMap;  
validator.Map = map; 

show(map) 

 

% Initialize planner 

planner = plannerHybridAStar(validator,'MinTurningRadius', 467.6, ... 

'MotionPrimitiveLength', 30, 'NumMotionPrimitives', 19, ... 

'AnalyticExpansionInterval', 100, 'ReverseCost', 1000000000000); 

 

% Start and goal configurations (mm,mm,rad) 

startPose = [10,200,0];  

goalPose  = [1200,5,0]; 

 

% Plan a path from start to goal 

refpath = plan(planner,startPose,goalPose); 

refpath = refpath.States; % output path 

show(planner) 

E.3 PathTransform.mlx 

% Path is divided into two parts due to workspace limitations: 

x_lim = 646; 

% Path 1: 
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k = find(refpath1(:,1)<x_lim) 

path1 = refpath1(k,1:3); 

path  = path1(:,1:2); 

npath = length(path(:,1)); 

theta_ref = path1(:,3); 

 

% Augmented virtual path is the whole path for left part of path (x<646 mm): 

path_aug = refpath1(:,1:2); 

 

% Save path for experiment 

dlmwrite('path.txt', path_aug); 

dlmwrite('npath.txt', npath) 

 

% Path following simulation 

clear out 

x0 = path1(1,:); 

npath = length(path(:,1)); 

out = sim('FeedbackOnly') 

 

%% Path 2: 

x_lim = 636; 

k = find(refpath1(:,1)>x_lim) 

path1 = refpath1(k,1:3) - ones(length(k),1)*[x_lim,0,0]; 

path  = path1(:,1:2); 

npath = length(path(:,1)); 

 

x_aug = [20:20:400]'; 

y_aug = zeros(length(x_aug),1); 

 

theta_ref = path1(:,3); 

theta_re = theta_ref(end); 

 

R01 = [cos(theta_re) -sin(theta_re); sin(theta_re) cos(theta_re)]; 

path_aug = [path; path(end, :) + (R01*[x_aug y_aug]')']; 

 

% Save path for experiment 

dlmwrite('path.txt', path_aug); 

dlmwrite('npath.txt', npath) 

 

% Path following simulation 

clear out1 

x0 = path1(1,:); 

npath = length(path(:,1)); 

out1 = sim('FeedbackOnly') 
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Appendix F     

Supplementary Files 

The supplementary files in this dissertation contain the video recordings of the 

experiments highlighting the main results. They are recorded with an overhead GoPro camera; 

see Chapter 3. The supplementary files contain the following list: 

1. ‘Ch5_Path_Following_Feedback_Part1.mp4’ is the video recording of experiment 1 

in Fig. 5.6. It shows the first part of the straight path following with the feedback 

controller. As can be seen, the robot being initially offset from the path successfully 

converges to it. Due to workspace limitations, the second experiment has been 

conducted to show the robot’s ability to follow the path after convergence. 

2. ‘Ch5_Path_Following_Feedback_Part2.mp4’ is a video recording of the second part 

of the straight path following with the feedback controller, which demonstrates 

OSCAR successfully following the straight reference path. It corresponds to 

experiment 2 in Fig. 5.6. 

3. ‘Ch6_AutonomousNav_Feedback_Part1.mp4’ is a video recording of the first part of 

the OSCAR’s autonomous navigation experiment with the planned reference path in 

Scenario 1. It corresponds to experiment 1 in Fig. 6.7. 

4. ‘Ch6_AutonomousNav_Feedback_Part2.mpeg’ is a video recording of the second 

part of the robot autonomous navigation with planned reference path in Scenario 1. It 

corresponds to experiment 2 in Fig. 6.7. Together this and the previous experiment 

demonstrate the thesis’s main result, the soft robot autonomous navigation. 

5. ‘Ch7_Coupled_Locomotion.mp4’ is a video recording of the coupled locomotion of 

two OSCARs, presented in Fig. 7.4-7.6. 


