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SUMMARY 

Due to the increasing population, cities are requiring more energy. Among urban 

elements, buildings account for about 40% of energy demands and 30% of carbon dioxide 

emissions globally. To address the increase of energy demands and environmental 

responsibility, existing buildings should be transformed into highly energy efficient forms. 

This research explores how to support decisions that affect performance-driven 

smart and resilient urban systems focusing on building renovations. The research scope 

covers the redevelopment of existing built forms at multiple scales. Since urban objects 

influence urban patterns at other scales, both individual and collective performances of 

buildings at larger scales should be evaluated to support proper redevelopment decisions. 

In addition, the transformation of existing buildings will encounter different problems and 

challenges at different scales in urban areas. On an individual building level, the selection 

of different envelope options can project the future architectural environment of buildings. 

On a block level, the performance will be changed along with combinations of building 

typologies such as land use, height, floor area, etc., and therefore changes to building 

typologies should be managed collectively to improve the performance. When PV are 

applied in buildings and hourly electricity demands are recognized, the dynamic energy 

flows on a community level will become complex to manage.  

In this respect, this research is devised to identify and address redevelopment 

problems at different scales: individual buildings, block, and community. On the individual 

building level, this research studies how to support decision-making when optimizing the 

selection of building envelopes by using a Genetic Algorithm (GA). Based on the findings 
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from optimizing at each scale, an interdependence of building parameters and multiple 

performance is observed. Therefore, decision frameworks across multiple scales are 

extrapolated to support community-driven and building-driven decisions. On the block 

level, this research explores how existing building typologies influence multiple 

performance indicators in a collective manner to support reconfiguring decisions using a 

Bayesian Multilevel Modeling. On the community level, this study addresses how the 

community can optimize block boundaries for resiliently managing the energy demand and 

supply of groups of buildings by using K-nearest neighbors (KNN) and community 

clustering algorithms. 

This research will contribute to making appropriate decisions for investment, 

regulations, or guidelines when renovating physical building assets at different scales in 

urban areas. The research findings will consolidate theoretical understandings about the 

relationships between building design and construction parameters considering multiple 

performance indicators at multiple scales in urban areas. Since many cities are at the tipping 

point trying to become more resilient, increasingly focusing on sustainability, economic 

feasibility, and human well-being, a better understanding of the impact of built forms at 

multiple scales will support urban development decisions for the future smart and 

connected communities. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The United Nations (UN) announced a vigorous and viable guidance to address 

global climate change in the 2018 Intergovernmental Panel on Climate Change (IPCC) 

report. The guidance limits global warming to 1.5℃ (2.7 degrees Fahrenheit), and it can 

be achieved when carbon dioxide (CO2) emissions become net zero globally around 2050 

as shown in Figure 1.1 (IPCC 2018).  

 

Figure 1.1 – Global emissions pathway (IPCC 2018) 
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This goal requires transitions in systems of energy, industry, buildings, transport 

and land use in cities (IPCC 2018). It is expected that 66% of the world population will 

live in urban areas by 2050, with cities consuming more energy and emitting more CO2 

(UN 2014). The anticipated population growth increases energy demands and 

environmental responsibility of urban areas, and it will require transitions of urban 

infrastructure and buildings (Bazaz et al. 2018). Among urban elements, buildings 

consume about 20-40% of total energy use in developed countries (Pérez-Lombard et al. 

2008). Buildings also contribute to more than 30% of carbon dioxide (CO2) emissions in 

the U.S. (U.S. EIA 2018a). To come up with the 1.5℃ cap, the CO2 emissions from 

building stocks should be reduced by 80-90% by 2050 from 2010 levels, building 

renovation rates should increase from less than 1% in 2015 to 5% by 2020 in developed 

countries, and all new buildings should achieve fossil-free and near-zero energy by 2020 

(Bazaz et al. 2018; Kuramochi et al. 2018). At the same time, in energy systems, electricity 

supply by renewable sources should increase about 70-80% by 2050 under the 1.5℃ 

pathways (Bazaz et al. 2018; IPCC 2018).  

Since existing building stocks influence the urban energy demands and 

environmental emissions, this research focuses on transformations of existing buildings to 

increase energy efficiency and potential renewable power generation. Retrofitting existing 

buildings provides opportunities to save energy, influence economic growth, and reduce 

environmental impacts. The building energy efficiency retrofit market was valued as a 

$279 billion investment opportunity (Herbst et al. 2012) in 2012, meanwhile, the total 

construction market was about $850.5 billion (U.S. Census Bureau 2018). This investment 

for building energy efficient retrofits can save energy valued as more than $1 trillion over 
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a decade (Herbst et al. 2012). The increased building retrofits are expected to create more 

than 3 million job opportunities (Herbst et al. 2012). Moreover, energy savings contribute 

to reducing greenhouse gas emissions by mitigating about 616 million metric tons of CO2 

per year (U.S. Census Bureau 2018). Total CO2 emissions in the building sector in 2017 

was 1,831 million metric tons (U.S. EIA 2018b). The estimated CO2 reduction through 

energy-efficient building retrofits is about one third of the total CO2 emissions in the 

building sector in 2017. 

Energy-efficient building retrofits can face different issues when considering 

transformations at different scales. Scales in this research indicate spatial size of measuring 

performance and the extent of the data resolution (Lloyd 2014). This research addresses 

building transformation problems at three different scales: individual buildings, block, and 

community. Community consists of blocks, and block consists of buildings. At different 

scales, performance indicators related to transforming the built environment will be varied. 

For example, while thermal energy transfer through wall assemblies can be important on 

an individual building scale, total energy demands can be more concerned than the heat 

transfer of wall layers for evaluating a group of buildings in a block. It requires appropriate 

and applicable methods to evaluate performance on each scale. In addition, scales can 

impose different possible options of building transformation strategies because of different 

levels of data resolution. For example, while research about buildings can focus on 

constituent building elements such as envelopes, HVAC systems, renewable system 

installations etc., research for block and community levels can focus on building footprints, 

typology, or land use. While material selections can be important to achieve energy 

efficiency and CO2 reduction for individual buildings, a community level more likely 
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concerns building locations or functions than detailed materials. In this respect, 

transformation strategies optimized on the individual building scale may not achieve 

expected performance at different scales such as block and community scales. Therefore, 

to support existing building transformation decisions along the direction of improving 

energy efficiency and reducing CO2 emissions, a research framework should be designed 

to tailor possible transformation strategies and objectives at different scales. The various 

performance indicators require separate modeling systems for each scale. 

However, the decisions siloed in a certain urban scale can be challenged for 

transforming existing buildings due to the need to localize decision support systems on a 

certain urban scale and the lack of communication across different scales. Even if decisions 

for retrofitting buildings are isolated on each scale because performance indicators vary, 

buildings will influence urban areas at different scales. Two research questions arise: given 

the urban settings and requirements for CO2 and energy reduction, and renewable energy 

supply increase, what are the suitable transformation strategies that can be applied for 

buildings at multiple urban scales to achieve sustainable and resilient communities? How 

does a decision at a certain scale influence on other scales? To answer these questions, this 

research explores decision support frameworks for retrofitting urban buildings at multiple 

scales with appropriate modeling systems that can evaluate different performance 

indicators for each scale. Based on the experiments, key attributes across multiple scales 

are identified in order to integrate multi-level urban transformation strategies. This research 

will provide an innovative interdisciplinary approach to address significant national and 

worldwide needs for appropriate decision-making when investing in aging and degrading 

buildings to support energy-efficient and sustainable renovations of built forms. 
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1.2 Research Scope 

Urban patterns have a hierarchical structure consisting of city, neighborhood, 

clusters of buildings, buildings, rooms and construction details (Alexander et al. 1977). An 

urban pattern is composed with reconciling urban form components such as materials, 

structures, rooms, buildings, plots, streets, and blocks, and urban tissues (Lozano 1990). 

The patterns are interdependent on the others connecting to both larger and smaller scales 

(Ünlü 2018). When defining minor, medium, and major scales in the urban pattern, Ünlü 

categorized the urban objects as city, neighborhoods, buildings, and households, and their 

morphological parameters on each scale (Ünlü 2018). This dissertation adapts these 

different scales to fit three urban patterns focusing on buildings: individual buildings, 

buildings clustered by blocks, and buildings within a community. Building are constituent 

elements of blocks (Stephan and Crawford 2014), and their characteristics compose urban 

forms at block level (Vanderhaegen and Canters 2017). Blocks can be defined as closed 

urban space that can be accessible from all sides by being linked to street networks (Bürklin 

and Peterek 2017). In this respect, blocks are considered as clusters of buildings surrounded 

by pedestrian streets in this research. In that a community can be gridded by street networks 

(Dumbaugh and Rae 2009), the community is defined as a collection of blocks. The 

multiple scales are presented in Figure 1.2. Each scale contains topological parameters that 

form urban patterns and the parameters can be considered as transformation strategies. 
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Figure 1.2 – Research scope: multiple scales and topological parameters 

To identify suitable transformation strategies, this study devises and tests 

appropriate modeling methods to evaluate different performance indicators on each scale. 

On an individual building scale, envelope selections and their performance influence 

indoor thermal comfort and energy savings (Wang et al. 2007). Environmental and 

economic criteria should also be evaluated to determine an appropriate envelope decision 

(Chantrelle et al. 2011). On a block level, energy-efficient transformations should not 

compromise human thermal comfort (Chang et al. 2019e). Sky view factor can also be 

considered because it can influence thermal environment by providing shaded areas (He et 

al. 2015) as well as represent visibility performance indicators in blocks (Chang et al. 

2019c). On a community scale, as energy uses and production of buildings become 

dynamic (Chang et al. 2020b; Yamagata and Seya 2014), multiple micro-grids have been 

proposed to reduce electricity losses and environmental emissions from the typical 

distribution grid (Anastasiadis et al. 2010; Bullich-Massagué et al. 2018). Especially, the 
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boundaries of a micro-grid should be determined to minimize the energy imbalance of 

urban objects within the boundary (Nunna and Srinivasan 2017). In this respect, the scope 

of evaluating performance on each scale is shown in Figure 1.3. 

 

Figure 1.3 – Research scope: performance evaluation at multiple scales 

Based on the findings on each scale, interrelationships among topological 

parameters and performance can be observed to create top-down and bottom-up decision 

support frameworks of retrofitting buildings at multiple scales. While cities are constructed 

from the bottom-up (from the components hierarchically), they are also operated from top-

down processes at every level (Batty 2013). In the bottom-up perspective, individual 

buildings’ transformations will deviate types of buildings in a block and the collective 

performance of the buildings in a block. The changes in building typologies in a block can 

correspondingly change block size and boundary on a community level. On the other hand, 

in the top-down perspective, changes in block size and form can influence the number of 

buildings and combination of building typologies in a block. The overall performance of 

the block can require renovations of individual buildings.  
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1.3 Research Questions, Objectives, and Hypotheses 

This research explores how to transform urban buildings at multiple scales to 

support future smart and sustainable communities. The main research questions of this 

dissertation are what are the appropriate strategies of transforming urban buildings at 

different scales and how does the renovation strategy at a certain scale influence on 

multiple scales?  

To address the questions, this research receives its motivation from three challenges: 

1) gaps of transformable parameters and objectives at building, block, and community 

scales, 2) lack of appropriate modeling and simulation methods for each scale, and 3) lack 

of understanding interrelationships among multiple scales. In this study, the transformable 

building parameters are limited to building envelope materials for individual buildings, 

building topological and typological parameters on a block scale, and block size and 

boundaries on a community scale. The performance objectives are limited to four criteria 

on the individual building scale: building energy use, renewable energy production 

integrated in building envelopes, indoor thermal comfort hours, and payback period for 

individual buildings, four criteria on the block scale: sky view factor on a block, building 

energy uses in a block, potential solar PV energy production on exterior walls and rooftops 

in buildings within a block, and percentages of thermal comfort time in buildings in a block, 

and one criterion on the community scale: energy balance based on electricity use and 

potential solar PV electricity generation on rooftops in buildings within a community. 

Based on the challenges and research scope, four questions can be developed as follows: 
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1) How can building envelopes be retrofitted by considering multiple objectives and 

potential options including renewable and disruptive technology?  

2) How will urban blocks change building topological parameters for multiple 

performance of energy demands, potential PV supplies, thermal comfort, and sky 

view factor?  

3) How can blocks change their size and boundaries to support an energy sharing 

architecture for the future sharing economy and connected infrastructure? and  

4) What are the interdependent relationships that can be observed in the multi-level 

transformations of buildings? 

The primary objective of this research is to investigate urban building 

transformations at multiple scales and to discern interrelationships of the transformations 

among the scales. Decisions of building transformations should be analyzed at multiple 

scales such as an individual building, a set of buildings, and the community. Four research 

objectives are devised to address research questions and achieve the primary research 

objective as follows: 

1) To optimize building envelopes including any newly developed envelope options 

and to support decisions of retrofitting building envelopes,  

2) To identify relationships between building topological parameters and block 

performance of energy, thermal comfort, and sky exposure as well as to support 

decisions of reorganizing building typologies in a block for better performance, 

3) To establish an appropriate method to identify block boundaries that can share 

electricity among nearby buildings and to support decisions of reconfiguring blocks, 

and 
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4) To discern interrelationships of building retrofit decisions at multiple scales in 

urban areas and to support an integrated decision of changing buildings within a 

community. 

1.4 Research Significance  

This study tests models of retrofitting buildings at multiple scales: building 

envelopes, building typology in blocks, and block boundaries at a community, then devises 

an integrated decision support framework considering impacts across the scales. The study 

of decision support for transforming urban buildings at multiple scales is important for 

several reasons. First, decisions of building envelopes including any newly developed 

materials can suggest directions of forming building exteriors and developing new 

envelope options. Second, understanding relationships between building typology and 

performance in a block can extend previous studies by experimenting existing building 

typology with multiple performance rather than using virtual building forms. Third, 

optimization of block boundaries based on buildings’ energy can support establishing 

smart-grid systems by identifying the optimal spatial size when sharing electricity among 

buildings in a community and address a concern about managing dynamic energy 

distribution in a community. Above all, top-down and bottom-up decision frameworks 

based on interrelationships among different scales contributes to broadening perspective 

for transforming urban buildings by predicting potential ripple effects at different scales. 

The research findings will be grounded for establishing a scalable decision-making system 

to redevelop urban patterns focusing on buildings for the future smart and sustainable 

cities. 
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1.5 Organization of the Dissertation 

This thesis consists of eight chapters, and the chapters are outlined as follows: 

1. Chapter 1 Introduction presents motivation for transforming existing buildings 

and challenges in retrofit decisions siloed on each scale, and provides research 

scope, questions, objectives, hypotheses, and significance.  

2. Chapter 2 Literature Review describes the background knowledge and foundations 

related to this research. The literature includes articles addressing possible 

transformation parameters in urban buildings, and their evaluation. Research scale, 

parameters and performance evaluation criteria, and study area of previous 

literature are compared. 

3. Chapter 3 Research Methodology presents an overview of the methodological 

framework by summarizing research approaches. The entire research project 

consists of four tasks. The first three tasks support decisions on each scale: building 

envelope optimization, performance evaluation of each block with building 

typology, and optimization of block boundaries. Then, the interrelationships of 

topological parameters and performance among scales are explored. 

4. Chapter 4 Retrofitting Building Envelopes optimizes building envelope options 

including any newly developed materials using an evolutionary algorithm.  

5. Chapter 5 Building Typology Transformations analyzes relationships between 

performance and building topological and typological parameters in blocks using 

the Bayesian multilevel modeling.  
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6. Chapter 6 Block Boundaries for Sharing Electricity among Buildings studies 

establishing an appropriate approach of optimizing block boundaries and size to 

share electricity among buildings in a community. 

7. Chapter 7 Integrated Decision Support Model for Urban Building 

Transformations integrates lessons learned from transformation strategies at 

multiple scales in a community. This chapter summarizes inputs and outputs of 

each decision support system in Chapter 4 ~ 6 and demonstrates possible 

interactions among transformation options at multiple scales. 

8. Chapter 8 Conclusions summarizes research findings and contributions and 

concludes the thesis with suggesting future research. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews previous research related to decisions of urban building 

transformations. Currently, decisions of retrofitting buildings are usually made at a certain 

urban scale with considering different parameters and performance criteria. This chapter 

first outlines transformation strategies of building parameters and performance criteria at 

multiple scales. Then, current performance evaluation methods are reviewed to discern 

appropriate modeling and simulation methods. The reviews are elaborated based on study 

scales in order to recognize current information gaps among different scales.  

2.1 Strategies and Objectives of Retrofitting Urban Buildings  

Buildings are not only the components of the urban infrastructure system but also 

deliver points for energy and resources carried by the urban infrastructure systems such as 

transportation, water, utility, electricity, etc. (Derrible 2017). To reduce and optimize loads 

of urban infrastructure systems, existing buildings should be retrofitted considering 

possible transformation options at different scales of the community levels, blocks, and 

individual buildings. Also, their impacts should be evaluated at each scale where the 

transformation strategies are established, and their possible impacts should also be 

projected across the multiple scales. 

2.1.1 Building Level 

Among building retrofit strategies including building components and systems, 

envelopes account for most of heating and cooling energy and determine building energy 

performance. Building envelope retrofits can also provide opportunities for decentralizing 
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energy resources in individual buildings. Building envelope retrofit options can be 

categorized into two parts: 1) reducing energy demands, and 2) decentralizing energy 

supplies (Roberti et al. 2017).   

To reduce energy demands of existing buildings by improving the thermal 

performance, researchers have been examining building shapes and various building 

envelope options. Parasonis et al. (2012) has studied relationships between building 

geometric parameters (i.e., length, envelope area, and internal floor area) and energy 

demands (Parasonis et al. 2012). The results provided the optimal building envelope area 

and compactness for reducing energy uses. Danielski et al. (2012) analyzed that lower 

shape factor reduces the final thermal energy demands in Nordic climate by testing five 

existing apartment buildings (Danielski et al. 2012). Premrov et al. (2016) has examined 

eight building shapes to identify their impacts on energy performance (Premrov et al. 2016). 

Their study has tested virtual building shapes, and their parameters have been assumed to 

increment proportionally. This can limit to reflecting actual building topological 

characteristics. Rashdi and Embi (2016) have also studied impacts of building shape on 

cooling loads with constraining floor area, volume, and height (Rashdi and Embi 2016). 

These findings can guide designers to determine the optimal shape for reducing cooling 

loads. Previous research efforts have focused on recognizing relationships between 

building geometric parameters and energy performance. The findings can support to 

establish transformation strategies for individual buildings.  

Retrofitting building envelopes have also vigorously studied. Gucyeter and 

Gunaydin (2012) studied energy-efficient building retrofits by optimizing envelopes 

strategies for office buildings (Güçyeter and Günaydın 2012). Three different strategies of 
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retrofitting envelopes have been assessed: reduction of transmission loss, reduction of 

infiltration loss, and optimization of solar availability. Based on levels of envelope 

interventions, seven retrofit options re-assembling walls, windows, and floors on ground 

have been evaluated with measuring heating and cooling energy changes. The researchers 

proposed to include renewable energy technologies integrated to building envelopes in the 

future study. Asadi et al (2014) considered to retrofit exterior wall insulation materials, 

roof insulation materials, window types, solar collector types, and HVAC system types 

(Asadi et al. 2014). Roberti et al (2017) studied retrofit decisions for a historical building 

considering the retrofit sets of cooling system, façade insulation, and window replacement 

based on experts’ participations (Roberti et al. 2017). Heo et al. (2012)  tested three retrofit 

alternatives; 1) insulation addition, 2) window replacement, and 3) airtightness (Heo et al. 

2012). Building envelope options have a variety of functions, and one of features is that 

envelopes can be both energy demanders and suppliers.  

To decentralize energy generation on buildings, researchers have been investigating 

renewable energy technologies which can be integrated to existing buildings. Peippo et al 

(1999) proposed applying building-integrated solar thermal collectors and photovoltaics 

(PV) (Peippo et al. 1999). Charron and Athienitis (2006) also proposed solar thermal 

collector and solar PV as applicable renewable energy technologies integrated to building 

design (Charron and Athienitis 2006). Solar thermal collectors can be a heat storage which 

can be used to supply hot water and space heating. Solar PV can generate surplus electricity 

which can be connected to grid and sell to the utility grid systems (Peippo et al. 1999). 

Gahrooei et al (2016) explored different design scenarios of applying solar PV, and 

optimized the investment timing of PV for residential buildings by considering the changes 
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in electricity price, demands, technology prices, and panel sizes (Gahrooei et al. 2016). 

From the research, they found that expanding sizes of solar panels are not always optimal 

solutions, phasing investment can improve benefits of the investment, decisions depend on 

the electricity price, and the uncertainties of electricity prices should be investigated further. 

As another building-integrated façade, BIQ (Bio-Intelligent Quotient) building, featuring 

an algae façade, was built in Hamburg, Germany, 2013 (IBA Hamburg 2013; The 

European Portal For Energy Efficiency In Buildings 2015). The algae sources conduct 

photosynthesis and generate biofuels to be used for generating heat (Chang et al. 2017; 

Wlkinson et al. 2016). The potential performance of algae systems has been investigated 

in urban or building levels (Kim 2013; Quan et al. 2017). 

2.1.2 Block Level 

On a block level, the performance based on building design scenarios has been 

evaluated to support an optimized decision considering design options. Lobaccaro and 

Frontini (2014) tested three design scenarios that have different building shapes and 

exposed areas to analyze solar availability (Lobaccaro and Frontini 2014). Block-level 

performance should also consider building parameters as well as urban parameters. 

According to a research by Van Esch et al. (2012), building parameters such as envelope 

design and roof shape were considered to evaluate solar accessibility in urban canyon and 

thermal energy (Van Esch et al. 2012). Furthermore, urban parameters such as street width 

and street direction were also used for measuring performance outcomes. Chang et al. 

(2019) studied campus-built forms produced by a generative design approach and 

evaluated energy demands, solar harvesting potential, and sky view factors (Chang et al. 

2019c). The study showed that parameters in campus-built forms consist of the number of 
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buildings, the number of thermal zones, external wall area, coverage ratio, etc. According 

to Yang et al. (2012), geometry ratio (height/width) can determine the sky view factor, and 

thermal properties can determine heat transfer, so block-level heat island effects can be 

intensified (Yang et al. 2012a).  

Zhang et al. (2012) also evaluated sky view factor on façade and ground levels 

based on existing blocks in different climate conditions (Zhang et al. 2012). Rodriguez-

Alvares (2016) investigated current urban fabric for five European cities, and analyzed 

energy demands of heating, cooling, and lighting based on building and urban parameters 

(Rodríguez-Álvarez 2016). Morganti et al. (2017) tested 14 urban morphologies and 

identified potential solar irradiation along with three independent variables of the ratio of 

built area to the site area, the ratio of vertical surface area to floor area, and the sky factor 

on the façades (Morganti et al. 2017). The results enable urban planners to incorporate 

energy performance and solar potential at the preliminary stages of urban planning. Those 

approaches have isolated the contribution of different parameters individually to 

understand the influence of factors clearly. However, the isolation can distort the 

relationships when parameter effects are combined. In this respect, effects of urban 

building parameters should be analyzed synthetically when impacting on performance 

indicators.  

Even if previous research tested actual built forms without any simplifications, it is 

still challenging to abstract the complexity of generic forms without disfiguring the  

performance of the original form  (Zhang et al. 2012). In this respect, Stewart et al. (2012) 

categorized local climate zones for measuring urban heat island effects based on 
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combinations of estimated block typologies (Stewart et al. 2012). This research showed 

that standardizing block typologies can measure performance in any city and region by 

lessening the complexity. In addition, a study testing several building typology options on 

an existing site was conducted to identify the life cycle of urban typologies (Rodríguez 

Serrano and Porras Álvarez 2016). This research found that a large energy consumption 

does not necessarily produce more proportional CO2 emissions, demonstrating that 

buildings can reduce CO2 emissions without saving energy consumption. 

2.1.3 Community Level 

Reinhart and Cerezo Davila (2016) analyzed energy performance of neighborhoods 

through a bottom-up approach driven by buildings (Reinhart and Cerezo Davila 2016). 

Subset of number of buildings, building shape, area, age, use, system, and climate can be 

used to estimate energy demands at the community level. The research indicated that 

insufficient information about building use and thermal properties can make reliable 

prediction of energy use difficult. To quantify environmental impacts of existing buildings 

in a city level, Stephan and Athanassiadis used existing land use and building footprint data 

to evaluate life cycle embodied energy of building stocks (Stephan and Athanassiadis 

2017). Through the bottom-up approach, embodied energy including material use, energy 

consumption, greenhouse gas emission, and water use were calculated in their study. In 

this respect, buildings are still important elements to indicate community-level 

performance. However, when building performance scales up to urban level, data 

collection and inconsistencies of data resolution might have problems that undermine 

accuracy of building performance predictions (Quan et al. 2015b). Detailed building 

information can be represented as appropriate abstracted forms when scaling up (Kang and 
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Hong 2015). In other words, appropriate abstractions of data resolution and performance 

evaluation indicator will be required in the decision at the community level. 

On a community level, renewable energy, especially solar potential, has been 

analyzed to evaluate feasibility of applying solar PV. Freitas et al. (2015) compared solar 

irradiation of major cities across the world and devised web-based platform to review the 

different levels of potential (Freitas et al. 2015). Quan et al. (2015a) analyzed solar 

potentials on building rooftops (Quan et al. 2015a). They evaluated 45,900 buildings in the 

New York City and compared building energy uses and potential solar power generation 

when PV installed on about 50% of the rooftops. The energy balance varied by locations, 

and the annual average of decentralized energy generation by the building-integrated solar 

PV was 2.69%. Nevertheless, applications of renewable technologies in buildings will 

create more dynamic energy distributions in urban areas. For example, renewable energy 

source from biomass energy can provide surplus energy that can provide communities with 

additional energy capacity (Castro-Lacouture 2015; Chang et al. 2017). When energy loads 

and resources are distributed in urban area, clear boundaries within a community should 

be defined (Ton and Smith 2012). The boundaries in a community can be represented by 

blocks that can be determined street networks (Bürklin and Peterek 2017).   

2.2 Performance Evaluation Methods at Multiple Scales 

Performance optimization and evaluation methods have been discussed and 

researched for years, but the methods have been limited to a specific scale even though 

buildings’ performance can influence several scales such as district, city, or region (Nouvel 

et al. 2015, 2017). Previous research about retrofitting buildings have not measured 
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dynamic changes or behaviors inside the urban energy system encompassing buildings 

(Feng et al. 2013; Nouvel et al. 2015). This section reviews tools and performance 

evaluation criteria of transforming urban buildings at different scales. 

On an individual building scale, the energy performance of buildings has been 

simulated using, e.g., EPC, TRNSYS, EnergyPlus, RADIANCE, and WUFI. (Gahrooei et 

al. 2016; Ihara et al. 2015; Kämpf and Robinson 2010; Lu et al. 2017; Quan et al. 2015b). 

Those simulation tools emulate physical properties of buildings. Since those models 

simplified building details by assuming building parameters (Charron and Athienitis 2006; 

Yang et al. 2014b), the models cannot accurately represent the performance of actual 

buildings. Previous research has applied methods of incorporating uncertainties during 

simulation, such as Monte Carlo, mathematical optimization, and an uncertainty analysis 

tool (GURA-Workbench) with energy simulation tool (Gahrooei et al. 2016; Lu et al. 2017; 

Zhang et al. 2016).  

 Beyond energy performance evaluations, other criteria monetary benefits, technical 

compatibility, or thermal comfort have been assessed. In order to estimate the building 

performance with few data, Life Cycle Cost (LCC), Life Cycle Assessment (LCA), and 

Life Cycle Energy Analysis (LCEA) were presented and integrated to provide the overall 

performance including economy, energy, material efficiency, environment, and other 

policy benefits (Iwaro and Mwasha 2013). For incorporate economic benefits in 

performance evaluation, the following methods: net present value calculation (Hong et al. 

2014), probabilistic modeling based on convolution technique (Tina et al. 2006), graph 

search algorithm (Juan et al. 2010), geometric brownian motion analysis in real option 

(Gahrooei et al. 2016), multivariate optimization (Peippo et al. 1999) have been studied to 
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examine energy performance with cost benefits. Technical compatibility as well as 

structural and thermal performance analysis have been integrated through finite element 

analysis (Kim 2013). The finite element method was applied to build a database that can 

provide element alternatives for optimizing building designs (Koo et al. 2014). The thermal 

comfort criterion could be integrated with the application of the artificial neural network 

method if there are sufficient responses about the comfort level (Gossard et al. 2013). 

Genetic Algorithms (GA) were also utilized to generate building design configurations as 

well as to handle both discrete and continuous parameters (Chantrelle et al. 2011; Charron 

and Athienitis 2006; Juan et al. 2010). Multi-objective optimization algorithms were 

developed in MATLAB to evolve building models over generations (Kämpf et al. 2010). 

Also, multi-criteria decision-making was optimized using weights to test a large set of 

retrofit options (Asadi et al. 2014). Based on the previous approaches, improvement of 

reliability of initial populations (retrofit options) can alleviate the disadvantage of GA and 

maximize benefits of quick iterative optimizations.  

On a block scale, performance analysis and relationship analysis are often 

integrated to establish a theoretical performance that can be replicable to estimate the same 

forms of urban blocks (Lobaccaro and Frontini 2014; Zhang et al. 2012). While virtual 

urban forms are modeled and their performance are tested using simplified mathematical 

formulas, the development of data acquisition using geographic information systems (GIS) 

and parametric modeling enabled researchers to model existing built forms. Case studies 

that have used existing built forms and synthetic evaluation of both energy demand and 

supply have been important on the block level. For example, Reinhart et al. (2013) 

evaluated operational energy, daylighting, outdoor thermal comfort, walkability in a mixed 
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use block in Boston, USA, by developing an urban modeling tool (Reinhart et al. 2013). 

The approach consisted of 3D geometry (Rhinoceros)-based modeling and included the 

measure of building parameters in a block and their relationships with performance.  

Statistical inference has enabled designers and planners to develop performance-

based design strategies at the early stage (Morganti et al. 2017). Furthermore, statistical 

models have helped to understand relationships between urban building parameters and 

multiple performance indicators. Results of urban model simulations are often used to build 

statistical models (Morganti et al. 2017). Least-square regression analysis was employed 

to understand relationships among gross space index, façade-to-site ratio, and sky factor 

(Morganti et al. 2017). Multivariate models were built to understand relationships between 

performance indicators for energy and sky view factor, including design parameters such 

as coverage ratio, floor area ratio, etc. (Chang et al. 2019c).  

Since data is approximated to analyze community-level performance such as life 

cycle emissions and energy, the analysis can be simplified by devising a mathematical 

model (Stephan and Athanassiadis 2017). As being improved computational power, large 

scale analysis has been empowered by geographical information system (GIS) tools 

(Freitas et al. 2015). GIS tools are often used for solar radiation analysis (Freitas et al. 

2015; Quan et al. 2015b). Simulation methods have been developed to support a bottom-

up urban building energy modeling (Reinhart and Cerezo Davila 2016). The simulation 

methods have been developed into two-folds: 1) simulating a set of buildings by abstracting 

building details while recognizing uncertainties or 2) modeling urban area including 

buildings, streets, surrounding vegetations, etc. (Chang et al. 2019c). Energy simulation 

engines such as EnergyPlus, DOE2, TRNSYS, and IDA-ICE have been widely used 
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especially where cooling loads are notable (Reinhart and Cerezo Davila 2016). The engines 

simulate building energy models. Beyond this, Urban Modeling Interface (UMI) has been 

developed as a plug-in of Rhinoceros 3D, and it parameterizes urban objects including 

buildings, and conducts EnergyPlus simulation for buildings (Reinhart and Cerezo Davila 

2016).  

Another approach of urban building energy model tool is ArcGIS based plug-in to 

integrate spatial and temporal energy consumption patterns (Fonseca and Schlueter 2015). 

This has been further developed as a computation framework, City Energy Analyst (CEA), 

to analyze demand, resource, and performance patterns in a neighborhood level (Fonseca 

et al. 2016). Tools for urban energy systems are to evaluate both energy demand with 

district energy supply (Shi et al. 2017). To discretize zones of energy patters, spatial 

statistics are essential to cluster buildings (Fonseca and Schlueter 2015). Spatial statistics 

using GIS data and K-means clustering have been identified as an appropriate approach of 

aggregating buildings’ performance while discerning their interactions in a community 

scale (Fazlollahi et al. 2014; Fonseca and Schlueter 2015).  

2.3 Summary of Literature Review 

Previous research presented a variety of potential transformable parameters of 

building forms and performance indicators at different urban scales. Table 1 summarizes 

research scale, parameters and performance evaluation criteria, and study area of previous 

literature and this dissertation research.  

According to literature review on an individual building level, building envelope 

renovations are complex decisions because 1) renovations of envelopes should meet 
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multiple performance criteria, 2) envelopes can require thermal energy as well as provide 

renewable energy based on their properties, and 3) performance of both traditional 

materials and renewable sources should synthetically be evaluated. 

On a block level, changes in building topological parameters will influence multiple 

performance in blocks such as energy demands and solar potential, sky exposure, and 

thermal comfort. There are two manifestations of performance evaluation in a block level. 

First, detailed data should be simplified without skewing important building parameters 

even if performance has been measured for existing urban fabric. Second, several building 

typology parameters should be analyzed together not to skew the relationships between the 

parameters and performance. 

On a community level, buildings’ information should be abstracted by simplifying 

detailed materials or structure to evaluate community-level performance in nonredundant 

manner. Also, since the potential of renewable sources can change energy distribution 

dynamically, boundaries within a community should be identified.  

 In addition, research approach varies by scales. For an individual building, an 

optimization method to select envelope options should be devised. On a block level, a 

statistical inference becomes essential to inform performance distributions or changes of 

typology parameters in a block. On a community level, although energy performance 

analysis methods have been developed in building-driven analysis or urban objects 

modeling and simulation, spatial statistics can be useful to consider spatial and temporal 

conditions. 
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Table 1 – Summary of literature review 

Reference 
Analysis Scales 

Parameters 
Performance / Evaluation criteria Application 

scope 

Study 

Area 

Existing 

or 

Virtual Building Block Community Building Block Community 

This 

Study 
˅ ˅ ˅ 

Building parameters: surface 

area at each orientation 

Building typology 

parameters: floor area, 

building height, structure, 

land use 

Block parameters: energy 

balance of groups of 

buildings 

Building thermal 

energy demands 

Renewable 

applications 

Indoor thermal 

comfort 

CO2 emissions 

Economic payback 

Building energy 

demands 

Renewable 

applications 

Indoor thermal 

comfort 

Sky view factor 

Building 

energy 

demands 

Renewable 

applications 

All buildings 
Tokyo, 

Japan 
Existing 

(Stephan 

and 

Athanassi

adis 2017) 

- - ˅ 

Building geometry, and 

parameters from building 

archetype (land-use, age, and 

height) 

- - 

Embodied 

energy, 

water, and 

greenhouse 

gas 

emissions 

All buildings 

Melbour

ne, 

Australia 

Existing 

(Freitas et 

al. 2015) 
- - ˅ 

Climate, building footprints, 

terrain, LiDAR, imagery 
- - 

Solar 

irradiation 
All buildings 

Switzerl

and, 

Slovakia, 

US, 

Portugal 

Existing 

(Reinhart 

and 

Cerezo 

Davila 

2016) 

˅ - ˅ 

Subset of {Number of 

buildings, Building shape, 

area, age, use, system, 

climate} 

Heating loads or 

Total Energy Unit 

Intensity (EUI) 

- 

Heating 

loads or 

Total Energy 

Unit 

Intensity 

(EUI) 

All buildings 

Italy, 

Greece, 

Finland 

Existing 

Japan, 

US, UK, 

Italy, 

Netherla

nds, 

Greece, 

Switzerl

and, 

Ireland, 

France, 

Virtual 
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Spain, 

Germany 

(Quan et 

al. 2015b) 
˅ - ˅ 

Land use, building footprint, 

estimated shading, 

microclimate zones, and 

occupancy 

Hourly building 

energy use and 

roof solar energy 

production 

- 

Hourly 

building 

energy use 

and roof 

solar energy 

production 

All buildings 

New 

York, 

US 

Existing 

(Grippa et 

al. 2018) 
- ˅ ˅ 

Satellite imagery  

Street block polygons 
- Mapping up-to-date land use All buildings 

Ouagado

ugou in 

Burkina 

Faso and 

Dakar in 

Senegal 

Existing 

(Reinhart 

et al. 

2013) 

˅ ˅ - 

Building forms, trees, 

shading objects, window-to-

wall ratio, walking paths 

Energy use, daylight autonomy, 

outdoor thermal comfort, walkability 
- All buildings US Existing 

(Rodrígue

z-Álvarez 

2016) 

˅ ˅ - 

Building parameters: 

Glazing ratio, Construction 

type, Thermal capacity, 

Albedo 

Urban parameters: Floor 

Space Index, Ground Space 

Index, Compactness ratio 

(envelope area to floor area) 

Energy demands: heating, cooling, and 

lighting 
- All buildings 

Spain, 

United 

Kingdo

m, 

France, 

Germany 

Existing 

(Morganti 

et al. 

2017) 

- ˅ - 

Gross space index 

Floor space index 

Façade-to-site ratio  

Average building height 

Volume-area ratio 

Building aspect ratio 

- 

Solar 

availability 

Sky view factor 

- All buildings 
Spain, 

Italy 
Existing 
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(Rodrígue

z Serrano 

and Porras 

Álvarez 

2016) 

- ˅ - 

Floors 

Envelope Area 

Volume 

Compactness 

- 

Embodied 

energy (heating 

and cooling) 

CO2 emissions 

(heating, 

cooling, 

domestic hot 

water) 

- Residential Spain 

Existing 

site / 
virtual 

planning 

options 

(Stewart 

et al. 

2012) 

- ˅ - 

Aspect ratio, Building 

surface fraction, Impervious 

surface fraction, Pervious 

surface fraction, Average 

building height, Terrain 

roughness, Sky view factor 

- 

Urban heat 

island effect: 

Surface 

admittance, 

Surface albedo, 

Heat output 

- All buildings 
Not 

specific 
Virtual 

(Shi et al. 

2017) 
- ˅ - 

Design parameters, urban 

context, weather, PV panel 

cost, new energy technology 

- 
Energy 

performance 
- All buildings 

Not 

specific 
Virtual 

(Chang et 

al. 2019c) 
˅ ˅ - 

Number of buildings, 

number of thermal zones, 

coverage ratio, external wall 

area, floor area ratio 

Energy demands, solar radiation, sky 

view factor 
- All buildings 

Shenzhe

n, China 
Virtual 

(Lobaccar

o and 

Frontini 

2014) 

˅ ˅ - 

Site terrain, building 

envelope, building shape, 

building height 

- 
Average solar 

irradiation 
- Commercial 

Switzerl

and 
Virtual 

(Van Esch 

et al. 

2012) 

˅ ˅ - 
Street width, street direction, 

roof shape, envelope design 

Solar access, heat demand, solar heat 

gain 
- Residential 

Netherla

nds 
Existing 

(Zhang et 

al. 2012) 
- ˅ - 

Floor area ratio, site area, 

site coverage, number of 

stories, area/perimeter ratio 

- 

Sky view factor 

on building 

façade 

- Residential 

Netherla

nds, 

Spain, 

France, 

Singapor

e 

Existing 

(Yang et 

al. 2012a) 
- ˅ - 

Geometry ratio 

(Height/Width) 

Wall surface 

- 

Sky view factor 

Solar radiation 

Air and surface 

temperature 

- All buildings 
Beijing, 

China 
Virtual 
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Thermal properties of 

building materials 

(Parasonis 

et al. 

2012) 

˅ - - 

Building surface area to 

floor area, Thermal 

conductance 

Thermal energy 

through envelopes 
- - Residential - Virtual 

(Danielski 

et al. 

2012) 

˅ - - 

Shape factor (surface area to 

volume ratio), Thermal 

conductance, Window area 

to floor area ratio 

Heat demand - - Residential Sweden Existing 

(Premrov 

et al. 

2016) 

˅ - - 

Glazing area, Shape factor 

(surface area to volume 

ratio), Shape type (Square, 

Rectangular, L and U 

shapes) 

Cooling energy 

demand 
- - All buildings 

Slovenia, 

Germany

, Finland 

Virtual 

(Rashdi 

and Embi 

2016) 

˅ - - 

Shape factor, Orientation, 

Shape type (Rectangular, U, 

T, L, Ellipse, Circle, 

Courtyard, Square) 

Cooling energy 

demand 
- - All buildings Malaysia Existing 

(Chang et 

al. 2017) 
˅ - - 

Glazing area - applying 

biomass façade 

Thermal energy 

generation 

CO2 emissions 

- - All buildings U.S. Virtual 

(Asadi et 

al. 2012) 
˅ - - 

Building use, floor area, 

dimensions and height, 

enclosure thermal properties, 

HVAC parameters 

Energy 

consumption 

Retrofit cost 

Thermal comfort 

- - 
School 

building 
Portugal Existing 

(Roberti 

et al. 

2017) 

˅ - - 

Façade and roof insulation, 

Glazing options, cooling 

systems 

Energy demands  

Indoor thermal 

comfort 

Conservation 

compatibility 

- - All buildings Italy Existing 

(Güçyeter 

and 

Günaydın 

2012) 

˅ - - 

Transmission and infiltration 

loss through building 

envelope materials, solar 

availability 

Heating and 

cooling energy 

consumption 

CO2 emissions 

Indoor thermal 

comfort 

- - Office Turkey Existing 
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Investment for 

retrofit 

(Heo et al. 

2012) 
˅ - - 

Wall insulation, window 

insulation, and airtightness 

Energy 

consumption 

Payback time 

- - Office UK Existing 

(Peippo et 

al. 1999) 
˅ - - 

Building geometry, 

orientation, renewable 

technology installation (solar 

thermal collectors and PV), 

thermal insulation, window 

types and area, lighting type 

and control, heat recovery 

Building cost 

Energy saving 
- - 

Residential 

and Office 

Finland, 

France, 

Italy 

Virtual 

(Charron 

and 

Athienitis 

2006) 

˅ - - 

Building length/width, 

window types and area on 

each orientation, overhang, 

envelope thermal properties, 

heating and cooling systems, 

solar thermal collector, roof-

integrated PV 

Electricity 

consumption and 

generation 

- - Not specific Canada Virtual 

(Gahrooei 

et al. 

2016) 

˅ - - 

Investment timing, Solar 

panel size, Variations of 

climate condition 

Maximum Net 

Present Value 
- - Residential U.S. Virtual 

(Lu et al. 

2017) 
˅ - - 

Applications of wind 

turbine, bio-diesel generator, 

and solar PV 

Electricity demand 

and supply 

Cost 

CO2 emissions 

- - Office 
Hong 

Kong 
Existing 

(Zhang et 

al. 2016) 
˅ - - 

Applications of wind turbine 

and solar PV 

Initial investment 

Energy balance 

Grid stress 

- - 
School 

building 

Hong 

Kong 
Existing 
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CHAPTER 3. RESEARCH METHODOLOGY 

This chapter presents an overall research approach by summarizing specific 

procedures and techniques to identify urban building transformation strategies at multiple 

scales and their possible interactions. Figure 3.1 shows an overview of the research 

workflow that has implemented for transforming urban buildings at each scale and for 

integrating findings of the empirical studies. To transform urban building parameters at 

multiple scales, this research conducts four processes: 1) recognizing research problems 

and questions at each scale, 2) designing an appropriate models or establishing a suitable 

methodology to address research challenges, 3) implementing the methodology to the test 

case located in Kyojima, Tokyo, Japan, and 4) analyzing transformable topological or 

typological parameters and their impacts on performance. Integration strategies are 

discussed by reviewing findings from the empirical studies conducted in a building, block, 

and community scales.  

 

Figure 3.1 – Overall research framework 
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This research conducts the methodological innovation and integration to design a 

holistic decision support for multi-level building renovation in the multiple urban scales. 

Figure 3.2 elaborates research methodologies for three sub-systems: 1) retrofitting 

buildings’ envelopes by incorporating as many as envelope options, 2) reorganizing 

building typology or topology by considering their multiple performance, and 3) 

reconfiguring buildings by considering their energy sharing capacity. A multi-objective 

optimization using evolutionary algorithm for an individual building level is applied for 

heuristic estimations of performance of selecting a variety of sets of envelope options. On 

a block scale, Bayesian multilevel modeling is employed to multiple performance and 

building topological parameters nested in blocks. Then, on a community level, K-nearest 

neighbor and community clustering are applied and geo-spatial dataset (GIS) is used for 

spatial analytics. Based on inputs and outputs of methodology at each scale, both top-down 

and bottom-up decision frameworks are devised for supporting holistic decisions of 

transforming existing buildings and blocks.  
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Figure 3.2 – Research Methodology 
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CHAPTER 4. RETROFITTING BUILDING ENVELOPES ON AN 

INDIVIDUAL BUILDING 

This chapter studies retrofitting building envelopes in an individual building level 

(Chang et al. 2020a). In an individual building level, approximately 50% of total building 

energy consumption is impacted by the building envelope elements (Mavromatidis et al. 

2013). Building envelope retrofit options can be categorized into two parts: 1) reducing 

energy demands, and 2) decentralizing energy supplies (Jafari and Valentin 2017; Roberti 

et al. 2017). Building energy demands can be reduced by applying highly insulated 

materials (Chantrelle et al. 2011) or energy efficient equipment such as heat recovery 

systems (Chidiac et al. 2011). The energy supply of buildings can be partially charged by 

renewable energy (RE) technologies. For example, solar photovoltaic (PV) has been 

implemented as an energy source integrated in building surfaces (Pagliaro et al. 2010). 

Although retrofit options can be applied for different purposes, the performance of each 

option should be estimated collectively to support optimal decisions. However, research in 

the field of building envelope retrofits has not been fully discussed (Fan and Xia 2017). 

Additionally, considerations of envelope options have been easily constrained by several 

pre-conceived experiences about using traditional materials and systems, thereby limiting 

the potential of improving building performance by retrofitting envelopes. 

The decision to adopt new envelope systems is difficult because it is a multi-criteria 

problem embracing ecological, economic, social, and other dimensions (Asadi et al. 2014). 

The retrofitting problem also includes constraints such as influences of existing context 

(Nutkiewicz et al. 2018). Furthermore, the uncertainties in parameter estimates and 
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performance predictions may make it challenging to ensure the adequacy of the retrofit 

decisions (Jafari and Valentin 2017). These challenges reclaim a research question about 

optimization of building envelope retrofit decisions: how can we formulate an optimization 

framework allowing to incorporate any envelope systems as retrofit options while 

considering uncertainties under contextual constrains?  

This chapter aims to optimize building envelope retrofit decisions while 

incorporating newly developed façade systems. To achieve the research objectives, four 

research tasks are devised: 1) identifying multi-objective functions to test retrofit buildings 

based on common envelope features, 2) identifying uncertainties in building envelope 

parameters and performance predictions, 3) developing a multi-objective optimization 

model under uncertainties and built environment constraints, and 4) testing the 

methodology applied to existing residential buildings.  

4.1 Approach for Multi-Objective Optimization Model 

Figure 4.1 shows the methodology to build this façade selection models. The 

following sections divide the methodology in three parts: 1) identifying multi-objectives 

and decision functions, 2) establishing the framework of considering uncertainties into the 

decision model, and 3) formulating the multi-objective optimization model using GA. Each 

step of the methodology will be explained specifically in sections below. 
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Figure 4.1 – Methodology for selecting building envelopes by using a multi-objective 

optimization (Chang et al. 2020a) 

4.1.1 Multi-criteria for building envelope retrofits 

Optimization objectives for retrofit decisions can be summarized as economic, 

environmental, and social aspects (Jafari and Valentin 2018). Energy performance should 

consider the balance between energy demand and generation from renewable sources-

integrated in building forms (Charron and Athienitis 2006; Quan et al. 2015b). 

Environmental and economic criteria should also be evaluated to determine an appropriate 

envelope decision (Chantrelle et al. 2011). Environmental impacts are evaluated by 

determining the reductions of CO2 emissions foreseen for the building life cycle (Diakaki 

et al. 2010). Depending on envelope alternatives, carbon abatement can also be 

incorporated in life cycle CO2 emissions (Wilkinson et al. 2017). Economic aspects can be 

valorized as a payback period commensurate with cash inflow and outflow (Fan and Xia 

2017). As input costs, initial investment cost (Cho et al. 2014), energy consumption costs 

(Cho et al. 2014), maintenance costs (Fan and Xia 2017; Wilkinson et al. 2017), and 
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environmental costs (Jafari and Valentin 2018) can be considered. As benefits, tax benefits 

(Govindan et al. 2016) and resale value (Gahrooei et al. 2016; Jafari and Valentin 2017, 

2018) can be considered. Multi criteria optimization of social, energy, environmental, and 

economic aspects presented in Figure 4.2. should be evaluated synthetically to determine 

optimized envelope retrofits. 

 

Figure 4.2 – Multi-criteria objectives and their potential relationships 

4.1.2 Considering uncertainties and constraints  

Uncertainties in building parameters can cause reliable predictions of renewable 

energy generation and building energy consumption to fail (Zhang et al. 2016). 

Uncertainties can be categorized into three: physical, design, and scenario parameters 

(Zhang et al. 2016). Physical properties of building materials are set to calculate energy 

consumption, and uncertain estimations of the building envelope properties lead to a 

discrepancy between actual and predicted energy consumption (Jeon et al. 2018). Design 

parameters are related pre-set working conditions (Zhang et al. 2016), and the design 

parameters can be obtained from the existing built form, which includes existing building 

conditions (e.g., shadings, vertical mullions) and surrounding buildings. Uncertainties in 
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the scenario parameters are originated from climate conditions (i.e., solar radiation) where 

the buildings and their systems are operated (Cao et al. 2013; Zhang et al. 2016). This 

chapter identifies uncertainties and incorporates them into decision functions by using the 

following two parts: parametric modeling and a Bayesian multilevel modeling. In that 

Bayesian approach can detect posterior uncertainties of parameters for both population 

level and group level effects (Bürkner 2017), it can eliminate inaccuracy of uncertainty 

considerations driven by historical assumptions or subjective norms (Nagel and Sudret 

2016). The Bayesian multilevel modeling to identifies the distributions of physical 

parameters and distributions of performance gaps. The framework for considering 

uncertainties in the building envelope retrofit decisions is devised in Figure 4.3. In the 

Bayesian multilevel modeling, x denotes explanatory variables, y denotes response 

variables, Ɛ denotes experiment-specific known uncertainties, and i denotes the index of 

the measurement intervals. The uncertainties are incorporated into the multi-objective 

optimization as providing uncertainties in physical, design, and scenario parameters. 

 

Figure 4.3 – Framework considering uncertainties in physical, design, scenario 

parameters (Chang et al. 2019a; d, 2020a) 
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4.1.3 Designing a multi-objective optimization model 

A multiple objective optimization (MOO) using the genetic algorithm is modeled 

in MATLAB computing environment. According to the multi-criteria for building 

envelope retrofits, decision functions of indoor thermal comfort, energy performance, 

environmental impacts, and economic aspects are identified by reviewing literature and 

technical reports. The MOO model can provide Pareto optimal sets by integrating several 

objective functions into a set of problems (Giagkiozis and Fleming 2012; Miettinen 1999). 

Sets of solutions will be provided, and decision makers may need another procedure to find 

out optimal solutions satisfying their requirements among the set (Giagkiozis and Fleming 

2012).  The Pareto front solutions will be several alternatives optimized in multi-criteria, 

and decision makers can determine the final implementation among optimal sets. Figure 

4.4 presents the framework of designing the multi-objective optimization model. 

 

Figure 4.4 – Framework of designing multi-objective model (Chang et al. 2020a) 
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4.1.3.1 Modeling the multi-objective problem 

Based on literature review, objective functions of multi-criteria: energy performance, 

social aspect (indoor thermal comfort), and environmental impacts (CO2 emissions) and 

economic aspects (payback period) are identified and expressed as functions of envelope-

related parameters. 

1) Energy performance (FEP): thermal energy consumption over generation 

Building energy simulation programs analyze building energy consumption by 

modelling building envelopes and systems (Yang et al. 2012b). This research considers 

both energy consumption and generation to determine energy performance criteria. Energy 

performance, FEP, is represented by energy balance: thermal energy consumption over 

energy generations. 

Thermal energy consumption was calculated by using the degree days method. This 

is a simplified method for estimating energy consumption of small buildings, and has a 

dominant influence by energy uses (Zhao and Magoulès 2012). The simplified degree days 

method (Saad Al-Homoud 2001) is presented in the following equation:  

 Edemands = 𝑈𝑒𝑞 × A × (HDD or CDD) (kWh/year) (1) 

where Edemands is energy demand (Watts), Ueq is u-value of the overall building 

surface (W/m2K), A is the surface area (m2), HDD is Heating Degree Days, and CDD is 

Cooling Degree Days. Degree days are the sum of the degrees exceeding or dropping a 

certain temperature required heating or cooling yearly. According to the climate design 
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condition data reported by ASHRAE (ASHRAE 2009), annual cooling and heating degree 

days and an operative temperature can be determined as climate conditions. A website, 

https://www.degreedays.net/, (BizEE Software 2019) can be used by energy professionals 

to extract the average HDD and CDD of until recent three years with weather station’s 

location, cooling and heating temperature.  

By using different building envelope options, buildings can require various sources 

of energy. To identify energy generation effects of buildings, renewable sources that are 

applicable in buildings are reviewed and their energy generating potentials are discussed. 

Renewable electricity generation sources are categorized into five systems: wind energy, 

solar photovoltaic (PV), solar thermal, biomass, and small hydro systems (Varun et al. 

2009a). Among them, solar photovoltaic, solar thermal, and biomass sources can be 

applicable as building envelope-integrated systems. 

Solar power generation was measured using the following equation (Chang et al. 

2019c).  

 𝐸𝑝𝑣 = 𝐴𝑝𝑣 × Ƞ𝑒 × 𝐺 (kWh/year) (2) 

where Apv is the surface area of the solar PV panels (m2), Ƞe is the mean annual 

power conversion efficiency coefficient, and G is the annual solar irradiation (kWh/m2). 

According to the literature review, since the PV module requires a supplementary area 

including layered areas, the PV module, which has productive circuits, can be placed on 

72.5% of the total surface (James et al. 2011). The mean annual power conversion 

efficiency coefficient was assumed as 0.766 (Hofierka and Kaňuk 2009). In this respect, 

https://www.degreedays.net/
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annual solar irradiation per unit area was convert hourly averaged solar power generation 

by using 72.5% of rooftops and 0.766 power conversion efficiency. The annual solar 

irradiation depends on orientations and surrounding buildings and fluctuates along with the 

locations of façades and existing building conditions such as shading and the size of panels. 

To consider existing building conditions and surrounding buildings together, parametric 

modeling is conducted to predict the potential solar radiation of each orientation.  

Solar thermal systems yield energy by multiplying area of collectors with several 

performance factors (O’Hegarty et al. 2014; Visa et al. 2017), and the energy generations 

can be simplified by the following equation: 

 𝐸𝑠𝑡 = 𝐴𝑠𝑡 × Ƞ𝑐 × Ƞ𝑠 × 𝐺 (kWh/year) (3) 

where Est is the electricity energy generations from solar thermal collectors, Ast is 

the surface area of the solar thermal systems (m2), Ƞc is the efficiency of the solar thermal 

collectors, Ƞs is the efficiency of the systems (e.g., piping, storages), and G is the annual 

solar irradiation (kWh/m2). The overall efficiency (Ƞc × Ƞs) is distributed between 0.15 

and 0.8 as two peaks and 0.45 as the median (O’Hegarty et al. 2014).  

Biomass systems can be integrated into the building envelope as a bioreactor 

façade. The bioreactor façade, also known as algae façade, can generate biomass about 

30kWh/m2/year (Chang et al. 2017; The European Portal For Energy Efficiency In 

Buildings 2015), and 80% of them can be converted to biogas (The European Portal For 

Energy Efficiency In Buildings 2015) which can be used for generating electricity or heat 

energy.  
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2) Indoor thermal discomfort (FDC) 

According to the European Committee for Standardization (CEN) (European 

Committee for Standardization (CEN) 2007), the operative temperature is the value for 

which the indoor environment can achieve the maximum levels of comfort, which 

corresponds to PMV = 0. The thermal discomfort times can be calculated from the indoor 

temperature out of the maximum and minimum limits of indoor operative temperature 

(Atzeri et al. 2016; Penna et al. 2015).  

 To, max = 0.33 × To,o +18.8 + 3 (4) 

 To, min = 0.33 × To,o + 18.8 – 3 (5) 

Where To,o is the outdoor mean dry bulb temperature, To,max is the maximum limit 

of indoor operative temperature, and To,min is the minimum limit of indoor operative 

temperature. 

Outdoor mean dry bulb temperature can be calculated from the mean values of 

minimum dry bulb temperature and the maximum dry bulb temperature from the 

EnergyPlus weather file. Discomfort times are when the indoor operative temperature 

exceeds the boundaries between To,min and To,max. The indoor operative temperature (To,i) 

can be approximated by calculating the average of the mean radiant temperature of inside 

surfaces and the indoor dry bulb temperature (Djongyang et al. 2010; Energy 2018). The 

mean radiant temperature in a zone can be calculated by the following equation (Energy 

2018): 
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Tmr,i = 

∑ 𝜀𝑖𝐴𝑖𝑇𝑖

∑ 𝜀𝑖𝐴𝑖
  (6) 

Where Tmr,i is the mean radiant temperature in a zone, ɛi is the surface emissivity, 

Ai is the area of each surface, and Ti is the surrounding surface temperature. The surface 

temperature of a composite surface can be calculated by the following equation (Energy 

2018): 

 
Ti = √

𝑄

𝜎𝜀𝑖

4
 + 𝑇0 (7) 

Where Q is the infrared radiant gain from zone (W/m2), σ is the Stefan-Boltzmann 

constant (5.67 x 10-8 W/m2/K4), and To is temperature of absolute zero (-273.15 °C). Q, 

infrared radiant gain, can be determined by following terms:  

 Qopaque = α × 𝐼𝑠𝑜𝑙𝑎𝑟 (8) 

 QTransparent = τ × 𝐼𝑠𝑜𝑙𝑎𝑟  (9) 

Where Isolar is solar radiation, α is absorptivity (i.e., fraction of energy hitting an 

object of opaque envelopes), τ is transmissivity (i.e., measure of radiation passing through 

an object of transparent envelopes). Overall, the indoor thermal discomfort times, FDC, 

counts all indoor operative temperatures exceeding the maximum and minimum limits, and 

the values of discomfort times should be minimized. 
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3) Environmental impacts (FEN): CO2 emissions 

Environment impacts, represented by CO2 emissions, consider CO2 emissions related 

to energy use (Hernandez and Kenny 2010). Lifecycle CO2 emissions include embodied 

CO2 and CO2 emissions during operations. Lifecycle CO2 emissions can be normalized 

using electrical generation units to compare different energy generation methods fairly 

(World Nuclear Association 2011). Varun et al. (2009) have studied and compared 

lifecycle CO2 emissions by energy sources including conventional fossil fuels and 

renewable sources (Varun et al. 2009a). The objective of environment impacts, FEN, is 

formulated by adding CO2 emissions from conventional systems required by the energy 

balance and CO2 emissions from renewable systems emitted by renewable energy 

generations. In addition, in the case of using biomass sources, the CO2 abatement of algae 

façades has been analyzed, and it absorbs about 67.4gCO2/m
2/day (Chang et al. 2017; The 

European Portal For Energy Efficiency In Buildings 2015). Living walls can also sequester 

CO2 about 0.14-0.98 kg CO2/m
2/year (one of [0.14, 0.32, 0.41, 0.86, 0.95, 0.98, 0.99] based 

on a type of vegetations), and green roofs can sequester CO2 about 0.375-30.12 kg 

CO2/m
2/year (Charoenkit and Yiemwattana 2016; Marchi et al. 2015) 

Table 2 – Lifecycle CO2 emissions by energy sources (Varun et al. 2009a; World 

Nuclear Association 2011) 

 Systems 

gCO2/kWh 

(Varun et al. 

2009a) 

gCO2/kWh (World Nuclear 

Association 2011) 

Mean Low High 

Conventional 

systems 

Coal 975.3 888 756 1,310 

Oil 742.1 733 547 935 

Gas 607.6 499 362 891 

Renewable 

systems 

Solar PV 53.4-250 85 13 731 

Biomass 35-178 45 10 101 

Solar thermal 13.6-202 - - - 
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4) Economic aspects (FEC): Payback period 

Payback period is an important indicator for evaluating economic viability, and is 

defined as the length of time in which an investment can be recovered while considering 

temporal values of money (Fan and Xia 2017). The cash inflow consists of installation and 

maintenance costs. The cash outflow is composed of electricity generation price and tax 

benefits. Out of building-integrated renewable technologies, solar PV has a tax benefit 

offering credits about 30% of installation cost (Burns and Kang 2012). Since the payback 

period (Tp) is the time when the cash paid is recovered, the payback timing can be 

determined when the net present value is equal to or greater than zero. In this respect, the 

payback period and net present value can be determined from the following equation: 

 
𝑇𝑝 =  𝑡, 𝑤ℎ𝑒𝑛 

𝑃𝑡

(1 + 𝑟)𝑡
×

𝐸𝑡

(1 + 𝑑)𝑡
− (𝐶𝑖 +

𝑀𝑖

(1 + 𝑟)𝑡
) × 𝐴𝑖 + 𝐵𝑖  =  0 (10) 

Where Tp is payback period, t is time (yearly), Et is the electricity production from 

envelope options at time t (kWh), Pt is the electricity price at time t ($/kWh), Ci is 

installation cost for the envelope options ($/m2), Mt is maintenance cost for the solar panel 

($/year), Ai is the area of each envelope option, Bi is tax benefits ($/kWh), d is degradation 

rate (%) of envelope systems, and r is discount rate (%). Economic effects, FEC, can be 

formed by minimizing cash inflows including installation and maintenance costs over cash 

outflows including electricity sales’ profits generated from the envelope options plus tax 

benefits. The FEC is formed to find the year achieving the minimized economic investments 

over returns for the duration of applying the optimization model.  
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4.1.3.2 Decision variables and constraints  

The multiple objective optimization aims to decide how much each of envelope 

option can be applicable within the scope of satisfying multi-criteria. The decision 

variables are a set of areas for envelope options. Assuming that n types of alternative 

envelope options are available, decision variables can be defined as the following: 

 Xenvelopes in south, north, east, west, roof = (X1, X2, … Xn)
5     

where n = number of envelope options                      

(11) 

The available area of applying envelopes should be limited to the existing envelope 

area of each orientation. The area of applying envelope options should be equal to or greater 

than zero (0), and the sum of envelope options solved cannot exceed the total area of the 

existing building envelope. Each envelope option can also possess different constraints. 

For example, NREL determined that the building integrated solar PV (BIPV) module (c-

Si PV system) area should be at least 0.58 m2 (James et al. 2011). Since solar cells can be 

installed about 72.5% of the designated area because of layered area (James et al. 2011), 

the  solar PV options should be equal to or greater than 0.80 m2 (i.e., 0.58 m2 of the least 

solar PV module size ÷ 0.725 the proportion of PV module over the entire panel = 0.8). 

Constraints for each option are also obtained based on literature review and technical 

reports.  

Table 3 shows envelope options for vertical façades and roofs for refurbishing 

existing buildings. As vertical façade options, 13 options, Exterior Mass wall (EnergyPlus 

options), External wood frame wall (EnergyPlus options), Exterior metal frame window 
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(EnergyPlus options), Trombe walls, AAC walls, Double skin façade, Green wall, Vacuum 

insulation panels, Solar PV (Semi-transparent), Low-e coated window, PCM integrated in 

wood-lightweight concrete, PCM, and Algae façade, are considered. As roof options, six 

options, Exterior IEAD roof (EnergyPlus options), Exterior metal roof (EnergyPlus 

options), Conventional roof, Green roof, Solar PV, and Cool coated roof are considered. 

Envelope parameters of U-factor (W/m2K), Absorptivity (Opaque), Transmissivity 

(Transparent), Emissivity, Installation cost, Maintenance cost, Degradation rate are 

obtained from literature review.
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Table 3 – Envelope options for vertical façades and roofs 

Options 
U-factor 

(W/m2K) 

Absorptivity 

(Opaque) 

Transmissivity 

(Transparent) 
Emissivity 

Installation 

cost 

Maintenance 

cost 

Degradation 

rate 
Source 

1 

Exterior Mass wall  
(Climate zone 4)  

[0.511, 0.553] W/m2K 0.9 - 0.92    

EnergyPlus 
simulation 

options 

External wood frame 

wall (Climate zone 
2-8) 

[0.505, 0.547] W/m2K 0.9 - 0.78    

Exterior metal frame 
window  

(Climate zone 4-6) 

3.127 W/m2K - 
0.888 (Chow et al. 

2010) 

(Clear glass) 

0.88 (Khoukhi 

and 

Maruyama 
2005) 

   

Trombe walls 
1.75 W/m2K (Jaber and 

Ajib 2011) 

0.9 (Jaber and 

Ajib 2011) 
- 

0.84 (Ma et al. 

2017) 

$75/m2 (Robbins 

and Spillman 
1980) 

15% of capital 

cost (Jaber and 
Ajib 2011) 

- 

Literature 

review 

AAC walls 
0.35 W/m2K (Lindberg et 

al. 2004) 
0.816 (Kočí et 

al. 2012) 
- 

0.9 (Ghazi 

Wakili et al. 

2015) 

$107/m2 

(Moussavi 
Nadoushani et 

al. 2017) 

$30/m2/10 years 

(Moussavi 
Nadoushani et al. 

2017) 

- 

Double skin façade 
5.33 W/m2K (Gratia and 

De Herde 2004) 
- 

[0.106, 0.244] (Chan 

et al. 2009) 

0.9 (Pérez-

Grande et al. 
2005)  

$218-321/m2 

(Chan et al. 
2009) 

- - 

Green wall 
0.144W/mK 

0.04m (Wong et al. 2009) 
0.05-0.3 (Perini 

et al. 2013) 
- 

0.94 

(Alexandri 
and Jones 

2008) 

$33-836/m2 

(Perini et al. 

2013) 

- - 

Vacuum insulation 

panels  

0.6 W/m2K (Liang et al. 

2017)  

0.3 (Johansson 

2011) 
- 

0.94 

(Johansson 
2011); 

0.8 (Kwon et 

al. 2009); 0.05 
(aluminum 

foil at 300 K) 

(Jang et al. 
2011) 

$89-102/m2 

(Alam et al. 
2011) 

- 

[1.14, 2.51, 7.76] 

%/year (Araki et 
al. 2009) 

Solar PV (Semi-

transparent) 
0.133 (Wong et al. 2008)  

- 
0.49 (Park et al. 

2010) 

0.9 (Wong et al. 

2008) 

0.84 (Wong et 

al. 2008) 

$5.02-5.71/W 

(Biyik et al. 

2017; James et 
al. 2011) 

5 - 6% of the 

installed system’s 

cost 
(U.S.DOE 2011) 

[0.87, 0.95, 0.4, 

0.3, 0.96, 0.02, 
0.36, 0.23, 0.64] 

%/year (Jordan 

and Kurtz 2013) 

Low-e coated 

window 

[1.3, 1.6, 1.8] W/m2K 

(Buratti et al. 2013; Gratia 

and De Herde 2004)  

- 
0.23 (Buratti et al. 

2013) 

[0.013, 0.037, 

0.16] (Jelle et 

al. 2015) 

$75.35/m2(Culp 

and Cort 2015) 
- - 

PCM integrated in 

wood-lightweight 
concrete 

[0.15, 0.75] W/mK 
(Pasupathy et al. 2008) 

[0.012, 0.030] m (Liu et al. 

2017) 

0.9 (Liu and Li 

2015) 

[0.29, 0.40, 0.49, 
0.67, 0.9]  

(Liu et al. 2017; Liu 

and Li 2015) 

0.88 (Liu et al. 

2017) 

$4.40-6.60/kg 

(Biswas and 
Abhari 2014) 

- - 
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PCM 

0.213 W/mK (Park et al. 
2019) 

[0.012, 0.030] m (Liu et al. 

2017) 

(13kg/m2 
(Koschenz and 

Lehmann 2004)) 

Algae façade 

[0.2236, 0.7636] W/m2K 

(Cervera Sardá and 
Vicente 2016) 

- 
0.718-0.914 (Mertin 

et al. 2014) 

0.04 (Chow et 

al. 2010) 
(Tinted Glass) 

$725-1116/m2 
(Cervera Sardá 

and Vicente 

2016) 

- - 

2 

Exterior IEAD roof  

(climate zone 2-8) 
[0.273, 0.283] W/m2K 0.9 - 0.7    

EnergyPlus 

simulation 

options Exterior metal roof [0.312, 0.326] W/m2K 0.9 - 0.6    

Conventional roof 
1.8 W/mK (Sun et al. 

2013) 

0.20 m  (Sun et al. 2013) 

0.9 (Sun et al. 

2013) 
- 

0.93 (Sun et 

al. 2013) 
    

Green roof 

[0.124, 0.062, 0.023, 

0.036, 0.026, 0.022, 0.014, 
0.018] W/m2K (Wong et 

al. 2003) 

0.6 

(Eumorfopoulou 
and Aravantinos 

1998) 

0.13(Eumorfopoulou 

and Aravantinos 

1998) 

0.95 (Sun et 
al. 2013) 

$112/m2 

(Ascione et al. 

2013) 

- - 

Literature 

review 
Solar PV Same as properties of solar PV on vertical envelopes 

Cool coated roof 
0.591 W/m2K 

(Mastrapostoli et al. 2014) 

[0.0025, 0.0005, 
0.01, 0.03] 

(Levinson et al. 

2010) 

- 

0.9 (Shi and 
Zhang 2011; 

Synnefa et al. 

2007) 

$22.3/m2 

(Ascione et al. 
2013) 

- - 

1: Vertical façade systems; 2: Roof systems; $ = United States Dollar 
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4.1.3.3 Objective functions 

An objective function was formulated based on multi-criteria of energy 

performance, environmental impacts, and economic aspects. Pareto optimality is presented 

for the MOO. Since the pareto front presents a set of solutions, the final decision will be 

made by a decision-maker (Fan and Xia 2017). In the MOO process, energy performance 

(FEP), indoor thermal discomfort (FDC), environmental impacts (FEN), and economic effect 

(FEC) are considered as a synthesized objective function (J) in the following equation: 

 J = Min {FEP + FDC + FEN + FEC} subject to x. (12) 

 
where FEP is the energy balance of the envelope, energy demands over 

energy generation;  

FDC is the predicted discomfort times; 
FEN is the environmental impacts of envelope 

represented by CO2 emissions during life 

cycle; and  
FEC is the economic aspects of the year 

minimizing investment costs over the 

payback prices for 50 years. 

 

4.2 Case Study of Retrofitting Building Envelopes for Residential Buildings in 

Kyojima, Japan 

This section tests the proposed methodology in four residential buildings: two 

apartments and two wooden houses in North Sumida, Tokyo, Japan. This application 

conducts four steps: 1) describing input parameters and variables within the study area, 2) 

identifying uncertainties with parametric modeling and Bayesian multilevel modeling, 3) 

applying the MOO model, and 4) analyzing the results and findings. 
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4.2.1 Input parameters and variables 

The study area is located in North Sumida, Tokyo, Japan (Figure 4.5). To consider 

the existing built form and context, 3D geometries of sample buildings and nearby 

buildings were extruded to represent their height by using a script built in Grasshopper 

plugged in Rhinoceros 3D. The buildings’ 2D polygons and height features were obtained 

from 2D Shapefile (.shp) and dBASE file (.dbf) to project a geographic information system 

(GIS) platform. Existing building conditions (e.g., structure, built year), were collected by 

surveying the households. Building locations and height data were bought from an 

integrated geospatial system of Zenrin Co. Ltd.(ZENRIN CO. 2018), and building heights 

were extracted from the digital surface model with 0.5-meter resolutions. Internet of Things 

(IoT) sensors collected electricity demands every minute for four buildings, and the data 

was averaged over hourly demands to compare with parametric modeling results. Table 4 

presents the overview of building information. 
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Figure 4.5 – Samples buildings and context in North Sumida, Tokyo, Japan 

Table 4 – Overview of Building Information for Sample Buildings 

 Apartment 1 Apartment 2 Wooden House 1 Wooden House 2 
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Age: March 1992 

Floor: 12 

Height: 34.17 

meters 

Building structure: 

steel rebar 

Gross Square Area 

(GSA): 

5,636.98m2 

Age: April 2004 

Floor: 4 

Height: 13.76 

meters 

Building structure: 

steel rebar 

GSA: 467.03m2 

Age: Unknown 

(prior to 2000) 

Floor: 2 

Height: 6.26 

meters 

Building structure: 

wood 

GSA: 64.01m2 

Age: Unknown  

(prior to 2000) 

Floor: 2 

Height: 6.02 

meters 

Building structure: 

wood 

GSA: 103.34m2 
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Collection 

Location: 6th Floor 

Collection 

Location: 4th Floor 

Collection 

Location: 2nd Floor 

Collection 

Location: 2nd Floor 

Electricity 

demands 

7/24 13:24PM ~ 

8/25 7:58AM 

Electricity 

demands 

8/6 18:06PM ~ 9/3 

16:26PM 

Electricity 

demands 

7/29 11:55AM ~ 

8/31 8:47AM 

Electricity 

demands 

7/29 10:48AM ~ 

8/31 9:17AM 

Building envelope options were applied to retrofit existing building envelopes, and 

current envelope conditions were used for the parametric modeling. Parameters for energy 

performance objectives, HDD and CDD, were extracted from April 1st, 2018 to April 1st, 

2019 when heating degrees of 21˚C and cooling degrees of 24˚C. Total degree days were 

2662.4 (HDD = 2309.9, CDD = 352.5) (BizEE Software 2019). HDD and CDD were 

detected at the closest weather station from the study area, which is located in 139.76E, 

35.69N. Regarding the economic aspects, for the price of electricity, TEPCO, Tokyo 

Electric Power Company Holdings, charges currently about $0.23/kWh (25.98 Japanese 

Yen) for electricity used in the 120 kWh -300kWh range (TEPCO (Tokyo Electric Power 

Company Holdings) 2016). According to the Bank of Japan (Bank of Japan 2019), the  

discount rate is 0.30%. Other parameters of economic objective function such as 

installation and maintenance costs were applied differently for individual options. The 

useful life of solar PV prolongs between 20 to 30 years, while solar thermal collectors have 

a lifetime of about 25 to 30 years (Varun et al. 2009b), and green walls mostly prolong 

more than 50 years (Perini et al. 2013). The optimization model is tested for T = 50 years.  

4.2.2 Uncertainty identification 

Based on the uncertainty identification framework presented in Figure 4.3, 

uncertain scenarios for solar irradiation are identified by using parametric modeling. The 
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outputs of energy predictions from parametric modeling are compared with IoT sensor data 

to determine uncertainties in building physical parameters and performance gaps in energy 

predictions. A statistical model using Bayesian multilevel modeling is used to identify 

uncertain impacts of physical parameters and uncertainties of energy predictions (Chang 

et al. 2019a; d). For this research, uncertainties in CO2 emissions are directly applied to the 

MOO model by choosing the lifecycle CO2 emissions from triangular distribution 

functions with lower and upper limits. The degradation rates for the envelope systems are 

randomly selected from the envelope datasets. The outdoor dry bulb temperatures used for 

calculating indoor thermal discomfort in equations 4 and 5 are randomly selected from the 

distributions of historical weather data. 

4.2.2.1 Uncertainties in design and scenario parameters using parametric modeling 

Parametric modeling simulates solar irradiation and building energy consumption 

by parameterizing building geometries and surrounding buildings to consider shading 

effects from other components of the buildings or surroundings. The annual average solar 

irradiation of each orientation is measured from the parametric modeling. The ranges and 

probability densities of the irradiation on each façade are projected to a triangular 

distribution and randomly chosen in the MOO model to apply uncertainties of scenarios 

placing the façade on a certain orientation.  

Electricity uses are predicted based on EnergyPlus simulation developed by the 

U.S. Department of Energy (DOE). Rhinoceros 3D and Grasshopper plugin are used as a 

platform to model 3D geometry and use a graphical algorithm. Honeybee plugin for the 

Grasshopper is used to parameterize the subjected buildings into parametric building 
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components containing physical properties and indicate surrounding buildings as shading 

objects. The Honeybee tool provides applications to run EnergyPlus simulation (Chang et 

al. 2019b; Johnson et al. 1984). The electricity uses predicted by EnergyPlus simulation 

are compared with IoT measured electricity uses, and the probability density of 

performance gaps, subtracting predicted electricity uses from IoT-measured hourly 

electricity data is considered. The performance gaps are caused by the errors of predicting 

electricity uses and uncertainties of physical building parameters. These uncertainties are 

identified by using Bayesian multilevel modeling. 

4.2.2.2 Bayesian multi-level modeling for uncertainty identification 

Building envelope parameters influencing the retrofit problem are identified 

envelope area (m2) and thermal transmittance (U factors: W/m2K). Thermal transmittance 

is set to follow a normal distribution. Thermophysical properties cannot be exactly 

measured, even in the detailed models due to persisting randomness (Heo et al. 2012; 

Macdonald 2002). The standard deviation of uncertainties in thermal transmittance is 

estimated as 5% (Heo et al. 2012). By using the prior distributions, a Bayesian multilevel 

additive regression modeling is conducted to consider the errors from performance 

predictions and uncertainties of physical parameters in building envelopes. The following 

equation is built to estimate uncertainties as coefficients (ꞵ) and prediction errors as 

intercepts (𝜀). 

 

𝑦𝑖𝑗 = ∑ 𝑥𝑖,𝑘𝛽𝑘

𝐾

𝑘=1

+ 𝜀𝑖𝑗 (13) 
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where 𝑖 denotes the index of the measurement interval; 𝑦𝑖𝑗 is the explained variable 

(i.e., electricity consumptions detected by IoT sensors); 𝑥𝑖𝑗,𝑘 are regressors from predicted 

electricity uses analyzed by parametric modeling (Edemands in Equation 1), u-value of the 

entire surfaces (Ueq in Equation 1), the total area of building envelopes (A in Equation 1), 

heating degree days (HDD in Equation 1), and cooling degree days (CDD in Equation 1) 

(𝐾=5); 𝛽𝑘 are the fixed regression coefficient including the fixed intercept; 𝜀𝑖 are the mean 

zero and unknown variance normally distributed disturbance. Table 5 summarizes the 

estimated coefficients and the intercept, and these are applied to the formula predicting 

thermal energy consumptions (Equation 1) as additional coefficients. 

Table 5 – Estimated effects on uncertainty estimating thermal energy consumption 

Effect Variable 
Estimated 𝛽 (Mean, CI 95%, 

Significance*) 

Intercept 𝜀𝑖 2.50 (2.39, 2.62) * 

Linear 

fixed 

effects 

Predicted electricity 

demands 
0.07(0.05, 0.08) * 

U-factors of entire 

envelopes 
-2.07(-2.19, -1.97) * 

Area of envelopes -0.000012(-0.000016, -0.000009) * 

Heating Degree Days 0.08(0.05, 0.12) * 

Cooling Degree Days 0.00380(0.00025, 0.00736) * 

CI: Confidence Interval 

4.2.3 Application of multi-objective optimization model  

Uncertainties are incorporated into the objective functions as additional coefficients 

or as an intercept. Decision variables are the area of envelope options for each face: south, 

north, west, east, and roof. 13 envelope options for the vertical façade and six options for 

the roof in Table 3 are tested. GA generates 401 sets of envelope options at the beginning, 

and tests 400 additional sets of population in every generation. GA selects parents 
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randomly and choose the best option to be a parent for the next generation. Tournament 

selection criteria is applied to choose the best option out of the set of all possible envelopes 

(Goldberg et al. 1989; Penna et al. 2015). GA then applies crossover and mutation into the 

selected parents to create the next generation. While crossover exchanges a part of genes 

of different chromosomes, mutation randomly alters genes within a chromosome 

(Goldberg et al. 1989; Penna et al. 2015). This research applies a fixed crossover rate of 

0.8 (Penna et al. 2015). Since the optimization problem has a constraint not to exceed the 

total area of existing envelopes, an “adapt feasible” mutation criteria is applied, and it 

generates mutation directions randomly considering the last successful or unsuccessful 

generation (Mosavi et al. 2011; Shahandeh et al. 2015). The multi-objective GA function 

gamultiobj is used, and it uses three criteria to stop the solver. The solver stops if the 

maximum number of generations reaches 200*number of variables (i.e., the number of 

variables is the number of envelope options), if the average changes in the spread of the 

Pareto front over 100 is less than the function tolerance, or if the running time is limited. 

In other words, the algorithm halts: 1) when the solver tests enough populations, 2) when 

it can converge objectives or cannot obtain more diversity of population across iterative 

optimization solutions, or 3) when a designated time is spent. The time to run the solver is 

not limited in this research.  

4.2.4 Case study results and findings 

The MOO model calculates four objective functions by adjusting the application 

area of building envelope options given the constraints of the entire envelop area and the 

conditions of solar irradiation of each orientation. This model finds Pareto optimal sets of 

envelope options optimizing four objectives. The total number of pareto optimal sets are 
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detected as 70, 70, 91, 98 for north, west, east, and south oriented envelopes respectively 

in Apartment 1. In Apartment 2, 61, 64, 96, 67 numbers of solution sets are detected for 

north, west, east, and south oriented envelopes respectively. In Wooden House 1, 78, 64, 

80, 103 solutions are found for north, west, east, and south oriented envelopes respectively. 

In Wooden House 2, 72, 67, 83, 59 solutions for are identified for north, west, east, and 

south oriented envelopes respectively. For the roof, 100, 81, 67, 76 solutions are found in 

Apartment 1, Apartment2, Wooden House 1, and Wooden House 2 respectively. One set 

of solutions, showing a maximum retrofit area, for the east orientation is presented in 

Figure 4.6~4.7. One set of envelope options on the other orientations and roof is shown in 

Appendix A. The optimization results and objectives and one example of solution sets 

when deciding to retrofit the maximum area of envelopes out of sets of solutions.  

 

Figure 4.6 – One set of solutions for the east orientation in the apartment 1 (left) and 

the apartment 2 (right) 
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Figure 4.7 – One set of solutions for the east orientation in the wooden house 1 (left) 

and the wooden house 2 (right) 

In Apartment 1, the maximum retrofit areas were 255.11m2, 428.64m2, 539.19m2, 

and 269.33m2 out of 578.97m2, 1,303.43m2, 1,293.12m2, and 575.25m2 in north, west, east, 

and south oriented façades. The roof area can be retrofitted about 367.65m2 out of 

501.70m2 with six options. In Apartment 2, 66.43m2 out of 123.05m2 on the north façade, 

67.90m2 out of 151.96m2 on the west façade, 70.77m2 out of 131.17m2 on the east façade, 

72.86m2 out of 189.37m2 on the south façade can be retrofitted at maximum to optimize 

four objectives of energy, environment, indoor thermal comfort, and payback period. The 

roof area can be retrofitted 102.90m2 out of 116.76m2 at maximum. In Wooden House 1, 

20.30m2 out of 33.09m2 on the north façade, 24.33m2 out of 34.82m2 on the west façade, 

26.02m2 out of 34.82m2 on the east façade, 19.05m2 out of 33.09m2 on the south façade 

can be retrofitted at maximum. The roof can be retrofitted about 31.73m2 out of 32.00m2 

at maximum. In Wooden House 2, 25.62m2 out of 39.63m2 on the north façade, 33.64m2 
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out of 46.19m2 on the west façade, 31.69m2 out of 47.42m2 on the east façade, 29.20m2 out 

of 39.95m2 on the south façade can be retrofitted at maximum. The roof area can be 

retrofitted 51.51m2 out of 51.67m2 at maximum. 

All solutions can achieve an energy balance of less than 1.0, which means that the 

energy required from thermal exchange via building envelopes can be satisfied by the 

energy generated from the envelope-integrated renewable technology systems. Case study 

can achieve at least 0.35 energy balance after retrofitting building envelopes. Pareto-front 

solutions can achieve less CO2 emissions than all sets of envelope options. After retrofitting 

building envelopes with pareto-front solutions, CO2 emissions of building envelopes are 

less than 300 ton per year and 60 ton per year for Apartment 1 and Apartment 2 

respectively. For two Wooden Houses, after retrofitting building envelopes with pareto-

front solutions, CO2 emissions can be maintained as less than 30 ton a year. Across the 

solutions, the retrofitting applications into the south façade had the least impacts of CO2 

emissions. 

In the north façade, green walls occupied the widest application out of 13 envelope 

options for Apartment 1 and Wooden House 2. The north façade in Apartment 2 can be 

retrofitted by solar PV at the most. In the north façade in Wooden House 1, all envelope 

options can be applied relatively evenly. In the west façade of Apartment 1, the exterior 

metal frame window can use up to 83.80m2 of traditional materials as defined in ASHRAE 

90.1-2010, but the disruptive technology of PCM is followed as the second option, 

occupying about 81.96 m2. Vacuum insulation panels, double skin façade, and PCM 

integrated in wood-lightweight concrete were the most feasible applications in the west 

façade for Apartment 2, Wooden House 1, and Wooden House 2 respectively. In the east 
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façade of both apartments and Wooden House 2, the solutions depended on traditional 

materials such as exterior mass walls for Apartment 1, exterior metal frame windows for 

Apartment 2, and exterior mass wall and exterior metal frame windows for the Wooden 

House 2 as defined in ASHRAE 90.1-2010. On the other hand, in the east façade of 

Wooden House 1, the retrofitting area is mostly occupied by technical envelope materials 

or systems including PCM, solar PV, and algae façade. For retrofitting the south façade, 

AAC walls, low-e coated windows, double skin façade, and PCM integrated in wood-

lightweight concrete can be applied at most areas for Apartment 1, Apartment 2, Wooden 

House 1, and Wooden House 2 respectively. For both apartments, the solution of 

retrofitting the roof determined that a cool-coated roof can be applied most broadly to 

minimize energy balance and CO2 emission with zero discomfort time for 50 years. While 

the solution for Apartment 1 yielded that a green roof can be applied as the second area, 

solar PV roof can occupy the second area in the Apartment 2. For both wooden houses, the 

solution of retrofitting the roofs showed that each roof option can be applied evenly for 

about 16~17% of the roof area.  

4.3 Chapter Conclusions 

An optimization study for retrofitting building envelopes was conducted to determine 

the optimal sets of building envelope options. Functions of energy performance, indoor 

thermal discomfort, environmental impacts, and economic aspects were formulated using 

GA to obtain solutions minimizing four objectives. The GA model was tested in four 

residential buildings in Tokyo and solutions of retrofitting building envelopes were 

presented for each orientation. The results showed sets of building envelope options, and 

selected pareto-front solutions with maximum envelope retrofit areas. According to the 
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case study, at least 33% of vertical envelopes can be retrofitted for better performance 

(Figure 4.8). In addition, at least 73% of current rooftops can be retrofitted to achieve better 

performance of energy, environment, and comfort. The solutions vary by individual 

buildings and envelope orientations. However, the results can only be useful to renovate 

envelopes for the four buildings considered because the multi-objectives are highly 

influenced by weather conditions and the surrounding context (e.g., shading effects). For 

example, Salehi et al. (2019) have shown that comfort times during a year can vary based 

upon different climate regions (Salehi et al. 2019). Moreover, since the renovations are not 

actually realized, the results cannot be validated yet without actual renovation data. 

 

Figure 4.8 – Histogram of retrofitting ratio 

Although the results should be further validated with practitioners’ perspectives, the 

modeling process can be partially validated in that the energy predictions were compared 

with actual data collected through IoT. The approach expanded the utilization of IoT sensor 

data and provided an uncertainty consideration without burdening energy demand 

prediction in EnergyPlus simulation. Still, the GA model cannot be fully validated because 

it is heuristic estimation and the model did not have initial population. Whenever we run 

the model, the model will show slightly different solutions, and experts need to select the 
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final option to retrofit. The proposed methodology can become robust by obtaining reliable 

and practical data of envelope options. Any newly developed envelope materials or systems 

can be incorporated in the decision-making process as their parameters are provided. A 

spreadsheet containing envelope options was imported in the optimization model in 

MATLAB, and the initial options can be modified by a database of envelopes provided by 

decision-makers. For example, when decision makers intend to determine a window-wall 

ratio, they can incorporate two options of windows and walls as the envelope options. 

When they develop or envision an ideal disruptive envelope system, it can be easily written 

in the spreadsheet and tested in the optimization model. This can support adaptable 

decision-making in the construction industry by enabling building managers to re-assess 

the performance of envelope options whenever technology is developed.  

After running the MOO model, sets of envelope options were solved to support the 

decisions for retrofitting building envelopes. However, since the data related to costs has 

not been fully studied to determine installation cost, maintenance cost and tax benefits, the 

results show that the payback period cannot be achieved until 50 years of investment for 

the envelope retrofit solutions. This research has a limitation that there are missing data 

among envelope parameters. To improve the economic feasibility of envelope retrofit 

options, research in this field should continue to define and reduce the investment cost of 

each envelope option. Also, since the envelope retrofitting algorithm was not specified to 

determine the relative location on each surface, the angle factors determining the mean 

radiant temperature could not be detailed. Although the solar thermal collector was 

incorporated in the objective functions, the thermal and solar parameters of this technology 

could not be found as envelope options. The solutions extracted from the GA model also 
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presented several sets of envelope options, and the sets should be re-evaluated by decision-

makers through subjective judgement. However, the optimization model can consider the 

decision-makers’ interest if they can provide a comparable and quantitative weights across 

the objectives. 

The proposed system can change the paradigm of designing building envelopes, 

engineering new envelope materials and systems, and innovating re-construction process 

by evaluating envelope options synthetically. This research envisions that building 

envelopes can be dynamically transformed along with the development of materials and 

manufacturing systems in the future. However, the decision-support model should be 

further reviewed by users and tested with actual renovation projects for validation. 

Assumptions of envelope option parameters, cost data, and uncertainty considerations can 

be specified with industry participation. Tests of different regional condition can be also 

required to generalize the usefulness of the optimization model and the validity of applying 

diverse envelope options. To promote the paradigm change, design tools and objects should 

support designers when considering various envelope options synthetically. Also, 

constructability of retrofitting buildings with various envelopes should be further 

discussed. 
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CHAPTER 5. REORGANIZING BUILDING TOPOLOGICAL 

AND TYPOLOGICAL PARAMETERS ON A BLOCK 

This chapter studies block-level building transformation strategies for improving 

energy efficiency, thermal comfort and visibility performance using bayesian multilevel 

additive modeling (Chang et al. 2019e, 2020c). Urban form can represent a physical shape 

of a city, a set of adapted spaces, a system of accessing and transacting, a changing system 

over time, or a pattern of spatial clustering (Blau et al. 1983). The attributes in urban form: 

size, density, urban grain, and shape (Lynch 1995), vary by city. Urban form contains a 

number of components related to the energy performance (Quan et al. 2016). Based on the 

components and the way people design the pattern of components, a physical density that 

influences energy consumption can also be measured differently by diverse methods such 

as population density, floor area ratio (FAR), dwelling unit density, and coverage (Chen et 

al. 2017; MIT 2011; Quan et al. 2014). The physical densities formed by building 

typologies can represent geometries of urban form and influence energy performance 

(Quan et al. 2016). In this respect, buildings are a key determinant of energy dynamics. 

Building energy consumption is influenced by building density, shape, and typology of the 

urban context (Quan et al. 2014). Beyond energy consumption, urban block form 

influences multiple performance indicators of each block including solar access, 

ventilation, etc. (Sanaieian et al. 2014). For example, layouts of buildings in a block have 

been studied to understand impacts on multiple performance indicators such as cooling 

loads and ventilation effects  (Javanroodi et al. 2018) or  energy balance and sky exposure 

(Chang et al. 2019c).  
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Since urban block forms formulated by buildings are interrelated with multiple 

performance indicators, this chapter addresses a question: How buildings in urban blocks 

can be changed in order to achieve multiple performance of energy demand, potential PV 

supply, thermal comfort, and sky view factor? This chapter aims to investigate the 

relationships among building topological and typological parameters in blocks and 

multiple block performance to support decisions about reorganizing urban buildings in a 

block (Chang et al. 2019e). Possible combinations of buildings in a block for energy 

security and efficiency, thermal comfort, and sky exposure are explored. To achieve the 

objective, four research tasks are devised: 1) establishing a research methodology, 2) 

identifying multiple performance indicators in a block, 3) applying the research framework 

to a case study providing existing building topological and typological parameters, and 4) 

identifying buildings transformation strategies in a block.  

5.1 Approach for Supporting Decisions about Building Typology Transformation  

Figure 5.1 shows the research methodology for integrating parametric modeling 

and statistical modeling. Parametric modeling evaluates three urban building performance 

indicators: energy demand, thermal comfort, and solar harvesting potential. Based on 

current topological building parameters, a statistical approach is used to identify 

relationships between the urban building typology and the respective performance. 

Considering the solar irradiation of a building with surrounding buildings in the same 

block, this research identified complex overshadow effects on the site. Bayesian multilevel 

additive modeling identifies significant variables and detects their impacts on the urban 

performance indicators. Bayesian multilevel additive modeling has been conducted to 

compute population effects and group effects of the influential parameters, as well as to 
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determine non-linearity of them in a certain confidential range (Bürkner 2017). Hence, 

population effects mean usual regression coefficients. Group effects mean category-wise 

random constant coefficients to consider different intercept of categories such as building 

structures and land uses. The Bayesian multilevel additive modeling enables us to validate 

the posterior deviations of parameters (Nagel and Sudret 2016). This statistical modeling 

has been conducted through “brms” package in R programming language (Chang et al. 

2019d). The results of statistical approaches are used to observe trade-offs among the 

performance indicators. By recognizing performance variations along with changes in 

urban buildings typologies, this research established strategies to reorganize the building 

typology or the combinations of topological parameters in a block.  

 

Figure 5.1 – Research methodology for building typology transformation in blocks 

Parametric modeling using Rhinoceros 3D and Grasshopper plugin is implemented 

(Chang et al. 2019b; c). Ladybug plugin for Grasshopper is used to run solar irradiation 

analysis considering building envelopes of roof and vertical walls with shading effects 

from nearby buildings. Honeybee plugin for Grasshopper simulates EnergyPlus for 
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analyzing hourly building energy demands. A method for measuring thermal comfort was 

developed as Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) 

levels in the 1970s (Fanger 1970). Predicted Mean Vote (PMV) represents a thermal 

comfort of a large population (Magnier and Haghighat 2010). PMV index has been adopted 

dominantly to measure thermal comfort as an ISO standard by seven scales ranging from -

3 (cold) to +3 (hot); cold (-3 PMV), cool (-2), slightly cool (-1), neutral (0), slightly warm 

(+1), warm (+2), and hot (+3). PMV is a function of air temperature, mean radiant 

temperature, relative air velocity, air humidity, activity level, and the clothing insulation 

(Fanger 1970; Yang et al. 2014a). While buildings expected to have high levels of comfort 

should feature PMV values close to 0 or within ±0.2  (Frohner and Bánhidi 2007; Hwang 

and Shu 2011), ±0.5 PMV values are likely for both new buildings and renovations 

expected to have a normal level of comfort (European Committee for Standardization 

(CEN) 2007; Matsui 2018; De Oliveira et al. 2011). PPD and thermally comfortable hours 

are determined by calculating the PMV index [85], and the indoor environment can achieve 

about 10% thermal discomfort within ±0.5 PMV (Wei et al. 2010; Yang et al. 2014a). By 

estimating the indoor built environment using EnergyPlus engine, a PMV (Predicted Mean 

Vote) calculator in Ladybug plugin was used to determine the percentages of thermal 

comfort hours annually. In this research, three measures are evaluated as urban building 

performance indicators: building energy demand, percentage of indoor thermal comfort, 

and solar irradiation of building envelopes. 

Bayesian multilevel additive modeling is used to consider population effects of 

building typology parameters as well as group effects of them (Bürkner 2017). Building 

topological and typological parameters are used to estimate the impacts of multiple 
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performance. Topological parameters indicate properties of building geometry, and 

typological parameters can be classifiers of building types as categorical variables. The 

Bayesian approach can consider uncertainties by providing confidential intervals of 

regression coefficients and estimating the posterior distributions of parameters (Chang et 

al. 2019d). 

5.2 Case Study of Transforming Building Typology: Kyojima, Tokyo, Japan 

5.2.1 Study Area 

A superblock in Kyojima 1-chome, Sumida-ward, Tokyo, Japan is composed of 46 

blocks and 870 buildings. As presented in Figure 5.2, blocks vary by existing pedestrian 

street paths and how buildings are organized. 

 

Figure 5.2 – Diversity of building topological and typological parameters in blocks  

 

 



 70 

5.2.2 Parametric Modelling Results 

Parametric modeling inputs consist of building topology (i.e., building space 

consisting of topological parameters such as floor area, height, etc.), building structure 

(e.g., wood, concrete, steel), and building land use (e.g., residential, office, commercial, 

mixed, special). All window-wall ratios in buildings are assumed to be fixed values of 40% 

facing north, 25% facing east, and 20% facing south and west. This enables us to compare 

energy demands of building typologies under controlling building parameters rather than 

typology alone. Predicted annual building energy demands are presented in Figure 5.3. 

Based on the energy required to set certain indoor environments (the setpoint of cooling is 

23.9℃ and the setpoint of heating is 21.1℃), the thermal comfort is calculated using PMV 

metrics. The percentage of comfort time is indicated in Figure 5.4. As the solar irradiation 

is influenced by the surrounding context, the solar irradiations on block façades (see Figure 

5.5. left) is averaged and projected in Figure 5.5 (right). Sky exposure is analyzed using 

Ladybug plugin as influencing thermal environment as well as constraining visibility 

(Figure 5.6). 
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Figure 5.3 – Predicted annual average energy demands using EnergyPlus (kWh/m2) 

 

Figure 5.4 – Predicted percentage of comfort hours per year (%) 
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Figure 5.5 – Average solar radiation potential on building façades (kWh/m2): 

individual buildings (Left) and average on blocks (Right) 

 

Figure 5.6 – Sky exposure on blocks 

5.2.3 Relationships between typology and performance 

This research considered height, floor area ratio, and building coverage ratio as 

building topology parameters. Land use, structure, rise type, and use (i.e., single or mixed) 

are considered as typology parameters. Also, the combined effects of percentages of 

household, office, vacancies, and others are also used as typology parameters. Performance 
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indicators of energy use intensity, solar irradiation potential, thermal comfort, and sky 

exposure are considered. After the generalized collinearity test, the dimensions are 

reduced. The relationships between urban building parameters and performance indicators 

are then described by implementing a Bayesian multilevel additive modeling. 

Rise type is categorized based on the building height. Building height is measured 

from the ground level, with each story measuring 4 meters. Six rise types are identified: 

Single tory (1 story), low rise (2 to 7), mid rise (8 to 20), high rise (21 to 130), super high 

rise (130 to 200), and mega high rise (200 or more). Land use variables are simplified into 

five types: office, residential, commercial, retail, and mixed. This variable classification 

takes in into account whether buildings are single or mixed use. 

5.2.3.1 Generalized collinearity diagnostics 

To recognize the impacts on reliable estimation, the collinearity of coefficients of 

variables was measured by generalizing the concept of variance inflation (Fox and Monette 

1992). An unweighted linear model was formed using regressors and responses. By 

identifying generalized collinearity, the variables linearly related to each other are 

eliminated to form a Bayesian multilevel additive modeling. The package “car” in R 

programming language is used to calculate generalized variance-inflation factors (GVIF) 

that represent collinearity among regressors (Fox and Monette 1992). DF is the number of 

coefficients   As rule of thumb, the cut-off values of VIF are five or ten to assess the 

collinearity as strong (Craney and Surles 2007; O’Brien 2007). This research assumed ten 

as the cut-off value, and the cut-off values for GVIF are calculated by collecting ten with 
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the number of degrees of freedom (df). Parameters presenting GVIF that exceed the cut-

off values are removed from the Bayesian multilevel additive model.  

According to generalized collinearity tests, variables in use for block-level 

performance evaluation have been diagnosed to not include redundant parameters. Height, 

floor area ratio, and coverage ratio are considered as building topological parameters in a 

block. Land use, rise type, structure, and use are considered as typology parameters. 
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Table 6 – Generalized collinearity diagnostics 

Responses 

 

Predictors 

VIF DF 
GVIF 

(VIF(1/(2*DF))) 

Cut-off value 

for GVIF 

(10(1/(2*DF))) 

Removed? 

Height 1.377303 1 1.173586 3.162278  

Floor Area Ratio 6.696539 1 2.587767 3.162278  

Coverage Ratio 3.683716 1 1.919301 3.162278  

Land Use 2.536916 4 1.12341 1.333521  

Rise Type 1.628583 3 1.08468 1.467799  

Structure 1.707341 2 1.143089 1.778279  

Use 2.127839 1 1.458711 3.162278  

Percentages of households (HH) 28.72606 1 5.359669 3.162278 X 

Percentages of office (OF) 36.52032 1 6.043204 3.162278 X 

Percentages of vacancies (VA) 649.2415 1 25.48022 3.162278 X 

Percentages of others (OT) 343.377 1 18.53043 3.162278 X 

HH*OF 13.42696 1 3.664281 3.162278 X 

HH*VA 475.2843 1 21.80102 3.162278 X 

OF*VA 432.1607 1 20.78848 3.162278 X 

HH*OT 433.245 1 20.81454 3.162278 X 

OF*OT 891.5852 1 29.85942 3.162278 X 

VA*OT 2001.008 1 44.73263 3.162278 X 

HH*OF*VA 108.57 1 10.41969 3.162278 X 

HH*OF*OT 724.7518 1 26.92121 3.162278 X 

HH*VA*OT 1928.125 1 43.91043 3.162278 X 

OF*VA*OT 1816.509 1 42.62053 3.162278 X 

HH*OF*VA*OT 1373.43 1 37.05981 3.162278 X 
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5.2.3.2 Bayesian multilevel additive modeling 

Package ‘brms’ is used in R programming language to conduct Bayesian multilevel 

modeling using stan. Subsets of performance indicators are treated by each block to analyze 

block-level performance. Four models estimating energy demands, solar potential, thermal 

comfort, and sky exposure were estimated via the Markov-chain-Monte-Carlo method 

using the No-U-Turn Sampler (NUTS) implemented in Stan and R brms package (Bürkner 

2017). The NUTS method allows setting parameters automatically thus eliminating the 

need for any hand-tuning (Hoffman and Gelman 2014). To decrease divergent transitions 

that can cause biases of posterior samples, the adapt delta, a tuning parameter of the NUTS 

sampler, was increased to 0.99. Also, the maximum tree depth that is evaluated at each 

iteration is increased to 15.  

The statistical inferences of the parameters in the model are based on four chains, 

each with 2000 iterations, of which the first 1000 are warm-up to calibrate the sampler as 

the burn-in period. Total post-warmup samples are 4000. The convergence of the all 

coefficients in the Bayesian model was checked by identifying R hat values that are 1 or 

less than 1.05 (Gelman and Rubin 1992). 

In the Bayesian model, this research assumed non-linear population effects for 

continuous variables (e.g., height, floor area ratio, coverage ratio), and linear group effects 

for categorical variables (e.g., structure, rise type, land use, use). As an assumed example 

on non-linearity, the influence of floor area ratio on energy demands may be different 

between wooden and concrete structures. 
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𝑦𝑖𝑗 = ∑ 𝛼𝑗 +

𝐽

𝑗=1

∑ 𝑓𝑞

𝑄

𝑞=1

(𝑧𝑖𝑗,𝑞) + 𝜀𝑖𝑗  (14) 

where 𝑖 denotes the index of the measurement interval; 𝑗 denotes number of group 

effects of the measurement (𝐽=4); 𝑦𝑖𝑗 is the explained variable; 𝛼𝑗 is the random intercept 

for group effects of structure, land use, rise type, or use (single or mixed), and is assumed 

to come from a normally distribution with mean zero and unknown variance; 𝑧𝑖,𝑞 are the 

regressors from height, floor area ratio, and coverage ratio (𝑄=3) whose impact on 𝑦𝑖 are 

possibly non-linear; 𝑓𝑞(⋅) are the smoothing spline function as which we used the bivariate 

tensor spline function recently developed by Wood et al. (2013) for modeling the non-

linear impact (Wood et al. 2013), 𝜀𝑖𝑗 are the mean zero and unknown variance normally 

distributed disturbance. 

Table 7 shows the estimated mean of posterior distributions for population-level 

parameters and the estimated standard deviation of posterior distributions for group-level 

parameters.  Also, confidence intervals of standard deviations of estimated coefficients for 

coverage ratio, floor area ratio, and height are used to form the smoothing splines for non-

linear effects (Bürkner 2018). For population-level parameters, the significance of effects 

is evaluated as to whether the lower and upper 95 percentile confidence intervals do not 

include zero.  According to the results, non-linear populations effects of coverage ratio and 

floor area ratio significantly influence all performance indicators in blocks. To evaluate the 

significance of group effects, coefficients of group effects are visualized and evaluated as 

to whether the coefficients are not zero with 95% percentile confidence. Land use is 
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significantly influencing energy demand, thermal comfort, and sky exposure. Rise type 

significantly influences thermal comfort.  

While the coverage ratio influences positively energy demands and sky exposure 

statistically, it has negative impacts on solar potential and thermal comfort. On the other 

hand, floor area ratio will impact positively the solar potential and thermal comfort, but 

energy demand and sky exposure will be negatively influenced by the floor area ratio. In 

addition, group-level effects influence the deviation of multiple performance. 

Table 7 – Relationships between urban building performance indicators and 

building topological and typology parameters 

Responses 
Energy 

 demands 
Solar potential Thermal comfort Sky exposure 

Effects Predictors Estimates (95% CI) 

Non-

linear 

populatio

n effect 

Coverage 

ratio 

[S.d.] 

35875.01(1831.39, 

82904.40)* 

[8950.01(3776.00, 
17838.24)] 

-7322.24 

(-11477.48, -3294.62)* 
[2771.01 

(1746.91,4515.71)] 

-221.13 

(-297.01, -144.54)* 
[51.21 (29.34,87.42)] 

21.47 

(16.28, 26.66)* 
[4.42 (2.58,7.75)] 

Floor area 

ratio 

[S.d.] 

-183223.47(-350716.84, 

-56007.29)* 

[98712.78(56959.11, 

166229.76] 

19074.31 

(3594.72, 36047.23)* 
[7048.89 

(3743.59,12632.76)] 

944.59 

(597.84, 1276.75)* 
[243.34 

(139.77,396.29)] 

-80.57 

(-103.09, -58.65)* 
[24.23 

(15.30,38.04)] 

Height 

[S.d.] 

-8437.07(-32037.11, 

7421.12) 

[4541.37(594.08, 
11724.59)] 

-8.96(-550.67,418.88) 
[68.94 (2.17,225.16)] 

-2.13(-18.74,8.44) 
[2.48 (0.07,9.00)] 

-0.04(-1.15,1.45) 
[0.27 (0.01,1.04)] 

Linear 

Group 

effect 

Land Use 
642.87(158.19,1742.

35)* 
15.10(0.54,55.39) 1.23(0.47,3.10)* 0.04(0.00,0.12)* 

Rise Type 
583.32(20.47,2402.9

9) 
36.68(1.23,122.92) 3.82(0.77,11.03)* 0.63(0.16,2.30) 

Structure 
367.86(8.38,1980.01

) 
19.21(0.38,87.36) 0.70(0.01,4.16) 0.21(0.02,1.24) 

Use 
1116.64(29.28,4698.

76) 
33.97(0.56,151.08) 4.51(0.57,17.03) 1.60(0.00,11.12) 

*: Significance; S.d: Standard deviation 

According to the results of Bayesian multilevel additive modeling for each 

performance indicator and building topological and typological parameters in Table 7, 
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plots for significant non-linear population effects are presented in Figure 5.7 ~ 5.8. The 

non-linearity is detected from the results. Any increase in the building coverage ratio in 

blocks, energy demand and sky exposure are predicted to be reduced. On the other hand, 

the solar potential and thermal comfort tend to decrease. Interestingly, the non-linear 

influence of coverage ratio on sky exposure and thermal comfort are saturated around 0.3% 

and 0.2%, respectively. The height of buildings is not statistically significant to the 

performance, and its effects are presented in Appendix C. Although it is not significant, 

the tendency of changing performance can still be observed. When floor area ratio (FAR) 

increases, predicted energy demands decrease. This finding is also aligned with the finding 

from previous research conducted by Rodriguez-Alvarez (Rodríguez-Álvarez 2016). By 

increasing FAR, sky exposure tends to decrease while the solar potential and thermal 

comfort tend to increase. And also, the non-linear influence of floor area ratio on the three 

indicators are saturated around 50%. 
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Figure 5.7 – Non-linear population effects of coverage ratio (y coordinates: average 

energy unit intensity (top-left), solar potential (top-right), average percentages of 

comfort time (bottom-left), and sky exposure (bottom-right)) 
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Figure 5.8 – Non-linear population effects of floor area ratio (y coordinates: average 

energy unit intensity (top-left), solar potential (top-right), average percentages of 

comfort time (bottom-left), and sky exposure (bottom-right)) 
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According to group-level effects in Table 7, effects of land use on energy demand, 

thermal comfort, and sky exposure are presented in Figure 5.9 ~ 5.11. Significant impacts 

of rise type on thermal comfort are presented in Figure 5.12.  

 

 

Figure 5.9 – Density estimations of impacts on intercept of energy demands by land 

use 

 

Figure 5.10 – Density estimations of impacts on intercept of thermal comfort by land 

use 
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Figure 5.11 – Density estimations of impacts on intercept of sky exposure by land 

use 

 

Figure 5.12 – Density estimations of impacts on intercept of thermal comfort by rise 

type 
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5.3 Performance Predictions of Building Typologies 

Based on the effects of the building parameters, this section reconsiders the 

potential combinations of building typology in a block to increase solar potential, thermal 

comfort, and sky exposure while reducing energy demands.  

By reducing building coverage ratio, energy performance (i.e., energy demand / 

supply) can be improved in a block. However, it will correspond to reduce thermal comfort 

as well as sky exposure. Increasing FAR will provide better energy performance and 

thermal comfort while losing visibility in a block. Similar impacts of FAR on energy 

consumption can be observed in previous research (Quan et al. 2014). While the coverage 

ratio has been discovered as negatively influencing energy performance (Quan et al. 2014), 

the results in this chapter provides more complex relationships by assuming non-linearity. 

Coverage ratio around 0.3 and FAR around 0.5 were observed as inflection points where 

directions of parameters’ influences are changed, and trade-offs among performance 

indicators are changed. Group effects of structure are difficult to be observed because their 

standard deviations are relatively small. Special land use in blocks tend to provide better 

energy performance and thermal comfort. Special, residential, and commercial land use in 

blocks are better to harvest solar power. Office and mixed land use in blocks are better for 

increasing visibility. High-rise buildings in a block are better for reducing average annual 

energy demand and improving thermal comfort and sky exposure. Mid-rise buildings in a 

block harvest solar power better than other rise types. Mixed use buildings provide better 

thermal comfort environment with less energy demand. The deviations of solar potential 

and sky exposure are difficult to be observed at a different use category.  
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Overall, multiple performance in a block level cannot be synthetically achieved 

given building topological and typological parameters. Based on needs of a certain 

performance while undermining several other performances indicators, four transformation 

strategies can be extrapolated.  

1) Energy performance and comfort improvement while undermining visibility:  

Increasing FAR with high-rise buildings of mixed-use purpose on special land use 

zone. 

2) Maximization of harvesting solar power while undermining thermal comfort: 

Increasing coverage ratio with mid-rise buildings in special, residential, 

commercial zones. 

3) Improvement of visibility: reducing coverage ratio and FAR and placing high-rise 

buildings in office or mix land use zones. 

4) Improvement of thermal comfort: reducing coverage ratio and increasing FAR by 

placing high-rise buildings in special and commercial land use zones. 

5.4 Chapter Conclusions 

This chapter conducted a research to discern impacts of changing building 

topological parameters on block-level performance including energy performance, thermal 

comfort, and visibility. The results can contribute to recognizing changes in block 

performance along with changes in urban building parameters. The better understandings 

of transformations can support decisions of reorganizing building typologies to improve 

the performance in a block. By applying a Bayesian multilevel additive modeling, both 

population-level and group-level effects can be considered as well as linearity and non-
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linearity can be considered. Also, since the influences of parameters are estimated in a 

certain confidential range, tendencies of parameters can be observed even if they are not 

significant. The impacts of transforming urban building parameters can provide building 

designers, owners, and managers to establish appropriate retrofit strategies to contribute to 

block-level performance. In addition, this will provide city planners or city government 

with potential impacts of retrofitting or redeveloping urban buildings. Then, this 

information can guide to establishing new category of urban buildings to manage 

performance-based planning of blocks. However, in that different climate zones may 

contain different properties, generalizability should be further explored by sufficiently 

testing the methodology in different communities.   



 87 

CHAPTER 6. BLOCK BOUNDARIES FOR SHARING 

ELECTRICITY AMONG BUILDINGS ON A COMMUNITY 

The concept of sharing energy within a community was studied to address dynamic 

energy distribution in urban areas considering buildings and future energy demands of 

electric vehicles (Chang et al. 2020b; Murakami and Yamagata 2017). This dissertation 

research focuses on dynamic energy demands and supply of buildings on a community. To 

alleviate the high-energy demands in urban areas, city-integrated renewable energy 

including solar, geothermal, wind, and biomass energy has been promoted to substitute 

current energy generation sources (Kammen and Sunter 2016). Applications of solar 

photovoltaic (PV) integrated in buildings have been presented one of promising solutions 

reducing CO2 emission while producing energy required for building operations (Quan et 

al. 2015b). Integration of solar PV in buildings decentralize sources of electricity into 

existing building stocks. Multiple sources and demands have developed the concept of 

multi-microgrids to integrate them within an existing distribution network (Nunna and 

Srinivasan 2017). Multi-microgrids can be applied within the same energy network to 

reduce electricity losses and environmental emissions from the typical distribution grid 

(Anastasiadis et al. 2010; Bullich-Massagué et al. 2018). To implement microgrids that are 

groups of interconnected loads and resources decentralized in urban areas, electric 

boundaries should be clearly defined (Ton and Smith 2012). Boundaries for each microgrid 

should be designed to minimize the energy imbalance (Nunna and Srinivasan 2017). 

Several operational boundaries should be adaptable with optimizing power distribution 

among the multi-microgrids (Wu et al. 2018).  
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The changes of energy distributions in a community reclaim a research question: 

how can block size and boundaries be changed by clustering buildings to support an energy 

sharing architecture? This chapter investigates new block boundaries to support for 

configuring microgrids that can balance energy uses and generations of buildings 

integrated solar PV. The objective is to establish the optimized framework of identifying 

block boundaries for sharing electricity in urban areas when solar energy generation in 

buildings and hourly electricity demand and supply are collected. This research then 

explores clustering based Voronoi diagram algorithm to detect clusters that can share 

electricity among buildings and to identify boundaries among the clusters. Community 

clustering algorithm can identify self-sufficient subgraphs (Yamagata et al. 2016). By 

applying the algorithm, this research identifies self-sufficient subgroups of buildings by 

partitioning the groups to minimize imbalance of energy demand and supply. Voronoi 

polygons have been used to calculate spatial characteristics such as building coverage ratio 

beyond parcel geometries, and the method can be used to determine regions belonging to 

a certain building (Löwe et al. 2019). Voronoi spatial model can handle relationships 

among spatial components in neighborhood dynamically (Shi and Pang 2000). In this 

respect, the Voronoi diagram can be applicable to identify boundaries and regions of 

microgrids where buildings can share electricity each other. The framework is tested to 

existing buildings in Kyojima 1, North Sumida, Tokyo, Japan. This research can provide 

electricity sharing boundaries that can be adapted flexibly considering changes in hourly 

energy demands and supply. This electricity sharing framework will contribute to 

providing accessible and reliable energy systems.  

  



 89 

6.1 Approach for Identifying Electricity Sharing Boundaries  

This chapter proposes to apply clustering based Voronoi diagram method to 

identify electricity sharing boundaries in urban areas that possess various types of 

electricity demands and supply from buildings (Figure 6.1). R programing language is 

employed to establish a framework of determining block boundaries. Packages in R built 

by statisticians and data scientists are used to conduct this research methodology. For 

example, “fnn” package is used for the fast k-nearest neighbor search algorithms 

(Beygelzimer et al. 2019), “igraph” package is used to detect community structure using 

edge betweenness (Csárdi and Nepusz 2006), and “ggvoronoi” is used to visually explore 

spatial localizations of a region (Garrett et al. 2018). 

 

Figure 6.1 – Research methodology to identify block boundaries to support for 

sharing electricity among buildings (Chang et al. 2020b) 
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To minimize energy imbalance, the boundary conditions for balanced microgrid 

should satisfy as the Equation 15 (Wu et al. 2018): 

 𝑃𝐷𝑒𝑚
𝐾(𝑖)

≤ 𝑃𝑆𝑢𝑝
𝐾(𝑖)

 (15) 

where 𝑃𝐷𝑒𝑚
𝐾(𝑖)

 is active energy intensity of the nearest K(i) buildings to the i-th 

building energy use (kWh/m2), and 𝑃𝑆𝑢𝑝
𝐾(𝑖)

 is the renewable energy supply capacity of the 

nearest K(i) buildings to the i-th building (kWh/m2) (Murakami et al. 2019; Wu et al. 2018). 

The renewable energy supply capacity of each microgrid has been aggregated solar 

harvesting potential when PV is installed in building roofs. Block boundaries, where 

energy imbalance can be minimized, were evaluated by calculating self-sufficiency of 

spatial and temporal changes of energy demands and supply (Equation 16) (Murakami et 

al. 2019). Based on the self-sufficiency, buildings are connected to nearest buildings, and 

the network will be used to identify the block boundaries for sharing electricity.  

 

∑ 𝑆𝐾(𝑖),𝑡

𝑇

𝑡=ℎ𝑜𝑢𝑟

= 𝑚𝑎𝑥 (0, ∑ ∑(𝑃𝑆𝑢𝑝
𝑘(𝑖)

− 𝑃𝐷𝑒𝑚,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔
𝑘(𝑖)

𝐾(𝑖)

𝑘(𝑖)

𝑇

𝑡=ℎ𝑜𝑢𝑟

))  (16) 

Where t is hourly supply and demand, and this research considered time from t=1 

to T=24. 𝑆𝐾(𝑖),𝑡 is the self-sufficiency of K(i) buildings from i-th building at a certain time 

of the day. k(i) is the k-th nearest building from the i-th building.  

To identify the communities, edges connecting energy networks among buildings 

are removed iteratively using possible “betweenness” (Newman and Girvan 2004). Vertex 

and edge betweenness are calculated by the number of shortest paths (geodesics) going 
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through a vertex or an edge. Then, the clustering algorithm, calculating the edge 

betweenness, removing the edge having the highest betweenness scores, re-calculating the 

betweenness, and iterating this process to identify possible community boundaries. Edge 

betweenness means the number of shortest paths passing through the edge, and it represents 

how many travels that can be made over the edge for reaching to other nodes. Based on 

this definition, an example of edge betweenness scores is presented in Figure 6.2.  

 

Figure 6.2 – An example of edge betweenness 

The clustering method optimize the modularity measure Q: 

 Q = ∑(𝑤𝑖𝑖 − 𝑎𝑖
2)

𝑖

= Tr(𝐖) − ‖𝐖2‖  (17) 

where 𝐖 denotes a community network matrix. 𝑤𝑖𝑖, the elements of 𝐖, indicates 

the fraction of edges in the network connected vertices in the community. 𝑎𝑖, the sum of 

each i-th row elements of 𝐖, denotes the expected value of the fraction in the same 

community when a network is randomly connected. Tr(∙) means the trace operator, and 

‖∙‖ means the sum of all elements of the argument. Based on the optimal (maximum) 

modularity measure, we estimate 𝐖 matrix by dividing the network graph matrix which 
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we estimated to meet self-sufficiency for minimizing energy imbalance. If the random 

connectivity is better than the number of within-community edges, the modularity gets 

closer to 0. When the modularity Q is closer to 1, it is better to partition clusters (Newman 

and Girvan 2004). Based on the clusters of buildings, Voronoi regions, which are convex 

polygons sharing boundaries with surrounding Voronoi vertices, are identified as new 

block boundaries that can be basis of multi-microgrids. 

6.2 Case Study of Reconfiguring Block Boundaries: Kyojima, Tokyo, Japan 

The framework is tested to existing buildings in Kyojima 1, North Sumida, Tokyo, 

Japan. The site area is about 214,825m2, there are 870 existing buildings, and 46 existing 

block boundaries. The scope of study area is presented in Figure 6.3. 870 buildings are 

considered to share electricity use and potential solar power in this community. Since a 

community’s spatial span, which is defined based on an administrative super-block, is 

between 400 and 1,000 meters, buildings within the area can share same local climate zone 

(Stewart et al. 2012).  
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Figure 6.3 – Study area of a community scale 

6.2.1 Data Acquisition 

Building polygon, height, and land use data have been collected by Zenrin Co. Ltd. 

(ZENRIN CO. 2018),  in GIS data format (.shp and .dbf), and the buildings are projected 

into 3D graphics in Rhinoceros 3D. Rhinoceros and Grasshopper plugin has been used to 

parameterize 3D polysurface of buildings into space or room requiring energy. Honeybee 

plugin for Grasshopper has been used to run EnergyPlus simulation. Solar harvesting 

potentials on rooftop of buildings are analyzed using ArcGIS Solar Radiation Tool. Hourly 

averaged annual solar harvesting potentials have been detected.  

The process of acquiring hourly energy demands and supply is presented in Figure 

6.4. Building energy demands were measured using EnergyPlus simulation engine, and 

heating loads, cooling loads, and electricity for lighting and equipment were produced. 

Since electricity is used for cooling in general, cooling, lighting, and equipment loads were 

aggregated to require electricity, and their hourly average electricity demands were 
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detected by creating a macro in Excel. To measure solar radiation on rooftops of buildings 

in a community, “Area Solar Radiation Tool” provided in ArcGIS 10.7 was used. This tool 

requires Raster format of topography (Quan et al. 2015b). This study provided buildings 

shapes and heights for radiation analysis. 

 

Figure 6.4 – Data acquisition for temporal energy supply and demand of buildings 
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Results of estimating hourly averaged electricity demands on 12PM and 6PM 

during a day are projected in Figure 6.5. 

 

Figure 6.5 – Examples of hourly electricity demand: 12PM (left), and 6PM (right) 

Solar irradiation on rooftops on buildings in the community is shown in Figure 6.6 

(left), and total annual solar irradiation per unit rooftop area is also presented in Figure 6.6 

(middle). From the solar irradiation, electricity energy generation of Solar PV was 

calculated using the Equation 2 in Chapter 4.  

 

Figure 6.6 – Solar power generation potential: solar irradiation on rooftop (left), 

total annual solar irradiation (middle), and hourly averaged solar power (right) 
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6.2.2 Buildings’ Connectivity 

Based on the estimation of hourly electricity demand and potential solar supply, 

buildings can share electricity with nearby buildings to decentralize energy distribution 

networks in urban areas. To begin with, the connectivity for sharing energy among 

buildings has been detected by calculating biggest self-sufficiency among nearest buildings 

(Equation 16). Fast k-nearest neighbor searching algorithm was used to identify optimized 

networks of buildings to be able to share electricity. Figure 6.7 (Left) shows the 

connectivity for sharing electricity among nearest buildings considering demands and 

supply averaged for the 24 hours. Figure 6.7 (Right) presents the number of connected 

buildings that ranges from one to twelve.  

 

Figure 6.7 – Connectivity for sharing electricity among nearest buildings (Left); 

number of neighboring buildings for sharing energy (Right) 
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According to hourly demand and supply during the data (Figure 6.8), potential solar 

power supply can be maximized during 11AM ~1PM while estimated electricity demands 

were maximized during 5 ~ 7PM. Buildings’ connectivity during those time periods are 

also estimated to observe temporal changes in sharing electricity. 

 

Figure 6.8 – Hourly demand and supply during the time of the day 

During 11AM to 1PM, high potential solar power provided more connections than 

annual averaged connectivity. Also, while annual averaged networks offer 12 neighboring 

buildings at maximum, 36 buildings in the community can share electricity with 102 

buildings surrounded that building during 11AM to 1PM. Figure 6.9 shows connectivity 

among buildings to share electricity during 11AM to 1PM when buildings can obtain 

maximum solar power potentially during the day.  
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Figure 6.9 – Connectivity for sharing electricity among nearest buildings during 

11AM ~ 1PM (Left); number of neighboring buildings for sharing electricity 11AM 

~ 1PM (Right) 

During 5PM to 7PM, only 58 buildings out of 870 can only share electricity. 

Among 58 connected buildings, 11 buildings can share electricity with four to nine 

buildings nearby. Seven buildings can share electricity with 12 to 16 buildings nearby. 

Eight buildings can share electricity more than 100 buildings surrounded them. The 

buildings’ connectivity and numbers of buildings sharing electricity are presented in Figure 

6.10. During the time, potential solar power becomes very low in overall. However, in the 

southwest part of the community, several office buildings’ electricity demands decrease 

while the buildings can provide relatively higher solar potentials because of their higher 

height and broader roof area than surrounding buildings. Those several office buildings can 

be connected to surrounded small detected houses for sharing their electricity. Meanwhile, 

buildings in other parts of the community could not achieve either collective self-

sufficiency or proximity of sharing electricity. 
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Figure 6.10 – Connectivity for sharing electricity among nearest buildings during 5 

~ 7PM (Left); number of neighboring buildings for sharing electricity 5 ~ 7PM 

(Right) 

6.2.3 Block Boundaries to Share Electricity 

This research then compares the connectivity and expected random connectivity 

measured by spatial nearest using the community clustering algorithm (Newman and 

Girvan 2004). The algorithm is based on the modularity as presented in the section 6.1 to 

decide the number of clusters to maximize the modularity. This community in the case 

study showed the estimate of Q was 0.8455926. In that the modularity which is higher than 

0.7 is rare (Newman and Girvan 2004), blocks can be partitioned based on hourly averaged 

electricity during a year. 

Based on the subgroups of buildings, Voronoi diagram algorithm is conducted to 

identify centroids of clusters of buildings and convex polygons representing block 
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boundaries. While current administrative block boundaries are 46, Voronoi diagram based 

on clustering identified 13 boundaries sharing electricity (see Figure 6.11). 

 

Figure 6.11 – Current administrative block boundaries (Left); Clustering-based 

Voronoi diagram (Right) 

 During 11AM to 1PM, the modularity was 0.7204888, and the groups of buildings 

can be regrouped to 28 (Figure 6.12). However, during 5PM to 7PM, a majority of 

buildings cannot share electricity with nearby buildings because of the lack of potential 

solar power. The connectivity was correspondingly small, and the modularity was 

0.1323828, The small modularity led to increase of the number of clusters to 708. In this 

trial, the clustering based Voronoi diagram cannot create block boundaries. 
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Figure 6.12 – Connectivity for sharing electricity among nearest buildings during 

11AM ~ 1PM (Left); number of neighboring buildings for sharing electricity 11AM 

~ 1PM (Right)  

6.3 Chapter Conclusions 

This chapter studied a methodology using energy performance analysis of buildings 

in a community, spatial statistics, machine learning techniques such as k-nearest neighbors, 

graph or network mining such as community clustering algorithm, and two-dimensional 

Euclidean distance calculations of Voronoi diagram. The research design was employed to 

determine block boundaries and size based on electricity self-sufficiency of buildings 

within the community in Kyojima, Tokyo, Japan. This chapter identified that there are 

changes in block boundaries and sizes whenever energy distributions in urban area are 

varied. The proposed block boundaries can be utilized for transaction boundaries to share 

electricity in the future when the micro-grids are adapted in the community. The boundaries 

can also be adapted to spatiotemporal distributions of solar power capacity and building 
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energy efficiency. In addition, the clusters of buildings and block boundaries can be 

employed for maintenance zones, site layout for planning redevelopment and construction, 

and guidelines of green community certifications. This algorithm can also be easily 

replicated in other built forms when geospatial data of energy demanding facilities and 

energy distributions are acquired. This algorithm can also be integrated with future 

mobility systems such as electric vehicles (EVs) (Chang et al. 2020b). Adopting EVs will 

provide more dynamic energy distributions in urban area by providing battery capacity or 

requiring charging stations. In this respect, energy demands of charging infrastructure can 

be added in this research framework. Also, when potential solar power gets lower from 

7PM to 6AM, remained energy on EVs’ battery can be discharged for powering buildings. 

In the future, Vehicle-to-Buildings-to-Grids will be able to be projected based on this 

research implementation.  
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CHAPTER 7. INTEGRATED DECISION SUPPORT 

FRAMEWORK FOR URBAN BUILDING TRNASFORMATIONS 

This chapter delves into interrelationships among transformation strategies at 

multiple scales based on lessons learned from optimization and evaluation at each scale. 

Transformable parameters and their impacts on performance have been observed at each 

scale, and their relationships across scales are observed.  

When reconfiguring block boundaries, temporal scopes projected different energy 

distributions spatially, and led to change number of buildings that can share electricity, 

building connectivity, number of clusters of buildings, and block boundaries and size. 

When reorganizing building typology on a block, building topological parameters of 

coverage ratio and FAR were common significant variables for multiple performance of 

energy demand, solar potential, thermal comfort, and visibility. Also, group effects 

deviated each performance in different standard deviations. When retrofitting building 

envelopes, building exterior area, orientations, and envelope options were given for 

optimizing sets of envelopes. Although the decisions at each scale are siloed, the inputs 

and outputs can be related across three scales. In this respect, this chapter observes 

interdependent relationships across building transformation decisions at multiple scales of 

community, block, and individual building. 
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7.1 Interrelated Parameters 

At multiple scales, different concepts of transformation issues were discussed. On 

a community scale, in that buildings are endpoints of distributing electricity, block 

boundaries configured by sharing electricity among nearby buildings in a community were 

studied. On a block scale, in that buildings are nested in a block and determine multiple 

performance on a block level, building parameters within a block were analyzed to estimate 

the block performance. On an individual building scale, in that sets of building envelopes 

influence multiple performance of buildings, an optimization approach was conducted to 

evaluate collective performance of diverse envelop options. By reviewing methodological 

inputs and outputs of each scale (Table 8), parameters that can potentially be interrelated 

are explored.  

Table 8 – Methodological inputs and outputs 

 Inputs Outputs 

Community 

scale 

 

Spatial distributions of buildings 

• Buildings’ connectivity 

• Number of buildings sharing 

electricity 

• Clusters of buildings 

• Block boundaries 

Block scale 

• Coverage ratio 

• Floor area ratio (FAR) 

• Height 

• Land use 

• Structure 

• Rise type 

• Use (single or mixed within a 

building) 

Changes in multiple block 

performance (energy demand, 

solar harvesting potential, 

thermal comfort, sky exposure) 

Building scale 
• Envelope area 

• Envelop options 

Application area for sets of 

envelop options 
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According to the input and output variables, and their influences each other, the 

potential interrelationships and the key variables are explored in Figure 7.1. Key variables 

are identified as auxiliary variables directly driving other variables, variables formed by 

convergence of other variables, or constant solely influencing performance evaluation of 

each level significantly. On a building scale, envelope area that consists of vertical façade 

area, roof, and floor area will be key variables that determine applicable area of retrofitting 

building envelopes by sets of possible options. On a block scale, land use, rise type, 

coverage ratio, and FAR will be key variables that determine block-level multiple 

performance. In that height will directly form rise type or FAR, height is also considered 

as a key variable. On a community scale, spatial distributions of buildings will be a key 

variable that can change potential capacity of sharing electricity.  

 

Figure 7.1 – Potential interrelationships among variables 
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7.2 Integrated Decision Support Framework: Top-down and Bottom-up 

7.1.1 Top-down decision framework 

Based on the interrelationships among variables at each scale as well as their 

impacts studied in Chapter 4 ~ 6, a top-down decision framework is built in Figure 7.2. On 

a community scale, reconfigurations of block boundaries will be normatively decided by 

desires or social norms of sharing electricity or requiring micro-grids to save energy and 

transmission loss. After block boundaries reconfigured, buildings’ topological parameters 

within block such as coverage ratio and FAR will be changed. The changes of topological 

parameters derive changes in multiple performance in a block. Correspondingly, energy 

demand and solar potential in a block level will be singled out to individual buildings. The 

performance changes allocated to individual buildings can require retrofitting building 

envelopes. In Figure 7.2, positive effects indicate findings from empirical studies, and 

normative effects are based on value judgement by stakeholders of buildings and a 

community.  
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Figure 7.2 – Top-down decision framework 

7.1.2 Bottom-up decision framework 

A bottom-up decision framework is built in Figure 7.3. Bottom-up decision 

framework can begin with applying transformation strategies of an individual buildings 

scale. After retrofitting building envelopes, building energy and comfort performance will 

be changed, and this can release or restrict typology configurations in a block to achieve a 

certain degree of block-level performance. The changes of typology can influence the 

block-level performance that can vary energy distributions on a community. Afterwards, 

based on the community’s willingness, block boundaries can be reconfigured to share 

electricity among buildings. 
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Figure 7.3 – Bottom-up decision framework 

7.3 Performance Comparisons of Integrated Decisions 

This section explores how the transformations in a community level and in an 

individual building level can influence block-level performance. The reconfigured block 

boundaries in Chapter 6 are assigned new block categories to all buildings, and energy 

performance improvement of individual buildings in Chapter 4 is also applied for 

approximating energy performance of buildings after retrofitting building envelopes. Then, 

the new dataset incorporating the new block assignment and the energy performance 

improvement is used to recognize changes in multiple performance in a block level. Figure 

7.4 ~ 7.7 compares average performance of the existing blocks and the proposed blocks. 

Block scales in this research can be manageable in analysis as the focal scale between 

buildings and communities (Yang 2012). 
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Average energy demand of new blocks can be very much improved (Figure 7.4) 

because impacts of retrofitting building envelopes on energy performance were only 

considered influencing energy demand while the effects can also change potential 

renewable energy generation. The median of average solar potential of new blocks is 

decreased, but highest 25 quartile values are much more increased compared with the 

existing blocks (Figure 7.5). The median and highest 25 quartile values for average thermal 

comfort and visibility on blocks are slightly improved than the performance of the existing 

blocks (Figure 7.6 ~ 7.7).  

 

Figure 7.4 – Comparing changes in average building energy demand on blocks 

 

Figure 7.5 – Comparing changes in average building-integrated solar potential on 

blocks 
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Figure 7.6 – Comparing change in average percentages of thermal comfort on 

blocks 

 

Figure 7.7 – Comparing changes in average visibility on blocks 

7.4 Chapter Conclusions 

This chapter was devised to explore interrelationships of variables and performance 

across multiple scales of community, block, and building. From the top-down perspective, 

block boundaries determine block size and correspond changes in block coverage ratio, 

FAR, and combinations of building typology within a block. From the bottom-up 

perspective, building topological parameters such as height, floor area, etc. influence other 

topological variables such as coverage ratio as well as building typological parameters such 

as rise type. In addition, the changes of transformable parameters will affect multiple 

performance indicators at each scale. Performance indicators are also networked among 
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multiple scales. For instance, the block-level building energy demand was singled out 

energy demand of buildings in a block. The energy demand can impose different levels of 

thermal energy demand through building envelopes in an individual building level. Also, 

the amount can be singled out hourly demands and provide temporal fluctuations for energy 

distribution in a community level. Based on the observations, a decision of one scale will 

influence decisions in other scales. In this respect, decisions of transforming buildings 

should be collaboratively implemented after scrutinizing changes of parameters and 

impacts of the changes. 
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CHAPTER 8. CONCLUSIONS  

This chapter concludes this thesis by summarizing the research framework and 

major findings, drawing research implications from the results, discussing contribution and 

limitations, and suggesting future research initiatives. 

8.1 Conclusion 

Transformations of urban buildings require different strategies at different scales, 

and changes in one scale influence performance indicators in other scales. In this respect, 

this research devised to investigate appropriate transformation strategies at multiple scales 

of an individual building, a block, and a community and explore their interrelationships. 

First, research objective on an individual building scale was to optimize selections 

of envelope options when retrofitting buildings. This research found that at least 33% of 

current vertical envelopes of buildings in the case study can be retrofitted to improve 

energy performance, environmental impacts of CO2 emissions, and indoor thermal 

comfort. However, the economic feasibility was challenging to be paid back in 50 years 

but there is still an opportunity to improve if an economic envelope option emerges in the 

future. Since the genetic algorithm was formed to incorporate any newly developed 

materials in the optimization process, building engineers or managers can address future 

development of economic envelope options. 

Second research objective was to reorganize building typology that can improve 

multiple performance indicators in a block level. The Bayesian multilevel additive model 

was applied to analyze relationships between a variety of variables and multiple indicators 
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of energy demand, potential solar supply, thermal comfort, and visibility. This research 

discovered that tradeoffs of block-level performance indicators were influenced by 

building topological or typological parameters. Based on the results, reducing coverage 

ratio with an increase in FAR by raising building height can improve energy performance 

by reducing energy demand. However, collections of mid-rise buildings will provide better 

solar harvesting potential than groups of high-rise buildings due to the shading effects. The 

information of building parameters and their effects on multiple performance was detected 

in the Chapter 5. 

Third research objective was to reconfigure block boundaries that can support 

decisions of sharing energy on a community. To achieve the goal, spatial clustering and 

Voronoi diagram algorithm were utilized to consider spatiotemporal distributions of 

electricity demand and supply. According to the case study applied in a community located 

in Tokyo, Japan, existing 46 blocks can be redefined into 13 blocks that can share 

electricity. When micro-grids become necessary to be formed in a community, the 

proposed block boundaries can function as guidelines on the top of existing physical blocks 

(i.e., street networks, zones, etc.). Also, the algorithm can be replicable with geo-spatial 

data of buildings and their electricity demand and supply. The algorithms can quickly 

provide new block boundaries whenever analysis period is changed. The reconfigurable 

block boundaries were studied in Chapter 6.  

Finally, the interrelated parameters were discerned in Chapter 7. Based on the 

interactions, both bottom-up and top-down decisions can be implemented, and 

transformation of block boundaries and building envelopes can correspondingly changes 

in performance on a block level.  
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8.2 Research Implications  

This research framework and findings can be used for policymaking, practice, 

theory, and future research works. 

First, this research discerned improvement of energy performance, environmental 

impacts (CO2 emissions), and thermal comfort hours by retrofitting building envelopes. 

And sets of envelope options presented in Table 3 cannot be collectively achieved to get 

payback within 50 years of investment. It indicates that necessity of different investment 

timing based on the availability of reducing levelized cost of energy of technology options 

or price of high-performance material. This study found that rooftops are preferable to be 

retrofitted than vertical envelopes since the maximum retrofittable envelope areas much 

larger in rooftops than vertical façades. 

Second, this research identified that building parameters on a block influence block 

performance of energy demand, solar harvesting potential, thermal comfort, and sky 

exposure. A major finding is that we cannot avoid trade-offs among four performance 

indicators. Still, city planners and building managers can plan combinations of building 

typology in a block by being informed of the relationships. This research extracted four 

strategies for reconfiguring building typologies in a block: 1) energy performance and 

comfort improvement while undermining visibility, 2) maximization of solar harvesting 

potential while undermining thermal comfort, 3) visibility improvement, and 4) thermal 

comfort improvement. 

Third, this research found that existing block boundaries should be reconsidered to 

form energy sharing boundaries based on predicted electricity uses and potential solar 
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power generations. The new block boundaries can be separations for managing energy 

distributions. In that clear definitions of boundaries have been required to implement 

micro-grids in urban area (Ton and Smith 2012), this empirical study established a 

methodology identifying clear boundaries based on energy balance of demand and supply 

for groups of buildings. In this research, by identifying the number of buildings that can 

share electricity and the boundaries vary hourly, the boundaries should be managed hourly 

basis and the future micro-grid energy distribution systems can envision hourly adaptations 

for distributing electricity. Also, the boundaries will define energy sharing zones in which 

energy transactions occur. This will support future decentralized and shared electricity 

markets that can resiliently accommodate real-time electricity needs in an urban area. The 

definition of boundaries will enable policy makers to devise principles related to sharing 

and distributing electricity.  

This research also explored integrated decision frameworks that can be driven by a 

community or individual building level. Impacts of retrofitting building envelopes can 

reduce energy demands in a block level. Also, although block boundaries were 

reconfigured based on self-sufficiency of energy demands and supply, new blocks can offer 

better thermal comfort and visibility on average. The reconfigured blocks functioned for 

reducing averaged energy demands in a block even if the solar potential in new blocks is 

decreased. The integrated decision frameworks provide information of impacts of 

transforming buildings and blocks at different scales. Both top-down and bottom-up 

decision frameworks should be employed in practice to optimize performance changes and 

adapt driving forces. 
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8.3 Contribution 

Although decisions of renovating buildings in a certain scale influence other scales 

in an urban area, the decisions should be differentiated to address different challenges and 

goals varied by scales. In this respect, this research thrust was tailored decisions at each 

scale, and investigates interactions of the decisions across multiple scales. This research 

will contribute to both academia and practice. 

In the academia, this research will contribute to a body of knowledge about the 

interrelationships between building design and construction parameters considering 

multiple performance indicators at multiple scales in urban areas. For example, while 

previous study has been simplified impacts of building parameters by assuming linearity 

(Chang et al. 2019c), this research broadened understandings of the building parameters by 

considering spatiotemporal distributions on a community level, non-linear population-level 

and group-level effects synthetically on a block level, and performance evaluation of set of 

envelopes rather than one single option on an individual building level. The findings can 

support to discuss the complexity theory across multiple scales of urban building 

transformations. 

The research efforts will also contribute to making appropriate decisions for 

investment, regulations, or guidelines when renovating physical building assets at different 

scales in urban areas. The impacts of transforming urban building parameters can provide 

building designers, owners, and managers a framework to appropriately consider 

renovation strategies to contribute to block-level performance. In addition, this will provide 

city planners or city government with potential impacts of retrofitting or redeveloping 



 117 

urban buildings. Then, the information can guide to establishing a new category of urban 

buildings to manage performance-based planning of blocks. From the city government 

perspective, this research can be employed to investigate the energy sharing potential and 

adapt block boundaries based on real-time energy demand and supply of buildings. For city 

planners, building engineers, and building managers, this study improves building 

parameters’ assessment on a block level for reviewing alternative building typologies. The 

optimization method for retrofitting building envelopes will reduce time to evaluate sets of 

envelope options by substituting current processes of reviewing applicable envelop options 

one by one. Integrating inputs and outputs of multiple scales will contribute to examining 

overall impacts in the urban area while focusing on a certain scale.  

Since many cities are at the tipping point trying to become more resilient, 

increasingly focusing on sustainability, economic feasibility, and human well-being, a 

better understanding of the impact of built forms at multiple scales will support urban 

development decisions for the future smart and connected communities. 

8.4 Limitations 

This research has several limitations. First, transformation strategies at each scale 

were employed only one case study located in Tokyo, Japan. Since energy performance is 

highly related to climate zones, different regions should be further investigated. The spatial 

boundary can also correspondingly change influential factors in the block-level 

performance as well as context uncertainties in the building-level optimization. In addition, 

value of the optimization model should be further investigated by validating with experts’ 

point of view. Objective functions in the model can also be broadened by incorporating 
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other decision criteria as well as diverse energy conversion methods. Moreover, the 

quantitative relationships among inputs and outputs at multiple scales should be further 

investigated to consolidate a holistic decision-making system.  

8.5 Future Research 

One of weakness of this research is that interrelationships were explored with 

qualitative measures, but quantifying the sequential inputs and outputs is necessary to 

consolidate a holistic decision-making system.  

On-going research project, smart community in Shinagawa, Tokyo, Japan, will 

replicate the research efforts and suggest practical agenda for transforming an existing 

community to be smart and connected community in the future. 

In addition, energy distributions will be more dynamic when electric vehicles 

(EVs), unmanned aerial vehicles (UAV), etc. are incorporated into an urban area in the 

future. Although this research suggested virtual block boundaries that can support 

managing electricity sharing when adopting micro-grid systems, future works can be 

developed to address how smart grid systems actually work by considering proximity 

advantage and transmission cost, transaction mechanism, and energy storage systems, etc. 

Requirements of improving the block performance and better understanding of complex 

impacts of building parameters can drive to suggest atypical building typology in the 

future. In addition, a GA model for optimizing the selections of building envelopes is 

required to be further validated the modeling process and feasibility of solutions. 

Moreover, different scenarios of retrofitting buildings envelopes can be tested to achieve 

energy-efficient community and to provide reliable transformation strategies. Quantitative 
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approach considering interdependencies among inputs and outputs at multiple scales can 

be further explored in the future. 

For the future research, three research questions are driven from the research 

conducted in this thesis. 

1) How much the optimization model of selecting building envelope options is 

valuable in practical applications?  

2) Can we re-define building typology that can optimize multiple performance in a 

block level? 

3) How will energy distributions be changed when energy demand and supply become 

more dynamic (e.g., EVs)? and how smart grid systems works? 
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APPENDIX A.  OPTIMIZED ENVELOPE SELECTION OPTIONS 

FOR RESIDENTIAL BUIDLINGS, KYOJIMA, TOKYO, 

JAPAN 

Table 9 – Optimized Envelope Selection Option for Apartment 1 

 Optimization Results & Objectives  Maximum Retrofit Area (m2) 

N
o
rt

h
 f

a
ça

d
es

 

• 102 Generations 

• 70 pareto front solutions  

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 255.11m2 

• Total Area 578.97m2 

 

W
es

t 
fa

ça
d
es

 

• 106 generations 

• 70 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 428.64m2 

• Total Area 1,303.43m2 
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E
a
st

 f
a
ça

d
es

 

• 102 generations 

• 91 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 539.19m2 

• Total Area 1,293.21m2 

 

S
o
u

th
 f

a
ça

d
es

  

• 107 generations 

• 98 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years  

• Retrofit Area 269.33m2 

• Total Area 575.25m2 

 

R
o
o
f 

• 115 generations 

• 100 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 367.65m2 

• Total Area 501.70m2 
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Table 10 – Optimized Envelope Selection Option for Apartment 2 

 Optimization Results & Objectives Maximum Retrofit Area (m2) 
N

o
rt

h
 f

a
ça

d
es

 
• 107 generations 

• 61 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 66.43m2 

• Total Area 123.05m2 

 

W
es

t 
fa

ça
d
es

 

• 102 generations 

• 64 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 67.90m2 

• Total Area 151.96m2 

 

E
a
st

 f
a
ça

d
es

 

• 188 generations 

• 96 pareto front solutions 

 
Averaged indoor discomfort hours = 730 

(1185.27 for the last population) 

Payback period >= 50 years 

• Retrofit Area 70.77m2 

• Total Area 131.17m2 
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S
o
u

th
 f

a
ça

d
es

  

• 136 generations 

• 67 pareto front solutions 

 
Averaged indoor discomfort hours = 126.09 

(758.30 for the last population) 

Payback period >= 50 years 

• Retrofit Area 72.86m2 

• Total Area 189.37m2 

 

R
o
o
f 

• 103 generations 

• 81 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 102.90m2 

• Total Area 116.76m2 

 

 

Table 11 – Optimized Envelope Selection Option for Wooden House 1 

 Optimization Results & Objectives Maximum Retrofit Area (m2) 

N
o
rt

h
 f

a
ça

d
es

 

• 182 generations 

• 78 pareto front solutions 

 
Averaged indoor discomfort hours = 898.46 

(990.04 for the last population) 

Payback period >= 50 years 

• Retrofit Area 20.30m2 

• Total Area 33.09m2 
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W
es

t 
fa

ça
d
es

 

• 116 generations 

• 64 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 24.33m2 

• Total Area 34.82m2 

 

E
a
st

 f
a
ça

d
es

 

• 133 generations 

• 80 pareto front solutions 

 
Averaged indoor discomfort hours = 1248.45 

(1653.14 for the last population) 

Payback period >= 50 years 

• Retrofit Area 26.02m2 

• Total Area 34.82m2 

 

S
o
u

th
 f

a
ça

d
es

  

• 104 generations 

• 103 pareto front solutions 

 
Averaged indoor discomfort hours = 988.14 

(1674.41 for the last population) 

Payback period >= 50 years 

• Retrofit Area 19.05m2 

• Total Area 33.09m2 

 



 125 

R
o
o
f 

• 106 generations 

• 67 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 31.73m2 

• Total Area 32.00 m2 

 

 

Table 12 – Optimized Envelope Selection Option for Wooden House 2 

 Optimization Results & Objectives Maximum Retrofit area (m2) 

N
o
rt

h
 f

a
ça

d
es

 

• 102 generations 

• 72 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 25.62m2 

• Total Area 39.63m2 

 

W
es

t 
fa

ça
d
es

 

• 120 generations 

• 67 pareto front solutions 

 
Averaged indoor discomfort hours = 1176.72 

(1513.61 for the last population) 

• Retrofit Area 33.64m2 

• Total Area 46.19m2 
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E
a
st

 f
a
ça

d
es

 

• 102 generations 

• 83 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 31.69m2 

• Total Area 47.42m2 

 

S
o
u

th
 f

a
ça

d
es

  

• 165 generations 

• 59 pareto front solutions 

 
Averaged indoor discomfort hours = 148.47 

(1120.49 for the last population) 

Payback period >= 50 years 

• Retrofit Area 29.20 m2 

• Total Area 39.95 m2 

 

R
o
o
f 

• 102 generations 

• 76 pareto front solutions 

 
Averaged indoor discomfort hours = 0 

Payback period >= 50 years 

• Retrofit Area 51.51m2 

• Total Area 51.67 m2 
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APPENDIX B.  BAYESIAN MULTILEVEL MODELS FOR 

BLOCK-LEVEL PERFORMANCE ESTIMATION BY 

BUILDING PARAMETERS 

1. Model to fit energy demand averaged in each block 

brm(blockEnergy~ s(CoverageRatio)+s(FAR)+s(Height)+(1|LandUse)+(1|RType_NS) 

+(1|Use)+(1|structure), data=dat, chains =4, core=31, control = list(adapt_delta = 0.99, 

max_treedepth = 15)) 

2. Model to fit solar potential of building facades in each block 

brm(solarBlock ~ s(CoverageRatio)+s(FAR)+s(Height)+(1|LandUse)+(1|RType_NS) 

+(1|Use)+(1|structure), data=dat, chains =4, core=31, control = list(adapt_delta = 0.99, 

max_treedepth = 15)) 

3. Model to fit sky exposure in each block 

brm(SkyExposur ~ s(CoverageRatio)+s(FAR)+s(Height)+(1|LandUse)+(1|RType_NS) 

+(1|Use)+(1|structure),data=dat, chains =4, core=31, control = list(adapt_delta = 0.99, 

max_treedepth = 15)) 

4. Model to fit thermal comfort averaged in each block 

brm(blockcomf ~ s(CoverageRatio)+s(FAR)+s(Height)+(1|LandUse)+(1|RType_NS) 

+(1|Use)+(1|structure),data=dat, chains =4, core=31, control = list(adapt_delta = 0.99, 

max_treedepth = 15)) 
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APPENDIX C.  RELATIONSHIPS BETWEEN BUILDING 

HEIGHTS AND MULTIPLE PERFORMANCE IN BLOCKS 

  

  

Figure 8.1 – Non-linear patterns of block-level performance by building height (y 

coordinates: average energy unit intensity (top-left), solar potential (top-right), 

average percentages of comfort time (bottom-left), and sky exposure (bottom-right)) 
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