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SUMMARY

Software debugging is an expensive activity that is responsible for a significant part

of software maintenance cost. In particular, locating faulty code (i.e., fault localization)

is one of the most challenging parts of software debugging. In the past years, researchers

have proposed many techniques that aim at fully automating the task of fault localization.

Although these techniques have been shown to be effective in reducing the amount of code

developers need to inspect to locate faults, there is growing evidence that they provide

developers with limited help in realistic debugging scenarios. I believe that a practical au-

tomated debugging technique should have human developers at the center of the debugging

process rather than trying to completely replace them.

In this dissertation, I present three of my techniques that support developer-centric auto-

mated debugging. First, I present ENLIGHTEN, an interactive, feedback-driven fault local-

ization technique. ENLIGHTEN supports and automates developers’ debugging workflow

as follows. It 1) uses traditional statistical fault localization (SFL) to formulate an initial

hypothesis of where the fault may be; 2) identifies a relevant subset of execution that can

help support or refute the formulated hypothesis; 3) presents the developer with a query

about the identified execution subset in the form of a correctness question about the input-

output relation of the partial execution; 4) refines its hypothesis of the fault by using the

developer’s feedback; and 5) repeats these steps until the fault is found. Second, I discuss

my work on improving the accuracy of dynamic dependence analysis, which is a powerful

tool for developers to investigate program behavior in an interactive debugging setting and

a foundation that many automated debugging techniques leverage to model dynamic execu-

tion semantics. I present my finding that existing dynamic dependence analysis techniques

could miss the cause-effect relations between faults and the observed failures if the faulty

program states propagate via incorrect computation of memory addresses. To address this

limitation, I define the concept of potential memory-address dependence, which explicitly

x



represents this type of causal relations, and describe an algorithm that computes it. Third,

I present TESSERACT, a technique that improves the scalability of dynamic dependency

analysis in the context of interactive debugging. Many existing dependency-based debug-

ging techniques are shown to work well on short executions, but fail to scale to larger ones.

TESSERACT has the potential to address this limitation by utilizing a record-and-replay

system to efficiently recreate the failing execution, break it down into small time slices,

and analyze these slices in a parallelized, on-demand fashion.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Software debugging is a notoriously difficult, and time-consuming activity. In particular,

the task of locating faulty code (i.e., fault localization) is one the most challenging parts.

For this reason, researchers have proposed numerous techniques to help developers

reduce the cost of fault localization and debugging in general (e.g., [1, 2, 3, 4, 5, 6, 7,

8]). Past research of fully automated fault localization techniques [3, 9, 10, 11] shows that

they can effectively reduce the scopes that developers need to explore to find the faults.

However, there is evidence that they offer developers limited help in realistic debugging

tasks [12, 13]. On the one hand, fully automated fault localization techniques usually fail

to provide comprehensive information for developers to understand the faults. Many of

these techniques output only a list of potentially faulty program entities (e.g., statements,

blocks, and predicates). Previous studies [12, 13] of their empirical benefits has shown that

it is unrealistic to assume that developers provided with a possibly long list of suspicious

statements would go through this list in order and immediately spot the fault when they

see it without additional context. On the other hand, fully automated fault localization

techniques often do not have sufficient information about the failures and the expected

behavior of the programs to make precise inference of what and where the faults are [14]. In

real-world software development environments, significant parts of software specifications

exist only in the developers’ minds. Although some fully automated techniques [15] have

been adopted in practice, they are limited to a narrow range of debugging scenarios, such

as isolating crash-inducing inputs and locating domain-specific faults.

Today, developers usually still have to manually diagnose software failures with sym-

bolic debuggers, logs, and print statements [16], which only provide ways of inspecting

system states but leave analyzing and reasoning about program behavior to the developers.
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However, even extremely short program executions, such as unit tests, often contain a large

number of executed statements that is beyond human developers’ capability to fully ana-

lyze. Performing debugging activities efficiently therefore usually requires developers to

make good hypotheses about the faults and select the right parts of the failing executions to

inspect. For these reasons, debugging remains an inefficient trial-and-error process. There

is a clear gap between automated debugging research and real-world developer needs.

My dissertation work focuses on bridging this gap by combining the power of au-

tomated analyses and human developers’ rich knowledge of software specifications in a

debugging workflow that highly automates debugging activities and, at the same time, in-

volves developers throughout the process. This combination creates synergistic benefits for

debugging as it utilizes the strengths of both sides while mitigating their weaknesses. On

the one hand, automated analyses is able to collect and analyze the vast amount of infor-

mation contained in the executions of the system under test (SUT), identify the suspicious

program entities that might be responsible for the failure, and communicate the analysis

results to the developers through suitably designed abstractions. This enhances developers’

ability to inspect and understand program behavior and relieves them from making unre-

liable hypothesis about the fault. On the other hand, involving developers throughout the

debugging process allows them to give information about software specifications to the au-

tomated tools, as that information is needed in an interactive fashion, which could improve

the accuracy of the analyses.

1.1 Thesis Statement

To address some of the limitations of existing debugging techniques and bridge the gap

between automated debugging research and the current software development practice, my

dissertation work develops techniques that supports a developer-centric automated debug-

ging approach. Different from traditional automated debugging techniques that try to com-

pletely automate the task and replace the developers, my approach combines automated
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analyses and human intelligence in a more engaging debugging process. Through the use

of my techniques, we can build better developer tools that help developers locate faults

more efficiently and understand dynamic program behavior better for real-world programs

and failing executions.

1.2 Approaches

In Chapter 5, I present ENLIGHTEN, an interactive, feedback-driven fault localization tech-

nique. I defined ENLIGHTEN so as to follow the way in which debugging is typically

performed, with the goal of helping—rather than completely replacing—the humans in the

loop. Typically, developers would study the failure at hand, make hypotheses on what the

cause(s) of the failure may be, and examine a subset of the execution that can confirm or

disprove their hypothesis. They would then leverage the additional understanding of the

failure acquired in this process to make new hypotheses or refine the existing ones, exam-

ine additional subsets of the execution, and so on. This process would continue until either

the developers give up or they find the fault.

ENLIGHTEN aims to mimic and support this process as follows. First, it uses tradi-

tional statistical fault localization (SFL) to formulate an initial hypothesis of where the

fault may be. Second, it identifies a relevant subset of the execution that can help sup-

port or negate the formulated hypothesis. Intuitively, this execution subset is identified in

the form of a method invocation that results in the execution of highly suspicious entities.

Third, ENLIGHTEN presents the developer with a query about the identified method in-

vocation, expressed in terms of the input and resulting output of the invocation. Fourth,

ENLIGHTEN collects the developer feedback on the correctness of individual data values in

the provided inputs and outputs and encodes this feedback as extra program specifications.

Finally, ENLIGHTEN repeats these steps until the fault is found or the developer decides to

stop.

This approach can overcome the important limitations of traditional SFL. Specifically,
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ENLIGHTEN does not require developers to decide whether a statement in isolation is cor-

rect, but rather to check high-level input-output relationships at the method level. We be-

lieve that operating at the level of abstraction of a method, whose semantics is often well

understood by developers, can make the technique considerably more effective and us-

able. Moreover, developers can skip queries that they cannot answer and, as shown in our

evaluation, the technique is resilient to occasional erroneous responses. Basically, when

successful, ENLIGHTEN can nicely guide the developers towards the fault by following an

iterative process that gets their input at a level of abstraction they can typically understand.

To evaluate ENLIGHTEN, I implemented the approach and performed two empirical

studies. In the first study, I used an automated oracle to simulate the presence of a developer

and applied ENLIGHTEN to a large number of faults in 3 open source programs. The faults

considered included 27 real faults and 1,780 mutation faults, which I generated to increase

the number of data points. As the results show, for over 96% of the faults considered,

ENLIGHTEN required less than 10 interactions with the simulated user to localize the fault.

In the second part of the evaluation, I performed an actual user study. I selected 4 real

faults and 24 participants and assigned to each participant two debugging tasks: one to be

performed using ENLIGHTEN, and one to be performed using the debugging technique(s)

of their choice. When using ENLIGHTEN, the participants performed considerably better

than when debugging without the help of my tool. The improvement was significant in

terms of both number of faults localized and time needed to localize the faults. Overall, the

results provide a clear indication that ENLIGHTEN is a promising approach for debugging

and fault localization.

On the conceptual level, the study of ENLIGHTEN indicates that, despite the usually

huge size of the DDG, combining automated analysis with developers’ knowledge of the

software specification enables quick convergence to the faults during the exploration of the

DDG. From the participants’ comments for the user study of ENLIGHTEN, we also learned

that showing developers the concrete program states is crucial for developers to understand
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the program behaviors and provides useful feedback to the automated debugging tool.

While Enlighten automates a significant part of the debugging process, it leaves to

the developer the task of understanding the behavior of the selected method invocations

and specifying the correctness of the suspicious variable values. One promising research

direction that helps developers perform this task is the dependency-based approach [17, 18],

which enables developers to explore the execution by following dynamic dependencies.

One major limitation of using dynamic dependences for this purpose is that it might miss

some cause-effect relations between the faults and the observed faulty data items. Missing

such relations reduces the effectiveness of the dependency-based debugging approach, and

in the worst case, leads the debugging process to dead ends. To address this limitation,

researchers proposed relevant slicing techniques [19, 20], which aims to discover not only

the actual dynamic dependences of the slicing criterion, but also its potential dependences,

which could have affected the value of the slicing criterion if they are evaluated differently.

In Chapter 6, I present my finding that relevant slicing still misses a class of potential

dependences that are caused by memory address computation and describe my approach to

compute these potential dependences.

Specifically, traditional dynamic dependence analysis would miss the potential depen-

dence between two instruction instances s1 and s2 such that (1) s1 directly or indirectly

affects the computation of a memory-address ma, (2) ma is used to identify a memory

location in an assignment, (3) s2 reads the value of a memory location m different from

that identified by ma, and (4) ma could point to m had the program execution been dif-

ferent. As an example, consider (1) an instruction s1 that defines a value index, (2) a later

instruction sdef that uses index as the index of an array element to modify (a[index] =

newValue), (3) an instruction s2 that reads the value of the same array but at a different

index (a[index’]). Although there are no actual dependences between s1 and s2, s1 po-

tentially affects the behavior of s2; had s1 assigned to index the value of index′, s2 would

have accessed the element of the array that was defined in sdef . We define this kind of
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dependence between s1 and s2 as a potential memory-address dependence (PMD).

Considering PMDs is important in debugging because they allow developers to detect

cases in which the result of the assignment in s1 is incorrect (because either s1 is faulty

or some operands used in s1 are incorrect). Although relevant slicing can detect miss-

ing assignments due to incorrect control flow, it does not account for PMDs. Intuitively,

whereas relevant slicing identifies missing dependences between a faulty data item 1 m and

predicates that are not affecting m but should have in a correct execution, PMDs represent

missing dependences between m and assignments that are not affecting m but should have

in a correct execution.

To evaluate the work, I implemented the PMD slicer which considers PMDs. I then

used the PMD slicer to assess the effectiveness of my approach in the context of debugging

by applying it to a benchmark of 364 real faults and 880 failing tests that reveal them.

In the evaluation, I compared my technique with a traditional dynamic slicing technique

by (1) computing slices for each failing execution from the point of failure using both

techniques and (2) checking whether the slices generated by the two techniques included

the fault. The results are encouraging and show that my technique is useful: 9.2% (81) of

the failing tests produced faulty values for which traditional dynamic slices did not contain

the corresponding faults, while the slices generated by PMD slicer did. I also compared

the sizes of the slices produced by the PMD slicer with the sizes of the corresponding

slices produced by the traditional dynamic slicer. As the results show, my technique only

moderately increases slice sizes: on average, the increase is 7.2% in the number of static

instructions and 10.1% in the number of dynamic instruction instances.

My work on enlightened debugging and the potential memory-address dependence both

relies on the dynamic dependency analysis, which introduces a high computational cost [21,

22] that is a major challenge of applying these techniques in realistic debugging scenarios.

On one hand, the dynamic analysis usually slows down the execution by around two orders

1I use the term ”data item” to denote the state of a memory or register location at a certain time point.
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of magnitude, leading to long waits for the users. On the other hand, representing the

dynamic dependencies consumes extremely large amount of memory. On our benchmark

of x86 binaries, one second of program execution generates a dynamic dependency graph

(DDG) of several billion nodes, which exceeds what the memory of a typical development

machine can hold. For these reasons, current dependency-based debugging techniques

work on only short executions with DDGs of at most a few gigabytes.

To address this limitation of existing approaches, I propose TESSERACT, a technique

that supports a dependency-based debugging process for realistic program executions by

utilizing parallelism and the power of computing clusters. TESSERACT relies on a record-

replay approach to store the information needed to reproduce the execution with low over-

head in terms of both execution time and storage space. Specifically, it decomposes the

recorded execution into small time slices called epochs that can be analyzed one at a time,

which allows TESSERACT to handle otherwise non-scalable dynamic analyses. TESSER-

ACT then runs the analyses on the epochs in parallel on a computing cluster, which en-

ables the technique not only to compute the information needed faster, but also to handle

larger amount of data. To reduce the overall cost of analyzing the execution, TESSERACT

performs two dynamic analyses: the inter-epoch and the comprehensive analyses. The

inter-epoch analysis runs on all epochs in parallel and computes inter-epoch dependencies

that are used to identify the specific epochs that are actually needed during the interactive

debugging session. The comprehensive analysis, which produces all the information nec-

essary to support the debugging workflow inside an epoch, is applied on-demand on those

needed epochs only.

TESSERACT enables developers to trace dynamic dependencies in a way similar to the

approach in Whyline [21]. For each data item in the program state, the technique provides

the developer with an option to go to its dynamic reaching definition, which is the statement

instance that computed the value of the data item; and for each executed statement instance,

the technique provides an option to go to its dynamic control dependency predecessor.
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After the developer selects a navigation option, TESSERACT not only shows the target

statement instance, but also restores the full program state to the moment right before the

statement instance was executed, as I believe that concrete values of the program state are

essential to help developers understand program behavior.

To evaluate TESSERACT, I developed a prototype implementation that support debug-

ging x86 binaries and performed an empirical study on executions of real-world programs.

To investigate how well TESSERACT works in different scenarios, I considered executions

of varying lengths ranging from 8 to 2460 milliseconds. I measured the running time of

the inter-epoch analysis, which is a factor of developers’ wait time when exploring parts of

the execution that cross epoch boundaries, on different number of CPU cores. The results

are promising, in that they show that TESSERACT scales well with the number of available

cores. For the benchmark executions longer than 400 milliseconds and on a cluster of 256

cores, in particular, TESSERACT achieved speedups for the inter-epoch analysis between

18.5x to 100x, with an average of 59x, with respect to its execution on a single core. The

speedups achieved for longer executions are even more significant and continue to scale

beyond 256 cores. I also evaluated the response time of TESSERACT during an interactive

debugging session. Our results are again encouraging, as TESSERACT was able to answer

the vast majority of user queries with no noticeable delay.

Conceptually, TESSERACT investigates the feasibility of separately computing the inter-

epoch dynamic dependencies of individual epochs and aggregating the results. The exper-

iment results show that this approach is effective. On main reason that contributes to the

effectiveness is that, compared to the complete DDG, the inter-epoch dynamic dependen-

cies account for only a small part even for short epoch lengths of about 1 millisecond.

1.3 Contributions

This dissertation provides the following novel research contributions:

• ENLIGHTEN, an interactive, feedback-driven fault localization technique that sup-
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ports developers’ debugging workflow, and highly automates the debugging process.

• A prototype implementation of ENLIGHTEN that is publicly available [23].

• An empirical evaluation of the effective of ENLIGHTEN.

• The new concept of potential memory-address dependence (PMD), which allows for

improving the applicability of dynamic dependence analysis and the techniques that

relies on it in the presence of incorrect memory-address computations.

• An algorithm for computing precise potential memory-address dependences and a

dynamic slicing technique that leverages this algorithm.

• An evaluation of the effectiveness of potential memory-address dependences on a

large benchmark of real tests and faults, in terms of both effectiveness (i.e., ability to

generate slices that include the fault) and efficiency (i.e., size of the generated slices).

• An implementation of the dynamic slicer that considers PMD, which is publicly

available, together with the experiment data and infrastructure, at https://sites.google.

com/view/pmd-artifacts/home

• TESSERACT, a new dependency-based debugging technique that can support real-

world executions by utilizing massive parallelism and computing clusters.

• A tool that implements TESSERACT, supports debugging of x86 binaries, and is pub-

licly available with our experiment data at https://sites.google.com/view/projecttesseract.

• An empirical evaluation of TESSERACT on a benchmark of executions of real-world

programs.

1.4 Organization

The rest of the thesis dissertation is organized as follows. Chapter 2 introduces the back-

ground information needed in the dissertation. Chapter 3 discusses the overall vision of the
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developer-centric automated debugging process and how each of my techniques supports

it. Chapter 4 discusses related work. Chapter 5, Chapter 6 and Chapter 7 provides details

on ENLIGHTEN, potential memory-address dependences, and TESSERACT, respectively.

Chapter 8 provides a conclusion to the research.
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CHAPTER 2

BACKGROUND

This chapter provides the necessary background information for the dissertation. It is or-

ganized as follows. Section 2.1 discusses statistical fault localization. Section 2.2 presents

dynamic program slicing.

2.1 Statistical Fault Localization

Because of the high cost of software debugging, researchers have proposed numerous au-

tomated debugging techniques. Among them, one promising approach is statistical fault

localization (SFL) [3, 11]. On the high level, an SFL technique takes as input the program

under debugging and a set of tests, which contains both passing and failing cases, and out-

puts, for each program entity (i.e., statement, basic block, function, etc.), a suspiciousness

score, which indicates the likelihood that the program entity is faulty. To do that, the tech-

nique executes the test cases on the program, observes the test outcomes and the coverage

of each program entity in the tests, and performs a statistical inference to compute the sus-

piciousness for each entity by correlating its coverage and the occurrences of test failures.

Intuitively, the inference considers program entities that are more frequently executed in

failing test cases and less frequently executed in passing ones to be more suspicious. SFL

techniques typically present the results to the developer as a list of program entities ranked

in decreasing order of suspiciousness. The developer is then expected to inspect each pro-

gram entity in that order to find the fault. Empirical evidence shows that SFL technique are

usually effective in ranking the actual faults near the top of the ranked list.

Researchers have proposed numerous formulas for calculating the suspiciousness scores.

I briefly describe the Ochiai formula [24] here as past empirical studies showed that it is

among the most effective metrics [25]. For a program entity e, I denote the number of
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passing test cases that covered e as aep, the number of failing test cases that covered e as

aef , and the number of failing test cases that did not cover e as anf . The suspiciousness

score of e is then calculated by Equation (2.1).

suspiciousness(e) =
aef√

(aef + aep)× (aef + anf )
(2.1)

2.2 Dynamic Program Slicing

Debugging usually starts with observing an incorrect program output. To reduce the cost

of debugging in this scenario, researchers have proposed dynamic program slicing [26,

27]. Given a faulty output value v at an execution position p, a dynamic slicing technique

aims to reduce the amount of code that the developers need to inspect to find the fault

by computing a subset of program statements that, either directly or indirectly, influenced

v through dynamic data and control dependencies. Specifically, a statement instance s1

is considered data dependent on another statement instance s0 if s1 uses as operands any

variable values defined by s0; and a statement instance s3 is considered control dependent

on a branching statement instance s2 if the execution of s3 is dependent on s2 taking the

particular branch in the execution (i.e., s2 might not be executed if s2 took a different

branch).

Agrawal and Horgan formulated dynamic slicing as a graph reachability problem [27].

The technique first runs a dynamic dependency analysis on the execution history to pro-

duce a dynamic dependency graph (DDG), and then computes dynamic slices on the graph.

More formally, the dynamic dependency analysis outputs a graph G = (V,E) with V be-

ing a set of vertices and E ⊆ V × V being a set of edges. The vertices represent the

executed statement instances in the execution history and the edges represent the dynamic

dependencies between them. Conceptually, the approach builds the DDG by processing

each statement instance in the execution order. It computes data dependencies as follows.

The technique keeps track of, for each storage location m (incl. memory locations and reg-
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1 int var = 0;
2 boolean condition = false; // faulty. Should be condition = true
3 if (condition) {
4 var = 42;
5 }
6 print(var);

Figure 2.1: Relevant slicing example.

isters), its dynamic reaching definition drd(m), which is the statement instance that made

the most recent assignment to m. For each statement instance s, it computes a use set

that contains the storage locations used by s as operands and a def set that contains the

storage locations defined by s. The vertex for s is data dependent on the dynamic reaching

definitions of all elements in its use set. The technique then updates the dynamic reaching

definitions of the storage locations in the def set to s. The approach computes control

dependencies inside each function call by keeping track of the most recently executed in-

stances b of each branching statement B. When a statement s that is directly (static) control

dependent on B is executed, the technique sets the control dependency of s as the saved

instance b.

One main drawback of using dynamic slicing in debugging is that dynamic slices do

not always contain the faults. It misses a class of faults when the faulty program states

do not propagate through the dynamic control and data dependencies actually exercised in

the failing execution. Instead, the faulty definitions in these cases are caused by statement

instances that are not their dynamic dependency predecessors but potentially could have

affected them if the program executed differently. To mitigate this limitation, researchers

have proposed relevant slicing to compute potential dependencies that are caused by control

flow choices. To illustrate, Figure 2.1 shows an example in which developers have to

use relevant slices to find the fault. The code snippet has a fault on line 2. The variable

condition is supposed to be true. Because of the fault, the program took the false branch

one line 3 and skipped the intended assignment to the variable var. As a result, the print

statement on line 6 outputs an incorrect value. Using the dynamic slice of the variable

var on line 6 would miss the actual faulty statement as the value of var is only defined on
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line 1 and has no dynamic dependencies on line 2. To address this issue, the relevant slicing

technique observes that had the variable condition been assigned the value of true, the

variable var would have a different value as the program would have taken the true branch

on line 3. Therefore, the technique adds the executed instance of the branching statement

on line 3 and its dynamic dependency predecessors, which include the actual fault on line 2,

to the slice.
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CHAPTER 3

OVERALL VISION

This chapter presents the overall vision of the developer-centric automated debugging pro-

cess and how my techniques improves over existing debugging techniques to support it.

To better explain, I discuss my techniques in the context of a debugging workflow

that is often adopted in the modern software development practice shown in Figure 3.1.

The process usually starts with one or more failing executions, together with a possibly

empty set of passing tests. To start, the developer would make an initial hypothesis of the

fault. Based on this hypothesis, he/she selects a set of suspicious program entities that

might be responsible for the failure. This includes, for example, suspicious statements,

functions calls, and variables. The developer then inspects the execution, checking the

selected entities against his/her understanding of the program specification. The result of

the inspection is that either the fault is identified or the hypothesis is refuted. In the latter

case, the developer gains a better understanding of the fault, revises his/her hypothesis of

the fault, and repeats this process.

The first part of my work, Enlightened Debugging, aims at supporting this debugging

workflow while automating a significant part of it. Specifically, it takes as input the program

and the test cases, automatically generates a hypothesis of the fault, and presents to the

developer the most suspicious method call and the likely incorrect variable values in its

output program state. The developer then manually inspects the selected call and provides

feedback to the technique by specifying the correctness of individual variables. Similar to a

developer learning from inspecting the execution, the technique learns from the developer’s

feedback, revises its hypothesis of the fault, and repeats this process until the developer

identifies the fault.

The Enlightened Debugging approach leaves to the developer the task of understanding
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Figure 3.1: Debugging workflow.

the input-output relations in the selected method calls and specifying the correctness of

the output variables for the given input. This approach has the advantage of allowing the

technique to learn more about the program specification, which can not be fully encoded

in test cases and is, in fact, mostly in the developer’s mind. However, understanding the

selected part of the execution is still non-trivial. I believe that a practical debugging tech-

nique should provide tools to support this task. One promising approach is to allow the

developer to investigate the execution by exploring dynamic dependencies in the backward

direction [21]. In the second part of my work, I introduced the potential memory-address

dependencies (PMD) to address one major limitation of the existing dynamic dependency

analysis techniques. Specifically, existing techniques could miss a class of potential de-

pendencies that are caused by incorrect computation of memory addresses. My technique

augments traditional DDGs with PMD relations. This provides developers with enhanced

capability for understanding program behaviors. Moreover, it also gives automated fault

localization techniques a more comprehensive picture of program dependencies.

To apply my techniques and other dependency-based debugging approaches in the real
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world, one main bottleneck is the prohibitively high computational cost of dynamic depen-

dency analysis. This leads to long waiting time before the developer can start inspecting

faulty executions and long response time during the interactive debugging session. The

third part of my work proposes Tesseract, which addresses this limitation by massively

parallelizing dynamic dependency analysis on computing clusters. To do that, Tesseract

splits the execution under debugging into small time slices (epochs), runs a light-weight

dynamic analysis in parallel on all the epochs, and applies the expensive dynamic depen-

dency analysis on demand on only the required epochs. This approach allows developers to

immediately start debugging after observing a failure and, for our benchmark executions,

reduces the response time of dependency-tracing requests to near zero in most cases.

I discuss the details of my techniques in Chapter 5, Chapter 6, and Chapter 7.
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CHAPTER 4

RELATED WORK

The chapter describes the techniques that are the most closely related to my work in this

thesis proposal, including interactive or automated debugging techniques, and dynamic and

relevant slicing techniques.

4.1 Interactive or Automated Debugging Techniques

Algorithmic Debugging (AD) [1, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81] is an interactive debugging technique that was proposed in

the functional programming community by Shapiro in the early eighties [2]. Similar to

, AD asks developers questions on the correctness of specific function invocations in the

execution tree for a given failing test. The tree is then systematically pruned based on

the answers to these questions until the fault can be isolated. differs from AD in two

important ways. First, AD uses basic heuristics to identify which function invocations to

target, whereas leverages SFL and dynamic dependences. Second, AD requires developers

to determine whether a function invocation is completely correct, which is difficult to do

in the common case of functions that involve large portions of the program state. (This

problem is common to most techniques based on AD [82, 83], including my own previous

work [84], and tends to make these approaches error-prone and impractical.) Conversely,

asks developers for feedback on individual input and output values, which I believe (and

the results show) is a more realistic approach.

Francel and colleagues proposed an interactive debugging approach that combines al-

gorithmic debugging and program slicing [85]. Similar to , in each iteration, the technique

identifies a statement instance for developer inspection; the developer gives feedback to

the tool about the correctness of the variable defined by the statement instance; and the
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technique uses the feedback to revise its knowledge of the fault, resulting in a smaller set

of potentially faulty statement instances. The technique reduces the candidate set of faulty

statement instances by using dynamic dependency information. On one hand, all the state-

ment instances that are the dynamic dependency predecessors of the correct variable values

are considered to be correct and excluded from the candidate set. On the other hand, when

the developer aims at finding only one single fault, the candidate set of faulty statement

instances is restricted by the union of the dynamic dependency predecessor sets of the in-

correct variable values. To reduce the fault candidate set efficiently, in each iteration the

technique picks a statement instance that minimizes the expectation of resulting candidate

set size assuming that the probabilities of the statement instance computing a correct and in-

correct values are equal. is different from this debugging approach in several aspects. First,

Francel’s approach has the limitation that it might incorrectly exclude the actual fault from

the candidate set, which would result in failing to locate the fault, if the faulty statement is

a dynamic dependency predecessor of a correct variable value. eliminates this limitation by

using a statistical analysis to compute the suspiciousness of statements. Second, compared

to Francel’s approach, which requires developers to determine the correctness of statement

instances at arbitrary execution locations in the context of the whole program execution,

asks about the correctness of variable values in the outputs of method calls in the context

of those calls, which provides developers with richer information to answer the queries.

Statistical fault localization (SFL) [3, 86, 87, 9, 15, 10, 88, 89, 90, 91, 92, 11, 93,

94, 95, 96, 97, 98, 99, 100, 101, 102] computes suspiciousness scores for code entities

based on the strength of correlation between the execution of such code entities and the

test results. Intuitively, code entities that are more frequently executed in failing executions

are considered more likely to be faulty. Although SFL has been a disruptive change in the

area of debugging, and has generated a tremendous amount of followup research, it has

some significant limitations. Most SFL techniques tend to make strong, often unrealistic

assumptions on how developers behave when debugging. In particular, previous work has
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shown that it is unrealistic to assume that developers provided with a possibly long list of

suspicious statements would go through this list in order and immediately spot the fault

when they see it, without any additional context.

Gong and colleagues [4] proposed an interactive fault localization technique that con-

tinuously updates the ranked list of suspicious statements as the user marks statements as

faulty and non-faulty. The intuition behind the technique is that, once a statement is la-

beled as non-faulty, the other statements executed in the same failing test case should be

considered more suspicious. Like traditional SFL approaches, and unlike , their technique

requires developers to determine the correctness of individual program statements without

contextual information, which has been shown to be problematic [41].

Ko and Myers proposed Whyline [5, 21], an interactive debugger that lets a developer

trace incorrect variable values backwards by asking questions about how these values came

to be. Whyline is similar in spirit to dynamic backward slicing—the user follows a se-

quence of incorrect variable values through program dependence chains to get to the fault.

More recently, Lin and colleagues proposed Microbat [6], a feedback-driven debugging

technique that improves on Whyline by inferring patterns in execution traces and using

developer feedback to skip partial program executions, expediting the backward tracing

process. Xu and colleagues proposed a technique that uses probabilistic inference for fault

localization [7]. The technique builds the probabilistic model based on the DDG, associ-

ating with each DDG edge a probability that an incorrect value of the predecessor would

lead to an incorrect value of the successor, and the computing the most likely explanation

of the observed faulty output value. , and the three techniques described above all leverage

lightweight user feedback to improve fault localization. However, in contrast to these other

techniques, the queries produces are contextualized by method invocations as opposed to

focused on arbitrary execution points. This feature not only lets the developer obtain rele-

vant contextual information when answering specific queries, but also enables the technique

to jump across calling contexts guided by the suspiciousness of program statements.
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Whyline [5, 21] and Microbat [6] are both dependency-based debugging approaches

and are also related to TESSERACT, which is partly inspired by these techniques. Different

from Whyline and Microbat, TESSERACT parallelize the dynamic analysis on computing

clusters and focuses on scaling the dependency-based debugging approach to handle real-

istic executions. Moreover, TESSERACT not only allows developers to inspect a statement

instance that is reached by following dynamic dependencies, but also reproduces the full

program states at the moment when the statement instance was executed.

The debugging technique proposed by Hao and colleagues [8] sets breakpoints in the

faulty program using suspiciousness of program statements given by SFL. At each break-

point, the technique asks the developer to inspect the program using a debugger to de-

termine whether the program state has been infected by the fault. The suspiciousness of

related statements is then increased or decreased by a fixed ratio based on the provided

feedback. In contrast to their approach, selects for inspection a small set of suspicious data

items within selected method invocations; it does not require the developers to find faulty

memory locations in the entire program state. In addition, incorporates developers’ feed-

back into the SFL algorithm, so as to dynamically update suspiciousness information. In

follow-up work, Hao and colleagues proposed VIDA [103], which leverages program de-

pendences to find statements whose suspiciousness must be updated. Compared to VIDA,

asks for feedback on the input-output relations of methods, whose intended behavior tends

to be well understood, rather than on individual program statements.

4.2 Program Slicing and Dynamic Dependency Analysis

To reduce the cost of debugging, Weiser proposed program slicing [104, 105, 106]. Given

a variable v at a program point p, a static program slice contains the subset of statements

that might affect the value of v at p in all possible program executions. To find a fault,

developers do not need to consider all statements of the program, but can focus on the

program slice for the observed faulty variable. Many subsequent studies proposed a variety
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of program slicing techniques [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,

119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131]

Korel and Laski first proposed dynamic program slicing [26]. Their technique iden-

tifies the statements that actually influence the slicing criterion in a specific execution by

computing the dependences among the instances of statements in the execution trace and

generates an executable slice of the program. Agrawal and Horgan developed the technique

of computing dynamic slices on the dynamic dependence graph (DDG) [27]. The technique

represents statement instances as DDG nodes and the dynamic dependences among them

as edges. To compute a dynamic slice, it traverses the DDG from the slicing criterion and

includes in the slice the reachable nodes. Agrawal and colleagues later improved their dy-

namic slicing technique by developing a more precise dynamic dependence analysis that

handles unconstrained pointers [43]. The technique eliminates the imprecision caused by

alias analysis. It modifies the standard dataflow analysis by representing the definition and

use sets of program statements as concrete memory locations instead of abstract symbolic

identifiers. These traditional dynamic dependency analysis techniques handles array ac-

cesses by making the results dependent on the dynamic reaching definitions of the base

pointers (or array references), the indexes, and, in the case of array writes, the assigned

data items. This approach could miss the causal relation between a incorrect data item

and the fault if faulty program states propagate via incorrectly computed array indexes.

My technique builds on top of these dynamic slicing techniques and improves their fault-

inclusion capability in the context of software debugging by explicitly models this type

of causal relation. Moreover, because of the high computational cost of constructing and

storing DDGs, traditional dynamic dependency analysis techniques that work on a single

machine are either limited to handle extremely short program executions or store DDGs in

highly compressed format, which is slow to traverse. TESSERACT builds on top of these

existing techniques and scales to realistic executions by utilizing parallelism and the power

of computing clusters.
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Dynamic slices do not contain the fault if the failure is caused by execution omission

errors (i.e., not executing some statements that are expected to be executed). To handle this

type of faults, researchers proposed relevant slicing techniques. Agrawal and colleagues

first defined relevant slicing [132], which identifies the statements that could have affected

the value of the slicing criterion if they had evaluated differently. The technique works

by analyzing and extending the DDG, adding potential dependences between certain predi-

cates and the data items that would be assigned different values if these predicates evaluated

to alternative outcomes. Gyimóthy and colleagues proposed an efficient forward algorithm

that computes relevant slices for all data items as the analysis processes each executed

statement [19]. Zhang and colleagues implemented the relevant slicing algorithm for the C

programming language [17]. They evaluated the technique on a set of faults in C programs

and empirically showed its effectiveness in locating execution omission errors. Wang and

Roychoudhury developed JSlicer [133], which computes dynamic and relevant slices on

bytecode traces of Java programs. The technique uses a compressed representation to store

execution traces efficiently and computes slices directly on the compressed form. Rel-

evant slicing techniques can produce overly large slices because it uses imprecise static

data dependence information. To address this problem, Zhang and colleagues proposed an

approximate relevant slicing technique that is fully based on dynamic analysis. The tech-

nique works by forcing the program to take alternative branches at predicate statements

and using the observed dynamic dependences in these alternative paths to approximate the

potential dependences. My technique complements relevant slicing in terms of enhancing

the fault-inclusion capability of dynamic slicing techniques. While relevant slicing identi-

fies potential (control) dependences caused by dynamic choices of control-flow paths, my

technique finds potential memory-address dependences caused by dynamically computed

memory addresses.
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CHAPTER 5

ENLIGHTENED DEBUGGING

This chapter presents ENLIGHTEN, an interactive, feedback-driven fault localization tech-

nique. This work was originally published in [28].

5.1 Technique

Figure 5.1 provides a high-level view of ENLIGHTEN and shows input (left side), output

(right side), and main components of the technique (inside the box). As the figure shows,

ENLIGHTEN takes as input a program and its test suite and produces as output the likely

location of the fault. The fault localization process of ENLIGHTEN is iterative and user-

driven, as indicated by the loop and the developer’s avatar in the figure. Intuitively, at the

beginning of the process, ENLIGHTEN has limited knowledge about what may be causing

a failure. Each iteration, however, adds relevant debugging information to ENLIGHTEN’s

knowledge base, which helps eventually locating the bug. In the following, I first briefly

describe the main components of the technique and then discuss them in detail.

1) The Test Runner and Dependency Analyzer component takes as input the faulty program

and a test suite for the program and computes, for each test, a dynamic dependence

graph, test results, coverage information, and a set of incorrect data values.

2) The SFL Calculator uses the test results and the coverage information to produce a

ranked list of suspicious statements, using a traditional SFL approach.

3) The Query Generator takes as input the program, its test suite, and the artifacts produced

by the Test Runner and Dependency Analyzer, and generates debugging queries using

the SFL results. Each query consists of a method invocation, together with its inputs
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Figure 5.1: Overview of ENLIGHTEN.

(parameters plus relevant state) and outputs (including side effects), which the developer

can mark as correct or incorrect.

4) The Feedback Analyzer takes as input the response to a debugging query. If the developer

has found the bug, the process stops. Otherwise, the Feedback Analyzer updates the

debugging data based on the developer feedback and performs another iteration.

Conceptually, ENLIGHTEN can operate with test suites that contain test cases triggering

different faults. Multiple faults can negatively affect the initial SFL results. However,

because ENLIGHTEN generates queries for a specific test case, the feedback provided by

the user should overcome the noise introduced by the multiple faults. Moreover, there are

several techniques that can cluster test cases that fail for similar reasons (e.g., [29, 30]) and

that could be used to “specialize” the test suite before applying ENLIGHTEN.

It is also worth noting that debugging queries do not need to be formulated at the gran-

ularity of method invocations, and alternative partial program executions could be used

instead. I choose to use method calls because methods are a fundamental abstraction de-

velopers use to reason about program semantics, and the behavior of many methods should

be well understood by the developers.

My current implementation for ENLIGHTEN works for programs written in the Java

25



programming language and assumes that the test suite contains JUnit test cases, but the

approach is general and can be adopted to other languages and testing frameworks. The

prototype implementation works on deterministic executions as it requires running the test

cases multiple times. To handle nondeterministic behaviors (e.g., nondeterministic system

calls, different thread interleavings in multi-threading executions), the technique can be

extended with deterministic record-and-replay systems [47].

5.1.1 Test Runner & Dependency Analyzer

The Test Runner is a traditional driver that takes a program and its test suite as input and

produces as output the test results (pass or fail of the test oracles), coverage data, and a

set of incorrect data items. This latter is a set of incorrect data items that is initialized,

for each test case, with the data item associated with the corresponding failure, which is

usually is the exception object created by the test oracle. (The Feedback Analyzer then

adds to the set values marked as erroneous by the developers in response to queries.) In

my implementation of ENLIGHTEN, which is for Java programs, a test failure can result

in either an uncaught exception or a failing assertion. In these cases, the value associated

with the failure is the reference to the object corresponding to the uncaught exception or

the failed assertion, respectively.

The Dependency Analyzer, conversely, produces a Dynamic Dependence Graph (DDG)

for every failing test in the test suite. In the DDG, nodes represent occurrences of state-

ments in the program, whereas edges represent dynamic (data or control) dependences

between these statements. As it is traditionally done, statements that contain more than one

definition are split so that each node contains at most one definition [19].

5.1.2 SFL Calculator

ENLIGHTEN uses a modified version of Ochiai [31] to perform SFL. I selected Ochiai be-

cause it has been shown to perform well in practice. The specific formula I use to compute
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the suspiciousness of a statement s is susp(s)=aef/
√
(aep + aef )× (aef + anf ). In the for-

mula, aef (resp., anf ) denotes the number of failing tests that covered (resp., did not cover)

s. The term aep denotes the sum of the weights of the passing tests that covered s (as op-

posed to the number of passing tests that covered s in the original formula). The approach

assigns weight 0.1 to the tests in the initial test suite and weight 1 to the virtual tests that en-

code the feedback provided by the user (see Section 5.1.4). The rationale for this decision

is that I want the human feedback to have a high impact on the SFL results, as it relates to

very focused partial executions. I picked these specific numbers so that there is an order of

magnitude difference between the two. In future work, I plan to experiment with different

weights and better understand their effect. In computing the formula, statements that are

not executed in any test are assigned a suspiciousness score of 0.

5.1.3 Query Generator

ENLIGHTEN interacts with the developer through debugging queries, which are expressed

in terms of inputs and outputs of a suspicious method invocation and are about the correct-

ness of that invocation. I show an example debugging query in Figure 5.4 and will discuss

its details in Section 5.2. The query generation process consists of (1) selecting a failing

test, (2) selecting a suspicious method invocation, and (3) producing a debugging query. I

now describe each of these steps.

Selecting a Failing Test

ENLIGHTEN generates debugging queries for a failing test. When multiple failing tests

exist, and developers do not specify their test of choice, the technique selects the test that

makes the smallest number of method calls. The rationale is that shorter traces should be

easier to debug.
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Selecting a Suspicious Method Invocation

Before describing how ENLIGHTEN selects suspicious method invocations, I present the

concept of value suspiciousness. Traditional SFL techniques (e.g., [3, 31]) associate suspi-

ciousness scores to program statements. ENLIGHTEN uses these scores to compute the sus-

piciousness of values defined within a dynamic method invocation (i.e., a specific runtime

instance of a method execution). In the following, slice(v,invoc) denotes the dynamic

backward slice associated with value definition v, limited to dynamic method invocation

invoc, v.instr denotes the instruction associated with definition v (i.e., the instruction that

defines v), and susp(instr) denotes the suspiciousness score of instruction instr, as com-

puted by the SFL calculator. ENLIGHTEN computes the suspiciousness of a value definition

v for a dynamic method invocation invoc in two steps. First, it computes the base suspi-

ciousness of v as base susp(v, invoc) = max{susp(v′.instr)|v′ ∈ slice(v, invoc)}. It

then computes the actual value suspiciousness of v (val susp(v)) based on whether v af-

fects, through direct or indirect dependencies, values already known to be incorrect. Specif-

ically, ENLIGHTEN computes val susp(v) by multiplying base susp(v) by an amplifying

factor that is equal to either 1, if no previously labeled incorrect data item depends on v, or

1 plus the number of incorrect data items that depend on v, otherwise. Intuitively, values

that affect others that developers previously labeled as incorrect are more suspicious.

To select the method invocation for the next query, ENLIGHTEN considers the output

of all the invocations within the (failing) test execution being considered, where the output

includes the state of the objects passed as parameters, the values of the modified global

variables and objects, and the return value (or exception thrown).1 For each such output

item, ENLIGHTEN computes the corresponding value suspiciousness (i.e., the value suspi-

ciousness of the corresponding definition). It then identifies the outputs with the highest

value suspiciousness and selects the corresponding method invocation. In case of ties,

1ENLIGHTEN currently ignores data written through I/O operations, which could be added through addi-
tional engineering.
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ENLIGHTEN prioritizes methods higher in the call chain and chooses randomly when all

conditions are equal.

Producing a Debugging Query.

Conceptually, a query is a set of questions in the form “Is this value correct?”. Specifically,

ENLIGHTEN reports to the developer the inputs and outputs of a method call that produces

the most suspicious output (see Section 5.1.3) and highlights the data values with various

colors (and transparency) to indicate their relative suspiciousness. Figure 5.4 shows an

example of a debugging query where the field numElems is classified as highly suspicious.

Developers can answer positively or negatively to any number of questions in a debugging

query. A positive (resp., negative) answer indicates that the developer believes the value

is correct (resp., incorrect) for that specific invocation. Intuitively, labeling an output as

incorrect indicates that the bug is either in the method itself or in one of the methods it

calls. Note that developers can also label an input as incorrect (e.g., an unexpected null

value); labeling an input as incorrect tells ENLIGHTEN to ignore the current invocation and

focus on methods that led to this invocation instead.

5.1.4 Feedback Analyzer

Figure 5.2 shows the algorithm for incorporating the feedback provided by developers

through their answers to debugging queries (see Figure 5.1). Global variables passingTests

and incorrectValues, declared at lines 1 and 2, store coverage information for pass-

ing tests and a set of known incorrect data items observed during a debugging session.

ENLIGHTEN incorporates feedback by modifying these sets. At lines 5–9, the algorithm

handles the case of the developer marking some values on the input as incorrect; method

getIncorrectInputValueDefs returns the set of value definitions specified as incorrect

by the developer, and the algorithm adds those values to the set incorrectValues and

returns.
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1 Set<Test> passingTests = ...
2 Set<Value> incorrectValues = ...
3
4 incorporateFeedback(Feedback feedback) {
5 if (feedback.isIncorrectInput()) {
6 incorrectValues.addAll(
7 feedback.getIncorrectInputValueDefs());
8 return;
9 }

10 for (Value v : feedback.getCorrectOutputValueDefs()) {
11 Test virtualTest = new Test();
12 virtualTest.setCoverage(slice(v, feedback.invoc));
13 passingTests.add(virtualTest);
14 }
15 if (feedback.hasIncorrectOutput()) {
16 response = askIfFaultFound();
17 if (response == ‘‘yes’’) return;
18 Set<Instr> directCov = feedback.invoc.getDirectCoverage();
19 if (response == ‘‘no’’) removeCoverage(directCov);
20 else { // ‘‘I don’t know’’
21 Test virtualTest = new Test();
22 virtualTest.setCoverage(directCov);
23 }
24 incorrectValues.addAll(
25 feedback.getIncorrectOutputValueDefs());
26 Set<Instr> transitiveCov =
27 feedback.invoc.getTransitiveCoverage();
28 restrictSflTo(transitiveCov);
29 }}

Figure 5.2: Algorithm for incorporating feedback in ENLIGHTEN.

Lines 10–14 handle the case in which the developer has labeled some output values as

correct. In this case, ENLIGHTEN creates a passing virtual test for each value v labeled as

correct and updates the debugging information accordingly: function slice computes the

dynamic backward slice from v, and function setCoverage marks the statements in the

slice as covered by the newly created virtual test. Intuitively, adding passing virtual tests

reduces the suspiciousness of statements related to the computation of v.

Lines 15–29 handle the case in which the developer has labeled some output values

as incorrect, which indicates that there may be faults in the current method or in one of

the methods it calls. ENLIGHTEN therefore asks the developer to check whether the fault

is in the code of the current method and to provide one of three possible answers: yes,

no, Idon′tknow (line 16). If the developer’s answer is yes, the fault localization process

ends (line 17). If the answer is no, ENLIGHTEN marks all the statements in the method

as not covered (by any test), which has the effect of setting to zero the suspiciousness

of all instructions in this method (line 19). (Note that this does not prevent ENLIGHTEN
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from looking for the fault in methods called by this method.) Finally, if the answer is

Idon′tknow, ENLIGHTEN slightly decreases the suspiciousness of the current method by

adding a passing virtual test whose coverage consists of the statements directly covered by

the current invocation (lines 21–22).

In these two latter cases (i.e., no and Idon′tknow answers), the fault localization pro-

cess then continues. As in the case of incorrect input values, ENLIGHTEN adds output val-

ues marked as incorrect to the set of known incorrect data items. Lines 26–28 then restrict

the computation of SFL suspiciousness to the instructions covered, directly or indirectly,

by the current invocation only.

5.2 Illustrative Example

To help illustrate the details of my approach, I introduce an example consisting of a sim-

ple faulty program. Figure 5.3 shows the code and corresponding test suite for class

BoundedStack, which implements a stack of bounded size and which I adapted from pre-

vious work [32]. For brevity, I omitted the code that checks the capacity of the stack in

method push. The fault is located at line 8: method pop should have no effect on an

empty stack, but it does not check whether the stack is empty. Consequently, when the

stack is empty, the method pop incorrectly decrements the field numElems denoting the

stack size, which becomes negative. This class has three unit tests, and test t3 fails with

an ArrayIndexOutOfBoundsException when calling bs.peek() at line 35, after calling

bs.pop() on an empty stack. At that point, the field numElems is -1, and the expression

size()-1 at line 12 evaluates to -2.

I now describe how ENLIGHTEN would support a developer in localizing the fault in

this code.

First Iteration. The left table in Figure 5.5 shows the initial SFL results: line 13 is

the most suspicious statement, while the actually faulty line is ranked, in the worst case,

at fourth place among the eight executable statements of the program. The imprecision of
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1 public class BoundedStack {
2
3 Integer[] elems; int numElems;
4 BoundedStack(int max) { elems = new Integer[max]; }
5
6 void push(Integer k) {// check size against capacity
7 elems[numElems++] = k; }
8 void pop() { --numElems; }
9 Integer peek() {

10 if (size() = 0)
11 return null;
12 else return elems[size() - 1]; }
13 void clear() { numElems = 0; }
14 int size() { return numElems; } ... }
15
16 @Test
17 t1() {
18 BoundedStack bs = new BoundedStack(3);
19 bs.push(3);
20 assertEquals(1, bs.size()); }
21
22 @Test
23 t2() {
24 BoundedStack bs = new BoundedStack(3);
25 bs.push(4); bs.push(5);
26 bs.pop();
27 assertEquals(4, bs.peek()); }
28
29 @Test
30 t3() {
31 BoundedStack bs = new BoundedStack(3);
32 bs.push(6);
33 bs.clear();
34 bs.pop();
35 assertEquals(null, bs.peek()); }

Figure 5.3: Stack and corresponding test suite example for ENLIGHTEN.

SFL is caused by the fact that line 13 happens to be invoked only in the failing test case,

and it thus has a stronger correlation with test failures than the actual faulty statement.

The value stored in field numElems, defined during the invocation of clear, gets its

base suspiciousness score from the suspiciousness of the definition at line 13, which is 1.0.

This score is then multiplied by its amplifying factor, which is computed based on the set

of incorrect data values. This set initially only contains the exception object thrown when

accessing the array elems at line 12 in t3. Because this exception object has a dynamic

dependence on the value stored in field numElems, the amplifying factor associated with

that value would be 2, and the value suspiciousness for numElems would therefore be 2.0

(see Section 5.1.3).

In this case, the value suspiciousness of numElems would be the highest amongst all
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values observed. ENLIGHTEN would therefore generate a debugging query for clear,

shown in Figure 5.4, with the value of field numElems, marked as highly suspicious (i.e.,

red).

After inspecting the inputs and outputs, the developer would find that the method cor-

rectly set numElems to 0 and respond to the query accordingly. As a result, ENLIGHTEN

would add a virtual test to the test suite reflecting the positive feedback from the developer

on that output value. The coverage matrix on the right side of Figure 5.5 shows the updated

rankings after this first iteration. Note that failing test cases and passing virtual test cases

have weight 1, as described in Section 5.1.2.

Second Iteration. The statements at lines 8, 10, and 12 appear at the top of the

ranking after the first iteration, with suspiciousness 0.95. Line 8 computes the value of

bs.numElems in bs.pop(), while the execution of line 10 and 12 result in an array-out-

of-bound exception in bs.peek(). The value of bs.numElems at the exit of pop() and the

reference of the exception thrown by bs.peek() have thus a base suspiciousness of 0.95.

Because the observed failure dynamically depends on both these values, their value suspi-

ciousness is 1.90 (0.95×2). Since there are two invocations that result in the same (highest)

suspiciousness value, let us assume that ENLIGHTEN randomly picks the call to function

peek for the next query. In this case, the exception object (along with the “this” reference)

would be the output of the call.

Given this query, the developer would realize that the exception is expected, as it is

caused by a stack size that was already negative at the entry of the call. The developer

would therefore mark field numElems in the input as incorrect. ENLIGHTEN would thus

add the value (−1) in field numElems to the set of known-incorrect values, which has the

effect of increasing the amplifying factor associated with all definitions that affect that

value, and return (see Section 5.1.4).

Third Iteration. Due to the increase in its amplifying factor during the last iteration,

the data value bs.numElems in bs.pop() becomes the single most suspicious value defi-
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Figure 5.4: Debugging query on the 1st iteration.

stmt. t1 t2 t3 susp.

4 1 1 1 0.91
7 1 1 1 0.91
8 0 1 1 0.95

10 0 1 1 0.95
11 0 0 0 0.00
12 0 1 1 0.95
13 0 0 1 1.00
14 1 1 1 0.91

result 3 3 7 -
weight 0.1 0.1 1 -

stmt. t1 t2 t3 t4 susp.

4 1 1 1 0 0.91
7 1 1 1 0 0.91
8 0 1 1 0 0.95
10 0 1 1 0 0.95
11 0 0 0 0 0.00
12 0 1 1 0 0.95
13 0 0 1 1 0.71
14 1 1 1 0 0.91

result 3 3 7 3 -
weight 0.1 0.1 1 1 -

Figure 5.5: Coverage matrices before / after the 1st iteration.

nition, with a suspiciousness score of 2.85 (0.95× 3). ENLIGHTEN would therefore select

the invocation of pop() for the third query to the developer. The developer would likely

and quickly understand the failure, by observing that the value of this.numElems is 0 at

the entry of the call and −1 at its exit, and end the fault localization process.

5.3 Empirical Evaluation

I conducted two complementary studies to evaluate ENLIGHTEN: an analytical study with

simulated users (Section 5.3.1) and a user study with real users (Section 5.3.2). The former

let me evaluate my technique on a large number of data points and under various settings,

which is typically challenging in studies involving real users. The study with real users,

conversely, let me assess the usefulness of ENLIGHTEN when considering actual develop-

ers’ behavior, which can only be approximated in a simulation.
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5.3.1 Study with Simulated Users

In this study, I investigated different aspects of ENLIGHTEN using simulated users and a

large number of faults. Specifically, I investigated the following research questions:

RQ1. How many iterations are necessary for ENLIGHTEN to localize a fault?

RQ2. What is the impact of the customized SFL formula and the amplifying factor on the

effectiveness of ENLIGHTEN?

RQ3. How sensitive is ENLIGHTEN to incorrect user responses to debugging queries?

The first question evaluates the performance of ENLIGHTEN in a scenario in which the

user always answers queries correctly. The second question assesses the usefulness of some

key features of ENLIGHTEN. Finally, the third question evaluates how the performance of

ENLIGHTEN degrades when the accuracy of the developers’ responses degrades.

Experiment Setup

Benchmark Programs and Faults. As benchmarks, I used three open-source programs

widely used in fault localization research: Math, Lang, and Jsoup. Math and Jsoup are

available in their public repositories [33], whereas Lang is available in the Defects4J repos-

itory [34]. (Math is also part of Defects4J, but with different versions from the ones I

considered.) I selected these benchmarks because they do not use features unsupported by

Java PathFinder [35], which ENLIGHTEN currently leverages to build DDGs. Table 5.1

presents these programs and faults. Since each program has multiple versions, I report

the number of classes, number of methods, and code size as numeric ranges. I considered

two sets of faults: (1) 27 real faults, available together with the benchmarks, and (2) 1,780

mutation faults [36, 37], which I created using the mutation tool Major [38]. I discarded

faults that traditional SFL ranked in a top position, as I wanted to evaluate ENLIGHTEN in

the more challenging (and more common) cases in which vanilla SFL would not be useful.
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Table 5.1: Benchmarks and faults considered for ENLIGHTEN.

Benchmark # Classes # Methods kLOC # Faults

Real Mutation

Math 236 - 447 1,723 - 3,899 43 - 83 11 1,174
Lang 123 - 170 1,835 - 2,281 45 - 57 8 490
Jsoup 75 - 206 611 - 1,032 8 - 14 8 116

This led to discarding 3 of the 30 real faults available. For the mutation faults, I ran Major

in its default configuration and only considered mutants killed by at least one failing test

case.

Simulated Users (Automated Oracles). I used automated oracles, in lieu of real users,

to answer the queries that ENLIGHTEN generated. Consider a query involving a specific

invocation i of a method. To suitably classify an output value as correct or incorrect, the

oracle re-runs i using the correct version of the program and compares this expected output

with that of i’s actual execution. To ensure that i is executed with the same input as the

faulty program, the oracle starts the test execution on the faulty version and replaces the

definition of the faulty class with the correct one right before invoking i, using runtime

class re-definition [39].

I assume deterministic executions, so that any difference in program state between the

two runs on the faulty and correct versions can only be caused by the fault. Also, for each

query, the oracle only provides feedback on the most suspicious of the output values, rather

than on multiple ones. Note that providing feedback on multiple values would help locate

the fault in fewer iterations, and thus likely improve the performance of my technique.

However, I believe that the approach I chose mirrors well the behavior of a real user, who

is more likely to focus on one or at most a few output values than on all of them. I confirmed

this in the user study (see Section 5.3.2).

In the simulated study, ENLIGHTEN terminates when (1) the current most suspicious

data value is actually faulty (i.e., it has been produced by a faulty statement), and (2) this
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value is computed directly in the current queried invocation. If these two conditions are

not met within 100 iterations, ENLIGHTEN terminates the fault localization process and

considers it failed.

Metrics. I used two metrics for evaluating the effectiveness of ENLIGHTEN: (1) the num-

ber of queries answered by the simulated user before finding the fault and (2) the number

of distinct method invocations involved in such queries (the same invocation can become

the most suspicious more than once). I consider these metrics reasonable approximations

of developer effort: the former measures the number of interactions between the developer

and the tool; the latter measures the number of times the developer needs to understand a

new invocation (i.e., partial execution).

RQ1: How many iterations are necessary for ENLIGHTEN to localize a fault?

To answer RQ1, I ran ENLIGHTEN on my benchmarks and faults. I discuss the results for

the real faults and those for the mutation faults separately. Table 5.2 shows the summary

of the results for the real faults. Column “Fault ID” shows the identifier of the faults

documented in the repositories from which I obtained them. Column “IRoF” (Initial Rank

of Fault) shows the statement-level rank of the fault produced by SFL on the first iteration of

a debugging session. Column “# Invocs” shows the number of distinct method invocations

in the queries produced to locate the fault. Column “# Queries” shows the number of

queries answered by the simulated user before finding the fault. Column “default” shows

the results obtained with the default configuration of ENLIGHTEN, whereas the remaining

columns show results obtained using alternative configurations (see Section 5.3.1).

ENLIGHTEN successfully localized 23 of the 27 (85%) faults within 10 iterations or

less, and 26 of the 27 (96%) faults within 28 iterations or less. In 11 cases ENLIGHTEN

required only 1 query to localize the fault, even though SFL did not rank the faulty line

first. Considering all the faults in the study, the average number of iterations necessary
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Table 5.2: Summary of results for real faults for ENLIGHTEN.

Benchmark Fault ID IRoF #Invocs #Queries
default w/o Wt w/o AF

Math

C AK 1 5 2 2 2 4
EDI AK 1 37 2 2 2 6
F AK 1 36 3 3 4 3
M AK 1 112 8 10 22 13
VS AK 1 16 1 1 2 3
CDI AK 1 26 3 28 32 38
CRVG AK 1 62 6 23 19 19
F AK 2 9 1 1 1 5
MU AK 1 29 1 1 1 10
MU AK 4 36 3 3 4 8
URSU AK 1 13 1 1 1 1

Lang

b10 63 10 16 39 17
b16 53 1 1 1 7
b24 65 1 1 1 64
b26 114 - - - -
b28 5 1 2 1 1
b39 53 2 2 2 4
b5 7 1 1 1 1
b6 17 3 3 4 6

Jsoup

1 3 4-1 3 1 1 1 11
1 3 4-3 73 4 4 4 -
1 4 2-1 16 1 1 1 1
1 5 2-2 21 2 2 2 2
1 5 2-5 20 1 1 1 1
1 6 1-1CR1 56 2 9 16 8
1 6 1-1CR2 3 1 1 1 14
1 6 3-3 36 5 5 3 6

Average - 2.58 4.81 6.46 10.12

for localization was 4.81 (min = 1, max = 28), and the average number of invocations

involved was 2.58 (min = 1, max = 10).

I manually inspected the case of Lang b26, for which ENLIGHTEN fails to locate the

fault with less than 100 queries. The faulty invocation is selected for the first time on the

15th debugging query. The suspicious output of this invocation is a string that is partially

incorrect. However, due to the particular way the assertion of the failing test is written, the

amplifying factor for all characters in the string is the same, and the oracle fails to identify

the character that is actually incorrect. In subsequent debugging queries, the same faulty

invocation is selected several times, but the oracle keeps missing the incorrect character for

the same reason. I conjecture that in this case a real developer would be more likely to
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Table 5.3: Summary of results for mutation faults for ENLIGHTEN.

Benchmark #Mut.
# Queries

Not Found
[1, 1] [2, 10] [11, 100]

Math 1,174 915 77.94% 215 18.31% 29 2.47% 15 1.28%
Lang 490 438 89.39% 47 9.59% 5 1.02% 0 0.00%
Jsoup 116 77 66.38% 34 29.31% 2 1.72% 3 2.59%

Total 1,780 1,430 80.34% 296 16.63% 36 2.02% 18 1.01%

spot the error in the output string and provide the right feedback, as humans tend to view

strings as a whole instead of as individual characters. (The oracle is purposely weak to

avoid unfairly favoring my technique and considers the string as multiple values.)

I also analyzed the correlation between IRoF and # Queries and between IRoF and

# Invocs. The Pearson’s correlation coefficient [40] between the number of queries and the

initial rank of the fault is 0.38, which suggests a weak positive correlation. The correlation

coefficient between the number of distinct invocations in the queries and the initial rank of

the fault is 0.67, suggesting a moderate to strong positive correlation. Overall, the results

suggest some correlation between the problem difficulty, as measured by IRoF, and the

performance of ENLIGHTEN. However, the data also suggests that, even in cases where

IRoF has a considerably high value, # Queries can be fairly low (e.g., Math.M AK 1 and

Lang.b10).

Table 5.3 shows the summary of the results for the mutation faults. Column “# Queries

[min, max]” shows the number of mutants for which the number of queries needed to locate

the corresponding fault was between the indicated min and max values. For example, only

one query was necessary to locate 915 faults (i.e., mutants) in Math, whereas between

two and ten queries were necessary to localize 47 faults in Lang. Overall, ENLIGHTEN

successfully localized 99% of the 1,780 mutation faults, and on average, over 96% of all

mutation faults were localized with at most 10 queries. ENLIGHTEN failed to localize the

fault in only 1.01% of the cases. The results suggest that ENLIGHTEN works slightly better

for mutation faults than for real faults, at least for the cases I considered. The reason may
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be that many of the real faults are inherently more difficult to debug—a conjecture that

is potentially supported by the observation that some of these faults were present in the

released versions of popular libraries.

RQ2: What is the impact of the customized SFL formula and the amplifying factor on the

effectiveness of ENLIGHTEN?

The weights used to compute statement suspiciousness and the amplifying factor used to

compute value suspiciousness are two important aspects of the design of ENLIGHTEN.

This research question evaluates their effectiveness. To answer RQ2, I ran ENLIGHTEN

disabling each of these features separately and compared the results so obtained with those

obtained using both features.

Table 5.2 shows the results for this study in the columns labeled “# Queries”. Column

“w/o Wt” shows the number of answers to queries that ENLIGHTEN needed to locate the

fault when weights were not taken into account (i.e., I simply set to 1 the weights of all tests,

which are used to compute the term aep of the SFL formula in Section 5.1.2). Results show

that, on average, ENLIGHTEN needed 6.46 queries in this setting, compared to 4.81 queries

in the default configuration, which correspond to a 34% increase. Column “w/o AF” shows

the number of queries when the amplifying factor (AF) was ignored (see Section 5.1.3).

When using this configuration, ENLIGHTEN failed to locate the fault Jsoup.1 3 4-3 and

needed, on average, 10.12 queries to locate the remaining faults. This corresponds to a

110% increase over the default configuration. Note that, due to the statistical nature of

ENLIGHTEN, it is possible for the configurations “w/o Wt” and “w/o AF” to perform slightly

better in some cases (e.g., Math CRVG AK 1), but these cases are rare.

I observed similar results on mutation faults, which I do not report for space reasons.

For “w/o Wt”, the success rate of locating the fault decreased by 0.5%, and the average

number of queries increased by 3.7%. For “w/o AF”, the success rate decreased by 1.8%,

and the average number of queries increased by 139%.
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These results indicate that the customized SFL formula and the amplifying factor both

contribute to improve ENLIGHTEN’s performance. The contribution of the customized SFL

formula is lower compared to the contribution of the amplifying factor.

RQ3: How sensitive is ENLIGHTEN to incorrect user responses to debugging queries?

So far, I have assumed that developers do not make mistakes. In practice, however, they can

err by labeling correct values as incorrect or vice versa. This research question investigates

how sensitive is the performance of ENLIGHTEN to incorrect data items labeled as correct.

(I leave to future work the investigation of the opposite case, which I consider less likely to

happen.) To conduct this study, I modified the automated oracle so that it produced this type

of erroneous answers with a configurable probability. Specifically, I considered error rates

ranging from 5% to 30%, with 5 percentage points increments, and measured the number

of queries and the number of cases in which ENLIGHTEN fails. As before, I configured the

oracle to provide only one answer per query.

Table 5.4 shows, for each benchmark and for the different error rates considered, the av-

erage increase in the number of queries necessary to localize a fault over the case of an ideal

oracle (i.e., a user that does not make mistakes). For example, when the erroneous answer

rate is 30%, ENLIGHTEN needs, on average, 42.67% more queries to locate a fault. The

results in the table show, as expected, a positive correlation between the rate of erroneous

answers and the increase in the number of answers required to locate a fault. However, the

results also show that ENLIGHTEN is still able to localize the fault in almost all cases. Even

with 30% erroneous answers, the average success rate was higher than 99.8%.

These results show that, although the number of queries needed to localize a fault in-

creases with the ratio of erroneous answers, ENLIGHTEN can successfully locate the fault

in most cases even in the presence of (considerable amounts of) erroneous feedback.
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Table 5.4: Sensitivity of ENLIGHTEN to human errors. Values indicate the percentual
increase in the number of queries over an ideal oracle (i.e., a user that does not make
mistakes).

Benchmark
Error rate

5% 10% 15% 20% 25% 30%

Math 5.92% 12.26% 18.82% 25.46% 32.08% 38.58%
Lang 6.08% 14.36% 21.93% 29.44% 36.74% 43.75%
Jsoup 7.63% 15.88% 24.37% 32.82% 41.02% 48.85%

Average 6.13% 13.89% 21.24% 28.58% 35.75% 42.67%

5.3.2 User Study

In addition to the study with simulated users, I conducted two actual user studies to evaluate

ENLIGHTEN in a realistic scenario. The user studies involve two debugging tasks each,

where each task consists of localizing and proposing a fix for a fault in a program.

Study Setup.

Benchmarks, Faults, and Participants. The software benchmarks and faults I selected

are non-trivial, real faults that existed in released versions of popular software libraries

written in Java. To simulate a scenario in which participants debug code with which they

are familiar, I wanted software whose semantics should be well understood by a person

with a computer science background. To this end, I chose code that involves either basic

mathematical concepts or XML parsing. In addition, as I did for the simulated study, I

selected faults for which traditional SFL techniques do not perform well (i.e., the faulty

statements are not ranked among the most suspicious statements). I do so to avoid trivial

cases in which SFL by itself would be enough to localize the fault.

Table 5.5 summarizes the information about the two studies I performed. For each

study and each task in that study, it shows the benchmark used in the task and a concise

description of the corresponding fault considered. As the table shows, the faults I used for

Tasks 1, 2, and 4 were selected from a benchmark used in the simulated study, whereas the
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Table 5.5: Debugging tasks for the user study for ENLIGHTEN.

User Study Task ID Benchmark Fault Description

1
Task 1 Math Complex number multiplication error
Task 2 Math Least common divisor computation error

2
Task 3 Nanoxml XML qualified name parsing error
Task 4 Jsoup Absolute address construction error

fault I selected for Task 3 was used in a previous user study on SFL techniques [41]. It is

worth noting that, although I used the same benchmark for Tasks 1 and 2, the parts of the

program involved in the two tasks are different. In other words, completing Task 1 should

not affect the participants’ performance in Task 2. (Even if it had an effect, it should benefit

equally participants performing Task 2 with and without ENLIGHTEN.)

I determined the difficulty levels of the subject faults based on the experimenters’ as-

sessment, the lengths of the failing executions, and the success rate and debugging time of

participants during pilot studies. The pair of debugging tasks in each study are of similar

difficulty, but the tasks in Study 2 are significantly harder than those in Study 1. This let

me evaluate how ENLIGHTEN performs on faults at different difficulty levels.

For each of the studies, I recruited 12 participants (different for each study). The par-

ticipants are graduate students enrolled in the computer science program either at Georgia

Tech or at the Federal Univesity of Pernambuco. I also required the participants to (1) have

at least three years of programming experience and (2) be familiar with the Java language

and the Eclipse IDE.

For each study, I randomly assigned the participants to one of two groups: Group A or

Group B. Participants in Group A performed Task 1 (Study 1) or Task 3 (Study 2) without

ENLIGHTEN and Task 2 (Study 1) or Task 4 (Study 2) with ENLIGHTEN. Participants in

Group B performed Task 2 (Study 1) or Task 4 (Study 2) without ENLIGHTEN and Task 1

(Study 1) or Task 3 (Study 2) with ENLIGHTEN. The participants not using ENLIGHTEN

were allowed to use their preferred traditional debugging approach(es) (e.g., the Eclipse

IDE debugger, print statements, step-by-step execution).

43



I used traditional debugging approaches instead of SFL as the baseline for two rea-

sons. First, existing studies show that SFL tends to produce no measurable advantages

over traditional debugging [Wang:2015:EUI:2771783.2771797, 41], so I do not expect

user performance to improve using SFL instead of traditional debugging. Second, I believe

that traditional debugging is a more objective baseline, as it relies on mature/well-accepted

tools known to the participants.

I implemented ENLIGHTEN as a plugin for the Eclipse IDE and distributed the materials

for the user study as a virtual machine image, so as to ensure a uniform experience across

all participants. I informed the participants that I would measure their performance while

debugging using two debugging approaches, without mentioning that ENLIGHTEN was my

technique. Before the study began, the participants read a tutorial on the ENLIGHTEN plu-

gin. When done with the tutorial, they performed their assigned debugging task. The time

limit for each debugging task in Study 1 and Study 2 was 20 and 30 minutes, respectively.

In pilot studies, I found that the participants gave up on their tasks due to the complexity

of the code involved and their lack of understanding of (some of) that code. Therefore,

when performing the actual study, I allowed participants in all groups to ask questions

about the semantics of a piece of code during the debugging process. This is akin to the

common scenario in which the person who is performing the debugging task asks questions

about the code to a developer with deeper knowledge of the software involved. I made sure

to answer only general questions about what the methods were supposed to do, and I did

not answer any questions about the faults being diagnosed.

Results.

Table 5.6 and Table 5.7 show the results of the two studies. In both tables, the first two

columns show the ID and the corresponding group for each participant. Columns labeled

“Success” indicate whether the participant correctly identified the fault in the debugging

tasks (“Y”) or not (“N”). Columns labeled “Time (min)” report the time spent in localizing

44



Table 5.6: Results for User Study 1 for ENLIGHTEN.

Participant Group Task 1 (Traditional) Task 2 (ENLIGHTEN)
Success Time (min) Success Time (min)

1 A Y 17.5 Y 5.4
3 A Y 8.9 Y 11.0
5 A Y 8.0 Y 10.8
7 A Y 5.5 Y 8.5
9 A Y 18.3 Y 16.0

11 A Y 25.1 Y 16.4

Task 2 (Traditional) Task 1 (ENLIGHTEN)
Success Time (min) Success Time (min)

2 B Y 19.7 Y 8.6
4 B Y 20.1 Y 9.0
6 B Y 12.2 Y 4.0
8 B Y 20.8 Y 9.5

10 B Y 18.9 Y 8.4
12 B Y 11.0 Y 5.4

Average 100% 15.5 100% 9.4

the fault (in case of success). For both groups, the results for the task performed using

traditional debugging are shown in the 3rd and 4th columns, and the results for the task

performed using ENLIGHTEN are shown in the 5th and 6th columns. The last row in each

table shows the average success rate and debugging time for each task and technique.

In Study 1, all participants successfully completed both of their debugging tasks. On

average, participants took 15.5 minutes to complete the tasks using traditional debugging,

and 9.4 minutes to complete the tasks using ENLIGHTEN. Therefore, for the tasks con-

sidered, ENLIGHTEN reduced the debugging time by 39% on average. This difference is

statistically significant with a p-value less than 0.005 using a one-tailed t test.

In Study 2, participants successfully completed 58.3% of the debugging tasks using

traditional debugging, and the average debugging time for these successful cases was 23.2

minutes. Conversely, the participants successfully completed all their tasks when using

ENLIGHTEN, and the average time spent on each task was 9.5 minutes. In these cases,

therefore, the use of ENLIGHTEN increased the success rate by 71.5% and reduced the

debugging time by 59%. Also in this case, the differences for both metrics are statistically

significant. The p-value of the one-tailed t-test of the success rates is 0.009, and that of the
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debugging time is less than 0.001.

On average, for the tasks completed using ENLIGHTEN, participants needed 67% more

queries than the perfect oracle to localize the faults, which indicates that humans do make

mistakes in answering queries. However, it is worth noting that 71% of the participants

needed exactly the same number of queries as the perfect oracle.

Comparing the reduction in debugging time in the two studies, the results seem to

indicate that ENLIGHTEN improves developers’ efficiency in debugging tasks more signif-

icantly for faults that are more difficult to diagnose, which I consider a positive result.

At the end of the user study, I asked the participants to complete a questionnaire about

whether/how ENLIGHTEN helped them, as well as what other information could have been

provided by the tool to make it easier to localize and understand the fault. The two advan-

tages of ENLIGHTEN most frequently mentioned were that (1) it points developers to the

likely faulty invocation in the execution, and (2) it provides detailed program state infor-

mation for inspection. These two aspects roughly correspond to what I consider to be the

main improvements I made in ENLIGHTEN over traditional debugging and traditional SFL

techniques. The most wanted feature that ENLIGHTEN does not currently provide, accord-

ing to the questionnaires, is the ability to get the context of the method invocation in the

debugging query, including the call stack and the position of the current invocation in the

entire execution. Several participants thought that this information would give them a better

understanding of the entire debugging process and help them give feedback to debugging

queries more efficiently. It would be straightforward to provide this additional information,

and I am planning to do it in future work.

I also interviewed the participants about their general feeling on the debugging expe-

rience using ENLIGHTEN. Multiple participants mentioned that learning to use the EN-

LIGHTEN plugin in the time I allocated for the training was challenging. One participant

specifically pointed out that it was difficult to change their debugging mindset from a tra-

ditional code-centric paradigm to a more data-centric one. Finally, several participants
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Table 5.7: Results for User Study 2 for ENLIGHTEN.

Participant Group Task 3 (Traditional) Task 4 (ENLIGHTEN)
Success Time (min) Success Time (min)

1 A N - Y 9.3
3 A Y 21.9 Y 18.0
5 A N - Y 9.6
7 A Y 30.0 Y 5.9
9 A Y 24.0 Y 6.0

11 A Y 21.8 Y 9.9

Task 4 (Traditional) Task 3 (ENLIGHTEN)
Success Time (min) Success Time (min)

2 B N - Y 11.1
4 B N - Y 7.4
6 B Y 16.9 Y 7.3
8 B Y 25.4 Y 11.0

10 B Y 22.4 Y 4.1
12 B N - Y 14.9

Average 58.3% 23.2 100% 9.5

reported that they spent a long time inspecting the code of the method in the query only to

later discover that it was not necessary. I speculate that these feedback may indicate that

people’s performance using ENLIGHTEN could further improve after they get more familiar

with the technique.

5.3.3 Limitations and Threats to Validity

The main limitation of my current implementation of ENLIGHTEN comes from the com-

putation of the dynamic dependence information. Due to the enormous engineering effort

required to develop a tool that implements my approach, the current dynamic dependency

analyzer does not support some features of the Java standard library (e.g., certain encryp-

tion algorithms and Swing). This is an implementation-specific limitation and can be ad-

dressed with additional engineering. Another limitation, shared with many other debugging

techniques that rely on dynamic slicing, is that the performance overhead of ENLIGHTEN

during program execution can be significant. In the user study, however, no participant

complained about the running time of ENLIGHTEN.

The major internal threat to validity for the evaluation has to do with possible faults in
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my implementation of ENLIGHTEN that may invalidate the results. To address this threat,

I carefully checked and unit tested my code during development. Furthermore, for the

real faults in the benchmark, I manually inspected the interactions between the automated

oracle and ENLIGHTEN to confirm that the sequences of debugging queries and feedback

were correct.

The main external threat to validity is that the benchmarks I used might not be repre-

sentative of faults in real-world scenarios and/or my results may not generalize. To miti-

gate this threat, I selected benchmarks that perform different types of tasks: manipulating

complex data structures, performing numeric computations, and processing XML files. In

addition, in the study with simulated users I evaluated ENLIGHTEN with both real faults

and a large set of mutation faults, and in the study with real developers I used four different

real-world faults. Another possible external threat is that the population of participants I

recruited for the user study might not be representative of real developers. To mitigate this

threat, I required the participants to have at least three years of programming experience.
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CHAPTER 6

MORE ACCURATE DYNAMIC SLICING FOR BETTER SUPPORTING

SOFTWARE DEBUGGING

This chapter presents potential memory-address dependences (PMD). Intuitively, PMDs

represent the dependence relationship between an instruction s that affects the computation

of a memory-address ma (e.g., by defining an array index or a pointer offset) and memory

access instructions that are not observed to be dependent on s but could be affected by

s (i.e., access the memory at ma) in a counterfactual execution of s, which computes a

different value of ma. This work was originally published in [42].

6.1 Technique

Generally speaking, my approach is relevant for all languages in which variable values can

be used to compute memory addresses, such as C, C++, C#, or Java. Typical examples of

this situation are array indexes and offsets used for pointer arithmetic (for languages that

provide direct access to memory). For ease of discussion, and without loss of generality, in

the rest of the chapter I will focus on the Java language and on memory-address computa-

tions that involve the use of array indexes. The approach can be easily generalized to other

languages and constructs with analogous effects.

6.1.1 Terminology and Definitions

Before describing the approach, I briefly introduce the terminology that I use in the chap-

ter, which is partly based on the terminology originally introduced by Agrawal and De-

Millo [43]. An execution history is the sequence of instruction instances that a program

executed for a given input. A definition of a memory location m is an instruction instance

that modifies the value of m. A use of a memory location m, conversely, is an instruction
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instance that reads the value of m. The use set and def set of an instruction instance s

contain the memory locations that are read and written by s, respectively. For a memory lo-

cation m, drd(m) denotes its dynamic reaching definition, which is the unique instruction

instance that performed the most recent assignment to m. A dynamic dependence graph

(DDG) is a graph (V,E) in which V is a set of vertices, each representing an instruction

instance, and E ⊆ V × V is a set of edges that represent the dynamic control and data

dependences between the vertices.

I can now define potential memory-address dependence.

Definition 1 PMD: The use of a memory location m2 in an instruction instance s2 at a

position l2 in the execution history is potentially memory-address dependent on an earlier

instruction instance s1 at a position l1 if

1. s1 defines a memory location m1,

2. m1 is directly or indirectly (i.e., transitively) used to compute a memory address ma

that identifies a memory location mma 6= m2,

3. an instruction instance sdef defines mma,

4. m2 is not redefined between sdef and s2, and

5. had s1 assigned a different value to m1, mma and m2 would have been the same

memory location.

I call s1 a PMD predecessor of s2.

6.1.2 Motivating Examples

Figure 6.1 shows an example involving a failing test in which the faulty program state

propagates through PMDs. The system under test (SUT) is method incrementFirstInt,

which should increment the first element of the input array but has a fault at line 4; it uses
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1 void incrementFirstInt(int[] array) {
2 // The value of the variable "index" is faulty.
3 // The correct value is 0.
4 int index = 1;
5 ++array[index];
6 }
7
8 @Test
9 void incorrectArrayWrite() {

10 int[] array = new int[2];
11 array[0] = 0;
12 array[1] = 1;
13 incrementFirstInt(array);
14 assertEquals(1, array[0]);
15 }

Figure 6.1: Example of PMD caused by array writes.

index value 1, instead of 0, to refer to the first array element and therefore incorrectly in-

crements the second element of the input array. The test method fails at line 14 because of

the unexpected value in array[0]. Using the observed incorrect value at line 14 as the slic-

ing criterion, neither traditional nor dynamic relevant slices would contain the actual faulty

statement because the statement has no observable effect on array[0] through explicit

control or data dependences. Instead, array[0] is incorrect because, due to the faulty in-

dex value at line 4, line 5 modifies an incorrect memory location (i.e.,array[index]). The

technique would handle this case by creating a PMD edge in the DDG from the node cor-

responding to the faulty definition of index at line 4 to the node corresponding to the use

of the first array element at line 14. Intuitively, this PMD encodes the fact that line 5 would

have assigned array[0] a different value had index at line 4 been assigned value 0.

Figure 6.2 shows a second example of a faulty program state that propagates through

PMDs. The SUT method incrementFirstElement takes a reference-type array of

MutableInt, which is defined on lines 1–4. Similar to the previous example, the method

is faulty because of the use of a wrong index value at line 9. As a result, line 10 incor-

rectly reads the second element of the array, causing variable firstElement to point to a

wrong object. As a consequence, the subsequent field assignment through firstElement

on line 11 modifies an incorrect memory location (i.e., array[1].value). After executing

line 11, field array[0].value is potentially dependent on the definition of the index at
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1 class MutableInt {
2 int value;
3 MutableInt(int value) { this.value = value; }
4 }
5
6 void incrementFirstElement(MutableInt[] array) {
7 // The value of the variable "index" is faulty.
8 // the correct value is 0.
9 int index = 1;

10 MutableInt firstElement = array[index];
11 ++firstElement.value;
12 }
13
14 @Test
15 void incorrectArrayRead() {
16 MutableInt[] array = new MutableInt[2];
17 array[0] = new MutableInt(0);
18 array[1] = new MutableInt(1);
19 incrementFirstElement(array);
20 assertEquals(1, array[0].value);
21 }

Figure 6.2: Example of PMD caused by array reads.

line 9; had the index been assigned the correct value, which is 0, array[0].value would

have been correctly modified. To represent this fact, the technique would add to the DDG a

PMD edge from the node representing the (faulty) definition of index at line 9 to the node

corresponding to the use of array[0].value at line 20.

6.1.3 Computing PMDs

In this section, I discuss the computation of PMDs that are caused by array reads and

writes, as these are the main occurrences of this kind of dependences in the case of the Java

language. However, the same approach could be extended to other languages and other

constructs that result in PMDs, such as pointers and pointer arithmetic. Before discussing

the specific algorithms I defined to compute PMDs for array reads and writes, I provide

some preliminary definitions and high-level descriptions. The technique maintains, for

each memory location m in the program, a PMD set, indicated as pmd(m), which contains

the PMD predecessors of any subsequent use of m. The technique computes and updates

the PMD sets for each instruction instance in the execution history while processing the

instruction instances in the order in which they are executed. The technique uses the PMD

sets to create PMD edges on the DDG, as follows. For each instruction instance s in the
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memory history, the technique adds to the DDG PMD edges from the nodes in the PMD

sets of all the memory locations in the use set of s to the DDG node that corresponds to s.

Computing PMDs Caused by Array Writes

Conceptually, the technique processes an array assignment instruction instance

array[index]=value by updating the PMD sets of the array elements in two steps.

First, it sets pmd(array[index]) to the empty set because the element that was just as-

signed no longer depends on previously executed instruction instances. Second, it extends

pmd(array[i]) for any other array element (i.e.,i != index) by adding the reaching defi-

nition of index because array[i] would have been re-assigned by the instruction instance

if the index had taken the value i.

Updating the PMD sets of all array elements for all array assignments, however, is

computationally expensive. I therefore propose an efficient algorithm to compute PMD

caused by array writes based on two observations. The first observation is that each array

assignment affects the PMD sets of only the elements in the array on which it operates. The

second observation is that, once the PMD set for the element that is actually defined is up-

dated, the PMD sets for all other elements are updated in the same way. As a consequence,

the algorithm does not update the PMD sets individually for each array element, but instead

associates the PMD information with the array object and shares the information among all

elements.

Figure 6.3 shows the algorithm. In the algorithm, the statement “var ←

〈e1, e2, . . . , en〉” creates a tuple that contains members e1 through en and assigns it to the

variable var. I use the expressions var.first, var.second, and so forth to represent

accesses to the members of the tuple at the corresponding positions. (I use the same termi-

nology in Section 6.1.3.)

For each array object, the algorithm stores the history of array writes as a list of write

records. A write record is a pair (i.e., 2-tuple) that contains the dynamic reaching defi-
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1: procedure PROCESSARRAYWRITE(pArray, pIndex)
2: array← ∗pArray
3: index← ∗pIndex
4: prevWr← lastWr(array)
5: newWr← 〈 drd(pIndex), prevWr 〉
6: lastWr(array)← newWr
7: lastWr(array[index])← newWr
8: end procedure
9:

10: function DEFERREDPMD(array, index)
11: deferredPmdSet← 〈 lastWr(array), lastWr(array[index]) 〉
12: return deferredPmdSet
13: end function
14:
15: function COMPUTEPMD(deferredPmdSet)
16: pmdSet← ∅
17: startWr← deferredPmdSet.first
18: endWrExcl← deferredPmdSet.second
19: currentWr← startWr
20: while currentWr != endWrExcl do
21: pmdSet← pmdSet ∪ { currentWr.first }
22: currentWr← currentWr.second
23: end while
24: return pmdSet
25: end function

Figure 6.3: Algorithm for computing PMDs due to array writes.

nition of the index of an array assignment as the first member, and a link to the previous

write record as the second member. I use lastWr(array) to denote the head of the array-

write history (i.e., the most recent write record for the array). For each array element

array[index], the algorithm also keeps track of the most recent write record of the ele-

ment, lastWr(array[index]).

The algorithm extends standard dynamic dependence analysis. Procedure

ProcessArrayWrite is called by the dynamic analysis engine for each array assignment

instruction instance to update the array-write history. Line 5 creates the new write record

for the assignment, newWr. Line 6 sets newWr as the head node of the write history of the

current array. Line 7 sets newWr as the most recent write record of the assigned element.

During DDG construction, when a PMD set of an array element array[index] is
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Figure 6.4: Computing PMDs for the first motivating example.

requested, the dynamic analysis engine calls function DeferredPmd, which takes the ar-

ray reference and the index as input and returns a deferred PMD set—a set that contains

sufficient information to compute PMDs at any later position in the execution history.

Specifically, this set consists of a pair that contains the most recent write record of the

array (lastWr(array)) as the first member, and the most recent write record of the el-

ement (lastWr(array[index])) as the second member (line 11). The write records in

the array-write history from the first member (inclusively) to the second member (exclu-

sively) correspond to the array assignments that should result in updates of the PMD set of

array[index]. Based on this idea, function ComputePmd computes the actual potential de-

pendences from a deferred PMD set. Starting from the first member of the deferred PMD

set, the function (1) traverses the list containing the array-write history, (2) adds the dy-

namic reaching definitions of the indices stored in the visited write records into the initially

empty collection pmdSet until it reaches the second member of the deferred PMD set, and

(3) returns pmdSet.

Procedure ProcessArrayWrite and function DeferredPmd are both used during DDG

construction and run in constant time for each array assignment instruction instance. Func-

tion ComputePmd is used only during the traversal of the DDG, and its total running time in

a traversal is proportional to the number of visited PMD edges.

Figure 6.4 demonstrates how the algorithm works on the motivating example in Fig-
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ure 6.1. The two diagrams separated by the vertical dashed line show the histories of array

writes before and after executing line 5. I focus on this line of code because it creates the

PMD edge that is related to the failure. The rectangles in the figure represent array buckets.

The number inside each rectangle shows the concrete value of the bucket, while the number

enclosed in brackets above the rectangle indicates its index. The rounded rectangles rep-

resent write records. The label inside each rounded rectangle shows the name of the write

record and the line number of the code that creates it, separated by a colon. The arrows

between the rounded rectangles show the links between the write records. For simplicity, I

omit the dynamic reaching definitions of the indices in the write records from the diagrams.

The diagram on the left shows the array write history before executing line 5. It contains

two records: wr1, created by line 11, and wr2, created by line 12. The most recent assign-

ment to the array element array[0] is on line 11, indicated by the arrow from array[0]

to wr1. Similarly, the most recent write record of array[1] is wr2, which is also the head

of the write history of the whole array lastWr(array). The diagram on the right shows

the modified array write history after executing line 5. The technique creates a new write

record wr3 and inserts it at the head of the array write history. Since the statement modifies

array[1], the technique also updates lastWr(array[1]) to point to wr3. To compute the

PMD set of array[0], the technique (1) traverses the array write history from wr3, the

most recent write record, to wr1, the last assignment to the array bucket, and (2) identifies

the reaching definitions of the array indices in wr3 and wr2 as the potential memory-address

dependences of array[0]. In particular, the array index in wr3 has the incorrect value that

leads to the failure.

Computing PMD Caused by Array Reads

Reading an element from a reference-type array leads to PMDs if the reference read is

subsequently used, either directly or through additional field/array-element accesses, to

modify a memory location. For simplicity, hereafter I refer to fields and array elements
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uniformly as members of their containing objects, and use the term oRef.mName to denote

access to a member of oRef, where mName is either a field name or an array index.

Consider a member-write instruction instance oRef.mName=value at an execution point

l2, where the object reference oRef is retrieved from an array refArray through the fol-

lowing sequence of member-read instruction instances:
r0=refArray[index]; r1=r0.mName1;

r2=r1.mName2; ......; oRef=rn−1.mNamen;

The instruction instances in the sequence are in the same relative order as they appear in

the execution history but are not necessarily executed contiguosly. I denote the execution

position of the first member-access instruction instance in the sequence, which is the array

read refArray[index], as l1. If the index at l1 had a different value i, where i!=index, the

member-write instruction instance at l2 would use a potentially different object reference

oRef’, and as a result, the program would write a potentially different memory location

oRef’.mName. After executing the member-write instruction, the technique adds a PMD

edge from the dynamic reaching definition of index at l1 to the corresponding alternative

memory location oRef’.mName for each valid i (0≤i<refArray.length ∧ i!=index).1

To compute the alternative object reference oRef’ at l2, the technique replaces the index

used in the array-read instruction instance at l1 with the alternative value i and re-evaluates

the sequence of member reads that retrieved oRef from the array refArray in the actual

execution. To do so, the technique encodes the member-read sequence as an access path

and associates it with the object reference oRef. An access path is a pair that contains

the starting object reference r and a list of member-read records that store the names of

the accessed members and the timestamps of the read instruction instances. (As a clock,

the technique uses an integer counter that it increments for each executed instruction.)

Intuitively, the access path represents how the associated object reference is retrieved from

r. The technique creates only access paths that start with array references. The access path

1To simplify the discussion, and when it is not ambiguous, I describe PMDs by using memory locations
instead of the corresponding node representing statements that use or define these memory locations.
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associated with oRef has refArray as the first element, and the list [〈index, t0〉, 〈mName1,

t1〉, 〈mName2, t2〉, ..., 〈mNamen, tn〉] as the second element, where the elements t0 through

tn are the timestamps of these member-read instruction instances.

When the technique computes the alternative object references, it re-evaluates the

member-read instruction represented by a record 〈mNamem, tm〉 as if the instructions

therein were executed at time tm. To do so, it keeps track of the historical values that

reference-type members have taken during the execution for all objects. Specifically, it

associates with each reference-type member a list of pairs 〈tk, rk〉, which indicate that an

instruction instance assigned the value rk to the member at time tk. The technique sorts

the list of historical values by timestamp, so that it can efficiently look up the value for a

member at any specified execution point. Given a timestamp tx, the technique finds the pair

〈ty, ry〉 that has the largest timestamp smaller than or equal to tx by using binary search and

returns ry as the value of the member at the time tx.

Figure 6.5 shows the algorithm for computing PMDs caused by array reads. In the algo-

rithm, the notation “[e1, e2, . . . , en]” indicates the creation of a list of elements e1 through

en. Functions head and tail are standard list manipulation functions.

Procedure ProcessRefArrayRead is called by the dynamic analysis engine for each

read instruction instance of reference-type arrays. In addition to the memory locations of

the array reference and the index, the procedure also takes as input the memory location of

the resulting object reference of the read instruction instance. Line 4 creates an array-read

record, which contains the index, the current time returned by function currentTick(),

and the dynamic reaching definition of the index. Lines 5 and 6 create a new access path

that contains only the array-read record. Line 7 associates the new access path with the

resulting reference of the array-read instruction instance. Each object reference has a set of

associated access paths, returned by function apSet, because it might have been retrieved

from multiple arrays.

Procedure ProcessRefMemberRead is called for each read instruction instance of
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reference-type members, including elements of reference-type arrays. The procedure takes

as input the memory location of the operand object reference of the read instruction in-

stance, the accessed member name, and the memory location of the resulting object refer-

ence, and suitably updates the set of access paths of the resulting reference. Line 11 creates

a member-read record, which contains the name of the accessed member and the current

time. For each of the access paths associated with the operand reference, line 13 calls func-

tion extPath to create a new access path that extends the existing path with the new record,

and line 14 associates the new access path with the resulting reference. To reduce the space

required to store access paths, the technique represents them as reversed linked lists that

share common prefixes.

When the program writes a member of any object, the dynamic analysis engine calls

procedure ProcessMemberWrite to update the set of historical values of the member and

the PMD information. The procedure takes as input the memory location of the operand

object reference, the name of the modified member, and the new value assigned to the mem-

ber. Line 20 clears the PMD set of the member that is actually modified, as the technique

also does for array writes. If the current member has a reference type, line 22 appends the

time and the assigned value to its historical values, memberHist. For each access paths

associated with the object reference, the algorithm gets the dynamic reaching definition of

the index used by the initial array-read instruction instance from the access path (lines 25–

27) and adds it to the PMD sets of the alternative memory locations that could have been

written had the index been assigned different values (lines 28–29). Function GetAltObj

(line 28) takes an access path and returns the set of alternative object references by re-

placing the index in its first array-read record with alternative values and re-evaluating the

path.

I demonstrate how the technique works on the motivating example of Figure 6.2. I

focus on lines 10–11 of the example, as PMDs caused by array reads involve only these

two lines. After executing line 10, the technique creates an access path 〈array, ["1"]〉,

59



1: procedure PROCESSREFARRAYREAD(pArray, pIndex, pRstRef)
2: array← ∗pArray
3: index← ∗pIndex
4: arrayRr← 〈 index, currentTick(), drd(pIndex) 〉
5: mReads← [ arrayRr ]
6: newAccessPath← 〈 array, mReads 〉
7: apSet(pRstRef)← apSet(pRstRef) ∪ { newAccessPath }
8: end procedure
9:

10: procedure PROCESSREFMEMBERREAD(pObjRef, mName, pRstRef)
11: memberRr← 〈 mName, currentTick() 〉
12: for accessPath ∈ apSet(pObjRef) do
13: extendedPath← extPath(accessPath, memberRr)
14: apSet(pRstRef)← apSet(pRstRef) ∪ { extendedPath }
15: end for
16: end procedure
17:
18: procedure PROCESSMEMBERWRITE(pObjRef, mName, mValue)
19: objRef← ∗pObjRef
20: pmd(objRef.mName)← ∅
21: if isRefMember(objRef.mName) then
22: memberHist(objRef.mName).append(〈 currentTick(), mValue 〉)
23: end if
24: for accessPath in apSet(pObjRef) do
25: mReads← accessPath.second
26: arrayRr← head(mReads)
27: indexDrd← arrayRr.third
28: for altObj ∈ GetAltObj(accessPath) do
29: pmd(altObj.mName)← pmd(altObj.mName) ∪ { indexDrd }
30: end for
31: end for
32: end procedure

Figure 6.5: Algorithm for computing PMDs due to array reads.
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which starts with the reference of the array and has a single array-read record (representing

the reading of the element at index 1). It then associates the access path with the resulting

reference firstElement, which points to the MutableInt object at array[1]. (For con-

ciseness, I omit the timestamp from the member-read records, as using the technique on this

example does not require restoring historical program states.) When line 11 writes memory

through reference firstElement, the technique computes the alternative possible values

of firstElement by using the access path associated with it. Specifically, the algorithm

checks the size of array and finds that the index of the array-read record in the access path

has one alternative value 0. By re-evaluating the array-read instruction with value 0 as the

index, the technique determines that, in this alternative scenario, firstElement points to

the MutableInt at array[0]. Therefore, it adds a PMD edge from the dynamic reaching

definition of the index in the array-read record to the memory location array[0].value.

6.2 Empirical Evaluation

To evaluate the cost and benefit of considering PMDs in dynamic-slicing-based soft-

ware debugging, I implemented PMD slicer, a tool that considers dynamic and potential

memory-address dependences, and compared it with a traditional dynamic slicer. I investi-

gated the following three research questions:

RQ1: Do PMD slices include (real-world) faults that traditional dynamic slices would

miss?

RQ2: How much larger are PMD slices compared to traditional dynamic slices?

RQ3: What is the computational cost of PMD slicer compared to a traditional dynamic

slicer?

6.2.1 Experiment Setup

As a baseline technique for the evaluation, I selected a traditional dynamic slicer that I used

in my previous work on debugging [28] (BaselineSlicer, hereafter). I built PMD slicer by
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Table 6.1: Benchmark programs for PMD.

Program # Classes # LoC # Faults # Failing Tests

Chart 582–681 174K–210K 21 47
Closure 912–1608 88K–154K 169 529
Lang 119–170 43K–57K 57 101
Math 146–1041 26K–169K 92 130
Time 226–232 60K–63K 25 73

Total - - 364 880

extending BaselineSlicer, so as to minimize the risk that the differences measured in the

evaluation are caused by implementation differences. Both slicers work by first building an

in-memory DDG for the execution considered and then computing slices by traversing the

DDG backward from the slicing criterion. I ran the experiments on a machine with an Intel

Core i7-4770 3.4GHz CPU and 32GB DDR3 of memory and allocated 16GB maximum

heap space to each slicer process. I did not compare the technique with relevant slicing in

the empirical evaluation because I could not obtain an implementation of relevant slicing.

I nevertheless provide a conceptual comparison in Chapter 4.

For the evaluation, I used a benchmark of 364 real-world faults in 5 open source Java

programs from the Defects4J database [34]. I selected Defects4J because it provides, for

each fault, the faulty and fixed program versions, and fault-revealing JUnit test cases. This

lets me determine in an automated way whether the slices PMD slicer computed contained

faulty statements. I did not include into the benchmark the Mockito program in Defects4J

because it extensively uses the Java reflection API [44], which the current implementation

of PMD slicer does not fully support. Table 6.1 shows relevant information about the

programs in the benchmark.

In the table, columns “# Classes” and “# LoC” show the number of classes and the

number of lines of source code in the benchmark programs, respectively. Because each

program has multiple versions, these numbers are reported as ranges. Columns “# Faults”

and “# Failing Tests” show, for each program and in total, the number of faults I considered
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and the number of failing test cases that reveal these faults.

Note that I had to exclude a small fraction (<10%) of the faults (and the corresponding

fault-revealing tests) in the benchmark programs for various reasons. First, I used a modi-

fied version of Java PathFinder (JPF) [35, 45] to build the DDG within the slicers. Although

I extended JPF to support most of the functionality of the standard Java library, the extended

JPF still does not fully support GUI-related classes, reading and writing compressed files,

locales, and reflection. I therefore excluded the tests that use these unsupported features.

Second, to constrain the total running time for the experiment, given the large set of tests

in the benchmark, I excluded tests that took longer than one minute to run on vanilla JPF

(i.e., on JPF with all the dynamic analyses disabled). Finally, I excluded the fault-revealing

tests that either did not result in failures or failed during the start-up phase (before entering

the actual test method). It is worth noting that these issues are not related to my approach,

but rather to its implementation and the experiment infrastructure I used.

To show the effects of considering PMDs caused by array writes and reads separately, I

ran PMD slicer in two configurations: (1) the “write-only” configuration considers PMDs

caused by array writes only, and (2) the “read-write” configuration is the full technique,

which analyzes both types of PMDs. In the discussion of the results, I denote the execution

of a test t on program P as P (t). Additionally, I refer to the slices produced by the tool as

PMD slices and to the slices produceed by BaselineSlicer simply as dynamic slices.

6.2.2 RQ1: Do PMD slices include (real-world) faults that traditional dynamic slices

would miss?

To answer RQ1, I applied both BaselineSlicer and PMD slicer to each failing execution

and assessed in how many cases the faults were not in the dynamic slices, but were in the

PMD slices. Specifically, I identified the incorrect data items at the end of P (t) (i.e., at the

exit of the test method), used each of them as the slicing criterion, and checked whether

the fault was included in the PMD and dynamic slices. To compute the set of incorrect
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Table 6.2: Summary of cases that the faults are not in dynamic slices but are in PMD slices.

Program
Write-only Read-write

VF RP %SC VF RP %SC

Chart 47 0 - 46 0 -
Closure 529 58 (10.96%) 3.59% 254 48 (18.90%) 16.06%
Lang 101 1 (0.99%) 14.29% 101 3 (2.97%) 5.47%
Math 130 5 (3.85%) 13.82% 130 6 (4.62%) 14.85%
Time 73 2 (2.74%) 1.79% 71 1 (1.41%) 1.79%

Total 880 66 (7.50%) 4.47% 602 58 (9.63%) 15.14%

data items, I executed t on the fixed version of the program P ′ and compared the program

states at the end of P (t) with those of P ′(t) at the corresponding execution position. I

determined the equality of scalar data items by comparing their actual values, and that of

reference-type data items by comparing the objects that they referenced. I made sure the

differences between the executions on P and P ′ in the data items that I used as slicing

criteria were only caused by the fault by removing nondeterminism as follows. One main

source of nondeterminism that extensively affected the tests in the benchmarks was object

identity hash codes [46], which in particular may determine the positions of elements in

hash maps. To remove this nondeterminism source, I changed the VM configuration so

that it returned a constant value as the identity hash codes for all objects. Furthermore, I

removed other sources of nondeterminism by excluding from the slicing criteria the data

items that had non-unique values in multiple executions of each test.

Both BaselineSlicer and the PMD slicer produce slices that contain executed (dynamic)

instruction instances. I determined whether a slice contained a fault that was caused by

faulty program statements by simply checking whether the slice contained an executed

instance of any of the faulty statements.

Table 6.2 reports the summary of the experiment results for each benchmark program

and in total. The sections “Write-only” and “Read-write” show the results of the corre-

sponding configurations of PMD slicer. Under each configuration, column “VF” (Verified
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Failures) shows the total number of fault-revealing tests on which the PMD slicer ran suc-

cessfully. For the write-only configuration, this is the same data I show in the column “#

Failing Tests” in Table 6.1. For the read-write configuration, I have fewer successful cases

because tracing PMDs caused by array reads for all data items is expensive, and I excluded

the tests on which the running time of PMD slicer exceeds ten-minutes. (I plan to compute

results for these additional tests in future work.) Column “RP” (Require PMD) reports

the number and percentage of the tests in which PMD slicer, compared to BaselineSlicer,

shows improved fault-inclusion capability. Specifically, each of these tests has a non-empty

set D of post-execution incorrect data items such that the PMD slices for the data items in

D contain the fault while the corresponding dynamic slices do not. For these tests, to

show how likely the choice of a specific slicing criterion would require the developer to use

PMD slices to locate the fault, in column “%SC” (% of Slicing Criteria) I report the ratio

of the number of the data items in D to the total number of incorrect data items (except for

uninitialized object members).

Overall, for the 880 fault-revealing test cases considered, PMD slicer in the write-only

configuration located faults that could be missed by BaselineSlicer in 66 tests, which is

7.5% of all tests considered. Among these 66 tests, PMDs caused by array writes must be

considered to locate the faults for, on average, 4.47% of the post-execution incorrect data

items.

Under the read-write configuration, PMD slicer completed within the ten-minute time

limit for 602 (∼70%) of the 880 tests. The number of tests in which the full PMD slicer

exhibits improved fault-inclusion capability is 58, which is 9.63% of all the tests success-

fully analyzed. 43 of these tests overlap with the tests reported in the “RP” column for the

write-only configuration, and the other 15 tests contain the cases that require considering

PMDs caused by array reads to locate the fault. In these 58 tests, the average percentage

of post-execution incorrect data items that require using PMD slices to locate the faults is

15.14%. It is worth noting that a PMD slice computed with the read-write configuration is

65



Table 6.3: Size comparison for PMD slices.

Program
Baseline Write-only Read-write

SI DI SI SI Inc. DI DI Inc. SI SI Inc. DI DI Inc.

Chart 109 203 110 0.5% 204 0.5% 110 0.5% 204 0.5%
Closure 3028 26476 3209 5.9% 27358 4.3% 3245 7.5% 27738 6.8%
Lang 82 434 92 4.7% 567 8.0% 92 4.7% 567 8.0%
Math 597 107068 726 12.4% 113230 18.2% 734 12.7% 118222 19.5%
Time 1789 9114 1820 4.1% 9302 13.8% 1821 4.1% 9306 13.9%

Overall 1675 34864 1787 6.5% 36568 8.7% 1804 7.2% 37767 10.1%

always a super set of the corresponding PMD slice computed with the write-only configu-

ration. The number of tests reported in column “RP” in the write-only section being larger

than the corresponding number in the read-write section is only due to the fact that some

tests were excluded in the latter case.

The percentages of failures reported in the “RP” columns vary across the programs

in the benchmark. The Closure program has a significantly larger percentage of tests on

which PMD slices show improved fault-inclusion capability. I spot-checked the tests in the

benchmark and found that, since the programs Chart, Lang, Math, and Time mainly consist

of library methods, and their tests usually target a single method, many of these tests do not

involve any array operation in the application code.

Answering RQ1: The results show that considering PMDs can be useful for debugging,

as about 10% of the real-world failures in the benchmark resulted in faulty data items for

which traditional dynamic slices did not contain the faults, while PMD slices did.

6.2.3 RQ2: How much larger are PMD slices compared to traditional dynamic slices?

One important factor that affects the effectiveness of using dynamic slicing for software

debugging is slice sizes. Smaller slices provide more precise candidate sets of faulty state-

ments, and thus enable developers to localize faults more efficiently and effectively. Since
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Table 6.4: Running time comparison for PMD slicer.

Program
Baseline Write-only Read-write

GT ST GT GT Inc. ST ST Inc. GT GT Inc. ST ST Inc.

Chart 965 0 1035 8.9% 0 - 1208 26.5% 0 -
Closure 2357 417 2810 19.0% 463 14.2% 13085 408.8% 478 27.1%
Lang 922 3 1066 10.0% 6 100.6% 1365 43.2% 9 168.8%
Math 3218 100 3450 13.1% 123 59.6% 4111 47.5% 281 74.9%
Time 1081 10 1190 10.1% 10 6.8% 3793 252.9% 11 13.9%

Overall 2048 205 2333 14.5% 230 24.8% 7226 224.7% 270 41.6%

considering PMDs adds more dependence edges to the DDG, a PMD slice is usually larger

than the dynamic slice for the same slicing criterion. RQ2 quantitatively measures the av-

erage increase in slice size. For each test, I computed the dynamic and PMD slices for

all incorrect data items in the post-execution program states and computed the differences

in the number of both dynamic instruction instances and static instructions in each pair of

corresponding dynamic and PMD slices.

I report the results for each benchmark program and the overall average in Section 6.2.3.

Sections “Baseline”, “Write-only”, and “Read-write” show the results for BaselineSlicer,

PMD slicer with the write-only configuration, and PMD slicer with the read-write config-

uration, respectively. Columns “SI” (Static Instruction) and “DI” (Dynamic Instruction)

in each section show the average slice sizes in terms of static instructions and dynamic

instruction instances, respectively. I included in the slices only the instructions in the sys-

tem under test (SUT). I did not consider instructions in the libraries used by the SUT so

as to mirror typical debugging scenarios, in which developers look for faults in their own

code. Columns “SI Inc.” (Static Instruction Increase) and “DI Inc.” (Dynamic Instruc-

tion Increase) under the “Write-only” and “Read-write” sections show the average relative

increases in slice sizes under the corresponding configurations, compared to traditional

dynamic slices.

For the benchmarks, the average size of the baseline dynamic slices is 1,675 in terms
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of number of static instructions, and 34,864 in terms of number of dynamic instruction

instances. Under the write-only configuration, the average number of static instructions

and dynamic instruction instances in a PMD slice are 1,787 and 36,568, which correspond

to an average increase of 6.5% and 8.7% with respect to the corresponding dynamic slices,

respectively. Similarly, under the read-write configuration, the average number of static

instructions and dynamic instruction instances in a PMD slice are 1,804 and 37,767, which

correspond to an average increase of 7.2% and 10.1%, respectively.

Answering RQ2: The results show that, compared to the corresponding traditional dy-

namic slices, PMD slices are only moderately larger.

6.2.4 RQ3: What is the computational cost of PMD slicer compared to a traditional

dynamic slicer?

I answer RQ3 by comparing PMD slicer and BaselineSlicer in terms of the time necessary

to (1) build DDGs for each test and (2) compute each slice on the generated DDGs. To

compute the time spent by a slicer to build the DDG for a test, I ran the slicer on the test

and measured the time t elpased from the start of the execution to when the graph was fully

built. A significant part of t was used by the underlying JPF virtual machine to execute

the program and is specific to my tools. To make the comparison result generalizable to

different dynamic dependence analysis implementations, I also measured the time t′ needed

by a JPF instance with no dynamic analysis to execute the tests, and computed the graph

building time as t − t′. To reduce the effect of data caching on running time, I measured

the elapsed time of each test under each configuration for multiple times consecutively,

discarded the time computed for the first run, and took the average of the subsequent runs.

After computing the time to compute DDGs, I measured the time to compute slices for

each incorrect data item in the post-execution program state of each test. I then computed

the average increase in the time used by PMD slicer compared to BaselineSlicer.
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Table 6.4 reports the results of this study. Similar to Table 6.3, sections “Baseline”,

“Write-only” and “Read-write” show the results of BaselineSlicer and PMD slicer with

corresponding configurations. Under each section, column “GT” (Graph-building Time)

shows the average time for building DDGs, and column “ST” (Slicing Time) shows the

average time for computing each individual slice, both in milliseconds. In both the “Write-

only” and “Read-write” sections, columns “GT Inc.” (Graph-building Time Increase) re-

port the average increase in graph building time, and columns “ST Inc.” (Slicing Time

Increase) report the average increase in the time of computing individual slices.

The average time necessary for BaselineSlicer to construct a DDG for the benchmarks

was 2,048ms. Under the write-only configuration, the average graph construction time for

PMD slicer was 2,333ms, which corresponds to an average increase in graph construction

time of 14.5%. Since the algorithm in Figure 6.3 processes array writes in constant time,

the time increase is mostly linear. Analyzing PMDs caused by array reads, however, can

impose a significant runtime overhead. Under the read-write configuration, in fact, PMD

slicer spent on average 7,226ms for constructing a DDG. Compared to the baseline, the

average time increase is therefore 224.7%. The runtime overhead is especially high for

long executions that use large arrays. One reason for the long DDG construction time is

that, in this study, I analyzed PMDs caused by array reads for all data items. In a real-

world debugging scenario, a possible way of reducing the high runtime overhead would be

to compute PMDs caused by array reads only for specific data items (e.g., data items of

interest for the developer or likely to be faulty based on some criterion).

The average time necessary for BaselineSlicer to compute a slice, given a DDG, was

205ms. Under the write-only (resp., read-only) configuration, PMD slicer took on average

230ms (resp., 270ms) to compute a slice, which corresponds to an average time increase of

24.8% (resp., 41.6%). For program Chart, the time for computing slices was shorter than

the precision of the time utility I used to measure elapsed time. I therefore report 0 in the

“ST” columns for this program and do not compute the time increases.
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Answering RQ3: The results show that my technique can compute DDGs in the write-only

configuration, and PMD slices in both configurations, with a computational cost between

15% and 40% higher than that of a traditional dynamic slicer. Computing DDGs that

account for PMDs caused by array reads, however, can be extremely expensive. In future

work, I will investigate approximate algorithms that can improve the efficiency of the

approach.

6.2.5 Limitations and Threats to Validity

As the first work of PMD, this work prioritizes precision over performance. One major

limitation of my current implementation is the high performance overhead of computing the

PMDs caused by array reads. Another limitation is that the technique currently considers

only the alternative memory locations where only one array index takes different values in

an access path. This might lead to missing a fault that affects multiple index values in a

single access path. For programming languages that allows direct access to the memory

(i.e., C, C++), the technique does not consider PMDs that are caused by using a numerical

value as the memory address because doing so would include all memory locations as the

alternative locations.

The main internal threat is that my implementation could have faults. To mitigate this

threat, I carefully tested my code during development and manually inspected the output

of the tool. In particular, I spot-checked the cases that are reported by the tool as requiring

PMD slices to localize the faults and confirmed their validity by manually debugging the

failing test and checking how the faulty program states propagate.

The main external threat is that the faults in my benchmark might not be representative,

and the results might not generalize. To mitigate this threat, I used a large benchmark of

real-world faults in the Defects4J database, which was also widely used in previous studies

of debugging techniques.
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CHAPTER 7

TESSERACT: SCALABLE DEPENDENCY-BASED INTERACTIVE

DEBUGGING

One common approach in software debugging is to explore program executions by fol-

lowing dynamic dependencies. Although effective, this approach is currently limited to

short program executions because of its high running time and memory overhead. To ad-

dress this limitation, this chapter presents TESSERACT, a technique that improves existing

dependency-based debugging techniques by 1) using a low-overhead record-replay system

to record and reproduce the failing execution; 2) decomposing the recorded execution into

small time slices called epochs; 3) analyzing the epochs in parallel on a computing cluster;

4) using a lightweight analysis to select the epochs that are actually needed for debugging;

and 5) running the expensive dynamic analysis on only those needed epochs, on-demand.

7.1 Technique

Figure 7.1 shows an overview of TESSERACT. The technique has four main components:

the Recorder, the Partitioner, the Comprehensive Analyzer, and the Inter-epoch Analyzer.

It supports a typical debugging process as follows. Given a program and its fault-revealing

input, the Recorder stores complete information that is necessary to recreate the failing exe-

cution deterministically. The Partitioner splits the recorded execution into epochs by utiliz-

ing the replay system’s capability of selectively turning on instrumentation for the replayed

execution and divides the execution into time slices that are roughly equal in execution

time during replay. The ability of analyzing each epoch separately allows the technique to

parallelize the traditionally highly sequential computation of dynamic dependencies. The

developer starts debugging the execution by first inspecting the last epoch elast, which ends

in the observed incorrect program behavior. To support that, the Comprehensive Analyzer
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Figure 7.1: Overview of TESSERACT.

analyzes elast and produces two sets of information — the dynamic dependency graph

(DDG), which enables the efficient navigation of the execution by tracing dynamic depen-

dencies, and the historical program states, which support fast rewinding of the program

state to previous points in time. As the developer traces the dynamic dependencies in the

backward direction, the tool may reach a dependency node where one of its predecessors

is defined in a previous epoch and thus missing from the current DDG. To proceed with

the debugging process, TESSERACT needs to know the specific epoch e′ that defines the

missing predecessor. This information is provided by the Inter-epoch Analyzer. Before the

interactive debugging session starts and during the time when the developer is inspecting

the last epoch, the Inter-epoch Analyzer runs a lightweight dynamic analysis on all epochs

and outputs the dynamic dependencies that cross epoch boundaries. These inter-epoch de-

pendencies are used to identify the epoch e′ by the Comprehensive Analyzer, which then

analyzes e′ and allows the developer to continue inspecting the recorded execution.
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For TESSERACT to be applicable in real-world debugging scenarios, I developed the

technique to achieve the following design goals. First, I designed TESSERACT to reduce

developers’ waiting time before starting the interactive debugging session. To do that, I use

a low-overhead record-replay system as the Recorder component. In comparison to sys-

tems that record whole traces of executions, TESSERACT substantially reduces the waiting

time before the live debugging sessions start. Moreover, the Inter-epoch Analyzer needs

to process a potentially large number of epochs and aggregate the results from all epochs.

The analysis must complete before the developer can inspect any epoch other than the last

one. To reduce the waiting time, I designed this analysis to be highly parallelizable and

scale out to large computing clusters. Second, TESSERACT should be efficient in terms of

resource usages. To achieve this goal, TESSERACT runs the resource-intensive Comprehen-

sive Analyzer in an on-demand fashion, on only the epochs that are actually inspected by

the developer. On the other hand, the Inter-epoch Analyzer, which produces analysis data

that support the on-demand approach, runs a more lightweight analysis and requires only a

fraction of storage space relative to the full DDG. Third, during the interactive debugging

session, TESSERACT should have short response time comparable to that of traditional

symbolic debuggers. One challenge in meeting this design goal is to reduce the waiting

time when the request of finding a dynamic dependency predecessor requires analyzing

another epoch. To do this fast, the Partitioner creates epochs that are small and can be

analyzed by the Comprehensive Analyzer quickly. To further reduce the response time in

this case, the Comprehensive Analyzer also pre-loads epochs that are likely to be required

based on the current inspected position.

I implemented a TESSERACT prototype that analyzes x86 binaries. For code that is in

the SUT and is compiled with debugging information, TESSERACT builds DDGs that has

sufficient information to map to source code so that the developers still debug the program

at source-code leve. I believe that my approach is general and can be adapted to other

instruction sets with moderate engineering effort.
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int A, B; void foo() {
int main() { // Epoch split

A = 40; (s0) B = A + 3; (s4)
B = A - 1; (s1) if (B == 42) { (s5)
if (B != 0) { (s2) ++B; (s6)

foo(); (s3) }
return A + B; (s7) }
}
}

Figure 7.2: Example execution for TESSERACT.

The rest of this section is organized as follows. Section 7.1.1 shows an illustrative

example that I use to demonstrate how TESSERACT works. Section 7.1.2 describes the

Recorder and Partitioner. Section 7.1.3 gives the details of the Comprehensive Analyzer.

Section 7.1.4 discusses the Inter-epoch Analyzer. Section 7.1.5 presents the libraries and

frameworks I used to implement TESSERACT.

7.1.1 Illustrative Example

Figure 7.2 shows the example execution. Although TESSERACT runs on the compiled x86

machine code of the program, I show it as source code for conciseness. The program has

two functions, main and foo. For ease of reference, the program uses only two global

variables A and B. I denote the storage locations of the variables with their names. The

execution starts from calling the function main and executes each statement once. I use the

names in parentheses following each statement to identify each executed instruction (state-

ment) instance. The numerical suffixes of these names indicate their execution order. The

statement instance s3 maps to the call instruction in the compiled binary and not the return

instruction. For illustration, I split the execution into two epochs — epoch0 containing

statement instances s0 to s3 and epoch1 containing instances s4 to s7.
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7.1.2 Recorder and Partitioner

TESSERACT uses Arnold [47] for recording and replaying executions. When the program

being recorded executes, Arnold logs the inputs from all non-deterministic sources; and

during the replay, it supplies those values back to the program to ensure that the program

executes the same sequence of instructions and produces the same states. Arnold has low

overhead in terms of both the recording time and the storage space required for the record-

ing data. On average, the performance overhead is below 8% for most workloads, and the

storage overhead is only a few gigabytes per day when recording even an entire worksta-

tion used for development. A replayed execution can be instrumented and analyzed with

Pin [48]. In particular, the Comprehensive Analyzer and a part of the Inter-epoch Analyzer

are implemented as Pintools.

Using a record-replay system as the Recorder has several benefits. First, low-overhead

recording enables the technique to integrate better with the typical real-world software

development workflow, which runs regression tests on each version of the software and

notifies developers of failing tests as potential starting points of debugging sessions. As the

Recorder can be turned on by default for test executions, it allows the developers to start

debugging sessions using the technique right after failures occur. Second, deterministic

replaying is especially valuable for debugging failures that involve nondeterminism and

can not be consistently reproduced. Developers can record every attempt of reproducing the

failure and investigate the first successful attempt. Third, during the live debugging session,

TESSERACT uses Arnold to create a real process that replicates the recorded execution.

This allows the developers to inspect the execution in the same way as they would do with

a traditional symbolic debugger.

The Partitioner splits the recorded execution into epochs, each of which can be ana-

lyzed independently by the Comprehensive Analyzer and the Inter-epoch Analyzer. To do

that, the Partitioner uses the selective instrumentation mechanism provided by Arnold. To

apply a dynamic analysis on a single epoch, the Partitioner first replays the recorded exe-
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cution without instrumentation from either the start or a previously created checkpoint of

the execution, waits until the execution reaches the starting position of the epoch, and then

turns on the instrumentation for the analysis. It terminates the replay after the execution

reaches the end of the epoch. To better support analyzing the epochs in parallel, the Par-

titioner tries to create the epochs such that it would take roughly the same amount of time

to analyze each of them. As an approximation, it assumes that the time for analyzing an

epoch is proportional to the replay time of the epoch without instrumentation. Based on

this assumption, it uses the replay timing data provided by Arnold to create epochs that are

roughly equal in replay time.

7.1.3 Comprehensive Analyzer

For each epoch, the Comprehensive Analyzer produces analysis data that support tracing

dynamic dependencies and rewinding program states efficiently. This section first discusses

the way it builds the DDG and then describes how it represents and restores historical

program states.

Conceptually, TESSERACT builds the DDG with a method proposed by Agrawal and

colleagues [43]. The resulting DDG is a directed graph {V , E}. V is a set of nodes, each

of which represents a dynamic instance of an executed instruction (i.e., a definition). E ∈

V ×V is a set of edges that represents the dynamic data and control dependencies among the

instruction instances. The use and def sets of an instruction instance contain the storage

locations that are read and written by the instruction respectively, including the memory

addresses, the registers, and a subset of the bits of the EFLAGS register that potentially

affects the behavior of subsequent instructions. TESSERACT represents each node in V as

a dependency node, which stores the instruction that created the current node, the pointers

to its data dependency predecessor nodes, and its immediate control dependency node.

To compute the dynamic data dependencies, TESSERACT keeps track of the most recent

definition of every storage location by associating the corresponding dependency node with
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the location. It does this by using shadow memory. For memory addresses in the def set

of a definition, TESSERACT stores the pointer to the dependency node in a two-level page

table, which enables the technique to allocate shadow memory spaces for only the memory

pages used by the program. For registers, the technique maintains one array of dependency

node pointers for each thread. TESSERACT stores the definitions for both the memory and

registers at a byte-level granularity, but handles those for each bit of the EFLAGS register

separately. Specifically, the technique stores dependency information for the carry flag

(CF), the parity flag (PF), the adjust flag (AF), the zero flag (ZF), the sign flag (SF), the

direction flag (DF), and the overflow flag (OF). Similar to the way TESSERACT associates

dependency nodes with registers, it maintains, in the shadow memory, per-thread arrays for

these EFLAGS bits.

For each thread, TESSERACT computes dynamic control dependencies by keeping a

stack of control-flow conditions. The top of a stack always points to the dependency node

p that represents the current control-flow condition. Any newly created dependency node

has p as its control dependency predecessor. I first discuss how the technique maintains

the control dependency stack inside a single function call and then describe how it handles

multiple calls.

Inside a function call, TESSERACT modifies the control dependency stack after every

branching instruction and before every instruction at control-flow merge points are exe-

cuted. For each branching instruction (e.g., JNE, LOOP) that creates a dependency node

p0, the technique pushes a pointer to p0 onto the control dependency stack. As a result,

the control dependencies of the subsequently executed instructions become p0. For each

instruction i at a control-flow merge point, the technique repeatedly pops the control de-

pendency stack if the top of the stack is created by an branching instruction that is post-

dominated by i until this condition is no longer met or the stack contains no conditions

that are created in the current function call. TESSERACT computes the post-domination

relations by statically analyzing the program before the debugging session starts. The
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static analysis is intra-procedural. It takes the program and the required shared libraries

as input and outputs, for each function, a map from every instruction to its (static) control

dependency instruction and a map from every branching instruction to its post-dominator

instruction.

TESSERACT handles control dependencies across function calls by storing the control-

flow conditions for each function call in separate frames, which is analogous to call frames

in call stacks. Pushing and popping conditions can happen only in the top-most frame.

The technique pushes a new frame onto the control dependency stack when a function

call starts. The new frame initially contains the control dependency of the call instruction

instance since it is the control dependency of all top-level code in the function. After the

call returns, TESSERACT pops the frame together with all the control-flow conditions in it.

One challenge in identifying function calls for x86 binaries is that the call (resp., re-

turn) instructions are not always used for starting (resp., ending) function calls. Although

these special usages of call and return instructions (e.g., getting the value of the instruction

pointer) are rare, they are difficult to precisely identify. Moreover, incorrectly pushing or

popping frames might corrupt the control dependency stack and invalidate all subsequent

dependency computations. To address this challenge, I designed TESSERACT to be resilient

to occasional false-positive function calls and returns. Intuitively, my approach is to main-

tain the frames of the control dependency stack in sync with the frames of the actual call

stack. TESSERACT creates a control dependency frame for every function call instruction

and associates with it an integer identifier that is equal to the memory address at which the

return address of the function call is saved. For conciseness, I call it the return address save

(RAS) location in the rest of the chapter. Specifically, this is the value of the ESP register

right after the call instruction is executed. Before executing a return instruction, which

reads the RAS location from the ESP register, TESSERACT uses the ESP value lreturn to

find and pop the control dependency frames whose corresponding call frames would be

popped. To do that, the technique compares the integer identifier lframe of the top-most
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metadata control-flow conditions

s5 (B == 42)
frame1: foo (Lfoo) s2 (B != 0)

frame0: main (Lmain) s2 (B != 0)

Figure 7.3: Control dependency stack of example for TESSERACT.

frame of the control dependency stack, pops the frame if lreturn ≥ lframe, and repeats these

steps until the condition is no longer met. This approach guarantees that the frames that

should still be on the stack are never incorrectly popped. For a function that uses call and

return instructions for purposes other than function calls, TESSERACT might create extra

frames, but such inaccuracies are corrected once the function returns.

Figure 7.3 shows the control dependency stack for the full example execution (i.e.,

not split into epochs) right before the statement instance s6 executes. The first column

shows the metadata associated with the frames and the second column shows the actual

control-flow conditions in each frame. The stack grows from the bottom of the table (higher

memory address) to the top (lower address). I denote the RAS location of the call to the

function main as Lmain and that of the call to the function foo as Lfoo, where Lfoo < Lmain.

When the function foo returns, the return instruction instance reads the return address from

a memory location Lr, which must be equal to Lfoo. Therefore, TESSERACT pops frame1

but leaves frame0 on the stack because Lmain > Lr.

The Comprehensive Analyzer handles dynamic dependencies into previous epochs by

creating placeholder DDG nodes for definitions that are not defined in the current epoch.

It uses the inter-epoch definitions produced by the Inter-epoch Analyzer to find the actual

defining epochs for the placeholder nodes. I will explain how TESSERACT does this in

Section 7.1.4. To reduce response time in cases when tracing a dynamic dependency edge

requires loading another epoch, the Comprehensive Analyzer pre-loads the epochs that are

likely needed in the next n tracing steps. To do that, the technique traverses the DDG from

the current node being inspected in the backward direction, looks for placeholder DDG
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Storage location A Storage location B

A.entry0 : 〈t0, 40, n0〉 B.entry0 : 〈t1, 39, n1〉
B.entry1 : 〈t4, 42, n4〉
B.entry2 : 〈t6, 43, n6〉

Figure 7.4: Historical states of example execution for TESSERACT.

nodes within a distance of n, and pre-loads the defining epochs of the placeholder nodes it

found.

Although having a DDG allows developers to explore the recorded execution by fol-

lowing the dependency relations between executed instructions, I believe that they need to

inspect the concrete program state at the moment when an instruction was executing to bet-

ter understand its behavior. To support that, the Comprehensive Analyzer stores historical

values of the application memory, the registers of each thread, and the shadow memory in

a format that allows the technique to efficiently rewinding the program state to any point

in time in the current epoch. Specifically, for each storage location m, the technique main-

tains a list H of tuples 〈ti, vi, ni〉 representing the fact that the storage location is assigned

the concrete value vi and a dependency node ni at the time ti, where the timestamp ti is a

counter that TESSERACT increments for each executed instruction. The list H is sorted by

ti to enable efficient look ups by timestamp. To restore the storage location to an arbitrary

time t, the technique uses a binary search algorithm on H to locate the tuple 〈tx, vx, nx〉

that has the largest timestamp smaller than t. The value vx is the concrete value of the

storage location and the value dx is the pointer to its dependency node at time t. The time

complexity of rewinding the state of a storage location is only O(logL) where L is the size

of the historical states list. For all executions in the benchmark, restoring program states

incurs no delay that the developer can notice during an interactive debugging session.

Figure 7.4 shows the historical states at the end of the execution in the example. The

two columns shows the history entries of the global variables A and B respectively for

the full execution (i.e., not split into epochs). The notation ti represents the timestamp at
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which the statement instance si was executed, and ni represents the dependency node it

creates. As an example, I show how TESSERACT rewinds the program states to before s5

is executed. For both locations, the technique looks for the entries that have the largest

timestamps smaller than t5 through binary search and finds A.entry0 and B.entry1. Thus,

the values of A and B immediately before s5 executes are 40 and 42, and the associated

dependency nodes are n0 and n4, respectively.

Since each storage location can be restored separately, the technique can further reduce

the cost of rewinding program states by restoring program states partially and on-demand.

Initially, it restores only a small number of storage locations that the technique presents to

the developer, and can continue restoring more locations as the developer inspects more

parts of the memory space.

The major advantage of restoring the dependency nodes of all storage locations is that

TESSERACT provides more flexibility to the developers for exploring the recorded execu-

tions. After navigating to an instruction instance i on the DDG and rewinding the execution

to the time point t when i is executed, the developer not only has the ability of going to

one of the dynamic dependency predecessors of i, but also has the choice of tracing the the

dependencies from the dependency node of any storage location at t.

The main cost of storing historical program states is the extra storage space, which is

comparable to the size of the DDG. I believe that this cost is justified by the benefit of

providing near-zero response time during the debugging session. It is also mitigated by the

fact that each epoch is small. As I will show in the empirical evaluation, the memory usage

of the Comprehensive Analyzer can easily fit on one single personal computer of typical

specifications.

7.1.4 Inter-epoch Analyzer

The Inter-epoch Analyzer runs on all epochs of an execution to compute the dynamic data

and control dependencies that cross epoch boundaries. The analysis is performed in two
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phases — a local analysis phase that processes each epoch individually and an aggregation

phase that combines the results from all epochs. Both phases are designed to be highly par-

allelizable and can run on a computing cluster. I first describe how TESSERACT represents

these inter-epoch dependencies, followed by the approach for the local analysis phase and

the aggregation phase, and then I discuss how the inter-epoch dependencies are used by the

Comprehensive Analyzer to support finding required epochs.

TESSERACT outputs, for each epoch, the definitions that are defined in previous epochs

and used in the current epoch in a format that enables the Comprehensive Analyzer to effi-

ciently connect them with downstream DDG nodes. Each of these inter-epoch definitions

is annotated with the serial ID of the epoch that defines it. To represent the inter-epoch data

dependencies, for each epoch e, the technique outputs a map from the storage locations as-

sociated with the inter-epoch definitions used in e to the serial IDs of the defining epochs of

these definitions. To represent the inter-epoch control dependencies, TESSERACT outputs,

for each thread, a stack of inter-epoch frames corresponding to the calls that are started in

previous epochs and are relevant in the current epoch. A function call is considered to be

relevant in an epoch if it has ever become an active call (i.e., on the top of the call stack) at

some point in time in the epoch. Each inter-epoch frame stores a map from the branching

instructions executed in previous epochs in that frame to the corresponding epoch IDs.

To support computing inter-epoch data dependencies, the local analysis phase produces

two types of information: 1) a set U of the storage locations that are read before written

in the current epoch and 2) a set D of the storage locations that are defined in the epoch.

For convenience in the aggregation phase, D is represented as a map from these storage

locations to the epoch ID, which is constant for a given epoch. I designed the local analysis

to compute these sets for the convenience of merging these results of neighboring epochs

later. Intuitively, the set U contains the locations that reply on and require information from

previous epochs, the the map D contains information of the locations that are potentially

required by subsequent epochs.
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To support computing inter-epoch control dependencies, the local analysis on an epoch

produces per-thread stacks of inter-epoch frames for function calls that are relevant in the

epoch and potentially still have not returned at the end of the epoch. Because a function call

may be relevant in multiple epochs, TESSERACT associates integer identifiers with inter-

epoch frames to match them between neighboring epochs. The technique uses values from

different sources as identifiers for three different types of frames. First, if a function call

is started in the current epoch, TESSERACT uses its RAS location. Second, TESSERACT

always creates a frame corresponding to the active call at the moment when the current

epoch starts. Its identifier is set to 0. Third, if a function call is started in a previous

epoch, and becomes the active call again in the epoch after executing a return instruction

instance r, the technique identifies the frame by using the RAS location read by r. I call the

frames created for the first case full inter-epoch frames and those created for the latter two

cases partial inter-epoch frames. Each inter-epoch frame contains a map from branching

instructions that are executed in that frame in the current epoch to the current epoch ID,

which is the same for all entries.

Before describing the aggregation phase, I first explain how TESSERACT merges the

local analysis results of two neighboring epochs, which is a basic building block for the ag-

gregation algorithm. Merging the results regarding the storage locations is straightforward.

Given two neighboring epochs e1 and e2, I denote the U set and the D map computed for

each epoch as U1, U2, D1, and D2. The Inter-epoch Analyzer computes the set Um and the

map Dm for the merged execution range as follows. The set Um contains all the storage

locations in U1 and the elements in U2 but not in D1. The elements of U2 that are also in

D1 are not added because they are no longer defined by unknown previous epochs as their

definitions are already found in the epoch e1. The map Dm is a union of D1 and D2. For

keys that appear in both maps, only the entry from D2 is kept as the map stores the latest

definitions of storage locations.

TESSERACT merges the corresponding stacks of inter-epoch frames S1 and S2 from e1
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Figure 7.5: Example of tree of epoch ranges for parallel scan.

and e2 by simulating the pushes and pops of frames. The merged stack Sm of inter-epoch

frames starts with the same state as S1. The technique first merges the partial frames in S2.

For a partial frame f with an identifier l, TESSERACT modifies Sm as if a return instruction

that uses an RAS location l is executed and then adds all entries in the frame to the top-most

frame of Sm. After merging all partial frames, the technique merges the full frames in S2.

Because these frames only exists in e2, it simply pushes each full frame onto Sm.

In the aggregation phase, the Inter-epoch Analyzer merges the local analysis results of

all epochs by using a parallel scan algorithm [49]. For completeness, I briefly describe the

computation workflow. Intuitively, the algorithm decomposes the computational tasks by

using a binary tree structure. For n epochs, Figure 7.5 shows an illustrative example of

the structure, in which the leaf nodes represent individual epochs and the internal nodes

represent the epoch ranges created by merging two neighboring ranges of the lower level.

The notation ex-y represents an execution range from epoch ex to epoch ey inclusively. The

parallel scan algorithm traverses the tree in a bottom-up pass followed by a top-down pass.

The bottom-up pass computes merged local analysis results for each execution range in the

tree by recursively merging the results associated with its children. Then the top-down pass

uses the intermediate results computed in the previous pass to compute the merged results

of each prefix of the epoch sequence {e0-i | i = 0, 1, 2, 3, 4, 5, ..., n − 1}. With sufficient

parallelism, the running time of the algorithm is O(log n) (i.e., proportional to the height of
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epoch0 epoch1 Merged

U0 : ∅ U1 : {A} Um : ∅
D0 : {A : 0, B : 0} D1 : {B : 1} Dm : {A : 0, B : 1}

Figure 7.6: Merging local analysis results of storage locations.

epoch0 epoch1 Merged

F1 : Lfoo : ∅ P1 : 0 : ∅ F ′0 : Lmain : {I(s2 : 0)}
F0 : Lmain : {I(s2) : 0} P2 : Lfoo : ∅ P0 : 0 : ∅
P0 : 0 : ∅

Figure 7.7: Merging inter-epoch frames.

the tree).

TESSERACT uses the merged local analysis result of a prefix epoch range e0-i to com-

pute the inter-epoch dependencies of the epoch ei+1. The inter-epoch data dependencies of

ei+1 include the entries of the map D of the prefix range filtered by the storage locations

in the set U of ei+1. The inter-epoch control dependency data of ei+1 are represented with

the subset of the inter-epoch frames of the prefix range that match the partial inter-epoch

frames of ei+1, as those are the frames that correspond to the function calls that are cre-

ated in the prefix range and are relevant in the epoch ei+1. Because the prefix execution

range start from the first epoch e0, the resulting list of inter-epoch frames contains only full

frames.

I show the local analysis results for both epochs in the example execution, how

TESSERACT merges them, and how the technique computes the inter-epoch dependencies

for epoch1. To clarify, for a real execution of only two epochs, the technique does not need

to merge the local analysis results as the execution ends at the second epoch. I describe it

for the example only to illustrate the process. Figure 7.6 shows the U and D sets of each

epoch in the example and the merged results. The storage location A is not added to Um

because it also appears in D0. The merged map Dm indicates that the most recent defini-

tion of A is in epoch0 and, on the other hand, the most recent definition of B is in epoch1.

Figure 7.7 shows the inter-epoch frames of both epochs and the merged frames. I repre-
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sent each frame with 3 fields separated by colons — the name of the frame, the identifier,

and the map of the executed branching instructions. The capital letter “F” (resp., “P”) in a

frame name indicates that the frame is a full (resp., partial) inter-epoch frame. The notation

I(s2) represents the (static) statement corresponding to the executed instance s2. The first

epoch has one partial frame and two full frames. The partial frame P0 represents the caller

of the main function and is not used in the example. The full frames F0 and F1 correspond

to the function calls of main and foo, respectively. The map entry in F0 indicates that the

branching statement I(s2) is executed in epoch0. The second epoch contains two partial

frames. P1 corresponds to the function call that epoch1 started in, and P2 is created when

the program returns from the function foo. The local analysis on epoch1 does not have the

complete information about these function calls. In particular, because TESSERACT do not

assume that return instructions are always used for returning from function calls, it does

not pop P1 from the stack when creating P2. To compute the merged inter-epoch frames,

TESSERACT starts with the frames in epoch0 and merges each frame in epoch1. To merge

P1, the technique simply adds all entries of the frame to the top-most frame in epoch0. And

to merge P2, TESSERACT first modifies the stack in epoch0 as if a return instruction with

the RAS location of Lfoo is executed, resulting in popping F1, and then adds all entries in

P2 to F0, which is the top-most frame after the pop operation. TESSERACT computes the

final inter-epoch dependencies for epoch1 by filtering the results of epoch0 (the prefix range

for epoch1). Since U1 contains one single storage location A, its inter-epoch data depen-

dencies include one entry {A : 0}. Its inter-epoch control dependencies include the frames

F0 and F1 in epoch0 because they matches the partial frames P2 and P1, respectively.

The Comprehensive Analyzer uses the inter-epoch dependencies by initializing the

states of the shadow memory and the control dependency stacks at the start of the analysis

of each epoch. For each data dependency entry 〈l, ID(e)〉, the Comprehensive Analyzer

creates a placeholder dependency node that contains the epoch id ID(e) and associate it

with the storage location l. For each inter-epoch frame f , the technique pushes a cor-
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responding control dependency frame f ′ to the stack. During the dynamic analysis, the

situation in which f ′ is the top-most frame and does not contain any control-flow con-

ditions indicates that the control dependency node of the current instruction instance i is

created in a previous epoch e′. If i is not top-level code of the current function, TESSER-

ACT looks up the ID of e′ in the inter-epoch frame f by using the (static) control depen-

dency instruction of i as the key. Otherwise, if i is top-level code, its control dependency

node must be in the caller function. In this case, e′ is the epoch that has the largest ID

in all the entries of the inter-epoch frame of the caller function. TESSERACT then pushes

a new placeholder dependency node that contains the ID of e′ to the control dependency

stack. The placeholder nodes created for both data and control dependencies are used in

the same way as regular dependency nodes to build the DDG. During the interactive de-

bugging session, the Comprehensive Analyzer loads the corresponding epochs when either

the developers’ dependency-tracing requests or the look-ahead search of the pre-loading

feature reach placeholder nodes.

7.1.5 Implementation

I implemented the local dynamic analyses of TESSERACT through dynamic binary instru-

mentation by using Intel Pin [48] and Intel XED [50]. To compute the static control depen-

dencies, the technique uses the angr binary analysis framework [51, 52, 53]. The technique

extracts and processes the debugging information in binaries with the DWARF parser of

LLVM [54]. TESSERACT handles serialization for both persistent data storage and network

communication by using the Boost serialization library [55]. I implemented the parallel

jobs in the aggregation phase of the Inter-epoch Analyzer with Open MPI [56].

7.2 Empirical Evaluation

I evaluated TESSERACT on a benchmark of real-world applications to answer the following

research questions:
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Table 7.1: Benchmark executions for TESSERACT.

Program Length (ms) # Dep Nodes (M) # Dep Edges (M)

Grep 124 268.8 790.6
Gzip 2460 10690.6 11045.2
Sha512sum 656 3135.6 5548.6
Factor 8 55.2 78.4
Seq 456 1252.5 2049.7
Sed 1052 3426.7 5647.8

RQ1: How well does TESSERACT scale on the benchmark executions?

RQ2: How well does the Comprehensive Analyzer support interactive debugging?

7.2.1 Experiment Setup

Table 7.1 shows a summary of the benchmark executions. The programs Gzip and Sed

are from the SIR repository [57] and the other 4 programs are from the Corebench repos-

itory [58]. I compiled the benchmark programs as x86 debug-version binaries with GCC

4.8. I did not use the unit tests provided by the repositories because they are too short

to show the effectiveness of TESSERACT, but instead manually created one execution for

each program. I recorded the executions of running Grep, Gzip, Sha512sum, and Sed on

randomly generated large files, running Factor to compute the factors of a large number

(231 − 1) × (261 − 1), and running Seq to print numbers from 1 to 107 − 1. The column

“Length” shows the replay time of each execution without instrumentation in milliseconds.

I included executions of varying lengths from 8 milliseconds to 2460 milliseconds to eval-

uate the performance of TESSERACT in these different situations. The column “# Dep

Nodes” shows the number of DDG nodes of each execution and the column “# Dep Edges”

shows the number of DDG edges. The numbers in both these columns are shown in mil-

lions. Except for the benchmark executions of the programs Factor and Grep, the DDG

sizes of all other executions are from dozens to hundreds of gigabytes, which is beyond

what traditional single-node dynamic dependency analysis tools can handle.
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I ran the experiment on a CloudLab [59] computing cluster of 64 m510 nodes. Each

node has an 8-core Intel Xeon D-1548 2.0 GHz CPU, 64GB ECC memory (4 × 16GB

DDR4-2133 SO-DIMMs), 256 GB NVMe flash storage, and 10 GB NIC. Because of im-

plementation limitations, a part of the Inter-epoch Analyzer runs in virtual machines. On

each node, I allocated 4 cores to the virtual machine and at any given time, TESSERACT

runs on only 4 cores. This gives the technique 256 cores in total. Although TESSERACT

continues to scale with more cores, the cluster of 64 machines is the largest one that I can

consistently get from CloudLab.

7.2.2 RQ1: How well does TESSERACT scale on the benchmark executions?

To evaluate the scalability of TESSERACT, I measured the running time of the Inter-epoch

Analyzer on exponentially increasing numbers of CPU cores from 1 to 256 (i.e., 1, 2, 4,

8, . . . , 256). I ran each experiment for 5 times and used the average running time of all

trials. I computed the speedup ratio of utilizing x cores by dividing the running time of the

Inter-epoch Analyzer on a single core by its running time on x cores.

Figure 7.8 shows the speedup ratios of the Inter-epoch Analyzer on varying number of

cores for each benchmark execution. The dotted black line shows the “ideal” case where

the performance of the system increases proportionally with the available cores. Both the

axes are displayed in log scale since the range of the values are large. I could not run the

benchmark execution of the program Factor on more than 32 cores because the execution

is short and maximum number of epochs that the Partitioner can create is less than 64.

For the execution of the program Grep, because running the analysis on more than one

core on a machine crashes the Arnold system, I ran the experiment for this program on up

to 64 cores (i.e., one core per node). The result shows that TESSERACT scales well with

increased computing resources. Its scalability is positively correlated with the length of the

execution being analyzed. For the four longer benchmark executions, with 256 cores, the

speedup ratio ranges from 18.5 times to 100.7 times. The average speedup ratio of these
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Figure 7.8: Speedup ratio of Inter-epoch Analyzer from 1 to 256 cores.

executions is 59 times.

I show the running time of the Inter-epoch Analyzer in Table 7.2. The column “Sequen-

tial” shows the time to run the analyzer with a single core in seconds. The column “Max #

Cores” shows the maximum number of cores I have used to run the analyzer on that exe-

cution, and the column “Parallel” shows its running time with this number of cores. With

the maximum parallelism, the Inter-epoch Analyzer completed for 4 of the 6 executions

within 6 seconds. The analysis took longer to finish for the other two executions but, as the

data in Figure 7.8 indicates, it continues to speed up with more than 256 cores. This result

shows that the Inter-epoch Analyzer provides sufficiently good performance to support a

typical debugging workflow. Although the most time-consuming analysis took 14 seconds,

the developer will likely still experience no waiting time, as the analysis can run in the

background while the developer is inspecting the last epoch.
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Table 7.2: Running time of Inter-epoch Analyzer.

Program Sequential (s) Max # Cores Parallel (s)

Grep 34 64 4
Gzip 1390 256 14
Sha512sum 647 256 9
Factor 11 32 4
Seq 97 256 5
Sed 272 256 6

Table 7.3: Storage overhead of Inter-epoch Analyzer.

Program
Total Size (MB) Count per Epoch

DDG Inter Def Inter Def / DDG # Intra Def # Inter Def Inter / Intra Pearson

Grep 7,116.8 0.98 0.014% 2,079,878 3,829 0.184% 0.20
Gzip 205,259.4 377.65 0.184% 4,037,325 89,888 2.226% 0.10
Sha512sum 69,011.4 0.48 (< 0.001%) 11,176,243 206 0.002% 0.11
Factor 1,140.7 0.02 0.002% 3,177,140 195 0.006% -0.27
Seq 26,931.0 0.52 0.002% 2,666,118 388 0.015% 0.16
Sed 73,832.5 2.19 0.003% 3,222,839 868 0.027% 0.11

Average 63,882.0 63.6 0.034% 4,393,257 15,896 0.410% -

Among all benchmark programs, TESSERACT scales the least well for the program

Factor. I checked its execution data of individual epochs and identified two reasons. First,

the epoch partitioning of this execution is imbalanced because of the limitation of the un-

derlying replay system. The longest epoch dominates the running time and thus reduces

the effectiveness of parallelization. I also checked the partitioning of the other subject ex-

ecutions and found that this type of imbalances occur only infrequently. Second, since

the entire execution is short, further splitting the workload leads to the situation where the

overhead of parallelization consumes most of the computing time. Under the 32-core con-

figuration, the local analysis at each node only took 17% of the total running time while

the parallel tasks took 83%. In comparison, for executions that scales well with many cores

such as Gzip, Sha512sum, the local analysis accounts for more than 55% of total running

time even on a 256-core cluster.

The storage size of the inter-epoch definitions produced by TESSERACT also affects
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how well it handles real-world executions. The column group “Total Size” in Table 7.3

shows the storage overhead of the technique. In this group, the column “DDG” shows,

as a baseline of comparison, the size of the DDG created by the Comprehensive Analyzer

for each benchmark execution, the column “Inter Def” shows the compressed size of the

inter-epoch definitions, and the column “Inter Def / DDG” shows the ratio of the inter-

epoch definition size over the full DDG size as a percentage. All sizes in the column

group are displayed in megabytes. The storage required for the inter-epoch definitions

for each execution ranges from 20KB to about 377MB. The average storage consumption

is 63.6MB. In contrast, the full DDGs can be as large as several hundred gigabytes, and

the average is about 62 gigabytes for all executions in the benchmark. The inter-epoch

definitions require only a fraction of the size of the DDGs to store. The size ratios are less

than 0.2% for all executions, and the average ratio is only about 0.03%.

To understand the storage usage of the Inter-epoch Analyzer, the column group “Count

per Epoch” in Table 7.3 reports the average number of definitions that are created in each

epoch and the average number of inter-epoch definitions used in each epoch in the columns

“# Intra Def” and “# Inter Def” respectively. The overall average number of definitions

created per epoch across all executions is about 4.4 million, while the average number of

inter-epoch definitions per epoch is around 16 thousand. The column “Inter / Intra” in this

group reports the ratio between the “# Inter Def” and “# Intra Def” columns, which is on

average only 0.4%. This result indicates that the number of inter-epoch dependencies in

the DDG are far less than the intra-epoch ones, despite having a large number of epochs.

My hypothesis is that this is a manifestation of the principle of locality 1. Since this is

the phenomenon that also underpins the hierarchical memory design of modern computer

architecture, I expect the low ratio between inter- and intra-epoch dependencies to occur in

the majority of program executions.

I further investigated whether the ratio of inter- and intra-epoch dependencies correlates

1Also known as locality of reference [60]. In a short period of time, the processor tends to use the same
set of storage locations repeatedly.
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with the relative position of an epoch in an execution. This is a plausible hypothesis be-

cause, compared to an epoch near the beginning of an execution, an epoch near the end has

a higher chance of referencing a data item defined in previous epochs since more code has

been executed before it. Having an unbalanced distribution of inter-epoch dependencies,

however, would negatively affect the performance of TESSERACT. To measure the strength

of the correlation, for each execution, I assigned a serial number to each of the epochs in

temporal order, and computed the Pearson coefficient between the epoch number and its

inter-epoch dependency ratio. The column “Pearson” in Table 7.3 reports the result. The

absolute values of the Pearson coefficients range from 0.1 to 0.27, indicating no correlation.

7.2.3 RQ2: How well does the Comprehensive Analyzer support interactive debugging?

During the live debugging session, in response to developers’ requests of tracing dynamic

dependencies, the Comprehensive Analyzer needs to traverse the dependencies and rewind-

ing program states fast. The main metric I used to evaluate this component is its response

time to developers’ requests. Moreover, because the component trades space for time

through its pre-loading feature, I also discuss its memory usage.

I measured its performance on the finest-grained epochs that I created in the experiment

for answering RQ1. Except for the execution of Factor, I partitioned all other executions

into epochs of, on average, 1 millisecond in replay time without instrumentation. I created

smaller epochs for the execution of Factor. Specifically, it is partitioned into 32 epochs

so that the Inter-epoch Analyzer can run it on 32 cores. Table 7.4 shows the results. I first

reports the performance metrics when responding to the requests does not require analyzing

previous epochs and then discuss the performance when it does.

Inside a single epoch, finding dependency predecessors is trivial as TESSERACT has

built the DDG. I only report the performance for rewinding program states. I randomly

picked 32 timestamps for each epoch of each execution, restored all storage locations to

each of these time points, and measured the time spent on each rewinding operation. The
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Table 7.4: Response time and memory consumption of Comprehensive Analyzer.

Program RT
Mem/Epoch

AT (s)
Percent DDG Nodes

DDG History Total Preloads ≤ 3 Preloads > 3

Grep 9.48 55.6 95.3 150.9 5.2 97.563% 2.437%
Gzip 10.23 83.4 161.8 245.3 6.1 >99.999% <0.001%
Sha512sum 10.48 105.4 508.9 614.2 19.3 >99.999% <0.001%
Factor 9.53 35.6 36.6 72.2 3.0 >99.999% <0.001%
Seq 9.70 59.1 115.7 174.8 4.8 99.698% 0.302%
Sed 9.62 70.2 133.7 203.9 5.6 99.960% 0.040%

Average 9.84 68.2 175.3 243.5 7.3 99.537% 0.463%

column “RT” of Table 7.4 reports the average rewinding time in milliseconds for each

benchmark execution. The time spent is on average 9.84 ms and consistent for all execu-

tions. This result shows that, on the benchmark, rewinding program states is fast and causes

no delay that developers can notice during the live debugging session.

I report the sizes of the dynamic analysis data produced by the Comprehensive Analyzer

in the column group “Mem/Epoch”. The column “DDG” shows the average DDG size of

each epoch, the column “History” shows the average size of the historical program states

per epoch, and the column “Total” is the average total memory usage of the component per

epoch. All three columns show sizes in megabytes. The average memory usage per epoch

ranges from 72 MB to 614 MB and the overall average of all executions is 244 MB. This

result shows that the Comprehensive Analyzer uses a moderate amount of memory and can

run locally on the developer’s workstation during the live debugging session.

When following a dynamic dependency edge requires analyzing another epoch, the de-

veloper needs to wait for the analysis to finish if the pre-loading feature is turned off. The

column “AT” in Table 7.4 shows the average time of analyzing each epoch. Except for the

execution of Sha512sum, the analysis finishes within about 6 seconds. For all executions,

the average analysis time is 7.3 seconds. The pre-loading feature, which looks ahead in

the DDG and loads epochs that are likely needed in advance, reduces developers’ wait-

ing time in this case. Although the effectiveness of pre-loading depends on the potentially
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complex behavior of the developer during debugging, I provide an estimate by making a

few assumptions about developer behavior. I assume that the developer 1) uses the tool

by only following dynamic dependencies, and 2) spends 10 seconds at each step to under-

stand the behavior of the statement and identify the next dynamic dependency predecessor

to look at. I configured the Comprehensive Analyzer to find the epochs for pre-loading by

looking ahead 3 levels in the DDG. Under my assumptions, these are the epochs that are

likely needed in the next 30 seconds, which is sufficient for analyzing an epoch in the back-

ground while the developer inspects the current epoch. To constrain the memory usage, I

set the maximum number of epochs that TESSERACT pre-loads to 3. For each DDG node,

I computed the number of epochs to pre-load and check whether it is within the limit of 3

epochs. The column group “Percent DDG Nodes” reports the result. The column “Preloads

≤ 3” shows the percentage of DDG nodes that require pre-loading less than or equals to

3 epochs, and the column “Preloads > 3” shows the percentage of nodes that need to pre-

load more than 3 epochs. On average, TESSERACT needs to pre-load less than or equal to

3 epochs at over 99.5% of the DDG nodes (or execution steps). In these cases, developers’

waiting time is still zero. In the other 0.5% cases, the developer may need to wait for the

technique to analyze an epoch, but these are the rare cases.

7.2.4 Limitations and Threats to Validity

TESSERACT does not fully track the obsolete X87 floating point number stack (i.e., ST0

to ST7) because of the extra performance cost for implementing it and the fact that these

registers are usually not used by new software.

The main internal threat is that my implementation of TESSERACT may contain faults.

To mitigate this threat, I carefully tested my code with both unit-level and integration tests

throughout the development process. I also manually spot checked the outputs of the tool

against my manual estimates.

One external threat is that the benchmark executions might not be representative, caus-
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ing my results not to generalize. To mitigate this threat, I used programs that perform a

wide range of types of tasks such as text processing, compressing, and hashing. I also

included executions of varying lengths to investigate the performance of TESSERACT in

these different situations. Another external threat is that the evaluation of the Inter-epoch

Analyzer of TESSERACT uses a shared computing cluster, where the performance measure-

ments may be affected by random events that are outside of my control. To mitigate this

threat, I ran each experiment for 5 times and used the average of all trials.
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CHAPTER 8

CONCLUSION

The goal of my research is to define and improve automated debugging techniques to

support a develop-centric debugging process for real-world software development activ-

ities. To achieve this goal, I defined three techniques: 1) ENLIGHTEN, which is an in-

teractive feedback-driven automated fault localization approach, 2) the potential memory-

address dependences, which improves the accuracy of dynamic slicing to better support

software debugging, and 3) TESSERACT, which addresses the scalability limitation of ex-

isting dependency-based debugging techniques.

Enlighten supports and automates developers’ debugging workflow by 1) using tradi-

tional statistical fault localization to formulate an initial hypothesis of the fault, 2) identify-

ing a relevant subset of execution that can help support or refute the formulated hypothesis,

3) presenting the developer with a query about the identified execution subset in the form

of a correctness question about the input-output relation of the partial execution, 4) refining

its hypothesis of the fault by using developers’ feedback, and 5) repeating these steps until

the fault is found. Enlighten overcomes the important limitation of traditional automated

debugging techniques that output only a list of suspicious code entities in that it does not re-

quire developers to determine the correctness of statements in isolation, but rather to check

high-level input-output relations in concrete executions. Enlighten gets developers’ input

at a level of abstraction they can typically understand and, when successful, nicely guides

the developers towards the fault by following an iterative process.

The second technique I presented introduces the potential memory-address dependence

(PMD) and describes an algorithm to compute it. The technique addresses the limitation of

existing dynamic dependence analysis approaches defined by dynamic and relevant slicing

techniques, that they might miss the dependence paths from faults to manifestations if in-
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correct program states are caused by faulty memory addresses. The technique encodes the

causal relation as a PMD relation between a variable v used to compute memory addresses

and the memory locations that (1) are not assigned but (2) would be assigned on the same

control flow path if v had taken different values. Considering PMD enables existing au-

tomated or interactive debugging techniques that rely on dynamic dependence analysis to

work on a broader range of faults.

TESSERACT makes existing dependency-based debugging techniques scale to real-

world executions. By leveraging recent advancements in record-replay systems, the tech-

nique speeds up the traditionally sequential dynamic dependency analysis by using massive

parallelism and computing clusters. To support debugging a failing execution, TESSERACT

uses a record-replay system to efficiently reproduce the execution, splits the execution into

small epochs that can be independently analyzed, runs a light-weight dynamic analysis

on all epochs in parallel on the computing cluster, and applies the expensive part of the

analysis only on the epochs that are actually needed during the debugging process.

To further improve my techniques and better support the developer-centric automated

debugging process, I envision three main directions for future work. One research direc-

tion is to improve the user-interaction method for debugging. One way to do that is to

suitably integrate the two interaction methods involved in my techniques, each of which

has its advantages. Similar to ENLIGHTEN, such a technique should be able to jump across

an execution to show developers only the most suspicious parts while provide rich execu-

tion context (e.g., method call inputs and outputs) for developers to understand the selected

parts. On the other hand, such a technique should also provide the dependency-based inter-

action method, which is assumed by the PMD analysis and TESSERACT, to help developers

follow dynamic program dependencies to reason about the behavior of the selected parts

of the execution at the finest granularity. The second research direction is to improve the

computational efficiency of my techniques, which all involve expensive dynamic analyses.

One potential approach is to utilize static program analysis techniques to reduce the amount
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of dynamic information that must be computed by filtering the execution to exclude certain

parts or approximating the semantics of library functions, which can be assumed to be cor-

rect, with less expensive computations. The third direction is to investigate how automated

program repair can be improved in the developer-centric debugging process. Such a tech-

nique could utilize the unique advantages in this interactive setting, including immediate

feedback from developers about a proposed repair candidate and the ability of gathering

more information about the program specification interactively.

99



REFERENCES

[1] J. W. Lloyd, “Declarative error diagnosis”, New Generation Computing, pp. 133–
154, 1987.

[2] E. Y. Shapiro, Algorithmic Program DeBugging. Cambridge, MA, USA: MIT
Press, 1983.

[3] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to assist
fault localization”, in Proceedings of the 24th International Conference on Software
Engineering, ser. ICSE 2002, 2002, pp. 467–477.

[4] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization leveraging
simple user feedback”, in Proceedings of the 28th International Conference on
Software Maintenance, ser. ICSM 2012, 2012, pp. 67–76.

[5] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging interface for ask-
ing questions about program behavior”, in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI 2004, 2004, pp. 151–158.

[6] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based debugging”, in Pro-
ceedings of the 39th International Conference on Software Engineering, ser. ICSE
2017, 2017, pp. 393–403.

[7] Z. Xu, S. Ma, X. Zhang, S. Zhu, and B. Xu, “Debugging with intelligence via
probabilistic inference”, in Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE 2018, 2018, pp. 1171–1181.

[8] D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Interactive fault localization using
test information”, Journal of Computer Science and Technology, vol. 24, no. 5,
pp. 962–974, 2009.

[9] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical
bug isolation”, in Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI 2005, 2005, pp. 15–
26.

[10] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated predicate
switching”, in Proceedings of the 28th International Conference on Software Engi-
neering, ser. ICSE 2006, 2006, pp. 272–281.

[11] W. Eric Wong, V. Debroy, and B. Choi, “A family of code coverage-based heuristics
for effective fault localization”, Journal of Systems and Software, vol. 83, pp. 188–
208, 2010.

100



[12] C. Parnin and A. Orso, “Are automated debugging techniques actually helping
programmers?”, in Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ser. ISSTA 2011, 2011, pp. 199–209.

[13] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of ir-based fault local-
ization techniques”, in Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis, ser. ISSTA 2015, Baltimore, MD, USA, 2015, pp. 1–
11.

[14] Y. Lei, X. Mao, X. Wan, and C. Wang, “Iterative feedback-based fault localization
approach”, in 2011 37th EUROMICRO Conference on Software Engineering and
Advanced Applications, ser. SEAA 2011, 2011, pp. 349–356.

[15] H. Cleve and A. Zeller, “Locating causes of program failures”, in Proceedings of
the 27th International Conference on Software Engineering, ser. ICSE 2005, 2005,
pp. 342–351.

[16] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the dichotomy of debug-
ging behavior among programmers”, ser. ICSE ’18, Gothenburg, Sweden, 2018,
pp. 572–583.

[17] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evaluation of using dy-
namic slices for fault location”, in Proceedings of the Sixth International Sym-
posium on Automated Analysis-driven Debugging, ser. AADEBUG 2005, 2005,
pp. 33–42.

[18] A. J. Ko and B. A. Myers, “Finding causes of program output with the java why-
line”, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI 2009, 2009, pp. 1569–1578.
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