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SUMMARY

A visually-grounded navigation instruction can be interpreted as a sequence of expected

observations and actions an agent following the correct trajectory would encounter and

perform. Based on this intuition, we formulate the problem of finding the goal location

in Vision-and-Language Navigation (VLN) [1] within the framework of Bayesian state

tracking – learning observation and motion models conditioned on these expectable events.

Together with a mapper that constructs a semantic spatial map on-the-fly during navigation,

we formulate an end-to-end differentiable Bayes filter and train it to identify the goal by

predicting the most likely trajectory through the map according to the instructions. The

resulting navigation policy constitutes a new approach to instruction following that explicitly

models a probability distribution over states, encoding strong geometric and algorithmic

priors while enabling greater explainability. Our experiments show that our approach

outperforms a strong LingUNet [2] baseline when predicting the goal location on the map.

On the full VLN task, i.e., navigating to the goal location, our approach achieves promising

results with less reliance on navigation constraints.

In the second half of the thesis, we study the challenging problem of releasing a robot

in a previously unseen environment, and having it follow unconstrained natural language

navigation instructions. Recent work on the task of VLN has achieved significant progress

in simulation. To assess the implications of this work for robotics, we transfer a VLN agent

trained in simulation to a physical robot. To bridge the gap between the high-level discrete

action space learned by the VLN agent, and the robot’s low-level continuous action space,

we propose a subgoal model to identify nearby waypoints, and use domain randomization

to mitigate visual domain differences. For accurate sim and real comparisons in parallel

environments, we annotate a 325m2 office space with 1.3km of navigation instructions, and

create a digitized replica in simulation. We find that sim-to-real transfer to an environment

not seen in training is successful if an occupancy map and navigation graph can be collected

1



and annotated in advance (success rate of 46.8% vs. 55.9% in sim), but much more

challenging in the hardest setting with no prior mapping at all (success rate of 22.5%).
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CHAPTER 1

VISION-AND-LANGUAGE NAVIGATION AS BAYESIAN STATE TRACKING

1.1 Introduction

One long-term challenge in AI is to build agents that can navigate complex 3D environments

from natural language instructions. In the Vision-and-Language Navigation (VLN) instan-

tiation of this task [1], an agent is placed in a photo-realistic reconstruction of an indoor

environment and given a natural language navigation instruction, similar to the example in

Figure 1.1. The agent must interpret this instruction and execute a sequence of actions to

navigate efficiently from its starting point to the corresponding goal. This task is challenging

for existing models [3, 4, 5, 6, 7, 8, 9], particularly as the test environments are unseen

during training and no prior exploration is permitted in the hardest setting.

To be successful, agents must learn to ground language instructions to both visual obser-

vations and actions. Since the environment is only partially-observable, this in turn requires

the agent to relate instructions, visual observations and actions through memory. Current

approaches to the VLN task use unstructured general purpose memory representations

implemented with recurrent neural network (RNN) hidden state vectors [1, 3, 4, 5, 6, 7, 8, 9].

However, these approaches lack geometric priors and contain no mechanism for reasoning

about the likelihood of alternative trajectories – a crucial skill for the task, e.g., ‘Would

this look more like the goal if I was on the other side of the room?’. Due to this limitation,

many previous works have resorted to performing inefficient first-person search through

the environment using search algorithms such as beam search [7, 5]. While this greatly

improves performance, it is clearly inconsistent with practical applications like robotics

since the resulting agent trajectories are enormously long – in the range of hundreds or

thousands of meters.
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To address these limitations, it is essential to move towards reasoning about alternative

trajectories in a representation of the environment – where there are no search costs associ-

ated with moving a physical robot – rather than in the environment itself. Towards this, we

extend the Matterport3D simulator [1] to provide depth outputs, enabling us to investigate

the use of a semantic spatial map [10, 11, 12, 13] in the context of the VLN task for the

first time. We propose an instruction-following agent incorporating three components: (1) a

mapper that builds a semantic spatial map of its environment from first-person views; (2) a

filter that determines the most probable trajectory(ies) and goal location(s) in the map, and

(3) a policy that executes a sequence of actions to reach the predicted goal.

From a modeling perspective, our key contribution is the filter that formulates instruction

following as a problem of Bayesian state tracking [14]. We notice that a visually-grounded

navigation instruction typically contains a description of expected future observations and

actions on the path to the goal. For example, consider the instruction ‘walk out of the

bathroom, turn left, and go on to the bottom of the stairs and wait near the coat rack’ shown

in Figure 1.1. When following this instruction, we would expect to immediately observe a

bathroom, and at the end a coat rack near a stairwell. Further, in reaching the goal we can

anticipate performing certain actions, such as turning left and continuing that way. Based on

this intuition, we use a sequence-to-sequence model with attention to extract sequences of

latent vectors representing observations and actions from a natural language instruction.

Faced with a known starting state, a (partially-observed) semantic spatial map generated
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Walk out of the bathroom, turn left, and go on to the bottom of the stairs and wait near the coat rack.

Figure 1.1: Navigation instructions can be interpreted as encoding a set of latent expectable
observations and actions an agent would encounter and undertake while successfully follow-
ing the directions.
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by the mapper, and a sequence of (latent) observations and actions, we now quite naturally

interpret our instruction following task within the framework of Bayesian state tracking.

Specifically, we formulate an end-to-end differentiable histogram filter [15] with learnable

observation and motion models, and we train it to predict the most likely trajectory taken

by a human demonstrator. We emphasize that we are not tracking the state of the actual

agent. In the VLN setting, the pose of the agent is known with certainty at all times. The

key challenge lies in determining the location of the natural-language-specified goal state.

Leveraging the machinery of Bayesian state estimation allows us to reason in a principled

fashion about what a (hallucinated) human demonstrator would do when following this

instruction – by explicitly modeling the demonstrator’s trajectory over multiple time steps in

terms of a probability distribution over map cells. The resulting model encodes both strong

geometric priors (e.g., pinhole camera projection) and strong algorithmic priors (e.g., explicit

handling of uncertainty, which can be multi-modal), while enabling explainability of the

learned model. For example, we can separately examine the motion model, the observation

model, and their interaction during filtering.

Empirically, we show that our filter-based approach significantly outperforms a strong

LingUNet [2] baseline when tasked with predicting the goal location in VLN given a

partially-observed semantic spatial map. On the full VLN task (incorporating the learned

policy as well), our approach achieves a success rate on the test server [1] of 32.7% (29.9%

SPL [16]), a credible result for a new class of model trained exclusively with imitation

learning and without data augmentation. Although our policy network is specific to the

Matterport3D simulator environment, the rest of our pipeline is general and operates without

knowledge of the simulator’s navigation graph (which has been heavily utilized in previous

work [1, 3, 4, 5, 6, 7, 8, 9]). We anticipate this could be an advantage for sim-to-real

transfer (i.e., in real robot scenarios where a navigation graph is not provided, and could be

non-trivial to generate).

Contributions. In summary, we:
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• Extend the existing Matterport3D simulator [1] used for VLN to support depth image

outputs.

• Implement and investigate a semantic spatial memory in the context of VLN for the

first time.

• Propose a novel formulation of instruction following / goal prediction as Bayesian

state tracking of a hypothetical human demonstrator.

• Show that our approach outperforms a strong baseline for goal location prediction.

• Demonstrate credible results on the full VLN task with the addition of a simple

reactive policy, with less reliance on navigation constraints than prior work.

1.2 Related work

Vision-and-Language Navigation Task. The VLN task [1], based on the Matterport3D

dataset [17], builds on a rich history of prior work on situated instruction-following tasks

beginning with SHRDLU [18]. Despite the task’s difficulty, a recent flurry of work has

seen significant improvements in success rates and related metrics [3, 4, 5, 6, 7, 8, 9]. Key

developments include the use of instruction-generation (‘speaker’) models for trajectory

re-ranking and data augmentation [7, 8], which have been widely adopted. Other work has

focused on developing modules for estimating progress towards the goal [5] and learning

when to backtrack [6, 9]. However, comparatively little attention has been paid to the

memory architecture of the agent. LSTM [19] memory has been used in all previous work.

Memory architectures for navigation agents. Beyond the VLN task, various categories

of memory structures for deep neural navigation agents can be identified in the literature,

including unstructured, addressable, metric and topological. General purpose unstructured

memory representations, such as LSTM memory [19], have been used extensively in both

2D and 3D environments [20, 21, 22, 23, 24]. However, LSTM memory does not offer
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context-dependent storage or retrieval, and so does not naturally facilitate local reasoning

when navigating large or complex environments [25]. To overcome these limitations, both

addressable [25, 26] and topological [27] memory representations have been proposed

for navigating in mazes and for predicting free space. However, in this work we elect

to use a metric semantic spatial map [10, 11, 12, 13] – which preserves the geometry of

the environment – as our agent’s memory representation since reasoning about observed

phenomena from alternative viewpoints is an important aspect of the VLN task. Semantic

spatial maps are grid-based representations containing convolutional neural network (CNN)

features which have been recently proposed in the context of visual navigation [10], inter-

active question answering [13], and localization [12]. However, there has been little work

on incorporating these memory representations into tasks involving natural language. The

closest work to ours is [11], however our map construction is more sophisticated as we use

depth images and do not assume that all pixels lie on the ground plane. Furthermore, our

major contribution is formulating instruction-following as Bayesian state tracking.

1.3 Preliminaries: Bayes filters

A Bayes filter [14] is a framework for estimating a probability distribution over a latent state

s (e.g., the pose of a robot) given a history of observations o and actions a (e.g., camera

observations, odometry, etc.). At each time step t the algorithm computes a posterior

probability distribution bel(st) = p(st | a1:t,o1:t) conditioned on the available data. This is

also called the belief.

Taking as a key assumption the Markov property of states, and conditional independence

between observations and actions given the state, the belief bel(st) can be recursively

updated from bel(st−1) using two alternating steps to efficiently combine the available

evidence. These steps may be referred to as the prediction based on action at and the

observation update using observation ot.

Prediction. In the prediction step, the filter processes the action at using a motion model
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p(st | st−1,at) that defines the probability of a state st given the previous state st−1 and

an action at. In particular, the updated belief bel(st) is obtained by integrating (summing)

over all prior states st−1 from which action at could have lead to st, as follows:

bel(st) =

∫
p(st | st−1,at) bel(st−1) dst−1 (1.1)

Observation update. During the observation update, the filter incorporates information

from the observation ot using an observation model p(ot | st) which defines the likelihood

of an observation ot given a state st. The observation update is given by:

bel(st) = η p(ot | st) bel(st) (1.2)

where η is a normalization constant and Equation 1.2 is derived from Bayes rule.

Differentiable implementations. To apply Bayes filters in practice, a major challenge

is to construct accurate probabilistic motion and observation models for a given choice

of belief representation bel(st). However, recent work has demonstrated that Bayes filter

implementations – including Kalman filters [28], histogram filters [15] and particle filters [29,

30] – can be embedded into deep neural networks. The resulting models may be seen as

new recurrent architectures that encode algorithmic priors from Bayes filters (e.g., explicit

representations of uncertainty, conditionally independent observation and motion models)

yet are fully differentiable and end-to-end learnable.

1.4 Agent model

In this section, we describe our VLN agent that simultaneously: (1) builds a semantic

spatial map from first-person views; (2) determines the most probable goal location in the

current map by filtering likely trajectories taken by a human demonstrator from the start

location (i.e., the ‘ghost’); and (3) executes actions to reach the predicted goal. Each of
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these functions is the responsibility of a separate module which we refer to as the mapper,

filter, and policy, respectively. We begin with the mapper.

1.4.1 Mapper

At each time step t, the mapper updates a learned semantic spatial mapMt ∈ RM×Y×X

in the world coordinate frame from first-person views. This map is a grid-based metric

representation in which each grid cell contains a M -sized latent vector representing the

visual appearance of a small corresponding region in the environment. X and Y are the

spatial dimensions of the semantic map, which could be dynamically resized if necessary.

The map maintains a representation for every world coordinate (x, y) that has been observed

by the agent, and each map cell is computed from all past observations of the region. We

define the world coordinate frame by placing the agent at the center of the map at the start

of each episode, and defining the xy plane to coincide with the ground plane.

Inputs. As with previous work on VLN task [7, 5, 6], we provide the agent with a

panoramic view of its environment at each time step1 comprised of a set of RGB images

It = {It,1, It,2, . . . , It,K}, where It,k represents the image captured in direction k. The

agent also receives the associated depth images Dt = {Dt,1, Dt,2, . . . , Dt,K} and camera

poses Pt = {Pt,1, Pt,2, . . . , Pt,K}. We additionally assume that the camera intrinsics and the

ground plane are known. In the VLN task, these inputs are provided by the simulator, in

other settings they could be provided by SLAM systems etc.

Image processing. Each image I ∈ RH×W×3 is processed with a pretrained convolutional

neural network (CNN) to extract a downsized visual feature representation v ∈ RH′×W ′×C .

To extract a corresponding depth image d ∈ RH′×W ′ , we apply 2D adaptive average pooling

to the original depth image D ∈ RH×W . Missing (zero) depth values are excluded from the

pooling operation.

Feature projection. Similarly to MapNet [12], we project CNN features v onto the ground

1The panoramic setting is chosen for comparison with prior work – not as a requirement of our architecture.
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plane in the world coordinate frame using the corresponding depth image d, the camera

pose P , and a pinhole camera model using known camera intrinsics. We then discretize the

projected features into a 2D spatial grid Ft ∈ RC×Y×X , using elementwise max pooling to

handle feature collisions in a cell.

Map update. To integrate map observations Ft into our semantic spatial mapMt, we use a

convolutional implementation [31] of a Gated Recurrent Unit (GRU) [32]. In preliminary

experiments we found that using convolutions in both the input-to-state and state-to-state

transitions reduced the variance in the performance of the complete agent by sharing

information across neighboring map cells. However, since both the mapMt and the map

update Ft are sparse, we use a sparsity-aware convolution operation that evaluates only

observed pixels and normalizes the output [33]. We also mask the GRU map update to

prevent bias terms from accumulating in the unobserved regions.

1.4.2 Filter

At the beginning of each episode the agent is placed at a start location s∗0 = (x0, y0, θ0),

where θ represents the agent’s heading and x and y are coordinates in the world frame

as previously described. The agent is given an instruction X describing the trajectory to

an unknown goal coordinate s∗T = (xT , yT , ·). As an intermediate step towards actually

reaching the goal, we wish to identify likely goal locations in the partially-observed semantic

spatial mapM generated by the mapper.

Our approach to this problem is based on the observation that a natural language

navigation instruction typically conveys a sequence of expected future observations and

actions, as previously discussed. Based on this observation, we frame the problem of

determining the goal location s∗T as a tracking problem. As illustrated in Figure 1.2 and

described further below, we implement a Bayes filter to track the pose s∗t of a hypothetical

human demonstrator (i.e., the ‘ghost’) from the start location to the goal. As inputs to

the filter, we provided a series of latent observations ot and actions at extracted from the
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Figure 1.2: Proposed filter architecture. To identify likely goal locations in the partially-
observed semantic spatial mapM generated by the mapper, we first initialize the belief
bel(st) with the known starting state s0. We then recursively: (1) generate a latent observa-
tion ot and action at from the instruction, (2) compute the prediction step using the motion
model (Equation 1.3), and (3) compute the observation update using the observation model
(Equation 1.5), stopping after T time steps. The resulting belief bel(sT ) represents the
posterior probability distribution over likely goal locations.

navigation instruction X . The output of the filter is the belief over likely goal locations

bel(sT ).

Note that in this section we use the subscript t to denote time steps in the filter, over-

loading the notation from subsection 1.4.1 in which t referred to agent time steps. We wish

to make clear that in our model the filter runs in an inner loop, re-estimating belief over

trajectories taken by a demonstrator starting from s0 each time the map is updated by the

agent in the outer loop.

Belief. We define the state st = (xt, yt, θt) using the agent’s (x, y) position and heading θ.

We represent the belief over the demonstrator’s state at each time step t with a histogram,

implemented as a tensor bel(st) = bt, bt ∈ RΘ×Y×X where X , Y and Θ are the number

of bins for each component of the state, respectively. Using a histogram-based approach

allows the filter to track multiple hypotheses, meshes easily with our implementation of a

grid-based semantic map, and leads naturally to an efficient motion model implementation

based on convolutions, as discussed further below. However, our proposed approach could

also be implemented as a particle filter [29, 30], for example if discretization error was a

significant concern.
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Observations and actions. To transform the instruction X into a latent representation of

observations o and actions a, we use a sequence-to-sequence model with attention [34].

We first tokenize the instruction into a sequence of words X = {x1,x2, . . . ,xl} which are

encoded using learned word embeddings and a bi-directional LSTM [19] to output a series

of encoder hidden states {e1, e2, . . . , el} and a final hidden state e representing the output

of a complete pass in each direction. We then use an LSTM decoder to generate a series

of latent observation and action vectors {o1,o2, . . . ,oT} and {a1,a2, . . . ,aT} respectively.

Here, ot is given ot = [êot ,ht], where ht is the hidden state of the decoder LSTM, and êot

is the attended instruction representation computed using a standard dot-product attention

mechanism [35]. The action vectors at are computed analogously, using the same decoder

LSTM but with a separate learned attention mechanism. The only input to the decoder

LSTM is a positional encoding [36] of the decoding time step t. While the correct number

of decoding time steps T is unknown, in practice we always run the filter for a fixed number

of time steps equal to the maximum trajectory length in the dataset (which is 6 steps in the

navigation graph).

Motion model. We implement the motion model p(st | st−1,at,M) as a convolution over

the belief bt−1. This ensures that agent motion is consistent across the state space while

explicitly enforcing locality, i.e., the agent cannot move further than half the kernel size in a

single time step. Similarly to [15], the prediction step from Equation 1.1 is thus reformulated

as:

bt = bt−1 ∗ g(at,M) (1.3)

where we define an action- and map-dependent motion kernel g(at,M) ∈ RΘ2×M2 given

by:

g(at,M) = softmax(conv([at,M])) (1.4)
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where conv is a small 3-layer CNN with ReLU activations operating on the semantic spatial

mapM and the spatially-tiled action vector at, M is the motion kernel size and the softmax

function enforces the prior that g(at,M) represents a probability mass function. Note that

we includeM in the input so that the motion model can learn that the agent is unlikely to

move through obstacles.

Observation model. We require an observation model p(ot | st,M) to define the likelihood

of a latent observation ot conditioned on the agent’s state st and the mapM. A generative

observation model like this would be hard to learn, since it is not clear how to generate high-

dimensional latent observations and normalization needs to be done across observations, not

states. Therefore, we follow prior work [30] and learn a discriminative observation model

that takes ot andM as inputs and directly outputs the likelihood of this observation for each

state. As detailed further in subsection 1.4.4, this observation model is trained end-to-end

without direct supervision of the likelihood.

To implement our observation model we use LingUNet [2], a language-conditioned

image-to-image network based on U-Net [37]. Specifically, we use the LingUNet imple-

mentation from Blukis et al. [11] with 3 cascaded convolution and deconvolution operations.

The spatial dimensionality of the LingUNet output matches the input image (in this case,

M), and number of output channels is selected to match the number of heading bins Θ.

Outputs are restricted to the range [0, 1] using a sigmoid function. The observation update

from Equation 1.2 is re-defined as:

bt = η bt � LingUNet(ot,M) (1.5)

where η is a normalization constant and � represents element-wise multiplication.

Goal prediction. In summary, to identify goal locations in the partially-observed spatial

mapM, we initialize the belief b0 with the known starting state s0. We then iteratively:

(1) Generate a latent observation ot and action at, (2) Compute the prediction step using
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Equation 1.3, and (3) Compute the observation update using Equation 1.5. We stop after

T filter update time steps. The resulting belief bT represents the posterior probability

distribution over goal locations.

1.4.3 Policy

The final component of our agent is a simple reactive policy network. It operates over a

global action space defined by the complete set of panoramic viewpoints observed in the

current episode (including both visited viewpoints, and their immediate neighbors). Our

agent thus memorizes the local structure of the observed navigation graph to enable it to

return to any previously observed location in a single action. The probability distribution

over actions is defined by a softmax function, where the logit associated with each viewpoint

i is given by yi = MLP([b1:T,i,vi]), where MLP is a two-layer neural network, b1:T,i is

a vector containing the belief at each time step 1 : T in a gaussian neighborhood around

viewpoint i, and vi is a vector containing the distance from the agent’s current location to

viewpoint i, and an indicator variable for whether i has been previously visited. If the policy

chooses to revisit a previously visited viewpoint, we interpret this as a stop action. Note

that our policy does not have direct access to any representation of the instruction, or the

semantic mapM. Although our policy network is specific to the Matterport3D simulator

environment, the rest of our pipeline is general and operates without knowledge of the

simulator’s navigation graph.

1.4.4 Learning

Our entire agent model is fully differentiable, from policy actions back to image pixels via

the semantic spatial map, geometric feature projection function, etc. Training data for the

model consists of instruction-trajectory pairs (X , s∗1:T ). In all experiments we train the filter

using supervised learning by minimizing the KL-divergence between the predicted belief

b1:T and the true trajectory from the start to the goal s∗1:T , backpropagating gradients through
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the previous belief bt−1 at each step. Note that the predicted belief b1:T is independent of

the agent’s actual trajectory s1:T given the map M. In the goal prediction experiments

(subsection 1.5.2), the model is trained without a policy and so the agent’s trajectory s1:T

is generated by moving towards the goal with 50% probability, or randomly otherwise. In

the full VLN experiments (subsection 1.5.3), we train the filter concurrently with the policy.

The policy is trained with cross-entropy loss to maximize the likelihood of the ground-truth

target action, defined as the first action in the shortest path from the agent’s current location

st to the goal s∗T . In this regime, trajectories are generated by sampling an action from the

policy with 50% probability, or selecting the ground-truth target action otherwise. In both

sets of experiments we train all parameters end-to-end (except for the pretrained CNN).

We have verified that the stand-alone performance of the filter is not unduly impacted by

the addition of the policy, but we leave the investigation of more sophisticated RL training

regimes to future work.

Implementation details. We provide further implementation details in section 1.6. PyTorch

code is released to replicate all experiments.2

1.5 Experiments

1.5.1 Environment and dataset

Simulator. We use the Matterport3D Simulator [1] based on the Matterport3D dataset [17]

containing RGB-D images, textured 3D meshes and other annotations captured from 11K

panoramic viewpoints densely sampled throughout 90 buildings. Using this dataset, the

simulator implements a visually-realistic first-person environment that allows the agent

to look in any direction while moving between panoramic viewpoints along edges in a

navigation graph. Viewpoints are 2.25m apart on average.

Depth outputs. As the Matterport3D Simulator supports RGB output only, we extend it

2https://github.com/batra-mlp-lab/vln-chasing-ghosts
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to support depth outputs which are necessary to accurately project CNN features into the

semantic spatial map. Our simulator extension projects the undistorted depth images from the

Matterport3D dataset onto cubes aligned with the provided ‘skybox’ images, such that each

cube-mapped pixel represents the euclidean distance from the camera center. We then adapt

the existing rendering pipeline to render depth images from these cube-maps, converting

depth values from euclidean distance back to distance from the camera plane in the process.

To fill missing depth values corresponding to shiny, bright, transparent, and distant surfaces,

we apply a simple cross-bilateral filter based on the NYUv2 implementation [38]. We

additionally implement various other performance improvements, such as caching, which

boosts the frame-rate of the simulator up to 1000 FPS, subject to GPU performance and

CPU-GPU memory bandwith. We have incorporated these extensions into the original

simulator codebase.3

R2R instruction dataset. We evaluate using the Room-to-Room (R2R) dataset for Vision-

and-Language Navigation (VLN) [1]. The dataset consists of 22K open-vocabulary, crowd-

sourced navigation instructions with an average length of 29 words. Each instruction

corresponds to a 5–24m trajectory in the Matterport3D dataset, traversing 5–7 viewpoint

transitions. Instructions are divided into splits for training, validation and testing. The vali-

dation set is further split into two components: val-seen, where instructions and trajectories

are situated in environments seen during training, and val-unseen containing instructions

situated in environments that are not seen during training. All the test set instructions and

trajectories are from environments that are unseen in training and validation.

1.5.2 Goal prediction results

We first evaluate the goal prediction performance of our proposed mapper and filter archi-

tecture in a policy-free setting using fixed trajectories. Trajectories are generated by an

agent that moves towards the goal with 50% probability, or randomly otherwise. As an

3https://github.com/peteanderson80/Matterport3DSimulator
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Table 1.1: Goal prediction results given a natural language navigation instruction and a
fixed trajectory that either moves towards the goal, or randomly, with 50:50 probability.
We evaluate predictions at each time step, although on average the goal is not seen until
later time steps. Our filtering approach that explicitly models trajectories outperforms
LingUNet [11, 2] across all time steps (i.e., regardless of map sparsity). We confirm that
add heading θ to the filter state provides a robust boost.

Val-Seen Val-Unseen

Time step 0 1 2 3 4 5 6 7 Avg 0 1 2 3 4 5 6 7 Avg
Map Seen (m2) 47.2 62.5 73.3 82.1 90.7 98.3 105 112 83.9 45.6 60.3 69.8 78.0 84.9 91.1 96.7 102 78.6
Goal Seen (%) 8.82 17.2 25.9 33.7 41.2 48.8 54.5 60.2 36.3 16.0 25.2 34.6 43.2 50.5 57.0 62.8 67.6 44.6

Prediction Error (m)
Hand-coded baseline 7.42 7.33 7.19 7.18 7.15 7.13 7.09 7.11 7.20 6.75 6.53 6.40 6.37 6.29 6.20 6.15 6.12 6.35
LingUNet baseline 7.17 6.66 6.17 5.75 5.42 5.15 4.89 4.69 5.74 6.18 5.80 5.40 5.17 4.90 4.65 4.44 4.27 5.10
Filter, s = (x, y) (ours) 6.45 5.94 5.66 5.25 5.00 4.86 4.67 4.62 5.31 5.92 5.50 5.14 4.88 4.67 4.45 4.41 4.30 4.91
Filter, s = (x, y, θ) (ours) 6.10 5.75 5.30 5.06 4.81 4.71 4.59 4.46 5.09 5.69 5.28 4.90 4.60 4.40 4.26 4.14 4.05 4.67

Success Rate (<3m error)
Hand-coded baseline 17.3 17.8 18.5 18.2 18.0 19.1 18.8 18.6 18.3 18.9 20.1 21.1 21.3 21.8 22.2 22.6 22.9 21.4
LingUNet baseline 10.7 16.7 21.2 25.8 29.7 33.6 36.9 39.1 26.7 16.9 22.3 27.7 31.6 35.2 38.4 41.1 44.5 32.2
Filter, s = (x, y) (ours) 24.6 29.3 31.9 35.9 39.7 41.0 42.1 41.2 35.7 29.1 32.5 36.1 39.2 41.9 44.5 45.7 46.2 39.4
Filter, s = (x, y, θ) (ours) 30.9 34.3 38.4 41.6 43.7 44.9 44.3 46.2 40.6 34.2 38.7 42.7 46.1 48.2 48.4 49.9 51.2 44.9

ablation, we also report results for our model excluding heading from the agent’s filter state,

i.e., st = (x, y), to quantify the value of encoding the agent’s orientation in the motion and

observation models. We compare to two baselines as follows:

LingUNet baseline. As a strong neural net baseline, we compare to LingUNet [2] – a

language-conditioned variant of the U-Net image-to-image architecture [37] – that has

recently been applied to goal location prediction in the context of a simulated quadrocopter

instruction-following task [11]. We choose LingUNet because existing VLN models [3, 4, 5,

6, 7, 8, 9] do not explicitly model the goal location or the map, and are thus not capable of

predicting the goal location from a provided trajectory. Following [11] we train a 5-layer

LingUNet module conditioned on the sentence encoding e and the semantic mapM to

directly predict the goal location distribution (as well as a path visitation distribution, as an

auxilliary loss) in a single forward pass. As we implement our observation model using a

(smaller, 3-layer) LingUNet, the LingUNet baseline resembles an ablated single-step version

of our model that dispenses with the decoder generating latent observations and actions as

well as the motion model. Note that we use the same mapper architecture for our filter and
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for LingUNet.

Hand-coded baseline. We additionally compare to hand-coded goal prediction baseline

designed to exploit biases in the R2R dataset [1] and the provided trajectories. We first

calculate the mean straight-line distance from the start position to the goal across the entire

training set, which is 7.6m. We then select as the predicted goal the position (x, y) in the

map at a radius of 7.6m from the start position that has the greatest observed map area in an

Gaussian-weighted neighborhood of (x, y).

Results. As illustrated in Table 1.1, our proposed filter architecture that explicitly models

belief over trajectories that could be taken by a human demonstrator outperforms a strong

LingUNet baseline at predicting the goal location (with an average success rate of 45% vs.

32% in unseen environments). This finding holds at all time steps (i.e., regardless of the

sparsity of the map). We also demonstrate that removing the heading θ from the agent’s

state in our model degrades this success rate to 39%, demonstrating the importance of

relative orientation to instruction understanding. For instance, it is unlikely for an agent

following the true path to turn 180 degrees midway through (unless this is commanded by

the instruction). Similarly, without knowing heading, the model can represent instructions

such as ‘go past the table’ but not ‘go past with the table on your left’. Finally, the poor

performance of the handcoded baseline confirms that the goal location cannot be trivially

predicted from the trajectory.

1.5.3 Vision-and-Language Navigation results

Having established the efficacy of our approach for goal prediction from a partial map, we

turn to the full VLN task that requires our agent to take actions to actually reach the goal.

Evaluation. In VLN, an episode is successful if the final navigation error is less than

3m. We report our agent’s average success rate at reaching the goal (SR), and SPL [16], a

recently proposed summary measure of an agent’s navigation performance that balances

navigation success against trajectory efficiency (higher is better). We also report trajectory
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length (TL) and navigation error (NE) in meters, as well as oracle success (OS), defined as

the agent’s success rate under an oracle stopping rule.

Results. In Table 1.2, we present our results in the context of state-of-the-art methods;

however, as noted by the RL and Aug columns in the table, these approaches include

reinforcement learning and complex data augmentation and pretraining strategies. These

are non-trivial extensions that are the result of a community effort [3, 4, 5, 6, 7, 8, 9] and

are orthogonal to our own contribution. We also use a less powerful CNN (ResNet-34 vs.

ResNet-152 in prior work). For the most direct comparison, we consider the ablated models

in the lower panel of Table 1.2 to be most appropriate. We find these results promising given

this is the first work to explore such a drastically different model class (i.e., maintaining

a metric map and a probability distribution over alternative trajectories in the map). Our

model also exhibits less overfitting than other approaches – performing equally well on both

seen (val-seen) and unseen (val-unseen) environments.

Further, our filtering approach allows us greater insight into the model. We examine a

qualitative example in Figure 1.3. On the left, we can see the agent attends to appropriate

visual and direction words when generating latent observations and actions, supporting the

intuition in Figure 1.1. On the right, we can see the growing confidence our goal predictor

places on the correct location as more of the map is explored – despite the increasing number

of visible alternatives.

1.6 Implementation Details

Simulator. In experiments, we set the Matterport3D simulator [1] to generate 320× 256

pixel images with a 60 degree vertical field of view. To capture more of the floor and

nearby obstacles (and less of the roof) we set the camera elevation to 30 degrees down from

horizontal. At each panoramic viewpoint location in the simulator we capture a horizontal

sweep containing 12 images at 30 degree increments, which are projected into the map in a

single time step as described in subsection 1.4.1.
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Table 1.2: Results for the full VLN task on the R2R dataset. Our model achieves credible
results for a new model class trained exclusively with imitation learning (no RL) and without
any data augmentation or specialized pretraining (Aug).

Val-Seen Val-Unseen Test

Model RL Aug
TL
(m)

NE
(m)

OS
(%)

SR
(%) SPL

TL
(m)

NE
(m)

OS
(%)

SR
(%) SPL

TL
(m)

NE
(m)

OS
(%)

SR
(%) SPL

RPA [4] X 8.46 5.56 53 43 - 7.22 7.65 32 25 - 9.15 7.53 32 25 23
Speaker-Follower [7] X - 3.36 74 66 - - 6.62 45 36 - 14.82 6.62 44 35 28
RCM [3] X 10.65 3.53 75 67 - 11.46 6.09 50 43 - 11.97 6.12 50 43 38
Self-Monitoring [5] X - 3.18 77 68 58 - 5.41 59 47 34 18.04 5.67 59 48 35
Regretful Agent [6] X - 3.23 77 69 63 - 5.32 59 50 41 13.69 5.69 56 48 40
FAST [9] X - - - - - 21.1 4.97 - 56 43 22.08 5.14 64 54 41
Back Translation [8] X X 11.0 3.99 - 62 59 10.7 5.22 - 52 48 11.66 5.23 59 51 47

Speaker-Follower [7] - 4.86 63 52 - - 7.07 41 31 - - - - - -
Back Translation [8] 10.3 5.39 - 48 46 9.15 6.25 - 44 40 - - - - -
Ours 10.15 7.59 42 34 30 9.64 7.20 44 35 31 10.03 7.83 42 33 30

Mapper. For our CNN implementation we use a ResNet-34 [39] architecture that is pre-

trained on ImageNet [40]. We found that fine-tuning the CNN while training our model

mainly improved performance on the Val-Seen set, and so we left the CNN parameters fixed

in the reported experiments. To extract the visual feature representation v we concatenate

the output from the CNN’s last 2 layers to provide a 16× 20× 768 representation. The

dimensionality of our map representationM is fixed at 128× 96× 96 and each cell rep-

resents a square region with side length 0.5m (the entire map is thus 48m× 48m). In the

mapper’s convolutional [31] GRU [32] we use 3× 3 convolutional filters and we train with

spatial dropout [41] of 0.5 in both the input-to-state and state-to-state transitions with fixed

dropout masks for the duration of each episode.

Filter. In the instruction encoder we use a hidden state size of 256 for both the forward and

backward encoders, and a word embedding size of 300. We use a motion kernel size M of 7,

but we upscale the motion kernel g(at,M) by a scale factor of 2× before applying it such

that the agent can move a maximum of 3.5m in a single time step.

Training. In training, we use the Adam optimizer [42] with an initial learning rate of 1e-3,

weight decay of 1e-7, and a batch size of 5. In the goal prediction experiment, all models are

trained for 8K iterations, after which all models have converged. In the full VLN experiment,

our models are trained for 17.5K iterations, and we pick the iteration with the highest SPL
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Figure 1.3: Left: Textual attention during latent observation and action generation is
appropriately more focused towards action words (‘left’, ‘right’) for the motion model,
and visual words (‘bedroom’, ‘corridor’, ‘table’) for the observation model. Right: Top-
down view illustrating the agent’s expanding semantic spatial map (lighter-colored region),
navigation graph (blue dots) and corresponding belief (red heatmap and circles with white
heading markers) when following this instruction. At t = 0 the map is largely unexplored,
and the belief is approximately correct but dispersed. By t = 6, the agent has become
confident about the correct goal location, despite many now-visible alternative paths.

performance on Val-Unseen to report and submit to the test server. Training the model takes

around 1 day for goal prediction, and 2.5 days for the full VLN task, using a single Titan X

GPU.

Visualizations. In Figure 1.3, we depict top-down floorplan visualizations of Matterport

environments to provide greater insight into the model’s behavior. These visualizations are

rendered from textured meshes in the Matterport3D dataset [17], using the provided GAPS

software which was modified to render using an orthographic projection.

1.7 Visualizations

Observations and actions. In this section we provide further visualizations of the attention

weights in the sequence decoders that generate latent observations and actions (refer to sub-

section 1.4.2). Instructions are examples from the Val-Unseen set. In general, the attention
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models for the motion model (generating latent action vectors a) and the observation model

(generating latent observation vectors o) specialize in different ways. The motion model

focuses attention on action words, while the observation model focuses on visual words, as

illustrated in Figure 1.4 and Figure 1.5. The sequential ordering of the instructions (e.g.,

attention weights showing a diagonal structure from top-left to bottom-right) is also evident.

1.8 Conclusion

We show that instruction following can be formulated as Bayesian state tracking in a model

that maintains a semantic spatial map of the environment, and an explicit probability dis-

tribution over alternative possible trajectories in that map. To evaluate our approach we

choose the complex problem of Vision-and-Language Navigation (VLN). This represents a

significant departure from existing work in the area, and required augmenting the Matter-

port3D simulator with depth. Empirically, we show that our approach outperforms recent

alternative approaches to goal location prediction, and achieves credible results on the full

VLN task without using RL or data augmentation – while offering reduced overfitting to seen

environments, unprecedented intepretability and less reliance on the simulator’s navigation

constraints.
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Figure 1.4: Example attention weight visualizations from the motion model and observation
model inputs. The motion model focuses on action descriptions, such as ‘go through’ (top
left) and ‘turn right’ (bottom left and right). In contrast, the observation model focuses more
towards visual words such as ‘kitchen’ (top left), ‘toilet’ (top right), and ‘hallway’ (bottom
left and right).
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Figure 1.5: More example attention weight visualizations from the motion and observation
models. Here, the motion model focuses on action descriptions, such as ‘left’, while the
observation model focuses attention on visual words such as ‘couch’ (bottom left), ‘table
and chairs’ (bottom right), and ‘door’ (bottom right).
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CHAPTER 2

SIM-TO-REAL TRANSFER FOR VISION-AND-LANGUAGE NAVIGATION

2.1 Introduction

We study the challenging problem of releasing a robot in a previously unseen environ-

ment, and having it follow unconstrained natural language navigation instructions. Most

previous evaluations of instruction-following robots either focus on smaller table-top en-

vironments [43, 44, 45], or are evaluated in simulation [46, 47, 48, 49, 50, 51, 52, 53,

54]. However, performing only component-level evaluation (e.g., of the instruction parser)

or evaluating only in simulation neglects real-world sensing, actuation and localization

errors and the challenges of integrating complex components, which may give a misleading

impression of progress. Therefore, leveraging the cumulative advances of previous authors

studying Vision-and-Language Navigation (VLN) in simulation [1, 3, 4, 5, 6, 7, 8, 9], we

transfer a VLN agent trained in simulation on the R2R dataset [1] to a physical robot and

complete one of the first full system evaluations of a robot following unconstrained English

language directions in an unseen building.

As illustrated in Figure 2.1, VLN [1] is a formulation of the instruction-following

problem that requires an agent to interpret a natural-language instruction and then execute a

sequence of actions to navigate efficiently from the starting point to the goal in a previously

unseen environment. In existing working studying VLN in simulation, the agent’s action

space is typically defined in terms of edge traversals in a navigation graph, where nodes

are represented with 360° panoramic images (on average 2.1m apart) and edges indicate

navigable paths between these panoramas. In effect, high visual fidelity comes at the cost of

low control fidelity. Given this limitation, a major challenge with sim-to-real transfer of a

VLN agent is bridging the gap between the high-level discrete action space learned by the

25



agent and the low-level continuous physical world in which the robot operates.

To address this challenge, we propose a subgoal model that, conditioning on both

360° RGB images and laser scans, identifies a set of navigable nearby waypoints that

can be evaluated by the VLN agent as high-level action candidates. To minimize domain

differences between sim and real, the subgoal model is trained on the same navigation

graphs (from the R2R / Matterport3D [17] dataset) as the VLN agent. To support navigation

to the waypoint selected by the VLN agent, we assemble a classical navigation stack

based on Robot Operating System (ROS) [55], incorporating a standard Simultaneous

Localization and Mapping (SLAM) implementation [56] along with obstacle avoidance

and path-planning routines. For sim-to-real experiments we use a TurtleBot2 mobile robot

equipped with a 2D laser scanner and a 360° RGB camera. To mitigate the impact of visual

differences between sim and real, we train the VLN agent and the subgoal model using

domain randomization [57].

Evaluations are conducted in a 325m2 physical office environment we refer to as Coda.

Since our focus is evaluating whether progress on VLN in simulation can be parlayed into

progress in robotics, we digitize and annotate the Coda environment to provide a reliable

comparison of sim and real performance in parallel unseen test environments. Specifically, a

Matterport camera is used to scan and reconstruct Coda and the resulting assets are imported

into the Matterport3D simulator. We then construct a dataset of English language instruction-

trajectory pairs in Coda using Amazon Mechanical Turk (AMT) and following the R2R data

collection protocols. In total, we collect 111 navigation instructions representing 1,334m of

language-guided trajectories.

Experimentally, we complete two full physical evaluations in Coda, testing two settings:

‘with map’ in which an occupancy map and navigation graph are collected and annotated in

advance, and ‘no map’ in which the robot performs SLAM from scratch each time a new

instruction is received. In all evaluations the language inputs and the visual appearance

of the environment are previously unseen. We show that sim-to-real transfer is reasonably
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Go between the first and second bookshelves,
turn to your left and walk straight down the
hallway, then you should turn to your right at
the hallway with the elevators and stop when
the fire extinguisher box is on your left.

Walk between the two bookshelves, turn left,
walk past the last set of pictures on the wall,
turn right and wait by the elevators.

Turn left and head toward and past the blue
bookcase. Turn left again and walk down the
long hallway until you get to the opening on
the right. Turn right and head toward the ele-
vators and you’re there.

Figure 2.1: We transfer a VLN agent trained in simulation to a physical robot (center)
placed in a 325m2 office environment not seen in training (left). Our experiments compare
instruction-following performance in parallel simulator and physical environments over
111 unconstrained natural language navigation instructions (e.g., the 3 instructions on right
corresponding to the red target trajectory).

successful in the ‘with map’ setting (success rate of 46.8% vs. 55.9% in simulation, with

reductions in success rate attributed 3.9% to remaining visual domain differences and 5.2%

to viewpoint differences). However, in the hardest setting with no prior mapping, sim-to-real

transfer is much less reliable (success rate of 22.5%) due to subgoal prediction errors which

fail to fully abstract the differences in the agent’s action space between sim and real.

Contributions. In summary, we achieve the first sim-to-real transfer of a VLN agent trained

in simulation on the R2R dataset to a robotic platform. Our main contributions include:

• A new annotated VLN simulator environment corresponding to an accessible physical

environment,

• A sim-to-real framework interfacing a trained VLN agent with standard ROS compo-

nents,

• A subgoal prediction model to bridge the gap between the discrete action space learned

by the VLN agent and the continuous world, and
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• An empirical study quantifying the sim-to-real gap in terms of errors due to visual

domain differences, viewpoint differences and subgoal prediction errors / action space

differences.

We provide code1 for digitizing and annotating new VLN environments, plus our sim-to-real

framework and subgoal model for deploying VLN agents to robots using ROS.

2.2 Related Work

Instruction-Following Robots. Although natural language command of robots in unstruc-

tured environments could be considered a grand challenge of robotics, there is surprisingly

little previous work in our setting of interest – in which a physical robot is released in a

building it hasn’t seen in training and evaluated on it’s ability to execute unconstrained

natural language navigation instructions. The most similar settings to ours are (noting

major differences from ours in parentheses): the voice-commandable wheelchair of [58]

(relies on artificial landmarks), the quadcopters of [59] and [60] (evaluated in the training

environment), and the voice-commanded robot teammate of [61] (outdoors). Most other

evaluations of language-guided robots have been limited to only a handful of instruction

commands [62, 63] or a handful of object types [64, 65], or they focus on manipulation

rather than navigation [66, 67].

Vision-and-Language Navigation (VLN). In the VLN task [1], an agent is placed in a

photo-realistic simulation of an indoor environment and given a natural language navigation

instruction describing the path to the goal. To reach it, agents must learn to ground language

instructions to both visual observations and actions. In the standard setting, the test environ-

ments are unseen during training and no prior exploration is permitted. Despite the task’s

difficulty, recent work has seen significant improvements [3, 4, 5, 6, 7, 8, 9], including the

use of pragmatic speaker models for trajectory re-ranking and data augmentation [7, 8], as

well as progress estimation [5] and backtracking [6, 9].
1https://github.com/batra-mlp-lab/vln-sim2real
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Pano-Simulators and Datasets. A growing number of simulation environments, tasks and

datasets have been proposed based on situated panoramic images. For example, building

on R2R/Matterport3D [1, 17], annotations for vision-and-dialog navigation [68], asking

for help [69], remote embodied referring expressions [70], and multilingual VLN [71, 72]

have been released. In the outdoor setting, several panoramic image datasets have been

proposed including StreetLearn [73, 74] and SEVN [75], giving rise to language navigation

datasets such as TouchDown [76], Talk2Nav [77] and RUN [78]. With the increasing interest

in training embodied agents in panoramic image environments, there is an urgent need to

investigate the transfer of these agents to real physical platforms.

2.3 Sim-to-Real Experimental Setting

2.3.1 Coda Test Environment

For evaluation of the VLN robot we select Coda as the unseen test environment. Coda is a

325m2 collaborative shared space in a commercial office building. As a shared space, Coda

is devoid of personal items such as papers, posters, photos, bags and computing devices.

While this eliminates some interesting visual clutter, it also helps minimize the drift between

the static simulator and the real physical environment over time. Visual diversity is enhanced

by the variety of rooms included, such as an elevator lobby, several long corridors, a lounge

area and various break-out spaces (refer floorplan in Figure 2.1), while floor-to-ceiling

glass walls and windows provide reflections and changing lighting that makes the space

particularly challenging for robotic vision.

2.3.2 Simulator Construction

To accurately establish the sim-to-real gap in the unseen test environment, we construct a par-

allel simulator environment by reconstructing Coda with a Matterport3D Pro 2 camera and

the Matterport3D web services. We download the resulting pointcloud and textured mesh,

plus the equirectangular panoramic image and pose at each of the camera 65 viewpoints,
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and a ‘visibility graph’ indicating which pairs of camera viewpoints are mutually visible.

After excluding 6 viewpoints located on stairs or above furniture (which are unreachable

by our robot), following [1] we construct a navigation graph from the visibility graph by

excluding edges with length greater than 5m. The resulting navigation graph, panoramic

images and viewpoint poses are then imported into the Matterport3D simulator to create the

Coda simulator environment.

2.3.3 Navigation Instructions

To collect navigation instructions for Coda, we follow [1] by sampling trajectories that

are the shortest path between two points and then asking annotators to describe these

paths using an immersive 3D web interface. To validate instruction quality, we then ask a

different annotator to follow each instruction using a similar interface. In total we sample

37 trajectories and collect four English language navigation instructions for each trajectory

using Amazon Mechanical Turk (AMT). After discarding the instruction with the highest

follower navigation error for each trajectory, the final Coda dataset contains 111 instructions,

representing a total of 1,334m of language-guided navigation with an average human

follower success rate of 93% (vs. 86% for the R2R test set). As indicated by the example

in Figure 2.1, the resulting trajectories and instructions are similar in length and style to

R2R, with an average of 25 words per instruction (vs. 29 for R2R). The vocabulary size

of the Coda instructions is in the 44th percentile of R2R environment vocabularies (based

on repeatedly randomly sampling 37 paths / 111 instructions per R2R environment, and

skipping R2R environments with insufficient instructions). This suggests that the language is

as diverse as many of the environments in the original dataset. Qualitatively, the instructions

mention a variety of objects (e.g., water fountain, art, sectional sofa), along with attributes

such as color (12 mentioned), state (e.g., open, closed, hanging), size (e.g., small, big), and

composition (e.g., wood, glass, cement) using both allocentric and egocentric reference

frames.
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2.3.4 Robot Platform

We conduct experiments using a low-cost TurtleBot2 robot consisting of a Kobuki mobile

base, an Asus Xion Pro Live RGBD camera, and an Asus netbook. Since virtually all VLN

agents have been developed using 360° vision, we additionally equip the robot with a Ricoh

Theta V 360° consumer-grade RGB camera. For the most direct sim-to-real comparison we

mount the Theta V camera 1.35m above ground level – the same height we set the Matterport

camera tripod when scanning and reconstructing Coda. Lastly, for obstacle avoidance and

mapping we mount a 270° Hokuyo 2D laser scanner with 30m range at 0.24m above ground

level. The robot runs ROS-kinetic [55]. We use standard ROS / TurtleBot packages such

as gmapping, amcl and move_base as well as PyTorch [79]. During evaluation all code

executes on the robot, except PyTorch ROS nodes (the VLN agent and our subgoal model)

which are run remotely.

2.3.5 Evaluation Metrics.

We use standard VLN metrics for evaluation in both sim and real, with the aim of testing

whether performance on the robot can match the results in simulation for the same unseen

test environment. In all experiments the agent must terminate the episode as near to the goal

position as possible. An episode is considered successful if the navigation error (defined

as the distance between the agent’s final position and the goal position) is less than 3m.

We report average values for trajectory length (TL), navigation error (NE), success rate at

reaching the goal (SR), oracle success rate (OS) – defined as the agent’s success rate at

the closest point on the agent’s trajectory to the goal, Success weighted by (normalized

inverse) Path Length (SPL) [16] and both Normalized and Success-weighted Dynamic Time

Warping (NDTW and SDTW) [80]. SPL and SDTW are summary measures of navigation

performance that balance success against trajectory efficiency and fidelity (i.e., similarity to

the ground-truth path), while NDTW measures path fidelity irrespective of success (higher

is better for each). When calculating NDTW and SDTW we represent both sim and robot
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trajectories using 100 equally spaced points to eliminate sampling differences.

2.3.6 Robot Pose Tracking

To compute these evaluation metrics we must know the agent’s pose at all points in time. In

the simulation this is available. To track the robot’s pose, we first teleop the robot through

Coda to construct a 0.05m resolution occupancy map using the laser scanner and the ROS

gmapping SLAM package. We then register this map to the Matterport3D coordinate frame.

For evaluation purposes we use the particle filter provided by the ROS amcl package to

track the robot’s pose during experiments. We estimate that the error in this pose estimate is

typically an order of magnitude less than the 3m radius used for determining success.

2.4 Adapting a VLN Agent to a Physical Robot

2.4.1 VLN Agent

We now detail our approach to sim-to-real transfer of a VLN agent onto the robot. We start

with an existing VLN agent [8] that achieved state-of-the-art performance on the unseen

environments in the R2R test split. Typical of most recent work on this task, this agent is

trained using a (simulated) panoramic 360° RGB sensor, processing the entire visual context

at each step, and a highly-abstracted discrete action space provided by the Matterport3D

simulator. Actions are defined by neighboring panoramic image viewpoints, which are on

average 2.1m away. The agent processes the visual representations in the direction of those

locations, and then once an action has been selected the simulator teleports the agent to

the new viewpoint (refer Figure 2.2). To transfer this agent to a robot we must address

differences in the visual domain and action space, plus navigation and localization errors

that are not experienced in training. We discuss these challenges in turn.
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Figure 2.2: We evaluate a VLN agent trained in simulation in matching previously unseen
sim (top) and real (bottom) environments. Our sim-to-real framework includes domain
randomization, a subgoal model to bridge the action space differences between sim and real
(removing the reliance on the simulator navigation graph), and standard ROS components
for SLAM and navigation.

2.4.2 Visual Domain Adaptation

As illustrated by the RGB panorama differences in Figure 2.2, the robot’s Ricoh Theta V

camera is consumer-grade with limited dynamic range compared to the Matterport camera,

resulting in a loss of visual detail and a 6.4% reduction in success rate due to visual domain

differences (refer section 2.5). To address this problem, domain adaptation algorithms

typically require a large set of target domain images – in this case Theta V panoramic

images captured in a variety of indoor environments – which are non-trivial to collect.

In preliminary experiments, simple alternatives such as histogram matching to align the

Theta V colorspace with the Matterport camera were not effective. We therefore selected

an approach akin to domain randomization [57], in which we applied random color jitter

to each panorama when training the VLN agent in the Matterport simulator. Brightness,

contrast and saturation were varied by a factor of 0.3 and hue was varied by a factor of 0.01,
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with these parameters determined through visual inspection.

2.4.3 Action Space Adaptation

To accommodate the transfer from the highly-abstracted action space of the simulator, which

is based on a navigation graph, to the primitive motor control actions of a physical robot,

we propose to use a subgoal model in conjunction with standard ROS navigation modules.

After conditioning on available sensor observations, the subgoal model predicts a set of

nearby waypoints, or subgoals, for the VLN agent to choose from. In effect, we provide

the VLN agent with an implementation of the simulator’s action space and depend on ROS

to execute those actions. Our approach is therefore a modular fusion of both classical and

learning-based methods.

As illustrated in the example in Figure 2.3 left, as input to the subgoal model we use

the most recent laser scan, to provide an approximate indication of free space, and visual

inputs to fill in the gaps and add additional context. We represent the laser scan as a radial

occupancy map over range and heading bins, and the visual input using pretrained ResNet-

152 [81] CNN features captured at 12 different headings and 3 different camera evaluations

(the same visual feature representation consumed by the VLN agent). The subgoal model

is based on a 4-stage U-Net [37] architecture that takes the radial occupancy map as input

and fuses the visual features in the 3rd downsampling stage. The output of the model is the

probability that each laser scan heading and range bin contains a waypoint.

The subgoal model is trained and validated on viewpoints from the Matterport3D dataset

[17]. Since the dataset does not include planar laser scans, we simulate the output of a

270° laser scan at each viewpoint by measuring the range to the reconstructed matterport

mesh. The model is trained to minimize the sinkhorn divergence [82] between predicted

waypoint locations and the location of neighboring viewpoints in the navigation graph, after

removing neighboring viewpoints that would require traversing stairs. Sinkhorn divergence

is a smoothed approximation to earth mover’s distance that we find to be more effective
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Figure 2.3: Left: To predict the next set of potential waypoints, or subgoals, we combine
a radial occupancy map representation of the laser scan (top-left) with pretrained CNN
features from the panoramic image (top-middle) in a U-Net [37] architecture. Even with
missing range data (green regions) due to the 270° scan, the model generally predicts
plausible subgoals learned from the Matterport simulator navigation graphs (bottom-left vs.
bottom-middle). However, when the subgoal model fails to predict a valid waypoint (right,
where the subgoal model does not predict a waypoint passing between narrow bookshelves)
then the robot navigation fails.

than cross-entropy, which does not respect the underlying metric space. At test time in the

Coda environment we use a confidence threshold to select the final set of waypoints (up

to a maximum of 5) that are provided to the VLN agent. Using the Theta V camera and

evaluating at each viewpoint in the Coda navigation graph we find that 29% of predicted

waypoints are within 0.5m of a ground-truth neighboring viewpoint (60% within 1m, 74%

within 1.5m).

2.4.4 Obstacle Avoidance and Path Planning

For obstacle detection we rely on the depth camera and the 270° laser scanner. These sensors

are complimentary since, although the camera only has a narrow horizontal field of view, it

senses overhanging obstacles such as table tops that may be missed in the narrow planar

sweep of the laser scanner (and could be impacted by our tall robot). We rely on the ROS

move_base navigation module to integrate these observations, maintain local and global
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costs maps, and to plan and execute motion to the waypoint selected by the VLN model.

2.4.5 Verification

Porting an existing VLN agent to ROS required significant refactoring of the original

codebase. To verify our implementation we created mock ROS nodes for the robot’s

panoramic camera, the subgoal model, and the move_base navigation package using images

from the simulator and the simulator navigation graph. This allowed us to run our robot

code on simulator data and verified that the performance matched the original R2R-EnvDrop

model [8] within 1%. Given the large number of different VLN agents and architectures that

have been proposed [3, 4, 5, 6, 7, 8, 9], we hope that our framework will ease the sim-to-real

burden in future work. As shown in Figure 2.2, this codebase acts as a ROS-based harness

around the standard VLN agent api adopted by the community.

2.5 Results and Analysis

In this section, we report sim-to-real results and analysis for the VLN robot. We first

characterize the difficulty of the Coda environment relative to R2R, and examine the

importance of visual domain adaptation. We then consider two sim-to-real settings: the

first in which the robot is provided with a laser-scanned occupancy map of the environment

and the simulator navigation graph (‘with map’), and the second in which the environment

is completely unseen at the beginning of each episode, i.e., there is no provided map or

navigation graph and the robot’s SLAM map is reset each time an instruction is received

(‘no map’). No aspect of our system is trained or validated in the Coda environment (in

simulation or in reality) in either setting. All experiments are conducted in daylight and

furniture is restored to its original position before each evaluation. This does not assist the

robot (which, in our hardest setting, experiences the environment as previously unseen each

time an instruction is received). Rather, this minimizes drift between the simulator and the

physical environment, enabling us to more accurately characterize sim-to-real performance.
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2.5.1 How challenging is Coda?

We first establish the relative difficulty of the Coda environment compared to existing

environments in the Matterport3D [17] / R2R [1] dataset. We report the performance of

the R2R-EnvDrop [8] VLN agent in the Coda simulator compared to R2R val and test. As

illustrated in Table 2.1, after training on the R2R training set we achieved a 49.9% success

rate on the R2R val-unseen set, and a 49.2% success rate on R2R test. On Coda (sim),

the agent’s success rate is slightly higher at 55.9%. This suggests that, although the Coda

dataset was collected by a different camera operator, and a different pool of AMT workers at

a different time to R2R, the collection protocol has been faithfully followed and the dataset

is ‘in-domain’ with respect to R2R. Accordingly, we treat Coda sim performance (row 4) as

a baseline to investigate sim-to-real transfer.

Split TL (m) NE (m) OS (%) SR (%) SPL SDTW NDTW

1 R2R Val-Seen 9.70 4.56 62.0 57.5 55.0 49.6 60.8
2 R2R Val-Unseen 9.18 5.42 55.4 49.9 47.0 44.5 55.2
3 R2R Test 9.52 5.57 54.9 49.2 46.8 - -
4 Coda 11.22 4.98 59.5 55.9 53.6 44.0 54.9

Table 2.1: Characterizing the difficulty of the Coda simulator environment using the EnvDrop
agent [8]. Performance in Coda is slightly higher than the R2R test set on average. R2R
Val-Unseen, R2R Test and Coda are previously unseen visual environments.

2.5.2 How important is visual domain adaptation?

To address this question, we replaced the Matterport panoramic images in the Coda simulator

using images captured with the robot’s Ricoh Theta V camera from the same viewpoint

locations. This allows us to isolate the importance of visual domain adaptation in the absence

of other factors. As foreshadowed in Figure 2.2, switching to the cheaper camera (row 5

vs. row 4 in Table 2.2) causes a 6.4% drop in success rate and a 6.2% drop in SPL, which

is reduced to a 3.9% and 4.3% drop respectively (row 6 vs. row 4) when we retrained the
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agent using visual domain adaptation. To make these results as reliable as possible, rows

5 and 6 are averaged over 3 sets of Theta V images that were captured on different days,

exhibiting a variation in success rate of ±1.9% without domain adaptation and ±1.4% with

domain adaptation.

Setting Camera Adapted Map TL (m) NE (m) OS (%) SR (%) SPL SDTW NDTW

4 Sim Matterport - - 11.22 4.98 59.5 55.9 53.6 44.0 54.9
5 Sim Theta V 7 - 11.21 5.71 55.3 49.5 47.4 39.5 52.0
6 Sim Theta V 3 - 11.38 5.74 59.2 52.0 49.3 42.6 54.0

7 Robot Theta V 3 3 11.32 6.04 51.4 46.8 43.9 28.7 38.5
8 Robot Theta V 3 7 8.02 6.56 26.1 22.5 21.9 13.8 30.0

Table 2.2: Sim-to-real performance comparison for our VLN agent in Coda over 1,334m
of language-guided trajectories. Success rate at reaching the goal (SR) and path fidelity
(NDTW) remains relatively high in the robot ‘with map’ setting (row 7), but is reduced in the
‘no map’ setting (row 8).

2.5.3 How large is the sim-to-real gap with a map?

In the ‘with map’ setting, we conduct a full evaluation on the robot while also providing

a pre-captured laser scan to assist with obstacle avoidance and path-planning, and the

simulator navigation graph to provide waypoint candidates. The subgoal model is not

used. We consider this setting for two reasons. First, for a robot operating in a single

environment it may be reasonable to provide some navigation annotations and to expect the

robot to maintain an occupancy map. Second, this setting tests the implicit assumption in

graph-based simulators that existing robotics systems are capable of navigating between

viewpoints in the graph.

As reported in Table 2.2, in the ‘with map’ setting the robot achieves an instruction-

following success rate of 46.8% in physical Coda, a reduction of 5.2% compared to using

the robot camera in simulation (row 7 vs row 6). During this evaluation over 111 instructions

and 1.3km of trajectories we did not experience any collisions or navigation failures, which
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we define as the robot failing to navigate an edge between panoramic viewpoints in the

navigation graph. For context, the environment contains five ‘squeeze points’ with 80-90cm

gaps between furniture, compared to which the width of the robot with laptop is around

40cm. We attribute the reduction in performance to a degradation of visual inputs from

viewpoints that are slightly out-of-position compared to the simulator. We also note that,

despite our best efforts, there were some people present in Coda at times during testing,

which may also degrade robot performance due to domain differences (images of people

are extremely rare in the Matterport3D dataset). Overall we conclude that, at least based on

analysis performed in the Coda environment, if an occupancy map and navigation graph are

collected and annotated in advance, transferring a VLN agent to an inexpensive robot using

a classical navigation stack is feasible with around a 9.1% reduction in success rate (row 7

vs. row 4).

2.5.4 How large is the sim-to-real gap overall?

In the final experimental setting, we revoke the robot’s access to the Coda occupancy map

and the simulator navigation graph. Removing the navigation graph requires the robot to rely

on waypoint predictions from the subgoal model for the first time. Removing the occupancy

map requires the robot to perform simultaneous localization and mapping (SLAM) from

scratch in each episode (every time a new instruction is received), which makes obstacle

avoidance and path planning more challenging.2 Overall, this setting is indicative of ‘cold-

start’ performance in a new environment (which is also the standard VLN evaluation setting

in simulation).

As reported in row 8 of Table 2.2, in the ‘no map’ setting the instruction-following

success rate drops a further 24.3% to 22.5%. This experiment also exhibits the lowest

trajectory similarity with the results of the Matterport3D simulator (Table 2.3). Without

the occupancy map, the robot collided with objects (a table and a chair) for the first time.

2Note that for pose tracking, we run a separate, isolated ROS navigation stack with map access.
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However, we attribute most of the drop in success rate to differences between the predictions

of the subgoal model and the locations of viewpoints in the simulator navigation graph. We

found that both false positive and false negative waypoint predictions were evident, e.g.,

when the robot attempted to navigate down the spiral staircase (false positive), or failed to

consider navigating through the narrow ‘squeeze points’ between bookshelves and other

furniture (false negatives). Based on these results, we consider VLN sim-to-real transfer in

this setting to be an open research problem.

Platform Camera Adaptation Map 4 5 6 7 8

4 Sim Matterport - - 1.00 0.78 0.66 0.41 0.33
5 Sim Theta V 7 - 0.78 1.00 0.70 0.42 0.33
6 Sim Theta V 3 - 0.66 0.70 1.00 0.44 0.33
7 Robot Theta V 3 3 0.41 0.42 0.44 1.00 0.57
8 Robot Theta V 3 7 0.31 0.33 0.33 0.57 1.00

Table 2.3: Trajectory similarity between Coda experimental settings based on Normalized
Dynamic Time Warping (NDTW) [80]. Figure 2.3 right provides an example to contextualize
NDTW values.

2.6 Conclusion and Future Directions

We attempt the first sim-to-real transfer of a Vision-and-Language Navigation (VLN) agent

trained on the R2R dataset to a low-cost robot with 360° vision, using a learned subgoal

model and classical SLAM and path-planning routines. We show that, if an occupancy

map and navigation graph can be collected and annotated in advance, sim-to-real transfer is

largely successful albeit with a ∼9% reduction in instruction following success due to visual

domain differences (∼4%) and viewpoint differences (∼5%). This is a promising result,

suggesting that the language groundings learned by the agent in simulation can transfer to a

physical environment not seen in training. However, in the hardest ‘cold start’ setting with no

prior mapping of the environment, sim-to-real transfer is much less reliable due to the failure

of the subgoal model to predict the same neighboring waypoints in the simulator navigation
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Matterport3D / R2R Dataset

Train (n = 61) Val-Unseen (n = 11)

Coda Min Avg Max Min Avg Max

Num Viewpoints 59 8 125 345 20 87 215
Navigation Graph Degree 3.6 2.2 4.0 5.4 3.1 3.8 4.9
Avg Edge Distance (m) 2.8 1.3 2.2 3.1 1.8 2.2 2.8
Num Instructions 111 6 230 300 18 214 300
Avg Instruction Length (words) 25 20 29 35 22 28 32
Avg Trajectory Length (m) 12.0 5.3 9.7 15.0 6.1 9.2 11.1
Avg Trajectory Edges 4.8 3.0 4.9 5.4 3.9 4.7 5.2

Table 2.4: Comparison of per-environment average statistics between Coda and R2R,
suggesting that Coda is fairly typical of environments found in the Matterport3D / R2R
dataset.

graph. To narrow the sim-to-real gap in future work, the subgoal model will need to be

improved or eliminated, perhaps by training the VLN agent using a low-level action space

(e.g., predicting the heading and distance to move). Since the graph-based Matterport3D

simulator cannot support these low-level actions, this would require off-policy reinforcement

learning algorithms that can learn from a fixed batch of data that has already been gathered

[83], or alternatively, switching to a simulator that supports continuous motion [84, 85], as

in recent work from [86]. Since these simulators introduce visual artifacts not present in

the graph-based simulator, this may exacerbate visual domain differences, although recent

work [87] demonstrates a promisingly small sim-to-real gap in the context of PointGoal

navigation [88].
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Turn right, move through the open open double doors.
Turn right, move to the end of the hall. Turn right,
wait in front of the drinking fountain.

Walk straight towards the exit, but stop and make a
right when you see the wall with art and stop.

Make a right in front of the couch, veer straight, then
right to proceed past the windows and stop between
the first two bookshelves in front of the first hanging
piece of art.

Go between the first set of bookshelves. Turn left and
go straight until you are at the end of the hallway.

Turn around and walk to towards the end of the hall.
At the intersection, turn and head into the men’s room.

Continue forward with the whiteboards on your left.
Keep walking and you will be in a new room. Stop
before you reach the peach-colored couch on your
right.

Figure 2.4: Additional examples of navigation instructions in the Coda environment. Each
instruction is shown with the panoramic view from the starting pose, with the initial heading
indicated in red.
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Figure 2.5: Panoramic captures in Coda from the Matterport3D camera (row 1) and the
smaller and cheaper Ricoh Theta V camera (mounted on the robot) collected on three
different days (rows 2-4). The robot camera’s limited dynamic range and loss of detail
as compared to the Matterport3D camera (used for training the VLN agent) is clearly
evident. Images collected on different days (with the robot camera) illustrate the variations
in shadows, lighting, and precise object placement that confront the robot in the real physical
environment.
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Figure 2.6: Examples of the random color jitter applied to each panorama while training the
VLN agent to visually adapt to different lighting conditions.
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Figure 2.7: Floorplan view of Coda, showing the Matterport reconstruction and simulator
navigation graph (top), and its close alignment to the 2D laser scan used for robot pose
tracking (bottom).
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Figure 2.8: Waypoint predictions from the subgoal model on 8 randomly selected viewpoints
from the Matterport validation set.
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Instruction: Walk down the hall with the
brown shelving units on your left. Turn right
into the hallway with the elevators and then
stop.

Instruction: Go between the table bookcase
and the sectional sofa on this floor.

Instruction: Walk into hallway. Make a left at
closed brown door. Walk down hall and make
a left and stop by open white doors.

Instruction: Walk around the back of the large
couch. Turn left towards the open green door-
way. Walk through the green doors and stop.

Figure 2.9: Examples of Coda trajectories in sim and real for various instructions. While the
robot’s trajectory often resembles the simulator (top-left), subgoal prediction errors can lead
to divergences between the ‘with map’ and ‘no map’ settings (top-right), particularly in areas
of the building with floor-to-ceiling glass walls that are not easily detected (bottom-left).
In the last example (bottom-right) the agent fails in both sim and real, highlighting the
challenging nature of the VLN task.
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Figure 2.10: Illustration of all 111 of trajectories traversed by the robot under the ‘with
map’ setting (top) and the ‘no map’ setting (bottom). With a map, the robot traversed the
entire space without any collisions or navigation failures. Without a map, certain trajectory
segments (highlighted) with blue arrows are never traversed, indicating that the subgoal
model failed to predict these waypoints.
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(a) Matterport3D (b) Ricoh Theta V Day 1

(c) Ricoh Theta V Day 2 (d) Ricoh Theta V Day 3

Figure 2.11: Illustration of the VLN agent’s failure rates (in simulation) at each node in the
navigation graph. The failure rates are consistently higher (yellow) in the bottom right of
the map across all four data collections with the Matterport3D and Ricoh Theta V cameras.
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(a) Failure Rate Ratio - Ricoh Theta V Day 1 to Matterport3D

(b) Failure Rate Ratio - Ricoh Theta V Day 2 to Matterport3D

(c) Failure Rate Ratio - Ricoh Theta V Day 3 to Matterport3D

Figure 2.12: Illustration of the log of the ratio between the failure rates with the Ricoh Theta
V camera and the Matterport3D camera. A positive ratio, illustrated in red, indicates that the
VLN agent was more likely to fail when processing data from the Ricoh Theta V camera. A
negative ratio (in green) indicates the opposite. Across all three days, the agent was more
likely to fail at nodes to the top and bottom of the elevator area and at nodes near the glass
windows in the open space in the bottom right. Surprisingly, there are also some nodes (in
green) at which the agent consistently performs better using the Ricoh Theta V panoramas.
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