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SUMMARY

This dissertation focuses on two applications of analytics in sustainable and retail operations.

In chapter 2, we design a priority-based inspection strategy for the Environmental

Protection Agency (EPA) Region 2. Government regulators such as the U.S. EPA are

obligated to inspect facilities regularly to ensure compliance with environmental laws and

requirements. Faced with limited budget and resources, regulators can only inspect a small

fraction of facilities within a specific time frame. We propose a new inspection strategy

that can help environmental regulators prioritize facilities to be inspected under a limited

budget. We formulate the problem as a restless multiarmed bandit model and develop an

index-based inspection policy. We also demonstrate how to extend the model to incorporate

heterogeneous inspection costs and the possibility of environmental disaster. Simulations

using data from EPA Region 2 indicate the benefits of our proposed index-based compliance

monitoring strategy over other benchmark policies used in academic literature and practice

in reducing the harm to the environment and public health.

In chapter 3, we partner with a consumer electronics retailer, and show how incorporating

substitution and competition effects, two integral components of today’s competitive markets,

enhance the accuracy of the demand prediction models. The complicated relationship

between the demand of the focal product and the substitutes’ prices makes linear models

incapable of estimating the cross-price elasticities. We suggest a structure-imposed neural

network and demonstrate how it can be utilized in multiproduct pricing decision tools. Our

imposed structure mitigates the practical concerns around the interpretability of the neural

networks, which has hindered their adoption in revenue management.

xv



CHAPTER 1

INTRODUCTION AND BACKGROUND

The vast proliferation of data has significantly transformed managerial decision making in

recent years. Data has enabled managers to comprehend the dynamics of their organizations

in more depth, shifting operational decision making from the traditional “going with gut”

approach to more informed “analytical” procedure.

Using data has brought enormous values to both nonprofit and for-profit organizations.

Data-enabled processes increase the productivity and reduce the inefficiency in both types

of organizations [49].

In for-profit organizations such as retailers, data-driven operations have brought tremen-

dous monetary profits to the companies. Recent research demonstrates that companies that

extensively use customer analytics are 23 times more likely to acquire customers, enjoy nine

times more customer loyalty, and around 19 times more customer profitability. Aside from

the organizations, their customers also significantly benefit from their practice of analytics.

For example, these companies deliver 15 times more value to the customers and have around

six times more customer satisfaction [48].

In this dissertation, we show how analytics can stand at the forefront of transformational

efforts in not-for-profit and for-profit operations. We provide a more in-depth overview of

each chapter and their contributions next.

1.1 Priority-Based Environmental Inspection Strategy

In chapter 2, we present an application of analytical models in sustainable operations. Envi-

ronmental Protection Agency (EPA) has ten regional offices in the United States, with each

office being responsible for a few states (Figure 1.1). One of the major responsibilities of the

EPA in each region is assuring facilities abidance by the environmental laws and regulations,
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including Clean Air Act (CAA), Clean Water Act (CWA), Resource Conservation and

Recovery Act (RCRA).

Figure 1.1: Environmental Protection Agency regions.1

This chapter reflects our collaboration with the CAA data management team within

the Department of Environmental Compliance Assurance (DECA) of the Environmental

Protection Agency (EPA) Region 2 office. This office covers facilities within the states of

New York, New Jersey, Puerto Rico and the U.S. Virgin Islands.

CAA initially passed in 1963 and was significantly amended in the 1970s and 1990s

[20]. Since then, it has been highly beneficial in protecting the environment and public

health, and consequently reducing the economic burden associated with air pollution. From

an environmental perspective, the CAA is estimated to have contributed to a 74% decrease

in the combined emission of six major pollutants (particulate matter 2.5, particulate matter

10, sulfur dioxide, nitrogen oxides, volatile organic compounds and lead) between 1970 and

2018 [25], while the U.S. gross domestic product increased more than 200% in the same

period. From a public health perspective, CAA is estimated to have prevented over 160,000

1https://www.epa.gov/aboutepa/visiting-regional-office
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early deaths, 130,0000 heart diseases, and 1.7 million asthma exacerbations in 2010. These

numbers are expected to be as high as 230,000, 200,000, and 2.4 million respectively for

2020 [21].

1.1.1 Problem Definition

Assuring compliance with CAA regulations takes place through the EPA and its analogous

states inspections. Budget and time constraints significantly limit the number of inspections

that can be performed in each period. To tackle the resource limitation problem, EPA

recommends a cyclic policy with intervals depending on facilities’ emission size [24].

Specifically, EPA divides facilities into three main categories of major, synthetic minor

(SMI) and minor facilities with respect to their emission level, and suggests every two and

five years intervals for the inspection of major and SMI facilities.

EPA also allows designing a facility-by-facility inspection strategy that takes the fa-

cilities’ features and inspection history into account [24]. We develop an individualized

inspection strategy for the Region 2 facilities and show the advantages of our proposed

policy over different benchmarks.

1.1.2 Statement of Contributions

Our main contributions in chapter 2 are as follows:

• We model the EPA facility selection problem as a restless multiarmed bandit, in which

selecting a facility for inspection is similar to pulling an arm in the multiarmed bandit

setting. We prove our problem’s indexability and show that our proposed policy (under

a fixed inspection capacity) is asymptotically optimal as the number of facilities goes

to infinity.

• Our model differentiates between the high priority violations and regular (low priority)

violations; it also considers the time that facilities require to restore from any violations.

3



Additionally, it takes into account the potential harm (relative to the other facilities)

that a facility can impose on the environment.

• We estimate our model’s parameters based on the comprehensive data set of the

EPA Region 2 facilities’ inspections. We use a clustering approach to increase the

estimation robustness.

• We conduct extensive simulations to investigate the performance of our proposed

policy over the current EPA practice and other common inspection strategies. We also

study the performance of our policy under various capacities and inspection capacity

allocation scenarios.

1.2 Multiproduct Demand Prediction and Price Optimization using Neural Net-

works

In chapter 3, we switch gear to study an application of deep learning in designing pricing

decision tools. Most of the pricing decision tools are designed using linear demand prediction

models such as linear, log-linear, constant elasticity, and logit demand functions [62]. Linear

demand prediction models have shown efficiency in single product pricing problems, but in

practice, usually more than just one product’s price is changed at a time. Thus, retailers must

understand how changing the price of a product impacts the demand of the other products in

the category. In addition to the products within the same category, many of the products are

offered by different retailers. In recent years, many of the major retailers post their products’

prices online regularly, and costumers can compare the prices before making a purchase.

Consequently, retailers also need to incorporate the competition effect in their pricing tools.

1.2.1 Problem Definition

The goal of chapter 3 is addressing the substitution and competition effects in designing

pricing decision tools. The impact of the substitutable and competitors’ products’ prices on

4



demand of the main product can be complicated for the linear models to account for.

We show how neural networks can be helpful in measuring the substitutable and com-

petitor cross-price elasticities. Neural networks are powerful and widely applied prediction

tools capable of capturing nonlinear and complicated relationships. Figure 1.2 depicts a

schematic structure of a neural network. Their structures consist of three main components:

input layers, one or more hidden layer(s), and output layer. Each of the layers has one or

more nodes. There are activation functions (linear or nonlinear) in the hidden layer nodes,

which are gates between the node inputs and the output going to the next layer.

Figure 1.2: Schematic structure of a neural network.

The structures of the neural networks tend to be complicated and black-box. It is

generally impossible to state the relationship between the inputs and outputs or address the

causal effects in the networks. As a result, neural networks are unsuitable for settings such

as pricing in which the relationship of the output (revenue or demand) with input (price)

needs to be captured.

1.2.2 Statement of Contributions

In chapter 3, we propose a flexible yet interpretable structure-imposed neural network for

multiproduct demand prediction and provide its subsequent optimization technique. The

main contributions are listed below:

5



• We show how neural networks can predict the demand and estimate the substitutable

and competitor cross-price elasticities by proposing a structure-imposed neural net-

work. Our suggested network is able to account for the complicated relationship

between the substitutable and competitor prices with the demand of the focal products

while having mathematical and managerial explanations. Our work is particularly

novel in the revenue management literature since the neural networks’ black-box

nature impedes their application in pricing.

• We write the detailed mathematical formulation of the structure-imposed neural

network demand (revenue) function and provide the relationship between the fo-

cal, substitutable, and competitors’ prices with the demand (and revenue) of each

product. Additionally, we provide an optimization approach to solve the subsequent

multiproduct pricing optimization problem.

6



CHAPTER 2

PRIORITY-BASED ENVIRONMENTAL INSPECTION STRATEGY

2.1 Introduction

Environmental pollution, and in particular, air pollution, results in severe adverse health

outcomes globally. In 2016, ambient air pollution accounted for 7.6% of all the deaths in the

world according to the World Health Organization [69]. In the United States, 516 Disability

Adjusted Life Years (DALY) and 24 deaths per 100,000 people were attributed to ambient

air pollution in the same year [69].

The Clean Air Act (CAA) is the primary federal regulation aimed at controlling air

quality in the United States, and covers combined emissions of six major pollutants (par-

ticulate matter 2.5, particulate matter 10, sulfur dioxide, nitrogen oxides, volatile organic

compounds and lead) [20]. Compliance with the CAA translates into significant public

health gains, measured by the prevention of early deaths, heart disease and asthma [25].

Ensuring facilities’ CAA compliance is the responsibility of the Office of Enforcement

and Compliance Assurance (OECA) within the Environmental Protection Agency (EPA).

To foster facilities’ compliance with CAA, EPA partners with states and tribes to inspect

facilities (such as chemical plants, power plants, manufacturing operations, and gas stations)

and assess their conformity with all the applicable rules. In case of violations, OECA is

further required to execute enforcement actions and compel the violating facilities to achieve

compliance.

Despite the critical role of inspections in assuring environmental protection and public

health, EPA and its partners are only able to inspect a small portion of the potential polluters

every year due to resource limitations. The recent drastic decrease in EPA OECA’s budget

results in even fewer inspections than before; the United State’s proposed budget in March
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2017 cut the funds of OECA by 24%, and the delegated inspection fund from EPA to states

also decreased from $1.1 billion to $597 million [16]. This highlights the importance of

an effective Compliance Monitoring Strategy (CMS) to help OCEA identify the facilities

that are most likely to harm the environment and public health, and prioritize them for

inspection.

The EPA’s current CAA Compliance Monitoring Strategy applies a simple “cyclic”

rule: facilities are inspected at fixed time intervals whose length depends on their emission

quantity. More specifically, facilities are divided into three main categories, Major, Synthetic

Minor (SMI), and Minor, with respect to their emission levels. The recommended inspection

frequency is every two and five years for major and SMI facilities, respectively; there is

no specific guidance for minor facility inspection frequency. For example, in EPA Region

2 (covering New York, New Jersey, Puerto Rico and the U.S. Virgin Islands), there are

currently 19,374 facilities, among which 4.30% are major, 22.31% are SMI, and 73.39% are

minor.

The new Compliance Monitoring Strategy issued in October 2016, known as the flex-

ible CAA CMS, allows the regulators to individualize the inspection plans, and develop

alternative compliance monitoring strategies on a facility-by-facility basis. The Alternative

Compliance Monitoring Strategy (ACMS) recommends taking into account the facility’s

characteristics, including the facility’s compliance history, its location, its potential environ-

mental impact, etc. in determining how frequently to inspect it [24].

The academic literature, to the best of our knowledge, has not considered developing

an individualized inspection targeting strategy in the presence of a tight budget constraint.

In this chapter, motivated by the CAA program, we design an Individualized Compliance

Monitoring Strategy that meets EPA requirements. We demonstrate the advantages of our

recommended policy via simulation using data from EPA Region 2 on facilities’ features

and compliance histories.

Our methodology is not only applicable to the CAA program, but also other programs of
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the OECA such as Resource Conservation and Recovery Act (RCRA) and Clean Water Act

(CWA), and more broadly, inspection targeting strategies for environmental compliance.

2.1.1 Contributions to Literature and Practice

Our model considers a regulator who selects a set of facilities to inspect in each period.

The regulator has a resource restriction that limits the number of inspections that can be

conducted per period. The regulator’s objective is to minimize the long-run average harm to

the environment from noncompliance.

We formulate the facility selection process as a restless multiarmed bandit (RMAB)

problem [68] in which each facility represents an arm and choosing a facility can be

interpreted as pulling the arm. We develop an index policy that determines the regulator’s

inspection priorities in each period. The indices are computed according to the regulator’s

belief regarding facilities’ probabilities of noncompliance, which depend on facilities’

attributes. These attributes contain both static and dynamic features of the facility such as

location, type of industry, emission types, demographic characteristics, and compliance

history data (inspection and enforcement history). This information is exogenous and

available to the regulator prior to its decision making in every period.

There are several operations management papers that consider restless bandits and

index policies for resource allocation. [36] utilize a restless multiarmed bandit model to

design a maintenance policy for multiple machines with limited repairmen. [14] propose

an index policy to tackle the assortment optimization problem for retailers in time. [4]

investigate the inventory routing problem via the restless bandit framework. [35] study

the admission control and routing of customers seeking service via assorted stations. [18]

address the resource allocation among patients in a healthcare delivery system via restless

multiarmed bandit models. [39] utilize a restless bandit formulation to dynamically allocate

perishable inventories in a knapsack setting. [44] benefit from restless bandits to find the

optimal screening strategy for hepatocellular carcinoma. [5] use restless bandits to study the
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prioritization problem for hepatitis C treatment in United States prisons. Our work is aligned

with the aforementioned papers in studying the allocation of limited resources among a large

number of candidates in an individualized manner, and expands the scope of the literature

by considering a regulatory compliance context.

Restless multi armed bandits have also been investigated in depth from a theoretical

perspective over the past few decades. [68] defines the indexability property and provides a

selection policy known as Whittle’s index that prioritizes the arms at each time according

to their states (states can be defined based on the arms’ features). [67] show that Whittle’s

policy is asymptotically optimal except in rare instances and that the size of the suboptimality

in these cases is negligible. [10] provide linear programming relaxations for restless bandit

problems. [53] further investigates the indexability and optimality of restless bandits for

problems satisfying partial conservation law. [32] study the two-armed restless bandits with

imperfect information and derive their indexability. We prove the indexability of our RMAB

formulation and derive its mathematical properties.

This work contributes to nascent research on environmental compliance monitoring in

the operations management literature. [43] uses a game theory model to investigate the effect

of the regulator’s inspection policy (random and periodic) on one firm’s noncompliance

disclosure. [66] develops self-disclosure regulations for facilities’ stochastic hazards. They

aim to minimize the expected societal cost in the long run by dynamically determining the

self-disclosure reward and inspection policy for the regulator. [2] model the interaction

between a facility’s self-policing strategy and the regulator’s compliance restoration strategy,

with a focus on the impact of Permanent Fix (PF) and Temporary Fix (TF) restoration policies

on strategic interactions between the regulator and the firm. [46] empirically demonstrate

the learning effect from inspections within and among facilities. Our contribution to this

literature is to study environmental compliance monitoring strategies in a multiple-firm

scenario under resource constraints. In addition to considering the resource constraints, we

individualize the Compliance Monitoring Strategy by taking into account static and dynamic
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firm characteristics. Furthermore, we validate the performance of our model using the EPA

OECA compliance data set.

Our work has important implications for environmental regulators, and indicates the

value of incorporating diverse attributes of the facility rather than only emission quanti-

ties in designing the optimal Compliance Monitoring Strategy and reducing harm to the

environment and human health.

2.2 Model

We consider a regulator (e.g. EPA) who is responsible for ensuring that N facilities in

a certain region are in compliance with environmental laws and regulations by means of

inspections. We consider an infinite time horizon with discrete time periods. The compliance

states of facilities evolve according to a (partially) hidden Markov chain. In each period, the

regulator updates her belief that each facility is in compliance based on facility characteristics

and past inspection history. Then, the regulator selects M facilities for inspection (M < N )

and compels non-compliant facilities to get back into compliance. The objective of the

regulator is to minimize the long-run average environmental cost caused by facilities that

are not in compliance with regulations.

In the baseline model developed in this section, we assume that inspecting each facility

requires the same amount of resources. We further assume that inspections are perfectly

accurate, and fully capable of detecting existing violations.

2.2.1 Facilities’ Compliance State Evolution

We start by defining the compliance states associated with a facility, which are unobservable

to the regulator without inspection. A facility that abides by all the applicable environmental

regulations, i.e. has no violations, is in compliance (denoted by C). Any deviation from

the environmental regulations is considered in non-compliance or violation. Although any

transgression from the applicable regulation is regarded as noncompliance and addressed
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by the regulator, some violations can be more harmful to the environment and human

health. In the Clean Air Act, the violations that (i) likely pose significant risk to public

health or the environment through emitting air pollutants or (ii ) hinder implementation

of environmental regulations are called High-priority Violations (denoted by HPV ) [23].

For instance, facilities that release hazardous air pollutants (e.g. methanol or toluene) are

required to have appropriate control devices (e.g. thermal oxidizer or low temperature

condenser) to reduce the hazards by 95% and turn pollutants to less damaging substances

(water and carbon dioxide). Failing to utilize the appropriate control devices or improper

working condition of these devices are examples of high priority violations. Falsifying

environmental records is another example of HPV since it impedes the implementation of

the environmental regulations. For ease of exposition, we label the rest of the violations

which do not pose a major threat for the environment and public health as Low-priority

Violations (denoted by LPV ). Note that if instances of both low-priority and high-priority

violations concurrently exist in a facility, the state is considered HPV .

Upon the detection of any type of violation, the regulator requires the facility to restore

full compliance. As such, the non-compliant facility should design a plan for fixing the

violations in a timely manner with the regulator’s agreement. The time between the detection

of noncompliance and restoration of full compliance is called Restoration (R). We define the

restoration state (R) only as the formal restoration process taking place after the violation is

explicitly observed by the regulator. Therefore, although facilities might fix the violation

on their own without inspection, we do not consider this to be the restoration state. Since

the restoration from the high-priority violations may require more time and effort than

low-priority ones, we define two restoration states: Restoration from LPV (RLPV ) and

Restoration from HPV (RHPV ).

In sum, a facility can be in one of the following five states with respect to environmental

regulations at any given time: compliance (C), low priority violation (LPV ), high priority

violation (HPV ), restoration from LPV (RLPV ) or restoration from HPV (RHPV ).
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We assume that the facilities’ states alternate according to a discrete-time Markov chain.

The transition probabilities between the states for facility n = 1, 2, · · · , N are exogenous

and known to the regulator. States C, LPV and HPV are unobservable (hidden) unless

through inspection, while the restoration states are visible because they follow the detection

of non-compliance and the facility is monitored by the regulator until it achieves compliance

again. In Section 2.5, we estimate these transition probabilities based on facility attributes

such as location, size, type of industry, type of hazardous emissions, etc.
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Figure 2.1: Hidden Markov chain transition probabilities of facility nwhen it is not inspected
(NI) in a period.

Figure 2.1 depicts the Markov chain transition probabilities for facility n in a period

when it is not inspected. If the facility had been previously inspected and found to be

non-compliant, it may be in one of the restoration states, and stays there until it achieves

compliance. Otherwise, it transitions on its own between compliance, low priority, and

high priority violation states until the next inspection. Here, return to compliance without

inspection captures internal self-policing and compliance efforts by firms [43, 2].

Otherwise, suppose facility n is inspected (I) in a certain period. If the facility is found
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to be non-compliant, i.e., in states LPV or HPV , the state transitions to the corresponding

restoration state RLPV or RHPV in the next period. If it is found to be compliant in the

current period, it may stay compliant or may transition to a low- or high-priority violation in

the next period. The state transition probabilities are shown in Figure 2.2.
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RLPV RHPV

LPV HPV
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n

P
C
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n
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,Hn

1 1
Figure 2.2: Hidden Markov chain transition probabilities of facility n if it is inspected (I) in
a period.

If facility n is noncompliant (LPV or HPV ), it creates an expected environmental cost

of cn = (cLn , c
H
n ) per period. We assume that the environmental cost during the restoration

stage is lower, and normalize it to zero without loss of generality.

2.2.2 Regulator’s Observable Markov Chain and the Restless Multiarmed Bandit

Formulation

Next, we consider the state of facilities n = 1, 2, · · · , N from the regulator’s perspective.

For any facility n, if it has been found in violation and is currently in the restoration process

(RLPV or RHPV ), we assume its state is observable to the regulator: In practice, regulators

such as EPA will closely monitor facilities found to be non-compliant until they reach

compliance. If facility n is not in the restoration process, let sn be the number of periods

since the facility’s last known time of compliance. This corresponds to either the last time
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that the facility was inspected and found to be compliant, or the last time the facility became

compliant following a restoration process. We assume that, due to environmental regulations,

sn is restricted to be less than T periods. Namely, any facility must be inspected at most

T periods after its last inspection or its last restoration to compliance, whichever is more

recent. Therefore, from the regulator’s perspective, his observable state space consists of

sn ∈ {1, 2, · · · , T} ∪ {RLPV , RHPV } for facility n. At the beginning of the time horizon,

we assume all facilities are in compliance.

If facility n is not inspected, the observable state transition probabilities for this facility

are shown in Figure 2.3. If the state is s ∈ {1, · · · , T − 1}, it increases to s+ 1. If the state

is RLPV or RHPV , there is either a self-transition into the same state, or the facility becomes

compliant so that the next state is s = 1. Note that we do not specify a transition out of state

T , because an inspection is required in this state.
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Figure 2.3: Observable Markov chain transition probabilities of facility n in a period with
no inspection (NI).

If facility n is inspected, the observable state transition diagram and the associated

transition probability matrix for this facility are shown in Figures 2.4 and 2.5, respectively.

If the state is s ∈ {1, · · · , T}, an inspection will either discover compliance or a violation.

Let the probability of facility n being in state C, LPV or HPV be denoted by the vector
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qn(s) = (qCn (s)), qLn (s), qHn (s)). These three probabilities are the transition probabilities

from s into 1, RLPV and RHPV , respectively. Here, qn(s) is computed as (1, 0, 0)>(Qn)s,

where Qn is the state transition probability matrix corresponding to the class of states

C,LPV and HPV in the hidden Markov chain depicted in Figure 2.1. Note that we define

the outgoing transition probabilities from states RLPV and RHPV to be the same as those

under the no inspection case; thus, it is never optimal to inspect a facility during a restoration

period. We make the following assumption on the probability of violations.

Assumption 1 For any facility n ∈ {1, · · · , N}, the probabilities of low and high priority

violations (qLn (s) and qHn (s)) are increasing in 1 ≤ s ≤ T .

This is a mild assumption, since the probability of violation is likely to increase over time if

the regulator does not inspect a facility.

1 2 3 T − 1 T

RLPV RHPV

. . .

Figure 2.4: Observable Markov chain transition probabilities of facility n in a period with
inspection (I).

Given the observable Markov chains for the N facilities, we formulate the decision

problem faced by the regulator as a restless multiarmed bandit (RMAB) model [68]. The

restless bandit setting includes N arms, which correspond to N facilities in our setting. In
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1 2 3 ... T − 1 T RLPV RHPV



1 qCn (1) 0 0 ... 0 0 qLn (1) qHn (1)
2 qCn (2) 0 0 ... 0 0 qLn (2) qHn (2)
3 qCn (3) 0 0 ... 0 0 qLn (3) qHn (3)
... ... ... ... ... ... ... ... ...

T − 1 qCn (T − 1) 0 0 ... 0 0 qLn (T − 1) qHn (T − 1)
T qCn (T ) 0 0 ... 0 0 qLn (T ) qHn (T )

RLPV 1− PRL

n 0 0 ... 0 0 PRL

n 0

RHPV 1− PRH

n 0 0 ... 0 0 0 PRH

n

Figure 2.5: Observable Markov chain transition probabilities of facility n in a period with
inspection (I).

each period, M arms are selected by the decision maker to be active (i.e. inspected), and

the rest N −M arms stay passive (i.e. not inspected). In other words, the decisions in each

period must satisfy {an ∈ {I,NI} :
∑N

n=1 δ(an = I) = M}.

An environmental cost is incurred in each period. Recall that cLn and cHn are the per

period cost at facility n in states LPV and HPV , and that the cost for the restoration

states is normalized to 0. Therefore, regardless of whether arm n is activated, the one-

period expected environmental cost associated with state sn is given by c>n · qn(sn) =

(0, cLn , c
H
n )> · (qCn (s), qLn (s), qHn (s)). The decision maker’s objective is to minimize the

long-run average cost over an infinite horizon.

2.3 An Index-Based Inspection Policy

The restless bandit problem is well known to be computationally challenging, as the problem

state space grows exponentially with the number of arms. [56] showed that the restless

bandit problem is PSPACE-hard even if all bandits follow a deterministic transition. To make

computation for the restless bandit problem tractable, index policies have been introduced.

Whittle’s index is one of the most widely used among this class of policies [68]. To be able

to use this index policy, we need to prove that the indexability condition holds. However,
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verifying the indexability condition is challenging in general [37]. If the indexability

condition holds and the ratio M/N remains fixed, it is shown by [67] that under some

technical conditions, Whittle’s index policy is asymptotically optimal as the number of

arms N goes to infinity (without this technical condition, counterexamples exist but are

rare). In this section, we start by reviewing the definitions of Whittle’s index policy and the

indexability condition. We then prove indexability for our facility inspection problem and

analyze the structure of the resulting heuristic.

2.3.1 Definitions of Indexability and Whittle’s Index

The heuristic policy by [68] considers a relaxation procedure as follows: Let M(t) be the

number of arms which are active at period t. The original problem requires that exactly M

arms are activated, i.e., M(t) = M . Whittle’s approximation only requires this condition

to hold in expectation: E[M(t)] = M . Then a Lagrangian relaxation is applied to this

expectation constraint. Let v be its Lagrangian multiplier. With the relaxation, the regulator

is allowed to inspect an unlimited number of facilities in a period, although it must pay an

“activation fee” or a “virtual inspection cost” that is equal to v for each inspected facility.

Using Lagrangian relaxation, the inspection decision problem is now separable for each

facility. Specifically, given v, the optimal inspection problem for any facility n is a dynamic

program with two actions: inspect (I) or not inspect (NI); if the decision is I, an extra cost of

v is incurred. We are now ready to define the indexability condition.

Definition 1 (Indexability) Let Sn(v) be the set of states for which it is optimal not to

inspect facility n given activation cost v. We call the problem indexable if Sn(v) ⊂ Sn(v′)

for any v < v′ and any facility n.

Definition 2 (Whittle’s Index) For each facility n, Whittle’s index for state s is vn(s) =

inf{v : s ∈ Sn(v)}.

Definition 1 states that a facility is indexable if the set of states for which no inspection
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is optimal increases monotonically as the activation fee increases. Definition 2 means that

Whittle’s index associated with each state is the break-even point where the decision maker

is indifferent between inspection and no inspection.

Remark 1 Throughout this chapter, the term “increasing” (resp., “decreasing”) is de-

fined in the general sense and is interchangeable with the word “nondecreasing” (resp.,

“nonincreasing”).

2.3.2 Proof of the Indexability Condition

Next, we prove the indexability condition and show how to compute the indices of facilities.

We focus on a given facility n ∈ {1, · · · , N}.

As a first step, we formulate the dynamic program given the value of Lagrangian

multiplier (i.e., inspection cost) v. Recall that qn(s) = (qCn (s), qLn (s), qHn (s)) denote the

probabilities of facility n being in states C, LPV , and HPV for s ∈ {1, · · · , T} and that

cn = (0, cLn , c
H
n ) denote the associated expected environmental costs. Using the transition

diagrams from Figures 2.3 and 2.4, we obtain the Bellman’s equations for the average cost

dynamic program as

γn + hn(s) = c>nqn(s) + min
{
g>n qn(s) + v, hn(s+ 1)

}
, ∀s ∈ {1, · · · , T − 1},

(2.1a)

γn + hn(T ) = c>nqn(T ) + g>n qn(T ) + v, (2.1b)

γn + hn(RLPV ) = (1− PRL

n )hn(1) + PRL

n hn(RLPV ), (2.1c)

γn + hn(RHPV ) = (1− PRH

n )hn(1) + PRH

n hn(RHPV ). (2.1d)

Here, γn is the optimal long run average cost associated with facility n given inspection cost

v. We use hn(s) to denote the differential cost of state s ∈ {1, · · · , T} ∪ {RLPV , RHPV }.

We also denote by gn = (hn(1), hn(RLPV ), hn(RHPV )) the vector of differential costs

starting from state s = 1, RLPV , RHPV , respectively. Eq (2.1a) is the Bellman’s equation
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associated with state s = {1, · · · , T − 1}: If the decision is “inspection,” an inspection cost

v is incurred, and the next state can be either 1, RLPV or RHPV (if the facility is found to be

in states C,LPV or HPV upon inspection, respectively), with probability vector qn(s); if

the decision is “no inspection,” the next state is simply s+ 1. In Eq (2.1b), when a facility

is in state T , it must be inspected according to our assumption. In Eqs (2.1c) and (2.1d), the

facility is in restoration from violations LPV or HPV and will return to compliance with

the associated probability.

Remark 2 The Bellman’s equation for infinite horizon average cost problem requires

certain assumptions. One such assumption is that there exists a special state such that for

all initial states and all policies, this special state will be visited infinitely often [9]. This

assumption holds in our setting, as the state s = 1 (one period after last known compliance)

will be visited infinitely often under any policy and any starting state.

There is an extra degree of freedom in the Bellman’s equations (2.1a)-(2.1d), so we

normalize the differential costs by letting hn(1) = 0. The equations (2.1c) and (2.1c) for

recovery states can be simplified as

hn(RLPV ) = − γn
1− PRL

n

, hn(RHPV ) = − γn
1− PRH

n

. (2.2)

In what follows, we prove that the indexability condition holds in our problem by using

the following lemma. We write the differential cost hn(s) as hn(s, v) to emphasize that it

depends on the virtual inspection cost v.

Lemma 1 The function h̃n(s, v) := hn(s, v)− g>n qn(s− 1)− v is decreasing in v for any

s = 1, · · · , T .

Using Lemma 1 and Equation (2.1a), we immediately have the following result.

Theorem 1 For a given facility n, the set of states for which “no inspection” is optimal

satisfies Sn(v) ⊂ Sn(v′) for any v < v′, implying that the restless bandit model is indexable.
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2.3.3 Whittle’s Index Policy for Multiple Facilities

If the indexability condition holds, we can apply a simple heuristic policy: in each period,

rank the N facilities according to their Whittle’s indices given current states and choose the

top M facilities to be inspected.

Upon proving the indexability of our problem, we can conclude that Whittle’s index

policy is asymptotically optimal as the number of facilities N and the inspection capacity

M both go to infinity, while their ratio M/N remains a constant [67].

Simulating Whittle’s index policy for multiple facilities with heterogeneous compliance

transition rates, we observe that the optimal inspection strategy for multiple facilities is

not cyclic (Figure 2.6). This is opposed to the EPA Compliance Monitoring Strategy that

suggests periodic inspections.

(a) Mean (benchmark: uniform cyclic policy (N/M = 5)).

21



(b) Standard deviation over the mean

Figure 2.6: Plots of the mean and standard deviation over the mean of the time intervals
between two consecutive Whittle’s index suggested inspections for each facility (N = 50,
M = 10, and T = 20).

2.4 Extensions

In this section, we consider two extensions to the main model: heterogeneous inspection

costs and the possibility of a major environmental adverse event (“disaster”).

2.4.1 Inspections with Heterogeneous Resource Requirements

In the main body of the chapter, we assumed there is a constraint on the number of facilities

that can be inspected in each period. More generally, inspecting different facilities may

require different levels of resources depending on facility characteristics (e.g., location,

type of industry, size, etc), and facilities to inspect could be determined based on a total

budget. Let wn be the level of resource required to inspect the nth facility, and that there is a

total resource constraint R in each period. Then the index policy can be modified to select

facilities with the largest indices within the available resource constraint.
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Max ΣN
i=1γn(t)xn

ΣN
i=1wnxn ≤ R

xn ∈ {0, 1}

where γn(t) denotes the index of the facility n at time t.

2.4.2 Disaster Occurrence

Failing to address high priority violations might result in a disaster (D) which is immediately

observable by the regulator and citizens even without conducting an inspection. For example,

Tonawanda Coke Corporation (TCC) located in Tonawanda, NY, was reported by local

citizens to the EPA after they observed dark smokey discharge in its surroundings. The

facility was found to be over-emitting cancer causing substances including benzene [70].

Restoration from the disaster state demands significantly more effort compared to restoration

from LPV or HPV . Therefore, we differentiate between these states, and define RD as

restoration from the disaster state. Disaster (D) and its associated recovery (RD) along with

the RLPV and RHPV are observable by the regulator. C, LPV and HPV are the hidden

states as described in the main model. The hidden Markov chain transition probabilities of

facility n without and with inspection are depicted in Figures 2.7 and 2.8. As shown here,

upon the detection of any type of violation (through inspection or occurrence of disaster),

the facility switches to the corresponding restoration state until it is back to compliance.
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Figure 2.7: Hidden Markov chain transition probabilities of facility n if it is not inspected
(NI) in a period (Disaster Included).
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Figure 2.8: Hidden Markov chain transition probabilities of facility n if it is inspected (I) in
a period (Disaster Included).
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From the perspective of the regulator, the observable Markov chain transition probabili-

ties are shown in Figures 2.9 and 2.10, respectively. As shown, the regulator’s observable

state space includes sn ∈ {1, 2, · · · , T} ∪ {D,RLPV , RHPV , RD} for facility n.
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Figure 2.9: Observable Markov chain transition probabilities of facility n in a period with
no inspection (NI) (Disaster Included).

The Bellman’s equation corresponding to the described model can be written as Eq. 2.3.

γn + hn(s) = c>nqn(s) + min
{
g>n qn(s) + qDn (s)hn(D) + v, (1− qDn (s))hn(s+ 1)

+ qDn (s)hn(D)
}

s ∈ {1, · · · , T − 1}, (2.3a)

γn + hn(T ) = c>nqn(T ) + g>n qn(T ) + qDn (T )hn(D) + v, (2.3b)

γn + hn(D) = cDn + hn(RD), (2.3c)

γn + hn(RLPV ) = (1− PRL

n )hn(1) + PRL

n hn(RLPV ), (2.3d)

γn + hn(RHPV ) = (1− PRH

n )hn(1) + PRH

n hn(RHPV ), (2.3e)

γn + hn(RD) = (1− PRD

n )hn(1) + PRD

n hn(RD). (2.3f)
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Figure 2.10: Observable Markov chain transition probabilities of facility n in a period with
inspection (I) (Disaster Included).

1 2 3 ... T − 1 T D RLPV RHPV RD



1 qCn (1) 0 0 ... 0 0 qDn (1) qLn (1) qHn (1) 0
2 qCn (2) 0 0 ... 0 0 qDn (2) qLn (2) qHn (2) 0
3 qCn (3) 0 0 ... 0 0 qDn (3) qLn (3) qHn (3) 0
... ... ... ... ... ... ... ... ...

T − 1 qCn (T − 1) 0 0 ... 0 0 qDn (T − 1) qLn (T − 1) qHn (T − 1) 0
T qCn (T ) 0 0 ... 0 0 qDn (T ) qLn (T ) qHn (T ) 0
D 0 0 0 ... 0 0 0 0 0 1

RLPV 1− PRL

n 0 0 ... 0 0 0 PRL

n 0 0

RHPV 1− PRH

n 0 0 ... 0 0 0 0 PRH

n 0

RD 1− PRD

n 0 0 ... 0 0 0 0 0 PRD

n

Figure 2.11: Observable Markov chain transition probabilities of facility n in a period with
inspection (I) (Disaster Included).

Consistent with Eq 2.1, γn is the long run average optimal cost associated with facility

n given inspection cost v, and hn(s) is the differential cost starting from state s, with
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hn(1) = 0. Further, the facility should get inspected at most T periods after the last known

compliant state (Eq. 2.3b). When a facility transitions to a disaster state, this is detectable

without inspection and imposes a large cost cDn on the environment cDn � cLn , c
H
n (Eq. 2.3d).

Equations 2.3d-2.3f capture the transitions associated with restoration from states LPV ,

HPV and D. Bellman’s equation 2.3 for these states can be rewritten as Eq. 2.4:

hn(RL) = − γn
1− PRL

n

, hn(RH) = − γn
1− PRH

n

, hn(RD) = − γn
1− PRD

n

. (2.4)

We now proceed to prove the indexability of the model. This proof requires a slightly

more restricted version of Assumption 1 presented as Assumption 2.

Assumption 2 The violation probabilities qLn (t), qHn (t) and qDn (t) at any given time t are

such that

• For LPV noncompliance, qLn (t) ≥ qLn (t−1)
1−qDn (t−1) or equivalently (1− qDn (t− 1))qLn (t)−

qLn (t− 1) ≥ 0.

• For HPV noncompliance, qHn (t) ≥ qHn (t−1)
1−qDn (t−1) or equivalently (1− qDn (t− 1))qHn (t)−

qHn (t− 1) ≥ 0.

Assumption 2 tightens Assumption 1 as it imposes a non-negative lower bound on the

increase in probabilities of low priority and high priority violations.

Lemma 2 Under the Assumption 2, the function h̃n(s, v) := (1 − qDn (s − 1))hn(s, v) −

g>n qn(s− 1)− v is decreasing in v for any s = 1, 2, ..., T .

Based on the Lemma 2 and Eq. 2.3, we have the following theorem that demonstrates

indexability.

Theorem 2 For a given facility n, the set of states for which “no inspection” is optimal

satisfies Sn(v) ⊂ Sn(v′) for any v < v′, implying that the restless bandit model is indexable.
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2.5 Model Calibration

In this section, we calibrate the compliance monitoring model presented in §2.2 using the

data from EPA’s Clean Air Act (CAA) Monitoring program. The data can be accessed

publicly at EPA’s ICIS-Air database. We provide an overview of this dataset in §2.5.1 and

describe the EPA current practice in §2.5.2. We then use the data to calibrate the MDP model

in §2.5.3. The model calibration results will be used in the §2.6 to test different compliance

monitoring policies.

2.5.1 Data Description

We use data for on-site inspections conducted through the Clean Air Act (CAA) program of

the Environmental Protection Agency (EPA). The data set contains facilities’ information

and their compliance, and enforcement history during 2002-2016.1 Because of the large

scale of the data, we restrict our analysis to one of the ten EPA regions: Region 2, which

covers New York, New Jersey, the U.S. Virgin Islands, and Puerto Rico.

There are a total of 19,374 facilities in Region 2 that are registered in the EPA’s database.

We exclude facilities with unknown, not applicable, and other emission size (476 facilities

in total) from this statistics. Since EPA has not kept track of the facilities operating status,

we assume that all the facilities currently registered in EPA data set were operating during

the time frame from 2002-2016. All the facilities are classified by EPA into three main

categories by size: major, synthetic minor (SMI) and minor.

We limit our analysis to the major and SMI facilities, mainly because the data for minor

facilities are limited as they are inspected less frequently — only 34.09% of the minor

facilities have been inspected at least once in the data set. Furthermore, minor facilities are

potentially less harmful to the environment and public health due to the small size.

By excluding the minor facilities, the remaining data set consists of 5,156 facilities, in

1We do not include more recent data as the inspection history and enforcement actions data set after 2016
may be incomplete and still being updated.
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which 833 are major and 4,323 are SMI (see a summary in Table 2.2).

To develop a comprehensive individualized compliance monitoring strategy, we extract

the following information from the data set:

• Facilities’ characteristics: Facility ID, type of industry, type of ownership, facilities’

emission programs information, location, and demographics. For location, we use

both county name and the non-attainment are flag. We use county as the measure for

facility location over zip code, city, and state. County is detailed enough to provide

insight about the location (unlike state) and aggregated enough to avoid excessive

levels in our estimation procedure (unlike city or zip code). Non-attainment area flag

is another information about the location which determines if the area has air quality

worse than the national ambient air quality standards [28]. To represent demographics,

we use the environmental justice area flag. Environmental justice areas refer to the

census blocks where at least 20% of residents are in poverty, or at least 30% of them

are minority [3]. All of the fields are categorical, Table 2.1 provides a summary of

these features.

• Inspection history: The history of the on-site inspections/off-site monitorings per-

formed on the facilities, whether they have been conducted by EPA or states, the

type of inspection/monitoring (on-site/off-site and full/partial inspection), and air

programs included in the inspection/monitoring. Note that we only focus on on-site

inspections, we also do not differentiate between full and partial inspections, and

inspections conducted through EPA and states.

• Violation enforcement history: The history of the enforcement actions given to each

facility, including the date that settlement has been entered, the amount of penalty,

and whether the enforcement activity was judicial or administrative. We do not

differentiate between judicial and administrative enforcement actions.

For more explanation of the fields in data set see https://echo.
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epa.gov/tools/data-downloads/icis-air-download-summary#

air-program-codes), the detailed data processing steps are also provided in Appendix

§B.

Table 2.1: Facilities’ characteristics and their number of levels.

Facility feature Major SMI
Type of industry 46 78

Facility ownership type 8 8
Applicable air programs 21 19

County name 108 99
Non-attainment area flag 2 2

Environmental justice area flag 2 2

Identifying Regular vs. Restoration Inspections.

We categorize all the conducted inspections to two groups of regular and restoration

inspections. Regular inspections are the planned inspections performed on the facilities

when the last known state of the facility is compliant. Upon detecting noncompliance (NC:

LPV or HPV ) through inspection, the facility is required to design an effective compliance

restoration plan under the supervision of the regulator, following which the regulator may

conduct a restoration inspection as follow up to assure the compliance achievement.2.

Therefore, restoration inspections are performed when the last known state of the facility is

noncompliant.

Table 2.2, provides an overview of the regular inspections conducted on the major and

SMI facilities of the EPA Region 2 during 2002-2016.

Remark 3 Note that throughout this chapter, we only allocate resources (select facilities)

for regular inspections since restoration inspections may be conducted based on the regulator

discretion following observed violations anyways.
2Note that in practice these inspections may be conducted as multiple partial inspections through the

violation restoration interval. For low priority violations, restoration inspections happen within 6 months
following the noncompliant inspection. This period may be longer for HPVs. More information on restoration
inspections and how we use them is provided in §B.2.2.

30

https://echo.epa.gov/tools/data-downloads/icis-air-download-summary#air-program-codes
https://echo.epa.gov/tools/data-downloads/icis-air-download-summary#air-program-codes
https://echo.epa.gov/tools/data-downloads/icis-air-download-summary#air-program-codes


Table 2.2: Conducted Regular Inspections Statistics for EPA Region 2 during 2002-2016.

Major SMI
Facilities Number of facilities 833 4323

Inspections

Total number of regular inspections 6370 7467
Number of facilities with at least one regular inspection 811 3275

Average number of regular inspections per facility 7.65 1.73
Average time between two regular inspections (weeks) 85.04 181.16

Violations
Percentage of LPVs in regular inspections 9.65% 3.94%
Percentage of HPVs in regular inspections 1.62% 0.98%

Percentage of all violations in regular inspections 11.27% 4.92%

2.5.2 Characterizing the Current Practice

The United States federal Compliance Monitoring Strategy recommends periodic inspections

with recommended, at a minimum, two-year and five-year intervals for majors and SMI

facilities, respectively [24]. We use this policy as one of the benchmarks in the §2.6. As

presented in Table 2.2, the average time between regular inspections for major and SMI

facilities are respectively 85.04 and 181.16 weeks, which are shorter than the recommended

intervals.

2.5.3 Characterizing the Compliance and Restoration Transition Probabilities

We divide the parameters that we require to estimate into two categories of restoration and

compliance transition probabilities. To increase our estimation’s reliability, we cluster the

facilities of each emission size (major and SMI) and perform the parameter estimation in the

aggregated (cluster) level. We estimate these parameters in a two-fold process as follows:

• We initially use the hierarchical clustering analysis (HCA) to divide the facilities into

k clusters based on their characteristics (Table 2.1). The goal of clustering is to find

groups of facilities more similar to each other. The following steps are required to this

end:

- Choosing the dissimilarity (distance) matrix: Selecting an appropriate dissimilarity
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measure is a fundamental step in clustering. We use the features of Table 2.1 as input

for the dissimilarity analysis. Facilities’ characteristics are categorical, we select

Gower’s distance measure to determine the distance between facilities’ characteristics

[38].

- Choosing the clustering algorithm: Hierarchical clustering is commonly imple-

mented as agglomerative (bottom-up), which starts with treating each observation as a

distinct cluster, and proceeds by merging the most similar clusters in each step accord-

ing to their intergroup dissimilarity measure. We use the agglomerative hierarchical

clustering with Ward’s minimum variance linkage which resulted in the most balanced

clusters among common hierarchical clustering techniques (complete, average, and

minimax linkage agglomerative HCA). The Ward’s minimum variance linkage ag-

glomerative hierarchical clustering minimizes the total within-cluster variance. This

approach initiates with considering each point as a single cluster. Each further step

merges the pair of clusters that cause the minimum increase in total within-cluster

variance upon aggregation. For more information, see [52].

- Choosing the number of clusters and assessing them: We use the Elbow method

(traced to [63]) for selecting the optimal number of clusters for Ward’s minimum

variance linkage agglomerative clustering of major and SMI facilities.

• We subsequently estimate parameters (restoration and compliance transition proba-

bilities) for each cluster. We aggregate observations for each cluster and estimate a

single set of parameters. In other words, facilities within a cluster all have the same

set of parameters.

We discuss the approach for determining number of clusters next.
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Determining the Number of Clusters.

Figures 2.12 depict the plots of the within clusters sum of squares versus number of clusters

(1 to 15 clusters) for the Ward’s minimum variance linkage agglomerative hierarchical

clustering of major and SMI facilities. In both plots, we observe an elbow after which

increasing the number of clusters (further splitting) would only bring minor decrease

in the within-clusters sum of squares. The location of the elbows suggest five clusters

for major facilities (Figure 2.12a) and around seven clusters for SMI facilities (Figure

2.12b). Therefore, we select five and seven as the optimal number of clusters for Ward’s

minimum variance linkage agglomerative hierarchical clustering of major and SMI facilities,

respectively.

Estimation of the Restoration Transition Probabilities.

We then estimate restoration from low priority (PRL) and high priority violations (PRH ).

Appendix §B.2.2 provides detail of estimation of restoration parameter estimations. Table

2.3 presents overview of average restoration time for major and synthetic minor facilities of

Region 2 facilities.

• Major Facilities: Major facilities require, on average, 11.04 and 95.31 weeks to restore

from low priority and high priority violations, respectively.

• Synthetic Minor (SMI) Facilities: It takes, on average, 10.32 and 65.74 weeks for

SMI facilities to restore compliance from LPV and HPV violations, respectively.

Table 2.3: Average restoration time statistics for EPA Region 2 facilities during 2002-2016.

Average restoration time (weeks) Major SMI
Low priority violations 11.04 10.32
High priority violations 95.31 65.74

Restoration time from low (high) priority violations can be modeled with a geometric

distribution. Thus, for each facility cluster, we have:
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(a) Major facilities

(b) SMI facilities

Figure 2.12: Plots of the within clusters sum of squares versus number of clusters (elbow
method) for Ward’s minimum variance linkage agglomerative hierarchical clustering of the
major and SMI facilities.

• Restoration Time from LPV ∼ Geometric(1− PRL)

• Restoration Time from HPV ∼ Geometric(1− PRH )

Estimation of the Hidden Compliance States.

As presented in Table 2.2, high priority violations are relatively rare for both major and

SMI facilities; only 1.62% and 0.98% of all inspections are resulting in HPV for major and
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SMI facilities, respectively. To tackle the data limitation problem in our estimation, we

initially combine the low priority and high priority violations as non-compliance (NC), and

estimate the model on aggregated level with only two available compliance states (C,NC).

The two state model is depicted in Figure 2.13. Upon categorizing the facilities into the

appropriate number of clusters, we exploit a maximum likelihood approach to estimate

the compliance transition parameters introduced in the Eq. 2.5. The probability of being

in violation s periods after the last observed compliance (either compliant inspection or

compliance restoration) can be computed by

qNC
n (s) =

λn
λn + µn

[1− (1− λn − µn)s]. (2.5)

C NC

λn

µn

Figure 2.13: Two states transition probabilities of facility n if it is not inspected (NI) in a
period.

Therefore, we need to estimate λn and µn to compute the qNC
n (s) for state s. Estimating

λn and µn enables us to compute the probability of violation at each period. We further

require to differentiate between the probability of being in low priority and high priority

violation. To this end, we simply divide the qNC
n (s) by the relative average occurrence of

LPVs and HPVs in each cluster.

Estimation of the Potential Environmental Harm.

We use the average past penalty paid by the facilities as the approximation of their potential

environmental harm. Table 2.4 provides an overview of the past paid penalty by facilities.

Note that the links between the violations and penalties are not available in the data set. After

removing the outliers, we use the average of the highest penalties of each cluster (based on
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the relative occurrence of the low and high priority violations) as the potential environmental

harm associated with HPVs, and the average of the rest as the potential environmental harm

of the LPVs.

Table 2.4: Average past paid penalty as the measure of environmental harm for EPA Region
2 facilities during 2002-2016.

Major SMI

Low priority violations $4,263 $2,828

High priority violations $23,509 $13,777

Overview of Parameter Estimation Results.

The estimated parameters for major and SMI facilities are presented in Table 2.5. These

results are based on five clusters for major and seven clusters for SMI facilities.

Remark 4 Note that the estimated parameters presented in Table 2.5 satisfy the Assumption

1, and can be used in simulation.

We can also see that for all the clusters:

• High priority violations are significantly less prevalent than low priority violations.

• The average restoration time from high priority violations is significantly higher than

the average time of restoration from low priority ones. This can be translated as

PRH > PRL . This is intuitive since HPVs are critical violations and may be naturally

harder to resolve.
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2.6 Simulation

The objective of this section is to study the benefits of the Whittle’s index proposed inspection

strategy over other strategies suggested in academic literature and practice in reducing the

Average Expected Environmental Harm (cost). Our simulation is based on the following

steps:

• We first implement the current’s EPA practice as an indicator for the inspection

capacities at each period and the main benchmark. Current EPA inspection policy as

described in §2.5.2 suggests cyclic inspections with recommended intervals of 104

and 260 weeks for major and SMI facilities, respectively.

We randomly initialize the states of the facilities at the beginning of the simulation

(the states are randomly generated from 1 to 104 for major and 1 to 260 for SMI

facilities). Then, we mark inspection for major and SMI facilities whenever their

time since last inspection reaches 104 and 260 weeks, respectively. The number of

facilities that reach their EPA recommend inspection cycle might be less than the

periodic inspection capacity in some periods. In this case, we assign the remaining

capacity to the inspections due on next period. On the other hand, if the number

of required inspections exceeds the inspection capacity, we postpone the remaining

inspections to the next period. We consider a long simulation length (l) to enhance

the simulation results consistency (e.g., 1,560 weeks or 30 years).

• We then compute the Whittle’s indices for the major and SMI facilities based on

the parameters presented in Table 2.5. Note that we consider the same parameters

for the facilities within the same cluster except for the environmental harms; we

generate a random pair of LPV and HPV costs for each facility from the quartiles of

the observed penalties in the analogous cluster to increase the variability. We set the

maximum allowed time between two consecutive inspections (T ) to be greater than

the simulation length (l) to increase the flexibility of the inspection policies.
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• We select the facilities based on the Whittle’s index policy (and other benchmarks) in

each period with respect to the EPA current capacity (M ). We simulate the outcome

of the inspections based on the estimated violation probability parameters of the

aforementioned tables. If the simulated outcome of the inspection is LPV or HPV,

we keep the facility away from further selection until the restoration is complete.

The length of the restoration period is also randomly generated from the geometric

distribution of the estimated restoration probabilities (1−PRL and 1−PRH ) presented

in Table 2.5.

• We compare the average cost per period for different policies over the length of

simulation. We also record the number of inspections assigned to each cluster via

each policy.

2.6.1 Scenarios for Inspection Capacity Allocation

In our simulation, we consider three different scenarios in fixing the inspection capacity per

period:

• Equal workload is required for major and SMI facilities (1/1 workload scenario):

In this scenario, we assume that all the facilities require the same resources for

inspection regardless of their size. Current EPA inspection policy implies that, on

average, 24.85% of the major and SMI get inspected annually, which we round down

to 24 inspections per week. Thus, we set M = 24 for this scenario and keep it consistent

across all the benchmark policies.

• Different workload is required for major and SMI facilities (1/0.8 workload scenario):

In 1/0.8 workload scenario, we assume that SMI facilities require 80% of the workload

needed to inspect major ones. This is aligned with the definition of synthetic minor

facilities as the ones that (potentially) emit pollutant(s) at or above 80% of the major

facilities [26].
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• Separate capacities for major and SMI facilities: EPA current practice translates

into 8 weekly inspections on major and 16 inspections on SMI facilities. There-

fore, we can write the periodic capacity in the separate capacities scenario as

M = (MMaj,MSMI) = (8, 16).

2.6.2 Inspection Policies

Main Benchmark: Current EPA Practice (EPA 2/5 Policy).

Cyclic (periodic) inspection strategy is commonly studied in the operations management

literature and adopted in practice. As an instance, [43] characterize conditions under

which cyclic inspections can be superior to the random policy in advocating facilities’

environmental compliance. Current U.S. CAA compliance monitoring strategy described in

§2.5.2 is also a form of cyclic policy with intervals depending on facilities’ emission size,

we call this policy EPA 2/5 policy.

Whittle’s Index Policy.

Whittle’s index policy developed in §2.2 is our suggested policy.

Highest Expected Environmental Harm Selection Policy (EH Heuristic Policy).

An intuitive inspection strategy is selection based on the expected environmental harm of

the facilities in each period. The expected environmental harm for facility n which is in state

s at time t is given by cLnq
L
n (s) + cHn q

H
n (s). This policy at each time t selects the facilities

with the highest expected environmental harm according to the capacity.

Random Policy.

One of the inspection policies investigated in academic literature is random policy [43]. In

the random policy, the regulator randomly selects facilities in each period to inspect without

taking their characteristics and history into account.
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2.6.3 Simulation Results and Policy Implications

Inspection Policies Performance under Different Capacity Allocation Scenarios.

We investigate the performance of each policy i under each inspection capacity allocation

scenario. Our performance measure is reducing the average expected environmental harm

(cost) compared to the current EPA 2/5 policy, which can be written as

δi =
costEPA − costi

costEPA
.

Table 2.6 presents the improvement that each policy offers over the current EPA 2/5

policy. Figures 2.14, 2.15, and 2.16 also depict the percentage of the inspections assigned to

each cluster along with the subsequent intervals between the consecutive inspections under

these three inspection capacity allocation scenarios.

Table 2.6: Performance comparison of the inspection policies under different capacity
allocation scenarios.

δi%

1/1 workload Whittle’s index policy 12.03%± 0.06
EH heuristic policy 10.74%± 0.06

Random policy −0.79%± 0.03
1/0.8 workload Whittle’s index policy 11.27%± 0.05

EH heuristic policy 9.77%± 0.06
Random policy −0.66%± 0.03

Separate capacity per group Whittle’s index policy 8.64%± 0.05
EH heuristic policy 7.23%± 0.06

Random policy 0.16%± 0.04

OBSERVATION 1 As depicted in Table 2.6, the Whittle’s index policy outperforms all the

other policies under all the inspection capacity allocation scenarios. We can also see that

the improvement is more significant for 1/1 workload, followed by 1/0.8 workload scenarios.

This is due to the flexibility of these two scenarios that allow selection of the most harmful

facilities regardless of their size.
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(a) Percentage of the inspections

(b) Average interval between inspections

Figure 2.14: Percentage and average interval of the inspections assigned to each cluster of
facilities-1/1 workload scenario.

OBSERVATION 2 Figures 2.14, 2.15, and 2.16 show that in all the three capacity allo-

cation scenarios Whittle’s index policy focuses on inspecting facilities from clusters 5,4,1

and 8, respectively. These are the clusters with the highest violation rates and potential

environmental harm as presented in Table 2.5.

Performance of the Inspection Policies under Different Inspection Capacities.

We study the performance of inspection policies (§2.6.2) under a wide range of capacities

ranging from 0.25M to 50M (M is the current EPA inspection capacity). All the simulations
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(a) Percentage of the inspections.

(b) Average interval between inspections

Figure 2.15: Percentage and average interval of the inspections assigned to each cluster of
facilities-1/0.8 workload scenario.

have been conducted for the 1/0.8 workload scenario, which we believe is the closest to

reality. For each policy i, along with the average environmental harm compared to the EPA

2/5 policy (δi), we also consider the marginal benefit of each inspection in reducing the

environmental harm (δ′i) defined as

δi =
costEPA − costi

costEPA
, δ′i =

δi
xM

,

where costEPA, costi, x, and M represent the average cost of the EPA 2/5 policy,
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(a) Percentage of the inspections

(b) Average interval between inspections

Figure 2.16: Percentage and average interval of the inspections assigned to each cluster of
facilities-separate capacity per facility size scenario.

average cost of the policy i, current EPA inspection capacity, and the scaling coefficient of

the capacity. Tables 2.7 and 2.8 provide an overview of the inspection policies performance

and the subsequent capacity allocation among clusters for all the mentioned inspection

policies.
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Table 2.7: Performance comparison of inspection policies compared to the EPA 2/5 policy
under different capacities-1/0.8 workload scenario.

Capacity Inspection policy δi% δ′i
Whittle’s index policy 4.24%± 0.04 0.80%

0.25M EH heuristic policy 4.21%± 0.04 0.79%
Random policy −0.26%± 0.02 −0.05%

Whittle’s index policy 7.38%± 0.05 0.69%
0.5M EH heuristic policy 6.90%± 0.05 0.65%

Random policy −0.50%± 0.02 −0.05%
Whittle’s index policy 10.01%± 0.05 0.63%

0.75M EH heuristic policy 8.61%± 0.05 0.54%
Random policy −0.52%± 0.03 −0.03%

Whittle’s index policy 11.27%± 0.05 0.53%
M EH heuristic policy 9.77%± 0.06 0.46%

Random policy −0.66%± 0.03 −0.03%
Whittle’s index policy 12.27%± 0.06 0.46%

1.25M EH heuristic policy 10.04%± 0.06 0.38%
Random policy −0.71%± 0.04 −0.03%

Whittle’s index policy 13.08%± 0.06 0.41%
1.5M EH heuristic policy 11.04%± 0.06 0.35%

Random policy −1.04%± 0.04 −0.03%
Whittle’s index policy 14.33%± 0.06 0.38%

1.75M EH heuristic policy 12.24%± 0.07 0.33%
Random policy −1.05%± 0.04 −0.03%

Whittle’s index policy 15.28%± 0.07 0.36%
2M EH heuristic policy 12.25%± 0.07 0.29%

Random policy −1.07%± 0.05 −0.03%
Whittle’s index policy 24.64%± 0.11 0.23%

5M EH heuristic policy 22.55%± 0.11 0.21%
Random policy −1.74%± 0.08 −0.02%

Whittle’s index policy 36.25%± 0.16 0.17%
10M EH heuristic policy 31.95%± 0.15 0.15%

Random policy −1.36%± 0.11 −0.01%
Whittle’s index policy 48.97%± 0.20 0.11%

20M EH heuristic policy 47.26%± 0.19 0.11%
Random policy 2.20%± 0.17 0.01%

Whittle’s index policy 55.87%± 0.24 0.05%
50M EH heuristic policy 54.96%± 0.25 0.05%

Random policy 18.00%± 0.27 0.02%

OBSERVATION 3 As seen in Table 2.7, the Whittle’s index policy outperforms EPA 2/5

policy and all the other benchmarks under all the considered capacities. Whittle’s index

policy leads to greater improvement in preventing environmental harm than the EPA 2/5

policy (δi) as capacity increases. We also observe that the marginal benefit of the Whittle’s

index suggested inspections (δ′i) increases as the capacity shrinks. This further accentuates
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the importance of our proposed Whittle’s index policy considering the proposed budget cut

for environmental inspections [16].

OBSERVATION 4 Table 2.7 also shows that the highest expected environmental harm

selection policy (EH heuristic policy) performs close to the Whittle’s index policy under all

the considered capacities. The highest expected environmental harm selection policy as a

heuristic can be particularly of EPA’s interest as a non-profit organization due to its high

performance and ease of implementation.

OBSERVATION 5 According to Table 2.8, the Whittle’s index policy progressively priori-

tizes the very high-risk clusters as we tighten the inspection capacity. For example, more

inspections are assigned to cluster 5, which has the highest violation rates and potential

environmental harm (see Table 2.5), as the capacity shrinks. On the other hand, more clus-

ters are suggested for inspection by the Whittle’s index policy as we increase the inspection

capacity.

2.7 Policy Implications and Managerial Insight

Simulation results presented in §2.6.3, demonstrate that the majority of the inspections

are assigned to clusters 5 and 4 of major facilities under the current EPA capacity and the

tighter ones. Comparative analyses on facilities’ features (Table 2.1) show that Prevention

of Accidental Release/General Duty (CAAPARGD) air program is applicable to 97.78% and

91.21% of the facilities within these two clusters, while it applies to less than 3.17% of the

facilities in each of the other clusters. CAAPARGD is an air program related to facilities

using substances that pose the greatest risk of harm from accidental releases. These facilities

are required to have risk management programs that (i) asses the hazards of accidental

release, (ii) safety preventive measures and maintenance, and (iii) emergency responses

[27].
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Table 2.8: Capacity allocation among clusters under different inspection policies-1/0.8
workload.

Major SMI
Capacity Cluster 1 2 3 4 5 6 7 8 9 10 11 12

Facilities 1.11% 5.22% 2.83% 1.76% 5.24% 23.33% 7.64% 10.63% 17.71% 6.48% 11.00% 7.06%
EPA 2/5 policy 3.38% 15.91% 8.63% 5.36% 15.88% 14.15% 4.63% 6.44% 10.74% 3.93% 6.67% 4.28%

0.25M Whittle’s index policy 13.73% − − 16.17% 70.10% − − − − − − −
EH heuristic policy − − − 18.41% 81.59% − − − − − − −

Random policy 0.84% 4.86% 2.64% 1.81% 5.23% 24.80% 8.14% 9.75% 17.37% 6.36% 10.98% 7.22%
EPA 2/5 policy 2.49% 11.76% 6.39% 4.04% 11.78% 17.74% 5.80% 8.13% 13.28% 4.93% 8.31% 5.34%

0.5M Whittle’s index policy 15.72% − − 23.56% 60.71% − − − − − − −
EH heuristic policy − − − 16.37% 83.63% − − − − − − −

Random policy 1.05% 5.39% 2.85% 1.63% 5.06% 23.63% 8.01% 10.66% 17.60% 6.22% 10.69% 7.22%
EPA 2/5 policy 2.26% 10.72% 5.80% 3.63% 10.72% 18.63% 6.17% 8.48% 14.11% 5.13% 8.73% 5.63%

0.75M Whittle’s index policy 14.68% − − 25.71% 59.62% − − − − − − −
EH heuristic policy 0.03% − − 31.97% 68% − − − − − − −

Random policy 1.07% 4.93% 2.65% 1.82% 4.88% 23.97% 7.36% 11.11% 17.72% 6.64% 11.07% 6.79%
EPA 2/5 policy 2.19% 10.40% 5.66% 3.52% 10.46% 18.86% 6.17% 8.61% 14.29% 5.24% 8.89% 5.71%

M Whittle’s index policy 12.51% − − 26.92% 59.28% − − 1.29% − − − −
EH heuristic policy 2.97% − − 32.93% 63.18% − − − − − 0.91% −

Random policy 1.06% 5.20% 2.83% 1.79% 5.27% 23.31% 7.54% 10.52% 18.06% 6.45% 10.91% 7.06%
EPA 2/5 policy 2.19% 10.31% 5.57% 3.47% 10.31% 19.00% 6.20% 8.69% 14.33% 5.25% 8.95% 5.73%

1.25M Whittle’s index policy 11.10% 0.76% − 19.72% 59.61% − − 8.82% − − − −
EH heuristic policy 1.87% − − 19.56% 46.70% − − − − − 31.87% −

Random policy 0.97% 5.14% 2.74% 1.73% 5.33% 23.47% 7.68% 10.74% 18.06% 6.55% 10.63% 6.95%
EPA 2/5 policy 2.19% 10.29% 5.57% 3.48% 10.28% 18.99% 6.22% 8.64% 14.39% 5.27% 8.94% 5.74%

1.5M Whittle’s index policy 11.06% 3.88% − 21.14% 52.27% − − 11.65% − − − −
EH heuristic policy 2.72% − − 16.90% 36.20% − − − − − 44.18% −

Random policy 1.05% 5.09% 2.79% 1.70% 5.06% 23.49% 7.83% 10.66% 18.08% 6.51% 10.80% 6.92%
EPA 2/5 policy 2.19% 10.31% 5.59% 3.49% 10.35% 19.01% 6.20% 8.63% 14.35% 5.25% 8.91% 5.72%

1.75M Whittle’s index policy 9.32% 10.01% − 17.87% 46.63% − − 16.18% − − − −
EH heuristic policy 2.08% − − 17.80% 36.61% − − − − − 43.52% −

Random policy 1.04% 5.02% 2.74% 1.69% 5.10% 23.66% 7.54% 10.54% 17.85% 6.54% 11.14% 7.13%
EPA 2/5 policy 2.19% 10.34% 5.59% 3.49% 10.36% 18.94% 6.21% 8.62% 14.37% 5.25% 8.91% 5.72%

2M Whittle’s index policy 8.08% 15.28% − 16.33% 38.31% − − 22.01% − − − −
EH heuristic policy 2.64% − − 16.63% 33.01% − − − − − 47.73% −

Random policy 1.04% 5.21% 2.80% 1.73% 5.13% 23.40% 7.58% 10.74% 17.80% 6.55% 10.97% 7.05%
EPA 2/5 policy 2.22% 10.46% 5.67% 3.54% 10.48% 18.86% 6.17% 8.58% 14.31% 5.24% 8.83% 5.65%

5M Whittle’s index policy 3.98% 18.47% − 9.46% 21.88% − − 21.31% − − 24.90% −
EH heuristic policy 2.68% 14.49% − 10.41% 24.14% − − 7.68% − − 40.60% −

Random policy 1.01% 5.02% 2.73% 1.76% 5.12% 23.75% 7.77% 10.67% 17.98% 6.53% 10.65% 7.01%
EPA 2/5 policy 2.22% 10.47% 5.68% 3.54% 10.31% 18.86% 6.18% 8.60% 14.32% 5.24% 8.88% 5.70%

10M Whittle’s index policy 2.51% 18.87% − 6.86% 17.97% − − 24.43% − − 29.36% −
EH heuristic policy 2.23% 13.38% 4.00% 9.34% 22.64% − − 14.72% − − 33.69% −

Random policy 0.99% 4.68% 2.71% 1.73% 5.06% 24.15% 7.89% 10.50% 18.25% 6.48% 10.37% 7.21%
EPA 2/5 policy 2.28% 10.48% 5.68% 3.54% 10.40% 18.83% 6.17% 8.57% 14.28% 5.22% 8.86% 5.69%

20M Whittle’s index policy 1.92% 13.73% 3.58% 5.13% 17.21% − − 23.67% − − 34.76% −
EH heuristic policy 1.98% 11.13% 6.11% 6.33% 17.41% − − 23.05% − − 32.69% 1.30%

Random policy 0.90% 4.26% 2.63% 1.63% 4.90% 24.74% 8.10% 10.40% 18.93% 6.46% 9.84% 7.22%
EPA 2/5 policy 2.32% 10.95% 5.94% 3.70% 10.99% 19.62% 6.42% 8.93% 13.92% 4.55% 7.71% 4.95%

50M Whittle’s index policy 2.48% 5.39% 4.80% 4.99% 14.15% 5.57% − 30.13% 4.74% 3.57% 15.83% 8.34%
EH heuristic policy 2.60% 5.59% 4.70% 5.00% 15.00% − − 33.10% − 7.55% 15.59% 10.87%

Random policy 0.84% 3.20% 2.24% 1.54% 4.73% 26.55% 8.44% 10.50% 20.39% 6.19% 8.16% 7.22%

The other dominant feature for the cluster 5 and 4 facilities is Chlorofluorocarbons

(CFC) Tracking (CAACFC) air program. This program is responsible for protecting the

stratospheric ozone layer. The prevalence of this program is 98.89% and 96.70% in clusters

5 and 4, and less than 8.64% in each of the other clusters.

Among SMI facilities, cluster 8 is the only cluster suggested for inspection by the
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Whittle’s index policy under current EPA capacity. For significantly looser capacities,

cluster 11 facilities are also recommended for inspections. These two clusters are the only

SMI clusters with considerable Title V (CAATVP) facilities. Title V permit is required for

major sources; SMI facilities are generally not required to obtain it unless they meet the

particular conditions stated in [30]. 35.22% and 37.57% of clusters 8 and 11 facilities are

subject to Title V permit, while this permit applies to less than 13.18% of facilities in each

of the other SMI clusters.

2.8 Conclusion

In this work, we collaborated with EPA Region 2 and designed a facility-by-facility inspec-

tion strategy for Clean Air Act environmental monitoring program. We modeled the facility

selection as a restless multiarmed bandit and proved the indexability of the subsequent model.

We used a comprehensive data set of facilities’ features and compliance history of EPA

Region 2 to calibrate our model. Our simulation demonstrated that our index-based policy

significantly outperforms the EPA current practice and other benchmarks in decreasing the

environmental harm associated with the facilities’ violations.

In our simulation, the Whittle’s index policy assigned all the inspections to a few

high-risk clusters under the current EPA’s capacity suggesting that the differences among

the facilities within each facility size (major and SMI) are substantial. Thus, the EPA

current recommended inspection policy that treats all the facilities of the same emission size

similarly requires critical modifications.
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CHAPTER 3

MULTIPRODUCT DEMAND PREDICTION AND PRICE OPTIMIZATION

USING NEURAL NETWORKS

3.1 Introduction

Electronics retail has turned into a highly competitive market with distinct features. On

the one hand, many of the products share similar characteristics and can be regarded as

substitutes. On the other hand, the products’ prices are considerable enough that many

customers actively look for the best deals. Posting the prices online by the retailers has also

enabled the customers to easily track the prices of their desired products and make strategic

purchasing decisions [8]. In other words, customers are not only able to pick the product

with their target features among the pool of substitutes, but also can make an informed

decision about which retailer to buy from. This flexibility highlights the importance of

substitution and competition effects in the electronics retail industry, which have been barely

addressed in traditional pricing systems.

This work aims to measure cross-price elasticities both within the product group and

among competitor retailers, and design a multiproduct demand prediction and price opti-

mization tool. We show how a consumer electronics retailer can benefit from the historical

data to make a significantly more accurate demand prediction by taking the substitution and

competition effects into account.

Estimating the cross-price elasticities would allow retailers to better understand the

impact of price and assortment changes for products within a category on demand of

other products in the product group. It would ultimately help them make multiproduct

pricing decisions. Multiproduct demand prediction models typically lack either flexibility or

interpretability. We propose a structure-imposed (structured) neural network framework that
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balances these two and demonstrate how it can be used in price optimization.

3.2 Price Elasticity Definition

We first review the definition of elasticity and how it can be measured. There are two types

of substitutes available for each product: similar products in the same category offered by

the same retailer, and the identical product offered by competitor retailers. Throughout this

chapter, we refer to the first set of products as “substitutable products”, and the second as

“competitors’ products”.

We deal with three types of elasticities: focal product elasticity, substitutable product

cross-price elasticity, and competitor’s product cross-price elasticity.

3.2.1 Focal Product Elasticity

Focal (own) product price elasticity show how the price of the product affect its own demand

[34], and can be written as

ef =
∆Qf

∆Pf

=
Q2

f −Q1
f

P 2
f − P 1

f

. (3.1)

Focal product elasticity is expected to have a negative sign as increasing the product

price may decrease its demand.

3.2.2 Substitutable Product Cross-Price Elasticity

Substitutable product (similar products in the same category offered by the same retailer)

cross-price elasticity is the change in the demand of the focal product versus change in the

price of (each of the) substitutable products [34]. For a product with M substitutes within

the product group, M substitutable cross-price elasticities can be defined. The substitutable

product cross-price elasticity for a given focal product with respect to its i− th substitutable
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product is provided by

esubi =
∆Qf

∆Psubi

=
Q2

f −Q1
f

P 2
subi
− P 1

subi

, 1 ≤ i ≤M. (3.2)

Increasing the price of the substitute decreases its demand, which may turn to an increase in

the demand of the focal product. Thus, the substitutable cross-price elasticity is expected to

have positive sign.

3.2.3 Competitor’s Product Cross-Price Elasticity

Competitor’s product (identical product offered by competitor’s retailer) cross-price elasticity

refers to the change of the focal product’s demand with respect to the change in the price of

the same product offered by the competitor retailer. For a focal product offered through N

other different retailers, there are N competitor cross-price elasticities.

ecompi =
∆Qf

∆Pcompi

=
Q2

f −Q1
f

P 2
compi

− P 1
compi

, 1 ≤ i ≤ N. (3.3)

Competitor cross-price elasticity is also expected to have a positive sign.

3.3 Contributions to Literature and Practice

There are numerous works in the area of demand prediction and price optimization in the

operations management literature. [19], [12], [62], and [55] study the pricing models in

revenue management comprehensively. Particularly, [62] investigate in-depth the common

demand models in the operations management literature, including linear demand function,

log-linear demand function, constant elasticity demand function, and logit demand function.

We select the linear demand function, one of the most widely used prediction models, as our

baseline for comparison.

There is also significant academic research addressing the multiproduct pricing strategy.

[59] focus on pricing the products within a product line by incorporating the cross-price
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elasticities. [54] propose methods for the pricing of a set of interrelated products offered

by a single retailer. [51] provide a theoretical framework for retail pricing and promotion

policies of multiple product pricing. [11] investigate the optimal capacity levels and prices

for two substitutable products in a single period problem. [60] study the multiproduct

pricing problem through a non-parametric approach for a vehicle recommendation website.

[45] consider dynamic pricing strategies for a firm that poses a fixed capacity that can be

assigned to the production and delivery of multiple products.

Our work also focuses on the optimal product line pricing with one major difference:

we use neural networks, one of the most powerful prediction techniques, for our elasticity

and cross-price elasticity estimation. This makes our proposed approach more flexible

and capable of accounting for more complicated relationships between the demand and its

predictors.

There are several papers utilizing neural networks in demand prediction. For example,

[17] use a robust neural network filter to one-day-ahead hourly electricity demand prediction

for a local electricity utility. [6] predict domestic heat demand through neural networks.

[64] forecast the cash demands in ATMs using clustering and neural networks. [1] predict

urban residential water demand by neural network and time series models. [65] use deep

neural networks to predict supply-demand for online car-hailing services. To the best

of our knowledge, we are the first to utilize neural network-based demand prediction

models in estimating the cross-price elasticities (both within product groups and across the

competitors). In fact, our main contribution is designing a flexible yet interpretable neural

network for multiproduct demand prediction and price optimization.

We are also aligned with the stream of research on developing pricing decision support

tools for retailers. [61] design and implement a pricing support tool for clearance products.

[15] develop and implement a decision support tool for a large apparel retailer’s clearance

period. They find the main predictors of the sales to be the previous sales, price elasticity,

broken assortment effects, age of the article, and purchase quantity. [31] work with an
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online retailer to optimize the pricing decision of flash sales and show how non-parametric

models can be beneficial in pricing decision tools. We also benefit from collaborating with a

consumer electronics retailer to estimate our demand model and measure the elasticities.

3.4 Demand Prediction Model

The first step in designing an efficient pricing decision tool is building an accurate demand

prediction model. To estimate the substitutable and competitor cross-price elasticities,

we use demand prediction models that incorporate focal, substitutable, and competitors’

products’ pricing features.

3.4.1 Our Partner Retailer and its Current Pricing Strategy

We utilize data of a consumer electronics retailer that we disguise its name. The in-store

sales for this retailer account for 95% of its total revenue; therefore, we only focus on

off-line sales. Our data covers the sales from January 2016 to June 2018.

The company currently divides the products into five categories with a different pricing

strategy for each:

• Image setters: These are the most popular products. To position themselves as the

price leader in the customers’ minds, the retailer uses the lowest offered price in the

market for such products.

• Standard products: These are the widely available yet less popular (than image setters)

products. They are priced between minimum and maximum price of the competitors

every day.

• Margin products: These are cheap products and it is unlikely that customers track or

compare their prices while making purchasing decisions. The company prices them

as high as possible.
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• Dead articles: Products at the end of their life cycle, which are priced as low as

possible to avoid further inventory costs.

We design a two-stage pricing system. In the first stage, we propose an interpretable

structured neural network that addresses the substitution effects and show its advantage over

the widely used linear regression model in accurate multiproduct demand prediction. In the

second stage, we present the subsequent price optimization model.

3.4.2 Data Aggregation Level & Demand Prediction Components

We present the result of our analysis for televisions, one of the most popular product groups.

This product group contains 49 different SKUs.

The retailer provided us with the sales SKU-day sales data in store level. We also have

access to the daily inventory data of each SKUs and the promotions. We further pulled up

data on the product’s attributes for each SKU that we use for measuring the similarities in

§3.4.3.

This retailer has three main competitor retailers in the country. We are provided with the

prices offered by these competitors for each SKU on a daily basis. Note that although we

focus on in-store sales, products’ prices are available on the retailers’ websites. Therefore,

customers can easily check and compare the prices with no need to visit all the competitors’

stores. Table 3.1 provides an overview of our data set.

Data Level
Sales data Store-SKU-Day

Price Store-SKU-Day
Competitors’ prices SKU-Day

Promotions Store-SKU-Type
Inventory Store-SKU-Day

Product attributes SKU

Table 3.1: Overview of the data provided by the retailer.

The first decision that we need to make for demand prediction is selecting the data
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aggregation level. Although we have access to the SKU-Store level data, we decide to

aggregate the data of the stores and predict the demand across them all for each SKU. Our

decision rests on two reasons. First, the prices are unified over the stores. Additionally, the

average of the sales is low for the majority of the SKUs, which makes predicting the sales at

the store level inaccurate.

Then, we have to select features for the demand prediction model. Previous pricing

papers divide the demand prediction predictors associated with the focal product to five

categories: purchase quantity, age of the article, previous demand, broken assortment effect,

and discount factor [15]. We follow the operations management literature and include the

previous demand, age of the article, inventory level, and discount factor in our demand

model. Our time series analyses show the impact of the day of the week and special days

(holidays and special events) on the demand. We include dummy variables associated

with days of the week and the major nation’s holidays to take care of these effects. The

auto-correlation analysis also suggests the importance of the one day and seven days lagged

demand. Thus, we include the demand of the day before and the same day in the week

before in our demand prediction model.

Another question that arises here is what features from the substitutable products and

competitors to include in our model. The information from the substitutable products is

internal, and we have all the factors described for the focal product available for substitutes

as well. In contrast, the information about competitors is external, and we only have access

to their daily prices. We use the lasso technique [41] as a variable selection model to

select the pivotal variables among all the focal and substitutable products’ features and the

minimum competitor price. Following are the variables considered significant by lasso that

we include in our demand prediction model:

• Previous demand: As described above, we incorporate the one day (Dt−1
fi

) and seven

days (Dt−7
fi

) lagged demands in our prediction model. We expect both of them to have

a positive relationship with the current demand.
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• Focal product price (P t
fi

): In our work, the price of the product is the second most

important factor in determining the demand after the previous demands.

• Promotion rate (dtfi): This relates to the special promotions being offered on the

products. These promotions are advertised through flyers, internet or TV, and can

potentially attract more customers. We subtract the promotion rate from one in our

model to avoid using zero for products without promotion. For example, for a product

with 20% promotion at time t, we consider dtfi = 1− 0.2 = 0.8.

• Inventory level (I t−1fi
): Rather than total availability across the stores, we use the

percentage of the stores with sufficient inventory as inventory level. Note that we

work with in-store sales, and we aggregated sales across the stores. Therefore, it is

more intuitive to consider the percentage of the stores that have enough inventory to

fulfill the local customers’ demand rather than the total inventory over all the stores.

• Day of the week (W t): These are dummy variables indicator of the day of the week.

We include these variables since we observe a significant difference among the sales

across the week. Especially, weekends have higher sales comparing to weekdays.

• Special day: A set of dummy variables associated with the major special events of the

country (new year holidays, etc.). We use one dummy variable for each special day

since each event may have a different effect on customers purchasing behavior.

• Price of the substitutable products (P t
subi,j

1 ≤ j ≤ 3): For the focal product

fi, we include the price of the top three substitutes. By definition of substitutable

price elasticity in §3.2.2, we expect a positive relationship between the price of the

substitutes and demand of the focal product.

• Substitutable products’ promotions (dtsubi,j 1 ≤ j ≤ 3): We use the promotion rates

of the substitutes (subtracted from one) along with their price in predicting the demand
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of the focal products. We expect a positive relationship between the promotion of the

substitutes and the demand of the focal products.

• Minimum competitors’ price (P t
compi

): We use the minimum price of the competitor

retailers in our model. According to the definition of the competitor cross-price elas-

ticity provided in §3.2.3, the expected relationship between the minimum competitors’

price and focal product’s demand is positive.

3.4.3 Products’ Similarity Analysis

One of the core steps to build a demand prediction model that incorporates the substitution

effect is determining the substitution level among the products. We utilize data on products’

attributes to quantify the similarity among the products in each product group. For example,

we use the following features to measure the products’ similarity for the TV group:

• Average price,

• Brand,

• Screen size,

• Screen resolution quality,

• Screen technology.

All the factors provided for (dis)similarity analysis (except average price) are categorical.

We transform the average prices to the categorical variables as well (low, medium, high).

Therefore, we need to use a similarity function that can effectively process categorical data.

There are several similarity measures developed for categorical data in computer science

literature; for an in depth review of the measures see [13]. We adopt the Gower dissimilarity

measure [38], which works based on the average of partial dissimilarities across individuals.
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The Gower distance for a pair of products (i, j) with P features (f ) can be written as

d(i, j) =
1

P
ΣP

f=1d
f
ij (3.4)

The partial dissimilarity for a categorical feature (f ) equals zero only if observations fi and

fj (the value of feature f for product i and j) have the same value, one otherwise. Gower

dissimilarity measure is a score in [0, 1] in which zero shows the complete similarity and

one indicates the full dissimilarity. See [50] for details on how to compute some of the

dissimilarity measures, including the Gower similarity score in R.

3.4.4 Linear Regression Model

The first model that we also set as the main baseline for our demand prediction model is

linear regression. The structure of the linear regression for each focal product fi based on

the variables presented in §3.4.2 is

Dt
fi

= βfiX
t
fi

+ βsubiX
t
subi

+ βcompiX
t
compi

+ ci, (3.5)

where X t
fi

denotes the components associated with the focal product and seasonality

factors (previous demand, focal product price, promotion, inventory level, day of the week,

and special day). X t
subi

relates to the components of substitutable products, and X t
compi

is

the competitor related component. We can rewrite the Eq 3.5 as

Dt
fi

= ΣβfiX
t
fi

+ Σ3
k=1βsubikP

t
subik

+ Σ3
k=1βsubikd

t
subik

+ βcompiP
t
compi

+ ci. (3.6)

We implement the linear regression model (Eq 3.6) on all 49 SKUs within the television

product group. Table 3.2 depicts the results of the linear regression model for TVs’ top

8 SKUs with the highest sales. These are the products with considerable daily sales and

account for more than 51.47% of the total TV sales.
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Table 3.2: Estimated elasticities for TVs bestsellers by linear regression (elasticities are
recorded for 10% increase in the corresponding prices).

Product ID Focal product elasticity Substitutable products elasticity Competitors’products elasticity
1 -13.02% -0.56% -5.03%
2 -8.24% -0.39% -2.86%
3 -16.36% -0.76% -6.56%
4 -12.76% -0.59% -4.47%
5 -9.87% -0.43% -3.54%
6 -13.46% -0.56% -4.82%
7 -10.89% -0.49% -3.99%
8 -17.03% -0.68% -6.56%

As we can see in Table 3.2, there are two major flaws in the results of the linear regression

model:

• The substitutable products’ elasticities have the same sign as the focal products’

elasticities. This is illogical since, as we presented in §3.2.2, we expect substitutable

products’ cross-price elasticities to be positive.

• The competitors’ cross-price elasticities come in the close magnitude with the focal

products’ price elasticities, which is unreasonable.

Estimated elasticities from the linear regression model contradict our intuition; this might

be an indicator that the relationship between the substitutable (competitor) prices and

the demand of the focal product is nonlinear. It may also indicate the inefficiency of

linear regression in addressing the endogeneity of the focal and substitutable (competitor)

prices. We alternatively suggest a structure-imposed neural network and show its ability to

effectively estimate the focal and cross-price elasticities.

3.4.5 An Alternative Demand Prediction Model: Structure-Imposed Neural Network

We first start by providing the general framework of neural networks and their structures. We

then present our proposed structure-imposed neural network and its mathematical structure.
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General Framework of the Neural Network.

Neural networks are strong learning tools in the fields of statistics and Artificial Intelligence

inspired by the brain’s neurons. They have found wide applications in supervised and

unsupervised learning [42]. Neural networks generally extract linear combinations of inputs

to construct features, and then model the output by applying nonlinear functions on the

derived features [40].

They consist of three main layers, and each layer may have one or more nodes:

• Input layer: The input layer relates to the external information (independent variables)

provided to the model. No computation or transformation is performed in the input

nodes; they solely pass the information to the hidden layer.

• Hidden layer: Hidden nodes within the hidden layer have no direct connection to the

outside world. They do the computations and pass the information from input to the

output layer.

• Output layer: Output nodes of the output layer are responsible for further computation

and transferring the information from the network to outside. The outcome of the

output layer is the target variable(s).

Figure 3.1 shows a simple design of a neural network and its layers. This network has

two input nodes (1 and 2), three hidden nodes (3,4, and 5) and one output node (6).

The output of each node is the function of the weighted sum of the inputs, and weights

are learned automatically by the network. The output of a node with P inputs can be written

as

outputj = g(θj + ΣP
i=1wijxi),

where g(.) can be any function, including logistic, linear, and log-sigmoid.

Despite being a robust prediction tool, neural networks have always been criticized for

the lack of interpretation. The complicated structure of the neural networks make the causal
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Figure 3.1: General structure of neural networks.

relationship of the inputs and outputs unclear [7]; therefore, they are particularly unsuitable

for pricing settings. First, we cannot compute optimal prices without clearly expressing the

relationship between price and demand by the demand prediction model. Second, industries

may be hesitant to adopt uninterpretable pricing decision tools [31].

Structure-Imposed Neural Network.

To tackle the neural networks’ interpretability issue, we propose a structure-imposed neural

network and show how it can be effective in demand prediction.

Consistent with the §3.4.4, we divide our input into three categories for each focal

product fi at time t:

• Focal product associated components (X t
fi

) consisting of focal product price (P t
fi

),

lagged demands, inventory level and seasonality factors, etc.

• Substitutable products associated components (X t
subi

) including P t
subi,j

and dtsubi,j for

1 ≤ j ≤ 3.

• Competitors associated components (X t
compi

). This can be simplified as P t
compi

since

we only include the minimum price of the competitors.
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We also provide two nonlinear hidden layers in the structure. These layers are designed to

represent the competition and substitution effects:

• Representative of substitutable products hidden layer (Hsub): This layer is connected

to the substitutable and focal products’ components. Hsub is supposed to estimate the

substitutable cross-price elasticities. The weights and bias of this layer are denoted by

Wsub and bsub, respectively.

• Representative of competitors’ products hidden layer (Hcomp): It is connected to

the competitors’ and focal products’ components. It aims to capture the competitor

cross-price elasticities. The weights and bias are demonstrated by Wcomp and bcomp,

respectively.

Our output layer consists of a single node, and predicts the focal product demand (Dt
fi

).

Weights and bias of the output layer are depicted by Wo and bo. Figure 3.2 shows the

schematic structure of our proposed neural network.

Figure 3.2: Schematic structure of the proposed neural network.

To implement our proposed neural network, we further require to select the activation

function for the hidden layers. We tested different common choices (linear, logistic, log-

sigmoid, radial), and use log-sigmoid activation function (σ(υ) = 1
1+e−υ

) that showed best
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performance in capturing the cross-price elasticities and demand prediction accuracy in our

setting. Figure 3.3 presents the picture of our implemented neural network provided by

MATLAB.

Figure 3.3: Structure of the proposed neural network implemented in MATLAB.

We train the network on the historical data, learn the weights of the connections, and

subsequently estimate the elasticities and cross-price elasticities. Table 3.3 demonstrates the

results of the estimated focal products’ elasticities and cross-price elasticities for the TV

bestsellers. The estimated elasticities from the structured neural network are more reasonable

than the values estimated by linear regression (Table 3.2). The substitutable products’

elasticities have expected signs. The competitor cross-price elasticities’ magnitude is

smaller compared to the values estimated by the linear regression, which is more reasonable.

Table 3.3: Estimated elasticities for TVs bestsellers by a structure-imposed neural network
(elasticities are recorded for 10% increase in the corresponding prices).

Product ID Focal product elasticity Substitutable products elasticity Competitors’ products elasticity
1 -23.43% 1.86% -1.26%
2 -19.48% 1.46% -0.38%
3 -27.34% 2.17% -0.59%
4 -28.42% 2.20% -0.49%
5 -20.69% 1.78% -0.72%
6 -22.94% 1.85% -0.98%
7 -24.30% 2.02% -0.99%
8 -33.44% 3.02% -0.73%
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Table 3.4 shows the comparison of the two models. While both linear regression

and structured neural network are interpretable, structured neural network has significant

advantages over the linear regression. It is more flexible than linear regression in estimating

complicated patterns between the predictors and output. This makes it capable of estimating

the cross-price elasticities with the expected sign and significantly improves the prediction

accuracy compared to the linear regression. The structure-imposed neural network offers on

average 23.91% improvement in the out of sample root mean squared error (RMSE).

Table 3.4: Comparison of the linear regression and structured neural network in elasticity
estimation and prediction accuracy (average sales is 7).

Linear regression Structured neural network
Interpretability 3 3

Flexibility 7 3

Focal product elasticity -12.70% -25.00%
Substitutable cross-price elasticity -0.56% 2.04%

Out of sample RMSE 5.48 4.17

To further show the strength of our proposed structure-imposed neural network, we

also predict the demand for the same products with a full neural network with ten hidden

layers (without any imposed structure). We observe that our proposed structured neural

network has a prediction accuracy close to the full neural network (see Table 3.5). Thus, the

imposed structure does not substantially decrease the prediction power of the original neural

networks, while it solves their interpretability problem.

Besides the full neural network, we tested various other models and found the structure-

imposed neural network to be superior to all; we present the result of the regression tree

[41] as an instance. As we can see in Table 3.5, the structure-imposed neural network

outperforms the prediction accuracy of regression trees.

Table 3.5: Prediction accuracy of various prediction models (average sales:7).

Linear regression Regression tree Full neural network Structured neural network
RMSE 5.48 4.61 4.03 4.17
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Based on the mentioned points, we use our proposed structure-imposed neural network

among all the discussed models in our pricing decision tool. In what follows, we provide

our subsequent price optimization approach for finding the optimal prices for each product.

3.5 Price Optimization

After predicting the demands, we need to optimize the prices to maximize the daily revenue

(Rt) for each category. Our objective function in this stage can be written as

maxRt = ΣM
i=1D

t
fi
P t
fi
,

Pmin
i ≤ P t

fi
≤ Pmax

i , (3.7)

where M , Dt
fi

, and P t
fi

denote the number of products in the category, demand and price of

the i − th product at time t, respectively. The allowed price of each product (P t
fi

) is also

constrained between a minimum and maximum value (Pmin
i and Pmax

i ), which are set by

the retailer.

In order to solve the Eq 3.7 and finding the optimal prices, we need to explicitly write

the relationship between the demand predicted by structure-imposed neural network and

offered prices. Thus, we study the mathematical structure of our proposed demand model

next.

65



3.5.1 Mathematical Representation of the structure-imposed Neural Network

Following the structure presented in §3.4.5, we can write the structure of the hidden and

output layers as

Hsub = σ(bsub +Wsub[X
t
subi

;X t
fi

]), (3.8a)

Hcomp = σ(bcomp +Wcomp[X
t
compi

;X t
fi

]), (3.8b)

Dt
fi

= bo +Wo[Hsub;Hcomp;X
t
fi

]. (3.8c)

By substituting the value of the fixed inputs (the predetermined independent variables),

the Eq 3.8 can be rewritten as

Hsub = σ(csub +
3∑

k=1

wsubikP
t
subik

+ wsubfi
P t
fi

), (3.9a)

Hcomp = σ(ccomp + wcompfi
P t
fi

), (3.9b)

Dt
fi

= bo + wo,subHsub + wo,compHcomp + (cf + wo,fP
t
fi

). (3.9c)

The mathematical structure of the demand can be simplified as

Dt
fi

= c+
wo,sub

1 + e
−(csub+

∑3
k=1 wsubikP

t
subik

+wsubfi
P tfi

)
+

wo,comp

1 + e
−(ccomp+wcompfi

P tfi
)

+ wo,fP
t
fi
.

(3.10)

3.5.2 Price Optimization Tool

Combining the Eq. 3.7 and Eq.3.10, the revenue optimization function based on the structure-

imposed neural network can be expressed as
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Max Rt = ΣM
i=1D

t
fi
P t
fi
,

= ΣM
i=1(c+

wo,sub

1 + e
−(csub+

∑3
k=1 wsubikP

t
subik

+wsubfi
P tfi

)
+

wo,comp

1 + e
−(ccomp+wcompfi

P tfi
)

+ wo,fP
t
fi

)P t
fi
,

Pmin
i ≤ P t

fi
≤ Pmax

i . (3.11)

Figure 3.4 demonstrates multiple shapes of the revenue function for single product

pricing (all the substitutable products’ prices remained constant). As we can see in these

plots, finding the optimal price even for a single product case is challenging, and the revenue

function may be ill-behaved.
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(f) Case VI

Figure 3.4: Plots of the z-score of the focal product price versus its own revenue function-
single product pricing scenario.

For solving the constrained multiproduct price optimization, we use the fmincon com-

mand of MATLAB [47]. Constraints are the upper and lower bounds of the price of each

product (minimum and max allowed price determined by the retailer). fmincon is designed

to solve the constrained nonlinear multi-variable optimization problems. It works using

sequential quadratic programming (SQP).

Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear

optimization and solves a sequence of quadratic programming optimization subproblems

at each iteration [33]. The Hessian at each iteration is approximated by Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [58, 57]. Note that although we run the optimization

problem with different initializations to avoid local maxima solutions as much as possible,

finding an optimal solution is not guaranteed in this method.
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3.5.3 Impact of the Proposed Pricing Decision Tool on the Retailer Revenue

To show the efficiency of our proposed pricing decision tool, we first compare the total

actual revenue of the retailer for TV high sellers with the predicted revenue by the structure-

imposed neural network for January 2016 to June 2018. The actual revenue of the retailer

for these 8 products is computed by

RActual = Σ8
i=1Σ

T
t=1D

t
i(Actual)P

t
i(Actual),

where Dt
i(Actual), and P t

i(Actual) denote the actual demand and price of the product i at

time t.

The predicted revenue of the retailer for these 8 products is

RPred = Σ8
i=1Σ

T
t=1D

t
i(Pred)P

t
i(Actual),

where P t
i(Actual) and Dt

i(pred) represent the actual price offered by the retailer and analo-

gous predicted demand by our structure-imposed neural network for the product i at time

t.

The revenue prediction error by our proposed structured neural network can be written

as

δ1 =
RPred −RActual

RActual

OBSERVATION 6 The error of the predicted revenue (δ1) is 14.52% for the TV bestsellers

during the considered period.

Then, we compare the predicted revenue with the optimal revenue derived by our

pricing tool. The optimal total revenue of our suggested pricing tool (structure-imposed

neural network demand prediction model and its subsequent optimization technique) can be

expressed by
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ROpt = Σ8
i=1Σ

T
t=1D

t
i(Opt)P

t
i(Opt),

P t
i(Opt) and Dt

i(Opt) correspond to the optimal price and its analogous demand predicted

by the structured neural network-based pricing tool.

The improvement in the revenue provided by our pricing tool is

δ2 =
ROpt −RPred

RPred

OBSERVATION 7 Our analysis predicts the aggregated improvement of 6.92% in the total

revenue for the TV bestsellers for the mentioned time frame.

3.6 Conclusion

In this chapter, we investigated the application of neural networks in multiproduct pricing.

We believe our work has two main contributions to the revenue management literature.

Firstly, we developed an interpretable structure-imposed neural network for multiproduct

demand prediction. The imposed structure resolves the interpretability problem of the

neural networks that made them impractical for pricing problems. Secondly, we included

cross-price elasticities in the demand prediction model. We formulated the mathematical

structure of the subsequent demand and revenue function and provided the optimization

technique.

Our structure-imposed neural network provided promising results in estimating the

cross-price elasticities. It also improved the out of sample root mean squared error for

the demand prediction by on average 23.91%. Our analyses for different product groups

showed that high price product groups benefit most from our pricing tool. This is intuitive

as customers tend to make more comparisons both within-category and across competitors

to purchase expensive products, highlighting substitution and competition effects.
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CHAPTER 4

CONCLUDING REMARKS

In this thesis, we demonstrated how analytics could support operational decision making in

both nonprofit and for-profit settings.

In nonprofit operations, we proposed a priority-based inspection strategy to assist the

environmental regulators such as the U.S. EPA in their targeting process for environmental

monitoring. We modeled the facility selection for environmental inspection as a restless

multiarmed bandit and proved our model’s indexability implying that our suggested policy

is asymptotically optimal as the number of facilities goes to infinity (for a fixed capacity).

In our general modeling framework, we assumed that facilities could be in compliance, low

priority violations, or high priority violations with respect to the environmental regulations

at each point of time. Upon conducting an inspection, noncompliant facilities had to enter

the respective restoration states and remain there until full compliance was achieved. The

transition rates among all the states (compliance and restoration) were governed by rates

depending on facilities’ features.

We further calibrated our model based on the Clean Air Act inspections data of the EPA

Region 2. We clustered the facilities based on their static characteristics (demographic,

location, type of industry, emission programs, and type of ownership) and estimated the

transition rates for each cluster separately. The estimated parameters were used in our

comprehensive simulations to compare the performance of our proposed Whittle’s index

policy with current EPA inspection strategy and other benchmarks. We also addressed

two extensions of our model, including the inspections with heterogeneous costs and the

possibility of disaster in the facilities.

Our experience in working with a nonprofit organization (Environmental Protection

Agency) has revealed a big gap between policy design research (environmental compliance
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research in our case) and data science. There are many barely utilized data sets that can be

beneficial in supporting the environmental regulators’ decisions that remained unused. This

happens because the environmental scientists are not familiar with the analytical methods,

and data scientists are not aware of these research opportunities.

Our work opens new avenues in applying analytical techniques in environmental compli-

ance strategy design. Future research can investigate the effect of our suggested policy on

facilities’ self-reporting of the violation. Considering the effect of self and peer learning

among the facilities on optimal inspection strategy design is another potential research

stream. For example, we assumed that the facilities’ compliance rates are exogenous and

independent of the regulator inspection strategy, while the regulator inspection strategy

might induce strategic behavior in facilities over time.

In the second part of the thesis, we presented our work in partnership with a consumer

electronics retailer. More and more data are becoming available in retail operations, and

customers have the chance to compare the prices and make more informed purchasing

decisions. Specifically, customers are able to compare the prices more frequently to decide

what product to buy within a product category and which seller to buy from. This introduces

substitution within the product category and among competitors in the market.

We demonstrated how the retailer could incorporate these substitution effects in their

multiproduct pricing decision making. Due to the complicated (nonlinear) nature of the

substitutable and competitors’ products’ prices with the focal product’s demand, traditional

linear models cannot predict the substitutable and competitor elasticities correctly. We

introduced structure-imposed neural network as an alternative for the linear regression model.

We showed that our neural network is not only able to predict the sign and magnitude of the

substitutable and competitor price elasticities reasonably, but also significantly improves the

accuracy of the demand prediction. We further demonstrated how we can use the structured

neural network demand prediction function in multiproduct price optimization.

This chapter can be extended by addressing the pricing game between the retailer and
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its competitors. This is an influential research direction since retailers usually follow their

competitors and react to each other offered prices. Addressing the endogeneity between

the focal product price and substitutable products’ prices is also another essential research

stream.
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APPENDIX A

PROOFS OF THE CHAPTER 2

Proof of Lemma 1.

We drop the facility index n for notation simplicity. Clearly, for any given facility,

when the environmental costs and the transition probabilities are fixed, the optimal long-run

average cost γ(v) is increasing in v.

For s = T , since we assume the time between two consecutive inspections cannot exceed

T , we must take the inspection action. Therefore, we have

h(T, v) = −γ(v) + c>q(T ) + g(v)>q(T ) + v.

Let h̃(t, v) := h(t, v)− g(v)>q(t− 1)− v. We want to prove that h̃(T, v) := h(T, v)−

g(v)>q(T − 1)− v is decreasing in v. This quantity can be written as

h̃(T, v) := h(T, v)− g(v)>q(T − 1)− v

= −γ(v) + c>q(T ) + g(v)>q(T ) + v − g(v)>q(T − 1)− v

= −γ(v) + c>q(T ) + g(v)>(q(T )− q(T − 1)).

Note that −γ(v) is decreasing in v since γ(v) is increasing in v. The second term, c>q(T )

is independent of v. The last term, g(v)>(q(T )− q(T − 1)), is equal to

g(v)>(q(T )−q(T−1)) = h(RLPV )(qL(T )−qL(T−1))+h(RHPV )(qH(T )−qH(T−1)),

according to the definition of the vector g(v). By the Bellman equation Eq (2.2), both

h(RLPV ) and h(RHPV ) are negative and decreasing in v. By Assumption 1, qL(T ) ≥

qL(T − 1), qH(T ) ≥ qH(T − 1). Thus, the last term is also decreasing in v. In sum, we
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proved that h̃(T, v) is decreasing in v.

Now, we prove the induction step. Assuming h̃(s+ 1, v) is decreasing in v, we want to

prove that h̃(s, v) is also decreasing in v. By the Bellman’s equation (2.1a), we have

h(s, v) = −γ(v) + c>q(s) + min{g(v)>q(s) + v, h(s+ 1)}

= −γ(v) + c>q(s) + min{0, h̃(s+ 1)}+ g(v)>q(s) + v.

Thus, we have

h̃(s, v) : = h(s, v)− g(v)>q(s− 1)− v

=
(
−γ(v) + c>q(s) + min{0, h̃(s+ 1)}+ g(v)>q(s) + v

)
− g(v)>q(s− 1)− v

=
(
−γ(v) + c>q(s) + min{0, h̃(s+ 1)}

)
+ g(v)>

(
q(s)− q(s− 1)

)
We now analyze the monotonicity of each term above.

The first term,
(
−γ(v) + c>q(s) + min{0, h̃(s+ 1)}

)
, is decreasing in v, since −γ(v)

is decreasing in v and h̃(s+1, v) is decreasing in v by the induction assumption. The second

term, g(v)>
(
q(s)− q(s− 1)

)
, is equal to

g(v)>
(
q(s)− q(s− 1)

)
= h(RLPV )(qL(s)− qL(s−1))+h(RHPV )(qH(s)− qH(s−1)).

Recall that h(RLPV ) and h(RHPV ) are negative and decreasing in v. By Assumption 1,

qL(s) ≥ qL(s−1), qH(s) ≥ qH(s−1), so the second term is also decreasing in v. Therefore,

we conclude that h̃(s, v) is also decreasing in v. This completes the proof. �

Proof of Theorem 1. We write hn(s, v) := hn(s) to emphasize that it is dependent on

the activation fee v. The Bellman’s equation (2.1) can be rewritten as

hn(s, v) = −γn(v) + c>nqn(s) + min{gn(v)>qn(s) + v, hn(s+ 1)}.

This implies that the optimal decision is to inspect if and only if h̃n(s + 1, v) = hn(s +
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1, v)− gn(v)>qn(s)− v is positive.

Now, let us increase the activation cost from v to v′. Consider a state s̄ ∈ {1, · · · , T −1}

for which no inspection is optimal, i.e., s̄ ∈ Sn(v). It holds that h̃n(s̄ + 1, v) ≤ 0. By

Lemma 1, we have h̃n(s+ 1, v′) ≤ h̃n(s+ 1, v) ≤ 0. Thus, we s̄ ∈ Sn(v′), which implies

Sn(v) ⊂ Sn(v′). This completes the proof of indexability.

�

Proof of Lemma 2 We drop the facility index n for notation simplicity once again.

Again, for any given facility, when the environmental costs and the transition probabilities

are fixed, the optimal long-run average cost γ(v) is increasing in v.

For s = T , we have

h(T, v) = −γ(v) + c>q(T ) + g(v)>q(T ) + qD(T )h(D) + v.

Let h̃(t, v) = (1 − qD(t − 1))h(t, v) − g(v)>q(t − 1) − v. We want to prove that

h̃(T, v) := (1− qD(T − 1))h(T, v)− g(v)>q(T − 1)− v is decreasing in v. This quantity

can be written as

h̃(T, v) := (1− qD(T − 1))h(T, v)− g(v)>q(T − 1)− v

= (1− qD(T − 1))
(
− γ(v) + c>q(T ) + g(v)>q(T ) + qD(T )h(D) + v

)
− g(v)>q(T − 1)− v

= (1− qD(T − 1))
(
− γ(v) + c>q(T ) + qD(T )h(D)

)
+
(

(1− qD(T − 1))g(v)>q(T )− g(v)>q(T − 1)
)
− qD(T − 1)v

Note that in (1− qD(T − 1))
(
− γ(v) + c>q(T ) + qD(T )h(D)

)
, −γ(v) is decreasing in v

since γ(v) is increasing in v. c>q(T ) is independent of v, and h(D) is decreasing in v. The
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next term, (1− qD(T − 1))g(v)>q(T )− g>(v)q(T − 1), is equal to

(1− qD(T − 1))g(v)>q(T )− g>(v)q(T − 1)

= (1− qD(T − 1))(qL(T )− qL(T − 1))h(RLPV )

+ (1− qD(T − 1))(qH(T )− qH(T − 1))h(RHPV ).

according to the definition of the vector g(v). By the Bellman equation Eq (2.4), both

h(RLPV ) and h(RHPV ) are negative and decreasing in v. By Assumption 2, (1− qDn (T −

1))qLn (T )− qLn (T − 1) ≥ 0, and (1− qDn (T − 1))qHn (T )− qHn (T − 1) ≥ 0. Thus, the this

term is also decreasing in v. −qD(T − 1)v is also clearly decreasing in v. In sum, we proved

that h̃(T, v) is decreasing in v.

Now, we prove the induction step. Assuming h̃(s+ 1, v) is decreasing in v, we want to

prove that h̃(s, v) is also decreasing in v. By the Bellman’s equation (2.3a), we have

h(s, v) = −γ(v) + c>q(s)

+ min
{
g(v)>q(s) + qD(s)h(D) + v, (1− qD(s))h(s+ 1) + qDn (s)hn(D)}

= −γ(v) + c>q(s) + min{0, h̃(s+ 1)}+ g(v)>q(s) + qDn (s)hn(D) + v.

Thus, we have

h̃(s, v) := (1− qD(s− 1))h(s, v)− g(v)>q(s− 1)− v

=

(
(1− qD(s− 1))

(
− γ(v) + c>q(s) + min{0, h̃(s+ 1)}+ g(v)>q(s) + qD(s)h(D) + v

))
− g(v)>q(s− 1)− v

=

(
(1− qD(s− 1))

(
− γ(v) + c>q(s) + min{0, h̃(s+ 1)}+ qDn (s)hn(D)

))
+
(

(1− qD(s− 1))g(v)>q(s)− g(v)>q(s− 1)
)
− qD(s− 1)v

We now analyze the monotonicity of each term above.

The first term,
(

(1− qD(s− 1))
(
− γ(v) + c>q(s) + min{0, h̃(s+ 1)}+ qDn (s)hn(D)

))
,
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is decreasing in v, since −γ(v), h(D), and h̃(s+ 1, v) are decreasing in v. The second term,

(1− qD(s− 1))g(v)>q(s)− g(v)>q(s− 1), is equal to

(1− qD(s− 1))g(v)>q(s)− g>(v)q(s− 1)

= (1− qD(s− 1))(qL(s)− qL(s− 1))h(RLPV )

+ (1− qD(s− 1))(qH(s)− qH(s− 1))h(RHPV ).

Recall that h(RLPV ) and h(RHPV ) are negative and decreasing in v. By Assumption 2,

(1− qDn (s− 1))qLn (s)− qLn (s− 1) ≥ 0 and (1− qDn (s− 1))qHn (s)− qHn (s− 1) ≥ 0 , so the

second term is also decreasing in v. qD(s− 1)v is also clearly decreasing in v. Therefore,

we conclude that h̃(s, v) is also decreasing in v. �

Proof of Theorem 2

Consider the Bellman’s equation (2.3), the optimal decision is to inspect if and only if

h̃n(s+ 1, v) = (1− qDn (s))hn(s+ 1, v)− gn(v)>qn(s)− v is positive. The rest is similar

to the proof of the Theorem 1. �
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APPENDIX B

DETAILED STEPS OF CHAPTER 2 DATA PROCESSING

We use two data sets of EPA Enforcement and Compliance History Online (ECHO) database:

ICIS AIR and the ECHO Exporter. These data sets can be downloaded via https:

//echo.epa.gov/files/echodownloads/ICIS-AIR_downloads.zip and

https://echo.epa.gov/files/echodownloads/echo_exporter.zip,

respectively. All our analysis is based on the data download on February 16, 2020.

This is a comprehensive data set that provides information on the facilities, their inspec-

tion history, and enforcement actions. We extract and aggregate data across different CSV

files. Each facility has two unique identification code: PGM SYS ID and REGISTRY ID.

ICIS AIR csv files are based on PGM SYS ID and ECHO Exporter data is based on REG-

ISTRY ID. ICIS-AIR FACILITIES.csv provides both codes for each facility which helps us

to match the data extracted across all the files through one of these codes.

Table B.1 shows the extracted features from each file and their descriptions in detail. As

mentioned in §2.5, we filter the data for the major and synthetic minor (SMI) facilities in

Region 2. For data resolution, we also filter for the inspections conducted during 2002-2016.

B.1 Facilities Information

We extract the information on facilities attributes from two different files. From

ICIS-AIR FACILITIES.csv, we use county name (COUNTY NAME), type of industry

(NAICS CODE), type of ownership (FACILITY TYPE CODE), and air pollutant class code

or facility emission size (AIR POLLUTANT CLASS CODE). From ECHO EXPORTER.csv

file, we extract non-attainment flag (FAC NAA FLAG) and environmental justice flag

(EJSCREEN FLAG US).

82

https://echo.epa.gov/files/echodownloads/ICIS-AIR_downloads.zip
https://echo.epa.gov/files/echodownloads/ICIS-AIR_downloads.zip
https://echo.epa.gov/files/echodownloads/echo_exporter.zip


B.2 Inspection and Enforcement History

We extract the information on facilities inspection history from the ICIS-

AIR FCES PCES.csv file. We filter the data for on-site inspections conducted through EPA

or states. We exclude off-site monitorings as they are done in regulators’ offices and require

fewer resources. We also do not differentiate between full and partial inspections.

We extract the date of the on-site inspections (ACTUAL END DATE) for each facility.

Facilities’ enforcement history is extracted from the ICIS-AIR FORMAL ACTIONS.csv file.

For each enforcement entry, we obtain the date that the settlement has been paid (SETTLE-

MENT ENTERED DATE) and the amount of the penalty (PENALTY AMOUNT). A chal-

lenge we faced in the analysis is that the inspection history file ICIS-AIR FCES PCES.csv

does not include the inspection outcomes, i.e., the file does not show which inspection led to

enforcement action. ICIS-AIR VIOLATION HISTORY.csv provides information on a subset

of the violations called federally reportable violations (FRV) [22], but it is not a reasonable

choice for determining the LPV violations. Firstly because not all the LPVs are federally

reportable, and FRVs are only a small portion of all the violations. Secondly, there are other

activities rather than on-site inspections which can lead to FRVs, and there is not a clear

way that we can differentiate FRVs resulting from on-site inspections from the rest [29].

ICIS-AIR FCES PCES.csv also does not label whether an inspection is regular or restora-

tion (follow-ups after a violation is detected). We solve these issues using the approach

outlined in in §2.5.1.

B.2.1 Regular Inspections.

We identify regular inspections based on the assumption that a regular inspection typically

does not occur within a short period of time from the last inspection. We assume this period

to be six months. To be specific, for any facility, regular inspections are considered the

ones that occurred at least six months after their preceding inspection, and when it is not in
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violation restoration.

We then classify the outcome of regular inspections as follows. For low priority vi-

olations (LPV), we assume a regular inspection leads to a LPV if there is at least one

follow-up inspection within six months, and an enforcement action within the 1,000 days of

the original inspection. Six months is the period within which the regulator is required to

conduct restoration inspections for low priority violations. The 1,000 day window is chosen

because we learned that that 90% of the enforcement actions occur within the 1,000 days of

the inspections, using a subset in which there is only one inspection and one enforcement

action available for a single facility [29].

Fortunately, the events of high priority violations (HPV) are explicitly labeled in the data

set. We extract the data on HPVs from ICIS-AIR VIOLATION HISTORY.csv. For each facil-

ity, HPV DAYZERO DATE column provides the discovery date of the HPVs, which can be

within 90 days of the HPV inspection. Matching the inspection dates (ACTUAL END DATE)

extracted from the ICIS-AIR FCES PCES.csv file with the HPV DAYZERO DATE that oc-

curred in their 90 days proceeding interval would determine the inspections that resulted in

high priority violations [29].

B.2.2 Restoration Inspections.

We define restoration inspections as those that occurred within six months of their preceding

LPV inspection or while the facility is in HPV restoration. We use LPV restoration inspec-

tions to determine the restoration time of the low priority violations. Note that there might

be multiple restoration inspections following a violation; we consider the latest one as the

time of the restoration.

The restoration date of HPV inspections are explicitly provided in

HPV RESOLVED DATE of ICIS-AIR VIOLATION HISTORY.csv. Unlike LPV restoration,

HPV restorations can take more than six months.
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