

© 2021 Oyuna Angatkina

DESIGN AND CONTROL OF AN ORIGAMI-ENABLED SOFT CRAWLING

AUTONOMOUS ROBOT (OSCAR)

BY

OYUNA ANGATKINA

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the

University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

 Professor Andrew Alleyne, Chair

 Assistant Professor Aimy Wissa

 Associate Professor Sameh Tawfick

 Professor Elizabeth Hsiao-Wecksler

 Associate Professor Girish Chowdhary

 ii

Abstract

Soft mobile robots offer unique benefits as they are highly adaptable to the terrain of

travel and safe for interaction with humans. However, the lack of autonomy currently limits

their practical applications. Autonomous navigation has been well studied for conventional

rigid-bodied robots; however, it is underrepresented in the soft mobile robot research

community. Its implementation in soft robots comes with multiple challenges. However, the

major challenge is the significant motion uncertainties due to the robot compliance, ground

interactions, and limited available sensing. These uncertainties prevent high-level control

implementation, such as autonomous navigation, to be performed successfully. Therefore,

soft robots require robust design methods, as well as path following and path planning

algorithms, to mitigate these uncertainties and enable autonomy.

This dissertation develops and implements autonomous navigation for a novel

origami-enabled soft crawling autonomous robot called OSCAR. In order to implement

autonomous navigation, it first mitigates the OSCAR’s motion uncertainties by a multi-step

iterative design process. Analysis has shown that OSCAR’s motion uncertainties are the

result of: (i) the ground-feet interaction, (ii) effectiveness of low-level closed-loop control

and, (iii) variability in the manufacturing assembly process. The iterative control-oriented

design allows a robust and reliable OSCAR performance and enables high-level path

following control implementation. To design and implement path following control, this

research presents an idealized kinematic model and introduces an empirically based

correction to make the model predictions match the experimental data. The dissertation

investigates two separate path following controllers: a model-based pure pursuit and a

feedback controller. The controllers are investigated in both simulation and experiment and

the need for feedback is clearly demonstrated. Finally, this research presents the path

 iii

planning in order to complete OSCAR’s autonomous navigation. The simulation and

experimental results show that OSCAR can accurately navigate in 2D environment, while

avoiding static obstacles. Lastly, the coupled locomotion of multiple OSCARs demonstrates

an extension of functionality and expands the potential design and operation space for this

promising type of soft robot.

 iv

To my family, friends, and teachers.

 v

Acknowledgements

First, I would like to thank my advisors Dr. Andrew Alleyne and Dr. Aimy Wissa, for

their invaluable and continuing commitment to help me achieve my greatest potential. I

consider myself extremely lucky for working and learning from them. They both provided

unique expertise that was fundamental to the success of this research. I will always be

thankful to Dr. Alleyne for the priceless lessons he taught me that I will take with me

throughout my career. I will always be thankful to Prof. Wissa for her confidence,

encouragement to hard work, and mentorship. I cannot express how grateful I am, as both of

my advisors went above and beyond to help me grow as a researcher. I would also like to

acknowledge the members of my doctoral examination committee, Dr. Sameh Tawfick, Dr.

Elizabeth Hsiao-Wecksler, and Dr. Girish Chowdhary, who have helped guide and strengthen

my research.

I would like to thank my parents for their support, hard work and dedication. You are

my main motivation to grow. Thank you for always encouraging me to believe in myself and

follow my dreams. Without you, I would not be where I am today.

These acknowledgments would not be complete without thanking my colleagues at

the Alleyne Research Group (ARG) and Bio-inspired Adaptive Morphology Laboratory

(BAM Lab). It was a privilege for me to work alongside incredibly talented, motivating, and

hardworking lab mates. Thank you to Justin, Matt, Herschel, Bryan, Nate, Malia, Spencer,

Chris, Ashley, and Pamela for creating a collaborative and hardworking atmosphere. All of

you have been a source of inspiration for me and kept me motivated through the graduate

school. Thank you to Kimberly for assistance and contribution to this research. Thank you to

Mihary, Ophelia, Chengfang, Valeria, Paul, and Diaa for making my graduate school

 vi

experience so enjoyable. I would also like to especially thank Daniel Block for his help and

contribution to building OSCAR.

 vii

Table of Contents

LIST OF FIGURES ... xi

LIST OF TABLES .. xvii

LIST OF SYMBOLS ... xviii

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation and Background ... 1

1.1.1 Soft Mobile Robots ... 2

1.1.2 Origami-Enabled Mobile Robots .. 3

1.2 Research Objectives ... 4

1.2.1 Problem Statement .. 4

1.2.2 Dissertation Scope ... 6

1.3 Organization of Dissertation .. 7

CHAPTER 2 OSCAR CONTROL-ORIENTED DESIGN .. 9

2.1 Design Challenges .. 9

2.2 OSCAR ... 11

2.3 Origami Towers .. 13

2.4 Robot Locomotion and Iterative Feet Design .. 15

2.4.1 Robot Crawling Locomotion ... 15

2.4.2 Iterative Feet Design ... 16

2.4.3 Stabilizers .. 19

2.5 Motivation for the Assembly Guide and Analysis of Low-Level Closed-Loop

Control .. 20

 viii

2.6 OSCAR’s Assembly Guide .. 22

2.6.1 Assembly Guide .. 22

2.6.2 OSCAR’s Assembly Process .. 24

2.7 Chapter Summary ... 26

CHAPTER 3 EXPERIMENTAL TESTBED ... 27

3.1 Testbed Components .. 27

3.2 Image Processing Software .. 31

3.3 Testbed Operation .. 33

3.4 OSCAR Low-Level Servo Position Control .. 34

3.4.1 Proportional-Integral (PI) Servo Position Controller .. 35

3.4.2 Motion Symmetry by the Low-Level Controllers ... 37

CHAPTER 4 OSCAR’S KINEMATIC MODEL ... 40

4.1 Kinematic Model .. 40

4.1.1 Kinematic Model Overview .. 40

4.1.2 Kinematic Model Idealized Assumptions ... 42

4.1.3 Lumped Kinematic Submodel (LKS) ... 43

4.1.4 Segmented Kinematic Submodel (SKS) ... 43

4.2 Kinematic Model Validation .. 45

CHAPTER 5 PATH FOLLOWING CONTROL ... 50

5.1 Motivation .. 50

5.2 Model-Based Open-Loop Pure Pursuit Controller ... 52

5.3 Proportional Feedback Controller .. 53

5.4 Simulation and Experimental Results .. 55

5.4.1 Controllers’ Performance with the Ideal Kinematic Model 55

5.4.2 Pure Pursuit Performance with the Corrected Kinematic Model 57

5.4.3 Experimental Results for the Feedback Controller ... 58

5.5 Chapter Summary ... 60

CHAPTER 6 PATH PLANNING AND AUTONOMOUS NAVIGATION FOR

 ix

OSCAR ... 61

6.1 Motivation .. 61

6.2 Background .. 61

6.3 Hybrid A* Planner.. 64

6.4 Path Planning Results ... 67

6.4.1 Scenario 1 .. 69

6.4.2 Scenario 2 .. 69

6.5 OSCAR Autonomous Navigation Experiments ... 70

6.5.1 Scenario 1 .. 71

6.5.2 Scenario 2 .. 75

6.6 Chapter Summary ... 78

CHAPTER 7 COUPLED LOCOMOTION STRATEGY ... 80

7.1 Motivation .. 80

7.2 Proposed Coupled Locomotion Strategy .. 81

7.2.1 Coupled Locomotion Strategy .. 81

7.2.2 Docking Mechanism ... 83

7.3 Coupled Locomotion Strategy Validation .. 84

7.4 Chapter Summary ... 88

CHAPTER 8 CONCLUSIONS AND FUTURE WORK ... 89

8.1 Summary of Research Contributions ... 89

8.2 Future Work ... 92

REFERENCES ... 95

APPENDIX A LABVIEW VIS FOR THE ROBOT OPERATION 100

A.1 Camera calibration... 100

A.2 Image Processing Algorithm ... 103

A.3 Robot Control Main VI Operation .. 110

APPENDIX B OSCAR LOW-LEVEL CONTROL CODE ... 113

B.1 Arduino Code .. 113

 x

APPENDIX C ROBOT KINEMATIC MODEL .. 120

C.1 Robot Kinematic Model .. 120

C.2 InverseAnalyticalKinematic1.m .. 121

APPENDIX D PATH FOLLOWING SIMULATION ... 123

D.1 PurePursuitController.m .. 123

D.2 AnalyticKinematic.m .. 126

D.3 FeedbackController.m ... 127

APPENDIX E PATH PLANNING IMPLEMENTATION .. 129

E.1 PotentialFieldFunction.mlx ... 129

E.2 Planner_HybridAstar.mlx .. 130

E.3 PathTransform.mlx .. 130

APPENDIX F SUPPLEMENTARY FILES ... 132

 xi

List of Figures

Figure 1.1 The number of publications in the field of soft robotics in range 2010-2020,

obtained from the Web of Science (http://apps.webofknowledge.com/). The field is

categorized into two main areas: static manipulators and grippers, and mobile robots 5

Figure 1.2 OSCAR: Origami-enabled Soft Crawling Autonomous Robot............................... 7

Figure 2.1 OSCAR’s exploded view drawing showing its main components; the actual robot

is shown in Fig. 2.3 ... 10

Figure 2.2 Initial robot design called PERI: (a) main components; (b) top view. Image is

adapted from [41] .. 10

Figure 2.3 OSCAR: a) main components; b) side view... 11

Figure 2.4 Drawing of a servo with a magnetic encoder. The encoder sensor is mounted

rigidly at the back plate (grey), and its magnetic ring is mounted at the servo horn to

measure angles. To ensure sensor alignment with respect to the ring, it is installed on the

acrylic mounting plate; then on the back plate, which has alignment elements 12

Figure 2.5 Origami tower: (a) at the fully contracted state; (b) at fully expanded state 13

Figure 2.6 Origami tower with attached connectors ... 14

Figure 2.7 OSCAR’s top view showing the direction of creases in the opposite chirality

origami towers .. 14

Figure 2.8 Origami cell expansion depicted as function of applied angle α and cell height l.

Maximum cell’s height is 15 mm and it corresponds to the input angle 0.6283 rad.

Image is taken from [41] ... 15

Figure 2.9 OSCAR’ crawling locomotion schematic ... 16

Figure 2.10 Timeline of the foot design evolution with description of performance

improvement ... 17

 xii

Figure 2.11 Foot designs D1-D3 implemented on the robot. Shown here is an intermediate

robot design with bellows ... 18

Figure 2.12 Sliding ratchet foot: (a) low friction situational deployment during plate forward

motion; (b) high friction situational deployment during the plate backward motion 19

Figure 2.13 Stabilizers: (a) functionality; (b) implementation ... 20

Figure 2.14 Straight line (red) path following with the robot starting at an initial offset in y-

direction: (a) in open-loop; (b) with feedback path following controller. Dotted black

and blue lines are robot trajectories in the correct and faulty cases; solid black and blue

lines are robot orientations .. 21

Figure 2.15 Angular control inputs for the path following in open-loop (a) and with

proportional feedback (b). Angular inputs in (a) are used in both faulty and correct

performances in Fig. 2.8, a. Angular inputs for Fig. 2.8, b are shown in (b); inputs are

similar for both faulty and correct performances .. 21

Figure 2.16 Assembly guide. The front and back plate’s alignment in the X-Z plane is

achieved by setting the plates’ left faces against the red shaded areas, thus aligning them

along the red line. Alignment in the X-Y plane is provided by contact of plates’ bottom

surfaces with the green shaded areas. The front and back plates are aligned parallel to

each other in the Y-Z plane along the green lines. The front plate is aligned in the Y-Z

plane by contact with the blue shaded area; the same holds for the back plate. Once

aligned, the front plate is fixed by the fixtures in Fig. 2.17, and set screws fix the back

plate. .. 24

Figure 2.17 Side view of fixture used for holding the front plate in the assembly guide 24

Figure 2.18 OSCAR in the assembly guide. The servo horns are centered for easy monitoring

of servo positions during robot initialization .. 25

Figure 3.1 Schematic drawing of the experimental testbed (the PC and robot power supply

are not shown) ... 28

Figure 3.2 Flow chart of the testbed operation .. 28

Figure 3.3 Experimental testbed .. 29

Figure 3.4 OSCAR markers (in 1:1 scale): (top) for front plate; (bottom) for back plate 30

Figure 3.5 Marker templates: (left) for front plate; (right) for back plate 32

 xiii

Figure 3.6 Processed image with identified markers ... 32

Figure 3.7 Sequence of video frames depicting OSCAR locomotion 34

Figure 3.8 Step response of identified transfer function .. 35

Figure 3.9 Reference angle tracking with low-level controller: (a) with step reference input;

(b) with ramp reference input ... 38

Figure 3.10 OSCAR displacement data collected for static angular inputs: (a) with step

reference input in the low-level controller; (b) with ramp angular input in the low-level

controller. The angular input values are shown in the legend, where each pair denotes

the left and right servo angles, respectively .. 39

Figure 4.1 Kinematic model consists of two submodels: a lumped kinematic submodel (a)

and a segmented kinematic submodel (b). The model on the left represents OSCAR’s

motion as a rigid body motion from point kp to point 1kp + . The model on the right

solves a vector loop corresponding to the robot at the fully expanded state. A vector

 1
T

b kp p dx dl dy+ = + in (b) is derived from (a). Based on the assumptions (A1)-

(A2), OSCAR’s body expands along the arc from the point bp at the back plate to point

1kp + , which defines the orientation increment d 41

Figure 4.2 Kinematic model hierarchy. Image is taken from [41] .. 42

Figure 4.3 Comparison of experimental data and ideal kinematic model predictions for the

same angular inputs. The angular inputs (in degrees) are listed on the right 47

Figure 4.4 Comparison of experimental data and corrected kinematic model predictions for

the same angular inputs. The angular inputs (in degrees) are listed in the column on the

bottom left ... 48

Figure 4.5 Comparison of achievable workspace for ideal kinematic model (a) and corrected

kinematic model (b) .. 49

Figure 5.1 Pure pursuit controller schematic .. 52

Figure 5.2 Lateral error in the feedback controller ... 54

Figure 5.3 Simulation results for the path following with the ideal kinematic model 56

Figure 5.4 Robot trajectory with the pure pursuit controller with the ideal kinematic model.

Due to modeling errors, OSCAR’s trajectory (green) diverges from the path (red) and

 xiv

simulation (black). Purple and pink solid lines show the robot orientation at the initial

and final states, respectively ... 56

Figure 5.5 (a) Robot trajectory with the pure pursuit controller with the corrected kinematic

model. Purple and pink solid lines show the robot orientation at the initial and final

states, respectively. (b) Trajectory divergence for the three consecutive experiments ... 57

Figure 5.6 Robot trajectory with the feedback controller: (a) combined experimental results

showing the robot acquiring and following the path. The robot final orientation in

experiment 1 matches the initial orientation in the experiment 2. (b) and (c) show the

robot trajectory repeatability with the feedback controller for three trials in settings of

experiment 1 and 2, respectively .. 59

Figure 5.7 Angular inputs for path following with feedback controller in Fig. 5.6(a) 60

Figure 6.1 Graphical explanation of hybrid A* path planning algorithm............................... 64

Figure 6.2 Obstacles: (a) real size in a workspace and (b) in an occupancy map. In (b),

obstacles have added clearance around them for collision avoidance purposes during the

planning ... 68

Figure 6.3 Autonomous navigation scenario schematics .. 68

Figure 6.4 Path planned for the first scenario from the start (green) to goal (red)

configurations. Black shaded circles are the obstacles with added clearance space, and

light blue lines are nodes expanded by the planner .. 69

Figure 6.5 Path planned for the second scenario from the start (green) to goal (red)

configurations. Black shaded circles are the obstacles with added clearance space, and

light blue lines are nodes expanded by the planner .. 70

Figure 6.6 OSCAR trajectory in simulation in part 1 of scenario 1. The red dashed lines

show the robot’s initial and final configurations in the reference path; a fully contracted

robot state is shown. Obstacles in actual size (without clearance space) are shown in

pink. .. 72

Figure 6.7 OSCAR trajectory in experiments in part 1 of scenario 1. The red and black

dashed lines show the robot’s configurations in the reference path and experiment 1.

The robot body motion (grey shaded area) in experiment 1 demonstrates obstacle

avoidance. Four trials show the repeatability of the results .. 72

 xv

Figure 6.8 Combined simulation and experimental results for part 1 of scenario 1 73

Figure 6.9 Simulation and experimental results for OSCAR trajectory in part 2 of the

scenario 1. Here, red and black dashed lines show the robot configuration in reference

path and experiment 5, respectively. The robot body motion (grey shaded area) in

experiment 5 demonstrates obstacle avoidance. Four trials show the repeatability of the

results .. 73

Figure 6.10 Coupled results of OSCAR trajectory in scenario 1. The final state in experiment

1 matches the initial state of experiment 5 .. 74

Figure 6.11 Angular inputs for part 1 in scenario 1 .. 75

Figure 6.12 Angular inputs for part 2 in scenario 1 .. 75

Figure 6.13 OSCAR trajectory in part 1 of the scenario 2. Here, red and black dashed lines

show the robot configuration in reference path and experiment 9. The robot body motion

(grey shaded area) in experiment 9 demonstrates the obstacle avoidance. Four trials

show the results repeatability .. 76

Figure 6.14 OSCAR trajectory in part 2 of the scenario 2. Here, red and black dashed lines

show the robot configuration in reference path and experiment 13. The robot body

motion (grey shaded area) in experiment 13 demonstrates the obstacle avoidance. Four

trials show the results repeatability ... 77

Figure 6.15 Coupled results of OSCAR trajectory in scenario 2. The final state in experiment

9 of part 1 matches the initial state of experiment 13 of part 2....................................... 77

Figure 6.16 Angular inputs for part 1 in scenario 2 .. 78

Figure 6.17 Angular inputs for part 2 in scenario 2 .. 78

Figure 7.1 (a) Schematics of the earthworm-like locomotion, adapted from [23]; (b) coupled

two-segment OSCAR locomotion strategy ... 82

Figure 7.2 Docking mechanism: (a) front plate of segment 2 and (b) back plate of

 segment 1 .. 84

Figure 7.3 Two-segment robot at the fully contracted state (top view) 85

Figure 7.4 Sequence of video frames depicting the coupled locomotion 86

 xvi

Figure 7.5 Coupled robot trajectory. Here, the highlighted areas show examples of backward

slippage of front plate during contraction (red boxes) and backward slippage of back

plate during expansion (green boxes) ... 86

Figure 7.6 Displacement time history. Highlighted areas shown for two cycles only

correspond to the actuation times during two alternating states: (a) segment 1 -

expansion and segment 2 - contraction; (b) segment 1 - contraction and segment 2 –

expansion .. 87

Figure A.1 Block diagram of ‘Camera control.vi’ .. 101

Figure A.2 Vision Assistant Express VI window ... 102

Figure A.3 Settings for calibration grid dots (left) and extracted grid dots (right) 103

Figure A.4 Calibration model settings (left) and workspace image (right) 103

Figure A.5 Block diagram of the image processing algorithm operations 104

Figure A.6 RGB image of workspace (left); binary image after correction and threshold steps

(right) .. 105

Figure A.7 Image after binary inversion (left); image after applied particle filter (right) 105

Figure A.8 Specification tab in geometric matching .. 106

Figure A.9 Marker templates: for front plate (left) and for back plate (right) 106

Figure A.10 Processed image showing the identified markers on a black background 107

Figure A.11 Fragment of the final processed image with identified markers 108

Figure A.12 Marker settings inputs on the front panel in ‘Main.vi’ 109

Figure A.13 Initialization subVIs ... 110

Figure A.14 Dialog message for completing the robot assembly ... 111

Figure A.15 Image processing and scaling subVIs ... 111

Figure A.16 Front plate orientation calculation .. 111

Figure A.17 Angular inputs the robot calculation .. 112

 xvii

List of Tables

Table 2.1 OSCAR Electronic Components .. 30

Table 6.1 Obstacles in scenario 1 ... 69

Table 6.2 Obstacles in scenario 2 ... 70

Table 6.3 Reference paths for two parts of scenario 1 .. 71

Table 6.4 Reference paths for two parts of scenario 2 .. 76

 xviii

List of Symbols

 Angular input to the origami tower as a function of its height, rad

 Angle of an origami cell’s vector R , rad

dl Ideal OSCAR length at a fully contracted state, mm

dl Corrected OSCAR length at a fully contracted state, mm

ds Total displacement in one locomotion cycle, mm

, ,dx dy d State increments denoting inrement of position (mm) and orientation (rad)

, ,dx dy d State increments after applied model correction

k Subscript denoting index of the current locomotion cycle

pK
 Proportional gain

l Length of an origami cell’s vector R , mm

L Lookahead distance, mm

N Number of origami cells in a single tower

bp
 Centroid position of the back plate, mm

kp

Robot state that includes front plate position and orientation, i.e.,

T

kp x y =

0p
 Initial OSCAR state

Goalp
 Final OSCAR state

R OSCAR turn radius, mm

minR
 Minimum OSCAR turn radius, mm

R Vector corresponding to two origami cells in a tower in robot vector loop

 xix

 Angle along the arc of radius R and chord length ds , rad

xu
 Longitudinal control input

yu
 Lateral control input

1 Angular input to the left OSCAR motor, rad

2 Angular input to the riht OSCAR motor, rad

x̂ Discrete OSCAR position

, ,x y OSCAR front plate position (mm) and orientation (rad)

 1

Chapter 1

Introduction

1.1 Motivation and Background

Soft robotics is a relatively young, rapidly emerging, field of robotics that offers unique

solutions that are hard to achieve with traditional rigid-bodied robots [1], [2]. In contrast to

conventional robots, composed of rigid links connected at discrete joints, soft robots have

compliant bodies. Compliance makes soft robots safe for close interaction with humans or the

environment, thereby potentially closing the gap between robots and humans during operation.

Unlike rigid-bodied robots, soft ones can deform and absorb the impact energy in case of

collision, minimizing the risk of injury. This makes them prominent candidates for applications

in the human-assistive and wearable technologies [3]. Moreover, body compliance allows soft

robots higher adaptability to complex unstructured environments [4], better ability to grasp

unknown objects [5], and improved navigation in confined spaces [6].

This dissertation is specifically interested in soft mobile robots, as their intrinsic safety

and adaptability open an invaluable potential for their applications in real-world tasks, such as

search-and-rescue, surveillance, in-pipe inspection, and medicine [7]. More specifically, our

focus is an emerging class of origami-enabled mobile robots [8]. While preserving compliance,

origami-enabled robots have improved locomotion and performance compared to more

traditional hydraulically or pneumatically actuated soft mobile robots. Additionally, due to the

origami fabrication process specifics, they are faster to prototype and manufacture, and their

design is easily scalable and customizable.

 2

However, the current state-of-art soft mobile robots are currently limited in practical

applications. The main reason for that is the absence of task-level control, such as autonomous

navigation that would enable the robots’ operation in real tasks. Despite a large body of literature

on soft robot designs [2], [8], due to the field novelty, there is still minimal research conducted

on soft robot autonomous navigation. This fundamental challenge outlines a need for developing

a soft robot navigation control framework and tools to advance the field.

1.1.1 Soft Mobile Robots

The current state-of-art in soft robotics has a vast diversity of nature-inspired designs

which we can categorize into (i) stationary manipulators/grippers and (ii) mobile robots. While

soft manipulators, such as the octopus-arm-inspired manipulator in [9], and the grippers in [5],

exhibit great grasping adaptability and have been actively studied, we are particularly interested

in soft mobile robots. Some examples of existing robots include multi-gait quadrupeds [4], [10],

worm- and caterpillar-inspired robots [6],[11]–[13], and snake-inspired robots [14], [15]. Besides

animal-inspired gates, some robots locomote by jumping [16], rolling [17], and growing [18]. In

addition to terrestrial robots, there are underwater robots, such as a manta-ray robot [19], an

octopus robot [20], and a fish robot [21], which closely resemble biological species. A more

detailed review of soft robot designs at the time of writing of this thesis can be found in [2], [3],

[7], [22], with the main locomotion schemes summarized in [23].

Soft mobile robot designs have proven themselves uniquely capable of adapting to tasks

[4],[21], traveling across multiple uneven terrains [17], accommodating a variety of

environmental conditions, e.g., snow and fire [10], and resistance to high-force mechanical

damage [10],[13]. For example, the quadruped robot in [4] adapted to crawl into a narrow gap (2

cm) underneath a given obstacle in order to surpass it. The caterpillar robot (GoQBot) in [12]

and fish robot in [21] demonstrated agile escape response maneuvers that are as efficient as their

biological inspirations.

Soft robots are actuated by multiple sources [3] that include, but are not limited to:

pneumatic, hydraulic, thermal, electric, and bio-hybrid actuation. Due to their large actuation

force, high work/power density at the actuator, and fast response times, the pneumatic and

hydraulic actuation schemes prevail in the field [7]. Such actuation is done in quadruped robots

 3

[4], [10], snake robots [14], [24], and a fish robot [21] as examples. Despite pneumatic and

hydraulic actuation advantages, untethered locomotion in such robots is a challenge due to the

need to embed power sources on board [2]. While the actuation can be power dense, in terms of

Watts/liter, these hydraulic and pneumatic systems require significant power sources to generate

the high pressure fluid and these sources are typically much larger than the actuators. Therefore,

although pumps and additional hardware for pressurizing working fluid can be placed on board,

e.g., in [4], [21], [24], the size and weight of the overall system may limit the robots’

performance [7]. Alternative solutions can be provided by other actuation sources listed above.

However, they result in slower time response and a great deal of physical design complexity to

embed them in the robot. In contrast, untethered actuation is not an issue for a new class of

origami-enabled soft mobile robots.

1.1.2 Origami-Enabled Mobile Robots

Origami-enabled robots are an emerging class of soft mobile robots [1], [8]. Origami are

complex shape 3D structures fabricated by folding from a planar, often composite, sheet. These

structural systems are light-weight, easy to design, scale, and fabricate; in addition, they can

achieve complex functionalities such as self-assembly [25],[26], locomotion [27], and

manipulation [28]–[30]. Furthermore, origami robots’ locomotion agility can potentially surpass

traditional soft mobile robots [8] due to the overall lower power density requirement.

Examples of mobile origami-enabled robots include digestible robots [25], [31], milli-

robots [32], worm-inspired robots [6], [33], a snake-inspired robot [27] and kirigami crawling

robots [34], [35]. Kirigami robots are a subclass of origami robots, where the structure is

achieved by internal cutting instead of folding. Origami mobile robots’ actuation is done by a

variety of means: electric servomotors, tendon-driven systems, shape-memory alloys (SMA), or

external stimuli, e.g., the magnetic fields in [25], [31]. These robots can utilize multi-locomotion

gaits to traverse across different terrains, as demonstrated by the milli-robot in [32]. Due to

origami’s scalability property, meaning the geometric shapes are independent of size, their scales

vary significantly from millimeter to meter size. These robots have promising applications in

minimally-invasive medical surgeries [25], [31], in-pipe inspections, and search-and-rescue

missions [33]. A more comprehensive review of the origami robots can be found in [8].

 4

1.2 Research Objectives

1.2.1 Problem Statement

Despite the recent advances in design and locomotion, control implementation in soft

mobile robots comes with three significant challenges. The main challenge is the soft robot

motion uncertainties, which are caused by two reasons:

1. Robot compliance, including compliant interaction with the environment. Although

compliance allows soft robot functionality, it also makes soft robots

underactuated. This means that in addition to having n degrees of freedom,

there are extra ‘passive’ degrees of freedom which result in uncertainty,

possibly significant, in the resulting robot motion [2]. Therefore, control

implementation becomes more challenging for soft robots than compared to

their rigid counterparts. Although motion uncertainty cannot be completely

eliminated, it can be mitigated with careful design.

2. Lack of proprioceptive sensing and closed-loop control in soft mobile robots. Due to

their compliance, soft robots require different sensors than conventional rigid

robots [3]. For example, these sensors need to be deformable to match the

robot compliance [36]. As a result, soft mobile robots predominantly operate in

open loop; i.e., their actuators are first characterized statically. Then, the robots

locomote by executing a sequence of predetermined inputs or motion

primitives. One example is the pneumatic RUBIC robot rolling locomotion in

[17]. Sensor design and feedback control efforts are currently minimal in soft

mobile robots. Preliminary efforts include magnetic curvature sensors for

feedback control of pneumatic bending actuators in [15]. However, overall

efforts in the field are not as developed as for other classes of rigid robots and

without proprioceptive sensing and closed-loop actuators control it is hard to

achieve precise robot motion.

Additionally, soft mobile robot models are not readily available. In well-studied

traditional rigid robots, models are derived by standard methods, such as forward kinematics in

 5

rigid link robots or rigid-body analysis in mobile robots [37]. In the current state of the field, soft

robot models are unique and highly dependent on the robot design and actuation type.

Finally, there is a limited number of studies on autonomous navigation

implementation. From currently published research in the soft robotics field, only 25% focus on

mobile robots, and less than 5% of the overall research addresses untethered gait control (Fig.

1.1). Due to a lack of readily available sensors, models, and motion uncertainties, work on

autonomous navigation of soft mobile robots is highly limited.

Figure 1.1 The number of publications in the field of soft robotics in range 2010-2020,

obtained from the Web of Science (http://apps.webofknowledge.com/). The field is

categorized into two main areas: static manipulators and grippers, and mobile robots

Although the work on autonomous navigation is limited there has been some prior

autonomous navigation. One example has been demonstrated by an untethered pneumatic snake

robot in [24]. This work uses a bi-directional A* planner for path planning, and iterative learning

control (ILC) for path following. Although ILC demonstrates great results for repetitive tasks

[38], application of ILC for path following is impractical, as the autonomous navigation naturally

involves changing environments and terrains for exploration. Therefore, different control

approaches for path following should be investigated. In another example, path calculation as a

part of path planning has been done for obstacle-aided navigation in a soft tip-growing vine robot

[39]. Despite the vine robot being a continuum robot, its application area is similar to mobile

robots, which is navigation through environment with obstacles. This work focuses on pre-

 6

calculating joint points (buckles) for the vine robot to reach a goal position based on information

about the environment. Later these joints will be mechanically made on the robot backbone

before its deployment.

To summarize, autonomous navigation is currently underrepresented in the mobile soft

robotics space; in several articles, it is often included only when outlining future research

direction for soft mobile robotics [2], [7]. The main steps required to achieve autonomous

navigation in soft robots include robust design methods, sensing, path following, and path

planning.

1.2.2 Dissertation Scope

This dissertation develops an autonomous navigation framework for the novel Origami-

enabled Soft Crawling Autonomous Robot (OSCAR), shown in Fig. 1.2, under the problem

statements listed above. The final goal is achieved in the following five objectives, where the

first four develop and experimentally validate the autonomous navigation for a single OSCAR:

1. Control-oriented OSCAR design. This objective considers an iterative robot design,

which is a key enabler of OSCAR’s autonomous navigation. As it will be

shown in Chapter 2, OSCAR suffers from significant motion uncertainties

caused by the feet and ground interaction, the low-level control, and the

assembly process. An iterative design allows to mitigate these uncertainties and

achieve a reliable robot performance. Thus, it enables the high-level path

following control implementation.

2. OSCAR kinematic model, which is based on OSCAR’s geometry. It is used in the

path following control design and implementation.

3. Path following control, which is done by two different controllers: an adopted

model-based pure pursuit and a proportional feedback controller. Both

controllers are experimentally validated in the designed experimental setup,

which performs robot localization.

4. Path planning. This objective considers the application of hybrid A* approach to

planning OSCAR path. This part experimentally validates the autonomous

 7

navigation framework for two different scenarios with the feedback path

following controller.

5. OSCAR coupled multi-segment locomotion. This last objective extends OSCAR

functionality by introducing a modular approach to the OSCAR robot concept.

It studies its coupled locomotion of two coupled OSCARs. The modularity

allows OSCAR to move separately, as in parts 1-4, or as a single coupled

robot. Moreover, the coupled robot can reconfigure its body in the presence of

faulty segments or certain types of obstacles.

The aforementioned research objectives outline the overall goal of autonomous

navigation implementation for OSCAR and creates a design and control framework for other

origami-enabled mobile robots.

Figure 1.2 OSCAR: Origami-enabled Soft Crawling Autonomous Robot

1.3 Organization of Dissertation

The remainder of the dissertation is organized as follows. Chapters 2 and 3 present the

OSCAR iterative control-oriented design process. Included in Chapter 3 is the last part of the

robot design, which is OSCAR low-level closed-loop control. Also, Chapter 3 presents the

experimental setup that has been used for all the experiments in this thesis. The OSCAR two-part

kinematic model is presented in Chapter 4. Then, Chapters 5 and 6 develop autonomous

navigation for a single robot. In particular, Chapter 5 presents the path following control, and

Chapter 6 presents the path planning algorithm. Then, the autonomous navigation is

experimentally validated in Chapter 6, with the controller from Chapter 5. Chapter 7 presents the

 8

coordinated navigation of a two-segment robot composed of two OSCARs. Finally, Chapter 8

provides concluding remarks and suggestions for future work.

 9

Chapter 2

OSCAR Control-Oriented Design

2.1 Design Challenges

A major challenge preventing the development of autonomous navigation in soft mobile

robots is motion uncertainties. This chapter presents a control-oriented design of a

novel Origami-enabled Soft Autonomous Crawling Robot (OSCAR) (Fig. 2.1), which solves this

problem. OSCAR’s motion uncertainties result from its compliant elements, the interaction

between its feet and the ground, and lack of proprioceptive sensing, as demonstrated in the initial

robot design shown in Fig. 2.2 [40]–[42]. Mitigating uncertainties through an iterative robot

design is one of the major contributions of this work. This was accomplished via the following

processes, which are detailed in this chapter and Chapter 3:

• Iterative design of the robot feet;

• Alignment of the robot plates using an improved assembly process;

• Measuring the angular input to the origami towers using encoders;

• Closed-loop low-level servo angular position control.

As a result of following these processes, we have achieved a soft mobile robot design

capable of accurately following the reference path and performing autonomous navigation as

described in Chapters 5 and 6.

 10

Figure 2.1 OSCAR’s exploded view drawing showing its main components; the actual

robot is shown in Fig. 2.3

Figure 2.2 Initial robot design called PERI: (a) main components; (b) top view. Image is

adapted from [41]

 11

2.2 OSCAR

OSCAR is an origami-enabled soft crawling robot inspired by the caterpillar crawling

locomotion. Its exploded view is shown in Fig. 2.1, and the actual robot is shown in Fig. 2.3. The

OSCAR’s main components are two opposite chirality origami towers. They act as linear

actuators when given a rotational input [40]. Each origami tower consists of six identical origami

cells made with a Kresling pattern [43] and each tower has relief cuts between every two

consecutive cells to allow turning (Fig. 2.3, b). The direction of creases in the cell’s Kresling

pattern determines the tower’s chirality, i.e., positive or negative.

Figure 2.3 OSCAR: a) main components; b) side view

The origami towers are rigidly attached to the front plate by a set of acrylic plates from

one end and are driven by servo motors from the opposite end. These are continuous rotation

servos mounted at the robot back plate. The towers expand or contract with provided servo

rotation, resulting in the robot body expansion or contraction. OSCAR’s height and width are 72

 12

mm and 106 mm, respectively. Its length in the fully contracted and fully expanded states is 95

mm and 155 mm, respectively. The rotational input to the origami towers is measured by

magnetic encoders; see details in Fig. 2.4. Their angular resolution is 0.02 degrees.

Figure 2.4 Drawing of a servo with a magnetic encoder. The encoder sensor is mounted

rigidly at the back plate (grey), and its magnetic ring is mounted at the servo horn to

measure angles. To ensure sensor alignment with respect to the ring, it is installed on the

acrylic mounting plate; then on the back plate, which has alignment elements

In order to locomote, OSCAR utilizes anisotropic friction feet. Anisotropic friction-based

locomotion is common in earthworms and caterpillars; some examples of such feet

implementation in soft robots are listed in [23]. These feet provide low friction in one direction

and high friction in the other in order to prevent backward slippage during locomotion [44].

When the OSCAR’s front or back plate moves forward, its feet operate under low friction. When

the plate moves backward, its feet operate under high friction. Together, anisotropic friction feet

and the consecutive origami towers’ expansion and contraction enable OSCAR’s crawling

motion. Both OSCAR’s front and back plates are 3D printed on an Ultimaker printer with PLA

material.

OSCAR can traverse a 2D plane by executing forward, left, and right turning motions.

Consider servo angular inputs to the origami towers for robot expansion to be 1 2
T

 , where

1 and 2 are inputs to the left and right tower, respectively. When the angular inputs are equal,

 13

OSCAR moves forward. When the inputs are different, OSCAR turns. In all cases, zero angular

inputs result in the robot’s contraction.

In its initial design, shown in Fig. 2.2, the robot had protective plastic bellows (PET) that

encased the origami towers. Its main function was to provide torsional rigidity to the robot, i.e.,

to prevent front and back plates from pivoting in the X-Z plane during locomotion. The robot

cannot locomote without some form of torsional rigidity with respect to the ground plane.

However, the bellows had a major drawback: they also produced torsional rigidity in the X-Y

plane, which led to resistance to turning. This drawback has been addressed by substituting

bellows with stabilizers in the final design (Fig. 2.1 and Fig. 2.3).

The following sections consider individual OSCAR components in sufficient detail to

allow future readers to replicate the design. Its electronics and low-level servo position control

are covered in Chapter 3.

2.3 Origami Towers

The origami towers are the OSCAR’s main components, and they are made of 163 g/m2

Neenah paper. They are fabricated by cutting crease patterns with a laser cutter (Epilog), and

then folding and gluing them into their final assembled state. Figure 2.5 shows the towers in the

fully contracted and fully expanded states. Each tower has a 3D printed servo horn connector at

one end and a paper disk connector at the other end which attaches the tower to the front plate

(Fig. 2.6). The servo connector rigidly connects the origami tower to a custom-made 3D printed

servo horn by two M1.6 screws. The two opposite chirality towers are mounted in OSCAR such

that their creases form a triangle directed toward the front plate from a top view (see Fig. 2.7).

Figure 2.5 Origami tower: (a) at the fully contracted state; (b) at fully expanded state

 14

Figure 2.6 Origami tower with attached connectors

Figure 2.7 OSCAR’s top view showing the direction of creases in the opposite chirality

origami towers

Each origami Kresling cell has a 5-sided polygon at its base. Applying a rotational input

causes the cell to expand according to the function presented in Fig. 2.8. This function represents

the relationship between the angular input to the cell and its height. The function has been

numerically calculated based on the origami cell’s geometry in [45].

 15

Figure 2.8 Origami cell expansion depicted as function of applied angle α and cell height l.

Maximum cell’s height is 15 mm and it corresponds to the input angle 0.6283 rad. Image is

taken from [41]

2.4 Robot Locomotion and Iterative Feet Design

2.4.1 Robot Crawling Locomotion

Anisotropic friction feet are potentially the most critical design aspect for the OSCAR’s

crawling locomotion (Fig. 2.1). Ideally, these feet provide low friction in the forward direction

and high friction in the backward direction to prevent backward slippage.

Considering ideal feet behavior, OSCAR’s locomotion can be described as follows (Fig.

2.9). Starting from the fully contracted state, the towers expand due to the applied servo rotation.

As a result, the robot front plate moves forward while the back plate stays fixed due to the high

friction deployed at the robot feet, allowing the robot to expand. Then, during contraction, the

front plate remains fixed due to the high friction side of the robot feet being deployed, while the

back plate moves forward. Upon contraction, the robot returns to a fully contracted state, and the

cycle repeats.

 16

Figure 2.9 OSCAR’ crawling locomotion schematic

2.4.2 Iterative Feet Design

In practice, the feet’s anisotropic friction and their interaction with the environment are

far from ideal. In fact, it is one of the main contributors to the OSCAR’s motion uncertainties.

As a result of non-ideal friction, the back plate slides backward during expansion, and the front

plate slides backward during contraction, although they are assumed to be stationary in theory.

Thus, the robot motion becomes highly uncertain and hard to control. To minimize uncertainties

due to foot slippage, several design iterations have been investigated since introducing the initial

wedge feet design in [41], [42].

A timeline of feet design iterations (Fig. 2.10) includes the following designs:

D1. Anisotropic friction wedges (three per plate);

D2. Wheels with ratchet mechanism (two per plate);

D3. Combination of (D1) and wheels of (D2), but without ratchet mechanism (two wheels

and one wedge per plate);

D4. Sliding ratchet feet (two per plate).

 17

Figure 2.10 Timeline of the foot design evolution with description of performance

improvement

Besides significantly mitigating the backward slippage, the feet design iterations also

focused on improving the robot’s turning capabilities, as shown in Fig. 2.10. A lower turn radius

corresponds to a higher curvature turn. In all designs, switching between low and high friction

states is passive due to inertia (D1, D2, D4) or mechanical design (D2). All of the feet shown in

Fig. 2.10 have been 3D printed on an Objet260 printer with VeroWhite and TangoBlack

materials.

Figure 2.11 shows images of the different foot designs implemented on the OSCAR. As

can be seen, the early designs still have the bellows attached; however, it is removed in a later

design to enhance robot maneuverability. With the simple wedge foot design (D1), the robot had

three feet per plate: one wedge at the center and two wedges at the sides (Fig. 2.11, left). When

the plate moved forward, the wedge foot deploys a low friction side (VeroWhite). Conversely,

when the plate moved backward, the wedge foot switches to the high friction side (TangoBlack).

 18

Although these feet have high durability, their deployment is unreliable; i.e., in some cases, the

high friction side remained undeployed during backward motion resulting in high backward

slippage and robot low turning capability (i.e., large turning radius).

Figure 2.11 Foot designs D1-D3 implemented on the robot. Shown here is an intermediate

robot design with bellows

Therefore, to address the wedge feet’s passive deployment problem, wheels with a ratchet

mechanism (D2) were implemented (Fig. 2.11, center). Each foot has a wheel with six ratchets

on its inner surface and a static axle with three pawls (Fig. 2.10). The wheel can freely rotate in

the forward direction, while pawls stop it from moving backward. Although (D2) decreased

backward slippage and improved turning, these feet have high friction during the desired low

friction operation, as the pawls are in constant contact with the wheel. A further disadvantage of

(D2) is fast pawl deterioration and wear since these are 3D printed out of relatively soft material.

Therefore, a combination of two wheels and and a wedge (D3) was proposed. These feet

combine the advantages of the two previous designs, as two wheels at the plate’s sides allow

better turning, while a single wedge at the center provides passive friction switching (Fig. 2.11,

right). Nevertheless, this design resulted in unreliable friction switching similar to what was

observed in D1. Thus, the final design of sliding ratchet feet (D4) has been implemented.

The sliding ratchet foot mechanism (D4) resembles a ratchet mechanism with a ratchet

wheel freely sliding between two states: a locked and a free-rotation position (Fig. 2.12).

Switching between these states happens passively due to inertia and ground friction during the

plate’s motion. Therefore, when the robot plate moves forward, the ratchet wheel slides back to a

position where it can freely rotate, providing low friction for the forward motion (Fig. 2.12, a).

Conversely, when the plate is forced to move backward by the origami towers’ contraction, the

 19

ratchet wheel encounters two pawls and stops. In the locked position, the feet provide high

friction preventing undesirable plate backward slippage (Fig. 2.12, b).

Figure 2.12 Sliding ratchet foot: (a) low friction situational deployment during plate

forward motion; (b) high friction situational deployment during the plate backward motion

Due to its robust friction switching mechanism, the sliding ratchet feet have significantly

decreased the backward slippage and improved OSCAR’s turning compared to all the previous

feet designs (see Fig. 2.10).

2.4.3 Stabilizers

Stabilizers prevent the plates from pivoting in the X-Z plane around the instantaneous

ground connection point when in motion (Fig. 2.13). The stabilizers are freely rotating wheels

offset by 11 mm from the plate horizontally and by 1.5 mm from the ground vertically to

guarantee the grip between feet and ground. Two stabilizers per plate are used. As shown in Fig.

2.13, when the towers are actuated, they generate a pulling force that causes the plate to pivot

about the foot ground connection point. Stabilizers limit plate pivoting in the X-Z plane and

ensure that there is the robot-surface interaction. Previous OSCAR designs utilized the

aforementioned bellows (Fig. 2.2) to stiffen the robot chassis and minimize the pivoting of the

plates during contraction and extension of the towers. However, the stiffness penalty in turning

was too high for the bellows to be functionally useful. Therefore, the stabilizers were the better

design choice.

 20

Figure 2.13 Stabilizers: (a) functionality; (b) implementation

2.5 Motivation for the Assembly Guide and Analysis of Low-Level

Closed-Loop Control

The finalized OSCAR design used for autonomous control studies in this thesis and

shown in Fig. 2.3, was built in Fall 2019. It had the low-level closed-loop servo position control

to control tower rotation and, hence, robot expansion and contraction. The proportional-integral

(PI) controllers with saturation based integral anti-windup have been used for this servo position

control (see Chapter 3, (3.2)-(3.5)). In initial approaches, the controllers track step angular

reference inputs provided to the robot.

With the finalized design, we conducted several initial path following experiments. The

results showing OSCAR’s trajectories and orientations are presented in Fig. 2.14. In these

experiments, OSCAR attempted to follow a straight reference path, starting with an initial offset

in the y-direction relative to the path. The robot was expected to converge to the path, i.e., its

position error and orientation error should decrease with time. Here, we are focused on robot

performance, so details on the applied path following controllers are omitted. The robot position

is tracked in the experimental setup, explained in Chapter 3.

 21

Figure 2.14 Straight line (red) path following with the robot starting at an initial offset in y-

direction: (a) in open-loop; (b) with feedback path following controller. Dotted black and

blue lines are robot trajectories in the correct and faulty cases; solid black and blue lines

are robot orientations

Figure 2.15 Angular control inputs for the path following in open-loop (a) and with

proportional feedback (b). Angular inputs in (a) are used in both faulty and correct

performances in Fig. 2.8, a. Angular inputs for Fig. 2.8, b are shown in (b); inputs are

similar for both faulty and correct performances

Although design changes performed in previous sections significantly improved OSCAR

performance, significant motion uncertainties were still present in experimental results. Figure

2.14(a) shows the path following with an open loop set of servo commands. These servo

 22

commands were computed based on the system model and resulted in desired angular inputs

provided in Fig. 2.15(a). Figure 2.14(b) shows the path following with a closed loop proportional

feedback controller that is based on path displacement error and orientation error. A similar one

will be detailed and designed in Chapter 5. The same or similar angular inputs are provided in all

experiments, as shown in Fig. 2.15, (a) and (b), respectively. In both cases, the robot does not

perform like the simulation predicts. The ability to follow the path is poor for even the best

performing robot response. In the case of a poorly performing, or faulty, robot response, the

orientation or position can even diverge from the predicted response and have an opposite sign.

The reason for this is that there are significant uncertainties in the robot behavior. Due to

these uncertainties, the robot cannot follow the reference path reliably, even with the feedback

controller. After much investigation, it was found that there was variation in the OSCAR

dependent on how it was assembled. In short, robot design is important; equally important is

robot manufacturing. Manufacturing and assembly matter a great deal. This motivated the

development of the OSCAR’s assembly guide, presented in the following section, and the low-

level servo control analysis covered in Chapter 3, which together mitigated these remaining

uncertainties.

2.6 OSCAR’s Assembly Guide

2.6.1 Assembly Guide

As illustrated above, a major contributor to OSCAR’s motion uncertainties is the

assembly process. It directly affects OSCAR’s feet-ground interaction. Due to the origami

towers’ compliance, the front and back plate alignment to the ground is very difficult to

guarantee during the assembly process. As a result, plates can tilt about the X-axis, which was

observed and measured experimentally on OSCAR in early assembly efforts. This tilt causes

uneven friction between the robot feet and the ground with some feet being slightly lifted off the

ground. Clearly, this misalignment between the robots’ warped plane and the X-Y plane of the

ground environment leads to non-ideal robot-ground interaction.

The existing assembly challenges can be summarized in the following list:

 23

• Front and back plate misalignment in the Y and Z directions. Due to

the individual towers’ compliance, the front and back plates’

alignments to each other (in the Y direction) and the ground (in the Z-

direction) are impossible to guarantee without external means during

the assembly process.

• Front and back plate tilting caused by servos initialization. Once the

origami towers are fixed in the front plate, any pre-stress in towers

results in the front and back plates’ tilting to the ground. This pre-

stress can be caused by sudden servo motion during the robot

initialization. The sudden servo motion can be caused when the servos

are initially powered on. This phenomenon is due to the low-level

servo controllers and is common among small-scale continuous

rotation servos.

• The robot’s fully contracted length should be consistent for each robot

assembly to guarantee the performance repeatability.

To address these problems, a custom-designed and custom-built assembly guide has been

developed and constructed. The 3D printed assembly guide (Fig. 2.16) aligns both the front and

back plates in the X-Y and X-Z planes with a distance between them equal to the origami

towers’ fully contracted length in the X direction. This distance is set to 41dl mm= . The guide

prevents the front and back plates from tilting around the X axis, while the assembly process

outlined below prevents plates’ tilting due to servos during robot initialization. As a result, the

assembled robot has much improved evenness in the surface friction among all the feet and the

ground.

 24

Figure 2.16 Assembly guide. The front and back plate’s alignment in the X-Z plane is

achieved by setting the plates’ left faces against the red shaded areas, thus aligning them

along the red line. Alignment in the X-Y plane is provided by contact of plates’ bottom

surfaces with the green shaded areas. The front and back plates are aligned parallel to each

other in the Y-Z plane along the green lines. The front plate is aligned in the Y-Z plane by

contact with the blue shaded area; the same holds for the back plate. Once aligned, the

front plate is fixed by the fixtures in Fig. 2.17, and set screws fix the back plate.

Figure 2.17 Side view of fixture used for holding the front plate in the assembly guide

2.6.2 OSCAR’s Assembly Process

The following is presented to capture for the reader details that, while conceptually quite

simple, have a large effect on the overall robot performance. The assembly process with the

designed guide includes the following steps:

 25

Figure 2.18 OSCAR in the assembly guide. The servo horns are centered for easy

monitoring of servo positions during robot initialization

1. Front and back plates need to be pre-assembled. All the robot components need to be

installed on the front and back plates. This includes the origami towers being

installed on the back plate but left disconnected from the front plate.

2. The front and back plates need to be lined up to the left side of the assembly guide

and fixed in the guide, as shown in Fig. 2.18. After being fixed, plates are

aligned in the X-Y and X-Z planes. The detailed description can be found in

Fig. 2.16. The origami towers’ free ends need to be set in the untightened

acrylic plates at the front plate. With applied servo rotation, towers can freely

rotate without expanding.

3. The robot should be initialized by turning on the power source and microcontroller.

During initialization, servo horns should be centered, as shown in Fig. 2.18. A

single cycle of expansion and contraction inputs must be applied to the origami

towers. The last step is not required but is believed to remove any accumulated

stress in the origami towers and help self-center them.

 26

4. The LabVIEW virtual instrument (VI) that localizes and controls OSCAR needs to be

started, see ‘Main VI.vi’ in Appendix A. The robot re-initializes when the VI

starts and this leads to the previously discussed sudden servo motions. As

detailed in the experimental setup in Chapter 3, there is a microcontroller

interface between the LabVIEW VI and the low-level servos. Manually press

and hold the microcontroller ‘reset’ button and move servos to their centered

positions.

5. Finally, the origami towers’ ends need to be fixed into the acrylic plates in the robot

front plate, finishing the assembly. We can now release the fixtures holding the

front and back plates in place.

To prevent tilting or deviations that can occur with use, and to maximize experimental

repeatability, OSCAR is reassembled before each experiment. This means that steps from 2 to 5

are repeated before each experimental session. The reassembly takes on average 2 minutes and is

not time-consuming. Different types of micro-size motors could be used in the future to prevent

the reassembly process need.

2.7 Chapter Summary

The control-oriented design has been a crucial part of this research, as it enabled the

OSCAR’s autonomous navigation. The iterative design process helped to eliminate the motion

uncertainties present in OSCAR. Hence, OSCAR could be controlled by high-level control. The

OSCAR’s motion uncertainties are caused by (i) its feet and the ground interaction and (ii)

OSCAR’s low-level control. This chapter presents the feet design and assembly process that

addresses the motion uncertainties due to the feet and ground interaction. The low-level control

involves the experimental setup, and hence, it is presented in Chapter 3. The steps presented in

this chapter are vital for understanding the robot details and practical challenges. Additionally,

they should serve as a guide for future designs for this class of origami-enabled mobile robots.

 27

Chapter 3

Experimental Testbed

3.1 Testbed Components

Experiments in this work are conducted on a testbed designed specifically for OSCAR.

The testbed is used to perform robot localization and to implement the path following control

algorithms. It has an extruded aluminum frame that holds a camera mounted on its top, as shown

in the schematics in Fig. 3.1. The camera has a ‘god’s eye view’ of the robot’s operational

workspace. The testbed workspace surface is prepared to be spatially uniform with sufficient

traction. The picture of the actual testbed is shown in Fig. 3.3.

The camera is used for robot localization, which is performed via image processing

algorithm developed specifically for OSCAR and covered in detail in Section 3.2. The camera

captures the image of the robot in the operational workspace and sends it to the PC during the

experiments, see flowchart in Fig. 3.2. The PC operating the testbed runs the image processing

software that localizes the robot. The designed software identifies the robot position and

orientation through markers placed on the robot (Fig. 3.4). Afterwards, the control algorithm

calculates the robot inputs. The testbed operation is described in Section 3.3. All software is

implemented in the LabVIEW NI Virtual Instrument (VI). The VI details are provided in

Appendix A.

The camera used is an LI-OV5640-USB-72 camera from Leopard Imaging, which has a

USB 2.0 interface. It has a resolution of 1280 960 pixels at a selected speed of 30 frames per

second. The camera is raised from the robot workspace by 623.6zh mm= , measured between the

front of the camera lens and workspace surface (Fig. 3.1). At this distance, it provides a

 28

resolution of 1.13 mm and 1 mm in the x and y-direction, respectively, for measurements done in

the plane of the robot markers. The markers, shown in Fig. 3.4, have a size of 16.7 16.7 mm ;

thus, the camera resolution provides 6% error for marker identification. It is sufficient for the

current application.

Figure 3.1 Schematic drawing of the experimental testbed (the PC and robot power supply

are not shown)

Figure 3.2 Flow chart of the testbed operation

 29

Figure 3.3 Experimental testbed

The camera has been calibrated with respect to the operational workspace using a

standard calibration grid provided by LabVIEW NI. During calibration, the calibration grid

covered all the surface of the operational workspace. The camera lens has some distortion, which

has also been compensated by the calibration. The resulting measurement error is 0.4 mm in both

x and y-directions, and the camera coordinate frame is as shown in Fig. 3.1.

The operational workspace has dimensions 1219.2 914.4 mm (or 4 3). Considering

the OSCAR dimensions ()95 106 mm at the fully contracted state, the testbed allows for 12

robot body lengths. However, the actual operational workspace is limited to the calibrated image

size captured by the camera. Furthermore, the measurements are done in the plane of the robot

markers. Therefore, the resulting actual workspace has a size of 700 250 mm in the markers’

plane, as shown in Fig. 3.6. Therefore, the actual workspace covers only 7 robot body lengths.

This is a limitation for the current OSCAR experiments, as will be seen in Chapter 5. We are

able to compensate for this limitation by concatenating multiple experiments to create a larger

workspace. Future efforts requiring a larger workspace would necessitate new hardware,

including a wider camera field of view with retained or improved resolution.

 30

Figure 3.4 OSCAR markers (in 1:1 scale): (top) for front plate; (bottom) for back plate

Additionally, the testbed includes an offboard power supply for OSCAR, which provides

a 5.5 V constant voltage to the servos and current ranging from 0 to 1.2 A. OSCAR has as an

offboard Arduino microcontroller (Fig. 3.3). It implements a low-level closed-loop servo

position control, as shown in Fig. 3.2 and covered in detail in Section 3.4. The tethered

configuration is chosen over the untethered one for ease when conducting experiments, as our

primary goal is to demonstrate the feasibility of autonomous navigation. These offboard

elements could be miniaturized and placed on board. Untethered locomotion was previously

demonstrated in [40] and [46].

Table 2.1 OSCAR Electronic Components

Component Details Quantity

Motor • Feetech FS90R (Polulu)

• Continuous rotation servos

2

Encoder • Sensor RLC2HD (RLS)

• Magnetic ring MR026C016B036B02

(RLS)

2

2

Encoder counter • Dual LS7366R Encoder Counter

(SuperDroid Robots)

• SPI communication

1

Microcontroller (off board) • RedBoard for Arduino (SparkFun)

• USB connection to PC

1

Power source (off board) • B&K Precision 1900

• 5.5V constant voltage input

1

 31

As stated in Chapter 2, the angular inputs to the origami towers are measured by the

incremental magnetic encoders. In order to read their data, the encoders are interfaced with the

robot microcontroller through a counter. The counter is placed onboard of OSCAR. All OSCAR

electronic components are listed in Table 2.1.

3.2 Image Processing Software

In order to perform localization, OSCAR has four planar black-and-white markers (Fig.

3.4) placed on top of the robot plates, as shown Fig. 2.3 and Fig. 3.3. Two markers per plate are

used to determine both position and orientation of the plate. The markers have unique geometric

shapes: circles for the front plate and triangles for the back plate. This allows the front and back

plates’ positions to be distinguished from each other in the developed algorithm.

Alternative solutions for the robot localization could be the commercially available

motion capture systems, such as the ones provided by OptiTrack and VICON. These systems use

infrared (IR) cameras and track the subjects by following reflective markers. As markers reflect

the emitted IR light, these systems can localize the robot in 3D space. However, the listed motion

capture systems are expensive as they require multiple cameras and need a larger operational

space than what is currently available for OSCAR at the writing of this thesis. Another

alternative low-cost localization method is done by using fiducial markers, e.g., AprilTag [47].

AprilTag uses square black-and-white QR-code like markers tracked by the camera with the

provided software. However, these markers require a larger area than the area available at the top

of the robot plate and may result in erroneous measurements, as stated in [48].

The developed LabVIEW-based image processing algorithm utilizes a geometric

matching algorithm from the NI Vision toolbox to identify the robot markers. This algorithm

allows marker identification regardless of its rotation, displacement, and changing light

conditions. Details on the developed algorithm are provided in Appendix A. The marker

templates, shown in Fig. 3.5, are created beforehand to apply geometric matching. The template

is a sample image of the marker that contains information about its geometric shape, size, and

centroid position.

 32

Figure 3.5 Marker templates: (left) for front plate; (right) for back plate

Figure 3.6 Processed image with identified markers

The localization is performed in a three-step process. First, the RGB image taken by a

camera is processed to leave only the marker-sized areas. In this process, the RGB image is

converted to greyscale and then to binary format. After that, the image is filtered to leave only

marker-sized areas, called particles. Then, the geometric matching matches these particles with

marker templates by comparing their shapes. To speed up the localization process, we identify

only one of the markers per plate and locate the second marker in a circular area (green line)

around it in the processed image (Fig. 3.6). Upon matching, marker positions are found in the

global camera coordinate frame, shown in Fig. 3.1. Finally, with two known marker positions per

plate, the corresponding plate centroid position and orientation are calculated.

The resulting position error is 0.7 mm in both x and y-directions, and the orientation error

is 1 degree. The errors have been calculated based on camera calibration error being scaled by

the factor of 0.865. This scaling factor was empirically found to convert the measurement from

the operational workspace plane to the markers’ plane.

 33

3.3 Testbed Operation

As described in Chapter 2, OSCAR locomotes by consecutively expanding and

contracting its body with provided control inputs. These inputs are the servos’ reference angles

 1 2
T

 . We can define a locomotion cycle as one consecutive expansion and contraction of

the robot body. After each locomotion cycle, OSCAR returns to its fully contracted state.

Therefore, as OSCAR moves, two distinctive states could be identified: a fully expanded state

and a fully contracted state (Fig. 3.7). For the control purposes, the OSCAR’s measured state is

defined as a front plate’s centroid position and orientation, i.e.,
T

p x y = , measured in the

global coordinate frame shown in Fig. 3.1.

As shown in Fig. 3.2, when OSCAR returns to its fully contracted state, the camera takes

an image of the robot’s operational workspace. Then, the image processing software localizes the

robot. The defined state
T

kp x y = is the robot state for the the current locomotion cycle,

where k indicates the index of the current locomotion cycle. Based on the identified robot

position and orientation, the control inputs for the current locomotion cycle 1 2
T

k
 are

defined by either the path-following controller or by the user input. These control inputs are then

sent to the robot microcontroller via a tethered serial connection. The robot microcontroller

implements a low-level servo position control, described below, and the robot expands. To

measure forward displacement and characterize the backward slippage, the localization is

repeated at the robot’s fully expanded state, see Fig. 3.7 (middle). In this case, the robot receives

the zero angular reference servo inputs for contraction, i.e., 1 2 0 0
T

 = . The robot

returns to the fully contracted state, see Fig. 3.7 (bottom). The above process repeats for the next

expansion and contraction cycle.

 34

Figure 3.7 Sequence of video frames depicting OSCAR locomotion

3.4 OSCAR Low-Level Servo Position Control

Low-level closed-loop servo position control is critical to perform OSCAR’s path

following and path planning. The low-level closed loop control reduces servo position

uncertainty and enables repeatable expansion and contraction cycles. The low-level control

provides a controlled expansion and contraction of the origami towers by providing closed-loop

control of the servos’ rotational position. Since it is closed loop, any disturbances or motor

nonlinearities can be compensated. The resulting predictability of the servo motion is a key

enabler of the OSCAR’s path following ability.

This section first describes the PI control architecture and then highlights the importance

of the constant velocity during expansion and contraction.

 35

3.4.1 Proportional-Integral (PI) Servo Position Controller

The continuous rotation servo motor operates with a PWM input signal, which regulates

the servo angular velocity. The servo motor can be approximated as a first-order transfer

function [49] with the PWM signal duty cycle as an input and the angular velocity as an output

 ()
()

() 1

s K
G s

U s s

= =
 +

 (3.1)

In this transfer function, the coefficient 17.879K = and time constant 0.0278 = sec are

identified from a set of servo step responses based on the encoder data. Figure 3.8 compares step

responses of identified model and data for an input ()90 / 90,u u = − where 120u = is in the

Arduino command. It should be noted, there is a small-time delay that is ignored in the

identified model. The data samples are collected every 5 ms.

Figure 3.8 Step response of identified transfer function

The servos’ angular positions are controlled by proportional-integral (PI) controllers. For

the origami towers’ safety, the servo position is regulated to within 2 degrees of the angular

reference input. The PI controller has the following standard form in continuous time,

 () ()
0

t

p Iu t k e k e d = + (3.2)

 36

where refe = − is the error between reference and measured angles, Pk and Ik are

proportional and integral gains, respectively. The control input ()u t is bounded by (3.3) and

subjected to limitation, or saturation, on the integrator term to prevent windup (3.4). Future work

could develop a formal anti-windup algorithm but for the purpose of this investigation the

saturation approach was sufficient.

 u u u (3.3)

 ()
0

t

Ik e d (3.4)

The controller gains were initially estimated by MATLAB’s built-in ‘pidtool’ designer

using the plant transfer function (3.2). After implementation, the gains were manually re-tuned to

improve performance. The tuning goal was to remove the servos’ steady-state chattering and

prevent accidental towers’ over-expansion and over-contraction due to closed-loop overshoot.

This overshoot was observed in early OSCAR tests and led to premature fatigue, wear, and

failure of origami towers. The final controller gains in (3.2) in discrete time are 0.6pk = and

0.4Ik = . The values of limits in (3.3) and (3.4) are 0.2u = − , 0.2u = and 0.1 = .

The servos have a deadband near zero angular speed inputs that affect the low-level

controller performance, as described in subsection 3.4.2. The deadbands have been manually

aligned to be in a range , − , and a deadband compensation scheme d (3.6) has been added to

enhance the controller performance. The final form of control input is

 ()90 1u s u d= + + (3.5)

where u is a PWM signal, 1s = indicates tower chirality and

0

0

if u
d

if u

=

−
 . (3.6)

The multiplier 90 is added in (3.5), as the PWM input signal is given in the Arduino

command, where 90u = corresponds to zero angular velocity.

 37

3.4.2 Motion Symmetry by the Low-Level Controllers

This subsection analyzes the low-level controller performance by studying the OSCAR

displacement data for the range of available static angular inputs chosen below. The data has

been collected in the experimental setup and is shown in Fig. 3.10.

The range of available OSCAR angular inputs is defined by their ratio 2 1 1 ,r r = ,

where r is the maximum angular ratio. Here, the ratios 2 1 1 r = and 2 1 r = correspond to

the maximum left and right turns, respectively. The ratio 2 1 1 = is a straight motion. The

theoretically possible maximum angular input to the tower is max 216 = , and the maximum

angular input ratio is 1.8r = based on robot construction. However, the implemented upper

limits are set to 1.6r = and max 180 = in the tradeoff between performance and the hardware

safety. Tower expansion to its physical limit may result in accumulated cyclic wear so a safety

margin is built in.

The data presented in Fig. 3.10 corresponds to angular ratios approximately

()1, 1 2, 1 4r r= . OSCAR starts at the origin 0 0 0 0
T T

p x y = = , and it performs

12k = locomotion cycles with given reference angles in all experiments. Markers show OSCAR

positions after each expansion and contraction, and lines denote OSCAR trajectories. When the

two origami towers expand or contract non-uniformly, they result in significant motion

uncertainties, as demonstrated in Fig. 3.10(a). To achieve uniformity, two main changes have

been introduced to the low-level controller: (i) deadband alignment and compensation; (ii) ramp

reference angular inputs.

As OSCAR has the opposite chirality origami towers, the servos must rotate in opposite

directions to expand or contract the robot body. If the existing servos deadbands are misaligned,

the two towers result in expanding and contracting non-uniformly. The solid lines in Fig. 3.10(a)

show the resulting robot motion. Without deadband corrections, the robot trajectories are

significantly biased to the right of the horizontal axis for the same left and right turns inputs. The

displacement becomes more symmetric with deadbands being manually aligned and

compensated by (3.5)-(3.6) (dotted lines in Fig. 3.10(a)).

 38

Further, a more constant and uniform speed in both towers during expansion and

contraction is achieved by providing a ramp reference input instead of a step in the low-level PI

controllers. The ramp reference input is a ramp signal until it reaches the desired reference value,

as can be seen in Fig. 3.9(b). The ramp slope is 5.9 rad/sec. This experimentally determined

value for the tower expansion/contraction speed provides the best OSCAR performance.

However, it a subject to change for different robot designs.

Figure 3.9 compares responses of the low-level PI controllers (3.5) with a step and ramp

reference angular inputs. A single locomotion cycle is shown. For comparison purposes, the

desired reference angles are equal during expansion 1 2 150 deg. = = A first-order filter is

applied to reference angles.

With a step reference angle in Fig. 3.9(a), the robot PWM becomes saturated at its

maximum value. Therefore, as the towers expand in opposite directions, even small

misalignments of the servo deadbands cause differences in servo speeds at saturation. As can be

seen in Fig. 3.9(a), the two servo speeds are different during contraction. Thus, it results in a

robot displacement bias, as demonstrated in experimental data (dotted lines) in Fig. 3.10(a). In

contrast, with the ramp reference input, the controller tracks both desired position and slope, as

shown in Fig. 3.9(b). It results in uniform tower expansion and contraction, which leads to the

symmetry in the robot displacement, as demonstrated in experimental data in Fig. 3.10(b).

Figure 3.9 Reference angle tracking with low-level controller: (a) with step reference

input; (b) with ramp reference input

 39

Figure 3.10 OSCAR displacement data collected for static angular inputs: (a) with step

reference input in the low-level controller; (b) with ramp angular input in the low-level

controller. The angular input values are shown in the legend, where each pair denotes the

left and right servo angles, respectively

 40

Chapter 4

OSCAR’s Kinematic Model

Unlike rigid-bodied robots, soft robots lack the readily available standardized models that

can be used for high-level control development [2]. As mentioned in Chapter 1, the soft robotics

include a wide variety of individual designs. Therefore, it is a challenge to create a standard

model, and, as a result, each robot type generates its own model structure, as will be done here.

This work develops and utilizes the OSCAR’s kinematic model that was developed and

presented in [41], [42], [50]. Since OSCAR’s motion is sufficiently slow, any motion dynamics

are not considered. The kinematic model is used in the path following control design and path

planning covered in Chapters 5 and 6.

This Chapter is organized into two sections. The first section derives the kinematic model

under idealized assumptions. Then, the second section validates the kinematic model against

experimental data. Based on this validation, a correction is introduced to the kinematic model to

represent the experimental data. As will be shown, this correction has a significant effect on

model validity and also highlights one of the key challenges of working with soft origami robots:

model uncertainty.

4.1 Kinematic Model

4.1.1 Kinematic Model Overview

Despite OSCAR’s soft nature, its motion can be approximated using rigid body motion.

OSCAR locomotes by consecutively expanding and contracting its body. As defined in Chapter

3, the locomotion cycle is a single expansion and contraction of the OSCAR’s body. After each

 41

locomotion cycle, OSCAR returns to the fully contracted state. Therefore, its motion can be

described as a rigid body translating discretely between locomotion cycles, where the rigid body

is OSCAR at the fully contracted state.

Figure 4.1 Kinematic model consists of two submodels: a lumped kinematic submodel (a)

and a segmented kinematic submodel (b). The model on the left represents OSCAR’s

motion as a rigid body motion from point kp to point 1kp + . The model on the right solves a

vector loop corresponding to the robot at the fully expanded state. A vector

 1
T

b kp p dx dl dy+ = + in (b) is derived from (a). Based on the assumptions (A1)-(A2),

OSCAR’s body expands along the arc from the point bp at the back plate to point 1kp + ,

which defines the orientation increment d .

To describe motion, a local coordinate frame is assigned at the centroid of the front plate,

as shown in Fig. 4.1. The corresponding robot state is a position and orientation of the local

coordinate frame, i.e.,
T

k k
p x y = , where k denotes an index of the current locomotion

cycle. Hence, the OSCAR’s motion can be described as a rigid body motion of point kp moving

between locomotion cycles.

The kinematic model consists of two submodels: a lumped kinematic submodel (LKS)

and a segmented kinematic submodel (SKS) [41]. They are shown graphically in Fig. 4.1, with

their hierarchy shown in Fig. 4.2. The LKS is a simplified kinematic model that computes the

 42

robot state after the current locomotion cycle 1kp + , based on the known current state kp .

Instead, the SKS is a detailed kinematic model that analyzes state 1kp + by considering individual

origami cell expansions. The SKS computes the required servo angular inputs 1 2
T

k
u = to

achieve the state 1kp + , given from the LKS. Together, the LKS and SKS convert the arc radius

R and distance ds (see Fig. 4.1) into the robot state 1kp + and angular inputs to origami towers

, 1,2i i = .

Figure 4.2 Kinematic model hierarchy. Image is taken from [41]

Conversely, the inverse kinematic model (blue arrows in Fig. 4.2) calculates the robot

position 1kp + , its turn radius R , and total forward displacement ds for given angular inputs

, 1,2i i = .

4.1.2 Kinematic Model Idealized Assumptions

The kinematic model is derived under the following idealized assumptions:

A1. Ideal feet friction: The feet have no-backward slippage.

A2. Angular input is evenly distributed: All origami cells within a corresponding origami

tower expand equally during robot expansion.

Due to the ideal friction assumption (A1), the kinematic model assumes the back plate

does not slip backward and remains fixed during the robot expansion, and only the front plate

moves forward. Then, during contraction, the front plate remains fixed, and only the back plate

moves forward. Thus, the robot position 1kp + corresponds to the robot’s fully expanded position

during the kth locomotion cycle. Due to the equal input distribution assumption (A2), the robot

 43

body expands along a prescribed arc, starting from the back plate’s center bp to the point 1kp +

(Fig. 4.1).

4.1.3 Lumped Kinematic Submodel (LKS)

The lumped kinematic submodel (LKS) describes a rigid body OSCAR’s motion from

known state kp to 1kp + along the arc of radius R with total displacement ds (Fig. 4.1).

Therefore, the robot state 1kp + is equal to

 1k k

dx

p p dy

d

+

= +

 (4.1)

where dx , dy and d are the state increments for the current locomotion cycle k . According to

Fig. 4.1(a), the state increments can be expressed as

 cos
2

dx ds

=

 (4.2)

2

sin
2 2

ds
dy ds

R

= =

 (4.3)

 2arctan
dy

d
dx dl

=
+

 (4.4)

where dl is the robot length at the fully contracted state, and is the total turn angle

 2arcsin
2

ds

R
 = (4.5)

According to the local coordinate frame notation, the left turn corresponds to an

orientation increment, while the right turn corresponds to an orientation decrement.

4.1.4 Segmented Kinematic Submodel (SKS)

In the segmented kinematic submodel (SKS), the expansion of individual origami cells

defines the angular inputs for the servos , 1,2i i = for the kth locomotion cycle. The SKS solves

 44

a vector loop system, which represents OSCAR in its expanded state; this is illustrated in the

right-hand side of Fig. 4.1. In this vector loop, every two consecutive origami cells are

represented by rigid links of variable length given by vectors , 1, 6i iR . The origami towers’

relief cuts are represented as pin joints that allow two connected vectors rotation with respect to

each other. The remaining vectors , 7, 8i iR are rigid links of known lengths constrained by

the front and back plates.

Therefore, the vector loop of OSCAR’s expanded state can be described by a set of

equations:

1 2 3 7 8 1

4 5 6 7 8 1

1 2 1 2 0

1 2 1 2 0

b k

b k

p p

p p

+

+

+ + − − − =

+ + − + − =

R R R R R

R R R R R
 (4.6)

where the vector 1
T

b kp p dx dl dy+ = + with given position increments (4.2)-(4.3). Each

vector iR has a length il and orientation i defined similarly as for vector 1R in Fig.4.1(b).

Equation (4.6) can be expressed as ,x y -axis projections in a form

()

()

7 8
1 1 2 2 3 3 7 8

7 8
1 1 2 2 3 3 7 8

7 8
4 4 5 5 6 6 7 8

7 8
4 4 5 5 6 6 7 8

cos cos cos cos cos 0
2 2

sin sin sin sin sin 0
2 2

cos cos cos cos cos 0
2 2

sin sin sin sin sin 0
2 2

l l
l l l dy

l l
l l l dx dl

l l
l l l dy

l l
l l l dx dl

+ + − − + =

+ + − − − + =

+ + − + + =

+ + − + − + =

 (4.7)

Equations (4.7) should satisfy the following set of geometric constraints

1 2 3

4 5 6

l l l

l l l

= =

= =
 (4.8)

2 1 3 2

5 4 6 5

− = −

− = −
 (4.9)

1 8 4 8

3 7 6 7

,

,

⊥ ⊥

⊥ ⊥

R R R R

R R R R
 (4.10)

 45

and following physical constraints based on OSCAR’s design parameters

 7 8 44l l mm= = (4.11)

 30 , 1,6il mm i (4.12)

 1 19 , 1,2,4,5i i i + − (4.13)

The constraint in (4.8) implies that the angular input i is evenly distributed among the

total number N of cells in a tower, 6N = . Similarly, the orientation increment d from (4.4) is

evenly distributed between two pin joints in the corresponding tower in (4.9). Vectors adjacent to

the front and back plates are perpendicular to the plates, to represent the physical assembly.

Equation (4.11) indicates the distance between two origami towers. Finally, (4.12) and (4.13)

imply that the link lengths il and angles 1i i + − at relief cuts are limited by their maximum

allowable physical values.

The system of nonlinear algebraic equations with corresponding constraints (4.7)-(4.13)

is solved numerically for the unknown link lengths and orientations, il and i , using the fmincon

function in MATLAB. Based on assumption (A2), the servo inputs are given by

()

()

1 1

2 4

2

2

N l

N l

=

=
 (4.14)

Here, () is the input angle to an individual origami cell as the function of the origami cell’s

length [40]. This function is represented graphically in Fig. 2.8 in Chapter 2.

4.2 Kinematic Model Validation

This section presents the kinematic model validation for the experimental data shown in

Fig. 3.10 in Chapter 3. While the kinematic model assumes ideal friction at the feet on the robot,

some backward slippage is unavoidable in the actual feet even with the optimized designs, as

highlighted in Chapter 2. This nonideal friction causes small backward slippage of the back plate

during expansion. Hence, the front plate’s total forward displacement is decreased from the

idealized kinematic representation. For the same reason, the front plate slips backward by some

 46

amount during contraction. Therefore, the actual robot state, defined at the front plate, is

unavoidably overestimated by the kinematic model prediction (Fig. 4.3). Moreover, the slippage,

and hence the model accuracy, is highly dependent on the interaction between the environment

and the robot feet. Therefore, it is entirely feasible that this could change during locomotion as

the ground environment changes which presents an inherent challenge for a controller.

To validate the kinematic model, the inverse SKS outputs have been compared with

experimental data. Here, the experimental data contains OSCAR’s displacement and orientation

changes for the range of static angular inputs 1 2
T

 that cover the OSCAR’s achievable

workspace. Due to the nonideal friction, the robot has losses in the incrementing between cycles

of both predicted displacement and orientation. To adjust for that and match the data, the

following empirical correction has been introduced to the inverse SKS outputs

 d d = (4.15)

()

()

2 2

2 2

cos
2

sin
2

d
dx dx dl dy dl

d
dy dx dl dy

= + + −

= + +

 (4.16)

where
T

dx dy d are position and orientation increments output by the SKS inverse for the

angular inputs 1 2
T

 . These angular inputs are the same as those from experimental data

because the servo motor closed loop ensures the motors achieve their desired rotational positions.

Here, is the empirically determined efficiency factor for the orientation increment, 0.15 = ,

and dl is the corrected length of the fully-contracted origami towers, 41dl mm= . The dl is

applied instead of dl in (4.4)-(4.7) in the corrected kinematic model.

In the above equations, (4.15) accounts for the robot orientation loss by calculating an

adjusted orientation increment d , while (4.16) adjusts the state increments to reflect that in

adjusted displacements (),dx dy . As stated above, OSCAR has only a 15 % turning efficiency

compared of the ideal model being 100%. The displacement loss is accounted by dl , whose

adjusted value is stated above. In the ideal kinematic model, 23dl mm= [41]. The experimental

 47

value of 41dl mm= is found by measuring the contracted origami towers’ length in the assembly

guide (see Chapter 2).

Comparison of the experimental data with the ideal (before correction) and corrected

kinematic model is presented in Fig. 4.3 and Fig. 4.4, respectively. The inverse SKS has been

used for comparison. As can be seen, the ideal kinematic model (green dashed lines)

significantly overpredicts the experimental data (dotted lines) (Fig. 4.3). Instead, the corrected

kinematic model (grey dashed lines), i.e., with applied (4.15)-(4.16), accurately matches the

experimental data (dotted lines), as shown in Fig. 4.4. As can be seen, the corrected model

predictions remain close to the actual OSCAR motion across multiple locomotion cycles.

Figure 4.3 Comparison of experimental data and ideal kinematic model predictions for the

same angular inputs. The angular inputs (in degrees) are listed on the right

 48

Figure 4.4 Comparison of experimental data and corrected kinematic model predictions for

the same angular inputs. The angular inputs (in degrees) are listed in the column on the

bottom left

The OSCAR’s achievable workspaces for the ideal kinematic model (left) and the

corrected kinematic model (right) are shown for comparison in Fig. 4.5. The OSCAR’s

achievable workspace is defined as a set of all positions that it can achieve within a single

locomotion cycle. The (0,0) origin points in Fig. 4.5 indicate the front plate’s center at its initial

state, and green arcs show their trajectory during the locomotion cycle. The results in Fig. 4.5

demonstrate, quite dramatically, the reduction in the workspace due to the reduced locomotion

efficiency which is due in large part to the robot environment interaction. As a result of the

displacement and orientation losses, the corrected workspace (right) is significantly narrower

than the ideal one (left) and the maximum distance per locomotion cycle is 30-50 % smaller. The

net knowledge result is that the actual motion capability of the physical robot is significantly less

than what would be predicted by an idealized model. This information is very valuable because it

feeds the motion planning algorithms, so they only ask for robot motions that stay within the

robot’s achievable constraints.

 49

Figure 4.5 Comparison of achievable workspace for ideal kinematic model (a) and

corrected kinematic model (b)

To apply the above correction in the forward kinematic model, (4.15) is inverted and

(4.16) is reevaluated for the state increments
T

dx dy d
 from the LKS

 ()1d d = (4.17)

()

()

2 2

2 2

cos
2

sin
2

d
dx dx dl dy dl

d
dy dx dl dy

= + + −

= + +

 (4.18)

Then, the updated state increments from (4.17) and (4.18) are used in the SKS to calculate the

required angular inputs.

 50

Chapter 5

Path Following Control

5.1 Motivation

The path tracking or motion control is the central aspect of autonomous navigation [51].

This problem can be formulated as path following or trajectory tracking. In path following, the

robot has to reach and follow a given geometric path without necessarily concerning itself with

timing along the path. Instead, in trajectory tracking, the robot needs to follow a trajectory, a

geometric path with associated timing law. Both problems have been well understood and

studied for rigid-body robots, like autonomous vehicles or rigid mobile robots, as reviewed

below.

In rigid-bodied mobile robots, the path tracking controllers continuously determine

steering angle and velocity inputs to allow the reference path following. The existing control

solutions have been reviewed in [52], as well as in [53] and [54]. The most widely implemented

class of controllers is the geometric controllers, which utilize the system’s geometric model. As a

result, they are both simple to implement and efficient [52], [54]. The most popular geometric

controller is a pure pursuit [55], [56]. In this method, the robot is constantly pursuing a reference

point on the path ahead of the robot. Another example of the geometric control is the Stanley

controller [57]. It utilizes the lateral and heading errors to the reference path in the steering angle

control law. Besides the geometric controllers, there is the class of kinematic controllers. These

are the feedback controllers based on the kinematic model, e.g., as presented in [53]. In most

controllers, the kinematic bicycle model is used. The geometric and kinematic controllers are

designed for path tracking in moderate conditions and may not be suited for path tracking in

 51

high-speed conditions, as they ignore rigid-body robot dynamics. Instead, the dynamic

controllers account for the system dynamics. However, they are computationally expensive and

should be selected based on a tradeoff between the model fidelity and computational complexity.

The variety of control methods also include classical controllers, such as PID and sliding model

control (SMC), as well as optimal and adaptive controllers, such as linear-quadratic regulators

(LQR) and model reference adaptive controllers (MRAC), as listed in [52]. These controllers

show good path following but have challenges in parameter tuning (PID) and may be sensitive to

path curvature variation (SMC, adaptive controllers). Additionally, path following has been

realized with the model predictive controllers (MPC). MPC predicts system behavior for a short

time prediction horizon by solving an optimization problem. It then, selects the control input for

a single time step and repeats the calculation. A linear MPC allows path tracking for limited

conditions, while nonlinear MPC may allow accurate path following over a wide range of

dynamics and operating conditions. However, it is computationally expensive as it requires

solving a nonlinear optimization problem at each step, which limits its application. To address

this problem, nonlinear system dynamics has been linearized at each step and linear MPC was

applied at each step in [58]. The advantages and drawbacks of all categories of controllers have

been summarized in a table in [52].

Task-level motion control is still underrepresented in soft mobile robots, as reviewed in

Chapter 1. Due to their compliance, these robots are underactuated. They suffer from motion and

model uncertainties, which leads to additional challenges for their autonomous navigation

compared to the rigid-bodied robots. Hence, designing the controller enabling accurate path

following is crucial for soft robots’ autonomous navigation. In OSCAR, the previously

mentioned uncertainties have been addressed in the earlier chapters. Since OSCAR has a

relatively slow motion, in this thesis we focus on the path following and consider the trajectory

tracking to be out of scope.

The path following control problem is formulated as follows in this work. Given a

reference path as a set of waypoints,
2

pathp in the global coordinate frame, the robot should

converge to and follow the path [51]. By utilizing the rigid body approximation for OSCAR’s

motion, described in Chapter 4, control algorithms traditionally used in the rigid-bodied robots

 52

can be adapted to OSCAR. This work employs two path following controllers: an adapted

model-based pure pursuit controller and a proportional feedback controller.

5.2 Model-Based Open-Loop Pure Pursuit Controller

As stated above, the pure pursuit controller is one of the most popular and effective

controllers for rigid-bodied robots, due to its computational simplicity and robustness [52],[59].

The pure pursuit continuously regulates the robot steering angle by fitting an arc between its

current position and the goal point on the path. The goal point is found at a specified lookahead

distance L from the robot’s current position. The resulting arc curvature defines the steering

angle [4].

Figure 5.1 Pure pursuit controller schematic

Similarly, for OSCAR, an arc is fitted between its current position kp and the goal point

goalp located in the lookahead distance L on the path, as shown in Fig. 5.1. Geometrically,

sin
y

L

= and sin

2

L

R
 = . Therefore, the resulting arc has a radius

2

2

L
R

y
=

 (5.1)

 53

where y is the lateral error to goalp in the robot’s local coordinate frame. Equation (5.1) is

subjected to the minimum radius constraint

 minR R (5.2)

which results from the robot’s achievable workspace, shown in Fig. 4.5. This constraint

represents the limits of the robot maximum curvature turn, as max min1c R= .

To adapt the pure pursuit for OSCAR, its motion within a single locomotion cycle along

the defined arc is considered, as shown in Fig. 5.1. The displacement ds defines the robot’s

motion. The ds is a user-defined constant parameter, also constrained by the achievable

workspace max0,ds ds . The outputs R and ds of the pure pursuit algorithm are substituted

to the kinematic model to determine the angular inputs 1 2

T

k
 . Since the kinematic model is a

part of the resulting controller, the adopted pure pursuit is an open-loop controller. During path

following, the controller iteratively computes the angular inputs for each locomotion cycle.

5.3 Proportional Feedback Controller

The feedback path following controller in this work has the separate longitudinal and

lateral control inputs that are coupled to calculate the robot’s angular inputs. This is analogous to

the path following in the rigid-bodied robots, where the decoupled longitudinal control input

corresponds to the forward speed and the lateral control input regulates the steering angle to

compensate the lateral error to the path [60]. Here, the longitudinal and lateral directions

correspond to the x and y-axes of the local coordinate frame, as shown in Fig. 5.2. Assuming the

robot moves with a constant speed, its longitudinal control input is constant

 , ,maxx k xu u= (5.3)

where is a constant chosen to be in 0,1 , and ,maxxu is the maximum longitudinal input,

equal to the maximum angular input to the origami tower, ,max maxxu = . The subscript k indicates

the index of the current locomotion cycle.

The lateral control input is defined by a proportional controller

 54

 , ,y k p y ku K e= (5.4)

where pK is a controller gain and ,y ke is the lateral error defined between a point along the x-

direction in the preview distance D and the path, as shown in Fig. 5.2. Here, the preview distance

D is a user-controlled tunable parameter, tuned to tradeoff the controller aggressiveness with

stability.

Figure 5.2 Lateral error in the feedback controller

The control inputs in (5.3) and (5.4) are coupled with the angular inputs to the origami

towers according to

()

()

1 2 ,

2 1 ,

/ 2

/ 2

x kk

y kk

u

u

+ =

− =
 . (5.5)

Equation (5.5) states that the angular inputs’ average is proportional to the robot forward

displacement, denoted by the longitudinal control input ,x ku , while their difference corresponds

to the turning motion, denoted by the lateral control input ,y ku . Based on (5.5), the angular

inputs to the kth locomotion cycle are

1

2

1 1

1 1

x

yk k

u

u

−
=

 (5.6)

The calculated angles are subjected to the following set of constraints

 max0 , 1,2i i = (5.7)

 55

 2

1

1
r

r

 (5.8)

which states that the reference angular input to the origami tower must be positive and bounded

(5.7). Moreover, the angular ratio should be limited (5.8). Here, r is the maximum angular ratio

and it corresponds to the maximum right turn. The ratio 1/ r corresponds to the maximum left

turn. In these constraints, max 180 = and 1.6r = , as stated in Chapter 3. Based on (5.6), the

constraint in (5.7) can be expressed as

, ,

1

1
y k x k

r
u u

r

−

+
 . (5.9)

5.4 Simulation and Experimental Results

The designed path following controllers’ performance has been investigated for the

straight horizontal reference path. For this case study, OSCAR starts at some initial offset in the

y-direction from the path. Its initial state is approximately 0 0 60 6
T

p = − in all

experiments and simulations; the units are mm and radians, respectively. OSCAR has to

converge to and follow the reference path with bounded position and orientation errors.

5.4.1 Controllers’ Performance with the Ideal Kinematic Model

In the simulation, the pure pursuit has a lookahead distance 110L = mm and a forward

displacement 48ds = mm. The robot minimum turn radius is min 110R = mm derived from the

ideal achievable workspace, shown in Fig. 4.5(a). The feedback controller has an empirically

determined gain 0.7pK = and preview distance 100D = mm. In all simulations and experiments

presented in this Chapter, the longitudinal input constant in the feedback controller is 0.8 = ,

and forward displacement ds in the pure pursuit is tuned to match the resulting forward

displacement in the feedback controller. All the control parameters were tuned for the best

performance in terms of overshoot and convergence to the path for the given operating

conditions.

The path following simulation results with both controllers using the ideal kinematic

model are shown in Fig. 5.3. The robot acts in an ideal way in simulation, so the robot plant and

 56

kinematic model corrections, (4.15)-(4.16) and (4.17)-(4.18), respectively, are not needed. As

shown in Fig. 5.3, the robot acquires and follows the path with both controllers.

Figure 5.3 Simulation results for the path following with the ideal kinematic model

Figure 5.4 Robot trajectory with the pure pursuit controller with the ideal kinematic

model. Due to modeling errors, OSCAR’s trajectory (green) diverges from the path (red)

and simulation (black). Purple and pink solid lines show the robot orientation at the initial

and final states, respectively

However, as shown in Fig. 5.4, the experimental results are not analogous to those

predicted by simulation. The experimental validation of the pure pursuit shows that the robot

diverges from the path, due to significant modeling errors in the ideal kinematic model and

motion uncertainties present in the robot. The adopted pure pursuit is an open-loop controller

that relies solely on a kinematic model. Since the idealized kinematic model does not account for

the system inefficiencies and losses, primarily due to the robot-environment interaction, it

 57

overpredicts the robot state at each cycle and greatly diminishes the pure pursuit path acquisition

and tracking performance. This illustrates the need for the previously mentioned corrections in

the kinematic model.

5.4.2 Pure Pursuit Performance with the Corrected Kinematic Model

In the pure pursuit with the applied correction in the kinematic model, the controller

gains are 100L = mm and 30ds = mm. These values were determined empirically. The

minimum turn radius is min 200R = mm due to the corrected kinematic model.

Figure 5.5 (a) Robot trajectory with the pure pursuit controller with the corrected

kinematic model. Purple and pink solid lines show the robot orientation at the initial and

final states, respectively. (b) Trajectory divergence for the three consecutive experiments

Fig. 5.5(a) presents the simulation and experimental results with the corrections.

Although the performance is much better than the un-corrected approach, the robot still cannot

 58

acquire and follow a path. The experimental behavior deviates from the simulated behavior due

to remaining uncertainty between the modeled and actual system. To demonstrate the variability

of the results, three consecutive experiments are shown in Fig. 5.5(b). As can be seen, the

variability is not repeatable from one experiment to the next. This indicates that the robot-terrain

interaction is very difficult to capture and use for pure-pursuit.

The analysis shows that the OSCAR has significant motion uncertainties caused

primarily by its interaction with the ground and secondarily by some uncertainty in the origami

towers’ compliance. As a result, there is a strong need for the feedback controller.

5.4.3 Experimental Results for the Feedback Controller

For the experimental studies with the feedback controller, the gain and preview distance

are empirically tuned to 0.7pK = and 250D = mm, respectively. Figure 5.6 shows the

comparison of the experimental and simulation results, obtained with the corrected kinematic

model that accounts for motion inefficiencies. The results of two combined experiments are

presented in Fig. 5.6(a). Due to the limited workspace in the experimental setup, the overall

response has to be done in two sequential phases. In Fig. 5.6(a), the first experiment is started

and run to the 600+mm (x-axis) limit of our experimental workspace. Then, the final values of

the robot orientation and y-axis offset from the first experiment are used for the second

experiment starting at beginning of the x-axis. This can be done since the robot dynamics are not

a significant factor. Stitching the two responses together gives the overall response in Fig. 5.6(a).

The experimental results illustrate that the feedback controller allows the robot to acquire

and follow a path despite the present motion uncertainties. Their relative amount can be observed

by comparison of simulation and experimental results. In the experiment, the robot has a larger

overshoot than predicted in simulation but the steady-state error in the y-direction remains within

measurement error of the simulated result, which is acceptable. The larger overshoot is caused by

unknown uncertainties not captured in simulation. Additionally, the experiment 1 and 2 have

been conducted three times to verify the repeatability of the controller performance results, as

shown in Fig. 5.6 (b) and (c).

 59

Figure 5.6 Robot trajectory with the feedback controller: (a) combined experimental

results showing the robot acquiring and following the path. The robot final orientation in

experiment 1 matches the initial orientation in the experiment 2. (b) and (c) show the robot

trajectory repeatability with the feedback controller for three trials in settings of

experiment 1 and 2, respectively

The angular inputs for simulation and combined experiments 1 and 2 are shown in Fig.

5.7. The rest of the experiments in Fig. 5.6 (b) and (c) have similar inputs and thus are not

shown. The presented angles in Fig 5.7 are expansion inputs shown for each locomotion cycle.

As can be seen, the angular inputs are initially saturated, as the robot makes maximum allowed

left turns ()1 2 to converge to the path in both simulation and experiment. As the robot

approaches the path (see the second half of experiment 1 and beginning of experiment 2 in Fig.

 60

5.6 and Fig. 5.7), it corrects for overshoot by making the right turns ()2 1 . In the simulation,

the predicted overshoot is smaller than in the experiment, and therefore, almost no right turns are

needed. As the robot converges to and moves along the path, both simulation and experimental

angular inputs become the same.

Figure 5.7 Angular inputs for path following with feedback controller in Fig. 5.6(a)

5.5 Chapter Summary

As demonstrated in this Chapter, path following is feasible for the given class of soft

origami robots. Two path following efforts were initiated in this work. One used a well-known

model-based pure pursuit controller, and the other was a simple feedback controller using a

lookahead distance. In the simulation, both worked well enough to be a viable path following

approach. However, the uncertainties prevalent in the overall system drastically reduced the

efficacy of the open-loop model-based approach. These uncertainties included the robot-terrain

interaction, the origami-tower flexibility, as well as lower-level uncertainties in items such as

servo deadband that were dealt with in Chapter 3. The results given here indicate that feedback

control for path acquisition and path following is a strict requirement for future autonomous

navigation of soft origami robots. The feedback controller is used in the OSCAR autonomous

navigation experiments in Chapter 6, where it demonstrated accurate path tracking and static

obstacle avoidance.

 61

Chapter 6

Path Planning and Autonomous Navigation for

OSCAR

6.1 Motivation

The robot requires three main components to enable autonomous navigation commonly

known as perception, planning, and control [61], [62]. The perception is the ability to receive

information about the robot’s current state and environment. With a known state and

environment, planning allows the robot to plan a collision-free path to its goal configuration

intelligently. Finally, the robot executes this path using a controller.

As explained in Chapter 3, OSCAR has offboarded localization in the experimental setup

to determine its state. Also, OSCAR has a path following controller to follow a provided

reference path, as presented and tested in Chapter 5. Therefore, the only missing part in the

autonomous navigation framework is path planning, the subject of this chapter.

6.2 Background

Before describing the path planning algorithms investigated, let us first introduce the

essential concepts. Commonly, the rigid-body robot configuration is defined by its planar

position and orientation, i.e., ,
T

p x y p C= [63]. Then, the configuration space C is a

space of all configurations [64]. In this case,)2 0, 2C = , which defines the robot motion

by planar translation and 2D rotation. The path planning is performed in the configuration space,

where the robot is simplified to a point denoting its current configuration.

 62

Consider static obstacles , 1,...,iO i n= in the robot workspace
2W . These obstacles

are rigid body objects in the workspace W . We define the robot shape to be ()R p at

configuration p . Then, the obstacles in configuration space can be defined as

 () , 1,...,i iCO p C R p O i n= = (6.1)

The free configuration space is the configuration space without obstacles, i.e.,

1

\ .
n

free i
i

C C CO
=

= Thus, for collision avoidance the path planning should be done in freeC [64].

Generally, the path planning problem can be formulated as planning a feasible path from

the initial configuration 0p to the given final configuration Goalp while avoiding obstacles. The

obstacles could be static and/or dynamic. Feasibility means the robot can execute the path, i.e.,

the path should satisfy the robot motion constraints. Additionally, the path optimality could be

imposed, which means that the planned path should be optimal (i.e., minimize a cost function)

[53].

For planning the path, the configuration space is often discretized into a grid that forms a

graph. The graph (),G v e is a structure that consists of vertices v V and edges e E , where the

edges connect two adjacent vertices. For example, for two vertices 1v and 2v , the edge is a pair

()1 2,v v . A single vertex can have multiple edges. In the discretized configuration space, the

resulting grid nodes form graph vertices, and the pairs of adjacent nodes form graph edges. The

resulting graph is presented as an occupancy grid [65]. The occupancy grid contains information

about obstacles, such that the grid cells that are occupied by obstacles are marked as unavailable.

Path planning has been an active research area for rigid-bodied mobile robots, like

autonomous vehicles. The existing motion planning algorithms are reviewed in [53], [61], [66].

These methods can be categorized into the following three categories:

1. Graph-search methods discretize the continuous configuration space and represent it

as a graph, as described above. The algorithm then searches the graph to find

the minimum cost path by growing a search tree [53]. The graph-search

methods include Dijkstra’s algorithm [67], the A* algorithm [68], its variation

 63

called the hybrid A* algorithm [69], and the D* algorithm [70], among others.

Additionally, these methods include state lattice-search methods, where the

graph is obtained by uniformly discretizing the configuration space with a set

of motion primitives. The resulting graph is called a state lattice, over which

the above search methods are applied. The graph-search methods are

guaranteed to find a path if one exists. However, the deterministic sampling of

the whole configuration space in these algorithms makes the search problem

computationally complex for high-dimension or large-sized configuration

spaces.

2. Incremental-search methods plan a path by randomly sampling the configuration

space and incrementally building the graph [61],[66]. When the graph is large

enough to connect the start and goal region, the search method traces graph

nodes from the start to goal configurations and outputs the resulting path.

Examples of the incremental-search methods are probabilistic road maps

(PRM) [71] and rapidly exploring random tree (RRT) methods, e.g., RRT [63]

and RRT* [72]. Due to random sampling, these methods find solutions faster

than graph-search methods for the high-dimension configuration spaces. These

spaces include, for example, velocity or acceleration as additional states in the

configuration space. However, their computational time can be unbounded if

the solution does not exist or if the search is not guided correctly by the

heuristic that drives the random sampling [53].

3. Variational methods solve the non-linear trajectory optimization problem in the space

of parametrized curves to find a path. These methods divide into direct and

indirect methods based on how the optimization problem is solved [73]. As

highlighted in [53], variational methods converge to local minima solutions.

The appropriate initial guess is needed to obtain the global minimum solution.

Given a well-defined workspace and static obstacles, the hybrid A* path planning

algorithm has been chosen in the proposed framework for its simplicity and ease of

implementation. Hybrid A* allows for planning a smooth path while satisfying OSCAR motion

constraints. It is explained in detail in the following section.

 64

6.3 Hybrid A* Planner

The hybrid A* method is a graph search algorithm designed for robots with non-

holonomic motion constraints, e.g., autonomous cars [69], [74]. The non-holonomic constraint

means that the robot cannot directly move laterally, as its lateral motion is coupled with the

forward displacement [63]. The hybrid A* planner was first used in an autonomous car Junior

during the DARPA Urban Challenge in 2007 [69]. Unlike other discrete graph search algorithms,

e.g., Dijkstra’s and A*, hybrid A* plans a path in the continuous space, making the planned path

feasible for a non-holonomic robot [69].

To accommodate the non-holonomic constraint, the hybrid A* grows the search tree

along a set of precomputed motion primitives (), , obtained by discretizing the available

range of motion. Here, is a multiple of discretization steps and is the current orientation. It

is represented by the set of arcs of fixed length, as shown in Fig. 6.1. The algorithm’s

pseudocode is presented in Algorithm 1, adopted from [74].

Figure 6.1 Graphical explanation of hybrid A* path planning algorithm

Consider the configuration space is discretized into a grid and given by an occupancy

map m (Fig. 6.1). For a 2D position x of the current configuration p , its corresponding

discrete position on the map (denoted by a hat) is

 ()ˆ /mx x o = − (6.2)

where mo is the map origin, and is the map resolution. The discrete position is stored

alongside the actual position, where the discrete position is used for collision avoidance

 65

checking. It is also used to update the nodes already existing in the graph with the same discrete

position if the new nodes have a lower cost. During the search, the node expands (i.e., search tree

grows) from the actual position, ensuring path feasibility.

The algorithm uses two cost functions: cost-to-come (),sg p p , which is an accumulated

cost from the start to the current node, and cost-to-go (), Goalh p p , called a heuristic. The

heuristic is a distance estimate from the current to the goal node. The valid heuristic needs to be

admissible, i.e., it should be a lower bound of the true cost [63]. An example of a valid heuristic

is the 2D Euclidian distance between the two given nodes. The heuristic is critical for the search,

as it guides the algorithm and avoids expanding nodes far from the optimal path. Thus, it reduces

the computational time to find a path. The total cost at each node is defined as a sum

 () () (), ,s Goalf p g p p h p p= + (6.3)

Based on the above, each node of the search tree can be fully defined by

 ()ˆˆ, , , , , pp x x g f n= (6.4)

where x̂ and ̂ are discrete position and orientation; x is an actual position; ,g f are cost-to-

come and total cost, respectively; and pn is a predecessor node. Here, the discrete and actual

orientations are the same ̂ = , assuming ˆ
s s = [74]. The information about the predecessor

node is stored in order to reconstruct the resulting path if it exists. Finally, the algorithm utilizes

two sets: an open set Q containing adjacent nodes of already expanded nodes and a closed set

R of all processed nodes.

Given the initial configuration sp , the algorithm defines the start node of the search

graph; see line 1 in Algorithm 1. This node has zero cost-to-come and no predecessor. The

algorithm then pushes node sp into the open set Q and defines an empty set R. Line 4 starts the

while loop, which terminates if path from the sp to Goalp is found or no path exists. Inside the

loop, the node p with the lowest f value is selected from Q. When node p is expanded, it is

moved from the set Q to the set R (lines 6 and 7). If p is in the region of Goalp , then the planned

path is reconstructed through the predecessor list starting from the node p.

 66

Otherwise, the successor p of p will be generated from the motion primitives’ set. If the

successor is in collision with the obstacle, it will be discarded and added to the closed set R. The

corresponding search tree branch will be pruned (deleted) [75]. Alternatively, it will be

compared with elements of Q. If there is a node in Q with the same discrete position as p , the

cost-to-come g will be calculated and compared to that of the existing node in Q (line 16). Here,

(),l p p is the length of the motion primitive [75]. If g is lower than g , the existing node in Q

will be replaced by p . The node p has predecessor p and calculated costs f and h .

Otherwise, the node p will be added to Q if it is not in Q. These steps will repeat until all

motion primitives are expanded from p and processed.

Finally, the iterations will continue until the path is found (line 9), or there are no more

elements in Q. In the latter case, the algorithm returns that there is no path found (line 26).

Algorithm 1: Hybrid A* search [74]

1. ()()ˆˆ , , , 0, , ,s s s s sp x x h x G −

2. sQ p

3. R =

4. while Q do

5. p node with minimum f value in Q

6. \{ }Q Q p

7. { }R R p

8. if Goalp p= then

9. return reconstructed path to Goalp via predecessor list of p

10. else

11. for all do

12. p succeeding state of p using (),

13. if ()x̂m p = obstacle then

14. { }R R p

15. else if ˆ ˆ: x xp Q p p = then

16. () (),g g p l p p = +

17. if g g value of existing node in Q then

18. replace existing node in Q with p

19. end if

20. else

21. Q Q p

 67

22. end if

23. end for

24. end if

25. end while

26. return no path found

The hybrid A* search algorithm is well-informed due to the heuristic use and thus has

fast convergence to the solution. The resulting path is feasible, and it lies in the neighborhood of

the global optimum solution [69]. A similar algorithm called a bi-directional hybrid A* is used in

the soft snake robot path planning [24]. In the bi-directional method, the search tree grows from

both start and goal positions. When the two search trees become close, their branches are

connected to form a complete path.

6.4 Path Planning Results

The path planning with a hybrid A* planner is done in the MATLAB Navigation

Toolbox. The OSCAR range of motion is limited by the minimum turn radius constraint

minR R (6.5)

where min 467.7R = mm from the robot’s achievable workspace in Fig. 4.4, b. The length of

each motion primitive is equal to the total robot displacement in a single locomotion cycle,

which is 30ds = mm, as chosen in Chapter 5. Both minR and ds are inputs to the planner tool.

Finally, the set of motion primitives, defined by (6.5) and ds , is discretized into 19n = motion

primitives to satisfy a requirement of being an odd number in order to smooth the planned path.

In the current study, only circular obstacles are considered, as shown in Fig.6.2(a). They

are specified by the coordinates of their center (x, y) and a radius r. For collision avoidance

purposes, additional tunable clearance space of size df is added around obstacles; in this work we

specify 65df = mm. This distance accommodates half of the robot width plus an additional 11

% of the robot width to accommodate estimated motion uncertainty. Thus, the obstacle has a

total radius ()r df+ in the workspace occupancy map, as shown in Fig.6.2(b). The workspace

discretization in the occupancy map is 1 mm.

 68

Two path planning scenarios have been investigated and presented to illustrate the

OSCAR autonomous navigation framework. One of the scenario schematics is shown in Fig. 6.3.

OSCAR starts with a zero-degree orientation with respect to the positive x-axis at its initial

configuration, and it must plan an S-shaped path to reach a goal configuration while avoiding

static obstacles in the workspace. In the goal configuration, OSCAR should have a zero-degree

orientation as well. The second scenario is a mirrored version of the first one about the x-axis.

These scenarios are chosen as they allow demonstration of OSCAR’s ability to complete

complex maneuvers.

Figure 6.2 Obstacles: (a) real size in a workspace and (b) in an occupancy map. In (b),

obstacles have added clearance around them for collision avoidance purposes during the

planning

Figure 6.3 Autonomous navigation scenario schematics

 69

6.4.1 Scenario 1

The OSCAR initial and goal configurations are 0 10 200 0
T

p = and

 1200 5 0
T

Goalp = , respectively. Units are mm and radians. The obstacle center locations

and radii are specified in Table 6.1. The resulting planned path ,exp1refP is shown in Fig. 6.4. As

can be seen, due to the robot’s achievable workspace limitations, the planned path is close to the

second obstacle. However, accommodated clearance space will allow safe collision avoidance, as

will be shown in the experimental results.

Table 6.1 Obstacles in scenario 1

 x (mm) y (mm) R (mm)

Obstacle 1 150 70 20

Obstacle 2 550 150 20

Figure 6.4 Path planned for the first scenario from the start (green) to goal (red)

configurations. Black shaded circles are the obstacles with added clearance space, and light

blue lines are nodes expanded by the planner

6.4.2 Scenario 2

The OSCAR initial and goal configurations are 0 10 5 0
T

p = and

 1200 200 0
T

Goalp = , respectively. The obstacles are specified in Table 6.2. In this

 70

experiment, a third obstacle is added to obtain a straight path for 800x mm, similar to Fig. 6.4.

The resulting planned path ,exp2refP is shown in Fig. 6.5.

Table 6.2 Obstacles in scenario 2

 x (mm) y (mm) R (mm)

Obstacle 1 150 110 20

Obstacle 2 550 50 20

Obstacle 3 800 285 20

Figure 6.5 Path planned for the second scenario from the start (green) to goal (red)

configurations. Black shaded circles are the obstacles with added clearance space, and light

blue lines are nodes expanded by the planner

6.5 OSCAR Autonomous Navigation Experiments

In the OSCAR autonomous navigation framework, path planning is done in advance, as

shown in Section 6.4. The planned path is then tracked by the feedback path following controller,

designed in Chapter 5. The results of the OSCAR’s autonomous navigation are presented below.

The obstacles are not present in the experiments, but the clearance space accommodates a safe

distance to the obstacles.

As part of the future work, OSCAR’s autonomous navigation framework could be

extended to include navigation in the presence of dynamic obstacles. These scenarios would

correspond to the real-world environment, where the obstacles are not static. In this case, the

path planning has to be modified. If the obstacles and their trajectories are known, the free

 71

configuration space can be modified to accommodate these trajectories. Then, the path planning

using the above method could be performed [63]. Instead, if the obstacle motion is unknown, the

initial path should be planned first and local replanning is required for collision avoidance as the

robot moves to the goal [53].

6.5.1 Scenario 1

Due to the experimental setup’s workspace limitation, the planned path ,exp1refP has been

divided into two parts, as shown in Table 6.3. Two-part experiments have been conducted and

merged, similar to Chapter 5. During part 1 experiments, the reference path has been extended to

include the remainder of ,exp1refP as the virtual path. The virtual path is used as a reference by the

path following controller to calculate control inputs when the actual path ends, but the robot has

not reached a point ,1,ref gp . Similarly, during part 2 experiments, the reference path has a virtual

path: a straight line of length 400mm with the orientation of Goalp .

Table 6.3 Reference paths for two parts of scenario 1

 Start Configuration Goal Configuration

Part 1 0 10 200 0
T

p =
 ,1, 636.8 29.21 0.2353

T
ref gp = −

Part 2 ,1, 636.8 29.21 0.2353
T

ref sp = −

 1200 5 0
T

Goalp =

The autonomous navigation results are shown in Fig. 6.6 to Fig. 6.9. Here, the simulation

and experimental results for part 1 are shown first separately in Fig. 6.6 and Fig. 6.7, and then

together in Fig. 6.8 to demonstrate the similarities and draw conclusions. As can be seen, the

robot avoids obstacles and follows the reference path accurately in both simulation and

experiment, see Fig. 6.6 and Fig. 6.7, respectively. In Fig. 6.7, the robot body (grey shaded area),

corresponding to front plate motion, is plotted to demonstrate obstacle avoidance. The obstacles

in their actual size are shown in pink color.

 72

Figure 6.6 OSCAR trajectory in simulation in part 1 of scenario 1. The red dashed lines

show the robot’s initial and final configurations in the reference path; a fully contracted

robot state is shown. Obstacles in actual size (without clearance space) are shown in pink.

Figure 6.7 OSCAR trajectory in experiments in part 1 of scenario 1. The red and black

dashed lines show the robot’s configurations in the reference path and experiment 1. The

robot body motion (grey shaded area) in experiment 1 demonstrates obstacle avoidance.

Four trials show the repeatability of the results

 73

Figure 6.8 Combined simulation and experimental results for part 1 of scenario 1

Figure 6.9 Simulation and experimental results for OSCAR trajectory in part 2 of the

scenario 1. Here, red and black dashed lines show the robot configuration in reference path

and experiment 5, respectively. The robot body motion (grey shaded area) in experiment 5

demonstrates obstacle avoidance. Four trials show the repeatability of the results

 74

Additionally, the robot configurations in the reference path (red dashed line) and

experiment 1 (black dashed line) are shown at the initial and final states. These demonstrate the

similarities between robot position and orientation in the reference path and experiment. The

combined experimental and simulation results are shown in Fig. 6.8. As can be seen, the OSCAR

trajectory matches the simulation. The same is shown in Fig. 6.9 for part 2 of scenario 1. Four

trials have been conducted in each case to show the results’ repeatability.

In order to merge the results of part 1 and part 2, the final state at experiment 1 in part 1

is used as an initial state for all part 2 experiments. It should be noted that based on the final state

position in experiment 1, the reference path for part 2 has been chosen in Table 6.3. The merged

results of experiment 1 of part 1 and experiment 5 of part 2 are shown in Fig. 6.10. These results

demonstrate a complete OSCAR trajectory for scenario 1.

Figure 6.10 Coupled results of OSCAR trajectory in scenario 1. The final state in

experiment 1 matches the initial state of experiment 5

The comparison of angular inputs for simulation and experiments 1 and 5 are shown in

Fig. 6.11 and Fig. 6.12, respectively. As can be seen, the experimental angular inputs align well

with the simulation. However, as expected, the experimental inputs are slightly larger than in

simulation, as the robot needs to compensate for some unknown uncertainties.

In more detail, in Fig. 6.11, to follow a curved path in scenario 1, the robot initially

makes right turns (1 2) until 13k = locomotion cycle in the experiment and 15k = in

simulation, then it makes left turns ()2 1 . As the robot converges to the straight-line path in

scenario 1, the difference between angular inputs decreases, as shown in Fig. 6.12.

 75

Figure 6.11 Angular inputs for part 1 in scenario 1

Figure 6.12 Angular inputs for part 2 in scenario 1

6.5.2 Scenario 2

As in Scenario 1, the planned path ,exp2refP has been divided, as shown in Table 6.4.

Here, the initial state of the reference path for part 2 is chosen based on the final state in

experiments of part 1, as described in previous section. It should be noted that the reference path

has been shifted by y=200 mm to make the robot ‘centered’ to the experimental setup’s camera.

 76

Table 6.4 Reference paths for two parts of scenario 2

 Start Configuration Goal Configuration

Part 1 0 10 195 0
T

p = −
 ,2, 642 33.89 0.2587

T
ref gp = −

Part 2 ,2, 642 33.89 0.2587
T

ref sp = −

 1200 0 0
T

Goalp =

The OSCAR’s autonomous navigation results for two parts are shown in Fig. 6.13 and

Fig. 6.14. The final state in experiment 9 in Fig. 6.13 is used as the initial state for all part 2

experiments in Fig. 6.14. The virtual paths are taken similar to Scenario 1. As can be seen, the

robot (grey shaded area) safely avoids the obstacles and follows the reference path in both

simulation and experiment. Four trials demonstrate the results’ repeatability in each part. The

coupled results of parts 1 and 2 are shown in Fig. 6.15.

Figure 6.13 OSCAR trajectory in part 1 of the scenario 2. Here, red and black dashed lines

show the robot configuration in reference path and experiment 9. The robot body motion

(grey shaded area) in experiment 9 demonstrates the obstacle avoidance. Four trials show

the results repeatability

 77

Figure 6.14 OSCAR trajectory in part 2 of the scenario 2. Here, red and black dashed lines

show the robot configuration in reference path and experiment 13. The robot body motion

(grey shaded area) in experiment 13 demonstrates the obstacle avoidance. Four trials show

the results repeatability

Figure 6.15 Coupled results of OSCAR trajectory in scenario 2. The final state in

experiment 9 of part 1 matches the initial state of experiment 13 of part 2

The comparison of the angular inputs for simulation and experiments 9 and 13 are shown

in Fig. 6.16 and Fig. 6.17, respectively. Simular conclusions as in Scenario 1 could be drawn.

 78

Figure 6.16 Angular inputs for part 1 in scenario 2

Figure 6.17 Angular inputs for part 2 in scenario 2

6.6 Chapter Summary

This chapter concludes the autonomous navigation framework for OSCAR and

demonstrates its ability to autonomously navigate complex paths in the 2D terrain with static

obstacles. It is one of the main contributions of this work, showing the soft mobile robots’ ability

to accurately follow the complex reference paths.

 79

The presented framework uses a hybrid A* algorithm for path planning and the

proportional feedback controller for path following. The perception is accomplished externally in

the experimental setup. The hybrid A* planner accommodates the robot motion constraints, and

the feedback controller allows to accurately follow the path due to the presented robot design

accurately. Additionally, clearance space around obstacles allows safe collision avoidance in the

planned path. Future work may include autonomous navigation in the presence of dynamic

obstacles.

Chapter 7 expands the presented framework to include multi-segment OSCAR coupled

locomotion, as it would expand and augment OSCAR functionality.

 80

Chapter 7

Coupled Locomotion Strategy

7.1 Motivation

The modular self-reconfigurable robots have attracted researchers in the robotics field for

their high versatility and robustness [76],[77]. These robots consist of multiple segments

(modules) of the same or different functionality, e.g., [78]–[80]. With each segment being

independent, the modular robot can reconfigure itself to adapt its shape for a task, e.g., it can

make a chain structure for crawling and rolling and a lattice structure for walking. Additionally,

the modularity allows the robot to self-repair. If one of the segments is faulty, the robot can

disconnect it and reconfigure itself to include only the functional segments to continue the

mission. Hence, these robots could be viable and efficient in such applications as search-and-

rescue or unknown area exploration.

Similarly, multiple OSCARs can be arranged into a metameric robot to utilize the

modular robots’ benefits. Metameric means multiple similar segments arranged in series. In the

metameric robot, an individual OSCAR is referred to as a segment. Many of the existing soft

metameric robots, such as the origami-ball earthworm-like robot in [6], have rigidly attached

segments that cannot be decoupled. Each OSCAR segment can move independently, or they can

reconfigure and assemble into a metameric robot. This would allow greater task adaptability in

certain real applications, such as search-and-rescue or area exploration, compared to the existing

soft robots.

This chapter describes and validates the coupled locomotion strategy of the two-segment

robot as the basic building block to metameric locomotion with the OSCAR concept. It could

 81

readily be extended to include a larger number of segments in the future. Section 7.2 describes

the locomotion strategy for the coupled OSCAR segments. The passive docking mechanism used

to connect the segments is described in Section 7.2.2. Section 7.3 demonstrates the effectiveness

of the locomotion strategy.

7.2 Proposed Coupled Locomotion Strategy

7.2.1 Coupled Locomotion Strategy

The proposed coupled locomotion strategy is inspired by the earthworm locomotion. This

locomotion has been widely used in soft mobile robots [22]; examples include an origami-ball

earthworm-like robot in [6], meshworm [13], and softworm [81]. An earthworm is a true

metameric animal. Separated by septa, its segments can be actuated independently. Each

segment has two antagonistic groups of muscles: longitudinal and circular muscles [82]. When

the longitudinal muscles contract, the segment shortens, and its diameter increases. Instead, when

the circular muscles contract, the segment elongates, and its diameter decreases. Each segment

has the bristle-like setae that perform an anisotropic friction function, and these setae were the

inspiration for OSCAR’s foot designs. When the segment contracts, the setae anchor it to the

ground providing high friction. When the segment elongates forward, they slide and provide low

friction.

The earthworm locomotes by coordinated segments’ expansion and contraction, called

the retrograde peristalsis wave [82]. The wave travels from the head to tail segment along the

body, resulting in the forward motion. It is schematically shown in Fig. 7.1(a) for the three-

segment earthworm moving to the right. The figure is adapted from [23]. As can be seen, when

the head segment 1 elongates, the rear segment 3 contracts and anchors to the ground with setae.

The middle segment 2 remains at rest. Then, the head segment 1 contracts, and adjacent to it

segment 2 elongates simultaneously. This wave of contraction and elongation of two adjacent

segments, called a peristalsis wave, travels back to the tail segment 3, facilitating a total forward

displacement x . Then, the cycle repeats.

Similarly, the coupled two-segment OSCAR locomotion is schematically presented in

Fig. 7.1(b). Unlike the actual earthworm, OSCAR does not actuate in the radial direction.

 82

Instead, high ground friction is provided by the anisotropic friction feet. Therefore, the segment

height in OSCAR’s schematics does not change. In Fig. 7.1, (b), to show a coordinated transition

of low and high friction in the feet, low and high feet friction are shown by black shaded circles

and triangles, respectively.

Figure 7.1 (a) Schematics of the earthworm-like locomotion, adapted from [23]; (b) coupled

two-segment OSCAR locomotion strategy

The locomotion can be described as follows. Starting from the initial state, where both

segments are at rest, the head segment 1 expands. Due to the generated forces from the origami

towers, the front plate moves forward due to its feet having low friction, while the back plate

stays fixed due to its feet having high friction. Then, segment 1 contracts, and segment 2 expands

simultaneously. During that motion, the front plate of segment 1 and the back plate of segment 2

stay fixed due to the feet’s high friction. Both connected plates in the middle have low friction

and, thus, they move forward. Following that, segment 2 contracts, while segment 1 expands.

During this motion, the two connected plates in the middle have high friction at their feet and,

thus, anchor to the ground. It allows the front plate of segment 1 and the back plate of segment 2

to move forward. The last two steps then iterate in a cycle, each time resulting in the

displacement x .

 83

Let denote the fully contracted segment state as 0, and the fully expanded state as 1.

Then, transition 0 1→ corresponds to expansion and 1 0→ corresponds to contraction. The

coupled locomotion can then be described as the following sequence

() () () ()0,0 0,1 1,0 0,1 ...→ → → → , where the states ()1,0 and ()0,1 repeat in a cycle.

The locomotion strategy is experimentally validated in Section 7.3.

7.2.2 Docking Mechanism

The passive docking mechanism for the two segments’ connection is shown in Fig. 7.2.

To realize it, the front and back plates at the connection are modified from those presented in

Fig. 2.3. The front plate with connection mechanism has six strong permanent neodymium

magnets evenly spaced on two disks (Fig. 7.2 (a)), and the back-plate has a detachable cover

with the same number of magnets (Fig. 7.2 (b)) oriented in the opposite north-south magnet pole

orientation from the front plate. When two robots are close to each other, they can passively dock

due to the magnetic attraction. The resulting pulling force between connected plates is 11.2 N.

This docking mechanism could be extended to include a segmentation functionality,

which could be realized by the actuation of the front plate’s disks. Disks are placed on bearings

for low friction. Since the back plate is static at the connection, the front plate’s disks could

rotate and detach two connected segments. Such segmentation is energy-efficient, as the magnet

sheer force is significantly lower than the pulling force. The disks rotate in the opposite

directions for stability during the possible segmentation. The proposed docking and segmentation

mechanism has been realized previously in other robotic applications. It was done for a single

tower robot in [46], where an active plate had a single disk and shape memory alloy (SMA)

actuators were used for segmentation. A similar magnetic docking and segmentation mechanism

has been implemented in [5]. Finally, in [78], magnetic docking and SMA-based segmentation

by translation have been demonstrated. These prior efforts add to the confidence in the chosen

design for docking and segmentation used here.

 84

Figure 7.2 Docking mechanism: (a) front plate of segment 2 and (b) back plate of segment 1

7.3 Coupled Locomotion Strategy Validation

The two-segment OSCAR robot is shown in Fig. 7.3. It has the markers on the front plate

of segment 1 and on the back plate of segment 2 to characterize its total displacement. Each

segment has an offboard microcontroller. The low-level servo position controller from Chapter 3

controls segment expansion and contraction. For the coupled 1D locomotion, the selected

angular expansion inputs have been set at 1 2 170 170
T T

 = degrees, and the angular

contraction inputs have been set at 1 2 0 0
T T

 = degrees.

 85

Figure 7.3 Two-segment robot at the fully contracted state (top view)

The coupled locomotion data has been collected in the experimental setup previously

described. However, the LabVIEW VI sent the angular inputs to each of the separate OSCAR

microcontrollers through separate tethered connections. An additional GoPro camera has been

used to record the video at 30 frames per second. It was located next to the testbed’s primary

camera and had a ‘god’s eye’ view of the workspace.

The resulting coupled locomotion is shown as a sequence of video frames in Fig. 7.4.

Each frame shows the segments at either fully expanded and fully contracted states. Starting

from the fully contracted initial state (Fig. 7.3), the expansion inputs are sent to segment 1, i.e.,

() ()0,0 0,1→ . This is illustrated in Fig. 7.4 (top). Following that, segment 2 expands, and

segment 1 contracts, i.e., () ()0,1 1,0→ , as shown in Fig. 7.4 (middle). Then, segment 2

contracts, and segment 1 expands, i.e., () ()1,0 0,1→ , as shown in Fig. 7.4 (bottom). The last

two steps repeat in a cycle while the robot locomotes.

 86

Figure 7.4 Sequence of video frames depicting the coupled locomotion

Figure 7.5 Coupled robot trajectory. Here, the highlighted areas show examples of

backward slippage of front plate during contraction (red boxes) and backward slippage of

back plate during expansion (green boxes)

 87

Figure 7.6 Displacement time history. Highlighted areas shown for two cycles only

correspond to the actuation times during two alternating states: (a) segment 1 - expansion

and segment 2 - contraction; (b) segment 1 - contraction and segment 2 – expansion

Figure 7.5 shows the resulting robot trajectory, which corresponds to the centroids of the

front plate of segment 1 and the back plate of segment 2. As can be seen, although not

constrained in the y-direction, the robot moves straight. The total maximum deviation in the y-

direction for the segment 1 front plate is 12 mm, and for the segment 2 back plate it is 7 mm

during a total 400 mm displacement along the x-axis.

The displacement time history is shown in Fig. 7.6, starting from 5t s= . It is obtained by

processing recorded video frames in MATLAB. The time history plot shows the centroids of the

front and back plates of segments 1 and 2, respectively, as in Fig. 7.5. Also, it presents the

displacement of the back plate of segment 1. The highlighted areas correspond to actuation time

periods during each locomotion state: (a) the expansion of segment 1 and contraction of segment

2, and (b) the contraction of segment 1 and the expansion of segment 2. The flat areas

correspond to wait times for the next state. As can be seen, during (a), both front and back plates

of segments 1 and 2 move forward, while the connected plates in the middle remain. As

explained in subsection 7.2.1, due to segment 1 expansion, its front plate moves forward caused

by low feet friction, and the back plate remains fixed due to high feet friction. For similar

reasons, the back plate of segment 2 moves forward, and its front plate remains fixed during

 88

contraction. Then, during (b), the connected plates in the middle move forward, caused by both

contraction of segment 1 and the expansion of segment 2. The front and back plates of segments

1 and 2 are supposed to remain fixed. However, as can be seen, they have some backward

slippage, as also shown in Fig. 7.4 and Fig. 7.5. The amount of backward slippage is comparable

to a single uncoupled OCSAR.

7.4 Chapter Summary

The coupled multi-segment locomotion presented in this chapter is a valuable study for

the OSCAR autonomous navigation framework. With the proposed coupled locomotion strategy,

OSCAR is able to navigate both autonomously and in a metameric configuration. Thus, it would

potentially increase OSCAR’s flexibility and usefulness compared to existing soft mobile

metameric robots in real applications. As stated earlier, the existing soft metameric robots in the

literature, as the writing of this thesis, cannot be decoupled. As demonstrated here, the two-

segment robot can effectively locomote with the proposed coupled locomotion strategy.

Moreover, the coupled robot can be expanded to include more segments. Similarly, two

segments should be actuated simultaneously, and the resulting wave of expansion and

contraction should travel from the head to tail segment.

 89

Chapter 8

Conclusions and Future Work

8.1 Summary of Research Contributions

In the current state of the art in soft robotics, autonomous navigation is a goal that has not

been demonstrated well or often. Unlike rigid-bodied robots, soft robots suffer from motion

uncertainties caused by their compliance and interaction with the environment. Therefore, the

implementation of autonomous navigation for soft robots is considerably more challenging than

for their rigid-bodied counterparts. This research develops, implements, and demonstrates an

autonomous navigation approach for the novel origami-enabled soft crawling robot OSCAR.

The overall research approach can be divided into five main parts: (i) control-oriented

iterative robot design; (ii) kinematic model development; (iii) path following controller design;

(iv) path planning; and (v) OSCAR’s multi-segment locomotion. The first four parts develop and

experimentally validate the autonomous navigation for a single OSCAR. The fifth part extends

OSCAR’s functionality by introducing a modular approach to combining multiple OSCARs.

This lays the foundation for more complex soft robotic efforts in the future.

Chapters 2 and 3 cover the iterative robot design, which was a significant contribution to

this thesis, as it allowed for effective OSCAR autonomous navigation. As described in Chapter

2, initial OSCAR designs suffered from significant motion uncertainties caused by its foot-

ground interaction, the low-level servo control, and the assembly process induced misalignment.

The presented iterative design approach mitigated these uncertainties. It can be summarized here

in three main efforts:

 90

4. Iterative foot design (Chapter 2) allowed for a reliable and robust switching between

a high and low friction ground interaction. After several iterations, the final

design utilized a sliding ratchet foot to maximize effectiveness. These feet

minimized undesirable backward slippage due to enhanced traction and

improved OSCAR’s locomotion capabilities both in straight line motion and

turning.

5. The low-level closed-loop servo position control (Chapter 3) significantly reduced the

motion uncertainties caused by the non-uniform expansion and contraction of

two origami towers. The initial low-level controllers were simple proportional-

integral (PI) controllers. They control the angular position of the servos,

thereby actuating the towers to expand and contract. When implemented on the

tower actuation, the initial controllers did not achieve repeatable tower

response which led to significant challenges in OSCAR control. To allow

uniform and repeatable actuation of the origami towers, the feedback

controllers for the servos implemented ramp reference positional inputs instead

of the original step reference. This can be thought of as rate-limiting any

reference positions that would come to the servos. Additionally, the

controller’s identified the existence of significant servo dead-band that had to

be compensated in the controller to achieve adequate functionality.

6. OSCAR assembly process (Chapter 2) addresses uncertainties due to the non-uniform

foot-ground interaction caused by misalignment of OSCAR’s front and back

plates. This is, effectively, a manufacturing issue which arose because each

OSCAR is a hand-built custom robot and there was significant variation. The

refined assembly process, with the custom-designed and custom-built assembly

guide, mitigated these uncertainties to provide a robot with consistent

performance necessary for path following control.

The resulting OSCAR has a robust and repeatable performance validated by the

symmetric motion for the left and right turns with the same angular inputs, shown in Chapter 3.

It enabled an application of high-level path following control. All the experiments in this work

are conducted in the experimental setup presented in Chapter 3. The setup’s primary purpose is

 91

robot localization. It is done with the developed marker localization algorithm that was detailed

in the chapter.

Chapter 4 presents the two-part OSCAR kinematic model, which includes the lumped

kinematic submodel (LKS) and the segmented kinematic submodel (SKS). These two models

work together to relate origami tower actuation to robot motion in the planar workspace. The

LKS is a simplified model that converts the given desired radius of turn and displacement into

OSCAR position increments. The SKS is a detailed model that considers the origami cell

geometry. It converts the position increments from the LKS into the angular inputs required to

achieve the desired displacement. This kinematic model is ideal and does not account for the

actual robot losses. To accommodate these losses, this chapter introduces the empirically based

correction. The correction aligns model predictions with the experimental data. The resulting

corrected model has been used for the simulation in Chapters 5 and 6.

Chapter 5 presents the path following control. Its purpose is to calculate the OSCAR

angular inputs to follow a reference path. Due to the foot-ground interaction uncertainties, the

path following is crucial for autonomous navigation in soft robots. This chapter presents two

controllers: a model-based pure pursuit and a feedback controller. Adapted from the well-known

pure pursuit method, a model-based pure pursuit is an open-loop controller. It uses the kinematic

model to calculate angular inputs. The proportional feedback controller is based on the measured

lateral error to the path. This chapter validates both controllers in simulation and experiment. The

chosen case study is a straight path with a robot having an initial offset from the path. As shown

experimentally, the pure pursuit has a poor performance in experiments due to OSCAR’s

uncertainties in the terrain interactions. The feedback controller, due to direct output

measurement, demonstrates a very accurate path following in comparison with the open-loop

controller.

Chapter 6 presents the path planning approach and demonstrates complete autonomous

navigation for a single OSCAR. The path planning is done by the hybrid A* planner. Unlike

other path planners, hybrid A* accounts for OSCAR motion constraints and outputs a feasible

path. In this framework, the hybrid A* planner plans the path offline. Then, OSCAR uses a

feedback path-following controller to follow it. The autonomous navigation has been validated

for two case scenarios with static obstacle avoidance in both simulation and experiment.

 92

Finally, Chapter 7 presents the two-segment OSCAR coupled locomotion. The

locomotion strategy is bio-inspired by the behavior of an earthworm. It is done by simultaneous

expansion of one segment and the other segment’s contraction that are then alternated. As shown

experimentally, this gait allows effective locomotion of the coupled robot. The chapter also

presents a passive docking mechanism for the segment connection. The modular approach allows

OSCAR to navigate both separately and in a coupled configuration. Thus, the OSCAR has higher

adaptability for future practical applications, where the OSCAR needs to reconfigure its shape.

In conclusion, this framework presents effective autonomous navigation for OSCAR, a

novel origami-enabled soft crawling autonomous robot. Thus, this work narrows the gap between

soft robots and their practical applications. The final OSCAR has a robust and reliable

performance under the conditions used in this research. It can accurately navigate a 2D space

while avoiding static obstacles. It can follow a complex path and it can converge to that path if it

is offset from the path to start with.

8.2 Future Work

This research is an initial work validating the OSCAR concept for autonomous

navigation. As such, it is acknowledged to be a significant step in what could be many future

investigations for this class of robots. One of the shortcomings of the current robot, due to

complexity management concerns is that OSCAR was tethered and had the sensing information

coming from offboard. This was all done to minimize the complexity since it was challenging

enough to achieve reliable locomotion in the physical OSCAR. Also, this work considers cases

with static obstacle avoidance only. This research could be built upon and extended to achieve

the untethered OSCAR, navigating a 2D or 3D terrain with multiple moving obstacles.

Therefore, future work could be organized as follows:

1. From the design perspective, untethered locomotion should be added by embedding

the power sources and microcontroller on board. Additionally, actuation for

segmentation should be added to fully utilize the modularity capabilities. With

added segmentation, coupled segments could be separated on demand.

Moreover, the structural components, such as origami towers, could be

fabricated from different material to increase robot durability for possible

 93

applications in harsh conditions. Finally, the additional onboard sensors, e.g.,

vision, could be added to enable truly autonomous navigation without the need

for the external components of the current experimental setup. Since the robot

is origami-based, it could be easily scaled up or down as needed; although this

may necessitate a redesign of the material used in the towers and the actuation

mechanisms.

2. From the autonomy perspective, navigation and collision avoidance in the presence of

moving obstacles could be investigated to advance OSCAR’s capabilities. In

this case, path planning should be done online to allow active re-planning for

obstacle avoidance. Moreover, autonomous navigation could be studied for

multiple robots simultaneously. Additionally, OSCAR could be used as a soft

robotic research platform to investigate the efficiency of other path-following

and path planning methods in soft mobile robots. These studies could be done

both in simulation and experiment, using either the robot kinematic model or

the actual OSCAR. Finally, navigation through 3D terrain could be conducted

experimentally to investigate OSCAR effectiveness in managing terrain

changes.

3. From the modular robotics perspective, complex scenarios, where both decoupled and

coupled locomotion are present, could be investigated. In this initial attempt,

these actions are shown in separate experiments. Additionally, only a coupled

straight locomotion is demonstrated this thesis. Having a high-level controller

for OSCAR modularity combined with path planning and following could be

investigated in future work. This could include 2D trajectories where the robot

segments disengage and engage to navigate around obstacles. Modularity

could be also extended to include larger number of coupled segments, which

would allow to add additional locomotion gaits to the robot. With sufficient

segments, multi-module OSCARs could even surround objects and perform

manipulation tasks as well as locomotion tasks. This is a very rich and open

area for research in multi-module soft robotics.

 94

4. Finally, due to its cost-efficiency, OSCAR could be adapted to be used as a research

or educational platform for origami-enabled soft mobile robots. For example,

this would be an outstanding way to perform STEM outreach to K-12 students

because of the multiple different aspects of engineering that would be

involved.

 95

References

[1] C. Laschi, B. Mazzolai, and M. Cianchetti, “Soft robotics: Technologies and systems pushing the

boundaries of robot abilities,” Sci. Robot., 2016.

[2] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, 2015.

[3] C. Lee et al., “Soft robot review,” Int. J. Control. Auton. Syst., 2017.

[4] M. T. Tolley et al., “A resilient, untethered soft robot,” Soft Robot., 2014.

[5] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Adv. Mater., 2018.

[6] H. Fang, Y. Zhang, and K. W. Wang, “Origami-based earthworm-like locomotion robots,”

Bioinspir. Biomim., 2017.

[7] S. I. Rich, R. J. Wood, and C. Majidi, “Untethered soft robotics,” Nat. Electron., 2018.

[8] D. Rus and M. T. Tolley, “Design, fabrication and control of origami robots,” Nat. Rev. Mater.,

2018.

[9] C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario, “Soft robot arm

inspired by the octopus,” Adv. Robot., 2012.

[10] R. F. Shepherd et al., “Multigait soft robot,” Proc. Natl. Acad. Sci., 2011.

[11] T. Umedachi, V. Vikas, and B. A. Trimmer, “Softworms : the design and control of non-

pneumatic , 3D-printed , deformable robots,” Bioinspir. Biomim., 2016.

[12] H. T. Lin, G. G. Leisk, and B. Trimmer, “GoQBot: A caterpillar-inspired soft-bodied rolling

robot,” Bioinspiration and Biomimetics, 2011.

[13] S. Seok, C. D. Onal, K.-J. Cho, R. J. Wood, D. Rus, and S. Kim, “Meshworm: A peristaltic soft

robot with antagonistic nickel titanium coil actuators,” IEEE/ASME Trans. Mechatronics, 2013.

[14] C. D. Onal and D. Rus, “Autonomous undulatory serpentine locomotion utilizing body dynamics

of a fluidic soft robot,” Bioinspiration and Biomimetics, 2013.

[15] M. Luo et al., “Slithering towards autonomy: A self-contained soft robotic snake platform with

integrated curvature sensing,” Bioinspiration and Biomimetics, 2015.

[16] N. W. Bartlett et al., “A 3D-printed, functionally graded soft robot powered by combustion,”

Science (80-.)., 2015.

[17] H.-Y. Chen et al., “RUBIC: An untethered soft robot with discrete path following,” Front. Robot.

AI, 2019.

[18] E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, “A soft robot that navigates

its environment through growth,” Sci. Robot., 2017.

 96

[19] K. Suzumori, S. Endo, T. Kanda, N. Kato, and H. Suzuki, “A bending pneumatic rubber actuator

realizing soft-bodied manta swimming robot,” in IEEE International Conference on Robotics and

Automation, 2007.

[20] M. Sfakiotakis, A. Kazakidi, N. Pateromichelakis, and D. P. Tsakiris, “Octopus-inspired eight-arm

robotic swimming by sculling movements,” in IEEE International Conference on Robotics and

Automation, 2013.

[21] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic fish capable of escape,” Soft

Robot., 2014.

[22] S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: A bioinspired evolution in robotics,” Trends

Biotechnol., 2013.

[23] M. Calisti, G. Picardi, and C. Laschi, “Fundamentals of soft robot locomotion,” J. R. Soc.

Interface, 2017.

[24] M. Luo, “Pressure-operated soft robotic snake modeling, control, and motion planning,”

Worcester Polytechnic Institute, 2017.

[25] S. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung, and D. Rus, “An untethered miniature

origami robot that self-folds, walks, swims, and degrades,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), May 2015.

[26] S. M. Felton, M. T. Tolley, C. D. Onal, D. Rus, and R. J. Wood, “Robot self-assembly by folding:

A printed inchworm robot,” IEEE Int. Conf. Robot. Autom., 2013.

[27] M. Luo et al., “OriSnake: Design, fabrication, and experimental analysis of a 3-D origami snake

robot,” IEEE Robot. Autom. Lett., 2018.

[28] D. Jeong and K. Lee, “Design and analysis of an origami-based three-finger manipulator,”

Robotica, 2018.

[29] T. Liu, Y. Wang, and K. Lee, “Three-dimensional printable origami twisted tower: design,

fabrication, and robot embodiment,” IEEE Robot. Autom. Lett., 2018.

[30] J. Santoso and C. D. Onal, “An origami continuum robot capable of precise motion through

torsionally stiff body and smooth inverse kinematics,” Soft Robot., 2020.

[31] S. Miyashita, S. Guitron, K. Yoshida, S. Li, D. D. Damian, and D. Rus, “Ingestible, controllable,

and degradable origami robot for patching stomach wounds,” in 2016 IEEE International

Conference on Robotics and Automation, May 2016.

[32] Z. Zhakypov, K. Mori, K. Hosoda, and J. Paik, “Designing minimal and scalable insect-inspired

multi-locomotion millirobots,” Nature, 2019.

[33] H. Fang, Y. Zhang, and K. W. Wang, “An earthworm-like robot using origami-ball structures,”

2017.

[34] A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, and K. Bertoldi, “Kirigami skins make a

simple soft actuator crawl,” Sci. Robot., 2018.

[35] B. Liu, Y. Ozkan-Aydin, D. I. Goldman, and F. L. Hammond, “Kirigami skin improves soft

earthworm robot anchoring and locomotion under cohesive soil,” in 2019 IEEE International

Conference on Soft Robotics (RoboSoft), 2019.

[36] P. Polygerinos et al., “Soft robotics: review of fluid-driven intrinsically soft devices;

manufacturing, sensing, control, and applications in human-robot interaction,” Adv. Eng. Mater.,

2017.

 97

[37] M. W. Spong, S. Hutchinson, and M. Vidyasagar, “Robot modeling and control,” IEEE Control

Systems. 2006.

[38] D.A. Bristow ; M. Tharayil ; A.G Alleyne., “A survey of iterative learning,” IEEE Control Syst.

Mag., 2006.

[39] J. D. Greer, L. H. Blumenschein, A. M. Okamura, and E. W. Hawkes, “Obstacle-aided navigation

of a soft growing robot,” in 2018 IEEE International Conference on Robotics and Automation,

2018.

[40] A. Pagano, T. Yan, B. Chien, A. Wissa, and S. Tawfick, “A crawling robot driven by multi-stable

origami,” Smart Mater. Struct., 2017.

[41] O. Angatkina, K. Gustafson, A. Wissa, and A. G. Alleyne, “Path following for the origami

crawling robot,” in Proc. ASME Dyn. Syst. Control Conf., 2019.

[42] K. Gustafson, O. Angatkina, and A. Wissa, “Model-based design of a multistable origami-enabled

crawling robot,” Smart Mater. Struct., 2020.

[43] B. Kresling, “Origami-structures in nature: lessons in designing ‘smart’ materials,” MRS Proc.,

2012.

[44] C. B. K. Zimmermann, I. Zeidis, Mechanics of terrestrial locomotion. Springer, 2009.

[45] A. Pagano, B. Leung, B. Chien, T. Yan, A. Wissa, and S. Tawfick, “Multi-Stable Origami

Structure for Crawling Locomotion,” in ASME 2016 Conference on Smart Materials, Adaptive

Structures and Intelligent Systems, 2016.

[46] O. Angatkina et al., “A metameric crawling robot enabled by origami and smart materials,” in

ASME 2017 Smart Materials, Adaptive Structures and Intelligent Systems, Sep. 2017.

[47] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” 2011.

[48] S. M. Abbas, S. Aslam, K. Berns, and A. Muhammad, “Analysis and improvements in apriltag

based state estimation,” Sensors, 2019.

[49] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems Eighth

Edition, 8th ed. Pearson, 2019.

[50] K. J. Gustafson, “Study of the compliance and system integration of bistable structures for use as

actuation mechanisms in bioinspired adaptive systems,” University of Illinois at Urbana-

Champaign, 2019.

[51] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following of underactuated

autonomous vehicles with parametric modeling uncertainty,” IEEE Trans. Automat. Contr., 2007.

[52] N. H. Amer, H. Zamzuri, K. Hudha, and Z. A. Kadir, “Modelling and control strategies in path

tracking control for autonomous ground vehicles: a review of state of the art and challenges,” J.

Intell. Robot. Syst., 2017.

[53] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and

control techniques for self-driving urban vehicles,” IEEE Trans. Intell. Veh., 2016.

[54] J. M. Snider, “Automatic Steering Methods for Autonomous Automobile Path Tracking,” Work,

2009.

[55] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” Pittsburgh,

Pensilvania, 1992.

[56] O. Amidi, “Integrated Mobile Robot Control,” 1990. Accessed: Feb. 03, 2019. [Online].

Available:

 98

https://www.ri.cmu.edu/pub_files/pub3/amidi_omead_1990_1/amidi_omead_1990_1.pdf.

[57] S. Thrun et al., “Stanley: The robot that won the DARPA Grand Challenge,” J. F. Robot., 2006.

[58] A. Carvalho, Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “Predictive control of an autonomous

ground vehicle using an iterative linearization approach,” IEEE Conf. Intell. Transp. Syst.

Proceedings, ITSC, 2013.

[59] J. Morales, J. L. Martínez, M. A. Martínez, and A. Mandow, “Pure-pursuit reactive path tracking

for nonholonomic mobile robots with a 2D laser scanner,” EURASIP J. Adv. Signal Process.,

2009.

[60] R. Rajamani, Vehicle dynamics and control, 2nd ed. Springer Science & Business Media, 2012.

[61] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning techniques

for automated vehicles,” IEEE Trans. Intell. Transp. Syst., 2016.

[62] S. D. Pendleton et al., “Perception, planning, control and coordination for autonomous vehicles,”

Machines, 2017.

[63] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.

[64] J.-C. Latombe, Robot Motion Planning. Boston, MA: Springer Science & Business Media, 2012.

[65] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Computer (Long.

Beach. Calif)., 1989.

[66] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,” IEEE Access,

2014.

[67] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math., 1959.

[68] P. E. Hart, N. J. Nilsson, and B. Raphael, “Formal basis for the heuristic determination of

minimum cost paths,” IEEE Trans. Syst. Sci. Cybern., 1968.

[69] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search techniques in path planning

for autonomous driving introduction and related work,” Ann Arbor, 2008, Accessed: Apr. 02,

2020. [Online]. Available: www.aaai.org.

[70] A. Stentz, “Optimal and efficient path planning for unknown and dynamic environments,” Int. J.

Robot. Autom., 1995.

[71] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path

planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom., 1996.

[72] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J.

Rob. Res., 2011.

[73] J. T. Betts, “Survey of numerical methods for trajectory optimization,” J. Guid. Control. Dyn.,

1998.

[74] J. Petereit, T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel, “Application of hybrid A* to an

autonomous mobile robot for path planning in unstructured outdoor environments,” in ROBOTIK

2012; 7th German Conference on Robotics, 2012, [Online]. Available:

https://pdfs.semanticscholar.org/6e00/16024b257040db590d2de352556f64f46787.pdf.

[75] K. Kurzer, “Path planning in unstructured environments: a real-time hybrid A * implementation

for fast and deterministic path generation for the KTH research concept vehicle,” KTH Royal

Institute of Techhnoloy, 2016.

[76] M. Yim et al., “Modular self-reconfigurable robot systems [Grand challenges of robotics],” IEEE

 99

Robot. Autom. Mag., 2007.

[77] S. S. R. Chennareddy, A. Agrawal, and A. Karuppiah, “Modular self-reconfigurable robotic

systems: a survey on hardware architectures,” J. Robot., 2017.

[78] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, “M-TRAN : self-

reconfigurable modular robotic system,” IEEE/ASME Trans. Mechatronics, 2002.

[79] B. Salemi, M. Moll, and W. M. Shen, “SUPERBOT: A deployable, multi-functional, and modular

self-reconfigurable robotic system,” in IEEE International Conference on Intelligent Robots and

Systems, 2006.

[80] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable robots - design of the SMORES

system,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

[81] K. a. Daltorio, A. S. Boxerbaum, A. D. Horchler, K. M. Shaw, H. J. Chiel, and R. D. Quinn,

“Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots,” Bioinspir.

Biomim., 2013.

[82] C. A. Edwards and J. R. Lofty, Biology of Earthworms. Springer, 1972.

 100

Appendix A

LabVIEW VIs for the Robot Operation

This appendix provides an in-detail description of the LabVIEW-based testbed control. It

first details the camera calibration process. The camera is used for robot localization. Then, it

describes the steps for the image processing algorithm used in robot localization. Finally, it

details the main VI for the robot control in the testbed.

A.1 Camera calibration

Camera calibration is required in order to measure the robot’s position in the global

coordinate frame. Calibration must be updated when the distance between the workspace and the

camera or the camera itself is changed. The required LabVIEW toolboxes are NI Vision and NI

Vision Development Module.

Step 1. For new calibration, the calibration grid covering the whole workspace area

should be placed in the testbed. The standard LabVIEW grid template 20x20 cm can be found in

the following directory:

‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary>

LabVIEW> Camera Calibration’

The calibration grid resolution is 10x10 mm.

Step 2. To create new calibration open ‘Camera control.vi’ in the above directory.

This VI uses two Express VIs: Image Acquisition and Vision Assistant, as shown in Fig.

A.1. The Image Acquisition Express VI configures camera settings. It is used in all LabVIEW

 101

VIs designed for the robot. The Vision Assistant Express VI calibrates camera and configures the

robot localization algorithm.

Figure A.1 Block diagram of ‘Camera control.vi’

Step 3. Double click and open Image Acquisition Express VI. In the configuration box,

the following settings are selected to set up the camera:

• Select Acquisition Source: a current camera

• Select Acquisition Type: ‘Continuous Acquisition with inline processing’ with ‘Acquire

most recent image’ in the acquire image type box.

• Configure Acquisition Settings: current image quality is 1280x960 in MJPG format; the

speed is 30 frames per second; mode is manual.

• Configure Image Lodging settings:

By default, ‘Enable Image Lodging’ is not selected. For the new calibration, enable

‘Enable Image Lodging’ to save images from the camera (‘PNG’ format) and select the

file path to store them. Run the Camera Control VI to acquire images of the calibration

grid.

• Select Controls/Indicators: ‘Frame Rate’ could be optionally selected in the ‘Indicator

area’ box.

Step 4. Double click and open Vision Assistant Express VI. This Express VI configures an

image processing algorithm for robot localization, and its interface is shown in Fig. A.2.

 102

Figure A.2 Vision Assistant Express VI window

1. Workspace image; this image will be updated after each step of the algorithm is

applied.

2. Image processing algorithm steps.

3. When selected, each step opens its configuration dialog box on the left, shown in 3.

Step 5. Open ‘Image Calibration 1’ and select ‘New Calibration’ to set up new

calibration. Otherwise, the path to the existing calibration is selected. It can be edited in the ‘Edit

Calibration.’

In the new calibration dialog toolbox, configure the following:

• Select Calibration Type: select ‘Distortion Model (Grid)’ to remove fisheye lens

distortion.

• Select Image Source: the image of the acquired calibration grid (see Fig. A.2).

 103

• Extract Grid Features: select look for ‘Dark objects’ for the grid dots filtering and

‘Local Threshold: BG Correction’ as a method.

The extracted grid dots become highlighted in blue. To tune the detected grid

dots, adjust ‘Dot Area’ and ‘Valid Circularity.’

Figure A.3 Settings for calibration grid dots (left) and extracted grid dots (right)

• Specify Grid Parameters: set according to the calibration grid resolution to 10x10

mm.

• Review Calibration Results: adjust the distortion model by moving a slider and

looking at the mean error (see Fig. A.4, left). The calibration grid with the applied

distortion model, represented by the red vectors at each dot, is shown in Fig. A.4,

right.

Figure A.4 Calibration model settings (left) and workspace image (right)

Save the resulting calibration file in a ‘PNG’ format.

A.2 Image Processing Algorithm

The image processing for the robot localization is first performed in Vision Acquisition

Express VI (Fig. A.2). The algorithm includes the following operations, see Fig. A.5.

 104

Figure A.5 Block diagram of the image processing algorithm operations

Step 1. Configure the image processing algorithm in Vision Acquisition Express VI and

create the marker templates.

As shown in Fig. A.5, the algorithm has the following steps, starting from the original

camera image:

• Color Plane Extraction

It converts the original RGB camera image (Fig. A.4) to a gray scale (8-bit)

image. Select ‘HSL Luminance Plane’.

• Image calibration

Select a path to a calibration file from Section A.1.

• Image correction

This step applies image correction based on the current calibration and removes

camera distortion. Select ‘bi-linear’ interpolation type. The corrected image is

shown in Fig. A.4 (right).

• Threshold

Thresholding converts a grayscale image to a binary format (0 or 1). It isolates the

objects that need to be kept in the processed image (makes value 1) and removes

everything else (makes value 0). We need to keep only the robot markers, as

shown in Fig. A.6 (right). Select look for ‘Bright Objects,’ ‘Manual Threshold’

method, and adjust the lower bound value for thresholding objects until the

markers only are left.

 105

Figure A.6 RGB image of workspace (left); binary image after correction and threshold

steps (right)

• Binary image inversion

This step flips values of 0 and 1 to apply further steps of the algorithm, i.e., it

converts Fig. A.6 (right) to Fig. A.7 (left).

• Particle filter

This step filters the remaining particles (areas to keep in the image) to keep only

front and back plates’ markers. Select ‘Area,’ ‘Real World,’ and enter the area’s

minimum and maximum values. The particles in this range will be left, as shown

in Fig. A.7 (right).

Figure A.7 Image after binary inversion (left); image after applied particle filter (right)

• Lookup Table

 106

Select ‘Equalize’ in the dialog box. After this step, marker areas will become

white color on a black background.

• Front and back markers (Geometric Matching)

These steps create or adjust the robot marker templates. To create or adjust the

template for the front plate marker, open the Specification tab (Fig. A.8). When

creating a new marker template, align the marker contour (green) with the marker

shape, and place the origin in the center; see Fig. A.9. The same steps hold for the

back plate marker. Save marker template files in ‘PNG’ format.

Figure A.8 Specification tab in geometric matching

Figure A.9 Marker templates: for front plate (left) and for back plate (right)

Notes:

Simple geometric shape markers of black color on a white background with distinctive

shapes should be selected. Here, the circle markers for the front plate and triangle markers for the

back plate are used. The front plate markers are our main focus; they always result in the correct

 107

detection. The back plate marker may rarely remain undetected even after advanced option

tuning. This could be resolved by the marker size increase or a higher resolution camera.

After the marker is created, make the region of interest (ROI), where the algorithm looks

for a marker, to the whole image area. Two markers per template are looked for with rotation and

scaling in ranges [0 360] degrees and [0.9 1.1], respectively, as shown in Fig. A.8. The Vision

Assistant uses preset parameters for marker detection. If markers are undetected, tune advanced

options in the ‘Options’ tab. It is done in the robot control VI to improve marker detection.

Figure A.10 Processed image showing the identified markers on a black background

The processed image is shown in Fig. A.10. The algorithm outputs are the front and back

plate markers’ positions in ‘Calibrated Matches.’ The positions are in the global coordinate

frame as defined in the calibration.

Step 2. Convert Vision Assistant VI to a subVI and update settings in the Vision

Processing (subVI) and the robot control VI (described in the next section).

To improve the localization process performance in the main robot control VI, the Vision

Assistant Express VI is converted to a Vision Processing (SubVI). In this subVI, two markers per

plate are located using the following steps:

• First, the algorithm finds one marker (match) per plate, with the ROI being the

whole image. The marker’s position is x.

 108

• Then, it defines a new ROI as a torus with a center in x, see Fig. A.11. Its inner

radius is slightly larger than the marker radius, and its outer radius is

approximately the robot width. Finally, it finds the second marker in this area.

This localization process prevents localization errors and reduces image processing run-

time. When two markers are searched simultaneously, the resulting matches could be

erroneously located at the same position.

Figure A.11 Fragment of the final processed image with identified markers

To update Vision Processing (SubVI), create a copy of ‘Vision_Control.vi.’ In the opened

copy, right-click on the Vision Assistant Express VI and select ‘Open Front Panel’, which will

convert it into a subVI. From a created subVI, update the following settings in the Vision

Processing (SubVI): coordinate frame origin, range threshold, and inputs for particle filter. If

markers are not detected, lower the minimum bound in the particle filter.

The Vision Processing (SubVI) is located in the following directory:

‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary>

LabVIEW> Main code V7_2>Vision’

The main robot control VI, called ‘Main VI.vi’, is located in the following directory:

‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary>

LabVIEW> Main code V7_2’

Update the following settings in the front panel of ‘Main VI.vi’:

• Update the path names for new calibration and front and back plate marker

templates. Once updated, right-click and select Data Operation / Make current

value Default.

 109

• Update settings for the front and back plate markers. Settings are the clusters with

multiple inputs (see their fragment in Fig. A.12); update all changed inputs. To do

that, convert ‘Constant’ input into ‘Control’ in the copy of ‘Vision_Control.vi’

and compare with settings in the ‘Main VI.vi’.

Figure A.12 Marker settings inputs on the front panel in ‘Main.vi’

• Change ROI for the whole image if the camera or image quality is changed.

Step 3. Localization Validation

The following sequence of steps could be used to validate the marker localization:

a) Display the corrected image of the calibration grid in ‘Main VI.vi’ and check if the

grid dots could be connected into straight lines. If not, update calibration.

b) Run ‘Main VI.vi,’ and if marker positions are not identified, check marker visibility

in the processed image. If some markers are missing, lower the ‘min bound’ in the

particle filter. However, a small value may result in other objects being present in the

processed image, which is undesirable. If markers remain unidentified, adjust

advanced settings in step 1, Front and back markers (Geometric matching), and copy

them to ‘Main VI.vi.’

c) Validate measurements by the following process:

• Place the center of the robot front plate at (0,0). To do that, with the calibration

grid being in the workspace, find origin (0,0) in LabVIEW and the corresponding

point in the workspace.

• Move robot by 100 mm in the x-direction from 0 to 600 mm and verify

measurements in LabVIEW. Repeat this process for the y-axis for the range from

-200 to 200 mm.

 110

A.3 Robot Control Main VI Operation

The robot in the testbed is operated by the ‘Main VI.vi.’ This VI implements the

described above localization, path following controller and sends the angular inputs to the

OSCAR microcontroller, as has been described in Chapter 3 and detailed in Fig. 3.2. The ‘Main

VI.vi’ is located in:

 ‘Box>ARG_Student_Reports>Oyuna Angatkina>Dissertation Supplementary>

LabVIEW> Main Code V7_2’

Its front panel has the following inputs:

• settings for the front and back marker search (see Fig. A.12);

• paths for the calibration and marker template files;

• Arduino serial communication inputs;

and the following main outputs:

• the processed image with identified markers (see Fig. A.11);

• the x-y robot’s displacement plot (in mm);

• four marker positions in the global coordinate frame, called ‘Calibrated matches.’

The flow of ‘Main VI.vi’s block diagram is as follows.

1. During initialization, the VI opens the calibration and the front and back marker

templates.

Figure A.13 Initialization subVIs

Also, it establishes the serial communication with the robot microcontroller. When the

following message appears, the robot servos should be reset according to the assembly process

described in Section 2.6.2, Chapter 2. After the assembled robot is placed in the testbed

workspace, press ‘OK’ to finish the initialization.

 111

Figure A.14 Dialog message for completing the robot assembly

2. In the main while loop, following the flow chart in Fig. 3.2, the camera takes the

image, and robot localization is performed. The marker positions are scaled to

translate measurements from the workspace plane to the robot markers’ plane.

Figure A.15 Image processing and scaling subVIs

The scaling factor is uniform for both the x and y-axis and is equal to 0.865. The factor is

defined experimentally by comparing the actual distance between markers and the one obtained

in LabVIEW VI. The scaling needs to be updated for changes in the robot height.

3. Then, the robot’s front plate orientation is calculated based on the front plate markers’

positions, assuming the robot moves in the positive x-axis. The orientation calculation

should be adjusted if the robot moves in a different direction.

Figure A.16 Front plate orientation calculation

4. After that, the angular inputs are defined by either the path following controller or a

user input for the robot expansion, which is shown in the ‘true’ case below. The path

following controller is developed in MATLAB Simulink. The robot contraction

 112

corresponds to the ‘false’ case, where the angular inputs are 1 2 0 0 = deg. If the

angular inputs need to be constant, disconnect 1 (phi1) and 2 (phi2) outputs of the

feedback path following controller and substitute desired values.

Figure A.17 Angular inputs the robot calculation

The reference path for the path following controller is obtained in advance by the path

planning step, done in MATLAB. The reference path (’path.txt’) and its length (‘npath.txt’)

should be provided in the VI folder. The provided reference path is augmented with the virtual

path at its end. Therefore, the actual path length (‘npath.txt’) is specified as a second input.

5. The angular inputs are sent to the robot microcontroller via the Visa Write function.

When the robot completes expansion or contraction, it sends a flag to the VI through

the Visa Read function.

6. Finally, the position and angular inputs data is saved in ‘Saving Data (SubVI).’

Then, steps 2-6 repeat until the ‘Stop’ button is pressed on the front panel. After the

experiment, data is saved in the ‘Experimental Data’ folder. The ‘Path Following Experiment

Journal.xlsx’ file keeps the information about all experiments.

 113

Appendix B

OSCAR Low-Level Control Code

This following Arduino code implements the OSCAR closed-loop low-level control. It

regulates servos angular positions with PI controllers. The code inputs are reference servo angles

 1 2 . The reference inputs to the controllers are ramp signals of slope 5.9 rad/s, as shown in

Fig. 3.9 in Chapter 3. The input signal has a first-order filter

 ()
1

0.05 1
G s

s
=

+
 (C.1)

Starting at the fully contracted robot state, send expansion angular inputs through serial

communication. When the robot expands, send the angular inputs for contraction. The servos are

attached to pins 9 and 10 of the robot microcontroller. Pin layout for encoder data reading (from

LS7366 encoder counter board) is specified below.

B.1 Arduino Code

/* Closed-loop servos’ position control of the OSCAR
 * Encoder data reading is based on Dual LS7366 Quadrature Counter Test Code by Jason
Traud on https://github.com/SuperDroidRobots/Encoder-Buffer-Breakout/

 Pins layout:
 LS7366 Breakout ------------- Arduino Microcontroller
 ----------------- -------
 MOSI ------------------- SDO (D11)
 MISO ------------------- SDI (D12)
 SCK ------------------- SCK (D13)
 SS1 ------------------- SS1 (D7)
 SS2 ------------------- SS2 (D8)
 GND ------------------- GND
 VDD ------------------- VCC (5.0V)
*/

 114

#include <SPI.h>
#include <Servo.h>

Servo Servo1;
Servo Servo2;

// Slave Select pins for encoders 1 and 2:
const int slaveSelectEnc1 = 7;
const int slaveSelectEnc2 = 8;

// Current encoder count:
signed long encoder1count = 0;
signed long encoder2count = 0;

// Variables:
float f1 = 0.095162581964040; // Filter gain
float f2 = 0.904837418035960; // Filter gain

int k1 = 1; // Origami tower chirality servo 1
int k2 = -1; // Origami tower chirality servo 2

unsigned long previousMillis = 0;
unsigned long prevMillis = 0;
int var = 0;
boolean LEDstate = 0;

// Servo 1:
unsigned int phiMotor1 = 0;
float angle_des1 = 0;
float angle1 = 0;
float myAng1 = 0;
unsigned int u_PWM1 = 90;
unsigned int u_PWM1_prev = 0;
float ang_print1 = 0;

float e_int_prev1 = 0;
float e_prev1 = 0;

// Servo 2:
unsigned int phiMotor2 = 0;
float angle_des2 = 0;
float angle2 = 0;
float myAng2 = 0;
unsigned int u_PWM2 = 90;
unsigned int u_PWM2_prev = 0;
float ang_print2 = 0;

float e_int_prev2 = 0;
float e_prev2 = 0;

float g11 = 2; // Servo deadband coefficient

 115

void setup() {
 Serial.begin(9600);
 initEncoders();
 clearEncoderCount();

 Servo1.attach(9);
 Servo2.attach(10);
 Servo1.write(u_PWM1);
 Servo2.write(u_PWM2);
}

void loop() {

 switch (var) { // Case 0: read angular inputs; Case 1: expansion or contraction.
After case 1 completes, it sends flag '1' to serial port and returns to case 0.
 case 0:
 if (Serial.available() > 0) {
 phiMotor1 = Serial.parseInt();
 phiMotor2 = Serial.parseInt();

 if (phiMotor1 > 190) { // Maximum origami tower input angle = 190 deg.
 phiMotor1 = 190;
 }
 if (phiMotor2 > 190) {
 phiMotor2 = 190;
 }
 // Reference angles:
 angle1 = phiMotor1 * PI / 180;
 angle2 = phiMotor2 * PI / 180;

 var = 1;

 // Current angles:
 ang_print1 = myAng1;
 ang_print2 = myAng2;
 }
 break;
 case 1:
 if ((u_PWM1 - u_PWM1_prev == 0) && (abs(angle1 - myAng1) < 0.05) && (u_PWM2 -
u_PWM2_prev == 0) && (abs(angle2 - myAng2) < 0.05)) {

 // Delay 500 ms after expansion/contraction (to not immediately contract):
 prevMillis = millis();
 while (millis() - prevMillis < 500) {
 ControlPosition(angle1, angle2);
 }

 var = 0;
 Serial.println(1); // Flag

 }
 break;
 }

 116

 u_PWM1_prev = u_PWM1;
 u_PWM2_prev = u_PWM2;

 ControlPosition(angle1, angle2);
}

unsigned int PIcontrol(int k, float angle_d, float myAngf, float &e_int_prev, float
&e_prev) {
 float e = (angle_d - myAngf);
 float e_int = e_int_prev + 0.005 * (e + e_prev) / 2.0; // Tustin rule
 float u_int = 0.4 * e_int;

 if (abs(u_int) > 0.1) { // Integral anti-wind-up
 e_int = e_prev;
 }

 float u = 0.6 * e + u_int;

 // Control input saturation:
 if (u > 0.20) {
 u = 0.20;
 e_int = e_int_prev;
 }
 else if (u < -0.20) {
 u = -0.20;
 e_int = e_int_prev;
 }

 int u_c = k * u * 90; // Control input to servo

 // Servo deadband compensation (88...92 = '0' speed):
 if (u_c > 0) {
 u_c = u_c + g11; // Equivalent to 92
 }
 else if (u_c < 0) {
 u_c = u_c - g11; // Equivalent to 88
 }

 unsigned int u_pwm = 90 + u_c;
 e_int_prev = e_int;
 e_prev = e;

 return u_pwm;
}

void ControlPosition (float ang1, float ang2) {

 if (millis() - previousMillis >= 5) {
 previousMillis = millis();

 // First-order filter on angle:
 float angle_des_updated1 = f1 * ang1 + f2 * angle_des1;

 117

 float angle_des_updated2 = f1 * ang2 + f2 * angle_des2;

 //Rate limiter on desired angle – ramp input:
 if (abs(angle_des_updated1 - angle_des1) * 2000 > 59) { //5.9*10 for integer
 if ((angle_des_updated1 - angle_des1) > 0) {
 angle_des_updated1 = angle_des1 + 0.0295; // 0.0295 = speed*dt = 5.9rad/s*5ms
 }
 else {
 angle_des_updated1 = angle_des1 - 0.0295;
 }
 }
 if (abs(angle_des_updated2 - angle_des2) * 2000 > 59) {
 if (angle_des_updated2 - angle_des2 > 0) {
 angle_des_updated2 = angle_des2 + 0.0295;
 }
 else {
 angle_des_updated2 = angle_des2 - 0.0295;
 }
 }

 myAng1 = k1 * (readEncoder(1) * 2 * PI / 18000.00);
 myAng2 = k2 * (readEncoder(2) * 2 * PI / 18000.00);

 u_PWM1 = PIcontrol(k1, angle_des1, myAng1, e_int_prev1, e_prev1);
 u_PWM2 = PIcontrol(k2, angle_des2, myAng2, e_int_prev2, e_prev2);

 Servo1.write(u_PWM1);
 Servo2.write(u_PWM2);

 angle_des1 = angle_des_updated1;
 angle_des2 = angle_des_updated2;
 }
}

// Following functions from Dual LS7366 Quadrature Counter Test Code by Jason Traud:
void initEncoders() {
 // Set slave selects as outputs
 pinMode(slaveSelectEnc1, OUTPUT);
 pinMode(slaveSelectEnc2, OUTPUT);

 // Raise select pins
 // Communication begins when you drop the individual select signals
 digitalWrite(slaveSelectEnc1, HIGH);
 digitalWrite(slaveSelectEnc2, HIGH);

 SPI.begin();

 // Initialize encoder 1
 // x4 quatrature count mode (four counts per quadrature cycle)
 digitalWrite(slaveSelectEnc1, LOW); // Begin SPI conversation
 SPI.transfer(0x88); // Write to MDR0
 SPI.transfer(0x03); // Configure to 4 byte mode

 118

 digitalWrite(slaveSelectEnc1, HIGH); // Terminate SPI conversation

 // Initialize encoder 2
 // Same as encoder 1:
 digitalWrite(slaveSelectEnc2, LOW); // Begin SPI conversation
 SPI.transfer(0x88); // Write to MDR0
 SPI.transfer(0x03); // Configure to 4 byte mode
 digitalWrite(slaveSelectEnc2, HIGH); // Terminate SPI conversation
}

long readEncoder(int encoder) {

 // Initialize temporary variables for SPI read
 unsigned int count_1, count_2, count_3, count_4;
 long count_value;

 // Read encoder 1
 if (encoder == 1) {
 digitalWrite(slaveSelectEnc1, LOW); // Begin SPI conversation
 SPI.transfer(0x60); // Request count
 count_1 = SPI.transfer(0x00); // Read highest order byte
 count_2 = SPI.transfer(0x00);
 count_3 = SPI.transfer(0x00);
 count_4 = SPI.transfer(0x00); // Read lowest order byte
 digitalWrite(slaveSelectEnc1, HIGH); // Terminate SPI conversation
 }

 // Read encoder 2
 else if (encoder == 2) {
 digitalWrite(slaveSelectEnc2, LOW); // Begin SPI conversation
 SPI.transfer(0x60); // Request count
 count_1 = SPI.transfer(0x00); // Read highest order byte
 count_2 = SPI.transfer(0x00);
 count_3 = SPI.transfer(0x00);
 count_4 = SPI.transfer(0x00); // Read lowest order byte
 digitalWrite(slaveSelectEnc2, HIGH); // Terminate SPI conversation
 }

 // Calculate encoder count
 count_value = (count_1 << 8) + count_2;
 count_value = (count_value << 8) + count_3;
 count_value = (count_value << 8) + count_4;

 return count_value;
}

void clearEncoderCount() {

 // Set encoder1's data register to 0
 digitalWrite(slaveSelectEnc1, LOW); // Begin SPI conversation
 // Write to DTR
 SPI.transfer(0x98);
 // Load data

 119

 SPI.transfer(0x00); // Highest order byte
 SPI.transfer(0x00);
 SPI.transfer(0x00);
 SPI.transfer(0x00); // lowest order byte
 digitalWrite(slaveSelectEnc1, HIGH); // Terminate SPI conversation

 delayMicroseconds(100); // provides some breathing room between SPI conversations

 // Set encoder1's current data register to center
 digitalWrite(slaveSelectEnc1, LOW); // Begin SPI conversation
 SPI.transfer(0xE0);
 digitalWrite(slaveSelectEnc1, HIGH); // Terminate SPI conversation

 // Set encoder2's data register to 0
 digitalWrite(slaveSelectEnc2, LOW); // Begin SPI conversation
 // Write to DTR
 SPI.transfer(0x98);
 // Load data
 SPI.transfer(0x00); // Highest order byte
 SPI.transfer(0x00);
 SPI.transfer(0x00);
 SPI.transfer(0x00); // lowest order byte
 digitalWrite(slaveSelectEnc2, HIGH); // Terminate SPI conversation

 delayMicroseconds(100); // provides some breathing room between SPI conversations

 // Set encoder2's current data register to center
 digitalWrite(slaveSelectEnc2, LOW); // Begin SPI conversation
 SPI.transfer(0xE0);
 digitalWrite(slaveSelectEnc2, HIGH); // Terminate SPI conversation

}

 120

Appendix C

Robot Kinematic Model

The following code is a robot corrected kinematic model implemented in Simulink

MATLAB. Given the current robot state, the model calculates the robot state after a single

locomotion cycle for provided angular inputs. The robot state is defined as a front plate centroid

position and orientation.

C.1 Robot Kinematic Model

function [x_new, theta_new] = fcn(phi1, phi2, x_cur, theta_cur, k_loss1)
% Inverse kinematics in the robot coordinate frame (wrt to origin being

current front plate location)
coder.extrinsic('InverseAnalyticalKinematic1');

X = [0;0]; % wrt to origin being current front plate location
Y = [0;0]; % wrt to origin being current front plate location
theta = [0;0]; % Orientation
index = 2;

%% Given constants:
N = 6; % Number of cells
cellrelief = 2; % Number of relief cuts
link_plate = 44; % Distance between the towers

Lmin = 41; %35-12; % Length of towers at contracted state
lmax = cellrelief*15;
linitial = Lmin/(N/cellrelief);
deltathetamax = 0.3316;

%Knowns for a single Kresling origami cell (experiment)
alphamax = 0.6283; % Maximum angle (rad)
stepsize = 200; % Number of defined increments of cell expansion

% Kresling cell geometry from Pagano Newton-Rhapson geometrical vector loop

solution

 121

alphas = linspace(0,alphamax,stepsize);
heights = 1000*[6.98047095132836e-09, …, 0.015]; % Set of values

heightfunction = pchip(alphas,heights); % Cell height function

%% Calculate robot position and orientation for given input angles:
dx = 0;
dy = 0;
theta7 = 0;

if (phi1==0)&&(phi2==0)
 Lleft = Lmin/(N/cellrelief);
 Lright = Lmin/(N/cellrelief);
else
 Lleft = (ppval(heightfunction,(phi1/N)))*2;
 Lright = (ppval(heightfunction,(phi2/N)))*2;
end

l1 = Lleft; % length of vector of two adjacent cells in the left tower
l4 = Lright; % length of vector of two adjacent cells in the right tower

[theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft, ...

Lright, dx, dy] = InverseAnalyticalKinematic1(N,cellrelief, ...

link_plate,X,Y,theta,index, l1,l4);

% Kinematic model correction:
ddx = zeros(2,1);
ddtheta = (theta7 - pi)*(1 - k_loss1); % k_loss1 = 0.85
ddx(1) = sqrt((dx + Lmin)^2 + dy^2)*cos(ddtheta/2) - Lmin;
ddx(2) = sqrt((dx + Lmin)^2 + dy^2)*sin(ddtheta/2);

% Rotation from local robot coord. to global coordinate frame:
R10 = [cos(theta_cur) -sin(theta_cur); sin(theta_cur) cos(theta_cur)];

x_new = x_cur + R10*ddx; % Robot position
theta_new = theta_cur + ddtheta; % Robot orientation

C.2 InverseAnalyticalKinematic1.m

function [theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft,...

Lright, x2, y2] = InverseAnalyticalKinematic1(N,cellrelief,...

link_plate,X,Y,theta,index, l1,l4)

% This function was originally created by Kimberly Gustafson in Fall 2018

Lmin = 41; %35-12;
lmax = cellrelief*15;
linitial = Lmin/(N/cellrelief);
deltathetamax = 0.3316;

% Knowns for a single Kresling origami cell (experiment)
alphamax = 0.6283; % Maximum rotation of a single Kresling origami cell (rad)
stepsize = 200; % Number of defined increments of Kresling cell expansion

 122

% Kresling cell geometry from Pagano Newton-Rhapson geometrical vector loop

solution
alphas = linspace(0,alphamax,stepsize);
heights = 1000*[6.98047095132836e-09,…, 0.015];
heightfunction = pchip(alphas,heights); % Cell height function

%%%
%%%%%%%%%%%%%%%%%%%%% Solve Vector Loop Equation %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%% With Constraints
theta8 = theta(index-1); % Previous front plate angle
theta1 = theta8 + (pi/2);

Xback = X(index-1)+Lmin*sin(theta8-(pi/2)); % Back plate center
Yback = Y(index-1)+Lmin*cos(theta8-(pi/2));

fun1 = @(s)((l1*cos(theta1)+l1*cos(s(1))+l1*cos(s(2))- ...

(link_plate/2)*cos(s(3))-(link_plate/2)*cos(theta8)-s(5)+Yback)^2)+...

((l1*sin(theta1)+l1*sin(s(1))+l1*sin(s(2))-(link_plate/2)*sin(s(3))-...

(link_plate/2)*sin(theta8)-s(4)+Xback)^2)+((l4*cos(theta1)+ ...

l4*cos(s(1))+l4*cos(s(2))+(link_plate/2)*cos(s(3))+(link_plate/2)*...

cos(theta8)-s(5)+Yback)^2)+((l4*sin(theta1)+l4*sin(s(1))+...

l4*sin(s(2))+(link_plate/2)*sin(s(3))+(link_plate/2)*sin(theta8)-...

s(4)+Xback)^2);

lb = [-pi,-pi,-pi, -10,-100];
ub = [pi,pi,(3/2)*pi, 100,100];
s0 = [0 0 0 0 0];
A = [-1 1 0 0 0; 1 0 0 0 0];
b = [deltathetamax, deltathetamax+theta1];
Aeq = [2,-1,0,0,0;0,-1,1,0,0];
beq = [theta1;pi/2];
options = optimoptions('patternsearch','MeshTolerance',1e-10,...

'StepTolerance', 1e-10);
s = patternsearch(fun1,s0,A,b,Aeq,beq,lb,ub, options);

theta2 = s(1);
theta3 = s(2);
theta7 = s(3);
x2 = s(4);
y2 = s(5);
theta4 = theta1;
theta5 = theta2;
theta6 = theta3;

Lleft = l1;
Lright = l4;

end

 123

Appendix D

Path Following Simulation

The following codes are the pure pursuit and feedback path following controller models

implemented in Simulink MATLAB. For path following simulation, the controllers are simulated

together with the robot kinematic model. For experiments, the codes have been copied to the

‘Main VI.vi.’

D.1 PurePursuitController.m

function [x_new, theta_new, s_new, phi_left, phi_right, pGoal, R] = ...

fcn(x_cur, path, theta_cur, s, k_loss,inputs)

coder.extrinsic('AnalyticalKinematic');

Rmin = inputs(1); % Minimum radius of turn from the robot workspace

ds = inputs(2); % Max robot forward motion

L = inputs(3); % Lookahead distance

npath = length(path);

% Initial conditions:

dl = 41; %35-12; % Length of the fully contracted origami towers

% Initialization:

pGoalL = [0;0];

phi_left = 0;

phi_right = 0;

theta7 = 0;

% Rotation matrices:

R01 = [cos(theta_cur) sin(theta_cur); -sin(theta_cur) cos(theta_cur)];

R10 = [cos(theta_cur) -sin(theta_cur); sin(theta_cur) cos(theta_cur)];

% Transform from global to local coordinate frame:

xL = R01*x_cur;

pathL = (R01*path')';

if xL(1) <= pathL(end,1) % If the path exists apply pure pursuit

 124

 % Find a goal point on the path:

 distNorm = zeros(npath,1);

 distNorm(s:end) = sqrt((path(s:end,1)- x_cur(1)).^2 +(path(s:end,2)- ...

x_cur(2)).^2);

 [c,p] = min(distNorm(s:end));

 if c(1)>L

 s = s-1 + p(1);

 s_new = s;

 % Interpolate a virtual point in L from robot (ONLY when robot

 directed toward the path):

 pGoal = x_cur + L*[cos(theta_cur); sin(theta_cur)];

 else

 i = 0;

 % Find path point:

 for j = s:length(distNorm)-1

 if distNorm(j)<=L && distNorm(j+1)>L % When robot on path

 i = j;

 break;

 end

 end

 if (i == 0) % When robot close to end of path

 pGoal = path(end,:)';

 s_new = npath;

 else

 if distNorm(j) == L

 pGoal = path(j,:)';

 else

 % Interpolate path point:

 dpGoal=interpPath((path(j,:)'-x_cur),(path(j+1,:)'-x_cur),L);

 pGoal = x_cur + dpGoal;

 end

 s_new = i;

 end

 end

 e = R01*(pGoal - x_cur);

 dy_path = e(2);

 %% Apply pure pursuit (calculate radius of turn in local coordinates):

 R = L^2/(2*dy_path);

 if abs(R)<Rmin % Turn constraint

 R = sign(R)*Rmin;

 end

 omega_prime = 2*asin(ds/(2*R));

 %% Calculate the next robot position:

 dx = ds*cos(omega_prime/2);

 dy = ds*sin(omega_prime/2);

 dtheta = 2*atan2(dy,(dx+dl));

 x_newL = xL+ [dx;dy];

 x_new = R10*x_newL;

 theta_new = theta_cur + dtheta;

 125

 dth = dtheta/(1-k_loss); % Correction factor k_loss

 dxc = sqrt((dx + dl)^2+dy^2)*cos(dth/2) - dl;

 dyc = sqrt((dx + dl)^2+dy^2)*sin(dth/2);

 %% Calculate angular inputs with segmented kinematic model:

 %% Input Parameters:

 X = [0; dxc]; % x for the center of the front plate (mm)

 Y = [0;-dyc]; % y for the center of the front plate (mm)

 theta = [0;0]; % Orientation of the front plate

 N = 6; % Number of Kresling cells per tower

 cellrelief = 2; % Number of cells between relief cuts

 link_plate = 44; % Distance between origami towers (mm)

 [theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft, ...

Lright,phi_left,phi_right] = AnalyticalKinematic(N,cellrelief, ...

link_plate,X,Y,theta,2);

 % Check orientation increment (dtheta) calculation

 % dtheta - (theta7 - pi)

else

 x_new = x_cur;

 theta_new = theta_cur;

 s_new = s;

 phi_left = 0;

 phi_right = 0;

 pGoal = [0; 0];

 R = 0;

end

function p = interpPath(a,b,L)

% Finds the interpolated path point between a and b in lookahead distance L

from the current location, assuming the current location is at [0,0] of local

coord. frame

% Equations (2),(3) are substituted to 1 and solved for u

% p(1)^2 + p(2)^2 = L^2; (1)

% a(1)*(1-u) + u*b(1) = p(1) (2)

% a(2)*(1-u) + u*b(2) = p(2) (3)

a1 = (b(1) - a(1))^2 + (b(2) - a(2))^2;

b1 = 2*(a(1)*b(1) + a(2)*b(2) - a(1)^2 - a(2)^2);

c1 = a(1)^2 + a(2)^2 - L^2;

% Solve a1* u^2 + b1*u + c1 = 0, 0<=u<=1

% Calculate u and p:

u1 = (-b1+ sqrt(b1^2 - 4*a1*c1))/(2*a1);

u2 = (-b1- sqrt(b1^2 - 4*a1*c1))/(2*a1);

if u1>=0

 u = u1;

else

 u = u2;

end

p = [a(1) a(2)]'*(1 - u) + u*[b(1) b(2)]';

 126

D.2 AnalyticKinematic.m

function [theta1,theta2,theta3,theta4,theta5,theta6,theta7,theta8,Lleft, ...

Lright,phi_left,phi_right] = AnalyticalKinematic(N,cellrelief, ...

link_plate,X,Y,theta,index)

% This function was originally written by Kimberly Gustafson, Fall 2018

Lmin = 41;%35-12;

lmax = cellrelief*15;

linitial = Lmin/(N/cellrelief);

deltathetamax = 0.3316;

% Knowns for a single Kresling origami cell (experiment)

alphamax = 0.6283; % Maximum rotation (rad)

stepsize = 200; % Number of defined increments of cell expansion

% Kresling cell geometry from Pagano, Newton-Rhapson geometrical vector loop

solution

alphas = linspace(0,alphamax,stepsize);

heights = 1000*[6.98047095132836e-09, …, 0.015];

heightfunction = pchip(heights,alphas); % Cell height

%%%

%%%%%%%%%%%%%%%%%%%%% Solve Vector Loop Equation %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%% With Constraints

theta8 = theta(index-1); % Previous front plate angle

theta1 = theta8 + (pi/2);

Xback = X(index-1)+Lmin*sin(theta8-(pi/2));

Yback = Y(index-1)+Lmin*cos(theta8-(pi/2));

fun1 = @(s)((s(1)*cos(theta1)+s(1)*cos(s(3))+s(1)*cos(s(4))-

(link_plate/2)*cos(s(5))-(link_plate/2)*cos(theta8)-Y(index)+Yback)^2)+ ...

 ((s(1)*sin(theta1)+s(1)*sin(s(3))+s(1)*sin(s(4))-

(link_plate/2)*sin(s(5))-(link_plate/2)*sin(theta8)-X(index)+Xback)^2)+ ...

((s(2)*cos(theta1)+s(2)*cos(s(3))+s(2)*cos(s(4))+(link_plate/2)*cos(s(5))+(li

nk_plate/2)*cos(theta8)-Y(index)+Yback)^2)+ ...

((s(2)*sin(theta1)+s(2)*sin(s(3))+s(2)*sin(s(4))+(link_plate/2)*sin(s(5))+(li

nk_plate/2)*sin(theta8)-X(index)+Xback)^2);

lb = [linitial,linitial,-pi,-pi,-pi];

ub = [100,100,pi,pi,(3/2)*pi];

s0 = [0 0 0 0 0];

A = [];

b = [];

Aeq = [0,0,2,-1,0;0,0,0,-1,1];

beq = [theta1;pi/2];

s = fmincon(fun1,s0,A,b,Aeq,beq,lb,ub);

Lleft = s(1);

Lright = s(2);

theta2 = s(3);

theta3 = s(4);

 127

theta7 = s(5);

theta4 = theta1;

theta5 = theta2;

theta6 = theta3;

phi_left = ((ppval(heightfunction,(real(Lleft)/cellrelief)))*N);

phi_right = ((ppval(heightfunction,(real(Lright)/cellrelief)))*N);

end

D.3 FeedbackController.m

function [phi1, phi2, s_new] = fcn(path, x_cur, theta_cur, inputs, s,npath)
% Path following controller calculates angular inputs to robot based on
% constant longitudinal control (ux) and lateral proportional control(uy)
% Lateral error is found in 'preview' distance D
% Path input is path_aug = path + virtual path(interpolation for the path

end), npath=length(path)

% Gains
kpy = inputs(1); % p-gain for lateral control
D = inputs(3); % preview distance
c = 0.8;
% Upper bounds
phi_max = 180; % maximum servo angle for tower expansion
ux_max = phi_max; % maximum longitudinal motion
phi_ratio = 1.6; % maximum angle ratio from the robot workspace;

ideal is 1.8033
% Longitudinal control input
ux = c*ux_max;
uy_max = ux*(phi_ratio - 1)/(1 + phi_ratio); % turn constraint

% Convert to the local coordinate frame:
R01 = [cos(theta_cur) sin(theta_cur); -sin(theta_cur) cos(theta_cur)];
pathL = (R01*path')';
xL = R01*x_cur;

if (s==0) % protection if s becomes zero
 s = 1; % s is current ref. path point index
end

% Feedback controller:
if (xL(1) <= pathL(npath,1))
 j = s; % starting from current path index
 k = -1; % set initial value for k

 % Point in 'preview' distance D from robot:

 c0 = x_cur + D*[cos(theta_cur) sin(theta_cur)]';
 while (k<0)||(k>1)
 if path(j+1,1)<path(j,1)
 k = abs((path(j+1, :) - path(j, :))*(c0 - path(j,:)'))/...

 128

(norm(path(j+1, :) - path(j, :)))^2;
 else
 k = (path(j+1, :) - path(j, :))*(c0 - path(j,:)')/...

(norm(path(j+1, :) - path(j, :)))^2;
 end
 if (k>1)
 j = j+1; % update the path point index
 elseif (k<0)
 k = 0;
 end
 end
 c1 = ((1 - k)*path(j,:) + k*path(j+1,:))';
 eyL = [0 1]*R01*(c1 - c0);

 % Lateral error:
 ey = norm(c0 - c1)*sign(eyL);

 s_new = j;

 % Lateral control input:
 uy = kpy * ey;
 % Turn constraint
 if abs(uy) > uy_max
 uy = sign(uy)*uy_max;
 end

 %% Servo angles (phi):
 A = 1/2*[1 1; -1 1];
 phi = A\[ux; uy];
 phi1 = phi(1); % (deg.)
 phi2 = phi(2); % (deg.)

 %% Delete this for LabVIEW implementation:
 phi1 = phi1*pi/180;
 phi2 = phi2*pi/180;
else % After path is finished
 phi1 = 0;
 phi2 = 0;
 s_new = s;
end

 129

Appendix E

Path Planning Implementation

The path planning is done by a hybrid A* planner in MATLAB. To plan a path, we first

create a workspace cost map with obstacles, then call a planner. The reference path is divided

into two parts due to workspace limitation. Each part path is augmented with virtual points and

transformed into a text file for implementation in ‘Main VI.vi.’

E.1 PotentialFieldFunction.mlx

% Creating cost map for hybrid A* planner (x,y in mm):

x_map0 = [0; 0] % min

x_map = [1300; 400] % max

res = 1 % mm

x = x_map0(1):res:x_map(1);

y = x_map0(2):res:x_map(2);

costVal = zeros(length(y), length(x));

% Adding circular obstacles to map:

X_obst = [150, 70; % center (mm)

 550, 150];

R_obst = [20;20]; % radius (mm)

for i = 1:length(R_obst)

 df = 65; % bound around obstacle

 costVal = obstacleToMap(R_obst(i),X_obst(:,i),costVal,res,x_map0,...

x_map, df)

end

surf(costVal, 'EdgeColor', 'none')
xlabel('x(mm)'); ylabel('y(mm)'); zlabel('Cost');

% Obstacle to map:

function costValOut = obstacleToMap(r_obst,x_obst,costVal,res,x_map0,...

x_map, df)

x1 = floor((x_obst(1)–r_obst)/res)–2*res–df :res: ...

floor((x_obst(1)+r_obst)/res)+2*res+df;

 130

% exclude values out of the map boundaries:

k = (x1>=x_map0(1)) & (x1<=x_map(1));

x = x1(k);

y1 = floor((x_obst(2)–r_obst)/res)–2*res–df :res: ...

floor((x_obst(2)+r_obst)/res)+2*res+df;

% exclude values out of the map boundaries:

k = (y1>=x_map0(1)) & (y1<=x_map(1));

y = y1(k);

for i =1:length(x) % update cost

 for i =1:length(x)

 d_obst = sqrt((x(i)-x_obst(1))^2+(y(j)-x_obst(2))^2)-r_obst;

 if d_obst <=0 % cost value inside obstacle

 costVal(length(costVal(:,1)) - y(j), x(i)) = 1;

 elseif (d_obst >0 && d_obst <= df)

 alpha = 1;

 costVal(length(costVal(:,1)) - y(j), x(i)) = ...

alpha/(alpha + d_obst);

 end

 end

end

costValOut = costVal;

end

E.2 Planner_HybridAstar.mlx

% Create an obstacle cost map

PotentialFieldFunction

% Create a binaryOccupancyMap with cost values (0 or 1)

map = binaryOccupancyMap(costVal);

% Create a stateValidator object for collision checking

validator = validatorOccupancyMap;
validator.Map = map;

show(map)

% Initialize planner

planner = plannerHybridAStar(validator,'MinTurningRadius', 467.6, ...

'MotionPrimitiveLength', 30, 'NumMotionPrimitives', 19, ...

'AnalyticExpansionInterval', 100, 'ReverseCost', 1000000000000);

% Start and goal configurations (mm,mm,rad)

startPose = [10,200,0];

goalPose = [1200,5,0];

% Plan a path from start to goal

refpath = plan(planner,startPose,goalPose);

refpath = refpath.States; % output path

show(planner)

E.3 PathTransform.mlx

% Path is divided into two parts due to workspace limitations:

x_lim = 646;

% Path 1:

 131

k = find(refpath1(:,1)<x_lim)

path1 = refpath1(k,1:3);

path = path1(:,1:2);

npath = length(path(:,1));

theta_ref = path1(:,3);

% Augmented virtual path is the whole path for left part of path (x<646 mm):

path_aug = refpath1(:,1:2);

% Save path for experiment

dlmwrite('path.txt', path_aug);

dlmwrite('npath.txt', npath)

% Path following simulation

clear out

x0 = path1(1,:);

npath = length(path(:,1));

out = sim('FeedbackOnly')

%% Path 2:

x_lim = 636;

k = find(refpath1(:,1)>x_lim)

path1 = refpath1(k,1:3) - ones(length(k),1)*[x_lim,0,0];

path = path1(:,1:2);

npath = length(path(:,1));

x_aug = [20:20:400]';

y_aug = zeros(length(x_aug),1);

theta_ref = path1(:,3);

theta_re = theta_ref(end);

R01 = [cos(theta_re) -sin(theta_re); sin(theta_re) cos(theta_re)];

path_aug = [path; path(end, :) + (R01*[x_aug y_aug]')'];

% Save path for experiment

dlmwrite('path.txt', path_aug);

dlmwrite('npath.txt', npath)

% Path following simulation

clear out1

x0 = path1(1,:);

npath = length(path(:,1));

out1 = sim('FeedbackOnly')

 132

Appendix F

Supplementary Files

The supplementary files in this dissertation contain the video recordings of the

experiments highlighting the main results. They are recorded with an overhead GoPro camera;

see Chapter 3. The supplementary files contain the following list:

1. ‘Ch5_Path_Following_Feedback_Part1.mp4’ is the video recording of experiment 1

in Fig. 5.6. It shows the first part of the straight path following with the feedback

controller. As can be seen, the robot being initially offset from the path successfully

converges to it. Due to workspace limitations, the second experiment has been

conducted to show the robot’s ability to follow the path after convergence.

2. ‘Ch5_Path_Following_Feedback_Part2.mp4’ is a video recording of the second part

of the straight path following with the feedback controller, which demonstrates

OSCAR successfully following the straight reference path. It corresponds to

experiment 2 in Fig. 5.6.

3. ‘Ch6_AutonomousNav_Feedback_Part1.mp4’ is a video recording of the first part of

the OSCAR’s autonomous navigation experiment with the planned reference path in

Scenario 1. It corresponds to experiment 1 in Fig. 6.7.

4. ‘Ch6_AutonomousNav_Feedback_Part2.mpeg’ is a video recording of the second

part of the robot autonomous navigation with planned reference path in Scenario 1. It

corresponds to experiment 2 in Fig. 6.7. Together this and the previous experiment

demonstrate the thesis’s main result, the soft robot autonomous navigation.

5. ‘Ch7_Coupled_Locomotion.mp4’ is a video recording of the coupled locomotion of

two OSCARs, presented in Fig. 7.4-7.6.

