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Nature’s evidence in one place seems to contradict that in another, and so far it has not

been possible to draw an even halfway coherent picture of the relationship involved. . .

everyone is still groping around in a thick mist,

and it will probably be a few years before it lifts.

—Wolfgang Pauli, ca. 1920



for my wife Theresa,

who always shone a light through the thick mists as we groped along together
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ABSTRACT

Non-covalent interactions (NCI) encompass the quantum mechanical forces felt be-

tween atoms and molecules which are not directly bonded to one another. Responsible for

governing diverse chemical and physical phenomena, NCI are of fundamental interest in

fields including materials design and drug discovery, among others. In order to study NCI

accurately, quantum chemical methods must be employed whose computational expense

often limits the systems which can be studied to at most 100 atoms. Often, this is challenge

is addressed by examining NCI in small, representative subsystems, however this approach

neglects the influence of chemical environment on these interactions. Furthermore, the best

manner in which to study such environmental effects is still an open question in the field.

Meeting these challenges will be the focus of this dissertation: through the development of

novel quantum chemical methods, as well as the extension of existing methods, this work

will seek to describe the effect of diverse chemical environments on non-covalent interac-

tions. In this way, a more complete understanding of these phenomena will be provided,

which can then be exploited to advance various chemical applications.
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SUMMARY

Non-covalent interactions, encompassing the through-space physical forces of attrac-

tion and repulsion felt between atoms and molecules separated by finite distances, control

numerous chemical and physical phenomena on length and time scales ranging nearly fif-

teen orders of magnitude: from the association of molecular aggregates and host–guest

complexes on the Angström/femptosecond scales and macromolecular secondary structure

and dynamics on the micrometer/nanosecond scales to transitions between physical phases

of matter on the meter/second scales and even global weather patterns due in part to the

increased density of humid air on the thousands of kilometers/millenia scales, understand-

ing NCI and their role in these phenomena is of critical importance to understanding these

phenomena themselves. Despite their omnipresence and foundational importance, how-

ever, directly submitting NCI to experimental investigation is a significant challenge, due

precisely to their nature as being cooperative across these length and time scales.

Computational investigation, however, offers the unique advantage of decoupling this

cooperativity, whereby particular interactions within a given system of interest may be stud-

ied. The development and application of computational approaches and methodologies to

probe NCI has been an ongoing effort in the field of the theoretical and computational

molecular sciences for the better part of a century, and thanks to the increased availability

of ever-more powerful computing hardware, we are now poised to explore the influence of

NCI in systems and on phenomena previously undreamed of. Towards this end, I take in

this Thesis a holistic approach to (i) study the fundamental nature of non-covalent interac-

tions (NCI) in small model systems, (ii) develop novel computational tools by which NCI

may be accurately investigated in previously inaccessible, extended chemical systems, and

finally (iii) apply these novel and existing approaches to examine NCI in complex chemical

environments.

In Part I of this Thesis, best practices for the benchmarking of non-covalent interac-
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tion energies (IEs) and obtaining accurate structures for bimolecular complexes are es-

tablished, in an effort to “get the right answers for the right reasons.” Towards this end,

Chapter 4 compares interaction energies (IEs) of several non-bonded complexes of var-

ious binding motif and interaction strength computed with approximate formulations of

explicitly-correlated coupled cluster theory (CCSD(T∗∗)-F12n, n = a, b, c; abbreviated

F12n) against gold-standard reference IEs to evaluate their performance for generating

benchmark-quality descriptions of diverse non-covalent interactions. It was found that,

contrary to trends observed for total molecular correlation energies, IEs computed with

F12n methods paired with basis sets designed for use with explicitly correlated methods

(cc-pVXZ-F12, X = D, T, Q, 5; abbreviated XZ-F12) were less accurate for a given ζ-level

than when leveraging conventional, correlation consistent basis sets augmented with dif-

fuse functions (aug-cc-pVXZ, X = D, T, Q, 5; abbreviated aXZ). Furthermore, F12n/aXZ

model chemistries converged more rapidly towards the complete basis set (CBS) limit than

did their F12n/XZ-F12 counterparts, with F12b/aXZ converging most rapidly out of all

model chemistries examined. Specifically, F12b/aTZ achieves mean absolte errors of 0.01

kcal mol−1 for IEs of bimolecular complexes in the A24 test set, rivalling the accuracy of

conventional CCSD(T) in the a5Z or even a6Z basis set (where available). Inspired by the

performance of these F12n methods, we also established timings for IE computations lever-

aging F12n/aXZ to assess their computational expense in comparison to canonical bench-

mark approaches. It was found that while F12b/aXZ was significantly faster than composite

approaches based on fully canonical MP2 and CCSD(T), composite approaches leveraging

density fitted, frozen natural orbital formulations of CCSD(T) [DF-FNO-CCSD(T)] were

even faster than F12b/aXZ while retaining the same level of accuracy. Based on these

findings, we have recommended procedures leveraging either DF-FNO-CCSD(T)/[aTQZ;

δ:aTZ] or F12b/aTZ for obtaining benchmark-quality non-covalent interaction energies.

Furthermore, Chapter 5 explores the suitability of three dispersion-aware density func-

tionals popular for application to non-covalent interactions (B97-D3, B3LYP-D3, and M05-
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2X) for generating optimized gometries of non-bonded bimolecular complexes. By com-

paring against reference geometries for small van der Waals complexes of diverse binding

motif generated at the CCSD(T)/CBS level, we establish a reliable protocol for obtaining

equilibrium geometries for these complexes using DFT. Each density functional is able to

reproduce reference geometries to within ±0.1 Å for each of the average monomer center-

of-mass displacement and average least root-mean-squared displacement, when paired with

the aug-cc-pVDZ (abbreviated aDZ) basis set. Differences in computed equilibrium ge-

ometry of this magnitude correspond to differences of interaction energy of only a few

tenths of one kcal mol−1, equivalent in accuracy to the performance of DFT-D for in-

teraction energies themselves. Additionally, we showed that for both dispersion bound

and doubly-hydrogen bonded bimolecular complexes, the optimal intermolecular contact

distance interpolated from radial dissociation curves constructed using these DFT-D/aDZ

model chemistries were able to reproduce those interpolated from reference curves con-

structed at the CCSD(T)/CBS level to within ±0.1 Å, matching the performance of these

DFT-D methods for equilibium geometries. Due to their favorable performance compared

to CCSD(T)/CBS references for estimating both total equilibrium geometries and optimal

intermolecular contact distance, we concluded that these DFT-D/aDZ model chemistries

were indeed suitable for application to the generation of equlibrium geometries of generic

non-bonded complexes.

Part II of this Thesis is concerned with the development of affordable approaches for

investigating NCI in extended chemical systems, and particularly the development of ap-

proximate, semi-empirical variants to the popular symmetry-adapted perturbation theory

(SAPT) approach. SAPT has become a valuable computational tool offering physical in-

sight into the fundamental nature of non-covalent interactions in diverse chemical systems

by directly computing the electrostatics, exchange (steric) repulsion, induction (polariza-

tion), and London dispersion contributions to the interaction energy using quantum me-

chanics. Further application of SAPT to novel chemical problems is limited primarily by
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its computational expense, where even for its most affordable variant, SAPT0, computing

the London dispersion contribution to the interaction energy (IE) scales as the fifth power of

system size, O(N5). In Chapter 6, we optimize damping parameters for the semiempirical

–D3 dispersion correction of Grimme and co-workers, so that they are suitable for use as

replacements of the computationally expensive dispersion term in SAPT0. Parameters are

obtained by fitting to a large set of 2295 interaction energies computed at he CCSD(T)/CBS

level of theory. This reduces the algorithmic scaling of SAPT0 from O(N5) → O(N4)

while retaining the physically meaningful interpretation of IE components characteristic

of all SAPT methods. This scaling reduction translates into a nearly 2.5× speedup over

conventional SAPT0 for systems with ∼300 atoms. Furthermore, this allows for SAPT–

D computations to be performed on systems with over 450 atoms, while offering nearly

equivalent accuracy to SAPT0 when compared against reference IEs for a diverse set of

approximately 8,100 bimolecular complexes. We have further extended our formulation of

SAPT–D to be consistent with the functional group partition (F-SAPT–D) and applied this

method to conclude that the difference in binding affinity for partial agonist salbutamol to

the G-protein coupled β1-adrenergic receptor between active and inactive forms is due to

the cooperative effects of both peptide bonds and residues outside the immediate binding

pocket, indicating that a local contact model for protein-ligand binding is insufficient to

discriminate between binding conformations which posess similar activities.

Finally, in Part III of this Thesis, Chapter 7 examines the extent to which chemical en-

vironment “tunes” NCI by leveraging both intramolecular SAPT (ISAPT) and functional-

group partitioned SAPT (F-SAPT) to study solvated π − π interactions. In doing so, we

investigate (i) possible approaches by which to compute non-covalent interactions embed-

ded in a chemical environment, and (ii) quantify the tuning of these interactions due to

the environment relative to the interactions in the gas phase. We have applied our ap-

proach to quantify the extent to which explicit water solvent modulates π − π interactions

in several functionalized, T-shaped arene–benzene complexes, hydrated by a statistically
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diverse set of solvent configurations. We have found that, for systems wherein no signifi-

cant non-additive three-body interaction between the monomers and the collective solvent

environment are present, the solvent environment does not significantly tune π−π interac-

tions, either due to the choice of system partitioning or solvent configuration. For systems

where the nonadditive three-body interaction is significant, however — i.e., where it either

is greater than∼2 kcal mol−1 or where it deviates between solvent configurations by greater

than ∼1 kcal mol−1 — the solvent environment does tune the interaction, sometimes by up

to several kcal mol−1 for both total interaction energies and F-/ISAPT components. Finally,

we have shown that for these non-additive systems, even two hydration shells of 50 explicit

water molecules within 7 Å of the solute complex may not be sufficient to ensure conver-

gence of the solute–solute interactions towards the continuum limit, whereas for additive

systems, only a single shell of 28 water molecules within 3 Å is necessary for convergence.

In addition to developing approaches which may be leveraged to study non-covalent

interactions in extended chemical systems and diverse chemical environments, this Thesis

builds upon previous efforts to set forth the next generation of best-practices for all facests

of the computational investigation of non-covalent interactions. From this foundation, a

variety of new avenues forward are now emerging, with previously inaccessable chemical

phenomena suddenly within reach of our methodologies. For example, the effect of protein

environment on tuning active site binding activity and specificity can now be reliably and

routinely quantified, opening the door to answering questions of the effects of distant point

mutations or allosteric binding on enzyme function. While these and other applications

are not explored here, it is my hope that the advances developed here may help further

scientific progress throughout the broader computational molecular sciences community at

large.
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CHAPTER 1

INTRODUCTION

Since it is the goal of this Thesis to discuss the application of quantum mechanics to under-

stand the fundamental nature of non-covalent interactions, it would seem natural to begin

with an overview of the basics of quantum mechanics and a discussion of how it may be

employed in this manner. This would be a fine approach, if not for the fact that quantum

mechanics is perhaps the least intuitive scientific theory ever developed. However, the hall-

mark of a successful theory is not the intuitiveness of its predictions, but rather the precision

and accuracy with which it may be experimentally validated. By this metric, quantum me-

chanics is also perhaps the most successful scientific theory ever developed. This Thesis is

not, however, meant to be a treatise on the many successes of quantum mechanics; rather,

this Thesis tells the story of the work undertaken by myself and my colleagues over the last

five years, which itself is merely a continuation of the same journey undertaken by so many

scientists who preceded us. We will begin, therefore, at a much more appropriate place:

the beginning.

1.1 Historical Perspective on the Development of Quantum Mechanics

Central to the human experience is our desire to observe the world around ourselves and

wonder about how we fit into the picture. From a young age, questions like “why does

the sunshine make my skin feel warm?”, “where does the rain come from?”, and “how do

water striders keep from sinking?” inspire our journey through life. Not only do these

questions guide our individual growth, but they have also shaped our cultural heritage.

While countless individuals have asked these questions in pursuit of understanding our

place in the universe, perhaps the most relevant example of such a question to this Thesis

is, “what exactly makes up all of the stuff around us?”
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Of course, this is not the first time this question has been stated; indeed, this was one

of the major questions pondered by ancient Greek philosophers, including Plato, Aristo-

tle, Socrates, and many others. Two in particular, however, were remarkably prescient in

their worldview: Democritus and Leucippus,1 who more than two millennia ago (ca. 400

B.C.E) proposed that everything in the material world — what we have come to call matter

— is made up of tiny, indestructible, eternal particles that they called ατoµoσ (atomos),

meaning “indivisible.” The two “atomists” believed these particles were inertly solid, with

some jagged and sharp and others smooth and slippery, and that they interacted with one

another mechanically. Furthermore, they reasoned that the properties they observed for

macroscopic materials were a direct result of these interactions. Unfortunately, questions

which we might consider scientific today were viewed primarily through a philosophical

lens during antiquity.

This “natural philosophy,” where existential questions were rejected and accepted based

purely on academic grounds rather than experimental validation, allowed a competing

viewpoint where earth, water, air, and fire were the fundamental elements of nature to

become the prevailing view for nearly two millennia. Natural philosophy was not only

concerned with what matter is, but also the manner in which it transforms from one form

to another. Since our modern conception of chemistry is fundamentally concerned with

the study of such changes, chemistry remained more mythical than scientific for much of

the intervening millennia from when atomism was first introduced.* Fortunately for us,

however, chemistry’s mystical shroud began to lift when it was first supposed that matter

cannot be created or destroyed, only transfigured from one form to another.

1.1.1 Revolutionary Chemistry and Steady-State Physics

As early as 1630, Jean Rey first implicitly assumed that matter cannot be created or de-

stroyed, only transformed — which we now know as the law of conservation of mass —

*I suppose that’s why it was named chemystery. . .
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setting in motion the advancements which would eventually lead to the evolution of chem-

istry into a fully-fledged natural science. More than a century later, the chemical revolution

truly began in earnest in 1789 when Antoine Lovoisier’s Traité Élémentaire de Chimie,

“Elements of Chemistry,” enshrined conservation of mass as empirical law and refuted the

phlogiston theory of combustion with one based on the consumption of oxygen. This revo-

lution continued in 1807, when John Dalton proposed that chemical elements — pure sub-

stances which cannot be broken down further into constituent parts by chemical means —

owed their purity of composition to the fact that they were made up of a collection of iden-

tical, indivisible particles which, inspired by Leucippus and Democritus, Dalton referred to

as atoms. Dalton’s atomic theory postulated that chemical substances were formed by com-

bining atoms in defined, whole-number ratios, and even though atoms were exchanged in

chemical reactions, the properties of the atoms themselves were unchanged. Together with

the discovery of an array of new chemical elements by Humphry Davy and others, and

their subsequent organization into the periodic table by Demitri Mendeleev, atomic the-

ory proved enormously successful for rationalizing, understanding, and predicting chem-

ical phenomena. These advancements, combined with the rigor and meticulousness with

which Lavoisier and his contemporaries performed their investigations, freed chemistry of

its philosophical and mythical shroud by the mid-19th century.*

The field of physics, on the other hand, was significantly less impeded by natural phi-

losophy than was chemistry, thanks in large part to the fact that early physicists (who in

truth were essentially pragmatic mathematicians) were more concerned with predicting

macroscopic phenomena than addressing existential questions of reality.† From Newton

and Gauss to Maxwell, Coulomb, and Faraday, physics steadily marched forward, produc-

ing a number of theories which provided remarkably accurate predictions of natural phe-

nomena. Newtonian mechanics predicted the motions of the stars and planets, as well as the

*Evidently, chemistry just needed to reflux for a while before it was ready to crystallize.
†Of course, physics has its own storied history of existentialism, including the radical ideas of Galileo

and others who proposed that the Earth orbited the Sun, and not the other way around.
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manner in which objects behave here on Earth. Thermodynamics explained the behavior

of gases and the transfer of heat between objects, and its principles led to the invention of

the steam locomotive and other major advances throughout the industrial revolution. Elec-

tromagnetism described the behaviors of light waves, including the diffraction of sunlight

into a rainbow of colors by a prism. These theories were so successful, in fact, that by the

middle of the 19th century it was widely believed that they were sufficient to describe all

observable macroscopic phenomena. All that remained in order to label physics a solved

science — which would surely occur by the turn of the 20th century — was to address the

handful of unanswered questions yet to be resolved.*†

1.1.2 Remaining Challenges in Physics

In 1859 and 1860, physicists Balfour Stewart and Robert Kirchhoff independently iden-

tified one such question while they were studying the thermal radiation properties of so-

called “black bodies,” objects which perfectly absorb all incoming radiation. To avoid

becoming indefinitely hot, these objects also emit radiation to achieve thermal equilibrium

with their surroundings. At a given temperature, therefore, a black body will emit a charac-

teristic spectrum of radiation, with certain wavelengths more intense than others, in order

to maintain this thermal equilibrium.‡ Collectively, all of the wavelengths emitted are re-

ferred to as the object’s emission spectrum, and their relative strength (and consequently

the “color” the object appears) is referred to as its spectral intensity. Despite our collec-

*For a discussion and critique of whether we may be approaching the limit from another angle, namely
the lack of testable hypotheses provided by modern advances in particle physics, see Ref. 2.

†As this Thesis is being written in 2020 — more than a century after physics was supposed to have been
solved, however — it should come as no surprise that something big was about to happen. Double, double
toil and trouble...

‡While this phenomenon may seem difficult to conceptualize, it can be illustrated with a simple thought
experiment: imagine a lump of charcoal. At ambient temperature, the briquette is black, but as it is lit and
starts to burn, it begins to appear red, orange, and eventually yellow-white as it gets progressively hotter.
Then, as it cools, the briquette appears to regress in color in the reverse direction. Evidently, the apparent
color of the charcoal depends only on its temperature. The color that the charcoal appears is due to the
particular wavelengths of light being emitted from the charcoal with the highest intensity. Therefore, when
the briquette appears red, it is because the wavelengths emitted from the charcoal corresponding to red light
(approximately 650-750 nm) are the most intense. Similarly, when the briquette appears yellow, it is because
the wavelengths being emitted with the highest intensity are primarily yellow, etc.
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tive familiarity with this concept — after all, “red hot” is a common phrase in the English

language for a reason — predicting the spectral intensity of emitted radiation from an ideal

black body as a function of its temperature proved to be quite a bit more challenging than

was originally anticipated.

Indeed, ever since Stewart and Kirchhoff originally introduced their proofs of this phe-

nomenon, physicists had struggled to explain the spectrum and intensity of blackbody ra-

diation. Several attempts to do so based on classical electromagnetism could reasonably

predict the spectral intensity for large wavelengths (visible and infrared), but would fail

miserably for shorter wavelengths (ultraviolet). Different approaches, relying either on fit-

ting the spectral distribution against empirical measurements or attempting to derive it from

macroscopic formulations of the second law of thermodynamics, however, agreed reason-

ably well with experiment for short wavelengths but diverge for longer ones. Regardless

of approach, all such attempts produced equivalent results: the characteristic spectrum of

blackbody radiation could not be predicted by theoretical arguments based on any existing

physical theories.

At the same time, Kirchhoff and fellow German chemist R. W. Bunsen developed the

foundation of elemental spectrochemical analysis. Built upon the earlier work of physicists

A. J. Ångström and J. B. L. Focault, who as early as 1849 had independently measured that

elemental Hydrogen emitted at four characteristic wavelengths, spectrochemical analysis

leveraged a flame source and state-of-the-art optics to measure the emission (or equiva-

lently, absorption) lines for a given substance to identify its elemental composition. While

electromagnetism was sufficient for describing the behavior of the light once it was emit-

ted, it provided neither an explanation for why only certain wavelengths were emitted from

each element nor could it predict further spectral lines for any elements given the first few.

On the other hand, Sir W. N. Hartley, J. J. Balmer, and finally J. R. Rydberg indepen-

dently observed and developed expressions connecting whole-number ratios to the visible

spectral lines of the Hydrogen atom. While seeming to have no rigorous basis in elec-
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tromagnetism, Rydberg’s expression nevertheless predicted — and subsequently provided

excellent agreement with — further series of Hydrogen atom spectral lines observed by Ly-

man in the ultraviolet and infrared regions of the electromagnetic spectrum. Unfortunately,

however, the Rydberg formula could not be applied to predict the spectra of any element

other than Hydrogen. Like blackbody radiation, it seemed, atomic spectra were among the

phenomena not sufficiently described by existing physical theories.

As the second half of the 19th century continued onward, it became increasingly dif-

ficult to ignore that for phenomena that occurred at the micro- and sub-microscopic scale,

especially in the case of the interaction of light and matter, classical physical theories were

insufficient. Many physicists resisted acknowledging this fact, instead laying blame at the

feet of the instrumentation (and sometimes, even their colleagues) measuring the phenom-

ena for which these macroscopic theories broke down. A bold few, on the other hand, took

inspiration from the world of chemistry, where Dalton’s atomic theory had proven to be a

source of clarity in the field. One of these luminaries was Ludwig Boltzmann, who had

already pioneered the kinetic theory of gases (now widely referred to as kinetic molecu-

lar theory, KMT) during his doctoral studies. Boltzmann’s greatest contribution, however,

was his development of a statistical formulation of the Second Law of Thermodynamics,

inspired by the atomic viewpoint of Dalton which reconciled atomic theory with the pre-

dictions of macroscopic thermodynamics.

In his formulation, the universe’s ever-growing entropy was not an ethereal law, but

rather a probabilistic byproduct of the fact it is relatively more likely to find particles in

a statistically disordered state than an ordered one. Therefore, Boltzmann argued, it is

also more likely for a system to tend towards disorder rather than order, thereby increas-

ing the total entropy or “disorder” in the universe. Unfortunately, as this perspective was

both consistent with and indeed inspired by Dalton’s atomic theory, Boltzmann’s formu-

lation of entropy was rather controversial and drew widespread disapproval from many of

his contemporaries. This disapproval became so pointed that it has been cited as a pos-
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sible influence for Boltzmann’s unexpected and tragic death by suicide in 1906.* Despite

the rejection of his approach, Boltzmann’s formulation of entropy accomplished what his

contemporaries failed to do: reconcile atomic theory with the predictions of macroscopic

thermodynamics. As it would happen, it was precisely this success which provided the

foundation for the next great scientific revolution.

1.1.3 The Quantization Revolution

In December of 1900, more than forty years since its original introduction, the problem

of blackbody radiation was finally solved when Max Planck became the first physicist to

present an expression for the spectral intensity of blackbody radiation which matched ex-

perimental observations over the entire spectral range. Planck derived his expression by

imagining that the radiation emitted from a blackbody was produced by a finite number

of oscillators, amongst which the energy of the radiation emitted from the body was dis-

tributed evenly in finite “energy elements” called quanta,† an idea which was inspired by

Boltzmann’s atomic formulation of entropy. The significance of Planck’s division of the en-

ergy distribution into quanta was largely overlooked until Albert Einstein applied the same

idea to describe light energy in 1905 with his work on the photoelectric effect, and again in

1908 with his treatment of the heat capacity of solids. All of the sudden, the cat was out of

the bag‡ and the significance of quantization, as well as its discrepancy with the predictions

of classical electromagnetism and thermodynamics, could no longer be ignored.

Over the next three decades, an explosion of new physics emerged which revolution-

ized our understanding of both the world around us and our place in it. What began as

a necessary assumption to solve outstanding physical problems was soon enshrined as its

own theory, called quantum mechanics, which describes the behavior of quantized versions

*Even though he had been prone to experiencing depressive episodes throughout his life, it has been
widely suspected that his deteriorating mental health in the period leading up to his suicide was influenced by
the rejection of his atomistic approach to thermodynamics by his contemporaries in the theoretical physics
community.

†Something wicked this way comes!
‡Or, perhaps more appropriately, the box!
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of classically continuous quantities, like energy, at very small length scales. The successes

of Planck’s expression for the spectral intensity of blackbody radiation and Einstein’s work

on the photoelectric effect and the heat capacity of solids were major victories for the bur-

geoning field of quantum mechanics. Furthermore, as they were partially based on Boltz-

mann’s formulation of entropy, they vindicated his controversial “atomistic” approach to

thermodynamics that reconciled John Dalton’s atomic theory with that of macroscopic ther-

modynamics. Even though quantum mechanics (and Boltzmann’s atomism) enjoyed early

victories, the broader acceptance of these new ideas would be predicated on the develop-

ment of a complete atomic theory, an effort which had by this time already been nearly 100

years in the making.

1.1.4 Atomic Theory Redux

Despite the success of Dalton’s atomic theory for describing and predicting chemical phe-

nomena, many physicists resisted “atomism” on the basis that it seemed to disagree with

classical thermodynamics and Newtonian mechanics, where all matter behaves in exactly

the same way regardless of size, and quantities like energy were continuous. Even when

Boltzmann reconciled these two perspectives by developing a microscopic formulation of

entropy, many leading physicists resisted (and even openly ridiculed) atomism because it

seemed to imply that events could be probabilistic, rather than the perfectly deterministic

picture provided by Newtonian mechanics. Aside from hubris and a fundamental dissat-

isfaction with early statistical mechanics, several discrepancies existed between Dalton’s

atomic theory and experiments which fueled the predominant anti-atomic view within the

physics community. Chief among these was that Dalton’s theory rested on the hypothesis

that no particle can be smaller than an atom. Only a few years earlier, however, in 1897,

J. J. Thompson had measured the mass of the electron — the negatively charged particle

responsible for electric current — to be nearly 1,000 times smaller than that of the lightest

atom, Hydrogen. Additionally, in 1900, Henri Bequerel showed that the particles emitted
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from Radium atoms (which had been labelled β particles upon their discovery by Ernest

Rutherford in 1899) were of identical mass and charge to the electron, which seemed to

indicate that electrons somehow came from atoms. Even with these discrepancies, how-

ever, the vindication of Boltzmann’s atomistic formulation of entropy by Planck’s law for

blackbody radiation and by Einstein’s work on the photoelectric effect made it clear that

atomism must contain at least some kernel of truth, even if it was not perfect. This only

further begged the question: what exactly do atoms look like?

In the wake of Bequerel’s finding that electrons seemed to originate from atoms, Thomp-

son proposed that atoms — which were known to be electrically neutral — are made up

of electrons resting in a uniform cloud of positive charge. This model of atomic structure

is referred to as the “plum pudding” model, as the distribution of negatively charged elec-

trons throughout the positive charge cloud resembles chunks of fruit distributed throughout

a traditional English Christmas pudding.* According to the plum pudding model, atoms

should be largely porous, as the only truly “solid” parts of the atom were the tiny electrons

distributed at random throughout the interior of the charge cloud. In 1909, Ernest Ruther-

ford, together with his students Hans Geiger and Ernest Marsden, tested this hypothesis by

firing positively charged α particles (discovered by Rutherford at the same time in 1899

as β particles) at a thin piece of gold foil. If the plum pudding model were correct, the α

particles should be uniformly deflected from their path by only a small angle, which should

depend only on the total charge of the positive atomic cloud.

What the now famous gold-foil experiment revealed, however, was quite astonishing:

instead of a nearly uniform, small angle of deflection, the team observed most of the α

particles fired at the gold foil passed straight through the material, as if there was no ob-

stacle to their passage whatsoever. For a small fraction of particles, however, a very large

deflection angle was measured; the deflection of some particles was so large, in fact, some

*The English are a very strange people. To them, “pudding” refers to a dense, moist cake with fruit and
nuts inside, rather than the gelatinous chocolate, vanilla, or butterscotch flavored concoction sold as part of
Snack Packs© in the United States.
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particles were even deflected backwards towards the particle source, as if the particles had

been baseballs thrown at a massive boulder. The distribution of deflection angles observed

led Rutherford to conclude first that atoms were comprised largely of empty space (allow-

ing the majority of particles to pass through undeflected), and furthermore that all of the

positive charge was concentrated at a single, dense point in the center of the atom called the

nucleus, rather than distributed in a diffuse cloud. This model, published in 1911, hypothe-

sized that electrons orbited the nucleus in much a similar manner to which the planets in our

solar system orbit the Sun, earning it the label the “planetary model” of atomic structure.

As with every other model for atomic structure proposed to that point, Rutherford’s

planetary model was not without its drawbacks. In particular, classical mechanics pre-

dicted electrons in the planetary model should lose energy by emitting light radiation as

they orbit the nucleus, causing them to lose energy and collapse into the nucleus like a

satellite crashing back into the Earth after running out of fuel. To address this deficiency,

Danish physicist Niels Bohr proposed in 1913 that electrons revolve around the nucleus in

certain stable orbits, with radius determined by the electron’s angular momentum. Bohr

derived this result by assuming that the electron’s angular momentum could only take on

integer multiples of Planck’s constant — in other words, by assuming electronic angular

momentum was quantized. The results of this quantization were threefold: first, energy

could only be gained or lost by an electron in discrete chunks; second, electrons could only

move between orbits by leaping directly from one to the other, without moving through the

space in between; and third, the energy gained or lost by an electron is in the form of light

energy emitted or absorbed by the electron, the magnitude of which corresponds exactly to

the difference in energy between the two orbits.

At the time, Bohr’s model was a triumph: not only did it corroborate Rutherford’s

model of the atom, but it also was able to exactly reproduce — and provide a theoretical ar-

gument for — the emission spectrum of the Hydrogen atom, which as discussed above had

been a source of consternation since even before blackbody radiation. Furthermore, Bohr’s
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model provided the means by which to rigorously define the value of the Rydberg con-

stant in terms of more fundamental quantities like the charge of the electron and Planck’s

constant, which beforehand had only been known empirically. Apparently, however, there

was once again more physics to be discovered, as even Bohr’s model failed to predict the

emission spectra for any atom with two or more electrons.

1.1.5 Towards a General Formulation of Quantum Mechanics

Through the first two decades of the twentieth century, all applications of “quantum me-

chanics” had been phenomenological (i.e., applied specifically to address particular un-

solved problems) rather than having been developed into a theory which is generally ap-

plicable. The key to making this leap was published in 1924 as part of likely the most

influential doctoral thesis of all time: Researches on the quantum theory by Louis de

Broglie. Starting from Einstein’s special relativity, which posited that light experiences

wave-particle duality where photons can act both as a wave and as a particle (albeit one

without mass), de Broglie showed electrons also experience wave-particle duality, and can

behave both as a point particle and as a “matter wave.”* Furthermore, de Broglie postulated

that the wavelength for a particle with mass m travelling with velocity v was determined

completely by these quantities.† This discovery led to the independent development in

1926 of two comprehensive formulations of a general quantum theory: matrix mechan-

ics, proposed by Werner Heisenberg, Max Born, and Pascual Jordan, and wave mechanics,

proposed by Erwin Schrödinger. These two formulations of quantum mechanics, though

initially at odds, were later shown to be equivalent by John von Neumann and Marshall

*The first observation of the wave nature of matter was made in 1927 by Clinton Davisson and Lester
Germer, when they measured that the diffraction pattern of a beam of electrons incident upon a nickel surface
was identical to that of X-ray radiation. Thanks to their confirmation of wave-particle duality, Louis de
Broglie won the Nobel Prize in Physics in 1929; Davisson then went on to share part of the 1937 Nobel Prize
in Physics for the 1927 experiment.

†The de Broglie wavelength provides a heuristic for evaluating when it is necessary to apply quantum,
rather than classical, mechanics to describe the dynamics of a particle: if the de Broglie wavelength for a
particle is within approximately three orders of magnitude (∼1,000×) of the particle’s diameter, then quantum
mechanics is more appropriate than classical mechanics.
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Stone in 1931.*

As stated above, chemistry is the study of the transfiguration of matter from one form

into another. Referred to as chemical reactions, these processes typically involve the trans-

fer of one or more atoms or electrons from one molecule to another. Based on the de Broglie

wavelength, typical chemical processes should be expected to be governed by quantum me-

chanics;† in order to develop a complete understanding of chemical phenomena, therefore,

we must build from a foundation of quantum mechanics. This task was first begun in

1927, within a single year of the introduction of wave- and matrix mechanics, when Walter

Heitler and Fritz London‡ used the Schrödinger picture of the Hydrogen atom to describe

the interatomic interaction in molecular Hydrogen, H2. Heitler referred to this interaction

as a covalent bond, which he characterized by the sharing of the two electrons brought by

each Hydrogen atom between the two nuclei in the molecule.

The next year, in 1928, this idea was generalized into the now-famous valence bond

theory by Linus Pauling, in which a bond is comprised of one or more pairs of electrons

shared between adjacent atomic nuclei in a molecule. At the same time, Robert Mulliken

and Friedrich Hund developed a rival bonding theory known as molecular orbital theory, in

which the local “bonds” between adjacent atoms from valence bond theory were replaced

by molecular orbitals (MOs) which extended spatially over the entire molecule. Finally,

then, in 1929, John Lennard-Jones introduced the notion that the molecular orbitals of

Mulliken and Hund could be approximately constructed by taking a linear combination

of Hydrogen-like “atomic orbitals” (AOs). This approach, referred to as LCAO-MO, has

become the de facto bonding theory leveraged by chemists the world over to rationalize

and predict chemical reactivity, geometry, and stability, among a host of other behaviors.

It must be noted, however, that the LCAO-MO approach is not — for all its popularity —

*Due only to the convenience of representation and more straightforward formulation, we will develop
the basic framework of quantum mechanics in Chapter 2 using the Schrödinger formulation.

†For example, a water molecule at room temperature in the liquid phase will have de Broglie wavelength
approximately 25% of the largest dimension of the water molecule itself. Since this is well within the heuristic
limit of 1000×, quantum mechanics is the proper governing theory.

‡London, of “dispersion” fame, will turn out to be of central historical importance to this Thesis.
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the truth, but rather a convenient construction allowing for the very abstract to be made (at

least somewhat) tangible, a concept which will be explored more fully in Chapter 2. Let

us therefore abandon our purely historical discussion in favor of considering the particular

chemical phenomena of interest to this Thesis: non-covalent interactions.

1.2 Non-Covalent Interactions in Chemistry, Biology, and Physics

Based on our prior understanding of what constitutes a covalent bond, a non-covalent in-

teraction (NCI) is any interaction between nearby atoms and/or molecules which does not

expressly involve the sharing of a pair of electrons between the participating species. In-

cluded under the umbrella of NCI, therefore, are the attraction or repulsion felt between

charged (ionic) or even neutral species with uneven distribution of electrons (i.e., dipolar,

quadrupolar, etc. molecules), as well as a host of other intermolecular forces with a variety

of underlying physical causes. In the earliest conceptualization of an atomic theory, Dem-

ocritus and Leucippus envisioned that atoms would come together and join mechanically to

create new substances, whose properties were distinct from those of the constituent atoms;

depending, rather, on the manner of interaction between the atoms themselves. As it turns

out, this picture corresponds better to molecules than to atoms, where the mechanical in-

teractions envisioned by Democritus and Leucippus are actually NCI. While molecules do

not often mechanically interlock with one another in the manner imagined by early atom-

ists, their intuition that the macroscopic properties of a substance are dependent upon the

manner in which its particles interact was remarkably prescient. Indeed, NCI govern both

a substance’s phase diagram and a host of other physical properties, including its density,

surface tension, enthalpy of vaporization, and solubility.

In addition to these physical properties, NCI also play a vital role in chemical reactivity

and mechanism. This may seem counterintuitive,* however an extremely diverse array of

reactions are influenced by steric effects, which arise when atoms or molecules “crowd”

*Didn’t we just define NCI to be non-bonding interactions?
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each other. This does not mean different species literally touch one another; rather, they

repel each other because their proximity is energetically unfavorable.* Finally, NCI play

a critical role in nearly every biochemical process. This includes the molecular recogni-

tion critical for intra- and intercellular signalling, allosteric or inhibitory control of enzyme

function, and even the translation and transcription processes which transforms genetic in-

formation (itself dependent on NCI for storage and replication!) into proteins. Due to their

ubiquitous role in governing this myriad of biological, chemical, and physical properties

and processes, understanding the fundamental nature of NCI and the manner in which NCI

control these processes is of central importance to understanding these phenomena. So,

how can we study NCI themselves?

NCI could be probed indirectly by observing the processes controlled by them; this is

the case for inferring that water–water interactions are stronger than He–He interactions

due to the drastic difference in these substances’ boiling points. While this may seem

crude, many clever and sophisticated experiments have been devised which can offer a

great deal of insight from even this type of indirect observation. Far from observing the

effects of non-covalent interactions on macroscopic chemical or physical behavior, how-

ever, investigating these interactions within a particular chemical system of interest can be

a significant challenge. To do this, competition experiments or mass spectrometry can be

utilized. Despite the ability of these (and other) experimental approaches to directly or

indirectly quantify the strength of non-covalent interactions in a particular chemical sys-

tem, they unfortunately cannot inform the optimization of these interactions by providing

further insight into the cause of the interactions themselves.

In contrast, investigations of non-covalent interactions undertaken from a strictly the-

oretical perspective — built upon the quantum mechanical description of the atoms and

molecules participating in the interaction — can provide the insight necessary to rationally

design optimally interacting systems by answering questions not only of how NCI influ-

*We will discuss this effect in much greater detail in Chapter 3, but for now, think of it like someone on
the bus invading your personal space.

14



ence a chemical or physical process, but also why. Furthermore, theoretical investigations

are predictive without ever needing to step into the laboratory and before performing even a

single experiment, making them a green approach to molecular design. For these and many

other reasons, theoretical investigation of NCI (among a host of other observable prop-

erties) has become a routine and integral part of chemical scientific discovery, especially

when combined with subsequent experimental investigation. Towards this end, it is the

goal of this Thesis to contribute to the existing body of knowledge regarding the theoretical

investigation of non-covalent interactions by electronic structure theory, and to extend the

current state of the art to the investigation of NCI directly within extended and complex

chemical environments.

1.3 Prospectus

This Thesis will be organized into four Parts, each concerned with telling a piece of the

story. In Part I, Chapters 2 and 3 will present the background information needed to make

the rest of thesis accessible, aimed at at the advanced undergraduate and junior graduate

level. In Part II, Chapters 4 and 5 will describe efforts to benchmark non-covalent interac-

tions and the geometries of non-bonded complexes using explicitly correlated variants of

coupled cluster theory, density functional theory, and symmetry-adapted perturbation the-

ory, in order to obtain “the right answer for the right reasons.”* Next, in Part III, Chapter 6

will discuss efforts to develop an approximate, semi-empirical variant to symmetry-adapted

perturbation theory which can be applied to large chemical systems while still achieving

high accuracy relative to reference interaction energies. Finally, in Part IV, Chapter 7 will

discuss the application of both existing as well as our developed methodologies to address

interesting questions in diverse chemical systems, namely to understand how NCI between

solute molecules are tuned by their solvent environment.

*This quote is taken from reviewer comments on the publication reproduced in Chapter 4. Even though
it was slightly annoying at the time, I have since come to agree with this reviewer: getting the right answer
for the right reason, rather than dumb luck, is so much more satisfying.

15



PART I

THEORETICAL BACKGROUND TO THE THESIS PROJECT

16



CHAPTER 2

INTRODUCTION TO ELECTRONIC STRUCTURE THEORY

Almost as soon as general frameworks for quantum mechanics were introduced (wave me-

chanics by Schrödinger and matrix mechanics by Heisenberg, Born, and Jordan) in 1926,

the race to apply these newly proposed theories to rationalize chemical phenomena was on.

Heitler and London were the first to successfully do so, when in 1927 they described the

covalent bond in molecular hydrogen using Schrödinger’s wave mechanics. Application

of quantum mechanics to more complex molecules, however, required that a more general

approach be developed. Towards this end, Pauling proposed valence bond (VB) theory in

1928 and Mulliken & Hund proposed molecular orbital (MO) theory in 1929. While both

of these approaches provided a general bonding theory for arbitrary molecules, it became

clear to the community that they were each too complex to be applied exactly. Indeed, as it

was famously stated by Dirac in 1929,3

“The underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and the

difficulty is only that the exact application of these laws leads to equations

much too complicated to be soluble. It therefore becomes desirable that ap-

proximate practical methods of applying quantum mechanics should be devel-

oped, which can lead to an explanation of the main features of complex atomic

systems without too much computation.”

In this Chapter, we will first introduce both the “insoluble” working equations of non-

relativistic quantum mechanics, as well as presenting their simplified forms for atoms and

molecules in electronic structure theory. We will then take inspiration from Dirac by in-

troducing several approximate, practical methods for applying this theory to understand

chemical phenomena, developed in the intervening 91 years since his prophecy. Finally,
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we will discuss several practical considerations which must be kept in mind when utilizing

the approaches developed here, as well as their consequences for the results presented in

the remainder of the Thesis.

2.1 Basic Formulation

Electronic structure theory is concerned with solving the non-relativistic, time-independent

Schrödinger equation

Ĥ Ψ = E Ψ, (2.1)

where the fundamental quantity of interest is the wavefunction, Ψ, which contains all in-

formation necessary to compute any observable property of the system, E is the energy of

the system, and Ĥ is the non-relativistic, time independent Hamiltonian operator. For a

molecule, the Hamiltonian Ĥmolec is given by

Ĥmolec = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.2)

Ĥmolec = −T̂e − T̂N − V̂eN + V̂NN + V̂ee, (2.3)

whose terms arise from (i) the kinetic energy of the electrons, (ii) the kinetic energy of

the nuclei, (iii) the electron–nuclear attraction, (iv) the electron–electron repulsion, and (v)

the nuclear–nuclear repulsion. For atoms and molecules more complex than the Hydrogen

molecular ion H+
2 , the analytic solution to this equation is not known; to describe atoms

and molecules with more than one electron, and more than two nuclei, therefore, a hierar-

chy of approximations must be made and various approximate solution methods must be

employed.
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2.2 Approximate Solution Methods

For several famous equations in physics, no analytic or general solution is known. In this

section, we will briefly introduce two approximate solution methods employed throughout

the rest of this and the following Chapter, and indeed the entire Thesis: linear variation and

perturbation theory.

2.2.1 The Method of Linear Variations

Before moving on to discuss the various approximations which must be invoked to make

solving the Schrödinger equation possible, we must first address how we will know that any

approximate wavefunction is good enough. For this, we introduce the Variation Principle,

as stated (and proved) in Ref. 4:

Theorem 2.2.1.1 (The Variation Principle). Given an eigenvalue problem

Ôφ = ωφ,

where Ô is a Hermitian operator and a normalized trial function ψ with the appropriate

boundary conditions, the expectation value of Ô by ψ will always be an upper bound to the

exact value of the lowest eigenvalue, ω0:

〈ψ | Ô |ψ 〉 ≥ ω0

Therefore, a trial wavefunction Ψ̃ which approximately solves the Schrödinger equation

will be improved by adjusting the parameters (or functional form, etc.) in such a way that

the expectation value 〈 Ψ̃ | Ĥ | Ψ̃ 〉 is lowered. In general, then, this will be our strategy: to

construct a trial wavefunction and iteratively adjust it so that its expectation value with the

exact Hamiltonian operator is lowered.
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2.2.2 Rayleigh-Shrödinger Perturbation Theory

Alternatively, let’s assume that Ĥ is separable into a piece which can be solved exactly,

denoted Ĥ(0) and referred to as the zeroth-order Hamiltonian, plus some small additional

perturbation V̂ ,

Ĥ = Ĥ(0) + λV̂ , (2.4)

where λ ∈ [0, 1] is referred to as the perturbation strength. Considering the full Schrödinger

equation defined by Ĥ ,

Ĥ |Ψ 〉 =
(
Ĥ(0) + λV̂

)
|Ψ 〉 = En(λ)|Ψn(λ) 〉, (2.5)

where the exact eigenvectors and eigenvalues are now functions of the perturbation strength.

Since it is not clear exactly how the energy and wavefunction depend on λ, we may expand

them as Taylor series about λ = 0:

|Ψn(λ) 〉 = |Ψn 〉|λ=0 +
∂|Ψn 〉
∂λ

∣∣∣∣
λ=0

λ+
∂2|Ψn 〉
∂λ2

∣∣∣∣
λ=0

λ2

2!
+ · · ·+ ∂k|Ψn 〉

∂λk

∣∣∣∣
λ=0

λk

k!
+ · · ·

(2.6)

En(λ) = En|λ=0 +
∂En
∂λ

∣∣∣∣
λ=0

λ+
∂2En
∂λ2

∣∣∣∣
λ=0

λ2

2!
+ · · ·+ ∂kEn

∂λk

∣∣∣∣
λ=0

λk

k!
+ · · · (2.7)

For the sake of brevity, let the Taylor coefficients in these expansions be denoted

|Ψ(k)
n 〉 =

1

k!

∂k|Ψn 〉
∂λk

∣∣∣∣
λ=0

(2.8)

E (k)
n =

1

k!

∂kEn
∂λk

∣∣∣∣
λ=0

; (2.9)
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then, the exact wavefunction and energy will be given by

|Ψn 〉 = |Ψ(0)
n 〉+ |Ψ(1)

n 〉λ+ |Ψ(2)
n 〉λ2 + · · ·+ |Ψ(k)

n 〉λk (2.10)

En = E (0)
n + E (1)

n λ+ E (2)
n λ2 + · · ·+ E (k)

n λk. (2.11)

Substituting these expansions into the full Schrödinger equation yields

(
Ĥ(0) + λV̂

)[ ∞∑
k=0

λk|Ψ(k)
n 〉

]
=

[
∞∑
k=0

λkE (k)
n

][
∞∑
k=0

λk|Ψ(k)
n 〉

]
(2.12)

For this expression to be true for all λ ∈ [0, 1], the terms on the left hand side must equal

the terms on the right hand side for a given power of λ. By equating the terms which are

zeroth-order in λ, we have

Ĥ(0)|Ψ(0)
n 〉 = E (0)

n |Ψ(0)
n 〉; . (2.13)

Therefore, the “zeroth order correction” to the energy and wavefunction are the zeroth-

order energy and wavefunction themselves. Continuing this process, it can be shown that

|Ψ(1)
n 〉 =

∑
m6=n

〈Ψ(0)
m | V̂ |Ψ(0)

n 〉
E (0)
m − E (0)

n

|Ψ(0)
m 〉 (2.14)

E (1)
n = 〈Ψ(0)

n | V̂ |Ψ(0)
n 〉, (2.15)

by collecting terms which are first-order in λ, and also that the kth order energy correction*

is given by

E (k)
n = 〈Ψ(0)

n | V̂ |Ψ(k−1)
n 〉. (2.16)

Ideally, subsequent correction orders will provide corrections which are progressively

smaller in magnitude, i.e., that the Taylor expansions of the exact energy and wavefunc-

*The derivation for the expression of the kth order wavefunction is beyond the scope of this discussion,
and is therefore omitted.
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tion are convergent series. Unfortunately, this is not typically the case: not only are these

series not guaranteed to be convergent, where the corrections monotonically decrease in

magnitude, in practice they often actually diverge. Therefore, while RSPT was developed

to provide systematically improvable approximate solutions to any Schrödinger equation

which is not analytically solvable, it is best applied in low perturbation orders (i.e., for

k ≤ 4) to problems for which the perturbation V̂ is small in magnitude. Otherwise, the ex-

pansions in λ can diverge rapidly, and even low-order corrections can be suspect. Cautions

aside, RSPT is a magnificent tool when applied within its scope, and can be used to derive

approximate solutions for everything from a particle in a “slanted” box (where V̂ = x) to

the anharmonic oscillator. For our purposes here, however, its most relevant application

is to computing the correlation energy, to be defined below, which will be developed and

discussed in greater detail in Section. 2.7.2.

2.3 The Born–Oppenheimer Approximation

Now that we have a general strategy for approximately solving the Schrödinger equation,

we can move on to the actual attempt. The most common first approximation to this equa-

tion originally introduced by Max Born and J. Robert Oppenheimer in 19275 is to assume

that the momenta of the nuclei are sufficiently small compared to that of the electrons, that

the nuclei of a molecule would appear stationary from the electrons’ perspective. This is

due to the nearly 1,800× larger mass of a proton than that of an electron. Referred to as the

Born–Oppenheimer (BO) approximation, the nuclei can therefore be effectively “clamped”

in place to reduce the total molecular Hamiltonian to one only explicitly dependent on elec-

tronic coordinates:

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(2.17)

Ĥelec = −T̂e(r)− V̂eN(r; R) + V̂NN(R) + V̂ee(r). (2.18)
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In this new electronic Hamiltonian, since the nuclei are stationary, the nuclear kinetic en-

ergy is zero and the nuclear-nuclear repulsion is a constant. Furthermore, the electron–

nuclear attraction is only parametrically dependent on the nuclear positions, denoted by

separating the electronic coordinates (r) from the nuclear ones (R) by a semicolon. Under

the Born–Oppenheimer approximation, the Schrödinger equation becomes

ĤelecΦelec(r; R) = Eelec(R)Φelec(r; R) (2.19)

where the electronic energies Eelec now depend explicitly on the nuclear positions R. There-

fore, for a polyatomic molecule of M atoms, the nuclear positions R define a 3M − 6 di-

mensional potential energy surface (PES) (or 3M−5 dimensional if the molecule is linear)

upon which the nuclei rest. In the field of electronic structure theory, the primary concern

is with solving the electronic Schrödinger equation for a given set of nuclear positions; of-

ten, this is sufficient, however some dynamical properties which require nuclear dynamics

can require that the full PES be constructed, upon which the nuclear trajectories can be

propagated.

2.4 Independent Particle Models

Even after decoupling the electronic and nuclear degrees of freedom by invoking Born–

Oppenheimer, unfortunately, the problem of solving the electronic Schrödinger equation

does not become any more tractable: there is still the problem of multiple interacting elec-

trons. The simplest approximation which could address this issue would be to assume that

the electrons do not interact; under this assumption, the electron-electron repulsion would

be zero, and the Hamiltonian would become

Ĥ =
N∑
i=1

ĥ(i), (2.20)
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where each ĥ(i) consists of the kinetic and potential energy operators corresponding to

electron i. These one-particle Hamiltonian operators define their own Schrödinger equa-

tions,

ĥ(i)χj(xi) = εjχj(xi), (2.21)

where xi = (ri, σi) collects both spatial (r) and spin (σ) coordinates for electron i, and

the set of eigenfunctions {χj} referred to as “spin orbitals.” The independent particle

Schrödinger equation is given by

[
N∑
i=1

ĥ(i)

]
ΨHP = EΨHP, (2.22)

where the eigenfunctions are a simple product of the one-electron spin orbitals

ΨHP = χi(x1)χj(x2) · · ·χn(xN). (2.23)

For this wavefunction, referred to as a Hartree product (HP), the subscripts on the variables

x denote the electrons (which are different than the identities of the spin orbitals), and the

energy eigenvalue will be a sum of the spin orbital energies

E = εi + εj + . . .+ εn. (2.24)

As was assumed when constructing the independent-particle Hamiltonian, individual elec-

trons described collectively by a HP wavefunction are fully uncorrelated, i.e., their motions

do not influence one another. From our wavefunction, it is clear that we have completely

distinguished each electron from all others, since electron 1 is in spin orbital χi, electron

2 is in spin orbital χj , and so on. As we will see in the next section, this unfortunately

violates a postulate of quantum mechanics — the famous Pauli Antisymmetry Principle.

24



2.5 The Antisymmetry Principle and Slater Determinants

Since in this Thesis we are working within a non-relativistic formulation of quantum me-

chanics, our Hamiltonian operators do not depend on electron spin. Since the Hamilto-

nian is spin-independent, our wavefunctions could be defined either over spatial (r) or spin

[x = (r, ω)] coordinates. When incorporating relativistic effects, however, particle spin

leads to drastically different behavior for fermions and bosons. Bosonic wavefunctions,

where the particles have integer spin, are said to be symmetric with respect to the inter-

change of particles, while fermionic wavefunctions, where the particles have half-integer

spin, are antisymmetric with respect to particle exchange.* To illustrate this concept, let

us first define the permutation operator P̂ij , which permutes two particles i and j by ex-

changing their coordinates xi and xj . Next, consider a wavefunction φ describing two He2+

particles (each of which has spin 0), specified with coordinates x1 and x2. Since bosonic

wavefunctions are symmetric, applying the permutation operator to the wavefunction pro-

duces a result which is equal to the original one:

P̂12φ(x1,x2) = φ(x2,x1) = φ(x1,x2)

Fermionic wavefunctions, on the other hand, are antisymmetric with respect to particle ex-

change. Considering now a two-electron wavefunction ψ(x1,x2), the exchange of particle

coordinates results in the negative of the original wavefunction:

P̂12ψ(x1,x2) = −ψ(x2,x1)

*This behavior is incorporated into fermionic wavefunctions even for the non-relativistic Schrödinger
equation by accepting the antisymmetry principle as a postulate.
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From this expression, it should be clear why our Hartree product wavefunction is unsatis-

factory, since it fails to be antisymmetric with respect to electron exchange:

P̂12ΨHP = P̂12χi(x1)χj(x2) · · ·χn(xN)

= χi(x2)χj(x1) · · ·χn(xN)

6= −χi(x2)χj(x1) · · ·χn(xN)

= −ΨHP

Even though the Hartree Product is not a suitable wavefunction, however, all is not

lost. We could obtain an appropriately antisymmetrized wavefunction by constructing the

following linear combination of the original and permuted Hartree products:

Ψ(x1, x2) =
1√
2

[χi(x1)χj(x2)− χj(x1)χi(x2)] (2.25)

It is trivial to verify that this is indeed an antisymmetric wavefunction by applying our

permutation operator over electrons 1 and 2:

P̂12Ψ(x1, x2) =
1√
2

[χi(x2)χj(x1)− χj(x2)χi(x1)]

= − 1√
2

[χi(x1)χj(x2)− χj(x1)χi(x2)]

= −Ψ(x1, x2)

Now that we have constructed a suitably antisymmetric wavefunction, we are free to com-

plain about more inconsequential details, like how annoying it will be to antisymmetrize

an N -electron Hartree product. Fortunately for mine and every other quantum chemists’

sanity, John Slater realized that the antisymmetrized Hartree product above could be more
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compactly represented as the determinant of a 2×2 matrix,

Ψ(x1, x2) =
1√
2

∣∣∣∣∣∣∣
χi(x1) χj(x1)

χi(x2) χj(x2)

∣∣∣∣∣∣∣ .
This Slater determinant can then be easily generalized to an N -electron wavefunction

Ψ(x1, x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) · · · χk(x1)

χi(x2) χj(x2) · · · χk(x2)

...
...

. . .
...

χi(xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.26)

which we will always assume to be written in this order and adopt the notation introduced

in Ref. 4, where the normalized Slater determinant is represented by a ket* containing the

spin orbitals (or equivalently, their indices),

Ψ(x1, x2, . . . ,xN) = |χiχj · · ·χk 〉 = | i j · · · k 〉. (2.27)

From Coulomb’s law, we know that electrons should repel one another; indeed, this

electron-electron repulsion creates what is known as a Fermi hole around each electron

where the probability of finding any other electron is zero. Since it is truly an independent

particle model, the Hartree product wavefunction completely ignores this behavior: since

the motions of any two electrons are uncorrelated, there is a finite probability of violating

the Fermi hole. Unlike the Hartree product, however, the picture provided by a Slater

determinant wavefunction is one where the movements of electrons with parallel spin (i.e.,

with all α or all β spin) are correlated, while those with antiparallel spin (i.e., α − β

pairs) are not. Therefore, electrons with parallel spin obey the Fermi hole, even though

antiparallel spin electrons do not. This phenomenon is referred to as exchange correlation,

*“Kets” and “bras” refer to Dirac notation for denoting elements of a Hilbert space. See Ref. 4 for an
overview.
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as it arises only from the antisymmetrization of the wavefunction with respect to particle

exchange. Even though a Slater determinant is formally half-correlated, since parallel-

spin electrons are correlated but antiparallel-spin electrons are not, it is often referred to as

uncorrelated because of a concept more fully explored in Section 2.7.

2.6 Hartree–Fock Molecular Orbital Theory

Now that we have constructed the simplest antisymmetric wavefunction for an N -electron

system, a Slater determinant of N spin orbitals, let us apply the Variation Principle to

obtain an approximate solution to the electronic Schrödinger equation. Given such a Slater

determinant |Ψ0 〉 = |χiχj · · ·χk 〉, the Variation Principle states that the best |Ψ0 〉 is the

one for which the expectation value of the electronic Hamiltonian,

E0 = 〈Ψ0 | Ĥelec |Ψ0 〉, (2.28)

is minimized; for our trial function |Ψ0 〉, the variational flexibility lies in the choice of the

spin orbitals {χi}.

2.6.1 The Hartree–Fock Equations

By minimizing E0 with respect to the spin orbitals, it is possible to derive* the Hartree–

Fock equations

f̂(i)χ(xi) = εχ(xi), (2.29)

which are a set of N coupled integro-differential equations defined by the Fock operator

f̂(i) = −1

2
∇2
i −

∑
A=1

M
ZA
riA

+ vHF(i), (2.30)

*For a complete derivation of the Hartree–Fock and Roothaan equations, as well as all operators, inte-
grals, and basis functions, we refer the reader to Chapters 2 and 3 of Ref. 4.
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where vHF(i) is the average potential experienced by the ith electron in the field of all other

electrons. The Hartree–Fock energy, E0, is given by

E0 =
∑
a

[ a | ĥ | a ] +
1

2

∑
a

∑
b

[aa||bb] , (2.31)

where [aa||bb] refers to the antisymmetrized two-electron integral

[aa||bb] = [aa|bb]− [ab|ba] , (2.32)

between the “Coulomb” integral

[aa|bb] =

∫
dx1 dx2 χ

∗
a(x1)χa(x1)

1

r12

χ∗b(x2)χb(x2) (2.33)

representing the electron-electron repulsion between two electrons with coordinates x1 and

x2 occupying spin orbitals χa and χb, and the “exchange” integral

[ab|ba] =

∫
dx1 dx2 χ

∗
a(x1)χb(x1)

1

r12

χ∗b(x2)χa(x2) (2.34)

(since the indices have been exchanged from the Coulomb integral) which, unfortunately,

does not have such a convenient physical interpretation. Collectively, these two-electron

integrals are referred to as electron repulsion integrals (ERIs), since they arise from the

effective potential operator vHF(i); commonly, the Coulomb integral is denoted Jab, and

the exchange integral is denoted Kab. This set of N Hartree–Fock equations is coupled due

to the potential operator, as every spin orbital feels the potential induced by all other spin

orbitals. The Fock operator is, however, a one electron operator because it only operates

on a single electron at a time. Therefore, we have removed the explicit dependence of the

electronic Hamiltonian on the reciprocal of the interelectronic distances, 1/rij , by replacing

this potential with a mean field; this fact has earned Hartree–Fock theory the moniker of a
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mean field theory.

Transitioning from Spin to Spatial Orbitals

Even though we have recast our N -electron problem into a set of N coupled one-electron

problems, the Hartree–Fock equations given above present a particular challenge to solve in

practice. Not only must the set of integro-differential equations be solved simultaneously,

but the Slater determinant wavefunction is comprised of spin orbitals, each involving some

mysterious functions α(ω) and β(ω) multiplied by different, one-electron spatial functions.

If we assume, however, that electrons with opposite spin are paired and are restricted to

share a single spatial orbital, it can be shown4 that the spin coordinate ω can be integrated

away to yield the restricted Hartree–Fock (RHF) equations,

f̂(i)ψ(ri) = εψ(ri), (2.35)

where our orbitals ψ(ri) are now exclusively spatial.* The restricted Hartree–Fock energy

for a closed-shell (where all electrons are paired) ground state is

E0 = 2
∑
a

( a | ĥ | a ) +
∑
ab

2 (aa|bb)− (ab|ba) , (2.36)

where the parentheses in the electron repulsion integrals denote Chemist’s notation over

spatial orbitals, rather than the spin orbitals as defined above. Using J and K notation, and

*At this point, I believe it is worth mentioning that several mathematical artifacts employed in the deriva-
tion of the RHF equations are nearly always enshrined in any General Chemistry course as chemical truth:
that electrons of opposite spin are somehow paired, and that because of this they are somehow allowed to
occupy the same region of space. As we have seen, however, this entire statement is a lie; not only do “or-
bitals” not exist, as they are just a convenient picture we invoke because we’ve no better ideas to represent
an N -electron molecular wavefunction, but electrons of opposite spins are not paired and they cannot occupy
the same region of space, as the Fermi hole formally prevents this. As a personal aside, I find the truth that it’s
all an illusion we’ve created for ourselves much more comforting than the possibility that these phenomena
just happen, and that we have no idea why.
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denoting haa = ( a | ĥ | a ), this can be rewritten more compactly as

E0 = 2
∑
a

haa +
∑
ab

2Jab −Kab (2.37)

2.6.2 The Introduction of a Basis Set: The Roothaan Equations

After eliminating spin, the task still remains to solve the coupled set of N spatial Fock

equations, which is not possible by direct or numerical means for all but atomic systems.

Instead, Roothaan proposed to introduce a set of K basis functions {φµ(r)} and expand the

spatial orbitals ψi as a linear combination of these basis functions:

ψi =
K∑
µ=1

Cµiφµ (2.38)

Therefore, from a linear combination of “atomic orbitals,” Hartree–Fock (via the Roothaan

equations) constructs molecular orbitals. From our chemical intuition, it seems sensible for

these basis functions to resemble Hydrogen-like orbitals, since the H-atom wavefunction

exactly describes the behavior of a single electron as it orbits the nucleus.* Rather than use

exact Hydrogen atom functions, however, Slater proposed that basis functions should take

the form

φSTO
abc (x, y, z) = Nxaybzce−ζr, (2.39)

whereN is a normalization constant, a, b, and c control angular momentum (L = a+b+c),

and ζ controls the width of the orbital, with large ζ corresponding to a tight orbital and small

ζ corresponding to a diffuse orbital.

While these Slater type orbitals (STOs) are Hydrogen-like for L = 0 (i.e., for s or-

bitals), they are not for other angular momenta since they do not contain exact spherical

harmonics to describe the angular distributions of orbital amplitude. STOs are not typically

*This is, of course, the same intuition that led Lennard-Jones in 1929 to develop the LCAO-MO approach
for constructing the molecular orbitals described by Mulliken and Hund.
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used in practice, however, as evaluating electron repulsion integrals using STOs is compu-

tationally intensive. Instead, it is much more common to utilize Gaussian type orbitals

(GTOs),

φGTO
abc (x, y, z) = Nxaybzce−ζr

2

, (2.40)

in which the simple exponential is replaced by a Gaussian function, because the Gaussian

product theorem allows for one- and two-electron integrals to be evaluated much more

rapidly for GTOs than STOs. Of course, GTOs are no longer Hydrogen-like even for

L = 0, and deviate significantly from the more exact STOs as r → 0 and r → ∞. This

deficiency for GTOs may be remedied by approximating a STO with a linear combination

of GTOs:

φCGTO
abc (x, y, z) = N

n∑
i=1

cix
aybzce−ζr

2

(2.41)

As the number of GTOs in the expansion increases, the agreement between this “contracted

GTO” (CGTO) and a STO improves, thereby increasing the accuracy of the computation.

Due to the combination of convenience and increased accuracy, therefore, CGTOs are the

standard choice of basis function among quantum chemists.*

The simplest method for constructing a basis set — the set of basis functions utilized

in Eqn. 2.38 — is to use a single basis function (CGTO) for each electron in a molecule,

referred to as a minimal basis. The accuracy for energies or properties computed in a

minimal basis is, unfortunately — you guessed it — minimal. Aside from either using

more primitives in the construction of each CGTO or switching entirely to STOs (both of

which significantly increase the cost of integral evaluation), the best method by which to

improve the accuracy of the basis set (and thereby the computed energy or property) is to

utilize more than one basis function for each electron. In this approach, the number of basis

functions included for each electron is indicated by referring to the basis set as a double-

*To distinguish between the GTOs which comprise a single CGTO and the set of CGTOs which together
form the basis set leveraged in Eqn. 2.38, we will refer to the raw GTOs as “primitive basis functions” (or
more simply, “primitives”), reserving the term “basis functions” for the CGTOs they comprise.
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, triple-, or even quadruple-ζ basis set, with marked increases in accuracy afforded by

moving to larger ζ-levels without significantly increasing the computational effort required

to evaluate integrals. While many different types of basis sets exist, and indeed the design

of new basis sets are still an active area of research, we will only concern ourselves with the

choice of basis set in this Thesis, rather than worrying about the details of their construction.

Returning to Roothaan and his introduction of a basis set, we must substitute Eqn. 2.38

into the Fock equations in order to proceed. Before we do, however, we must recognize

that even if the basis functions Eqn. 2.38 could be guaranteed to be mutually orthogonal

by construction if they are centered on the same atom, there can definitely be no guarantee

that basis functions centered on different atoms of the same molecule will be similarly

orthogonal. Therefore, we introduce the overlap integral, Sµν , between basis functions φµ

and φν :

Sµν =

∫
dr1 φµ(1)φν(1) (2.42)

Now substituting our basis set expansion into the RHF equations, we transform this set of

coupled integro-differential equations into a linear algebra problem known as the Roothaan

equation:

FC = SCε (2.43)

C is the orbital coefficient matrix, collecting the Cµi’s from Eqn. 2.38 for all molecular

orbitals, ε is a diagonal matrix containing the orbital energies {εi}, and where F is the Fock

matrix, with elements

Fµν =

∫
dr1 φµ(1)f̂(1)φν(1). (2.44)

At this point, we will refer to the set of basis functions {φµ} as atomic orbitals (AOs),

which will always be labeled with Greek letters µ, ν, λ, σ, etc., to differentiate them from

the set of occupied one-electron molecular orbitals (MOs) {ψi} which are produced by the

Hartree–Fock procedure, labeled with i, j, k, l, etc.
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Solving the Roothaan Equations via the Self-Consistent Field (SCF) Procedure

The Fock matrix above is the representation of the Fock operator in the AO basis; by

inserting Eqn. 2.30 into the expression above, we obtain

Fµν = Hcore
µν +

N/2∑
i

2 (µν|ii)− (µi|iν) , (2.45)

where we have defined the core Hamiltonian matrix Hcore with elements

Hcore
µν =

∫
dr1 φµ(1)ĥ(1)φν(1) = (µ | ĥ | ν ). (2.46)

At this point, our expression for the Fock matrix elements is partially represented in terms

of AOs φµ, φν , and the MO ψi. Since we do not know a priori the form of this MO, we

must insert the basis set expansion (Eqn. 2.38) into the expression to yield

Fµν = Hcore
µν +

N/2∑
i

∑
λσ

CλiCσi [2 (µν|λσ)− (µλ|νσ)] (2.47)

= Hcore
µν + CλiCσi [2 (µν|λσ)− (µλ|νσ)] , (2.48)

where in the second line we have adopted the Einstein summation convention where any

repeated index labels are summed over. By defining the density matrix, D, to have elements

Dλσ = CλiCσi, (2.49)

the Fock matrix can be represented as

Fµν = Hcore
µν + 2 (µν|λσ)Dλσ − (µλ|νσ)Dλσ (2.50)

= Hcore
µν + 2J [Dλσ]µν −K [Dλσ]µν , (2.51)
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where

J [Dλσ]µν = (µν|λσ)Dλσ and (2.52)

K [Dλσ]µν = (µλ|νσ)Dλσ (2.53)

are the elements of the Coulomb and exchange matrices, denoted J and K, respectively,

and whereby the Fock matrix will be given by

F = Hcore + 2J[D]−K[D]. (2.54)

Similarly, the electronic RHF energy can be represented in the AO basis as

ERHF
elec =

(
Fµν +Hcore

µν

)
Dµν , (2.55)

which when added to the nuclear repulsion energy under the Born–Oppenheimer approxi-

mation, EBO
nuc, yields the total RHF energy:

ERHF
tot = ERHF

elec + EBO
nuc. (2.56)

Since the Fock matrix F itself depends on the orbital coefficient matrix C through

the Coulomb and exchange matrices, the Roothaan equations must be solved iteratively.

This process, known as the self-consistent field (SCF) procedure, begins by first building a

guess for the Fock matrix before solving the Roothaan equation for that guess to obtain the

orbital coefficients, and finally computing the total RHF energy. If, between two iterations,

the change in the RHF energy is smaller than a particular tolerance (specified by the user

before the start of the SCF procedure), then the procedure is said to be converged. The

most expensive step in a given SCF iteration is the formation of the Fock matrix F, or

more specifically, the formation of the Coulomb and exchange matrices. This is because
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the contraction of the density matrix Dλσ with the two-electron integrals (µν|λσ) (to form

J) or (µλ|νσ) (to form K) scales algorithmically as O(N4), where N is the total number

of atomic orbitals. For further discussion of the SCF procedure, as well as for details of

the implementation of RHF in the popular Python programming language, please refer to

Tutorial 3a* of the PSI4NUMPY Project.6

Reducing the Computational Expense for SCF via Density Fitting

As we have seen above, the computational bottleneck for the SCF procedure is in the con-

struction of the Coulomb and exchange matrices, scaling as O(N4) for both J and K. This

means that, even for a simple twofold increase in the number of atomic orbitals (or atoms if

the same basis set is used), a 24 = 16-fold increase in computational expense is incurred. In

order to combat this, the density fitting approach may be employed, whereby the four-index

electron repulsion integrals over spatial orbitals,

(µν|λσ) =

∫
dr3

1 dr3
2 φµ(r1)φν(r1)

1

r12

φλ(r2)φσ(r2),

is written instead as a product of two three-index integrals and a two-index quantity

(µν|λσ) ≈ (µν|P )
[
J−1
]
PQ

(Q|λσ) , (2.57)

defined as

(Q|λσ) =

∫
dr3

1 dr3
2 χQ(r1)

1

r12

φλ(r2)φσ(r2) (2.58)

JPQ =

∫
dr3

1 dr3
2 χP (r1)

1

r12

χQ(r2) (2.59)

*https://github.com/psi4/psi4numpy/blob/master/Tutorials/03_
Hartree-Fock/3a_restricted-hartree-fock.ipynb
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where χP and χQ are auxiliary basis functions. Commonly, the Coulomb metric [J−1]PQ is

split into the product [J−1]PQ =
[
J−

1
2

]
PQ

[
J−

1
2

]
PQ

and folded into the so-called “dressed”

three index integrals (̃µν|P ) and (̃Q|λσ):

(µν|λσ) ≈ (µν|P )
[
J−1
]
PQ

(Q|λσ) (2.60)

= (µν|P )
[
J−

1
2

]
PQ

[
J−

1
2

]
PQ

(Q|λσ) (2.61)

= (̃µν|P )(̃Q|λσ). (2.62)

When constructing the electron repulsion integrals in this manner, the scaling of construct-

ing the Coulomb matrix J is actually reduced from O(N4) → O(N3); unfortunately, no

such luck is found for the exchange matrix, whose scaling is still O(N4). Aside from re-

ducing the expense of constructing J, however, the other major benefit of the density fitting

scheme is the reduction in the amount of space required to store the electron repulsion

integrals, either on disk or in memory. For the exact ERIs, even when exploiting their

eight-fold permutational symmetry, they are still rank-4 tensors and as such require a non-

trivial amount of storage space, and are in fact the storage bottleneck for any Hartree–Fock

computation. When using density fitted integrals, on the other hand, not only is the storage

requirement reduced by a full order of magnitude, but only one set of integrals [i.e., either

(µν|P ) or (Q|λσ)] must be computed and stored, since they are transposes of one another.

For further discussion on the details and implementing of a density-fitted RHF (DF-RHF)

code, please refer to the density fitting tutorial * in the PSI4NUMPY Project.6

*https://github.com/psi4/psi4numpy/blob/master/Tutorials/03_
Hartree-Fock/density-fitting.ipynb
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2.7 Capturing Dynamical Electron Correlation with post-Hartree–Fock Methodolo-

gies

We have developed the framework of restricted Hartree–Fock molecular orbital theory,

in which a Slater determinant wavefunction comprised of two-electron spatial orbitals is

optimized by variationally minimizing the electronic energy with respect to the choice of

the orbitals. Hartree–Fock theory rests on the assumptions that the electronic wavefunction

is well represented by a single Slater determinant, and that the average potential operator

vHF(i) sufficiently approximates the exact pairwise electron-electron repulsion. The first of

these, equivalent to assuming that the exact electronic wavefunction is comprised of only

one electron configuration (i.e., a single, unique set of occupied spin orbitals), is a good

approximation for chemical phenomena where near-degeneracies do not occur, e.g., for

diradicals, open-shell singlet excited states, conical intersections, etc. Since this Thesis is

not concerned with examining those phenomena, we will proceed without concern for the

possibility of violating this assumption.

The second assumption, however, is clearly lacking; after all, in Hartree–Fock theory,

only the motions of parallel-spin electrons are correlated. Even though Hartree–Fock can

typically recover upwards of 98% of the electronic energy for most molecules, it is in this

last 2% where much of the physics that governs chemical behavior lies. Since it is such an

important piece of the total, we will define the correlation energy, Ecorr, to be the energy

not recovered by Hartree–Fock, assuming a complete basis set:

Ecorr = Eexact − E∞HF, (2.63)

where Eexact is the exact, non-relativistic electronic energy under the Born–Oppenheimer

approximation. Usually this quantity is unknown, so it makes more sense to refer to the
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correlation energy in a given basis set with

Ebasis
corr = Ebasis

exact − Ebasis
HF . (2.64)

Since we have already justified that the error incurred by assuming a single Slater determi-

nant should be negligible for our purposes here, the correlation energy must be due to the

second major approximation made by Hartree–Fock: the average potential operator which

fails to capture the instantaneous electron-electron repulsion between electrons of antipar-

allel spins. This is generally referred to as dynamical correlation, because it arises from

electron dynamics.

If Hartree–Fock fails to capture dynamical correlation, which is responsible for gov-

erning much of chemical behavior, what is there to do? Of course, we could simply not do

Hartree–Fock — this is the approach taken by Density Functional Theory, which will be

discussed in Section. 2.9 — but it seems wasteful to have gone through all of the deriva-

tion above to just abandon the theory now. Instead, in this section we will introduce sev-

eral approaches whose goal is to recover dynamical electron correlation by starting with

a Hartree–Fock description of the system of interest, before correcting it by some addi-

tional means. These post-Hartree–Fock methods are widely utilized, and are capable of

recovering the correlation energy with astounding accuracy, given enough computational

power.

For a molecule with N electrons, Hartree–Fock theory yields a collection of N coupled

one-electron equations which each produce optimal one-electron orbitals that are combined

to form a properly antisymmetrized N -electron wavefunction, the Slater determinant. This

set of coupled equations can be solved one at a time (and the process iteratively converged)

thanks to the fact that the Fock operator f̂(i) is effectively a one-electron operator: each of

the ĥ and vHF(i) only operate on one electron at a time, even though vHF(i) is parametri-

cally coupled to the other electrons. For the exact electronic Schrödinger equation, how-
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ever, the each electron is “connected” to every other electron via Coulomb’s law through

the repulsion operator
∑

i<j
1
rij

, which is anN -electron operator. Therefore, the exact elec-

tronic wavefunction must be a proper N -electron wavefunction, instead of a simple collec-

tion of one-electron orbitals. This electronic “connectedness” is precisely what we must

seek to recover when accounting for dynamical electron correlation, and what is missed by

Hartree–Fock theory.

2.7.1 Configuration Interaction & The Exact Electronic Wavefunction

To construct a suitable N -electron wavefunction which can account for dynamical electron

correlation, we can take inspiration from an unlikely place: Hartree–Fock theory, or more

specifically, the Roothaan equations. Roothaan introduced a basis set of one-electron func-

tions in which to expand the one-electron orbitals which comprises the N -electron Slater

determinant, which transformed the set of N coupled Fock equations into a single linear

algebra equation. In the same way, let us expand the exact N -electron wavefunction in an

N electron basis of Slater determinants:

Φexact(x1, x2, . . . , xN) =
∑
i

ci|Ψi 〉. (2.65)

In the limit of an infinite expansion, this expression would be exact; unfortunately, this is

not possible with finite computational power. We could, however, truncate this expansion

to be over a finite set of Slater determinants to approximate the exact wavefunction. This,

then, will be our first strategy for recovering dynamical electron correlation: choose a finite

set of Slater determinants and optimize the expansion coefficients ci in order to obtain an

approximation to Φexact which is correlated. But how can we construct a set of Slater

determinants which are suitable for the system of interest?

Since the Hartree–Fock procedure yields a Slater determinant wavefunction |Ψ0 〉 with

a set of optimal occupied and virtual (unoccupied) orbitals, we can use this as a “refer-
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ence” from which to build the other N -electron basis functions. These new, “substituted”

determinants — which are comprised of different electronic configurations of occupied or-

bitals, together with the reference determinant — form the N -electron basis within which

we will approximately describe the exact electronic wavefunction, according to the expan-

sion above. In other words, it is thanks to the interaction of these different configurations

of occupied orbitals that dynamical electron correlation is recaptured, even when starting

from an uncorrelated reference. We will therefore refer to this approach as configuration

interaction (CI), and our approach will be to apply the Variational Principle to solve for the

expansion coefficients ci. At this point, it is convenient to introduce notation to describe the

substitution of occupied orbitals from the reference determinant with virtual ones. Letting

|Ψ0 〉 represent the reference determinant, we will allow |Ψab···c
ij···k 〉 to denote a determinant

where virtual orbitals χa, χb, . . . , χc are substituted for occupied orbitals χi, χj, . . . , χk.

Then, the expansion of the exact wavefunction above can be rewritten as

Φexact = c0|Ψ0 〉︸ ︷︷ ︸
Reference

+
∑

cai |Ψa
i 〉︸ ︷︷ ︸

Singles

+
∑

cabij |Ψab
ij 〉︸ ︷︷ ︸

Doubles

+
∑

cabcijk |Ψabc
ijk 〉︸ ︷︷ ︸

Triples

+ . . . , (2.66)

where we have grouped the substituted determinants in terms of how many orbitals are

substituted.

Full Configuration Interaction (FCI)

By examining the Eqn. 2.66 above, it is clear that the only manner in which to construct

an infinite expansion of substituted determinants from a single reference determinant is if

the reference determinant is itself constructed from an infinite one-electron basis set. As

mentioned above, this is impossible to achieve. We can, however, accept this fact and con-

struct the reference determinant |Ψ0 〉 within a finite one-electron basis. This will reduce
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the expansion above from containing an infinite number of substituted determinants to

|ΨFCI 〉 = c0|Ψ0 〉︸ ︷︷ ︸
Reference

+
∑

cai |Ψa
i 〉︸ ︷︷ ︸

Singles

+
∑

cabij |Ψab
ij 〉︸ ︷︷ ︸

Doubles

+
∑

cabcijk |Ψabc
ijk 〉︸ ︷︷ ︸

Triples

+ . . .+
∑

cabc···dijk···l |Ψabc···d
ijk···l 〉︸ ︷︷ ︸

N−tuples

,

(2.67)

where we have included each possible permutation of orbital occupations from the refer-

ence determinant in our expansion; this approach is referred to as full configuration interac-

tion (FCI), and represents the exact solution to the electronic Schrödinger equation within

a given one-electron basis set. Even though FCI is a finite expansion, the number of deter-

minants in the FCI wavefunction grows factorially with the number of orbitals according

to

Ndet =

(
n

Nα

)(
n

Nβ

)
, (2.68)

where each term is a binomial coefficient and reads, e.g., “n chooseNα”, n is the number of

one-electron basis functions, andNα,Nβ are the number of α and β electrons, respectively.*

This may not seem like that many, but even for a small molecule like methane in a minimal

basis (9 basis functions and 10 electrons with 5 each of α and β spin), this would be 15,876

determinants!

Now that we have what appears to be a reasonable representation for the exact wave-

function in Eqn. 2.67, we must once again concern ourselves with the mechanism by which

to obtain the expansion coefficients. Since we wish for our CI wavefunction to variation-

ally approximate the exact electronic wavefunction (and electronic energy), we can begin

by substituting the CI expansion given in Eqn. 2.66 into the full electronic Schrödinger

equation:

Ĥelec|ΨFCI 〉 = EFCI|ΨFCI 〉 (2.69)

〈ΨFCI | Ĥelec |ΨFCI 〉 = EFCI, (2.70)

*These binomial coefficients are so named thanks to their presence in the binomial power series expan-
sion. Even so, an arbitrary binomial coefficient

(
N
R

)
is identical to the “combination” NCR.
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since the CI coefficients which minimize the total energy are the same as the eigenvectors

of the electronic Hamiltonian in the basis of Slater determinants, and where we assume

|ΨFCI 〉 has been normalized. We can therefore once again cast the problem of solving our

eigenvalue equation in a given basis set into a linear algebra expression. Letting |S 〉, |D 〉,

|T 〉, etc. represent Slater determinants with a single, double, and triple orbital substitutions

and | 0 〉 refer to our reference determinant, we can form the matrix representation of the

electronic Hamiltonian in our N -electron basis as

H =



〈 0 | Ĥ | 0 〉 0 〈 0 | Ĥ |D 〉 0 · · ·

0 〈S | Ĥ |S 〉 〈S | Ĥ |D 〉 〈S | Ĥ |T 〉 · · ·

〈D | Ĥ | 0 〉 〈D | Ĥ |S 〉 〈D | Ĥ |D 〉 〈D | Ĥ |T 〉 · · ·

0 〈T | Ĥ |S 〉 〈T | Ĥ |D 〉 〈T | Ĥ |T 〉 · · ·

0 0 〈Q | Ĥ |D 〉 〈Q | Ĥ |T 〉 · · ·
...

...
...

...
. . .


, (2.71)

where the matrix elements HIJ = 〈ΨI | Ĥelec |ΨJ 〉 can be evaluated quite easily accord-

ing to Slater’s Rules, which are given in Table 4.1 of Ref. 4. Once H has been constructed,

a simple matrix diagonalization will yield the eigenvectors (CI coefficients) and eigenval-

ues for the FCI Hamiltonian, with the leading eigenvalue being the FCI electronic energy.

Even though the formulation and solution of the FCI equation seems straightforward, it in

practice it is anything but simple to evaluate. This is because the size of the Hamiltonian

matrix grows factorially with the number of electrons and the number of one-electron basis

functions, which makes the diagonalization of the Hamiltonian matrix factorially expensive

to perform. This becomes routinely prohibitive for systems larger than approximately 18

electrons in 18 orbitals; indeed, the largest CI computation ever performed was for the 22 π

electrons in 22 orbitals of the pentacene molecule.7 So, if FCI cannot be routinely applied

to systems larger than these, how can we account for dynamical correlation?
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Truncated Configuration Interaction

In order to make CI extensible for routine application to chemical systems of even modest

size, the standard approach is to truncate the FCI expansion given in Eqn. 2.67 at a desired

excitation level, i.e., by including singly- and doubly-substituted determinants but not those

with triple substitutions and above, etc. These truncations of the CI expansion are abbrevi-

ated by appending the letters corresponding to the excitation level to “CI”; e.g.., “CISD” for

the aforementioned CI truncation including single and double substitutions. In addition to

truncating the CI space, a multitude of technical and algorithmic advancements have been

developed which have made CI at all levels more extensible. These truncated CI expansions

offer a considerable computational advantage over FCI, where instead of scaling factorially

with the number of orbitals, they scale polynomially. For example, while an optimal FCI al-

gorithm scales with number of determinants Ndet and number of orbitals N asO(NdetN
4),

CISD scales asO(N6) and CISDT asO(N8). While this may not seem like an appreciable

decrease in complexity, compared against a computation with 10 electrons in 10 orbitals, a

computation with 20 electrons in 20 orbitals (a simple factor of 2 increase) should require

a factor of 26 = 64, 58 = 256, and (NdetN
4) = (34, 134, 779, 536 · 204) = 5.5× 1015 times

longer to complete for CISD, CISDT, and FCI respectively. Given the fact that truncated

CI seems to enjoy such a significant advantage over FCI in terms of its drastically reduced

computational expense, why bother performing FCI computations at all?

To answer this question, let us imagine that some poor graduate student somewhere has

been asked by their PI to perform the aforementioned experiment:* to compute the total

energy for a series of H-atom chains of different length, using CISD, CISDT, CISDTQ, and

FCI, and plot the trends in total energy as a function of the number of electrons. Cursing

their luck, the student decides that this task is too tedious to be worth their time. Intuitively,

the student expects that they will find that the energies computed for two H atoms will

simply be two times the energy of a single H atom, and that similarly the energy of a

*R.I.P.
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chain of three, four, and five H atoms will just be three, four, and five times the energy

of a single H atom. Annoyed at their advisor, they devise a clever shortcut: compute the

energy of a single H atom with each of CISD, CISDT, CISDTQ, and FCI, and then simply

plot a linear trend of these values by the number of H atoms in the chain to represent the

chains’ energies. Feeling triumphant at their ability to outfox their advisor, and having

already completed the task they had been assigned, the student decides to take the rest of

the week off before presenting their results to their PI during their next meeting. At their

next meeting, however, the PI was not pleased, having accused the student of cheating the

assignment. In fact, not only did the PI know that the student had cheated their assignment,

but they seemingly knew exactly how the student had cheated. In a panic, the student

admitted their falsehood before asking, how the PI possibly could have known? “You

fool!” they replied, “You fell victim to one of the classic blunders — the most famous of

which is ‘Never get involved in a land war in Asia,’ but only slightly less well-known is

this: Truncated CI is not size extensive!”

So, what exactly went wrong for the student in our thought experiment? Their error, it

turns out, was not in their physical intuition for the truth — but rather in their understanding

of the approximations involved in truncated CI. Indeed, it is true that the exact electronic

energy of a system does scale linearly with the number of particles. When a theoretical

approach satisfies this criteria, it is said to be size extensive; FCI is an example of such

a method. Unfortunately for our student, however, the truncation of the N -electron basis

(upon which all truncated CI expansions are based) prevents the resulting method from be-

ing size extensive. This is because the total wavefunction no longer contains all possible

substitutions of the reference determinant; the CISD energy for a system with four elec-

trons, for example, will be missing the contributions from triple and quadruple excitations,

making it fall short of reproducing the exact (FCI) energy. Aside from size extensivity, a

property of the exact electronic energy is that it is size consistent. Size consistency means

that as two particles (or, more generally, any two chemical species) become infinitely sep-
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arated, the total energy of the pair converges to the simple sum of the isolated particles. As

we will see in the next Chapter, the property of size consistency is of central importance

to the study of non-covalent interactions; we will therefore abandon truncations of the CI

expansion to focus our attention on other post-Hartree–Fock electron correlation methods

which do satisfy size extensivity and size consistency.

2.7.2 Møller–Plesset Perturbation Theory

As discussed above, especially for well-behaved molecules at (or suitably close to) their

equilibrium geometries, the correlation energy accounts for only about 2% of the total

molecular energy. Therefore, instead of using a variational approach to construct the exact

electronic wavefunction, we could equivalently apply Rayleigh-Schrödinger Perturbation

Theory (RSPT) to the problem of dynamical electron correlation. This has been among the

standard strategies in the field of quantum chemistry since the 1930s, when it was originally

introduced by Møller and Plesset.8 This approach is therefore most commonly referred to as

Møller–Plesset Perturbation Theory (MPPT), but is occasionally referred to as many-body

perturbation theory (MBPT).

Formulation of MPPT

In order to develop MPPT, let us first recall the basic takeaways from its parent, RSPT. In

RSPT, the exact Hamiltonian is assumed to be separable into a piece which can be solved

exactly (the zeroth-order Hamiltonian, Ĥ(0)) and a piece which cannot (the perturbation,

V̂ ),

Ĥ = Ĥ(0) + λV̂ .

Subsequently expanding the exact wavefunction as a Taylor series in the perturbation strength,

λ, yields a series of shifts for the zeroth-order energy (E (0)
n ) and zeroth-order wavefunction

(|Ψ(0)
n 〉) which aim to correct these quantities towards their exact values. It is our first task,

therefore, to define the zeroth-order Hamiltonian Ĥ(0) and the perturbation V̂ . Since in
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MPPT we are concerned with applying RSPT to the problem of dynamical electron corre-

lation on top of an existing Hartree–Fock description of a molecular system, it would be

natural to define the zeroth-order Hamiltonian to be

Ĥ
(0)
MPPT =

∑
i

f̂(i) =
∑
i

ĥ(i) + vHF(i), (2.72)

which means that the perturbation must be the difference between the Hartree–Fock poten-

tial operator and the exact electron-electron repulsion:

V̂ = Ĥelec − Ĥ(0) =
∑
i<j

1

rij
−
∑
i

vHF(i), (2.73)

where here we have used indices i, j to refer to electrons.

Now that we have defined these quantities, we may proceed according to the stan-

dard RSPT approach to evaluate the first few terms in the energy series. Before we do

so, however, we must first briefly mention that hereafter, indices i, j, k, l refer to occupied

molecular orbitals, a, b, c, d refer to virtual molecular orbitals,m, n refer to the wavefunc-

tion states themselves, and µ, ν, λ, σ refer to occupied atomic orbitals (basis functions),

according to standard practice in the field. First, we solve the zeroth-order problem,

Ĥ(0)|Ψ(0)
n 〉 = E (0)

n |Ψ(0)
n 〉, (2.74)

where E (0)
n =

∑
i εi (which is not the Hartree–Fock energy!) and |Ψ(0)

n 〉 = ΨHF
0 , the
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ground-state Hartree–Fock wavefunction. The first order energy correction is given by

E (1)
n = 〈Ψ(0)

n | V̂ |Ψ(0)
n 〉

= 〈ΨHF
0 |

∑
i<j

1

rij
−
∑
i

vHF(i) |ΨHF
0 〉

= 〈ΨHF
0 |

∑
i<j

1

rij
|ΨHF

0 〉 − 〈ΨHF
0 |

∑
i

vHF(i) |ΨHF
0 〉

=
1

2

∑
ij

〈 ij || ij 〉 −
∑
i

〈 i | vHF(i) | i 〉

=
1

2

∑
ij

〈 ij || ij 〉 −
∑
ij

〈 ij || ij 〉

= −1

2

∑
ij

〈 ij || ij 〉 (2.75)

Hence the total energy through first order is

E (0)
n + E (1)

n =
∑
i

εi −
1

2

∑
ij

〈 ij || ij 〉, (2.76)

which is the Hartree–Fock energy; therefore, the first correction to the Hartree–Fock energy

which accounts for dynamical electron correlation is at second order.

The second-order energy correction, E (2)
n , can be found by substituting the expression

for the first-order correction to the wavefunction, |Ψ(1)
n 〉 (as given in Eqn. 2.14) into

E (2)
n = 〈Ψ(0)

n | V̂ |Ψ(1)
n 〉 (2.77)

∴ E (2)
n =

∑
n6=m

∣∣∣〈ΨHF
n | V̂ | ΨHF

m 〉
∣∣∣2

E (0)
n − E (0)

m

. (2.78)

To compute the second-order energy correction for the ground state wavefunction, there-

fore, the sum in Eqn. 2.78 must run over all states other than the ground state, i.e., over all

excited states of the Hartree–Fock reference determinant. From the FCI expansion, we al-

ready know how large this sum can become if every other excited state is considered; let us
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consider, therefore, if any terms should necessarily be zero and therefore not be computed.

First, since according to Brilloun’s theorem no singles determinants |S 〉 will interact di-

rectly with the Hartree–Fock reference | 0 〉, all 〈 0 | V̂ |S 〉 = 0 and hence the singly excited

states will not contribute to E (2)
n . Furthermore, since V̂ is a two-electron operator, excita-

tion levels greater than or equal to triples will also not contribute to E (2)
n . Hence the only

excited states which contribute to E (2)
n are doubly excited configurations, which for the ex-

citation of an electron from occupied orbital i (j) into virtual orbital a (b) we will denote

|Ψab
ij 〉, with energy difference (from the ground state) εa − εi + εb − εj . Substituting these

facts into Eqn. 2.78 yields the second-order, ground state energy correction E (2)
0 :

E (2)
0 =

∑
i<j

∑
a<b

〈ΨHF
0 | V̂ |Ψab

ij 〉
εi − εa + εj − εb

, (2.79)

which, according to Slater’s rules, yields

E (2)
0 =

∑
i<j

∑
a<b

|[ia||jb]|2

εi − εa + εj − εb
, (2.80)

which is formulated in terms of molecular spin orbitals. If an RHF reference is used,

the spin variable ω can once again be integrated away to yield two equations over spatial

orbitals,

E
(2)
0,SS =

∑
i<j

∑
a<b

(ia|jb) [(ia|jb)− (ib|ja)]

εi − εa + εj − εb
(2.81)

E
(2)
0,OS =

∑
i<j

∑
a<b

(ia|jb) (ia|jb)
εi − εa + εj − εb

, (2.82)

where the round brackets in the two-electron integrals denotes that they are over spatial

orbitals, and the subscripts SS, OS denote the contributions from electron pairs with the

same spin (SS) or opposite spin (OS). It is worth mentioning that there is an extra two-

electron exchange integral in the numerator of the SS energy expression, thanks to the
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fact that electrons with parallel spin experience exchange effects due to the antisymmetry

principle. Finally, then, the second-order MPPT correction to the ground state RHF energy

is given by

E (2)
0 = E

(2)
0,SS + E

(2)
0,OS (2.83)

In general, a particular truncation level of MPPT is referred to as MPn, where n is a number

denoting the order of the perturbation. The expression given above in Eqn. 2.83 is therefore

referred to as the MP2 energy correction, symbolically denoted EMP2
corr , and the MP2 total

ground-state energy is given by

EMP2
tot = E (0)

0 + E (1)
0 + E (2)

0 = EHF
0 + EMP2

corr (2.84)

Computing the MP2 Energy Correction for an RHF Reference

As noted above, the purpose of MPn is to recapture dynamical electron correlation missed

by Hartree–Fock via an nth order perturbation expansion. Above, we formulated the cor-

responding second-order correction, MP2, for the ground state configuration of an RHF

reference wavefunction. From Eqns. 2.81 and 2.82, it appears that everything necessary

to compute the MP2 energy correction (and subsequently, EMP2
tot itself) is already available

from the completed SCF procedure for the RHF reference. If this were true, MP2 would

be a free addition to RHF — so, why would anyone not do MP2? As it turns out, unfortu-

nately, even though all of the quantities needed to compute the MP2 energy (two-electron

integrals, orbital energies, HF energy, and nuclear repulsion energy) are constructed during

the SCF procedure, not all of them are in a format which is ready to be immediately used.

In particular, the two-electron integrals required for Eqns. 2.81 and 2.82 are represented in

the molecular orbital basis, which should be clear from the use of orbital labels i, . . . , l in

those expressions. During the SCF procedure, however, these integrals are generated and

used in the atomic orbital basis, denoted by the use of Greek orbital labels µ, . . . , σ in, e.g.,

Eqn. 2.51.
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The fact that the two-electron integrals are available from the SCF procedure in the AO

basis is not a significant problem, since the SCF procedure also offers the means by which

to move from the AO basis to the MO basis: the orbital coefficients, Cλi. Transforming the

integrals into the MO basis requires transforming each AO index into a corresponding MO

index, which can be accomplished by contracting

(ia|jb) = CµiCνa (µν|λσ)CλjCσb. (2.85)

As written, however, this operation would scale as O(N8), since there are 8 unique indices

involved in the contraction. Luckily, this can be refactored from a single O(N8) step into

four O(N5) steps by contracting over each AO index separately:

(ia|jb) = [Cµi [Cνa [Cλj [Cσb (µν|λσ)]]]] . (2.86)

Once the integrals have been transformed into the MO basis, evaluating Eqns. 2.81 and 2.82

actually only scales asO(N4), since there are only four unique indices in these expressions

which must be looped over. Therefore, the overall cost of MP2 is O(N5), with the bottle-

neck arising from the AO→MO transformation of the two-electron integrals.* For further

details of the procedure for computing conventional and density-fitted MP2, as well as for

details of their implementation starting from an RHF (or DF-RHF) reference in the popular

Python programming language, please refer to Tutorials 5a and 5b† of the PSI4NUMPY

Project.6

*The cost of transforming the integrals to the MO basis can be reduced if three-index density-fitted
integrals are used to compute the RHF reference (i.e., DF-RHF) to only O(NauxN

3), where Naux is the
number of auxiliary functions and N is the number of atomic orbitals. This does not reduce the overall
algorithmic scaling of DF-MP2, however, as computing the DF-MP2 energy correction scales as O(N5).
The real win for DF-MP2 is that only one O(N5) step is required (to compute the correlation energy), as
opposed to four for conventional MP2, where each quarter-transform of the four-index integrals are each
O(N5) but the final evaluation of the correlation energy in Eqn. 2.83 is only O(N4).

†https://github.com/psi4/psi4numpy/blob/master/Tutorials/05_
Moller-Plesset
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2.7.3 Coupled-Cluster Theory

Despite the utility of MPPT, particularly of its lowest-order truncation, MP2, the failure

of the MP series to be convergent towards the exact electronic energy prevents it from be-

ing systematically improvable beyond convergence towards the complete one-particle basis

set limit. Configuration interaction, on the other hand, is convergent — but for all but its

exact formulation, FCI, it is neither size extensive nor size consistent, preventing it from

being able to be reliably applied to compare the energies of chemical systems with different

numbers of electrons. It would be desirable, therefore, to develop a method which com-

bines the best of both of these post-Hartree–Fock methods: to be both convergent and size

extensive. Fortunately, such a theory exists, known as coupled-cluster (CC) theory. Orig-

inally developed by the high-energy physics community as an approach to model nuclear

structure, CC has become the de facto approach for quantum chemists interested in highly

accurate energies, structures, and properties for molecular systems, and will be utilized

heavily throughout this Thesis as the reference against which more approximate methods

will be evaluated.

In order to develop the basic framework of CC theory, let us begin by rewriting our

expression for the FCI wavefunction:

|ΨFCI 〉 = c0|Ψ0 〉+
∑

cai |Ψa
i 〉+

∑
cabij |Ψab

ij 〉+
∑

cabcijk |Ψabc
ijk 〉+ . . .+

∑
cabc···dijk···l |Ψabc···d

ijk···l 〉

= (1 + T̂1 + T̂2 + T̂3 + . . .)|Ψ0 〉

= T̂ |Ψ0 〉,

where T̂ is the total excitation operator, and each of the T̂1, T̂2, T̂3, etc. produce the singly,

doubly, and triply etc. excited determinants in the expansion. Since in the FCI expansion

all possible substitutions of the reference determinant |Ψ0 〉 are included, it is equivalent to
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write the series above with the cluster operator, eT̂ , instead:

|ΨFCC 〉 = eT̂ |Ψ0 〉 =

(
1 + T̂ +

1

2!
T̂ 2 +

1

3!
T̂ 3 + . . .

)
|Ψ0 〉, (2.87)

where we have denoted the wavefunction generated by the cluster operator as the full

coupled-cluster (FCC) wavefunction, |ΨFCC 〉, even though it is formally equivalent to

the FCI wavefunction, and used the Taylor series expansion for the exponential function

to expand the cluster operator. Since FCI and FCC are equivalent, it may not be obvious

why we have gone to the extra trouble to rewrite the wavefunction thus; to illustrate the

advantages of the cluster operator, let us consider a singles-and-doubles truncation of the

excitation operator such that T̂ = T̂1 + T̂2.

In the FCI series, this truncation would produce the CISD wavefunction, which we

know to lack size extensivity. A similar “coupled cluster with single and double substitu-

tions” (CCSD) wavefunction may be constructed by substituting this truncated excitation

operator into the cluster operator:

|ΨCCSD 〉 = eT̂1+T̂2|Ψ0 〉

=

(
1 + T̂1 + T̂2 +

1

2
T̂1

2 + T̂1T̂2 +
1

2
T̂2

2 + . . .

)
|Ψ0 〉

= |Ψ0 〉+
a∑
i

tai |Ψa
i 〉+

ab∑
ij

tabij |Ψab
ij 〉+

1

2

a∑
i

tai

b∑
j

tjb|Ψ
ab
ij 〉

+
a∑
i

tai

bc∑
jk

tbcjk|Ψabc
ijk 〉+

1

2

ab∑
ij

tabij

cd∑
kl

tcdkl |Ψabcd
ijkl 〉+ . . . ,

where tai are the singles amplitudes and tabij are the doubles amplitudes, which deetermine

the magnitude to which singly- and doubly substituted determinants contribute to the over-

all CCSD wavefunction. It is worth noting that even though the excitation operator has

been truncated at the level of double substitutions, the exponential form of the cluster op-

erator produces so-called “disconnected” triply, quadruply, etc. substituted determinants
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through infinite order, which while failing to recover every possible substitution at a given

excitation level (and thus the full energetic contribution of, e.g., T̂3) do recover parts of

this higher-order electron correlation which would be neglected by CISD alone. Further-

more, it is precisely these disconnected substitutions which allow for truncated CC methods

to remain size-extensive. Progressively more complete truncations of the CC series, e.g.,

CCSD, CCSDT, CCSDTQ, etc. are therefore not only convergent towards the exact elec-

tronic energy, but can generate reasonable comparisons between systems of different size

and composition. Like the levels of the truncated CI expansion, progressively more com-

plete truncations of the CC expansion also increase in computational expense, with CCSD

scaling as O(N6), CISDT scaling as O(N8), etc. Unlike for CI, however, the amplitude

equations for CC are not variational; therefore, even though CC is convergent, a given level

of truncation in the CC series is not guaranteed to produce an energy which is above the

exact electronic energy. In fact, the energies computed at different truncation levels of the

CC series tend to oscillate about the FCC limit as they converge, with CCSD above the

FCC limit, CCSDT below, CCSDTQ above, and so on.

By substituting the expression above into the electronic Schrödinger equation, it is

possible to derive both the correlation energy and amplitude equations for CCSD; as this

derivation is quite lengthy, however, we will direct the interested reader elsewhere for it.9

The resulting CCSD correlation energy is often sufficiently accurate for many molecular

properties, and total energies, especially given its modest computational expense. For some

properties, however, where a more robust treatment of electron correlation is required for

accurate predictions to be made (e.g., non-covalent interactions), CCSD can fall sufficiently

short of the exact correlation energy that its application is inappropriate. Unfortunately,

however, the sizeable increase in computational expense from O(N6) → O(N8) when

including triple excitations in the cluster operator with CCSDT is often prohibitive for ap-

plication to relevant chemical systems. To address this challenge, a number of approximate

approaches for including some (but not all) triple substitutions have been proposed. The
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most successful, denoted CCSD(T),10 perturbatively includes the most important triples

amplitudes at the cost of a single O(N7) step. While the order of magnitude increase

in expense of CCSD(T) compared to CCSD does make CCSD(T) prohibitively expensive

for some systems, CCSD(T) happens to benefit from fortuitous error cancellation which

actually make it a more reliable estimate of the FCI limit than either CCSD or CCSDT;*

CCSD(T) has therefore been touted as the “gold standard” of quantum chemistry, and is the

standard choice for producing high-quality energies and properties. For reference imple-

mentations of each of the CCSD and CCSD(T) methods, please refer to the PSI4NUMPY

project.†

2.8 Practical Considerations for Correlated Computations

We have thus far developed several methodologies leveraging perturbative or variational

approaches to provide a description of dynamical electron correlation on top of a Hartree–

Fock reference wavefunction. These methods range in computational expense fromO(N5)

for MP2 toO(N !) for FCI with respect to the number of orbitalsN , and (at least for CI and

CC theories) are systematically improvable towards recovering the exact electronic energy

within a given basis set. What remains to be seen, however, is how these methods perform

for describing chemical properties which, in turn, depend on an accurate description of

electron correlation to be described properly. In this section, we will address this and other

questions related to the practical aspects of correlated computations, to offer a general

overview of when applying these methods are appropriate (or even necessary) and the best

manner in which to do so.

*The convergence of CC truncations towards the FCI limit is discussed more thoroughly in Section 2.8.1.
†https://github.com/psi4/psi4numpy/tree/master/Coupled-Cluster/Spin_

Orbitals/CCSD
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2.8.1 Convergent Methodologies for Electron Correlation

Since it is the goal of any post-Hartree–Fock methodology to recover the correlation energy

neglected by Hartree–Fock, and indeed both full coupled-cluster (FCC) and full configuration-

interaction (FCI) can do so exactly in a given one-electron basis, it is desirable also for

successively more complete truncations to these expansions to provide progressively more

accurate approximations to the FCC and FCI result. Similarly, it would be desirable for

successively higher perturbation levels in the Møller–Plesset series to behave in the same

manner. Such a theory, where successively less approximate formulations recover the ex-

act result, is said to be convergent. Since both truncated CI and truncated CC formulations

satisfy such a requirement, they are examples of convergent theories; MPn, on the other

hand, is not guaranteed to be convergent, and has even famously been demonstrated to be

divergent in some cases.* As truncated CC and CI approaches are tractable for application

to larger chemical systems than could ever be treated with FCC or FCI, it is necessary to

determine the accuracy of successively higher truncations of CC and CI for a given prop-

erty with respect to the exact result computed for systems to which FCC and FCI can be

applied. This process of benchmarking then allows for truncated CC and CI methods to be

applied to new chemical systems with confidence. In this section, we will review some of

the literature on the convergence of correlated approaches with respect to both truncation

level and the completeness of the one-electron basis set, in order to set the stage for the

benchmarking of even more approximate approaches for describing non-covalent interac-

tions described in Part II of this Thesis.

*The most well-known divergence of the MPn series occurs for even mildly non-equilibrium molecular
geometries11 due to the fact that, especially for geometries with stretched bond distances, the presence of
non-dynamical correlation can cause the magnitude of the total correlation energy to be such that it cannot be
reasonably recovered by a perturbative approach.
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Figure 2.1: Convergence of correlation energy contribution to non-covalent interaction
energies at various truncation orders for the CC series. Values taken from Table S-2 of
Ref. 12.

Convergence of the Correlation Energy with Truncation Level

The hallmarks of truncated CI and CC theories is that more complete truncations of the

excitation operator applied to the Hartree–Fock reference generates produces more exact

wavefunctions with correspondingly more exact energies. This can be verified by examin-

ing the change in correlation energy with truncation level, which should exhibit the mono-

tonic convergence of the absolute error from the FCI limit with increase in the truncation

order. Visualized in Fig. 2.1 is precisely such an analysis, whereby the percent error in

the correlation energy contribution to non-covalent interaction energies versus CCSDTQ is

plotted for 21 small bimolecular complexes (data taken from Fig. S-2 of Ref. 12 ). Clearly,

monotonic convergence of the absolute percent error (A%E) is present for the CC series;

furthermore, oscillations across the zero of percent error is not unexpected, as truncated

CC is not variational due to the similarity transformation of the Hamiltonian operator. An

equivalent plot for truncations in the CI series would therefore be expected to converge

exclusively from above, but exhibit much the same magnitudes of signed percent errors at
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each truncation level. In practice, post-(T) excitations contribute very little to the total com-

puted interaction energy, with typical contributions on the order of several hundredths of

kcal mol−1,13–15 which is on the same order of magnitude as core correlation effects.14,16–18

For typical CCSD(T)/CBS computations employing the frozen-core approximation, there-

fore, the most fine-grained level to which comparisons with reference interaction energies

can be made is 0.01 kcal mol−1.

Convergence of the Correlation Energy with Basis Set

Truncated CI and CC are both convergent with respect to the truncation level for the num-

ber of excited configurations included in the wavefunction, in a given one-electron basis

set. Since FCI and FCC are only exact in a given one-electron basis set, it is also worth ex-

amining how these theories (and their truncations) converge towards their respective com-

plete basis set (CBS) limits. Furthermore, convergence towards the CBS limit is of interest

even for particular levels of non-convergent theories, like Hartree–Fock and MP2.* For

Hartree–Fock, convergence of the total energy towards the CBS limit (also referred to as

the Hartree–Fock limit) is exponential with respect to the ζ-level of the basis set, with the

convergence essentially achieved even at the quadruple-ζ level.

Unfortunately, correlated approaches do not converge towards their respective CBS lim-

its nearly as rapidly as for Hartree–Fock; in fact, they converge quite slowly with basis set,

showing a `−3 dependence on the order of the basis set, `. This is due to the fact that in

order for the Fermi hole surrounding each electron to be modeled correctly, the wavefunc-

tion itself must exhibit a node at the electronic positions. Referred to as interelectronic

cusps in the wavefunction, the behavior of the wavefunction in these cusp regions is well

known thanks to the work of Kato,19 and are known as the Kato cusp conditions. Unfor-

*DFT, unfortunately, is neither systematically improvable with respect to functional construction on suc-
cessive rungs of Jacob’s ladder or with respect to the completeness of the one-electron basis set. It is there-
fore more appropriate to choose a combination of functional/basis set whose accuracy has previously been
assessed. The most common such choice is the classic combination of B3LYP/6-31G∗, whose accuracy for
computing total energies and reaction barriers has led to its popularity and widespread adoption by the organic
chemistry community.
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tunately, however, the cusp conditions require substantial variational flexibility to recover

exactly, thereby necessitating large basis sets to do so even approximately. Often, corre-

lated methods are poorly converged at even the quadruple- or quintuple-ζ levels, making

their systematic application to chemical systems of even modest size challenging. Further-

more, the slow convergence of the correlation energy presents significant challenges to the

benchmarking of more approximate methods, due to the difficulty in obtaining adequate

reference values for certain properties.* To address both the basis set and truncation level

challenges, several approaches have been developed which combine two or more compu-

tations with more affordable methods or basis sets to obtain a result which is much more

accurate.

2.8.2 Accelerating Convergence for Correlated Approaches

In this section, we introduce several approaches for accelerating the convergence of cor-

related computations, both toward the FCI and CBS limits, which will be of critical im-

portance later in the Thesis to the particular application of benchmarking non-covalent

interaction energies.

Basis Set Extrapolation

As discussed previously, the correlation energy converges slowly towards the complete ba-

sis set limit because of the difficulty in describing the interelectronic cusp. Thanks to the

work of Dunning, however, a basis set family exists which are “correlation-consistent” and

converge sufficiently smoothly towards the CBS limit that computations performed at suc-

cessive ζ-levels can be extrapolated towards this asymptotic limit with a simple polynomial

functions. The most successful such “basis set extrapolation” approach fits the correlation

*Among the great ironies of quantum chemistry is the fact that Hartree–Fock — the most affordable elec-
tronic structure method which is convergent towards the CBS limit — does so exponentially, while correlated
approaches whose computational scaling is at least an order of magnitude less favorable than Hartree–Fock
converge much more slowly. It has been the bane of my own and many others’ existence.
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energy in a basis set of cardinal number `, Ecorl
` , to the power law

Ecorl
` = Ecorl

∞ + A`−3, (2.88)

where Ecorl
∞ is the correlation energy at the complete basis set limit. Helgaker and cowork-

ers showed20 that this expression could be rearranged to provide an approximation to the

CBS-limit via a “two-point” extrapolation of correlation energies computed in two different

basis sets with cardinal numbers X and Y as

Ecorl
∞ (X, Y ) =

Ecorl
X X−3 − Ecorl

Y Y −3

X3 − Y 3
(2.89)

Typically, since the Hartree–Fock energy converges exponentially towards the CBS limit,

only the correlation energy is extrapolated, with the Hartree–Fock contribution to the total

energy simply being taken to be converged in the larger of the basis sets employed in the

extrapolation.21 Using the correlation consistent basis sets of Dunning,22 extrapolations of

the correlation energy by the Helgaker formula above are typically denoted CBS(XZ, YZ)

or even XYZ, e.g., MP2/CBS(aTZ, aQZ) and MP2/aTQZ both refer to the same two-point

Helgaker extrapolation of the MP2 correlation energy computed in the aug-cc-pVTZ and

aug-cc-pVQZ basis sets, where the Hartree–Fock energy is taken to be converged in the

aug-cc-pVQZ basis set.

Focal-Point Analysis & Composite Approaches

While CBS extrapolations do address the challenge of converging the correlation energy in

a given one-electron basis set towards the complete basis set limit, they do not address defi-

ciencies in the method itself (i.e., errors with respect to FCI) nor reduce the computational

expense of a given method itself. Thanks to the fact that higher-order correlation effects

(arising from e.g., triple, quadruple, etc. substitutions) are fairly well-described by “small”

basis sets, the difference between a higher-order correlation method [e.g., CCSD(T)] and
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lower-order one (e.g., MP2) does not change significantly with basis set. In other words,

the difference between high-level and low-level methods computed in a small basis set is a

good approximation of the same difference at the CBS limit. The CBS limit of a lower-level

method can therefore be “corrected” towards the CBS limit of a higher-order method:

Ehigh
∞ ≈ Elow

∞ + δhigh
low (2.90)

δhigh
low = Ehigh

small − E
low
small (2.91)

For this Thesis, the most common such approach corrects the CBS limit of MP2 to that of

CCSD(T) by

E
CCSD(T)
CBS ≈ MP2/CBS(aTZ, aQZ) + δ

CCSD(T)
MP2 /aTZ (2.92)

δ
CCSD(T)
MP2 /aTZ = E

CCSD(T)
aTZ − EMP2

aTZ , (2.93)

which is denoted CCSD(T)/[aTQZ; δ:aTZ]. These “focal-point” (or “composite”) approaches

have become a popular approach for addressing both the basis set and truncation challenges

for computing high-quality correlation energies in a variety of contexts,23,24 and indeed

have been applied widely to compute properties for which electron correlation is impor-

tant, particularly to describe non-covalent interactions.25–30

Explicitly Correlated Approaches

Despite their success for computing high-accuracy energies and properties, basis set ex-

trapolations and focal-point approaches do suffer from the fact that they require multiple,

separate computations to be performed and combined to yield a single result. Not only does

this necessitate additional computational strain than performing a single computation, but

until recent advancements made in automating quantum chemistry workflows,31 perform-

ing focal-point analyses or CBS extrapolations was often significantly challenging also for

the user of quantum chemistry software. Since a major reason for the extrapolation of cor-

61



relation energies is that the interelectronic cusp requires significant variational flexibility to

model correctly, an alternative approach would be to require that the wavefunction depend

explicitly on the distance between any pair of electrons 1 and 2, r12. The simplest manner

in which to include this “explicit correlation” would be to force the wavefunction to depend

explicitly on terms linear in r12; indeed, this is precisely the approach (together with terms

depending on r1 +r2 and r1−r2) taken by Hylleraas in his highly accurate treatment of the

Helium atom.32 Methods which depend only linearly on the interelectronic separation are

often referred to as R12 methods; more recently, generalizations of R12 theory in which

a function of r12, f(r12), is used have been developed. These methods, referred to as F12

methods, typically leverage a simple Slater geminal function f12(r12) = e−βr12 ,33 and have

been shown to greatly accelerate the convergence of the correlation energy in a given basis

set, where, e.g., MP2-F12/aTZ may be just as accurate as MP2/a5Z versus MP2/CBS.

2.9 Density Functional Theory

In this section, we present an alternative approach to the quantum mechanical description

of a molecular system than the one taken by the wavefunction-based methods discussed

above, or, indeed, even the electronic Schrödinger equation itself. Taking the electron

density n(r) to be the fundamental quantity defining a quantum mechanical system, rather

than the electronic wavefunction Ψelec, density functional theory (DFT) has become the de

facto approach for applying quantum mechanics to predict both molecular and solid-state

properties in a great number of contexts, the development of which even earned a share of

the 1998 Nobel Prize in Chemistry. While the application of DFT plays a relatively minor

role in this Thesis, it represents such a significant fraction of computational chemistry that

it deserves specific mention in this Chapter. Therefore, we will introduce in this section

the basics of of DFT and its most successful molecular formulation, Kohn-Sham DFT (KS-

DFT).
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2.9.1 The Hohenberg-Kohn Theorems

In order to build density functional theory, let us first consider a general electronic Hamilto-

nian operator for a many-electron system under an external potential v(ri), which includes

any effects external to the electrons (including Coulombic nuclear-electron attraction, etc.):

Ĥelec = −1

2

∑
i

∇2
i +

1

2

∑
i>j

1

|ri − rj|
+
∑
i

v(ri) = T̂e + V̂ee + v̂ext (2.94)

Beginning with this Hamiltonian, the two Hohenberg-Kohn theorems can be stated as fol-

lows.

Theorem 2.9.1.1 (The First Hohenberg-Kohn Theorem). The external potential v(ri) is a

unique functional of the electron density n(r) in the ground state, and therefore the total

ground-state energy (and, by extension, all observable properties) are uniquely determined

by the ground state electron density.

Theorem 2.9.1.2 (The Second Hohenberg-Kohn Theorem). The total energy of a many-

electron system is minimized for the correct ground-state electron density.

The power of the Hohenberg-Kohn theorems lies in the fact that they establish a bijec-

tive map between the exact ground state energy and the ground state electron density, via a

functional of the electron density, i.e., as E[n(r)] = E[n], where the brackets indicate the

functional dependence of the energy E on the density function n. Therefore, in order to de-

termine either the ground state energy or the exact ground state density, all that is required

is to variationally minimize the ground state energy with respect to changes in the electron

density. Unfortunately, the Hohenberg-Kohn theorems do not provide any clues about how

this may be done in practice, rather only establishing the possibility of doing so.

2.9.2 The Universal Functional

In order to move closer to a practical formulation of DFT, let us define the universal func-

tional, F [n], such that F minimizes the ground-state energy with respect only to electronic
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physics (i.e., neglecting v̂ext for the moment):

F [n] = min
Ψ→ρ
〈Ψ | T̂e + V̂ee |Ψ 〉 = T [n] + J [n] + EQM [n], (2.95)

where T [n] is the kinetic energy functional, J [n] is the classical Coulomb interaction

of electron density with itself, and E[n] encapsulates the energetic dependence on non-

classical electronic behavior. While the form of J [n] is known exactly and the form of

E[n] can be approximated reasonably well, the kinetic energy functional is nearly impos-

sible to define. Fortunately, however, Kohn and Sham introduced a formulation of DFT in

which T [n] can be approximated. This advancement allowed DFT to actually be applied in

practice, rather than being a purely academic exercise.

2.9.3 Kohn-Sham DFT

In the Kohn-Sham formulation of DFT (KS-DFT), the electron density is assumed to be

generated by a set of one-electron, non-interacting orbitals {φi(ri)}:

n(r) =
∑
i

|φi(ri)|2 (2.96)

In this picture, the kinetic energy functional is simply

Ts[n] = −1

2

∑
i

〈φi | ∇2
i |φi 〉 (2.97)

Of course, Ts[n] is not exactly representative of the true kinetic energy functional T [n], but

for cases when an independent particle approximation is appropriate, Ts[n] will be good

enough.* Based on this form of the electron density and effective kinetic energy functional,

*As it turns out, KS-DFT is based on the same mean-field approximation as Hartree–Fock, so it will be
vulnerable in the same instances in which a single Slater determinant is not an appropriate representation of
the full N -electron wavefunction.
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the total energy functional is given by

EKS[n] = FKS[n] + vext[n] = Ts[n] + J [n] + vext[n] + EXC [n], (2.98)

where vext[n] is (typically) the electron-nuclear attraction and vXC is the exchange-correlation

functional, which encapsulates the many-body non-classical electronic interactions arising

from Pauli exchange and dynamical electron correlation.* This energy functional EKS[n]

and its associated Hamiltonian operator define a set of one-particle equations which, after

spin-integration, yield

{
−1

2
∇2
i −

∑
A

ZA
riA

+

∫
n(r2)

r12

dr2 + Vxc(r1)

}
φi = εiφi, (2.99)

where Vxc(r1) is the exchange-correlation potential, is given by

Vxc(r1) =
δExc
δn

.

These restricted Kohn-Sham equations, after the introduction of a basis and recasting as

a linear algebra problem, can be solved self-consistently in much the same way that the

RHF equations are. By doing so, we would exactly solve the electronic Shrödinger equa-

tion by uniquely determining the ground-state electron density, with the caveat that we

have invoked an independent particle model to do so. Fortunately, however, the exchange-

correlation functional nominally contains all of the information necessary to correct for the

independent-particle formulation of Kohn-Sham DFT — but what exactly is the form of

the exchange-correlation functional?

*For more details on electron correlation, refer to Section 2.7.
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2.9.4 The Exchange-Correlation Functional

The exchange-correlation functional, Exc[n], formally encompasses all of the non-classical

physical interaction between electrons, as well as correcting for the presence of the independent-

particle kinetic energy functional:

Exc[n] = (T [n]− Ts[n]) + (Eee[n]− J [n]) = E∆[n] + Ex[n] + Ec[n], (2.100)

where Ex[n] is the exchange functional, which attempts to recover the exchange behav-

ior resulting from the indistinguishability of electrons (i.e., Pauli exchange) and Ec[n] is

the correlation functional, which attempts to recover the dynamical electron correlation

neglected by Hartree–Fock. Often, the kinetic energy correction functional E∆[n] is ne-

glected, as it is assumed to be negligible. Therefore, if both Ec[n] and Ex[n] were known,

then KS-DFT would be an exact theory. Of course, we do know the exact form of Ex[n], as

it is identical to the exchange contribution to the Fock matrix. Unfortunately, however, the

exact form of Ec[n] is not known; furthermore, it has been speculated that even if it were

known, it would be so complex that it would render KS-DFT intractable. For practical KS-

DFT, therefore, approximate correlation functionals must be developed. Furthermore, to

avoid the computational expense of computing the exact Hartree–Fock exchange, approxi-

mate exchange functionals are also often employed.

In formulating approximate exchange and correlation functionals, a hierarchy of ap-

proximations may be invoked, with successively more complex formulations of these quan-

tities nominally providing* higher accuracy in computed energies and properties. This

hierarchy is typically referred to as Jacob’s ladder for density functional approximations

(DFAs), with “less approximate” functionals occupying higher rungs on the ladder. On

the lowest rung are placed the most approximate functionals, which depend only on the

*Unlike wavefunction methods, DFT is convergent neither in the completeness of the one-electron basis
set nor in the rung of Jacob’s ladder for a given functional. The accuracy of DFT is highly system-dependent,
and must be assessed before application of a particular combination of density functional and basis set may
be chosen for a given problem of interest.
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local density at given spatial coordinates. Referred to as the local density approximation

(LDA), functionals in this family scale as O(N3) with basis set size, but can sometimes

fail spectacularly. For no increase in algorithmic complexity, functionals occupying the

next rung on Jacob’s ladder depend on both the local density and its gradient, referred to

as generalized gradient approximation functionals (GGAs). Even though these functionals

offer higher accuracy for energies and properties, they are still fundamentally local; there-

fore, they may not perform well for non-local properties like non-covalent interactions or

extended molecular geometries. The next logical step up the ladder is to force the depen-

dence of exchange-correlation functional on local density, its gradient, and its Hessian —

the second derivative of the density with respect to spatial coordinates. These function-

als are referred to as meta-GGAs, and while offering superior performance to GGAs, can

suffer from numerical instabilities due to the order of derivative required to build the ex-

change correlation potential. To this point, we have employed only approximate exchange-

correlation functionals; why not use exact (Hartree–Fock) exchange instead? For the addi-

tional cost of one order of magnitude higher scaling [i.e.,O(N3)→ O(N4)], the exchange

functional can be corrected by mixing in some fraction of exact, Hartree–Fock exchange.

These are referred to as hybrid functionals, with numerous examples of hybrid-GGAs and

hybrid-meta-GGAs throughout the literature. A similar approach could be taken to correct

the correlation functional by mixing in some fraction of MP2 correlation, with the caveat

that these “double-hybrid” functionals exhibit the same scaling as MP2 [O(N5)].

2.9.5 Non-Local Corrections to DFT

As discussed above, KS-DFT contains only local information until exact exchange is incor-

porated by hybrid functionals. As such, non-local properties like non-covalent interactions,

charge migration, etc. will not be well described by KS-DFT alone. Furthermore, mixing

in a part of the exact exchange, either for all orbital pairs or (as in the range-separated

hybrid approach) switching it on at long range, cannot solve all of the locality issues with
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KS-DFT, as exact exchange only correlates parallel-spin electrons. Furthermore, punting

to a double-hybrid functional results in a significant increase in computational expense. It

would therefore be desirable to correct KS-DFT for non-local electron correlation without

computing it at the MP2 level. Towards this end, several such schemes have been intro-

duced (see Ref. 34 for a very thorough review); the most relevant of which to this Thesis is

the third-generation dispersion correction of Grimme,35 denoted by appending “–D3” to the

functional abbreviation, e.g., B3LYP–D3. This “dispersion-corrected DFT” (DFT-D) ap-

proach seeks to correct the total molecular energy for the presence of long-range electronic

correlation (for particles separated by more than ≈3.5 Å) by adding to the DFT energy the

semi-empirical, atom-pairwise correction

Emolec
disp = −

∑
AB

E
(n)
disp = −

∑
AB

∑
n=6,8,10,...

CAB
n

Rn
f

(n)
damp, (2.101)

where the CAB
n coefficients are based on the Casimir–Polder expression for the dispersion

interaction between two spherically-symmetric electron densities oscillating in imaginary

frequency,

E
(6)
disp = − 3

πR6

∫ ∞
0

dω αA(iω)αB(iω) = −C
AB
6

R6
, (2.102)

and the damping function f (n)
damp tends to zero as RAB → 0 to ensure that the multipole

expansion of the dispersion energy remains well-defined, since it exhibits singularities at

RAB = 0.

Since the C6, C8, etc. coefficients are fixed for a given pair of atoms, the flexibility in

the –D correction arises from the choice of damping function and its parameterization. Two

of the most widely used damping functions are the Becke-Johnson damping function36,37

[denoted (BJ)] and the “zero damping” scheme of Chai and Head-Gordon,35,38 [denoted
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(0)] which are combined with the –D3 correction to yield

E
−D3(BJ)
disp = −1

2

∑
A<B

∑
n=6,8

sn
CAB
n

rnAB + (α1RAB
0 + α2)n

(2.103)

E
−D3(0)
disp = −1

2

∑
A<B

∑
n=6,8

sn
CAB
n

rnAB

1

1 + 6(rAB/(sr,nRAB
0 ) +RAB

0 β)−αn
(2.104)

These damping functions were originally parameterized to reproduce reaction energies and

barrier heights, together with non-covalent interactions, computed using CCSD(T).35,36

While this initial parameterization did afford additional accuracy for DFT-D3 versus un-

corrected DFT, very high-quality reference energies have become significantly more widely

available since these parameterizations were introduced. Recently, Smith et al. revised the

damping parameters for both BJ and zero-damping functions for a wide variety of density

functionals by training them against a very large set of CCSD(T)/CBS-quality energy points

comprised of approximately 1,600 interaction energies and potential energy curves.39 The

result of this revision was that the DFT-D errors versus CCSD(T)/CBS were reduced sig-

nificantly, while also reducing the variability in performance with the choice of density

functional.
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CHAPTER 3

THEORETICAL APPROACHES FOR NON-COVALENT INTERACTIONS

In this Chapter, we will briefly discuss the manner in which the electronic structure methods

introduced above are applied to study non-covalent interactions (NCI). First, however, we

will introduce the quantities of interest when studying NCI, the interaction energy and its

physically and chemically meaningful components, before finally introducing a family of

electronic structure methods specifically designed to be applied to NCI. There are a number

of excellent reviews and book chapters discussing this material in significantly more detail

than possible here; therefore, we will only present what discussion is absolutely necessary

to understand the following Chapters. For further detail, we refer the interested reader to

those references where relevant.

3.1 Defining the “Interaction Energy”

When two particles are infinitely separated, the energy of the pair is simply the sum of

the energies of the individual particles. For fermionic particles, this size-consistency is not

quite obeyed when the particles are separated by finite distances, however, as their motions

(and, consequently, their energies) are correlated. As such, fermionic particles begin to

interact when they become close to one another. Since atoms and molecules can be consid-

ered to be simply clouds of fermions, as under the Born-Oppenheimer approximation their

nuclei (which may be either bosons or fermions depending on nuclear spin) are clamped,

atoms and molecules will also interact at finite distances. This begs the question of by how

much two or more atoms/molecules interact, which could also be asked “how much do the

motions of the fermions belonging to one species impact the motions of the fermions in the

opposite species?”, or equivalently, “by how much does the energy change in the pair when

they become close?”.
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We may define the interaction energy between two moleculesA and B (the monomers)

as the difference between the total energy of the pair AB (the dimer) and the sum of the

differences of each monomer in isolation. This may be written as

IEAB = EAB − EA − EB, (3.1)

where IEAB is the interaction energy of the dimer AB, and EAB, EA, and EB are the

energies of the dimer and each monomer, respectively. This expression can be generalized

to describe the interaction energy for an arbitrary number of associating atoms or molecules

A, B, . . .K by replacing the energy of the dimer with the energy of the “supersystem”

S = AB · · · K and subtracting off the energy of each monomer in isolation:

IES = ES −
∑
I∈S

EI (3.2)

It is worth noting that we have not yet specified the level of theory at which these dimer and

monomer energies are computed.* For the sake of argument, let us assume that it is desired

to compute the interaction energy of a particular configuration of the benzene pentamer at

the CCSD(T)/aug-cc-pVTZ level of theory. This quantity, according to Eqn. 3.2, would

naïvely require separate computations to be performed for the total energy of each of the

five benzene monomers in the complex, together with a single computation on the full

pentamer. The monomer computations are routine enough; the pentamer computation,

however, would likely not be possible at all, thanks to the steepO(N7) algorithmic scaling

of CCSD(T). Indeed, given that the monomer energies would take roughly two hours each

to compute, the pentamer computation would require roughly 18 years!

*In general, we will use calligraphic capital letters (A, B, C, etc.) to represent molecules (or collections
thereof) as abstract chemical entities, while we will denote chemical entities described at a particular level of
theory with italic capital letters (A, B, C, etc.).
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3.2 The Many-Body Expansion

Such a time commitment for a single result would seem to render accurate investigations

of such systems intractable. This can be avoided, however, by leveraging the many body

expansion (MBE), whereby the total energy of a collection of N molecules can be exactly

written as

E(n) =
N∑
α=1

E(1)
α +

NC2∑
α=1

∆E(2)
α +

NC3∑
α=1

∆E(3)
α + · · · , (3.3)

where each ∆E
(i)
α is the ith-order energy correction, defined recursively by

∆E(n)
α = E(n)

α −
nCn−1∑
β=1

∆E
(n−1)
β −

nCn−2∑
γ=1

∆E(n−2)
γ − · · · −

n∑
ω=1

E(1)
ω , (3.4)

and the summations over unified indices α, β, γ, . . . for each ith-order correction are over

all NCi unique i-mers in the supersystem. Under the MBE, an approximate total energy

can be computed for the supersystem by truncating the expansion at a desired level, e.g.,

by including all trimers but no tetramers. This can drastically reduce the overall expense

of computing the total energy of the supersystem by constructing it from computations on

smaller subsystems, each of which can furthermore be performed in a pleasantly paral-

lelizable fashion across many compute nodes. If the interactions between monomers are

largely non-cooperative (i.e., no substantial mutual polarization or dispersion effects among

trimers, tetramers, etc.), the MBE can be truncated at fairly low order while still retaining

accuracy.

The MBE also provides a convenient expression for the interaction energy of a large

assembly of non-bonded fragments, provided by simply subtracting away the energies of

all monomers from that of the supersystem. This yields the same expression as the one

defined above for the ith order energy correction, where i is simply taken to be the total
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number of monomers:

IE(n) = E(n)
α −

nCn−1∑
β=1

∆E
(n−1)
β −

nCn−2∑
γ=1

∆E(n−2)
γ − · · · −

n∑
ω=1

E(1)
ω . (3.5)

It is clear that this expression could also be truncated at a chosen order to approximate the

total IE by neglecting higher-body contributions. Just like for the total supersystem en-

ergy, it has been shown that the truncation level for this expression necessary to achieve a

particular level of accuracy system-dependent; for assemblies bound largely by dispersion,

truncation at three- and even two-body terms yields a reasonable estimate of total interac-

tion energy,40–43 while for hydrogen bonded complexes, four- and five-body contributions

to the interaction energy are still significant.44–46

3.3 Types of Non-Covalent Interactions

We have already seen what non-covalent interactions do — they change the total energy

of a collection of molecules from what they would be if they were infinitely isolated to

what they are when they become close to one another — but we have yet to address the

question of exactly what causes this phenomenon and why it does so. Fortunately, we are

already equipped with all of the knowledge necessary to answer these questions, at least at

the conceptual level. For the rigorous mathematical details, we refer the interested reader

to the proverbial bible of NCI, Anthony Stone’s The Theory of Intermolecular Forces,47 as

well as several books, collections, and review articles written by leaders in the field.48–50

Nearly every particular type of non-covalent interaction, of which there are many spe-

cific examples — C-H–π, hydrogen bonding, halogen bonding, π − π, and hydrophobic

interactions, among others — can be thought of as the interplay between one or more of

four basic forces: electrostatics, exchange, induction, and dispersion. For the sake of sim-

plicity, therefore, we will provide here a birds-eye view of what each of these forces are

and how they arise, before later discussing the particular computational and/or theoretical
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challenges that each of these forces present.

Electrostatics Electrostatic forces are felt between all charged particles according to

Coulomb’s Law. For molecular interactions, therefore, electrostatics encompasses the at-

traction between the electrons of one monomer to the nuclei of the other and the repulsion

between the nuclei of nearby monomers. Furthermore, a variety of electrostatic interactions

can arise from the interaction of electron densities. When one or more molecule with a net

electronic dipole moment (or even local dipole moments on particular functional groups)

interact, the attraction or repulsion between the partial positive and partial negative “ends”

of the dipole(s) is also an electrostatic force.

Exchange Exchange forces occur when electron densities overlap, and are always repul-

sive. Therefore, this is often referred to as exchange-repulsion or steric repulsion. Ex-

change, as well as its connection to the antisymmetry principle, will be discussed in more

detail in Section 3.5.

Induction Induction forces, often referred to as polarization, occur when a permanent

full or partial charge on one species induces a separation of charge on another species,

which then interact electrostatically. This effect can be either attractive or repulsive, but is

typically attractive.

Dispersion Dispersion forces, originally introduced by London51,52 (and thereby typi-

cally referred to as London dispersion), arise when instantaneous fluctuations of electrons

in one species form a temporary dipole moment, thereby inducing an instantaneous, com-

plementary dipole moment in another species. Always attractive, these mutual, instanta-

neous fluctuations are due exclusively to electron correlation, and as such cannot be recov-

ered by a mean-field theory like Hartree–Fock. Furthermore, the strength of the dispersion

interactions are proportional to the total number of electrons.
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3.4 Supramolecular Approaches for Non-Covalent Interactions

As for any chemical property, many practical considerations must be taken into account

before submission to a computational approach. First and foremost, since electron correla-

tion plays a large role in determining the strength of NCI, many of the same considerations

which were discussed in Section 2.8 are relevant when computing NCI — including the

question of size consistency for a given method, the truncation level for the correlated

method employed, and the choice and completeness of the one-electron basis set. Since the

interaction energy is defined as a difference of total energies, it would seemingly follow

that a better description of these total energies should also lead to a better description of the

interaction energy. In some cases, however, this may not actually be the case due to factors

unique to interaction energy computations. It is with these additional factors which will

dominate much of the discussion in this section, however let us begin by addressing fac-

tors which we already know to be important considerations for any correlated computation:

truncation level and basis set completeness.

3.4.1 Correlation Effects and Size Consistency

We have defined the interaction energy to be the difference between the energies of a dimer

and the energies of its isolated constituent monomers. In doing so, we have relied on the

fact that at an infinite separation distance the two monomers do not interact, and thus the

energy of the full system is simply the sum of the monomer energies. Recalling the pre-

vious discussion in Section 2.7.1, this limiting behavior is exactly what we had defined

as size consistency, a well-known shortcoming of truncated CI variants. Therefore, it is

not advisable to apply anything short of FCI to supermolecular IE computations, which of

course is impossible for all but the smallest interacting systems, e.g., He·H2, etc. Since

MPn and CC are size-consistent for all truncation levels of either the perturbation series

or the cluster operator, these approaches are preferred for application to supermolecular
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computations of the interaction energy. Once either MPn or CC has been chosen, how-

ever, the appropriate level of truncation remains to be determined. The appropriate choice

thereof must be determined on a case-by-case basis, driven by the interplay between the

desired level of accuracy and the computational expense which can be afforded. Since the

cost of a given computation — as well as its accuracy — also depends significantly on the

completeness of the one-electron basis set, however, we must first address concerns related

to the basis set which are unique to supermolecular IE computations before determining a

preferred level of theory for a particular computation, which we define to be a combination

of method and basis set.

3.4.2 Basis Set Incompleteness and Basis Set Superposition Errors

As with any property, the completeness of the one-electron basis set can significantly affect

the quality of computed supermolecular interaction energies. This is especially true for

NCI, however, since so much of this property is determined by dynamical electron correla-

tion, which as we have already seen is particularly slow to converge towards the complete

basis set (CBS) limit. Therefore, the incompleteness in the basis set can cause significant

errors to occur; this is referred to as the basis set incompleteness error (BSIE), and is for-

mally defined to be the difference between the value computed in a finite basis from that of

the CBS limit:

BSIE = IE∞ − IEfinite (3.6)

Fortunately, we may employ the same tactics to reduce the BSIE in an IE computation as

were introduced in Section 2.8.2, including CBS extrapolation, focal point approaches, and

even explicit correlation; indeed, the application of these convergence acceleration meth-

ods to NCI has received significant attention, including in the work reproduced in Chap-

ter 4. The largest effect of BSIE on a supermolecular IE computation is that an insufficient

amount of “cross talk” is possible between the two monomers to allow for the stabilization

of the dimer relative to the isolated monomers, causing the computed IE to be under bound
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relative to the true value.

Unfortunately, however, even if the individual energies of the dimer and each monomer

are computed at the CBS limit using, e.g., a two-point extrapolation of energies computed

in the cc-pVTZ and cc-pVQZ basis sets, there still may be significant errors in the total

interaction energy. This is due to the fact that, in order to properly describe the interaction

of the two molecular species, some spatial overlap of basis functions from each monomer

must be present. For typical non-bonded contact distances of between 3.5-5 Å, the spatial

extent of the cc-pVXZ family of basis functions is often insufficiently diffuse to allow for

overlap to occur. The effect of this lack of overlap is identical to that of BSIE, namely,

that cross talk between the monomers cannot occur, leading to an under-binding of the

complex. While some have advocated adding “midbond” functions centered between the

two monomers as a method to allow for crosstalk,16 the simplest (and most even-handed)

approach is to simply augment the one-electron basis with a set of more spatially diffuse

functions that would allow for overlap. Such basis sets are prefixed with “aug-,” i.e., aug-

cc-pVTZ (abbreviated aTZ), and are the standard choice for NCI computations.

Addressing BSIE by performing computations directly at the CBS limit is not always

practical, or indeed even possible; in such cases, when finite basis sets must be used, BSIE

is not the only basis set error to which IE computations are susceptible. If the dimer com-

ponent of a supermolecular IE is performed in a so-called “dimer-centered” basis (where

the basis functions from both monomers are included) but the monomers are each only

described by their own monomer-centered basis sets, an artificial stabilization of the dimer

will occur thanks to the increased variational flexibility of the monomers within the dimer

wavefunction relative to their isolated wavefunctions. This over-stabilization of the dimer

relative to the monomers causes supermolecular IEs computed in this manner to bound ar-

tificially strongly (i.e., too negative an IE) compared to the value computed in a complete

basis set. This effect is referred to as basis set superposition error (BSSE), and the best

method for addressing BSSE (or whether to address it at all) has been the center of much
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debate in the community (see, e.g., Refs. 53 and the references therein). The most com-

mon approach to removing BSSE from a two-body supermolecular IE computation is to

simply perform each of the computations in the dimer basis set; this way, the monomers

feel the same variational flexibility on their own as they do in the dimer, which will cancel

when the energies are subtracted to compute the IE.* This approach, termed the counter-

poise correction (CP), was introduced independently in two separate works but is largely

attributed to Boys and Bernardi.54

The main argument for not addressing BSSE is that the over-binding of the supermolec-

ular IE due to BSSE can fortuitously cancel with the under-binding due to BSIE. The result

is one of the many instances of a contradiction in quantum chemistry: a more theoretically

rigorous result which is, in fact, less accurate than the less rigorous one. This is especially

true for CP vs. non-CP corrected IEs computed at the MP2/6-31G∗ level of theory: when

these IEs are CP-corrected, they can exhibit errors greater than 1 kcal mol−1 from refer-

ence IEs, but when they are uncorrected for BSSE, they can be accurate to within 0.05 kcal

mol−1 of reference IEs.55,56 The question of correcting or not correcting for BSSE — or in-

deed taking an average approach — was recently examined by Burns et al., who found that

for basis sets larger than aQZ (including CBS extrapolations and focal-point methods) CP-

corrected IEs agreed better with high-quality reference data than did uncorrected IEs.57 In

general, it is our goal in this Thesis to apply rigorous theoretical methodologies to address

chemical phenomena whenever possible; therefore, it is our belief that the CP correction

should be combined with CBS extrapolation whenever tractable.

3.4.3 Medal Winners for Non-Covalent Interactions

Reviewed recently in an excellent book chapter by Sherrill,59 the application of wavefunc-

tion theory methods to the supermolecular computation of NCI is a well-established prac-

tice which has been explored thoroughly. Furthermore, the application of XDM, wdW-DF,

*For the sake of simplicity, we will limit our discussion of BSSE to two-body IE computations; for a
treatise on BSSE in many-body IE computations, please refer to Ref. 53 and the references therein.
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Figure 3.1: Comparison of computational classes for NCI. (a) The recommended SAPT
model chemistries from Ref. 58 are compared to (b) common DFT approaches and (c)
common or recommended wavefunction techniques from Ref. 55 according to both ef-
ficiency (purple; time required for adenine·thymine) and accuracy (grey; MAE averaged
over S22, HBC6, HSG, and NBC10 databases) metrics. Subset MAE values are shown as
inset bars for hydrogen-bonding (red), mixed-influence (green), and dispersion-dominated
(blue) NCI motifs. Figure reproduced from Ref. 55.
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and other DFT and DFT-D approaches to NCI is similarly well studied, with several chap-

ters in that same volume dedicated to their discussion,60–62 together with excellent collec-

tions in the literature.63 Much of these efforts have gone to establishing best-practices for

properly choosing a level of theory which balance the desired level of accuracy with com-

putational expense, a non-trivial fraction of which has been put forth by my current and

former co-workers in the Sherrill group.* NCI benchmarking, whereby the accuracy of IEs

computed by a particular combination of method/basis set are assessed against high-level

reference energies, has and continues to be an active area of research, with a significant

portion of this Thesis so dedicated.

Before introducing those results in the following Chapters, however, it is worth assess-

ing the status of the field of NCI benchmarking before the contributions set forth in this

Thesis. To this end, summarized in Fig. 3.1 is the interplay between accuracy and com-

putational expense for several of the most popular model chemistries for computing NCI

from among the DFT, wavefunction, and SAPT (introduced below) families of methods,

reproduced with permission from Ref. 55 (ca. 2014). Also visualized are “NCI medal-

ists,” as appointed in Refs. 55, 58, 64, which designate particular levels of theory as best

balancing a particular level of accuracy against the associated computational expense. The

most notable takeaways for DFT and wavefunction methods are that (a) for DFT methods,

no systematic improvement is seen when either moving to a higher rung of Jacob’s ladder

or increasing the size of the one-electron basis set, and (b) for wavefunction methods, the

more accurate a level of theory, the more expensive it is.†

3.5 Symmetry-Adapted Perturbation Theory

Even though we have seen that the supermolecular approaches can directly quantify the

strength of interactions between two or more chemical species — a considerable advan-

*Indeed, Dr. Lori Burns herself is a veritable sage of NCI benchmarking, and it is under her tutelage that a
long line of Sherrill group graduate students and postdocs (with myself just being the latest) have contributed
in this area.

†As we will see below, this is also true for levels of SAPT.
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tage over indirect experimental observation — supermolecular IE computations still only

provide a single scalar value by which to do so. Even though it is illustrative, the strength

of the IE cannot offer any information to rationalize why a particular value has been com-

puted, or to support any chemically or physically meaningful arguments thereof. Even

for molecular aggregates whose total IE may be decomposed into contributions from two-

body, three-body, etc. interactions via the MBE, there is still no information provided to

justify why even this decomposition is observed. Instead, it would be desirable for an ap-

proach to be able to decompose the interaction energy into contributions from chemically

meaningful forces, such as electrostatic attraction or steric repulsion. Fortunately, various

energy decomposition analysis (EDA) approaches have been developed which offer pre-

cisely this information. Some EDA schemes partition a supermolecular IE according to

charge or population analysis, etc., however these approaches can suffer from the fact that

any attempt to localize the wavefunction is arbitrary, and can therefore lead to non-unique

partitions of the IE.

Rather than by partitioning a supermolecular IE into semi-arbitrary contributions from

different physical forces, a more rigorous approach is obtained by treating the interac-

tion between exactly two molecules as a perturbation of their isolated monomer wavefunc-

tions. By further ensuring that the resulting fully interacting wavefunction is antisymmetric

with respect to interchange of electrons between monomers, it is possible to develop the

symmetry-adapted perturbation theory (SAPT) approach. The major advantage of SAPT

over other EDA schemes is that the contributions to the total interaction energy from under-

lying physical forces are well-defined, arising from the perturbation operator acting on the

molecular orbitals of each zeroth-order monomer wavefunction, rather than as an a poste-

riori partitioning of the IE itself. As SAPT will play a significant role in the body of this

Thesis, we will devote the remainder of this Chapter to its discussion; thanks to a wonderful

review recently written by Patkowski,65 however, we will concern ourselves here with only

the details of SAPT and its applications which are most relevant to this Thesis, and refer
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the interested reader to that wonderful review for all other details.

3.5.1 Basic Formulation of SAPT

In SAPT, the total Hamiltonian operator is written as

Ĥtotal
AB = F̂A + F̂B + λV̂AB + ζŴA + ξŴB, (3.7)

where F̂A, F̂B are Fock operators corresponding to monomers A and B, V̂AB is the per-

turbation corresponding to intermolecular interactions, and ŴA, ŴB are the perturbations

corresponding to intramolecular electron correlation. This triple perturbation series can

be truncated for particular values of λ, ζ , and ξ; terms arising from such a truncation are

denoted E(λ,ζ+ξ). The most basic such truncation, where the intramolecular correlation is

neglected but the intermolecular perturbation is included through second order, yields the

so-called SAPT0 expression for the interaction energy,

ESAPT0
int = E

(10)
elst + E

(10)
exch + E

(20)
ind,r + E

(20)
exch−ind,r + E

(20)
disp + E

(20)
exch−disp + δ

(2)
HF (3.8)

where the δ(2)
HF term corrects for the presence of higher order induction and exchange-

induction, and is defined as

δ
(2)
HF = EHF

int −
(
E

(10)
elst + E

(10)
exch + E

(20)
ind,r + E

(20)
exch−ind,r

)
(3.9)

Unlike supermolecular approaches for computing the interaction energy, SAPT is consid-

ered to be formally BSSE-free, which is one of the major advantages of the approach. To

ensure this desirable property of the SAPT interaction energy is maintained, therefore, it

is necessary to ensure that the δ(2)
HF correction term remain similarly BSSE-free. Therefore,

δ
(2)
HF is typically counterpoise-corrected according to the CP scheme of Boys and Bernardi.54

The form of the second-order dispersion (and exchange-dispersion) terms is analogous to
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the expression for the MP2 correlation energy, and also, therefore, is their expense. While

the other terms in SAPT0 require at most for the coupled-perturbed Hartree–Fock (CPHF)

equations to be solved, thereby scaling no worse than O(N4), E(20)
disp and E(20)

exch−disp scale

with total number of occupied orbitals o and virtual orbitals v as O(o3v2) and O(o2v3),

respectively. Similarly to MP2, however, SAPT benefits greatly from the density fitting ap-

proach introduced in Section 2.6.2, with DF-SAPT applicable to systems as large as ∼200

atoms. Unfortunately, the similarities of E(20)
disp and E(20)

exch−disp to MP2 also extend to their

physical accuracy; since MP2 (and the second-order dispersion) are both formulated in

terms of excitations within Hartree–Fock monomer densities that are uncoupled from each

other, the effects of orbital relaxation on the dispersion energy is neglected. This often

leads to marked over-binding in complexes for which dispersion is significant, particularly

for π − π interactions.

3.5.2 Levels of SAPT

In order to further improve the interaction energy from the description afforded by SAPT0,

the perturbations corresponding to intramolecular correlation, ŴA and ŴB, may be in-

cluded at second (or higher) order in addition to V̂AB to yield various higher-order trunca-

tions of SAPT. The performance of these various truncation levels, together with their basis

set dependence, was examined extensively by Parker et al. for computing total interaction

energies.58 In that work, medalists for SAPT were assigned which best combined accuracy

and computational expense in much the same manner as was discussed above for wave-

function methods. In particular, the jun-cc-pVDZ basis set — where the diffuse functions

on H atoms and diffuse d functions on second-row elements are neglected — was deter-

mined to be the most favorable basis set for use with the SAPT0 truncation level, due to

the fact that the limited diffuse space in the basis set (which would normally under-bind

the IE) caused a fortuitous cancellation of errors with the uncoupled dispersion present

in SAPT0. This level of theory, SAPT0/jun-cc-pVDZ, was set forth by Parker et al. as
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the bronze standard for SAPT theory, has been widely applied in a variety of chemical

contexts ranging from drug intercalation in DNA66 to understanding the enantioselectiv-

ity of organocatalyzed reactions67,68 and the differential binding of substituted Factor Xa

inhibitor drugs to its binding target.69 Each of these applications, however, leveraged addi-

tional partitions of the SAPT energy into contributions from particular pairs of atomic or

functional-group contacts, which we will leverage later in this Thesis to our own work on

extended chemical systems.

3.5.3 Additional SAPT Partitions

While SAPT offers increased chemical intuition into the nature of a particular non-covalent

interaction when compared to a simple supermolecular IE, it still offers only total interac-

tion quantities, e.g., the electrostatic attraction between two entire monomers. For inter-

acting molecules which each contain multiple functional groups or residues, however, it

would be desirable also to quantify the interaction between a particular pair of atoms or

functional groups on opposite monomers. Fortunately, exactly this type of fine-grained par-

titioning of SAPT energies was recently developed by Parrish et al. for SAPT0, termed the

atomic70 and functional-group66 partitions of SAPT (ASAPT and F-SAPT, respectively).

After the introduction of F-SAPT, Parrish and Gonthier introduced a practical formula-

tion of intramolecular SAPT (ISAPT)71 based on Hartree–Fock embedding, building upon

Gonthier’s earlier efforts towards generating appropriate zeroth-order wavefunctions for in-

tramolecular SAPT.72 These three methods, ASAPT, F-SAPT, and ISAPT,* together greatly

expand the quantum mechanical toolkit for providing detailed insight into the fundamental

nature of non-covalent interactions for a variety of applications, and will be used exten-

*The semantic reason behind the inclusion of a hyphen in the abbreviations for F-SAPT and ASAP-
T/ISAPT is that, in the cases of ASAPT and ISAPT, the differences with conventional SAPT0 are more
fundamental, i.e., they appear at the algorithmic level. F-SAPT, on the other hand, is based on the functional
group accumulation of atomic-pairwise contacts, so it is rather an a posteriori partition of what are essentially
ASAPT terms. Of course, the formulation and implementation details of both ASAPT and F/I-SAPT are ac-
tually much more complex than this simplified explanation; nevertheless, their abbreviations are determined
based on this principle.
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sively throughout the rest of this Thesis.

Atomic and Functional-Group Partitions of SAPT: ASAPT & F-SAPT

Both ASAPT and F-SAPT partition the full SAPT0 interaction energy and components

computed between monomers A and B (an order-0 partition) into (i) contributions from

fragments of, e.g., monomerA interacting with the entirety of monomer B (an order-1 par-

tition) and (ii) contributions from unique pairs of a fragment from monomer A interacting

with a fragment from monomer B (an order-2 partition). Within this scheme, each of the

total electrostatics, exchange, induction, and dispersion are partitioned by leveraging the

iterative stockholder analysis (ISA) localization procedure and the intrinsic locality of the

density-fitted two electron integrals. Unfortunately, δ(2)
HF has no convenient local represen-

tation, and thus remains a correction to the total (order-0) interaction energy. Even though

the total component energies are conserved under localization, and the total δ(2)
HF correction

is included at the order-0 level, both order-1 and order-2 partitions of the SAPT0 energy

and components only incorporate an “approximate” δ(2)
HF partition based on scaling the total

δ
(2)
HF correction in an even-handed manner. Therefore, order-1 and order-2 partitions of the

SAPT0 energy are generally considered semi-quantitative, since no exact partition of δ(2)
HF

is included to correct fragment interactions for the presence of higher-order induction and

exchange-induction effects.

In spite of the semi-quantitative nature of the fragment interactions, the analysis pro-

vided by both ASAPT and F-SAPT offer significant chemical insight that is lacking even

with the conventional formulation of SAPT. These partitions are not without their short-

comings, however. In ASAPT, for example, the electrostatic terms tend to exhibit wild

oscillations between interactions of adjacent atoms, due to the proximity of partial atomic

charges from the assignment of the partitioned molecular electron density to atoms. F-

SAPT, on the other hand, largely removes these inconsistencies by coarse-graining the par-

tition of electron density to functional groups comprised of several atoms. In this method,
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however, functional groups must not be defined such that anything but single σ-bonds are

“cut” between adjacent fragments,* as this will result in spurious multipoles.

The Intramolecular Formulation of SAPT: ISAPT

From its earliest inception, the main drawback of SAPT has been that it is formulated to

compute the interaction between exactly two monomers. In order to study the interactions

between two different functional groups belonging to the same molecule (let’s label them

A and B) — an intramolecular non-covalent interaction — a cut-and-cap approach was

therefore necessary to fragment the molecule into two separate monomers before SAPT

could be applied, even if the interacting moieties were many bonds removed from one

another. In the cut-and-cap approach, a σ bond between the fragment(s) of interest and

the rest of the molecule (to which we will refer as C) would first be cut, before removing

all atoms in C and replacing them with a single hydrogen atom. This approach has been

justified by arguing that, especially if C is a saturated aliphatic chain, the electron densities

of the interacting fragments A, B are not significantly changed by the presence (or lack

thereof) of C, and therefore neither is the A · · · B interaction. For some systems, the cut-

and-cap approach may indeed provide a realistic representation of the interactions between

fragments of interest,73 however the appropriateness of this approach in general is an open

question in the field and will likely vary on a system-by-system basis.

Recently, however, Parrish and Gonthier developed an intramolecular formulation of

SAPT (ISAPT) in which the presence of the connecting backbone C is effectively incorpo-

rated into the A · · · B interaction via a HF-in-HF embedding procedure. In their approach,

the zeroth-order wavefunctions for A and B are prepared by relaxing the density of A

(B) in the presence of C so that they each remain fully orthogonal to C but no longer or-

thogonal to each other. A standard SAPT computation performed using these zeroth-order

*For example, the oxygen atom in an epoxide should not be defined as an independent fragment, even
though only σC−O bonds are cut by the fragmentation, since two bonds are severed. Similarly, even aliphatic
rings should not be partitioned into different fragments.
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wavefunctions forA and B then effectively incorporates the electronic deformation of each

fragment by the presence of the linker C, thereby quantifying by how much C tunes the

A · · · B interaction.
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PART II

BENCHMARKING NON-COVALENT INTERACTIONS:

TOWARDS THE “RIGHT ANSWER FOR THE RIGHT REASONS”
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CHAPTER 4

COMPARISON OF EXPLICITLY CORRELATED METHODS FOR

COMPUTING HIGH-ACCURACY BENCHMARK ENERGIES FOR

NONCOVALENT INTERACTIONS

4.1 Abstract

The reliability of explicitly correlated methods for providing benchmark-quality noncova-

lent interaction energies was tested at various levels of theory and compared to estimates

of the complete basis set (CBS) limit. For all systems of the A24 test set, computations

were performed using both aug-cc-pVXZ (aXZ; X = D, T, Q, 5) basis sets and specialized

cc-pVXZ-F12 (XZ-F12; X = D, T, Q, 5) basis sets paired with explicitly correlated coupled

cluster singles and doubles [CCSD-F12n (n = a, b, c)] with triple excitations treated by the

canonical perturbative method and scaled to compensate for their lack of explicit correla-

tion [(T∗∗)]. Results show that aXZ basis sets produce smaller errors versus the CBS limit

than XZ-F12 basis sets. The F12b ansatz results in the lowest average errors for aTZ and

larger basis sets, while F12a is best for double-ζ basis sets. When using aXZ basis sets (X

≥ 3), convergence is achieved from above for F12b and F12c ansatzë and from below for

F12a. The CCSD(T∗∗)-F12b/aXZ approach converges quicker with respect to basis than

any other combination, although the performance of CCSD(T∗∗)-F12c/aXZ is very simi-

lar. Both CCSD(T∗∗)-F12b/aTZ and focal point schemes employing density-fitted, frozen

natural orbital [DF-FNO] CCSD(T)/aTZ exhibit similar accuracy and computational cost,

and both are much more computationally efficient than large-basis conventional CCSD(T)

computations of similar accuracy.†

†This Chapter reproduces the work in Ref. 74.

89



4.2 Introduction

Recent improvements have made density functional theory (DFT) and lower-level post-

Hartree–Fock wavefunction methods much more accurate for noncovalent interactions (NCI),

with mean absolute errors as low as 0.1–0.3 kcal mol−1 for some of the popular bench-

mark test sets of small van der Waals dimers.75–77 Thus, further improvements will require

more accurate benchmark values for parameterization and testing. For small molecules

(up to around 15 heavy atoms), it seems desirable for benchmark interaction energies (IEs)

to be within about 0.1 kcal mol−1 of the “exact” result (for present purposes defined as

the non-relativistic Born–Oppenheimer limit). Complete-basis-set (CBS) extrapolations

of coupled-cluster theory through perturbative triple substitutions [CCSD(T)]10 have been

widely regarded as the most appropriate method to estimate this benchmark limit. Resid-

ual errors from neglected higher-order electron correlation effects (e.g., quadruple excita-

tions) appear to be very small (on the order of hundredths of one kcal mol−1 for small

systems),13,14 and core correlation effects can also be neglected as being on this same or-

der.14,16 On the other hand, incomplete basis sets can easily yield errors of more than 0.1

kcal mol−1 for CCSD(T) IEs.57 Hence, for “gold standard” level computations benchmark-

ing noncovalent interactions, it is important to obtain good estimates of the CBS limit.

Unfortunately, direct application of conventional CCSD(T) to NCI is difficult for large

molecules and/or large basis sets because of the method’s steep O(o3v4) computational

scaling, where o and v are the number of occupied and virtual (unoccupied) molecular

orbitals, respectively. One approach to reducing the steep cost of this method is the in-

troduction of focal-point schemes,23,24 which obtain the CBS limit for a less expensive

method like second-order Møller–Plesset perturbation theory (MP2) and then apply a cor-

rection for electron correlation neglected by MP2, e.g., by adding δCCSD(T)
MP2 , the difference

between MP2 and CCSD(T) as computed in a smaller basis set. This focal-point approach

has been widely applied and generally yields at least a “free” ζ-level of accuracy in terms
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of accuracy vs. computational cost.25–28,30,78–86 Due to the difference between CCSD(T) and

MP2 energies being already relatively constant across basis sets, however, these corrections

are not necessarily systematically improvable; indeed they often exhibit small oscillations

and lack of definite convergence for basis sets beyond aug-cc-pVTZ (aTZ).57

By including explicit dependence upon the interelectronic distance, “explicitly corre-

lated” methods (see Refs. 87–89 and references therein) can greatly accelerate conver-

gence towards the CBS limit. In particular, the explicitly correlated CCSD-F12 methods90

and the associated F12a,91 F12b,92 and (F12*)93 [also referred to as F12c]94 approxima-

tions, have gained significant traction. These popular F12 approximations have not been

extended to triple excitations; that is, CCSD(T)-F12a, etc., apply explicit correlation only

to the single and double substitutions. As a practical way to remedy this deficiency, Werner

and co-workers92,95 introduced a scaling approach that assumes explicit correlation should

magnify the triples contribution to the correlation energy by the same ratio as the magnifi-

cation of the MP2 doubles contribution:

E(T∗)
corr = E(T)

corr

EMP2-F12
corr

EMP2
corr

. (4.1)

In order to preserve size-consistency for noncovalent interaction energies in weakly bound

dimers, it is helpful to use the same scaling ratio for each contribution (monomer A,

monomer B, and the dimer);95 we denote this use of the dimer ratio for each component by

(T∗∗).

Marchetti and Werner95 showed that CCSD(T∗∗)-F12a/aug-cc-pVDZ achieves errors

of less than 0.2 kcal mol−1 vs. CCSD(T)/CBS for all members of the popular S22 test

set,79 despite the small basis set used. Later comparisons against revised values30 for the

S22 test set showed mean absolute errors of about 0.1 kcal mol−1 for both F12a and F12b

variants of CCSD(T∗∗) in the modest aug-cc-pVDZ basis.30 The small remaining errors in

CCSD(T∗∗)-F12a and CCSD(T∗∗)-F12b exhibit varying behavior for different systems; in
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an aug-cc-pVDZ basis set, CCSD(T∗∗)-F12a tends to do best for hydrogen-bonded systems,

while CCSD(T∗∗)-F12b tends to do best for dispersion-bound or mixed systems. This led

to the introduction of a “dispersion weighted” (DW) CCSD(T∗∗)-F12 that mixes F12a and

F12b results to best effect96 (analogous to the dispersion-weighted MP2-F12 method of

Marchetti and Werner,95 which mixes MP2-F12 with spin-component-scaled MP2-F12).

DW-CCSD(T∗∗)-F12/aug-cc-pVDZ exhibits a mean absolute error of only 0.05 kcal mol−1

for the S22B test set96 and may be useful as a “silver standard” in benchmarking NCI,77

with errors nearly as small as CBS extrapolations of conventional CCSD(T) (or focal-point

estimates of the same), but with much smaller basis set requirements.

Recently, the question of applying explicitly correlated methods to noncovalent inter-

actions has received renewed attention.97–99 In particular, Patkowski100 compared several

approximate CCSD(T)-F12 methods and basis sets (with and without midbond functions)

for computing the IE of a few rare gas, water-methane, and water dimers; Martin and

coworkers101 sought to investigate the role of basis set superposition error within explicitly

correlated methods; and Schmitz et al.102 examined the accuracy of a novel pair natural

orbital (PNO) formulation of the MP2-F12, CCSD(2)F12,103 and CCSD[F12]93 methods.

Additionally, efforts to revise the reference values in a number of popular test sets for non-

covalent interactions or extend them to include more systems have been undertaken uti-

lizing such explicitly correlated methods. Most notably, this includes revisions of the S66

test set76,104,105 (partially by Werner and coworkers91 and then more completely by Tew and

coworkers102) and the S66×8 test set105,106 by Martin and coworkers,Brauer:2016:xxx as well

as the extension of the S22×5 test set107 by Smith et al.39 to include two additional points

at 0.7 and 0.8·Re, dubbed S22×7. The very high quality of approximate CCSD(T)-F12

methods shown in those studies for describing noncovalent interactions raises the question

of whether these approaches, even with modest basis sets, might be suitable replacements

for current “gold standard” benchmark procedures based on conventional CCSD(T). Hence,

an improved understanding of the convergence behavior of these CCSD(T)-F12 approxi-
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mations for NCI, as well as their performance at given basis set levels, would be helpful.

To this end, we seek here to present a complete, systematic study of the basis set con-

vergence of both CCSD(T) and explicitly correlated CCSD(T)-F12 with the F12a, F12b,

and F12c approximations for the IEs of several small bimolecular complexes. In order

to make generalized recommendations about the application of these methods for bench-

marking NCI in arbitrary systems, we have chosen to examine the A24 test set,14 which

provides a diverse set of systems still small enough to perform benchmark computations

in very large basis sets, and the S22 test set79 with revised reference values30 which tests

the efficacy of our recommendations for systems of larger size and stronger interaction.

We employ the aug-cc-pVXZ (X = D, T, Q, 5)22 and cc-pVXZ-F12 (X = D, T, Q, 5)108,109

basis sets. The latter basis set family was specialized for use with explicitly correlated

methods; X = D, T, Q were optimized for use with MP2-F12(3C),108 while X = 5 was opti-

mized for the CCSD(T)-F12b method.109 Additionally, we will compare both the accuracy

and computational expense of the best of these explicitly correlated methods, as well as

existing approaches, in order to determine which (if any) should be considered as viable

alternatives to the currently recommended focal-point prescriptions for benchmark-quality

interaction energies.

4.3 Theoretical & Computational Methods

4.3.1 Overview of Approximate CCSD(T)-F12 Methods.

Here, we present an overview of the approximate CCSD(T)-F12n methods examined in

this work; we direct the interested reader to Refs. 87–95 and the references therein for a

more thorough discussion. We will adopt the Einstein convention for which any repeated

indices are summed over. The form of the CCSD-F12 wavefunction is given by

|Ψ 〉CCSD−F12 = eT̂1+T̂2|Φ 〉HF (4.2)
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Figure 4.1: Bimolecular complexes included in (a) the A24 and (b) S22 test sets of Hobza
and coworkers14,79 with revised A24B and S22B30 reference energies, in kcal mol−1. Col-
oring is based on SAPT2+(3)/aTZ results reported previously by Burns et al.57,77 and indi-
cates interaction type: red for electrostatically dominated interactions (typically hydrogen
bonding), blue for dispersion dominated interactions, and yellow-green for interactions of
mixed character.
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with the cluster operators T̂1 and T̂2 defined by

T̂1 = tiaÊ
a
i , (4.3)

T̂2 = T ijabÊ
ab
ij + T ijαβÊ

αβ
ij , (4.4)

for occupied orbital indices i, j, and virtual orbital indices a, b. α, β denote virtual orbitals

in a complete basis set. In these expressions, Êa
i and Êab

ij = Êa
i Ê

b
j are spin-free one

and two electron excitation operators and tia and T ijab are the canonical singles and doubles

amplitudes from CCSD theory.

The amplitudes T ijαβ represent additional configurations not spanned by the primary

orbital basis, and they are given by

T ijαβ = T ijmnFmnαβ , (4.5)

Fmnαβ = 〈mn |F12Q̂12 |αβ 〉. (4.6)

The short-range correlation factor, F12 = f(r12), is commonly given by the Slater function

f(r12) = e−βr12 , (4.7)

which accurately describes the nature of the wavefunction near the interelectronic cusp,

i.e., when r12 → 0. The optimal value of the geminal parameter, β, will typically depend

on the system and basis set; β can therefore be optimized for each individual computation,

but more commonly it is set a priori to a fixed value (the approach taken in this work). The

F12 amplitudes, T ijmn, are often taken to be diagonal, such that T iiii = ts, T
ij
ij = 1

2
[ts + tt]

(for i = j), T ijji = 1
2
[ts − tt] (for i 6= j), and all other amplitudes T ijkl = 0. Additionally, the

values of the parameters ts and tt are commonly taken to be fixed:

ts = − 1

2β
, tt = − 1

4β
, (4.8)
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with β the geminal parameter from Eqn. 4.7; these values are from the cusp conditions

for s and p functions. This diagonal, fixed ansatz [referred to as 3C(FIX)] is both size

consistent and orbital invariant, and is employed by each of the CCSD-F12a, CCSD-F12b,

and CCSD(F12∗) methods. Finally, the projector Q̂12, given by

Q̂12 = (1− ô1)(1− ô2)(1− v̂1v̂2) (4.9)

where ô and v̂ project onto the occupied and virtual spaces, respectively, ensures strong

orthogonality between the F12 states |Φmn
ij 〉 = Fmnαβ Ê

αβ
ij |Φ 〉HF and the configurations

spanned by the primary orbital basis.

The CCSD-F12a and CCSD-F12b methods are very similar, approximating the projec-

tor Q̂12 in equation 4.9 as Q̂12 = 1− | rs 〉〈 rs | (with r, s full MO basis indices). The only

difference between the two is that the CCSD-F12b method contains an extra energy correc-

tion within the coupled cluster residual that increases the coupling between conventional

and explicitly correlated parts of the wavefunction; this means that CCSD-F12b more ef-

fectively constrains the orthogonality between F12 states and orbital states. Therefore, in

the F12a approximation, increased variational flexibility from this reduced orthogonality

(relative to F12b) may be free to cancel with basis set incompleteness errors (BSIE) in

small basis sets to yield artificially accurate results. On the other hand, the F12b approxi-

mation yields no such artificial flexibility; therefore, CCSD-F12b may be more susceptible

to BSIE and exhibit less accuracy in small basis sets than CCSD-F12a.

The last of these approximate methods, namely CCSD(F12∗) (a.k.a. F12c) is instead

based on the CCSD(F12) method,110 which neglects higher order terms involving the F12

amplitudes T ijαβ within the fixed-amplitude ansatz. (F12*) further approximates the ampli-

tude equations by first ignoring any contributions that are fourth order (or higher) in the

MP2-F12 treatment, then adding the most important higher-order coupling contributions
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between orbital and F12 states resulting from the less approximate form of the projector,

Q̂
(1)
12 = 1− P̂1P̂2 − P̂1P̂

′
2 − P̂ ′1P̂2,

where P̂ = ô + v̂ with ô and v̂ projecting onto the occupied and virtual spaces, respec-

tively, and P̂ ′ projecting onto the complimentary virtual space. Due to the less approx-

imate projector employed, the CCSD(F12∗) method is more theoretically rigorous than

either CCSD-F12a or CCSD-F12b methods; it is, however, more computationally intensive

due to the need to evaluate additional intermediates.93 Again, due to the stronger orthog-

onality between F12 and orbital states, BSIE may be present in small basis sets, but this

method should yield high accuracy with increasing basis set size.

4.3.2 Computational Details

In this study, we compute the interaction energies (IEs) of all complexes in A2414 and S2279

test sets via the supermolecular approach, whereby the total energy for each monomer is

subtracted from the total energy of the dimer to form the total IE. In order to correct for ba-

sis set superposition error (BSSE), we employ the counterpoise correction scheme of Boys

and Bernardi.54 Computations were performed using each combination of CCSD(T∗∗)-

F12n (abbreviated F12n; n = a, b, c) method paired with either aug-cc-pVXZ (abbreviated

aXZ; X = D, T, Q, 5)22 or cc-pVXZ-F12 (abbreviated XZ-F12; X = D, T, Q, 5)108,109 basis

sets. Triples contributions were scaled according to equation (4.1), with the scale factor

determined for the dimer also used for the monomer computations to preserve size con-

sistency,95 denoted (T∗∗). All computations using these explicitly correlated methods were

performed using the MOLPRO 2010.1 suite of ab initio quantum chemistry programs,111

and employed the complete auxiliary basis set (CABS)112 singles correction.91 Both the

density fitting (DF) and resolution of the identity (RI) basis sets were kept at their MOL-

PRO default values: aug-cc-pVXZ/MP2FIT was used for the overall density fitting ba-

97



sis (keyword DF_BASIS) and cc-pVXZ/JKFIT was used for the computing the exchange

and Fock operators (keyword DF_BASIS_EXCH) for both aXZ and XZ-F12 orbital basis

sets, while cc-pVXZ/JKFIT or cc-pVXZ/OPTRI were used for the RI basis sets (keyword

RI_BASIS) for aXZ and XZ-F12 orbital basis sets, respectively. According to the recom-

mendation of Patkowski,100 the F12 geminal parameter β (given above in equation 4.7) was

kept at its MOLPRO default value of β = 1.0 a−1
0 .

As discussed above, in Section 4.3.1, the approximate F12a, F12b, and F12c methods

become increasingly more physically justified in the sequence a<b<c. Each of the basis set

types examined here have been employed previously to compute noncovalent interactions

(see Ref. 77 and the references therein, as well as Refs. 101, 102, 113 for more details);

these basis sets are not equivalent, however, and should therefore not be expected to at-

tain equivalent accuracy. For instance, the specialized cc-pVXZ-F12 basis sets are larger

than their canonical aug-cc-pVXZ counterparts by virtue of containing several more s and

p functions, while remaining as diffuse in these low angular momentum basis functions.

However, the aug-cc-pVXZ basis sets are more diffuse in the higher angular momentum

functions (d, f , . . .) than cc-pVXZ-F12.

To assess the various model chemistries (combinations of method and basis set)114 con-

sidered here, we obtained “best estimate” reference IEs using CBS extrapolations of con-

ventional CCSD(T) correlation energies Ecorr according to the popular two-point extrapo-

lation formula of Helgaker and co-workers.20 As suggested previously,21 we take the total

Hartree-Fock energy computed in the larger of these two basis sets as being converged to

the CBS limit.

For this work, we use the aQZ and a5Z basis sets in our extrapolation procedure for con-

structing our reference IEs, which we denote CCSD(T)/CBS(aQZ, a5Z). These data were

previously reported57 for the A24 test set,14 along with CCSD(T)/CBS(a5Z, a6Z) extrapo-

lations for a few of the smaller members of the test set, namely the H2O·NH3, H2O·H2O,

HCN·HCN, HF·HF, NH3·NH3, CH4·HF, CH4·H2O, CH4·Ar, and CH2CH2·Ar complexes.
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In that prior study, various counterpoise correction schemes were compared against a

weighted average of counterpoise-corrected and uncorrected energies; this reference was

denoted A24A to distinguish these values from the originally published benchmarks.14 Be-

cause we apply counterpoise correction universally to all explicitly correlated methods in

the present study, for consistency we also use counterpoise corrected CCSD(T)/CBS bench-

mark values, which we denote here as A24B (although our previous study57 indicates that

the counterpoise treatment matters very little once basis sets as large as a5Z and a6Z are

employed). Recently, Hobza and co-workers have presented115 even more accurate interac-

tion energies for A24, by using larger basis sets for estimating the importance of quadruple

excitations, which might be denoted as A24C. In this study, however, we limit ourselves to

consideration only of the CCSD(T)/CBS limit, without quadruples corrections; hence, we

have adopted the A24B energies as reference values.

The accuracy of each model chemistry is characterized by mean absolute errors (MAE)

and mean absolute percent errors (MA%E) across all systems in the A24 and S22 test sets,

and also across each of three subsets of systems grouped by interaction type: hydrogen

bonding, dispersion dominated, and mixed interaction (whereby the interactions have both

electrostatics and dispersion character). Additionally, we have reported values for a full set

of summary statistics, including each of the minimal, maximal, and mean (both signed and

unsigned) errors and percent errors for each model chemistry over the A24 and S22 test

sets, in the Supplemental Information (see Section ??). For reference, these databases are

visualized in Fig. 4.1.

4.4 Results and Discussion

Before comparing with existing high-quality canonical schemes, we first examine in Sec-

tion 4.4.1 the convergence of each explicitly correlated CCSD(T∗∗)-F12n method towards

the complete basis set limit. Interaction energies computed using aXZ basis sets tend

to converge to reference energies differently than those computed with an XZ-F12 basis
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set; results will therefore be presented separately for each basis set type in Sections 4.4.1

and 4.4.1, respectively. Next, in Section 4.4.2, the performance of the various model

chemistries for the A24 test set will be compared directly to determine which are superior

for NCI at each basis set level. Then, in Section 4.4.3, the explicitly correlated CCSD(T∗∗)-

F12n methods will be applied to the S22 test set to determine if our findings for the small

systems in A24 can be generalized to slightly larger systems and interaction strength. Fi-

nally, in Section 4.4.4, the accuracy and computational expense of several approaches will

be compared in order to assess their potential candidacy for benchmark quality computa-

tions, and final recommendations will be given.

4.4.1 Basis Set Convergence for A24 Systems

Figs. 4.2 and 4.3 show the convergence of interaction energies computed with various

CCSD(T∗∗)-F12n methods [along with conventional CCSD(T)] with respect to aXZ and

XZ-F12 basis sets, for the ammonia-water complex, formaldehyde-ethylene complex, ethy-

lene dimer, and the methane-argon complex (additionally, Fig. 4.3.e shows the methane

dimer). MAEs and MA%Es for all computations are presented in Table 4.1. For a com-

plete set of figures detailing method convergence for all members of the A24 test set, as

well as raw interaction energies and summary statistics for every combination of method

and basis set considered, refer to the Supplementary Information (see Section ??).

F12n/aXZ Convergence

A notable difference in the convergence behavior of A24 systems with different binding

motifs exists for model chemistries involving aXZ-type basis sets. For hydrogen bonded

(HB) systems (e.g., the ammonia-water complex, Fig. 4.2.a), F12b and F12c methods con-

verge to the best-estimate energies from above. In contrast, F12a methods, although al-

ways above the best-estimate IE for aDZ, converge to the reference energy from below for

aTZ and larger. Because the F12 methods are so rapidly convergent to the CBS limit, for
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Figure 4.2: Convergence of CCSD(T∗∗)-F12n/aXZ (n = a, b, c; X = D, T, Q, 5, 6) IEs for (a)
the ammonia-water complex, (b) the formaldehyde-ethylene complex, (c) the methane-Ar
complex, and (d) the ethylene dimer in forced π-stacking geometry. Also plotted are canon-
ical CCSD(T)/aXZ IEs and our revised A24B reference energies (dotted line) obtained at
the CCSD(T)/CBS(aQZ, a5Z) [(a) & (c)] or CCSD(T)/CBS(a5Z,a6Z) [(b) & (d)] levels of
theory (see text).

these small systems it is feasible to ask what basis set is required to achieve nearly exact

convergence to the CBS limit (within, say, 0.01 kcal/mol). We will denote this level of

agreement “benchmark convergence” for this paper; however, it is worth bearing in mind

that other sources of error (quadruple excitations, core correlation) are several hundredths

of one kcal/mol for systems of this size, and hence for “benchmark quality” results we

could tolerate somewhat larger errors in the CBS convergence. Nevertheless, for the A24

hydrogen-bonding systems, this strict level of convergence is achieved with just the modest

aTZ basis set for both F12a and F12c, while F12b is nearly as good in this basis (MAE 0.02

kcal/mol).

For systems of mixed (MX) interaction type (e.g., the formaldehyde-ethane complex,

Fig 4.2.b), convergence patterns for F12b/aXZ and F12c/aXZ model chemistries show sim-

ilar behavior to hydrogen bonded systems. Unlike for HB systems, F12a/aDZ is sometimes

above the reference interaction energy (methane-HF complex, water-ethylene complex,
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Figure 4.3: Convergence of CCSD(T∗∗)-F12n/XZ-F12 (n = a, b, c; X = D, T, Q, 5) IEs
for the (a) ammonia-water complex, (b) formaldehyde-ethylene complex, (c) methane-Ar
complex, (d) ethylene dimer in forced π-stacking geometry, and (e) methane dimer. Also
plotted are canonical CCSD(T)/aXZ IEs and our revised A24B reference energies (dotted
line) obtained at the CCSD(T)/CBS(aQZ, a5Z) [a & c] or CCSD(T)/CBS(a5Z, a6Z) [b, d,
& e] levels of theory (see text).
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ethylene dimer) and sometimes below (methane-ammonia complex, methane-water com-

plex, formaldehyde dimer, formaldehyde-ethylene complex, ammonia-ethylene complex).

For mixed systems, F12a/aXZ and F12c/aXZ converge similarly as for hydrogen bonded

systems, while F12b is now a little more tightly converged in the aTZ basis than F12a.

For dispersion-dominated (DD) systems of A24 (e.g., the π-stacked ethylene dimer and

methane-argon complex, Figs. 4.2c,d respectively), the convergence behavior of F12a is

notably different than for HB and MX systems, while F12b and F12c behave similarly.

F12a typically converges toward the reference IE monotonically from below, shown in

Fig. 4.2.d. Two notable exceptions to this behavior are those complexes containing a rare

gas: the methane-argon complex (Fig. 4.2.c) and ethylene-argon complex (Fig. S-30 in the

SI, see Section ??) These interaction energies oscillate across the reference IE, while still

converging towards it with increasing ζ . For DD systems, all F12 methods converge very

rapidly with basis set, and achieve MAE of 0.01-0.02 kcal/mol by the aTZ basis set.
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Table 4.1: Interaction energy (kcal/mol) error statistics vs CCSD(T)/CBS for F12n/aXZ
and F12n/XZ-F12 methods, gathered for all A24 systems, as well as for the hydrogen
bonding (HB), mixed interaction (MX) and dispersion dominated (DD) subsets.

Method & Basis Set A24 HB MX DD
MAE MA%E MAE MA%E MAE MA%E MAE MA%E

aug-cc-pVDZ
CCSD(T) 0.38 24.5 0.61 12.8 0.43 24.6 0.21 30.1
DW-CCSD(T**)-F12 0.05 3.8 0.06 1.1 0.05 2.9 0.04 5.9
CCSD(T**)-F12a 0.04 3.0 0.05 1.1 0.03 2.3 0.04 4.5
CCSD(T**)-F12b 0.06 3.6 0.11 2.2 0.07 3.9 0.02 4.1
CCSD(T**)-F12c 0.06 4.1 0.08 1.7 0.07 3.9 0.04 5.6

aug-cc-pVTZ
CCSD(T) 0.12 7.5 0.22 4.6 0.12 6.4 0.07 9.9
DW-CCSD(T**)-F12 0.01 1.1 0.01 0.2 0.01 0.8 0.01 1.7
CCSD(T**)-F12a 0.02 1.4 0.01 0.3 0.02 1.2 0.02 2.1
CCSD(T**)-F12b 0.01 0.6 0.02 0.4 0.01 0.3 0.01 1.1
CCSD(T**)-F12c 0.01 1.1 0.01 0.3 0.01 0.5 0.01 2.2

aug-cc-pVQZ
CCSD(T) 0.04 2.8 0.07 1.5 0.04 2.3 0.03 4.0
CCSD(T**)-F12a 0.01 0.7 0.01 0.3 0.01 0.7 0.01 1.0
CCSD(T**)-F12b 0.00 0.4 0.00 0.0 0.00 0.1 0.00 0.8
CCSD(T**)-F12c 0.01 0.7 0.00 0.1 0.01 0.3 0.01 1.3

aug-cc-pV5Z
CCSD(T) 0.02 1.4 0.03 0.7 0.02 1.2 0.01 2.0
CCSD(T**)-F12a 0.01 0.4 0.01 0.2 0.01 0.4 0.00 0.5
CCSD(T**)-F12b 0.00 0.2 0.00 0.0 0.00 0.1 0.00 0.4
CCSD(T**)-F12c 0.00 0.4 0.00 0.0 0.00 0.2 0.00 0.7

cc-pVDZ-F12
CCSD(T**)-F12a 0.07 6.2 0.09 1.9 0.08 4.9 0.06 9.7
CCSD(T**)-F12b 0.12 9.5 0.13 2.7 0.13 7.2 0.10 15.1
CCSD(T**)-F12c 0.11 10.0 0.11 2.3 0.12 7.1 0.11 16.4

cc-pVTZ-F12
CCSD(T**)-F12a 0.02 1.8 0.02 0.4 0.02 0.9 0.02 3.3
CCSD(T**)-F12b 0.04 3.5 0.04 0.9 0.04 2.1 0.04 6.0
CCSD(T**)-F12c 0.04 4.0 0.04 0.8 0.04 2.3 0.05 7.1

cc-pVQZ-F12
CCSD(T**)-F12a 0.01 0.7 0.01 0.2 0.00 0.2 0.01 1.5
CCSD(T**)-F12b 0.01 1.0 0.01 0.2 0.01 0.5 0.01 1.9
CCSD(T**)-F12c 0.01 1.4 0.01 0.2 0.01 0.8 0.01 2.6

cc-pV5Z-F12
CCSD(T**)-F12a 0.01a,b,c 0.6 0.01a 0.1 0.01b 0.5 0.01c 1.0
CCSD(T**)-F12b 0.00a,b,c 0.1 0.00a 0.0 0.00c 0.1 0.00c 0.2
CCSD(T**)-F12c 0.00a,b,c 0.2 0.00a 0.0 0.00b 0.1 0.00c 0.3

a Missing IE for ammonia dimer.5zf12_LinDep b Missing IE for ethylene-water complex.5zf12_LinDep

c Missing IEs for methane-Ar and ethylene-Ar complex, due to no 5Z-F12 basis set existing for Ar.
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Considering MAE for the entire A24 test set, all of the explicitly correlated CCSD(T∗∗)-

F12 methods converge within 0.02 kcal/mol of the benchmark values by the aTZ basis set.

Overall, F12b and F12c always converge to the CBS limit IE from above, while F12a gen-

erally converges from below. While the (counterpoise-corrected) canonical CCSD(T)/aXZ

IEs steadily converge from above, they can still fall short of the CBS limit even with the

a5Z basis set [with differences between (0.006, 0.069) kcal mol−1, MAE = 0.021]. Indeed,

even the CCSD(T)/a6Z values can fall short of the reference CCSD(T)/CBS(a5Z, a6Z) val-

ues by between (0.004, 0.026) kcal mol−1, with MAE = 0.014. In contrast, the F12n results

are much more rapidly convergent. Results in the aTZ basis for F12a are within (-0.039,

-0.001) kcal mol−1 of the reference energy, with MAE = 0.017, which is superior than the

canonical CCSD(T)/a5Z results and nearly as good as CCSD(T)/a6Z. F12c/aTZ is on par

with CCSD(T)/a6Z, with energies falling between (0.001, 0.029) kcal mol−1 of the refer-

ence with MAE = 0.012; remarkably, while F12b/aTZ exhibits a comparable error range to

CCSD(T)/a6Z [energies within (0.000, 0.029) kcal mol−1 of the reference], it exceeds the

convergence of canonical CCSD(T)/a6Z on average, with MAE = 0.009.

Moreover, the aDZ results are not much worse. Energies computed in the aDZ basis

exhibit error ranges and MAEs of [(-0.107, 0.002); 0.040], [(0.001, 0.156); 0.059], and

[(0.004, 0.154); 0.059] kcal mol−1 for F12a, F12b, and F12c respectively. These tests sug-

gest that, at least for NCI, one obtains on average two additional ζ-levels of accuracy when

moving from conventional CCSD(T) to CCSD(T∗∗)-F12a, and three additional ζ-levels

when moving to CCSD(T∗∗)-F12b and CCSD(T∗∗)-F12c. This is a significant advantage,

given that the computational cost of CCSD(T)-F12n methods is typically not much more

(on average, within a factor of 1.3) than that of conventional CCSD(T).TimingsNotes

F12n/XZ-F12 Convergence

Again, different convergence behavior between F12n methods is exhibited for A24 sys-

tems of different binding motif when paired with XZ-F12 basis sets. For electrostatics-
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dominated HB systems (e.g., ammonia-water complex, Fig. 4.3.a), F12a remains the most

the most converged of the three ansatzë for the double-ζ DZ-F12 basis set, although the

improvement over F12b and F12c is very small. F12a remains very slightly better than

F12b and F12c on average for the TZ-F12 basis, and results are essentially identical for the

QZ-F12 basis. These methods converge toward the reference IE from above. Systems of

mixed character (e.g., the formaldehyde-ethene complex, Fig. 4.3.b), exhibit similar con-

vergence as HB systems for F12n/XZ-F12 IEs. Again, F12a exhibits slightly smaller MAE

than F12b or F12c for the DZ-F12 and TZ-F12 basis sets, with nearly exact agreement

achieved by the QZ-F12 basis.

For dispersion-bound systems, IEs computed with F12n/XZ-F12 display different con-

vergence behavior depending on the complex. For DD systems containing rare gases [e.g.,

the methane-Ar complex (Fig. 4.3.c) and ethylene-Ar complex, Fig. S-54 in the Supple-

mental Information, (see Section ??)], while all explicitly correlated ansatzë are signifi-

cantly more tightly converged than canonical CCSD(T) for DZ-F12, canonical CCSD(T)

converges toward the reference energy quickly enough to nearly overtake them by QZ-F12.

Unfortunately, no interaction energy for these complexes could be computed for 5Z-F12,

because this basis set is as yet unavailable for third row atoms. DD systems involving nei-

ther rare gases nor π-stacking, e.g., the methane dimer (Fig. 4.3.e), behave somewhat more

normally; steady convergence toward the reference energy is exhibited while consistently

outperforming the canonical CCSD(T).

Each of the F12n/XZ-F12 model chemistries, when compared across all systems from

the A24 test set, exhibit similar convergence speed toward the CBS limit. For DZ-F12,

F12a lies within 0.1 kcal mol−1 of the reference, while both F12b and F12c lie just outside

this bound. All three ansatzë are converged to within 0.05 kcal mol−1 of the reference for

TZ-F12, with the MAE for F12a about half that for F12b and F12c. For QZ- and 5Z-F12,

all F12n exhibit MAE of about 0.01 kcal mol−1 or less.
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4.4.2 aXZ vs. XZ-F12: Accuracy Comparison over A24 and Subsets

Individual errors for every bimolecular complex in A24 and average error metrics over the

entire test set, computed versus our A24B reference energies, are visualized in Fig. 4.4 for

each of the F12n/aXZ and F12n/XZ-F12 model chemistries examined above. For compar-

ison, the dispersion-weighted DW-CCSD(T∗∗)-F12 method (abbreviated DW-F12) is also

included in Table 4.1 and Fig. 4.4. Interaction energies for A24 systems computed using

F12a/aDZ span the spectrum of slightly over- to slightly under-bound, while every com-

plex of the A24 test set is underbound for the F12a/DZ-F12 model chemistry, as shown

in Fig. 4.4.a. Typically, F12a/aXZ overbinds complexes for ζ ≥ 3; in contrast, all com-

plexes are underbound by the F12a/TZ-F12 model chemistry, but are more likely to be

overbound by F12a/QZ-F12. F12b/aXZ (X = D–5), unlike F12a/aXZ, typically under-

binds A24 complexes, as is shown in Fig. 4.4.b. Analogous to F12a, F12b/DZ-F12 and

F12b/TZ-F12 underbind all A24 complexes. Distinct from F12a, however, F12b/QZ-F12

also underbinds every complex of A24. The F12c ansatz behaves qualitatively the same

as F12b, as can be seen in Fig. 4.4.c. While F12a/aDZ is slightly more converged than

F12a/DZ-F12, MAE values are nearly identical between F12a/aXZ and F12a/XZ-F12 for

larger basis sets. The F12b/aXZ and F12c/aXZ model chemistries exhibit lower MAE and

MA%E than F12b,c/XZ-F12 methods for double and triple-ζ basis sets before achieving

benchmark convergence in the quadruple-ζ basis sets, as seen in Figs. 4.4.b&c and Ta-

ble 4.1.

For the A24 test set, it is clear that F12a/aDZ performs the best out of all examined

combinations for double-ζ basis sets, including silver-standard DW-F12/aDZ. For ζ ≥ 3,

however, the F12b method exhibits the lowest MAE, achieving equivalent accuracy to DW-

F12/aTZ over all A24 as well as the MX and DD subsets; for HB systems, however, the

DW-F12 method achieves slightly higher accuracy due to the admixture of F12a/aTZ. For

double- and triple-ζ basis sets in particular, computations utilizing the Dunning-style aXZ

basis sets produce more accurate results than those done using Peterson and coworkers’
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Figure 4.4: Error in IE computed for all bimolecular complexes in the A24 test set relative
to A24B reference energies for the (a) CCSD(T∗∗)-F12a, (b) CCSD(T∗∗)-F12b, and (c)
CCSD(T∗∗)-F12c methods for both aXZ and XZ-F12 (X = D, T, Q, 5) basis sets. Vertical
lines represent individual members of A24, color-coded by interaction type (red = hydrogen
bonding, blue = dispersion dominated, yellow/green = mixed interaction). For each level
of theory, MAE (black rectangles, given on the left) and MA%E (black ovals, given on
the right) are presented. Three shaded error regions are shown: the lightest encompasses
±0.1 kcal mol−1 & ∼4%, next lightest region ±0.05 kcal mol−1 & ∼2%, and darkest
region ±0.01 kcal mol−1 & ∼1%. For comparison, errors computed using the current
silver-standard DW-CCSD(T∗∗)-F12 method, paired with aDZ and aTZ basis sets, are also
presented.
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specialized XZ-F12 basis sets for each F12a,b,c ansatz. For quadruple- and quintuple-ζ ,

however, the two basis set types give approximately equal MAE. One could imagine that

adapting the dispersion weighting scheme may remedy the deficiencies exhibited by the

DZ- and TZ-F12 basis sets for NCI relative to the aXZ basis sets. The DW-CCSD(T∗∗)-

F12 method was introduced to combine the good performance of F12a/aXZ for describing

electrostatic interactions and F12b/aXZ for describing dispersion interactions in small basis

sets. We have found, however, that the F12a ansatz yields the highest accuracy across the

entire A24 test set and each of the hydrogen bonding, dispersion dominated, and mixed

interaction subsets when employing XZ-F12 basis sets. Therefore, the benefit of mixing

F12a/XZ-F12 and F12b/XZ-F12 will be lost; as such, we have chosen not to extend the

dispersion weighting scheme to the DZ- and TZ-F12 basis sets.

Given below are total orderings for the accuracy of all model chemistries at each ζ-level

versus the CCSD(T)/CBS reference; methods are listed from left to right in order from most

to least accurate:

Dζ: F12n/aDZ (n = a>b&c) > F12n/DZ-F12 (n = a>c>b)

Tζ: F12n/aTZ (n = b&c>a) ∼ F12n/TZ-F12 (n = a>b&c)

Qζ: F12b/aQZ>F12a/QZ-F12∼F12c/aQZ∼F12a/aQZ∼F12a/QZ-F12&F12c/QZ-F12

5ζ: F12b/5Z-F12∼F12b/a5Z∼F12c/5Z-F12 ∼F12c/a5Z>F12a/a5Z∼F12a/5Z-F12

These orderings were constructed to a MAE resolution of ±0.01 kcal mol−1 and MA%E

resolution of ±0.5%; between two adjacent methods, > indicates that the corresponding

MAE is distinguishable to this resolution, & indicates indistinguishable MAE but distin-

guishable MA%E, and ∼ indicates indistinguishable MAE and MA%E.

The most surprising result of this work is the comparatively poor performance of F12n/XZ-

F12 model chemistries for A24 systems at the double- and triple-ζ levels. This finding,

however, confirms the same conclusion by Patkowski.100 One potential cause for this be-
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Figure 4.5: Error in IE computed for all bimolecular complexes in the A24 test set rel-
ative to Helgaker-extrapolated20 MP2/CBS(aXZ, a(X+1)Z) reference IEs (analogous ζ-
levels to A24B), computed using (a) the MP2-F12(3C)/aXZ (X = D, T, Q, 5) and (b) MP2-
F12(3C)/XZ-F12 (X = D, T, Q) model chemistries. For each level of theory, MAE (black
rectangles, given on the left) and MA%E (black ovals, given on the right) are presented.
Shaded error regions are given with identical ranges as in Fig.4.4.

havior is that the XZ-F12 basis sets were optimized for use with the explicitly correlated

MP2-F12(3C) method and not for use with explicitly correlated coupled-cluster methods

(CCSD-F12n). In their study introducing the XZ-F12 (X = D, T, Q) basis sets, Peterson

and coworkers showed that MP2-F12(3C)/XZ-F12 outperforms both MP2-F12(3C)/aXZ

and MP2-F12(3C)/aug-cc-pV(X+d)Z. For the sake of completeness, we have also exam-

ined the performance of the MP2-F12(3C)/XZ-F12 and MP2-F12(3C)/aXZ methods for

interaction energies of systems in the A24 test set, compared to reference IEs computed at

the canonical MP2/CBS level.

MAE and MA%E error metrics for the MP2-F12(3C)/XZ-F12 and MP2-F12(3C)/aXZ

methods computed over the entire A24 test set, as well as each subset, are presented in

Table S-6 in the Supplemental Information (see Section ??) and visualized in Fig. 4.5.

For A24 systems, the MP2-F12(3C)/aXZ method produces somewhat tighter convergence

to MP2/CBS reference energies than MP2-F12(3C)/XZ-F12. This result seemingly con-

tradicts the findings by Peterson;116 however, the XZ-F12 basis sets were optimized for
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computations of molecular correlation energy, not noncovalent interaction energies. Our

results for correlation energies computed for the dimer and both monomers of all A24

systems using both MP2-F12(3C)/aXZ and MP2-F12(3C)/XZ-F12 methods show that XZ-

F12 basis sets produce both faster convergence and better agreement to MP2/CBS limits for

these energies, in agreement with Peterson. Hence, it appears that the XZ-F12 basis sets are

more slowly convergent toward the CBS limit for overall noncovalent interaction energies

than the aXZ basis sets, despite being more rapidly convergent for the individual molecular

correlation energies. This can most likely be attributed to the comparative compactness of

XZ-F12 basis sets versus aXZ basis sets. Indeed, while XZ-F12 contains s and p functions

that are as diffuse or even slightly more diffuse than the corresponding aXZ basis, the func-

tions of higher angular momentum are significantly more compact in XZ-F12 than aXZ;

the worse performance of modest DZ- and TZ-F12 basis sets for NCI vs. the aDZ and aTZ

basis sets is therefore understandable. In contrast, both basis set types achieve comparable

levels of accuracy for quadruple- and quintuple-ζ levels, where the XZ-F12 basis sets reach

sufficient levels of diffusivity to accurately describe weak intermolecular interactions.

4.4.3 aXZ vs. XZ-F12: Extension to the S22 Test Set

In order to validate and generalize the above analysis regarding the performance of CCSD-

T(∗∗)-F12n methods to larger and more strongly bound bimolecular complexes, we have

applied these methods to the S22 test set,79 using the revised S22B interaction energies.30

Previously, Burns et al.77 reported interaction energies and statistics for the F12n/aDZ (n

= a, b) and DW-F12/aDZ levels of theory. We have extended that investigation to include

F12c/aDZ and each of the F12n/DZ-F12 (n = a, b, c) levels of theory; MAE and MA%E

error statistics for each of these model chemistries are given in Table 4.2, and visualized

in Fig. 4.6. Again, for comparison, statistics for DW-F12/aDZ are also in Table 4.2 and

Fig. 4.6.

The previously reported interaction energies for S22 systems computed using the DW-
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Table 4.2: Interaction energy (kcal/mol) error statistics for F12n/aDZ and F12n/DZ-F12
methods, applied to the S22B test set, as well as for the hydrogen bonding (HB), mixed
interaction (MX) and dispersion dominated (DD) subsets. Included for reference are error
statistics computed with the DW-CCSD(T**)-F12/aDZ method.

Method & Basis Set S22 HB MX DD
MAE MA%E MAE MA%E MAE MA%E MAE MA%E

aug-cc-pVDZ
DW-CCSD(T**)-F12a 0.05 1.3 0.06 0.6 0.07 1.4 0.03 1.8
CCSD(T**)-F12aa 0.12 2.3 0.06 0.6 0.15 1.8 0.15 4.6
CCSD(T**)-F12ba 0.10 1.8 0.18 1.6 0.09 2.1 0.03 1.8
CCSD(T**)-F12c 0.08 1.9 0.12 1.2 0.07 1.9 0.05 2.7

cc-pVDZ-F12
CCSD(T**)-F12a 0.17 3.4 0.21 1.6 0.18 3.4 0.11 5.2
CCSD(T**)-F12b 0.28 5.7 0.31 2.4 0.30 5.5 0.23 9.3
CCSD(T**)-F12c 0.27 5.8 0.26 2.0 0.31 5.4 0.25 10.1

a Values from Ref 77.

F12/aDZ, F12a/aDZ, and F12b/aDZ model chemistries all straddle the best-estimate IE,

while F12c/aDZ and each F12n/DZ-F12 underbind complexes in S22 (with the lone excep-

tion of the adenine-thymine complex, which is slightly overbound by F12c/aDZ). This un-

derbinding of complexes with F12c/aDZ and F12n/DZ-F12 was expected, as it is identical

to the behavior of these model chemistries for the A24 test set. F12a/aDZ and F12b/aDZ,

however, were also expected to underbind these complexes; apparently, when applied to

larger systems, these methods no longer reliably provide an upper bound for the CBS limit

IE.

From Table 4.2, it is clear that F12n/aDZ model chemistries are more converged than

F12n/DZ-F12 for these larger systems, just as was seen for A24. Across the entire S22

test set, as well as each subset, the best F12n/DZ-F12 methods exhibit MAEs a factor of

2-4 times larger than the best F12n/aDZ methods. Curiously, in contrast to the A24 test

set, F12c/aDZ is the most converged ansatz overall, having the smallest MAE versus the

S22B reference values. Again, F12a is the best choice of ansatz for modeling electrostatic

interactions and F12b is best for dispersion. For the F12n/DZ-F12 methods an identical

trend is observed for S22 as was for A24: F12a is superior to both F12b and F12c over all

S22 systems and in each subset by a non-trivial factor. These results indicate the following
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Figure 4.6: Error in IE computed for all bimolecular complexes in the S22 test set,79 relative
to revised S22B reference energies,30 computed using (a) the CCSD(T∗∗)-F12n/aDZ (n =
a, b, c) and (b) CCSD(T∗∗)-F12n/DZ-F12 (n = a, b, c) model chemistries. Included for
reference are IEs computed using the silver-standard DW-CCSD(T∗∗)-F12/aDZ method.
For each model chemistry, MAE (black rectangles, given on the left) and MA%E (black
ovals, given on the right) are presented. The outer, lightly shaded region encompasses±0.5
kcal mol−1 & ∼ 23%, and the inner, darkly shaded region is given to indicate the location
of zero error.

total ordering for the examined explicitly correlated methods:

F12n/aDZ (n = c>b>a) > F12n/DZ-F12 (n = a>c>b)

While this manuscript was in preparation, Martin and coworkersMartinS66x8 published

revised benchmark energies for the S66×8 test set of Hobza and coworkers,105,106 com-

puted using the same XZ-F12 basis sets of Peterson considered here. Their study examined

the most accurate manner in which to scale the (T) correction to the CCSD-F12n energy,

what explicitly correlated method to utilize within the focal-point correction approach for

reaching the complete basis set limit, and what counterpoise correction scheme is most ap-

propriate. For the double-ζ DZ-F12 basis set, CCSD-F12c was superior to CCSD-F12b in

the context of the δCCSD-F12n
MP2-F12 correction for dimers at their equilibrium geometries (r = re).

In their study, only the XZ-F12 basis set was used to compute S66×8 benchmark energies;

aXZ was not examined, nor was the F12a ansatz considered. In light of our findings for

the noncovalently bound complexes within the A24 and S22 test sets, perhaps these new

benchmarks should be revisited with computations making use of aXZ basis sets rather
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than XZ-F12.

4.4.4 Benchmark Procedures for NCI: Combining Accuracy and Computational Cost

The vastly superior performance of explicitly correlated CCSD(T∗∗)-F12n approaches for

NCI over canonical CCSD(T) raises the question of whether or not one of these methods

should replace the focal point scheme we previously recommended30 for NCI benchmark-

ing, namely MP2/CBS(aTZ, aQZ) + δCCSD(T)
MP2 /aTZ, denoted more compactly as CCSD(T)/[aTQZ;

δ:aTZ]. In this section, we therefore compare the explicitly correlated CCSD(T∗∗)-F12b/aTZ

level of theory, canonical CCSD(T) with CBS(aDZ, aTZ) and CBS(aTZ, aQZ) Helgaker

extrapolations, and the CCSD(T)/[aTQZ; δ:aTZ] focal-point procedure. The error incurred

by employing density fitting in MP2/CBS computations of noncovalent interactions is as

little as 0.001 kcal mol−1 in the aTZ basis;117,118 we have therefore also examined the

focal point CCSD(T)/[DF-aTQZ; δ:aTZ] scheme, where DF-aTQZ indicates using DF-

MP2/CBS(aTZ, aQZ) in the focal-point procedure.

In their extensive study of wavefunction approaches for computing noncovalent interac-

tion energies, Burns et al.77 touted DW-F12/aDZ as the “silver standard” method for NCI,

indicating its ability to produce near-benchmark accuracy [MAE to within 0.06 kcal mol−1

of estimated CCSD(T)/CBS reference values] for an extensive test set of noncovalently

bound complexes with significantly lower computational cost than expected for such accu-

racy. Additionally, for the 10 smallest members of the S22 test set where the highest-quality

benchmark IE’s are available, F12b/aTZ and DW-F12/aTZ exhibited mean errors of only

0.028 and 0.008 kcal mol−1, respectively, versus CCSD(T)/CBS.96 We will therefore also

consider the DW-CCSD(T∗∗)-F12/aTZ model chemistry in our comparison. The double-

ζ counterparts of these methods, namely DW-F12/aDZ, F12b/aDZ, and CCSD(T)/[aTQZ;

δ:aDZ] (using both MP2/ and DF-MP2/CBS) methods are also included in this analysis.

We have decided to consider neither F12a nor F12c ansatzë in this examination: first, even

while F12a/aDZ is the best converged method with double-ζ basis sets for A24 systems, its
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poor performance for the S22 test set indicates that this combination does not reliably yield

well-converged results for a variety of chemical systems, and second, as was discussed in

Section 4.3.1, F12c is more computationally intensive than F12b, while the two methods

achieve similar accuracy.

Recently, the combination of frozen natural orbital coupled-cluster [FNO-CCSD(T)]119–123

and density-fitted coupled-cluster124–126 has been shown to be accurate and efficient for re-

action energies and NCI.124 Hence, we also considered focal-point approaches similar to

those mentioned above, but with DF-FNO-CCSD(T) used to compute the coupled-cluster

correction. In particular, we considered DF-FNO-CCSD(T)/[DF-aTQZ; δ:aDZ] and DF-

FNO-CCSD(T)/[DF-aTQZ; δ:aTZ] methods. Interaction energies involving the DF-FNO-

CCSD(T) method124 were computed with PSI4,127 a freely available, open-source suite of

ab initio quantum chemistry programs. The conservative, PSI4 default frozen natural or-

bital cutoff value of 1.0× 10−6 was used for all DF-FNO-CCSD(T) computations.

To assess the combined computational expense and accuracy of these methods, interac-

tion energy computations were timed for a single representative system, the methane-ethane

complex (A24-17), which has 700 basis functions for the aTZ basis set. All timings were

performed on a workstation computer with an Intel Core i7 3930K CPU with 6-cores at 3.2

GHz, 64GB of memory, and a RAID0 array of 3×3TB hard disks for scratch space. Both

serial (single core) and parallel (six cores) timings were obtained; we report total (“wall”)

times for computation of the counterpoise-corrected interaction energy (consisting of total

energy computations for the dimer and both monomers). Point-group symmetry was not

utilized for these timings.

As shown in Table 4.3, explicitly correlated F12b/aTZ and DW-F12/aTZ are as ac-

curate as the currently recommended method from the literature, CCSD(T)/[DF-aTQZ;

δ:aTZ].30 Additionally, DW-F12/aTZ is much less costly than any canonical (non-DF-FNO)

method considered here that achieves near-benchmark convergence. In fact, this explicitly

correlated combination is converged as well as (non-DF) CCSD(T)/[aTQZ; δ:aTZ] and
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CCSD(T)/CBS(aTZ, aQZ), while taking only 23% and 6% (8% and 4%) of the computa-

tional time used by these composite methods, respectively, when running in serial (parallel).

The speedup relative to CCSD(T)/CBS(aTZ, aQZ) is not surprising given that procedure’s

need to compute the expensive CCSD(T)/aQZ IE. The speedup versus CCSD(T)/[aTQZ;

δ:aTZ] may be more surprising because the CCSD(T) computations are being done in the

same aTZ basis. However, the composite method’s required MP2/aQZ computations can

be time consuming using conventional (non-DF) codes. When using CCSD(T)/[DF-aTQZ;

δ:aTZ], the timings are essentially the same as for DW-F12/aTZ [as is the MAE vs. the

CCSD(T)/CBS limit]. Hence, these methods appear to be interchangeable for benchmark-

ing purposes, at least as far as can be discerned from the A24 test set. Remarkably, the

F12b/aTZ combination achieves this level of accuracy while enjoying a 1.6x speedup over

the currently recommended CCSD(T)/[DF-aTQZ; δ:aTZ] method when using 6 cores.

Considering now the triple-ζ DF-FNO-based composite approach, we see no additional

error incurred by either DF or FNO approximations compared to conventional CCSD(T)/CBS[DF-

aTQZ; δ:aTZ]. With respect to FNO, this can be attributed to the quite conservative default

1.0×10−6 natural orbital occupation number cutoff in PSI4. However, the synergistic DF

and FNO approximations afford the possibility of helpful speedups.124 From Table 4.3 we

see a 1.6x speedup of DF-FNO-CCSD(T)/CBS[DF-aTQZ; δ:aTZ] over CCSD(T)/CBS[DF-

aTQZ; δ:aTZ] when running on 6 cores. The combination of high accuracy and lower com-

putational expense is very promising for the application of DF-FNO-CCSD(T) and F12b

to larger noncovalently bound systems. Indeed, the DF-FNO scheme sped up CCSD(T)

computations of the three-body contribution to the interaction energy of benzene trimer by

about a factor of four, while incurring an error of only 0.002 kcal mol−1.124

Overall, these results suggest that the DW-F12/aTZ combination should be considered

to be equivalently accurate and cost-effective as the currently recommended method from

the literature, namely, the CCSD(T)/CBS[DF-aTQZ; δ:aTZ] focal-point approach. When

density fitting and a truncated frozen natural orbital space are employed for the CCSD(T)
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procedure, no significant errors are added, but the computations of counterpoise-corrected

interaction energies are sped up significantly; additionally, an identical combination of

speed and accuracy is achieved by the F12b/aTZ model chemistry.

4.5 Summary and Conclusions

In an effort to understand and evaluate the performance of several popular approxima-

tions to the explicitly correlated CCSD(T)-F12 method, as well as to determine whether

these approaches could be suitable for computing benchmark-quality noncovalent interac-

tion energies (IEs), we have examined the convergence behavior and accuracy for each of

the CCSD(T∗∗)-F12n (n = a, b, c; abbreviated as F12n) methods over a variety of bimolec-

ular complexes of diverse binding motifs and interaction strengths. These methods were

paired with the correlation-consistent polarized valence basis sets of Dunning, augmented

with diffuse functions (aug-cc-pVXZ, X = D, T, Q, 5; abbreviated aXZ)22 and the spe-

cialized explicitly correlated correlation-consistent polarized valence basis sets of Peterson

(cc-pVXZ-F12, X = D, T, Q, 5; abbreviated XZ-F12),108,109 which were designed for use

with the explicitly correlated F12 methods. The accuracy of these methods at each basis

set level was assessed for the A24 test set of Hobza and coworkers14 and each of the hy-

drogen bonding, mixed interaction, and dispersion dominated subsets against our revised

best estimate reference values (denoted A24B); all IE computations were counterpoise cor-

rected to account for basis set superposition errors (BSSE),54 and findings were validated

by examining the S22 test set,79 with previously revised reference values (S22B).96 Al-

though we focused on counterpoise-corrected values, we partially examined uncorrected

interaction energies for the A24 test set and found them to yield substantially larger mean

absolute errors [MAE = 0.13 kcal/mol for each of F12a/aTZ and F12b/aTZ, compared to

counterpoise-corrected values of 0.02 and 0.01 kcal/mol, respectively]. Additional com-

parisons of counterpoise-corrected vs uncorrected values are available in Ref. 101.

For all members of A24, the F12b/aXZ and F12c/aXZ model chemistries converge to-
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wards reference interaction energies from above, while F12a/aXZ typically converges from

below towards the reference interaction energy for ζ > 3, after being an upper bound with

the double-ζ aDZ basis. When paired with the explicitly correlated XZ-F12 basis sets,

however, each of the F12n ansatzë converge monotonically from above towards the refer-

ence IE for all ζ . F12a very slightly overshoots the best-estimate IE for the majority of A24

systems with the 5Z-F12 basis set, converging towards an overbound interaction energy

at its complete basis set limit. F12n/aXZ model chemistries converge to the best-estimate

IE more quickly than their F12n/XZ-F12 counterparts for the A24 test set. The F12b/aXZ

model chemistry converges the most rapidly out of any method examined, affording about

three free ζ-levels of accuracy over canonical CCSD(T) with only a slight increase in com-

putational cost. The performance of F12c/aXZ is extremely similar.

We also considered the S22 test set, which contains bimolecular complexes involving

slightly larger molecules than A24. Here we only tested F12n methods in conjunction with

double-ζ quality basis sets, because the CCSD(T)/CBS limits are not as precisely known

for many of the complexes in S22 as for A24, leading to the possibility that CCSD(T)-F12n

computations using aTZ or aQZ basis sets might actually be closer to the CBS limit than

currently available reference values. For A24, the best F12n ansatz paired with an aDZ

basis set was F12a, but for S22, it becomes the worst, with accuracy decreasing in the order

DW-F12 > F12c > F12b > F12a.

Considering computations in the aDZ basis specifically, hydrogen-bonded complexes

of A24 and S22 are most accurately computed by F12a and DW-CCSD(T)-F12, while

F12b is best for dispersion-bound complexes. For mixed interaction types, F12a and DW-

CCSD(T)-F12 are best on average for A24, but F12a is the worst ansatz for S22, with an

MAE of 0.15 kcal mol−1 (all other F12 ansatzë considered have MAE < 0.1 kcal mol−1

across the mixed interaction subsets of A24 and S22). Considering larger aXZ basis sets,

there is little to distinguish any of the explicitly correlated approaches considered, with

MAE vs. the best estimates of 0.02 kcal mol−1 or less for A24 or any of its interaction type
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subsets. Nevertheless, F12b exhibits slightly lower mean absolute percent errors than the

other explicitly correlated procedures considered.

Perhaps surprisingly, the DZ and TZ-F12 basis sets do not perform as well as aDZ

and aTZ for CCSD(T)-F12n computations of noncovalent interaction energies, either for

A24 or S22. This is not a result of these basis sets being optimized for use with the MP2-

F12(3C) method instead of CCSD(T)-F12n; rather it appears that their optimization for

molecular correlation energies and relative compactness in high angular momentum d, f ,

. . . basis functions does not translate well to noncovalent interaction energies.

Finally, prompted by the outstanding performance of the explicitly correlated F12n and

DW-F12 methods compared to canonical CCSD(T), we have examined the F12b/aTZ and

DW-F12/aTZ combinations, as well as composite focal-point estimates of the CCSD(T)/CBS

limit combining CCSD(T) and MP2 computations, with consideration of each method’s

computational expense and convergence to the CBS limit. Explicitly correlated DW-F12/aTZ

and F12b/aTZ both yielded benchmark-quality interaction energies for systems in the A24

test set; the former attained such accuracy with nearly identical computational expense as

the currently recommended benchmark procedure, DF-MP2/CBS(aTZ, aQZ) + δCCSD(T)
MP2 /aTZ,

also denoted CCSD(T)/[DF-aTQZ; δ:aTZ], while the latter achieves a 1.6x speedup over

the focal-point procedure when using 6 cores (timings for a single representative test case).

Replacing CCSD(T) energies with their density-fitted, frozen natural orbital truncated coun-

terparts via DF-FNO-CCSD(T) does not lead to an increase in the mean absolute errors for

the A24 test set, but also yields a 1.6x speedup over the non-DF, non-FNO focal-point

approach when running on 6 cores.
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CHAPTER 5

ASSESSMENT OF DENSITY FUNCTIONAL METHODS FOR GEOMETRY

OPTIMIZATION OF BIMOLECULAR VAN DER WAALS COMPLEXES

5.1 Abstract

We explore the suitability of three popular density functionals (B97-D3, B3LYP-D3, M05-

2X) for producing accurate equilibrium geometries of van der Waals (vdW) complexes

with diverse binding motifs. For these functionals, optimizations using Dunning’s aug-

cc-pVDZ basis set best combine accuracy and a reasonable computational expense. Each

DFT/aug-cc-pVDZ combination produces optimized equilibrium geometries for 21 small

vdW complexes of organic molecules (up to four non-hydrogen atoms total) that agree

with high-level CCSD(T)/CBS reference geometries to within ±0.1 Å for the averages

of the center-of-mass displacement and the mean least root-mean-squared displacement.

The DFT/aug-cc-pVDZ combinations are also able to reproduce the optimal center-of-

mass displacements interpolated from CCSD(T)/CBS radial potential energy surfaces in

both NBC7x and HBC6 test sets to within ±0.1 Å. We therefore conclude that each of

these density functional methods, together with the aug-cc-pVDZ basis set, are suitable for

producing equilibrium geometries of generic non-bonded complexes.†

5.2 Introduction

Structure-based computer-aided drug design (SB-CADD) has emerged as a valued ap-

proach in the development of novel pharmaceutical compounds. Optimization of bind-

ing affinity of a lead chemical series is an iterative process, often requiring a detailed un-

derstanding of existing host-guest interactions and the ability to successfully predict new

†This Chapter reproduces the work in Ref. 128.
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ones. These assessments are typically performed with molecular mechanics forcefields in

combination with structural models based on crystallographic structures of closely related

molecules. Such methods, however, are not always sufficiently fine-grained to accurately

describe or quantify the guest-host interactions of interest. Capable of augmenting the ex-

isting SB-CADD paradigm by providing the information necessary to allow for the ratio-

nal refinement of the resulting drug candidates, ab initio quantum-chemical methods offer

a first-principles description of the non-covalent interactions (NCI) which govern host-

guest binding. In particular, energy decomposition analysis (EDA) schemes such as the

absolutely localized molecular orbital EDA (ALMO-EDA)129–132 and symmetry-adapted

perturbation theory (SAPT)133–136 approaches offer a physically meaningful breakdown of

interaction energies into contributions from more fundamental components, such as elec-

trostatics, induction, dispersion, and exchange-repulsion. Furthermore, the atomic137 and

functional-group138 partitionings of SAPT (A-SAPT and F-SAPT, respectively) offer an

additional layer of interaction energy decomposition into the specific interactions between

pairs of atoms or functional groups on each interacting species. Indeed, these methods have

already provided insight into the relative stability of chlorinated vs. methylated factor Xa

inhibitors139 and the role of NCI on transition-state stabilization in organocatalyzed aldol

addition.68

Before performing any of these quantum-chemical computations within SB-CADD ap-

plications, a model system must first be constructed which mimics the NCI of interest, and

a geometry of suitable quality obtained, as resolution of tenths of kcal/mol or less may be

necessary to distinguish between relevant binding configurations (e.g., the sandwich and

T-shaped configurations of the pyridine dimer differ in interaction energy by only 0.1 kcal

mol−1!39,140) or seemingly minor chemical modifications. While significant attention has

been paid to the optimization of individual molecules, a general protocol that is capable

of generating accurate geometries of supermolecular assemblies is conspicuously lacking

in the literature. Even among benchmark sets of non-covalently bound complexes, sig-
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nificantly more consideration is given to the computation of interaction energies than to

the geometry optimization of the complexes themselves.15,30,76,79,141–145 Hence, despite the

availability of high-quality interaction energies approaching the coupled-cluster through

perturbative triples [CCSD(T)]10 complete-basis set (CBS) limit, there are very limited data

on high-quality geometries of van der Waals dimers that might be used to assess various

approximate methods for geometry optimization.

Shown previously to be capable of reproducing benchmark quality IEs to within sub–

kcal mol−1 accuracy75–77 while maintaining low execution time relative to post-Hartree–

Fock electron correlation methods like second-order Møller–Plesset perturbation theory

(MP2) or CCSD(T), density functional theory approaches that include a treatment of Lon-

don dispersion forces seem like natural candidates for routine application to the geometry

optimization of such complexes. Indeed, some of the best such approaches yield MAE of

only a few tenths of one kcal mol−1 for the S22 test set.75 We therefore explore here the

suitability of three of the best of these methods (B97-D3,146 B3LYP-D3,147,148 and M05-

2X149), where -D3 denotes the third-generation dispersion correction of Grimme;35 these

functionals have exhibited MAD = 0.48, 0.79, and 0.36 kcal mol−1, respectively, for non-

counterpoise–corrected interaction energies versus benchmarks for complexes in the S22

test set.75 The performance of each functional is assessed first by comparing DFT-optimized

geometries for the 21 minimum-energy complexes in the A24 test set of Hobza and co-

workers,14 for which CCSD(T)/CBS–quality geometries are available due to the small size

of these complexes (A24 systems contain up to four non-hydrogen atoms). Fully-optimized

CCSD(T)/CBS geometries of larger systems would be computationally difficult to obtain;

however, here we also present CCSD(T)/CBS potential energies vs intermolecular sep-

aration for 13 systems with up to twelve non-hydrogen atoms. These one-dimensional

potential energy curves allow us to assess density functionals for their ability to reproduce

the optimal intermolecular separation in these larger complexes, in order to validate the

conclusions drawn from the optimization of the A24 systems.
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5.3 Computational Methods

Throughout this study, we employ three density functionals which have become routinely

applied to NCI:75–77 B97-D3 (generalized gradient approximation, GGA),146 B3LYP-D3

(hybrid-GGA),147,148 and M05-2X (hybrid-meta–GGA);149 each of these is paired with the

popular correlation-consistent basis sets of Dunning both with and without augmentation

by diffuse functions [(aug-)cc-pVXZ, X = D, T; abbreviated throughout as aXZ and XZ,

respectively]. The relative computational expense of each of these functionals increases

with each successive rung, from B97→ B3LYP→M05-2X, with B97 exhibiting an order

of magnitude smaller overall algorithmic scaling compared to both B3LYP and M05-2X

when density fitting is employed [O(N3) versus O(N4), respectively, with N proportional

to overall system size]. This increase in computational scaling results from an increase in

the amount of physics recovered by each successive functional: GGAs, which depend only

on the gradient of the density, incorporate only local correlation; hybrid-GGAs incorporate

a percentage of Hartree–Fock exchange, recovering some nonlocal correlation; and hybrid-

meta–GGAs incorporate exact exchange in addition to a functional dependence on both

the gradient and Laplacian of the local density, recovering both nonlocal correlation and a

more correct description of the topological dependence of the energy on the overall electron

density. For the interested reader, we have included in Section I C in the supplementary

information a brief summary of timings for the construction of these gradients with the

methods examined here.

We have applied the -D3 dispersion correction of Grimme35 to B97 and B3LYP, as

correction for missing dispersion in these functionals has been shown to be necessary for

a high-quality description of NCI.75 We have chosen this pairwise dispersion treatment

as opposed to a many-body,150–154 exchange-dipole moment,155–157 or non-local158–161 ap-

proaches due to the availability of low-cost analytical gradients for the -D family of cor-

rections, allowing for minimal additional expense when incorporated into the geometry
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optimization procedure. The -D3 correction should give correct long-range behavior for

the London dispersion interactions, while also accounting for the local chemical environ-

ment around each atom.35 M05-2X, on the other hand, can describe London dispersion

interactions at short to intermediate distances (up to ∼5 Å),162 but fails to have correct

long-range behavior. This deficiency should not be significant for the smaller molecular

systems examined here, but can become a problem for large systems with many long-range

contacts.163,164 For a thorough discussion of the ladder of approximations within density

functional theory, a recent review of dispersion corrections in DFT and other mean-field

electronic structure methods, and the application of density functional theory to study non-

covalent interactions, we refer the interested reader to Refs. 165, 166, and 75, respectively,

and the references therein.

5.3.1 Optimized Geometries for A24 systems

Geometries were optimized for the 21 minimum-energy complexes in the A24 test set of

Hobza and co-workers14 (complexes 1–21, denoted A21; visualized in Fig. 5.1.a) using the

dispersion corrected functionals described above. Optimizations with B3LYP-D3 and B97-

D3 used a development version of the open-source PSI4 electronic structure program,31

and optimizations with M05-2X used the Q-Chem 4 program package.167 In both cases,

full optimizations were performed, allowing for monomer relaxation. For the optimization

of these systems, we did not attempt to correct for basis set superposition error (BSSE),

as this would add computational expense and would also be more difficult to automate

with standard geometry optimizers. Fortunately, our results indicate that BSSE correction

is not necessary for reliable geometries. Convergence criteria used for optimizations in

this work were a) the energy difference between successive optimization steps below 1 ×

10−6Eh, b) the maximum component of the gradient below 1.5× 10−5Eh/a0, c) the root-

mean-square of the elements of the gradient below 1.0 × 10−5, d) the maximum atomic

displacement between successive optimization steps below 6.0 × 10−4 a0, and e) the root-
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mean-square of the atomic displacements between successive optimization steps below

4.0 × 10−4. For optimizations performed using PSI4, each of these five criteria must be

satisfied for convergence to be achieved; for those performed using Q-Chem, however,

convergence was achieved when criterion (b) and either of (a) or (d) were satisfied. These

thresholds were chosen such that the difference between optimized geometries were less

on average than the differences between the average errors of the DFT methods chosen.

As meta-GGAs have been shown to exhibit oscillations in intermolecular potential en-

ergy surfaces of dispersion-bound complexes,168 we have adopted a dense integration grid

(150 radial points, 434 spherical points) for all density functional computations. To reduce

the computational expense of DFT computations incurred by employing dense integration

grids, the density-fitting approximation was applied to the electron repulsion integrals for

computations performed using PSI4.169–176 To examine the effect of basis set on the quality

of the optimized geometries, we have employed Dunning’s correlation consistent polarized

valence basis sets,22 both with (aug-cc-pVXZ; X = D, T) and without (cc-pVXZ; X = D, T)

augmentation by diffuse functions. For the convenience of the reader, these basis sets will

be abbreviated as aXZ and XZ, respectively.

For this work, we take the originally published geometries for each A21 complex

as benchmarks.177 These were optimized by minimizing the numerical gradient of the

counterpoise-corrected (CP) CCSD(T) interaction energy for each complex, at the com-

plete basis set (CBS) limit. These interaction energies were estimated using the popular

focal-point composite approach,23,24 whereby the CBS limit estimate of the total MP2

energy [computed using the two-point extrapolation scheme of Helgaker,20 denoted as

MP2/CBS(aXZ, a[X+1]Z)], is corrected for higher-order correlation effects by adding the

difference between CCSD(T) and MP2 as computed in a smaller basis set (denoted δCCSD(T)
MP2 ).

In particular, these benchmarks were computed at the MP2/CBS(aTZ, aQZ) + δCCSD(T)
MP2 /aDZ

level; this treatment will be denoted here as CCSD(T)/[aTQZ; δ:aDZ]. This approach has

been widely applied to estimate the CCSD(T) complete basis set limit for interaction ener-
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Figure 5.1: Test sets of bimolecular complexes examined here. (a) A21: 21 bound com-
plexes contained in the A24 test set of Hobza and co-workers,177 (b) NBC7x: seven (re-
cently extended39) radial potential scans from the NBC10 test set140 and (c) HBC6:30,145

radial potential scans for six doubly hydrogen bonded complexes. Indicated by box color-
ing [(a)–(c)] or by dot color [(d)] are the noncovalent interaction type for each complex,
reported previously:57,77 red for electrostatic interactions, blue for dispersion interactions,
and yellow/green for mixed electrostatic and dispersion interactions.The ternary diagram
(d) further indicates the relative magnitude of the interaction energy components for these
complexes,145,178 by placing a colored dot according to the ratios of attractive dispersion/in-
duction and attractive/repulsive electrostatic contributions to the total interaction energy.
Proximity to each labeled vertex indicates an increasing fraction of the attraction (repul-
sion) arising from that component.
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The quality of optimized supermolecular geometries computed using each model chem-

istry examined here is assessed according to the following metrics:

(i) the center-of-mass displacement (∆COM) between the monomers comprising each

complex, compared to the ∆COM in the corresponding benchmark geometry, and

(ii) the least root mean square deviation (LRMSD) between the optimized geometry and

the accompanying benchmark geometry.

For the purposes of this work, we consider both ∆COM and LRMSD metrics with values

less than 0.1 Å to correspond to “satisfactory” optimizations. However, we expect that for

in many applications, larger errors of LRMSD ≈ 0.15–0.2 Å and ∆COM ≈ ± 0.1–0.15

Å could remain acceptable. A more detailed discussion regarding the assessment of opti-

mization quality using the metrics listed above and the choice of optimization thresholds is

presented in Sections I A & B of the Supporting Information.

5.3.2 Radial Potential Surface Scans of HBC6 and NBC10x systems

In order to assess the generality of the conclusions drawn for the geometry optimizations

of the A21 test set, the ability of DFT to reproduce optimal intermolecular separation dis-

tances between monomers in complexes from the NBC7x39,140 and HBC630,145 test sets

(visualized in Fig. 5.1b & c, respectively) was examined. To do this, radial potential

energy surface scans of the selected bimolecular complexes were constructed from both

counterpoise-corrected54 (CP) and uncorrected (unCP) interaction energies computed with

each combination of density functional and basis set examined above, using a 0.1 Å step

size. In order to estimate the optimal intermolecular separation for each curve, a second-

degree polynomial was fit to the three (R, IE) points straddling the well minima using

the Numerical Python (NumPy) library,179 which was subsequently used to interpolate the

optimal center-of-mass displacement (Req) for each complex. We use here the label Req to

distinguish these interpolated intermolecular separation distances from the center-of-mass

displacements (∆COM) reported for optimized A21 complexes, since (i) the separation co-
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ordinate used to construct curves in the HBC6 and NBC7x test sets does not necessarily co-

incide with the vector connecting monomer centers-of-mass, and (ii) to further differentiate

these interpolated distances computed from interaction energy curves from the monomer

center-of-mass displacements within fully optimized structures.

Benchmark values for the Req corresponding to each curve were determined by apply-

ing this same curve-fitting procedure to the HBC6 revision A30 and NBC10 revision B39 ref-

erence curves, respectively, each constructed from energies computed at the CCSD(T)/CBS

limit. Information on these interaction energy benchmarks and revisions for HBC6 and

NBC7x can be found in Table S-1 of the Supporting Information. For the formic acid

dimer (HBC6-1) with all DFT model chemistries, and for the formic acid–formamidine

complex (HBC6-6, see Fig. 5.1) with all M05-2X model chemistries, radial curves do not

exhibit clear potential wells within which Req could be interpolated; we have therefore

removed these curves from the statistical analysis visualized in Fig. 5.5 and discussed in

Section 5.4.2. We have, however, included these curves in the SI (see Section ??).

5.4 Results and Discussion

We first assess each model chemistry for its ability to produce optimal geometries for A21

complexes, in Section 5.4.1, before examining the generality of these conclusions in Sec-

tion 5.4.2 by computing the optimal center-of-mass displacements for radial potential en-

ergy curves of larger bimolecular complexes in the HBC6 and NBC7x test sets.

5.4.1 Optimization of A21 Systems

As can be seen in Fig. 5.2.a & b for the B3LYP-D3 and B97-D3 density functionals, re-

spectively, the aDZ basis set yields the best results for LRMSD values (light blue box-and-

whisker plots) for A21 complexes. Indeed, for every density functional paired with aDZ,

the average value of LRMSD, µLRMSD, is ≤ 0.05 Å and, for all A21 complexes except

a single outlier (LRMSD = 0.15 Å for the water–ethene complex with M05-2X/aDZ; see
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DZ, TZ, aDZ, and aTZ basis sets. Boxes encompass the first (Q1) through third (Q3) quar-
tiles of each data set, with values corresponding to the median (Q2) and mean LRMSD and
∆COM signed error indicated as a solid black bar and black square, respectively. Whiskers
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Fig. 5.2.c), LRMSD≤ 0.1 Å. The aTZ basis set also exhibits good performance, with inner

quartile ranges (IQRs) of less than 0.03 Å for each density functional. Despite this good

performance for the majority of A21 systems, four complexes optimized with B97-D3/aTZ

exhibit LRMSD ≥ 0.1 Å [methane–water (A24-8; LRMSD = 0.5 Å), ammonia–ethene

(A24-13; LRMSD = 0.1 Å), Cs methane–ethane (A24-15; LRMSD = 0.2 Å), and borane–

methane (A24-16; LRMSD = 0.5 Å)], as opposed to just a single complex (Cs methane–

ethane, A24-15; LRMSD = 0.2 Å) for B3LYP-D3/aTZ, and no such complexes for M05-

2X/aTZ. B3LYP-D3/aTZ and M05-2X/aTZ have slightly smaller IQRs and µLRMSD val-

ues than for aDZ, but the improvement is quite small. For M05-2X, a more noticeable

improvement is observed in the overall range of LRMSD values, which decreases from

0.14 Å for aDZ to only 0.06 Å for aTZ.

For the ∆COM metric, visualized in Fig. 5.2 with light red box-and-whisker plots,

signed errors (SE) for individual model geometries and mean signed errors (MSEs) over

all A21 complexes are not so clearly superior for the aDZ basis as was observed for the

LRMSD metric, and ∆COM IQRs seem to be largely comparable between basis sets for

each density functional. In fact, for both B3LYP-D3 and M05-2X, while the overall ranges

of ∆COM signed errors are slightly smaller when using the aDZ basis set, the MSEs for

these functionals are smallest with the aTZ basis set. For B97-D3, each of the aDZ, TZ, and

aTZ basis sets yield error ranges which are nearly identical, with maximum and minimum

signed errors lying slightly outside the target range of ±0.1 Å. The mean signed errors for

these combinations benefit from this nearly symmetric distribution; both B97-D3/aDZ and

B97-D3/TZ exhibit MSE ≤ ±0.01 Å, and B97-D3/aTZ is not much worse, with MSE =

0.03 Å.

Generally, however, the relative quality of model geometries with respect to the ∆COM

metric is again not significantly improved when moving from aDZ to aTZ basis sets. IQRs

improve slightly for each functional; however, the overall range of ∆COM values increases

for both B3LYP-D3 and M05-2X functionals. Regardless of this increase in the total range
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for these model chemistries, the highly symmetric distribution of ∆COM values about 0.0

Å signed error yields very small MSEs, with MSE = -0.01, 0.00 Å for B3LYP-D3/aTZ

and M05-2X/aTZ; the double-ζ counterparts are not much worse, however, with MSE =

-0.05, -0.04 for B3LYP-D3/aDZ and M05-2X/aDZ. B97-D3, on the other hand, exhibits

the opposite trend when moving from aDZ to aTZ: while the total range of ∆COM values

improves from 0.32 Å to 0.26 Å , MSE increases slightly, from MSE = 0.00 Å to MSE

= 0.03 Å. The similar or only marginally improved performance of optimizations utilizing

aTZ over aDZ for both LRMSD and ∆COM metrics, together with the increased computa-

tional cost associated with the increase in ζ-level, implies that the smaller aDZ basis set is

generally preferable for optimizations of nonbonded complexes similar to those within the

A21 test set.

To more closely examine the performance of each density functional for optimizing

A21 complexes, we next consider the quality of individual equilibrium geometries opti-

mized using the recommended basis set, aDZ. Visualized in Fig. 5.3 are values correspond-

ing to each A21 complex, and box-and-whisker plots describing these values’ distributions

for (a) LRMSD and (b) ∆COM metrics. Within each density functional, electrostatically

bound complexes (HB subset, red circles) exhibit LRMSD values and ∆COM signed er-

rors that are more clustered than for the other two A21 subsets [dispersion-dominated (DD)

subset (blue circles) and mixed-interaction (MX) systems (green circles)]. Among these

density functionals, M05-2X/aDZ generates model geometries that are notably superior

for HB and DD complexes, with respect to both LRMSD and ∆COM metrics; this model

chemistry is also slightly superior to B3LYP-D3/aDZ and B97-D3/aDZ for MX systems,

with the lone exception being the water–ethene complex, exhibiting LRMSD = 0.15 Å.

For B3LYP-D3/aDZ, Req is underestimated in nearly all A21 model geometries (negative

signed error for ∆COM), while M05-2X/aDZ generally underestimates Req for A21 com-

plexes. B97-D3/aDZ model geometries, on the other hand, exhibit different behavior for

the ∆COM metric depending on the interaction type of the complex; Req is typically over-
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estimated in HB systems, underestimated in DD systems, and no trend is observed for the

MX subset.

Based on the performance of these model chemistries for producing optimal geome-

tries of A21 test set, a total ordering which ranks the performance of the best such model

chemistries can be constructed. Here, we consider first the µLRMSD and ∆COM MSE

statistics for each set of values, then the sample inner quartile and total ranges; these con-

siderations produce the following ordering:

M05-2X/aTZ ∼ B3LYP-D3/aTZ % M05-2X/aDZ % B3LYP-D3/aDZ � B97-D3/aDZ

where “∼” indicates roughly equivalent performance of sample means and IQR, “%” indi-

cates superior performance with respect to sample mean, but roughly similar performance

in IQR, and “�” indicates superior performance in both sample means and IQR. The rea-

son for the classification of B97-D3/aDZ as inferior to B3LYP-D3/aDZ and M05-2X/aDZ,

despite a seemingly excellent sample mean for ∆COM signed errors, is the larger spread

of the errors for B97-D3/aDZ; indeed, the range in the ∆COM signed error is 0.32 Å for

B97-D3/aDZ versus 0.16 Å for B3LYP-D3/aDZ and 0.11 Å for M05-2X/aDZ. While this

wider distribution of errors cancels fortuitously for B97-D3/aDZ to produce a very low

MSE (0.00 Å), the mean absolute error (MAE) for this model chemistry is nearly double

that of B3LYP-D3/aDZ, with MAE = 0.06, 0.03 Å, respectively. Despite the presence of

some cases with errors slightly larger than the target value for B97-D3/aDZ, each density

functional is able to produce equilibrium geometries of the desired accuracy level for a

significant percentage of the A21 complexes when paired with the aDZ basis set.

5.4.2 Prediction of Optimal Intermolecular Separation in NBC7x and HBC6 Interaction

Energy Scans

As illustrated in Fig. 5.4 for the formamidine dimer, optimal intermolecular separations

(Req) were interpolated from radial potential scans constructed for the 13 complexes in

the HBC6 and NBC7x test sets using both counterpoise-corrected (CP) and uncorrected
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Figure 5.4: Scans of the non-counterpoise–corrected interaction energy (unCP IE) along
the radial separation coordinate R in the formamidine dimer (HBC6-3; inset shown) com-
puted with B3LYP-D3 (red), B97-D3 (blue) and M05-2X (green) using the cc-pVDZ basis
set. The interpolated optimal intermolecular separation for each curve is indicated with
a vertical dotted line in the same colors. For reference, a curve constructed from the
CCSD(T)/CBS benchmark IEs at each value of R is presented in black.

(unCP) interaction energies, computed using each combination of density functional and

basis set examined above. The CCSD(T)/CBS reference curve, from which the reference

Req value is interpolated, is also shown; for a complete set of equivalent figures (108 to-

tal), please refer to the Supporting Information. Provided in Fig. 5.5 are box-and-whisker

plots describing the distribution of signed errors of these interpolated minima for each DFT

model chemistry, as compared to the minima interpolated from reference curves. Regard-

less of the choice of BSSE treatment (either CP or unCP), interpolated minima for curves in

the NBC7x test set exhibit slightly larger signed errors than those for HBC6 curves; while

all model chemistries produce MSE ≤ ±0.06 Å for both CP and unCP curves within

the HBC6 test set (and twelve model chemistries with MSE ≤ ±0.01 Å!), several model

chemistries for NBC7x complexes yield MSE slightly outside this range, albeit still within

the target of Req ≤ ±0.1 Å. Errors in interpolated Req for CP-curves are largely indepen-

dent of basis set size or augmentation for both NBC7x and HBC6, with the lone exception
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of HBC6 curves with TZ exhibiting improved MSE and IQR over DZ. For unCP curves,

however, the quality of interpolated Req is sensitive to both ζ-level and augmentation.

Considering next the performance of individual model chemistries, B3LYP-D3 and

B97-D3 perform about the same (CP curves) or better (unCP curves) for NBC7x complexes

with a triple-ζ basis set, regardless of augmentation, while for M05-2X, the double-ζ basis

sets are better. For HBC6, interpolated minima are quite good for all model chemistries

considered, although errors are slightly larger for unCP curves using the DZ basis set. For

both test sets, B3LYP-D3 and B97-D3 exhibit excellent performance for Req; among the

32 total combinations of these two functionals, the four examined basis sets, and two pos-

sible BSSE treatments, MSE ≤ 0.01 Å for Req of 16 model chemistries, 0.01 ≤ MSE

≤ 0.05 Å for Req of 11 model chemistries, and the remaining five model chemistries all

produce interpolated Req values with 0.05 ≤ MSE ≤ 0.1 Å. While M05-2X yields high

quality interpolated Req for HBC6 systems, this functional tends on average to underbind

for CP curves of NBC7x systems, as well as for unCP curves with triple-ζ basis sets (see,

e.g., Figs. S-76–S-82 and S-111–117 in the Supplemental Information), leading to a slight

overestimation of the optimal intermolecular separation distance Req; the MSE for these

cases ranges between 0.07–0.1 Å.

Interestingly, NBC7x systems with π − π stacking (NBC7x-1 & 7; sandwich ben-

zene and pyridine dimers, respectively) seem particularly susceptible to this drastic under-

binding by M05-2X, exhibiting deviations from reference interaction energies as large as +2

kcal mol−1 in the neighborhood of the minima of CP curves, a full factor of four larger than

deviations exhibited by either B97-D3 or B3LYP-D3 (see, e.g., Figs. S-62 and S-67 in the

Supplemental Information). The T-shaped counterparts to these complexes (NBC7x-2 & 8

for benzene and pyridine dimers, respectively), while slightly less underbound, still exhibit

significant deviations from CCSD(T)/CBS IEs of nearly 1 kcal mol−1 in the neighborhood

of the curve minima (Figs. S-63 and S-68). While these T-shaped complexes are much

more realistically described by M05-2X with double-ζ basis sets when not employing the
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counterpoise-correction procedure, the sandwich configurations are similarly underbound

for unCP curves even with double-ζ , and both sandwich and T-shaped configurations are

severely underbound in unCP curves with triple-ζ basis sets. Strangely, this underbinding

of systems involving π-stacking or CH−π interactions by M05-2X is not present in other

dispersion-dominated NBC7x systems, e.g., methane dimer, where M05-2X underbinds

either by only tenths of kcal mol−1 for CP curves (e.g., Fig. S-66) or nearly perfectly re-

produces CCSD(T)/CBS IEs for unCP curves (e.g., Fig. S-73); these results are consistent

with values reported previously in Ref. 75.

Finally, we examine in particular the performance of aDZ model chemistries for unCP

curves, as our optimizations of A21 complexes did not employ BSSE corrections, and aDZ

was found to perform similarly to aTZ. For these larger systems, MSE ≤ 0.02 Å for HBC6

curves, and MSE ≤ 0.05 Å for NBC7x curves constructed with B3LYP-D3 and M05-2X.

B97-D3/aDZ performs only slightly worse for NBC7x curves, with MSE = -0.08 Å; each of

these model chemistries, however, produce Req MSEs within the target range of accuracy.

This indicates that the high quality of DFT/aDZ geometries observed in Section 5.4.1 for

the optimization of A21 systems is likely to generalize to the optimization of systems as

large as those in HBC6 or NBC7x, and perhaps somewhat larger. We must note, however,

that in systems that are much larger, long-range effects neglected by M05-2X and many-

body dispersion interactions neglected by all of the approaches tested here may become

significant.150–154

5.5 Summary & Conclusions

We have shown that each of B3LYP-D3, B97-D3, and M05-2X density functionals paired

with Dunning’s aug-cc-pVDZ (aDZ) basis set combine accuracy and reasonable computa-

tional expense for producing equilibrium geometries of 21 small bimolecular van der Waals

complexes from the A24 test set. Each DFT/aug-cc-pVDZ level of theory performs well

compared to CCSD(T)/CBS references: both B3LYP-D3/aDZ and M05-2X/aDZ consis-
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tently yield equilibrium geometries with very small least root-mean-square displacement

(LRMSD) and center-of-mass displacement signed error (∆COM SE), each within 0.05

Å on average. B97-D3/aDZ nearly as good, but exhibits slightly larger range of ∆COM

SE. We have also shown that these DFT/aDZ combinations are capable of reproducing op-

timal intermolecular separation distances (Req) interpolated from radial interaction energy

scans of 13 larger complexes in the HBC6 and NBC7x test sets. Minima interpolated from

curves in both HBC6 and NBC7x test sets constructed from non–counterpoise-corrected

(unCP) interaction energies computed using DFT/aDZ are of similarly high quality, with

B3LYP-D3/aDZ and M05-2X/aDZ yielding minima within 0.05 Å of CCSD(T)/CBS,

while B97-D3/aDZ is again nearly as good but slightly less reliable for unCP curves in

NBC7x. Overall the analysis of optimized A21 systems, together with the quality of inter-

polated NBC7x and HBC6 minima, indicate that each of these DFT/aDZ combinations are

well suited to produce equilibrium geometries of given conformations of bimolecular van

der Waals complexes of diverse binding motif.

In the course of this work, we developed a software tool to maximally align the ap-

proximate geometries optimized with DFT against the CCSD(T) benchmark geometries,

to obtain the LRMSD metric for each A21 complex analyzed above. This tool, consist-

ing of Python implementations of two general algorithms solving the maximal alignment

problem, together with all data presented here and all Python code necessary to perform

the above data analysis and visualization, are available free of charge via an open-source

GitHub repository at www.github.com/cdsgroup/dftoptbench-si. All soft-

ware contained in this repository can be executed without local installation via the Jupyter

Hub cloud server, or cloned to be used offline.
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PART III

DEVELOPING APPROXIMATE PERTURBATIVE METHODS FOR

NON-COVALENT INTERACTIONS
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CHAPTER 6

OPTIMIZED DAMPING PARAMETERS FOR EMPIRICAL DISPERSION

CORRECTIONS TO SYMMETRY-ADAPTED PERTURBATION THEORY

6.1 Abstract

Symmetry adapted perturbation theory (SAPT) has become a valuable computational tool

offering physical insight into the fundamental nature of non-covalent interactions in diverse

chemical systems by directly computing the electrostatics, exchange (steric) repulsion, in-

duction (polarization), and London dispersion contributions to the interaction energy using

quantum mechanics. Further application of SAPT to novel chemical problems is limited

primarily by its computational expense, where even for its most affordable variant, SAPT0,

computing the London dispersion contribution to the interaction energy (IE) scales as the

fifth power of system size, [O(N5)]. Here we optimize damping parameters for the semi-

empirical -D3 dispersion correction of Grimme and co-workers, so that they are suitable

for use as replacements of the computationally expensive dispersion term in SAPT0. Pa-

rameters are obtained by fitting to a large set of 2295 interaction energies computed at

the CCSD(T)/CBS level of theory. This reduces the algorithmic scaling of SAPT0 from

O(N5) → O(N4) while retaining the physically meaningful interpretation of IE compo-

nents characteristic of all SAPT methods. This scaling reduction translates into a nearly

2.5× speedup over conventional SAPT0 for systems with ∼300-atoms. Furthermore, this

allows for SAPT–D computations to be performed on systems with over 450 atoms, while

offering nearly equivalent accuracy to SAPT0 when compared against reference IEs for

a diverse set of approximately 8,100 bimolecular complexes. We have extended our for-

mulation of SAPT–D to be consistent with the functional group partition (F-SAPT–D) and

applied this method to conclude that the difference in binding affinity for partial agonist
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salbutamol to the G-protein coupled β1-adrenergic receptor between active and inactive

forms is due to the cooperative effects of both peptide bonds and residues outside the im-

mediate binding pocket, indicating that a local contact model for protein–ligand binding

is insufficient to discriminate between binding conformations which possess similar activ-

ities.*

6.2 Introduction

Symmetry-Adapted Perturbation Theory (SAPT) has proven useful in computing the strength

and character of interactions between molecules.133–136 SAPT computes the physical com-

ponents of the interaction (electrostatics, induction/polarization, London dispersion forces,

and exchange repulsion) directly, not as a decomposition or difference of total energies.

SAPT has been formulated in terms of many-body perturbation theory,133,134,181 coupled-

cluster theory,182,183 and density functional theory.184,185 The highest orders of SAPT in-

clude terms analogous to the perturbative triples correction in the popular CCSD(T) method,10

and exhibit similar accuracy (and computational expense).58,134,135 Fortunately, even the

simplest SAPT treatments can be reasonably accurate and can provide insight into the na-

ture of intermolecular interactions. The lowest-order truncation of the perturbation series,

sometimes referred to as SAPT0, uses a Hartree–Fock treatment of the monomers and

treats the intermolecular perturbation through second order.133 When paired with the jun-

cc-pVDZ basis set, which is a truncation of the aug-cc-pVDZ basis in which diffuse func-

tions on H atoms and diffuse d functions on heavy atoms are neglected, SAPT0 is reason-

ably accurate (mean absolute error of 0.86 kcal mol−1 over four high-quality benchmark

test sets, or only 0.49 kcal mol−1 using an exchange-scaled variant labeled sSAPT0).58

SAPT0, formally scaling as O(N5), where N is proportional to the size of the molecular

system, is applicable to systems of a few hundred atoms when density-fitting techniques

are employed.186,187 However, computations of this size can be time consuming, and for

*This Chapter reproduces the work in Ref. 180.
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applications to protein-ligand interactions, molecular crystals, solvated species, etc., one

may wish to go to even larger systems.

Parrish et al. recently introduced a very efficient implementation of SAPT0 utilizing

graphics processing units (GPUs),188 which they demonstrated on the entire indinavir/HIV-

II protease complex. To reach systems of this size, they dropped all diffuse functions from

the orbital basis, formulated the SAPT energy in terms of only potential integral prim-

itives which were computed with a highly specialized, mixed-precision algorithm lever-

aging both CPU and GPU architectures, and avoided the O(N5) scaling of the disper-

sion part of the computation, replacing the dispersion term with force-field-type pairwise-

atomic −C6ij/R
6
ij terms. Such force-field dispersion models had been previously utilized

in SAPT189–191 and in Hartree–Fock treatments of intermolecular interactions.192–194 Par-

rish et al. used -D corrections from the very popular DFT-D3 approach of Grimme and

co-workers,35 which provides C6 coefficients and parameters for functions to damp the

corrections at short range. Although the -D3 corrections were formulated for use with

DFT, the DFT-D3 program195 from the Grimme group includes damping parameters for

Hartree–Fock, and these are the damping parameters that were used by Parrish et al.188

We have previously found that the damping parameters used in the -D3 method do

not perform as well for short-range contacts, and we recommended modified parameters

based on reparameterization using a much larger training set (1526 data points vs. an

original 130).39 Here, we perform an analogous investigation of optimal damping parame-

ters for -D3 corrections as replacements for the dispersion energies of SAPT0, which are

the rate-determining step in SAPT0 computations. We reparameterize the damping func-

tions by training against a large set of 2295 interaction energies estimated at the CCSD(T)

complete-basis-set limit, and the updated parameters provide around a XXX reduction in

error compared to the original Hartree–Fock damping parameters. We also illustrate the

savings in computer time, storage and required memory that are possible for larger systems

by replacing the SAPT0 dispersion terms with –D corrections, using the implementation
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in the Psi4 program package.31 We investigate this through calculations on dimers of reg-

ularly increasing size obtained by fragmenting a simplified, publicly available cocrystal of

C(30) carotenoid dehydrosqualene synthase in complex with the BPH-673 ligand (PDB ID

3ACX).196

Finally, as an illustration of the utility of our approach, we have adapted our implemen-

tation to be compatible with the functional group partition of SAPT (F-SAPT),66 (denoted

F-SAPT–D), and we have used it to address to the question of the differential binding of

ligands to the activated and inactive states of G-protein coupled receptors (GPCRs), a sub-

ject of biological relevance but heretofore inaccessible to this method due the associated

computational requirements. GPCRs can exist in an ensemble of conformations, but they

generally bind with higher affinity for agonists when they are in an active (bound to G

proteins) versus inactive state. Recently, Warne et al.197 provided a potential means to un-

derstanding this difference by solving the crystal structures for the β1-adrenergic receptor

(β1AR) bound to various agonists and partial agonists, while stabilized in an active versus

inactive state by combining the GPCRs with conformation-specific nanobodies. A detailed

but qualitative comparison of the structures led to the conclusion that an overall contraction

of the binding site, as well as changes in contact distances between ligands and particular

binding-site residues were responsible for the increased potency of active β1AR for full and

partial agonists. Here, we apply F-SAPT–D to one example discussed at length by Warne et

al.,197 β1AR bound to the partial agonist salbutamol, for which the experimentally obtained

increase in affinity for the ligand by active versus inactive state of GPCR is 1.88 log units

(76-fold, or 2.6 kcal mol−1). We first verify that the method qualitatively matches the ex-

perimentally observed increase in affinity, and then obtain a quantum-mechanically-based

assessment of which interactions contribute primarily to the GPCR-conformation-specific

preference.
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SSI + BBI
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Water2510
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Curves & Surfaces
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Figure 6.1: Ternary diagrams visualizing relative contributions of attractive (-) and/or re-
pulsive (+) electrostatics, induction, and dispersion interaction energy components based
on the SAPT0/jun-cc-pVDZ description of IEs for all systems comprising the (a) training
and (b) validation sets for SAPT–D parameter training. Each system is represented by a
single dot, colored according to the most dominant contribution to the overall SAPT0 IE:
red indicating an electrostatically dominated interaction, blue indicating a dispersion domi-
nated interaction, and yellow-green indicating an interaction for which neither electrostatics
nor dispersion components dominate.

6.3 Theoretical & Computational Methods

6.3.1 Formulation of SAPT0–D

The simplest truncation of the SAPT perturbation series, SAPT0, treats the intermolecular

perturbation V̂ through second order and the intramolecular correlation energy through 0th

order (i.e., uses a Hartree–Fock description of the monomers). The SAPT0 interaction

energy is given by58

IESAPT0 = IEHF +
[
E

(20)
disp + E

(20)
exch-disp

]
disp

(6.1)

=
[
E

(10)
elst

]
elst

+
[
E

(10)
exch

]
exch

+
[
E

(20)
ind,r + E

(20)
exch-ind,r + δE

(2)
HF

]
ind

+
[
E

(20)
disp + E

(20)
exch-disp

]
disp

,

where the two superscripts in parentheses on the interaction energy components denote the

order of perturbation theory with respect to the intermolecular perturbation and intramolec-
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ular electron correlation, respectively. The Hartree–Fock correction δE(2)
HF is defined such

that Eqns. (6.1) and (6.2) are equal:

δE
(2)
HF ≡ IEHF −

([
E

(10)
elst

]
elst

+
[
E

(10)
exch

]
exch

+
[
E

(20)
ind,r + E

(20)
exch-ind,r

]
ind

)
. (6.2)

SAPT0 exhibits similar computational expense to MP2, due to the termsE(20)
disp andE(20)

exch−disp

scaling with number of occupied orbitals o and virtual orbitals v as O(o3v2) and O(o2v3),

respectively. More generically, these terms scale as O(N5), where N is proportional to the

size of the dimer, whereas the remaining terms scale as O(N4) or better.

SAPT0–D replaces the computationally expensive second-order dispersion
[
E

(20)
disp + E

(20)
exch-disp

]
disp

with the third-generation semiclassical “–D3” dispersion correction of Grimme and cowork-

ers.35 In the –D3 approach, the dispersion correction to the total molecular energy is given

by

E−D3
disp = −

atoms∑
A<B

∑
n=6,8

sn
CAB
n

Rn
AB

f
(n)
damp(RAB), (6.3)

where f (n)
damp(RAB) is a damping function which decays as the interatomic distanceRAB →

0, and atom-pairwise C6 and C8 coefficients are obtained from tabulated values available in

Grimme’s DFT-D3 program,195 as distributed with PSI4.31 Since SAPT0–D seeks to directly

compute an interaction energy, the SAPT0–D dispersion interaction is computed according

to the supermolecular approach:

IE−D3
disp = E−D3

disp (AB)− E−D3
disp (A)− E−D3

disp (B), (6.4)

where (AB) denotes that the computation is performed on the dimer and (A), (B) denote

that the computation is performed on either monomer A or B, respectively. The SAPT0–D
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interaction energy is given therefore by

IESAPT0−D = IEHF +
[
IE−D3

disp

]
disp

(6.5)

=
[
E

(10)
elst

]
elst

+
[
E

(10)
exch

]
exch

+
[
E

(20)
ind,r + E

(20)
exch-ind,r + δE

(2)
HF

]
ind

+
[
IE−D3

disp

]
disp

.

(6.6)

As in the DFT-D3 approach, different damping functions f (n)
damp(R) can be employed in

SAPT0–D. In an analogous manner to Ref. 39, we here consider two forms of this damping

function. The damping function of Becke and Johnson (BJ)36,37 expresses the dispersion

energy as

E
−D3(BJ)
disp = −1

2

∑
A<B

∑
n=6,8

sn
CAB
n

rnAB + (α1RAB
0 + α2)n

, (6.7)

with global parameters s8, α1, and α2. The “zero-damping” function of Chai and Head-

Gordon (CHG),35,38 writes the total dispersion energy as

E
−D3(0)
disp = −1

2

∑
A<B

∑
n=6,8

sn
CAB
n

rnAB

1

1 + 6(rAB/(sr,nRAB
0 ) +RAB

0 β)−αn
(6.8)

and global parameters s8, sr,6, and β (the sr,8 parameter is fixed at 1, as is the parameter s6,

while α6 and α8 are fixed to 14 and 16, respectively). As in Ref. 39, we have introduced an

additional parameter, β, to the original CHG damping function to give the same number of

parameters as BJ damping. For clarity, we will hereafter utilize the “–D3(0)” suffix to the

SAPT0 method abbreviation to denote the use of CHG damping function and “–D3(BJ)”

to denote the use of the BJ damping function.

6.3.2 Refitting Damping Parameters for SAPT0–D

From Eqn. 6.5, it is clear that optimal damping parameters for SAPT0–D will be identical

to the optimal damping parameters for a supermolecular Hartree–Fock IE. While damping

parameters already exist for each of HF-D3(BJ) and HF-D3(0) (these are the parameters
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employed by Parrish et al.188), these parameters were optimized over a relatively small

set of training data; indeed, out of the 130 energy points in the original training set, only

72 were interaction energies.35,36 Furthermore, these IEs sampled a relatively small space

of possible noncovalent interactions, making their general application in the context of

SAPT0–D an open question. Therefore, optimal parameters for CHG and BJ damping

functions must be obtained for a broader, more diverse set of training data than was avail-

able when these damping functions were first parameterized. To do this, we have revised

these damping parameters in the fashion of Ref. 39, which provided damping parameters

for a wide array of different density functionals. As a part of that work, Smith et al. also

computed SAPT interaction energies (at various levels) for all systems in their test set to

classify their interaction motifs.

As our first proof of principle for developing SAPT0–D, we will herein optimize damp-

ing parameters for “dispersion-less” SAPT based on those previously reported data, by the

nonlinear least-squares minimization of the mean capped unsigned relative error (MCURE)

between IEs computed with SAPT and CCSD(T)/CBS taken from Ref. 39. The MCURE

was developed previously39 as a balanced error metric which avoids singularities present

in, e.g., mean unsigned error (MUE) for potential energy curves when they cross the zero

of interaction energy. The MCURE is given by

MCURE =

〈∣∣∣∣E − Eref

Eweight

∣∣∣∣〉 · 100%, Eweight = max

{
|Eref |,

ξ|Eref−eq|
z3

}
, (6.9)

where ξ is a flexible dimensionless parameter that determines the severity of the capping.

As in Ref. 39, we have chosen ξ = 0.2; additionally, for systems included in our fitting

set which are potential energy scans, we have set the cap to be 0.5 kcal mol−1. Provided

in Table 6.1 are details of the NCI datasets which comprise both the training and valida-

tion sets for this parameterization. The space of NCI spanned by these datasets is further

visualized in Fig. 6.1, containing “ternary diagrams,” which plot the relative contribution
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of the IE components provided by the SAPT0 truncation which can be attractive: elec-

trostatics, induction, and dispersion. It is worth noting that the particular NCI datasets

included in the training versus validation sets is different in this work than in our previous

revision of DFT-D3 damping parameters: most notably, inclusion of BBI and Water2510

systems in the training set markedly improves the performance of the resulting SAPT0–D

methods on this dataset, without negatively impacting accuracy for other datasets. Finally,

we distinguish SAPT0–D variants which make use of our optimized damping parameters

as SAPT0–D3M(0) and SAPT0–D3M(BJ), where the “M” refers to our newly “modified”

parameters.

6.3.3 Preparation of Test Systems to Evaluate Scaling of Computational Cost

To investigate the dependence of the computational costs of our SAPT–D implementa-

tion on system size, dimer structures composed of increasing numbers of atoms were con-

structed from the publicly available cocrystal structure 3ACX196 (resolution: 1.31 Å). This

structure was selected due to its high resolution, and the stretch of continuous helical pro-

tein near the ligand, which led to easy deconstruction into ligand/protein dimer subsets of

increasing size. The input files were created as follows: The 3ACX structure was prepared

in Maestro v2019-1207 using the Protein Preparation utility208 with default parameters, then

the BPH-673 ligand minus its terminal isopropylamino group, along with the continuous

stretch of residues 119-181, were extracted from the structure. The protein ends were

capped with an acyl (N-terminus) and N-methylacetamide (C-terminus) group. All non-

glycine residues in this subset were mutated to alanines, and nonpolar hydrogens were

minimized, to form the source of the dimer structures. The smallest dimer example was

composed of the reduced ligand (monomer A) plus the closest protein residues, Ala141

and Ala157 (monomer B), along with their neighboring residue caps, resulting in a total of

83 atoms. To create the larger dimer examples, the two nearest additional residues from

the source structure were added, with their caps, in turn. This resulted in dimer structures
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of sizes increasing by 17-20 atoms, depending on whether the additional residues were

glycines or alanines. As a final step, nonpolar hydrogens were minimized to ensure mini-

mal system strain. Files containing all structures examined here are available in plain text

format among the Supplementary Materials. Timings were performed on an isolated server

equipped with 3.0 TB of RAM and 4.0 TB of scratch space, parallelized over an 8-core

Intel Xeon Gold processor running at 2.3 GHz.

6.3.4 Preparation of Structures for Application to GPCR Binding

The crystal structures of turkey β1AR bound to salbutamol in the active state (PDB ID

6H7M, stabilized by the nanobody NB6B9 at 2.76 Å resolution)197 and in the inactive

state (PDB ID 2Y04, minus stabilizing nanobody at 3.05 Å resolution)209 were prepared

in Maestro v2019-13 with the Protein Preparation utility208 using default parameters. The

input structures for F-SAPT–D calculations were generated by extracting out the ligand

along with surrounding residues, with an approximate radius of 7 Å. Residues nearby

were included in full; in the case of more distant residues, sometimes only side chains

or backbone atoms were retained, according to distance from the ligand. Capping groups

from the backbones of neighboring residues were invariably maintained. The resulting

salbutamol/reduced-β1AR structures include the full ligand with surrounding residue envi-

ronment to at least a first shell (structure files in PDB format are included in the Supple-

mentary Materials). The identical set of protein atoms was extracted from the active and

inactive cocrystal structures, enabling the comparison of interaction energies. As a final

step, nonpolar hydrogens were minimized to ensure minimal system strain. In all, each

system is comprised of 459 atoms.
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Table 6.2: Summary statistics for signed and unsigned interaction energy error distributions
computed using SAPT0/jaDZ and variants of SAPT0–D/jaDZ over each of the training and
validation sets, as well as over the full set of all systems examined. Values provided for
first and third quartiles correspond to the box borders in a box-and-whisker plot, and the
second quartile corresponds to the median value for each SE distribution.

SAPT0 SAPT0–D3M(0) SAPT0–D3M(BJ)
Signed Unsigned Signed Unsigned Signed Unsigned

Fitting Set
Mean -0.01 0.51 0.18 0.75 0.30 0.69
StDev 1.15 1.03 1.29 1.07 1.21 1.04
Minimum -20.06 0.00 -2.77 0.00 -2.84 0.00
1st Quartile -0.15 0.06 -0.40 0.15 -0.26 0.09
2nd Quartile 0.00 0.19 -0.12 0.37 -0.04 0.31
3rd Quartile 0.25 0.52 0.31 0.86 0.42 0.79
Maximum 3.28 20.06 8.26 8.26 7.24 7.24

Validation Set
Mean 0.22 0.40 0.06 0.51 0.22 0.52
StDev 0.63 0.54 0.88 0.72 0.94 0.81
Minimum -4.64 0.00 -2.92 0.00 -4.11 0.00
1st Quartile -0.06 0.05 -0.30 0.12 -0.17 0.07
2nd Quartile 0.04 0.16 -0.12 0.26 -0.02 0.21
3rd Quartile 0.36 0.50 0.14 0.63 0.31 0.59
Maximum 4.45 4.64 8.27 8.27 7.63 7.63

Full Set
Mean 0.16 0.43 0.10 0.58 0.25 0.57
StDev 0.82 0.71 1.02 0.84 1.02 0.88
Minimum -20.06 0.00 -2.92 0.00 -4.11 0.00
1st Quartile -0.09 0.05 -0.32 0.13 -0.19 0.08
2nd Quartile 0.03 0.16 -0.12 0.28 -0.02 0.23
3rd Quartile 0.32 0.51 0.17 0.70 0.34 0.63
Maximum 4.45 20.06 8.27 8.27 7.63 7.63

152



Si
gn

ed
 E

rr
or

 (k
ca

l/m
ol

)

0.0

4.0

8.0

–4.0

SAPT0 SAPT0-D3M(BJ) SAPT0-D3M(0)

Figure 6.2: Violin plots visualizing the distribution of signed errors (SE) of IEs com-
puted for complexes in the validation set with SAPT0/jun-cc-pVDZ (green), SAPT0–
D3M(BJ)/jun-cc-pVDZ (orange), and SAPT0–D3M(0)/jun-cc-pVDZ (purple) as compared
to CCSD(T)/CBS reference IEs. Violin widths at a given SE correspond to the relative fre-
quency of complexes exhibiting that value of SE. Also provided for convenience in horizon-
tal dotted lines are the first (Q1), second (Q2), and third (Q3) quartiles for each distribution
of SE values.
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6.4 Results & Discussion

6.4.1 Accuracy of SAPT0–D Variants

Statistics over Validation Set

Visualized in Fig. 6.2 are signed errors for interaction energies of complexes in the valida-

tion set computed at the SAPT0/jaDZ, SAPT0–D3M(0)/jaDZ, and SAPT0–D3M(BJ)/jaDZ

levels of theory. Summary statistics for these distributions, as well as for the systems in the

fitting set, are further provided in Table 6.2. Over these systems included in the validation

set, each of SAPT0–D3M(0) and SAPT0–D3M(BJ) exhibits a mean signed error (MSE)

whose magnitude is smaller than or equal to SAPT0, with MSE = -0.15, -0.22, and -0.22

kcal mol−1, respectively. Furthermore, mean unsigned errors (MUE) for both SAPT0–

D3M(0) (MUE = 0.51 kcal mol−1) and SAPT0–D3M(BJ) (MUE = 0.52 kcal mol−1) are

only slightly worse than SAPT0 (MUE = 0.40). The middle 99% of SE distributions are

quite similar between SAPT0–D3M(0) and SAPT0–D3M(BJ); SAPT0–D3M(BJ) is, how-

ever, slightly more balanced around the mean signed error than SAPT0–D3M(0), where

relatively more systems are overbound than for SAPT0–D3M(BJ). For systems in our vali-

dation set, therefore, the performance of SAPT0–D3M(0) and SAPT0–D3M(BJ) are effec-

tively equivalent, and nearly as accurate as SAPT0.

Analysis of SAPT–D Over All Systems Considered

In addition to the signed errors visualized in Fig. 6.2 for the validation set, we provide in

Fig. 6.3 and Table 6.2 an analogous analysis of signed errors for interaction energies of all

complexes considered here, combining the fitting and validation sets. Summary statistics

for these distributions are further provided in Table 6.2. When considering all systems, sig-

nificant outliers exist for signed errors of interaction energies computed by SAPT0. Indeed,

the maximal signed error for SAPT0 IEs is 20.06 kcal mol−1, for the closest intermolec-

ular separation of the H2S· · ·Benzene complex from the NBC10x data set.210 This error
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(Q3) quartiles for each distribution of SE values.
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in particular is troubling, especially for potential pharmacological applications of SAPT0,

because there may exist close SH–π contacts between cysteine and aromatic sidechains in

biologically relevant systems. Indeed, in their recent work cataloging nearly 11,000 high-

quality X-ray crystal structures taken from the Protein Data Bank, Qi and Kulik211 found

several examples of closer-than-expected contact distances between cysteine or methionine

and an aromatic sidechain.

W
al

l T
im

e 
(h

r)

80

60

40

20

0

D
is

k 
U

sa
ge

 (T
B

)

3.0

2.0

1.0

0.0

Total Number of Atoms
100 200 300 400

(a)

(b) (c)

Exact SAPT0
SAPT0–D

100 200 300 400

100 200 300 400

M
em

or
y 

U
sa

ge
 (T

B
) 3.0

2.0

1.0

0.0

Figure 6.4: Metrics describing the computational expense of SAPT0–D (blue) as compared
to exact SAPT0 (red) for (a) the total wall time for each computation, (b) the total disk
space utilized by each computation, and (c) the total memory utilized by each computation
for scaling tests using progressively larger subsystems of the 3ACX co-crystal structure.196

SAPT0 computations on more than 311 atoms failed; however, computations successfully
completed for SAPT0–D on 3ACX subsystems with up to 445 atoms. Insets: Structures
for selected 3ACX subsystems with 83, 177, 311, and 445 atoms.
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6.4.2 Computational Scaling of SAPT0–D

Visualized in Fig. 6.4 are metrics to assess the relative computational expense of SAPT0–

D as compared to exact SAPT0, including (a) the total wall time, (b) the total disk space

utilized, and (c) the total memory utilized by computations on progressively larger sub-

systems of mutant 3ACX. Even for systems with as few as 83 atoms, a nontrivial 1.7×

speedup is observed for SAPT0–D versus exact SAPT0; observed speedups increase with

system size, up to 2.5× at 311 atoms, the largest system we were able to run on the test

hardware with the conventional approach (see Fig. 6.4.a). The other major improvement

for SAPT0–D over SAPT0 is in the total memory utilized by the computations (Fig. 6.4.b),

where SAPT–D enjoys between a 1.5×–2.9× reduction in the total memory consumed, due

to the fact that the storage of intermediate tensors used to compute bothE(20)
disp andE(20)

exch−disp

is required for SAPT0, while no such storage is required by SAPT0–D. Furthermore, while

both SAPT–D and SAPT0 are capable of leveraging both traditional, out-of-core and in-

core algorithms in PSI4, the reduction in computational expense afforded by SAPT–D en-

ables application to large enough systems (beginning at 331 atoms for 3ACX) where even

our test hardware — equipped with an astonishing 3 TB of memory — is forced to switch

to the out-of-core (disk-based) algorithm as the maximum amount of physical RAM on the

node is reached.

In addition to information regarding the computational efficiency of the SAPT0–D ap-

proaches relative to SAPT0, we may also examine their interaction energies and compo-

nents for progressively larger subsystems of 3ACX. Visualized in Fig. 6.5.a are total SAPT0

and SAPT0–D interaction energies and components for progressively larger subsystems of

3ACX (see, e.g., inset structures in Fig. 6.4.a). As expected, both the total IE and SAPT0(–

D) components asymptotically converge as the number of 3ACX residues increases; in-

terestingly, however, the rate of decay is not uniform for all components, as can be seen

in Fig. 6.5.b, visualizing differences in interaction energy computed between successively

larger 3ACX subsystems. Electrostatics and induction, for example, exhibit differences
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Figure 6.5: (a) Total interaction energies and components (kcal mol−1) for 3ACX subsys-
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basis set. (b) Differences between interaction energies of subsequent 3ACX subsystems
(kcal mol−1), illustrating the convergence of SAPT0 and SAPT0–D components and total
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in IE between successive computations no larger in absolute magnitude than 1.2 and 0.4

kcal mol−1, respectively, while exchange and each flavor of dispersion [exact, –D3M(0),

–D3M(BJ)] exhibit successive absolute differences as large as 4.2, 4.3, 5.4, and 5.3 kcal

mol−1, respectively. Convergence for both components and total IE appears to be reached

for this system with the inclusion of X residues (254 atoms), indicating that in order to

properly describe these interactions, a sufficiently large number of atoms must be included

which may make application of exact SAPT0 intractable.

tBu
PhCOH

PhOH

Phenyl
OH

NH2

Core

Figure 6.6: Fragmentation scheme for salbutamol monomer in F-SAPT analysis of interac-
tion energies of β1AR–salbutamol complexes examined here.

6.4.3 Differential Binding of Salbutamol to Active vs. Inactive β1AR

The differential binding strength of salbutamol to the active vs inactive forms of β1AR

was determined by applying the F-SAPT–D approaches presented here to compute the in-

teraction energy between the ligand and model binding pocket of β1AR, at the F-SAPT–

D3M(BJ)/jun-cc-pVDZ and F-SAPT–D3M(0)/jun-cc-pVDZ levels of theory. Each com-

putation was performed on a server equipped with 3.0 TB of RAM and 4.0 TB of local

scratch space, parallelized over a 16-core Intel Xeon Gold 2.3 GHz processor. To our

knowledge, the computations performed here are the largest symmetry-adapted perturba-
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tion theory computations performed that do not rely on software written specifically for

hybrid CPU/graphical processing unit (GPU) architectures. F-SAPT post-processing and

fragmentation analysis was then performed, allowing for the differences in binding strength

to be assessed in terms of individual functional group contacts between ligand and pro-

tein side chain/backbone moieties. To do this, fragments were defined for each of the

β1AR binding pocket and salbutamol ligand. For the truncated structure of β1AR, amino

acid sidechains and peptide bonds between residues were grouped into separate fragments,

while for salbutamol, functional groups were chosen to maximize the chemical information

which could be extracted from the F-SAPT analysis (see Fig. 6.6). For further details on

the fragmentation procedure and fragmentation scheme for β1AR binding pocket, refer to

the Supplementary Information.

Table 6.3: ∆∆Eint values (kcal mol−1) computed between active and inactive forms of
the β1AR–salbutamol complex by F-SAPT0–D3M(BJ) and F-SAPT0–D3M(0) in the jun-
cc-pVDZ basis set, decomposed into functional group contacts between the full binding
pocket of β1AR and fragments of salbutamol. Fragment labels are consistent with those
shown in Fig. 6.6, with the row labeled “All” corresponding to the total interaction energy
of the β1AR–salbutamol complex.

Elst Exch Ind D3M(BJ) D3M(0) F-SAPT0-D3M(BJ) F-SAPT0-D3M(0)
PhOH -4.04 4.22 -1.27 -0.75 -0.87 -1.84 -1.96
PhCOH -1.59 2.16 0.20 -1.76 -1.82 -0.98 -1.05
Phenyl -7.31 3.58 0.17 -3.16 -3.30 -6.72 -6.86
OH -3.93 3.35 -0.99 0.32 0.77 -1.25 -0.80
Core 0.54 -0.29 0.38 -0.74 -0.76 -0.11 -0.14
NH2 0.27 0.93 -2.29 -0.76 -0.81 -1.85 -1.90
tBu 1.04 1.65 -1.51 -2.25 -2.34 -1.07 -1.17
All -15.01 15.59 -5.31 -9.09 -9.14 -13.83 -13.87

Presented in Table 6.3 are differences between the interaction energy of the binding

pocket of β1AR in its active and inactive forms, denoted ∆∆Eint, with the functional

groups of partial agonist salbutamol (see Fig. 6.6). Contrary to the experimentally mea-

sured ∆∆Gbind of -2.6 kcal mol−1 stabilization of the β1AR—salbutamol complex in the

active versus inactive forms, we have computed the difference in interaction energy be-

tween the two states to be ∆∆Eint = -13.8 and -13.9 kcal mol−1 with F-SAPT0–D3M(BJ)
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and F-SAPT0–D3M(0), respectively. This deviation from experiment is expected, as our

computed ∆∆Eint represents a 0K energy difference and neglects zero-point energies,

finite-temperature contributions to enthalpy, and entropic terms, in addition to neglecting

differential solvation effects which would likely dampen the difference in interaction. De-

spite the difference in magnitude, we nevertheless expect that the ∆∆Eint computed here

is likely to yield meaningful, semi-quantitative insight into how the change in geometry of

the binding pocket affects the strength of the interactions between the protein residues and

the ligand.

Table 6.4: Order-1 and order-2 F-SAPT–D analysis quantifying the contributions of con-
tacts predicted by Warne et al. to be important for explaining difference in binding affin-
ity for salbutamol to active vs. inactive states of β1AR (∆∆Eint, computed by F-SAPT–
D3M(BJ) and F-SAPT0–D3M(0) in the jun-cc-pVDZ basis set. Fragment labels for salbu-
tamol are consistent with those shown in Fig. 6.6. (top) Contributions of residue–functional
group pairs hypothesized by Warne et al. to make polar or hydrogen-bonding contacts, as
identified in Figure 3 of Ref. 197; (bottom) Contributions of total contact strength between
all amino acid sidechains identified in Figure 3 of Ref. 197 and the full salbutamol ligand
(labeled “All”).

β1AR Salbutamol Elst Exch Ind D3M(BJ) D3M(0) F-SAPT0-D3M(BJ) F-SAPT0-D3M(0)
Predicted H-Bonds & Polar Contacts from Fig. 3 of Ref. 197

D121 NH2 -2.92 1.59 -0.63 -0.67 -0.72 -2.62 -2.67
OH -6.43 5.51 -1.37 0.54 1.10 -1.75 -1.19

S211 PhOH 5.75 -0.85 0.53 0.15 0.27 5.57 5.70
PhCOH -2.40 2.07 -0.35 0.01 -0.13 -0.68 -0.81

S215 PhOH -8.24 5.23 -1.71 -0.73 -1.00 -5.46 -5.72

N329 NH2 -0.09 -0.65 -0.11 0.01 0.00 -0.84 -0.86
OH 1.71 -2.53 0.61 0.11 0.05 -0.10 -0.15

Contacts with all residues listed in Fig. 3 of Ref. 197
W117 All -0.36 0.66 -0.09 -0.29 -0.30 -0.08 -0.09
D121 All -8.47 7.97 -1.72 -1.08 -0.66 -3.29 -2.87
V122 All 0.12 0.33 -0.13 -0.40 -0.39 -0.08 -0.08
V125 All -0.41 2.26 -0.19 -2.22 -2.36 -0.56 -0.70
F201 All -4.07 1.84 -0.01 -1.24 -1.26 -3.47 -3.50
Y207 All -0.68 0.24 0.06 -0.09 -0.13 -0.47 -0.51
S211 All -1.85 1.20 0.45 0.32 0.32 0.12 0.11
S215 All -10.46 5.50 -2.05 -1.46 -1.78 -8.48 -8.79
F306 All 0.47 1.08 -0.13 -0.71 -0.75 0.71 0.67
F307 All -0.04 -0.48 0.03 -0.10 -0.11 -0.60 -0.61
N310 All -0.32 -2.00 0.71 -0.27 -0.04 -1.87 -1.64
N329 All 2.11 -2.94 0.45 0.17 0.09 -0.22 -0.30
Y333 All -1.31 -0.76 -0.12 0.41 0.50 -1.77 -1.68

Turning our attention to the role of the particular functional group contacts between
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residues in the binding pocket of β1AR and salbutamol which were previously hypothe-

sized by Warne et al. as being important contributors to the ∆∆Gbind, F-SAPT–D analysis

of contacts identified in Fig. 3 of Ref. 197 are provided in Table 6.4. Despite the signif-

icant -1.2Å movement by residue D121 of β1AR upon activation, the interaction strength

between D121 with salbutamol NH2 and OH do not change significantly according to F-

SAPT–D. This is likely due to the fact that even though the aspartate sidechain moves

markedly closer to the ligand, the D121–OH contact distance only contracts by 0.3 Å ,

while the D121–NH2 contact distance actually lengthens by 0.5 Å. Even smaller changes

in direct contact distance are present for the N329 sidechain, resulting therefore in smaller

contributions to the total ∆∆Eint than for D121. Among all polar and hydrogen bond-

ing contacts predicted by Warne et al. to be important contributors to observed ∆∆Gbind,

only S211–PhOH and S215–PhOH are significant contributors to ∆∆Eint; interestingly,

however, these contacts largely cancel. All told, the predicted H-bonding and polar con-

tacts contribute only 40% (44%) of the total ∆∆Eint as computed by F-SAPT0–D3M(BJ)

(F-SAPT0–D3M(0)). Unfortunately, the situation is not improved when expanding the

interactions considered to include residue interactions with the full salbutamol ligand (as

opposed to only suspected H-bonds and polar contacts) and also including other nearby

residues noted in Fig. 3 of Ref. 197, as the total contribution of these contacts is 144%

(145%) of the overall F-SAPT0–D ∆∆Eint. If the total difference in interaction strength

between active and inactive states of the β1AR–salbutamol complex are so incompletely

described by these residue sidechains, where exactly does the rest of the energy difference

come from?

Provided in Table 6.5 are the relative order-1 F-SAPT contributions for the ten frag-

ments of β1AR which contribute most significantly to the total ∆∆Eint for the β1AR–

salbutamol complex, as computed by F-SAPT0–D3M(BJ) and F-SAPT0–D3M(0) with the

jun-cc-pVDZ basis set. Quite surprisingly, out of the ten most important fragments of

β1AR contributing to the total ∆∆Eint, only half were among those identified by Warne
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Table 6.5: Relative contributions of order-1 [i.e., β1AR(fragment)–salbutamol] contacts
to the total ∆∆Eint for the full β1AR–salbutamol complex, computed with F-SAPT0–
D3M(BJ) and F-SAPT0–D3M(0) in the jun-cc-pVDZ basis set. Also provided for refer-
ence are whether or not the particular residue sidechain or peptide bond was hypothesized
to be important by Warne et al. in Ref. 197. Fragment labels for β1AR are consistent with
the fragmentation procedure described in the Supplementary Information.

β1AR Fragment % SAPT0-D3M(BJ) % SAPT0-D3M(0) Warne et al.?
200p201 -71.00 -71.02 No
S215 61.30 63.37 Yes
F201 25.11 25.20 Yes
D121 23.77 20.67 Yes
211p212 15.03 15.27 No
201p202 -13.90 -13.86 No
N310 13.51 11.84 Yes
Y333 12.78 12.10 Yes
208p209 10.42 10.39 No
T126 9.98 10.05 No

et al. either in Fig. 3 of Ref. 197 or the main text of that work. Furthermore, four out

of the five fragments neglected by the analysis of Warne et al. are peptide bonds, which

thanks to their non-trivial dipole moments (on average, approximately 2.5 D) can interact

strongly with a binding ligand. We find it important to stress that, instead of an indictment

of the methodology or chemical intuition of Warne et al., this finding is rather an indication

that a local contact model — whereby the total protein–ligand interactions are assumed to

be well captured by the sum of nearest-neighbor contacts between sidechains in the bind-

ing pocket and the ligand itself — is an insufficient picture to justify the computed ∆∆Eint

(and therefore the experimentally determined ∆∆Gbind!). Indeed, similar conclusions have

been drawn in the case of the differential activity of chloro- versus methyl-aryl substituted

factor Xa inhibitor drugs.69

6.5 Conclusions

Thanks to its intuitive decomposition of the interaction energy between two chemical

species into well-defined, chemically meaningful contributions from electrostatics, ex-

change (steric) repulsion, induction (polarization), and London dispersion, symmetry-adapted
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perturbation theory (SAPT) has become an invaluable computational tool for understand-

ing the physical basis for non-covalent interactions. Furthermore, its atomic and functional

group partitions (ASAPT and F-SAPT, respectively) have already been used to investi-

gate the difference in binding strength between functional isomers of factor Xa inhibitor

drugs69 and the stereoselectivity of reactions whose transition states are preferentially sta-

bilized by non-covalent interactions.67,68 Unfortunately, further application of SAPT and its

partitions to larger chemical systems has been limited by its computational expense, with

its lowest-order truncation, SAPT0, scaling as O(N5) with N proportional to system size.

Inspired by the recent developments of Parrish et al., we have presented here a reduced-

scaling approach combining the empirical dispersion correction of Grimme35 with SAPT,

denoted SAPT–D, whereby we have obtained optimal damping parameters for the –D3 dis-

persion interaction component of our method over a diverse training and validation set of

nearly 8,100 bimolecular complexes. Over the total set of bimolecular complexes, our two

SAPT0–D variants (leveraging different damping functions) achieve equivalent accuracy to

SAPT0 when compared against silver-standard77 reference interaction energies computed

at the DW-CCSD(T∗∗)-F12/aug-cc-pVDZ level of theory, while removing several egregious

outliers present for SAPT0.

We have also examined the computational expense of our formulation of SAPT–D by

comparing interaction energy computations performed using SAPT0–D and exact SAPT0

on increasingly large truncations of the publicly available 3ACX cocrystal structure196 with

a computer equipped with an 8-core Intel Xeon Gold processor at 2.4 GHz and 3.0 TB

of available RAM. While exact SAPT0 computations failed to complete within the queue

limit of 80 hours of wall time for all systems larger than 311 atoms, SAPT0–D completed

successfully for systems with up to 445 atoms in that time. We have also shown the conver-

gence of total interaction energies and SAPT0(–D) components towards some macroscopic

limit, indicating that the relative contribution by successive residues to the strength of the

ligand binding to the head group of the truncated 3ACX helix decays as distance to the
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binding site increases. This result implies that for systems with residues which are very

distant from the binding site, these residues may be able to be removed from the computa-

tion without significantly effecting the validity of conclusions drawn using our approach.

Finally, we have expanded our SAPT–D formulation to be consistent with the atomic

and functional-group partitions of SAPT, and applied F-SAPT–D to investigate the differ-

ence in binding strength between 460-atom subsystems of active and inactive forms of the

G-protein coupled receptor β1AR complexed with the partial agonist salbutamol, whose

crystal structures were recently published by Warne et al.197 In that work, the difference in

binding affinity between the receptor coupled (the active state) or not coupled (the inactive

state) to G-protein was rationalized by appealing to the significant decrease in binding-site

volume upon G-protein coupling, which consequently decreased contact distances between

salbutamol and several amino acid residues in the binding pocket which were hypothesized

to play a large role in the binding affinity difference. In addition to determining that the

∆∆Eint computed by our F-SAPT–D approach provides a reasonable approximation to the

∆∆Gbind observed experimentally by Warne et al., we have presented here a functional-

group partition analysis of the computed ∆∆Eint which indicates that, contrary to the jus-

tification of Warne et al. for the difference in activity based on only local sidechain–ligand

contacts, peptide bonds and even more distant cooperative effects play a major role in de-

termining the difference in binding affinity upon G-protein coupling. This finding indicates

that a local contact model is likely insufficient to justify small differences in binding affinity

based on conformational differences in protein environment.
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PART IV

APPLICATION TO INTERESTING CHEMICAL SYSTEMS
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CHAPTER 7

THE INFLUENCE OF SOLVATION ON NON-COVALENT INTERACTIONS IN

BIMOLECULAR COMPLEXES: AN INTRAMOLECULAR

SYMMETRY-ADAPTED PERTURBATION STUDY

7.1 Abstract

High-level quantum chemical computations have provided significant insight into the fun-

damental physical nature of non-covalent interactions (NCI). To date, these studies have fo-

cused primarily on gas-phase computations of small van der Waals dimers; however, these

interactions are frequently taking place in complex chemical environments such as proteins,

solutions, or solids. In order to better understand how chemical environment affects non-

covalent interactions, we have undertaken a quantum chemical study of π-π interactions

in aqueous solution, as exemplified by T-shaped benzene dimers surrounded by 28 or 50

explicit water molecules. We report interaction energies using second-order Møller-Plesset

perturbation theory, and we also apply the intramolecular and functional-group partitioning

extensions of symmetry-adapted perturbation theory (ISAPT and F-SAPT, respectively) to

analyze how the solvent molecules tune the π-π interactions of the solute. For complexes

containing neutral monomers, even 50 explicit waters change total SAPT interaction ener-

gies (IEs) between the two solute molecules by only tenths of a kcal mol−1, while signifi-

cant screening of up to 3 kcal mol−1 of the electrostatic component is seen for the cationic

pyridinium–benzene dimer. These differences between solvation levels are attributed to

large non-additive interactions within solvated ion-containing complexes of∼40% the gas-

phase IE on average, an order of magnitude larger a fraction than for neutral complexes

where the extent of solvation is significantly less influential.
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7.2 Introduction

Non-covalent interactions (NCI) continue to recieved significant attention in the computa-

tional chemistry literature, due in large part to their fundamental importance to governing

important chemical and physical phenomena, such as the relative stability of crystal poly-

morphs and host-guest binding in drug design. Reliable prediction of these phenomena

relies therefore on an understanding of NCI within the system of interest. To do this, the

typical approach has been to construct gas-phase model systems comprised of two inter-

acting molecules which mimic the interactions present in the full system of interest, e.g.,

investigating the π− π interaction in the stacked benzene dimer as a model for the interac-

tion of aromatic side chains in a protein. Quantum chemical methods can then be applied

to compute the interaction energy (IE) present in the complex, by subtracting the energy of

the isolated monomers from the energy of the dimer:

∆Eint
AB = EAB − EA − EB,

whereby A and B denote the monomers and AB denotes the dimer. This “supermolec-

ular” approach to quantifying NCI has been employed to study a variety of interaction

motifs, including π − π, cation−π, and halogen bonding, among others. Furthermore, this

approach has also been leveraged to establish very high-quality IE benchmarks using the

“gold-standard” method in quantum chemistry, coupled cluster through single, double, and

perturbative triple substitutions [CCSD(T)]. With a significant computational expense of

O(o3v4), where o is the total number of occupied and v is the total number of virtual (un-

occupied) orbitals, however, CCSD(T) can only be applied to small systems, with no more

than approximately 30 non-Hydrogen atoms in the total dimer complex. The accuracy of a

host of less expensive approaches [including density functional theory (DFT) and second-

order Møller–Plesset perturbation theory (MP2)] has furthermore been assessed against

CCSD(T) over test sets of bimolecular complexes for which these high-level reference IEs
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exist, such that now NCI in arbitrary chemical systems can now be reliably studied.

Despite its utility for quantifying the strength of NCI, the supermolecular approach

offers only a single scalar quantity by which to do so, namely, the IE. Of course, the under-

lying reasons for the different behavior of, e.g., hydrogen bonds versus π − π stacking is

not due only to their relative strengths. For further details into the nature of NCI, therefore,

it is desirable to quantify the contributions to the total IE arising from different physcial

forces, such as electrostatics or steric repulsion. Fortunately, the importance of these types

of interactions and their relative contribution to an IE may be quantified either by the post-

hoc partitioning of the total IE (an energy decomposition analysis, EDA) or by computing

them directly via symmetry-adapted perturbation theory (SAPT). SAPT has been particu-

larly successful at unambiguously providing a detailed description of the physics governing

NCI by directly computing each of the electrostatic, exchange (steric) repulsion, induction

(polarization), and London dispersion components contributing to the IE of a bimolecular

complex, and has been repeatedly applied to analyze and classify interaction motifs in a

wide range of chemical systems. Thanks to the formulation of the lowest-order truncation

of SAPT (SAPT0) to leverage density-fitted two-electron integrals in the atomic-orbital

basis (DF-SAPT0), SAPT has recently become routinely applicable to systems as large as

∼300 atoms. Furthermore, IEs computed with SAPT0 in the jun-cc-pVDZ basis set —

where the diffuse space is truncated by neglecting diffuse functions on H atoms and diffuse

d functions on second-row atoms — have been shown to exhibit mean absolute errors of

0.9 kcal mol−1 relative to CCSD(T) benchmarks, which can be improved for no additional

cost to 0.5 kcal mol−1 by leveraging exchange scaling (sSAPT0).58

The distinct advantage offered by SAPT over supermolecular approaches is that it

provides a chemically-intuitive decomposition of interaction energies into their physical

components; unfortunately, however, both supermolecular approaches and SAPT share the

shortcoming that these methods are applicable only to describing the interactions between

exactly two chemical species at a time. Of course, a “many-body” interaction energy has
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been previously defined in an analogous supermolecular manner to the two-body case, and

through the many-body expansion (MBE) has been used to successfully predict the lattice

energies of several organic crystals with very high accuracy.CrystaLatte Furthermore, a “three-

body” formulation of SAPT has been developed, but due to its computational expense is

intractable for systems much larger than the water trimer. To remedy this, Herbert and

coworkers developed the XSAPT approach based on the self-consistent XPol treatment of

many-body induction. What these many-body approaches do not provide, however, is the

ability to investigate how a particular non-covalent interaction is tuned by its chemical en-

vironment, i.e., how it differs in situ from what it would be in the gas-phase. This question

is most notably relevant in the context of rational pharmaceutical design, as the binding

strength of drug to protein target has recently been shown to be modulated by the com-

plete protein environment, not only local contacts.69,180 An ideal approach to addressing

this fact would be to simply perform quantum mechanics on the entire protein;212 this solu-

tion is, unfortunately, intractable for all practical purposes. It seems desirable, therefore, to

develop approaches which may access this information without resorting to a full-system

QM solution.

One might consider at least three mechanisms by which a chemical environment can

affect individual NCI: (1) direct electronic modification of an NCI due to the environment

polarizing the two monomers or chemical fragments involved in the interaction; (2) statis-

tical effects due to averaging over many accessible arrangements of the system’s atoms; (3)

indirect, “effective” modification of an interaction due to competition between the original

interaction and interactions with the chemical environment. The first and second mecha-

nisms are concerned with the affect of the chemical environment on modulating the strength

of interaction once complexation has occurred; the third mechanism, on the other hand, is

concerned with the favorability of complexation itself. This may be illustrated by consid-
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ering the formation of a complex AB in solution, from solvated monomers A, B:

A(aq) + B(aq) → AB(aq)

The free energy of binding for this process, ∆Gbind
solv (AB), can be written in terms of the

gas-phase binding free energy, ∆Gbind
gas (AB), and the solvation energies of each species, as

∆Gbind
solv (AB) = ∆Gbind

gas (AB) + ∆Gsolv(AB)− [∆Gsolv(A) + ∆Gsolv(A)]

In this work, we will not address the thermodynamic cycle encompassed by this third mech-

anism. Instead, we will primarily explore the first mechanism and, to a lesser extent, the

second, by investigating the manner in which chemical environment modulates π − π in-

teractions by examining T-shaped configurations of eight mono-functionalized aromatic

molecules (ArX; Ar = benzene, pyridine, X = H, NH2, NO2, OCH3, CH3) interacting with

benzene (Bz), solvated by statistically significant configurations of one or two hydration

shells (with 28 and 50 water molecules, respectively). For each solvent configuration, sam-

pled from molecular dynamics trajectories where the solute molecules were kept rigid, the

tuning of the PhX–Bz interaction will be assessed by computing this interaction directly

within the solvent environment by leveraging two recent extensions of SAPT, namely (i) its

functional-group partition (F-SAPT)66 and (ii) its intramolecular fomulation (ISAPT).213

By accumulating contributions to the SAPT0 interaction energy and components from

pairs of atoms on opposite monomers, F-SAPT provides a decomposition of the SAPT0

interaction energy (and its components) into contributions from the interaction of each

monomer with chemical fragments (i.e., functional groups) on the other monomer (an

order-1 partition), and furthermore into contributions from contacts between functional

groups on opposite monomers (an order-2 partition). ISAPT, on the other hand, provides

for the computation of the SAPT0 interaction energy between functional groups of the same

molecule, rather than the traditionally rigid two-body formulation of SAPT. ISAPT does
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this by first partitioning a single molecule X into interacting fragmentsA and B, separated

(but linked to one another) by a third fragment, C. The zeroth-order wavefunctions for A

and B are then prepared via a HF-in-HF embedding approach inspired by the prcedure of

Manby and coworkers, in which the orbitals of A and B are electronically deformed by

the presence of C before a standard SAPT0 computation is performed. The effect of the

linker C is therefore effectively captured, since the resulting ISAPT0 interaction energy and

components are computed between the pre-polarized electron densities of fragmentsA and

B. Each of these approaches can be made extensible to the computation of interactions em-

bedded in a chemical environment, thereby offering complementary perspectives against

which they may be mutually validated.

For all systems, we have obtained interaction energies using F-SAPT, ISAPT, and MP2,

allowing us to quantify both the extent of environment tuning of ArX–Bz interactions and

the pairwise additivity of the ArX–solvent, Bz–solvent, and ArX–Bz two-body interactions

for recovering the total interaction energy of the full, mutually interacting system. We have

found that for all but one solvated dimer (the hydrated pyridinium–benzene complex), the

many-body interaction is well approximated by the sum of these two-body interactions.

Where this pairwise additivity is exhibited, solvation by a single hydration shell of 28

explicit water molecules does not significantly moduleate the ArX–Bz interaction, with de-

viations from the gas phase of only ±0.5 kcal mol−1 on average for both total ISAPT0 IEs

and components. Furthermore, similarly small deviations are observed between different

solvent configurations of the same ArX–Bz dimer. For the hydrated pyridinium–benzene

complex, however, the ArX–Bz IE is reduced by up to∼2.5 kcal mol−1 on average relative

to the gas phase, due almost exclusively to screening of the electrostatic component. We

also observe large variations in the total ISAPT0 IE between different solvent configura-

tions of this system of up to ∼3 kcal mol−1. From these findings, we conclude that solvent

environment does not significantly tune ArX–Bz interactions and that a gas-phase treatment

provides a good first approximation to describing these interactions, so long as the system
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Phenol·Bz Pyridine·Bz Toluene·BzPyridinium·Bz

Figure 7.1: Bimolecular complexes from which the HYD8 test set is constructed. Struc-
tures prepared via functionalization of the T-shaped pyridine–benzene complex from the
S66 test set,76,104 before re-optimizing the structures at the B3LYP-D3M(BJ)/aug-cc-pVDZ
level of theory within enforced Cs symmetry. Box coloring is based on SAPT0/jun-cc-
pVDZ results computed in the gas phase, and indicates the interaction type: blue for
dispersion-dominated interactions and yellow-green for mixed electrostatics and dispersion
contributions.

does not experience marked non-additive many-body effects. In that event, however, we

have also presented a robust framework for estimating the extent to which chemical envi-

ronment tunes non-covalent interactions relative to the gas phase, given that complexation

has already occurred.

7.3 Computational Methods

7.3.1 Preparation of Geometries for Functionalized Complexes

Eight bimolecular complexes, each consisting of one benzene molecule and one benzene

derivative, were prepared via functionalization of the tilted T-shaped pyridine–benzene

complex from the S66 data set of Hobza and coworkers,76,104 using Maestro v11.207 Each
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structure was then optimized within enforced Cs symmetry using a development version

of the PSI4 electronic structure package,31 using the dispersion-corrected B3LYP density

functional and aug-cc-pVDZ basis set.22,147,148 Optimizations were performed with default

convergence thresholds, as recommended previously,128 and employed the recently modi-

fied39 parameters for the “-D3” dispersion correction of Grimme,35 together with Becke-

Johnsson damping.36,37 For clarity, we will denote this combination of density functional,

dispersion correction, and damping scheme here as “B3LYP-D3M(BJ)”. This test set of

functionalized benzene dimer complexes was constructed to provide both structural diver-

sity and differentiation with respect to (i) local substituent dipole (e.g., toluene vs. nitroben-

zene), (ii) ability to form hydrogen bonds with the water solvent environment (e.g., phenol

vs. benzene), (iii) molecular polarizability (e.g., anisole vs. benzene), and (iv) polarizing

effect (e.g., pyridinium vs. benzene). In this way, we hope that conclusions drawn can

be extended to the broader chemical space spanned by biologically relevant bimolecular

complexes.

7.3.2 Hydration of Functionalized Complexes

Hydration of the eight complexes prepared above was carried out in the NAMD software

package214 within a TIP3P215 water box measuring 27×27×27 Å under periodic bound-

ary conditions (PBC). Restrained electrostatic potential (RESP) charges based on AM1-

BCC216 were fit using ligand geometries from the optimized dimers generated above; Am-

ber topology and parameters based on the General Amber Force Field (GAFF) version 9

and the Amber94 force-field parameters were generated using the Antechamber program

from Amber Tools 9.217–219 An initial minimization was performed over 480 conjugate gra-

dient steps with all solute atoms fixed and all O–H bonds held constant using the SETTLE

algorithm, using (i) a vdW and electrostatic switching function from 8 to 10 Å, (ii) scaling

factor of 0.833 for 1-4 interactions, and (iii) pairwise electrostatic and vdW interactions

cutoff of 12.0 Å. Minimization was followed by 125 ps of NPT equilibration via Langevin
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dynamics at 1 atm and 298 K using the Velocity–Verlet integrator with 2 fs time steps.

Finally, NPT molecular dynamics trajectories were propagated for 10 ns under the same

conditions, with coordinates saved every 5 ps. Five such trajectories were generated for

each complex prepared above using different starting velocities.

For each complex, 20 snapshots were extracted from each of the five molecular dy-

namics trajectories. To eliminate any energetically spurious solvent configurations from

among the gathered snapshots, energy minimization of each solvated bimolecular complex

was performed according to an identical procedure as the initial minimization described

above. For each of the raw (unminimized) and relaxed (minimized) solvent configurations

surrounding all eight solute complexes, the maximum number of water molecules within

baseline distances of 3.0 Å from the nearest solute atom was determined to correspond

to target first solvation shell consisting of 28 water molecules. The cutoff distances were

calibrated for all snapshots with a search resolution of up to 0.01 Å and a maximum search

radius of r = 4.5 Å in order to maintain the same number of waters across all snapshots

and all complexes. Snapshots which could not attain this target number of water molecules

below the search radius were discarded.

To maximize the diversity in water geometry among remaining snapshots, the structures

of extracted water molecules were clustered based on both shape and atom-type similarities

using the Tanimoto Combo similarity score, evaluated using the ROCS program of Open-

Eye Software.220 This clustering was performed with Tanimoto Combo cutoff of 0.75,221

for all minimized solvent configurations surrounding each bimolecular complex as well

as for unminimzed solvent configurations surrounding the benzene dimer, aniline–benzene

complex, pyridine–benzene complex, and pyridinium–benzene complex. Finally, centroids

of the 10 most populated clusters for each dimer were isolated. These 120 structures, cor-

responding to the 10 most populated cluster centroids for snapshots of minimized solvent

configurations surrounding each of the eight bimolecular complexes, together with the 10

most populated cluster centroids for snapshots of the unminimzed solvent configurations
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Figure 7.2: Environment binning schemes employed in this work, illustrated for the HYD8-
1 (solvated aniline–benzene) complex. A–B interactions in “EnvC” scheme are computed
directly using ISAPT, while A–B interactions in “EnvA” and “EnvB” are computed via
F-SAPT post analysis,222 via accumulation of functional group interactions.

surrounding those complexes mentioned previously, comprise the HYD8 test set. Further-

more, to investigate the convergence of the effect of chemical environment towards the

“bulk” solvent, we also include the same 120 structures where we have extended the cut-

off to include water molecules within 7 Å of the solute to represent a second solvation

shell of 50 water molecules. These 240 structures are labeled according to the the format

HYD8-IxJ-wN, where I = 1–8 identifies the complex (see numbering in Fig. 7.1), x = m,

u indicates the solvent molecules were relaxed (m) or unrelaxed (u), J = 1–10 identifies

the particular snapshot, and N = 28, 50 indicates whether the dimer complexes are either

singly (w28) or doubly (w50) solvated. For example, the label HYD8-1m4-w50 decodes

to the relaxed, doubly-solvated nitrobenzene–benzene complex with solvent molecules in

configuration #4. Geometries for each of these complexes are provided as a zipped archive

in the Supplementary Information.

7.3.3 Quantifying Electronic Effect of Solvent on π-π Interactions and Energy Components

via F-/ISAPT

To quantify the effect of solvation on the noncovalent ArX–Bz interactions within HYD8

complexes, both functional-group partitioned symmetry-adapted perturbation theory (F-

SAPT)138 and intramolecular symmetry-adapted perturbation theory (ISAPT)223 were ap-

plied using the PSI4 electronic structure package;31 all F-/ISAPT computations employ the
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“zeroth-order” SAPT truncation (F-/ISAPT0), and utilize the truncated jun-cc-pVDZ basis

set,22,224 which has been recommended previously58 for pairing with SAPT0. Unlike in

the traditional formulation of SAPT, which describes the interactions between two distinct

monomers (commonly denoted “A” and “B”), ISAPT can describe these A–B interactions

in the presence of another chemical fragment, which we will denote monomer “C.” We can

therefore incorporate the effects of solvation by including all solvent molecules, i.e., the

environment, into the ISAPT monomer C. On the other hand, we can also incorporate the

solvent into a functional group within the F-SAPT procedure, within either monomer A or

B. We denote these three schemes for inclusion of solvent molecules within an F-/ISAPT

computation as “EnvX” (X = A, B, C). For clarity, we have illustrated these three schemes

in Fig. 7.2 for the solvated aniline–benzene complex (HYD8-1), and provide explicit de-

scription below:

(a) “EnvA”: All solvent molecules placed within effective F-SAPT monomer A (aniline);

particular aniline–benzene interaction energy and SAPT components computed via

F-SAPT, with both aniline and solvent molecules treated as “functional groups”,222

(b) “EnvB”: All solvent molecules placed within effective F-SAPT monomer B (ben-

zene); particular aniline–benzene interaction energy and SAPT components com-

puted via F-SAPT, with both benzene and solvent molecules treated as “functional

groups”,222 and

(c) “EnvC”: All solvent molecules placed with ISAPT monomer C; particular aniline–

benzene interactions and components computed directly with ISAPT.

Throughout this work, we will adopt the convention that for all HYD8 complexes, the

substituted aromatic monomer (ArX) will be denoted monomer A, while the unsubstituted

benzene (Bz) will be denoted as monomer B. In the case of HYD8-3 (the solvated benzene

dimer), the benzene with C–H bond pointing towards the π cloud of its partner will be

monomer A, for consistency with the other complexes. In addition to describing substituted
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benzene–benzene interactions in solution, we performed a conventional two-body F-SAPT

analysis of the interactions between monomers in the gas phase. In this way, we may

investigate directly the effect of solvation on the interactions of interest.

7.3.4 MP2 Results for Solute-Solute, Solute-Solvent, and Three-Body Interactions

To understand the basic physics of the interactions in the solvated dimers, we have sup-

plemented our novel approach for quantifying the “tuning” of interactions embedded in a

chemical environment with a traditional many-body approach, wherein we computed inter-

action energies within the solvated clusters according to a “three body” decomposition. In

this picture, “monomerA” is defined as the substituted benzene donating a hydrogen to the

C–H/π interactions in Figure 7.1, “monomer B” is the unsubstituted benzene at the base of

the T-shaped dimer, and group “C” is the collection of the solvating water molecules. The

overall interaction energy between monomers/groups A, B, and C may be defined as

∆EIE
ABC = EABC(ABC)− EA(ABC)− EB(ABC)− EC(ABC), (7.1)

where the subscripts denote the identity of the species and the parenthetical (ABC) denotes

that the each of the total energies in the expression have been computed in the trimer basis

set according to the counterpoise correction scheme of Boys and Bernardi54 to mitigate

basis set superposition error. The counterpoise correction entails computing all required

energies using the union of all basis functions in the entire cluster (all three monomers/-

groups), even when some of the atoms are not required in the computation. Note again

that we have grouped all the water solvent molecules together as a single group “C” in

this study, meaning that ∆EIE
ABC computed as above will be smaller in magnitude than if

we computed the interaction relative to the limit in which all molecules (including H2O

molecules) are infinitely separated; this leads to a simpler analysis because our primary

concern here is the interaction between the two solute molecules, ∆E
(2)
AB, and how it is
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affected by the environment.

The three-body interaction energy, ∆EIE
ABC , can also be computed according to the

many-body expansion as

∆EIE
ABC(ABC) =

∑
I<J

∆E
(2)
IJ (ABC) + ∆E

(3)
ABC(ABC), (7.2)

where each of the ∆E
(2)
IJ (ABC) are the standard two-body interaction energies between

monomers I and J , and ∆E
(3)
ABC(ABC) is the non-additive three-body contribution to the

interaction energy. This non-additive contribution can be written as the difference between

the overall interaction energy and the sum of the interactions between all pairs:

∆E
(3)
ABC = ∆EIE

ABC −∆E
(2)
AB(ABC)−∆E

(2)
BC (ABC)−∆E

(2)
AC(ABC). (7.3)

By computing this quantity, we will investigate the extent to which mutual three-body

interaction (which is not directly included in the F-/ISAPT partitioning schemes discussed

above) is present for each system. If this quantity is nontrivial, then we hypothesize that the

choice of environment binning scheme (visualized in Fig. 7.2) will matter, i.e., the choice

of in which “monomer” to include the solvent molecules will not be equivalent.

To construct this non-additive three-body energy correction via Eqn. 7.3 above for each

of the 240 complexes in the HYD8 test set, we must compute seven individual computations

(dimer energies for AB, BC, AC; monomer energies for A, B, C; trimer energy ABC all in

the trimer basis set) for a total of 1,680 individual single-point computations. Considering

that these complexes are comprised of up to 64 heavy atoms (for 178 atoms total) and each

computation must be performed in the trimer basis set, choosing a level of theory (combina-

tion of method and basis set) which can be afforded is of critical concern. Since interaction

energies are surprisingly sensitive to the choice of theoretical method,55,58,64,74,210,225,226 we

choose second-order Møller-Plesset perturbation theory (MP2) computations using the jun-

cc-pVDZ basis set, which is Dunning’s correlation-consistent polarized double-ζ basis set,
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augmented with diffuse s and p functions for heavy (non-hydrogen) atoms.224,227 This level

of theory represents a compromise between computational accuracy and speed, and it is

also expected to yield the most similar interaction energies to the SAPT/jun-cc-pVDZ re-

sults discussed above that are the primary focus of this work. The largest of the interaction

energy computations comprised 178 atoms (HYD8-2), with 1,786 orbital basis functions

and 8,674 auxiliary basis functions.

7.4 Results and Discussion

7.4.1 Gas-Phase Interactions

Before considering the tuning of ArX–Bz interactions by solvent environment, it is impor-

tant to first understand the interaction motif of the HYD8 dimers in the gas phase; these are

provided in Table ??. In general, these eight ArX–Bz complexes are electrostatically attrac-

tive, but with an even larger dispersion term (which is sometimes up to twice as large), and

a small stabilizing induction interaction. This is expected for T-shaped π − π interactions,

as in an idealized T-shaped benzene dimer, SAPT2/jun-cc-pDVZ computes electrostatics,

exchange, induction, and dispersion components to be -2.2, 4.9, -0.7, and -4.4 kcal mol−1,

respectively, yielding a total IE of -2.4 kcal mol−1.228 Of course, differences in geometry

and substituents adjust these values somewhat, but they remain similar for each neutral

HYD8 complex. For the cationic HYD8-6 (pyridinium–benzene), however, both the total

SAPT0 IE and components are enhanced relative its neutral counterparts, with the electro-

static component overshadowing dispersion as the dominant contributor to this increase in

total attraction.

Among the HYD8 complexes involving a functionalized benzene (PhX) — i.e., dis-

counting HYD8-6 & HYD8-7 — the magnitude of the electrostatic attraction is smallest

for the aniline–benzene complex, increasing in strength as the substituent becomes pro-

gressively more electron withdrawing. This is consistent with the fact that, since the para-

Hydrogen of monomerA is the atom closest to the π face of monomer B, it stands to reason
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that the attraction felt between this increasingly electron deficient site and the electron-rich

π face would also increase. This is most pronounced for the nitrobenzene–benzene com-

plex (HYD8-4), where the electrostatic interaction is a full kcal mol−1 more attractive than

for the next dimer in the series, the benzene dimer (HYD8-3). Interestingly, the complex

for which the dispersion energy is most attractive is also the nitrobenzene–benzene com-

plex, despite the fact that nitrobenzene is the least polarizable of the benzene derivatives

represented in HYD8; this is likely due instead to the simple fact that nitrobenzene also

has the largest number of electrons of any of the PhX molecules included in HYD8, since

the dispersion energy is known to scale with the number of correlated electrons. Addi-

tionally, nitrobenzene–benzene also has the largest exchange-repulsion, most likely due

to the polarization of electron density from the π cloud of the benzene ring towards the

nitrobenzene para-Hydrogen, which is supported by the slightly increased magnitude in

the induction energy for this complex relative to other PhX–Bz complexes. Finally, both

the pyridine–benzene and pyridinium–benzene complexes exhibit larger magnitude total

interaction energies and components relative to complexes involving PhX.

7.4.2 Quantifying ArX–Bz Interactions in Solution via F-/ISAPT

Among the mechanisms of interest by which chemical environment may modulate NCI are

(i) the electronic deformation of interacting species by the presence of the interaction, and

(ii) statistical averaging due to multiple configurations of the environment. To ensure that

conclusions drawn using the F-/ISAPT approach to quantify these effects are not artifactual

due to the hydration procedure for our test systems, we must first examine the effect of

relaxing the geometries of explicit solvent molecules on the ArX–Bz interactions.

Solvent Molecule Relaxation

In addition to the relaxed snapshots of solvent configurations considered for all dimers in

the HYD8 test set, we have also computed the F-/ISAPT0 interaction energies for HYD8-1,
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3, 6, and 7 (aniline–benzene, benzene dimer, pyridine–benzene, and pyridinium–benzene)

with unrelaxed solvent molecules. Presented in Table ?? are differences between average

F-/ISAPT0 IEs and components for each binning scheme for these complexes. Solvent

molecule relaxation does not significantly affect the computed ArX–Bz interactions or its

components, as these differences are nearly always below 0.1 kcal mol−1 with only a few

exceptions; namely, differences of up to about 0.3 kcal mol−1 are observed for the EnvA

grouping of the hydrated pyridinium–benzene complex. This finding is not surprising,

as in the EnvA grouping the water molecules are expressly included with the pyridinium

cation in a conventional two-body F-SAPT computation, whereby their electron densities

are fully interacting in the preparation of the zeroth-order wavefunction for monomer A.

Therefore, even small changes in the positions of the water molecules or their internal ge-

ometry can result in large effects in the F-SAPT interaction with benzene. When expanding

our environment to include 50 water molecules, however, the effect of relaxing the posi-

tions of solvent molecules is damped, where differences no larger than 0.1 kcal mol−1 are

observed, even for the hydrated pyridinium–benzene complex. As a result of this finding,

we are confident that the choice of relaxing or not relaxing solvent molecules will not affect

the validity of our conclusions about the tuning of solute interactions.

Environment Binning Scheme

Visualized in Fig. 7.3 are total F-/ISAPT0 IEs and components for each environment group-

ing (EnvX; X = A, B, C) of the hydrated benzene dimer (HYD8-3; top panel) and the

hydrated pyridinium–benzene complex (HYD8-7; bottom panel). Most strikingly, the hy-

drated benzene dimer (Fig. 7.3.a) exhibits very little variation between the average IE or

components depending on environment binning scheme; furthermore, F-/ISAPT IEs and

components for each binning scheme are quite similar to those computed for the gas-phase

benzene dimer with conventional SAPT0. For the hydrated pyridinium–benzene complex

(Fig. 7.3.b), on the other hand, notable variations between binning schemes exist for both
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Figure 7.3: Total interaction energies and SAPT components for (a) HYD8-3m-w50 (ben-
zene dimer) and (b) HYD8-7m-w50 (pyridinium–benzene) complexes solvated by 50 ex-
plicit solvent molecules, computed at the F-/ISAPT0/jun-cc-pVDZ level of theory and aver-
aged over all ten relaxed solvent configurations. “EnvX” labels indicate that explicit solvent
molecules are contained within monomer “X” during the SAPT computation (see text). Er-
ror bars encompassing the full range of values across all snapshots are also provided for
SAPT terms and total IEs. Furthermore, we have provided a set of bars corresponding to
the conventional two-body F-SAPT computation in the gas phase, i.e., in the absence of ex-
plicit solvent molecules. See Section II C for additional details regarding our nomenclature
and details of the F-/ISAPT computations.
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total IEs and components, and each solvated interaction exhibits some degree of screening

relative to the interaction in the gas phase. For this complex, the largest difference from the

gas phase is found for the electrostatic component in EnvB and EnvC of ∼1 and ∼0.9 kcal

mol−1, respectively, and for the induction component of EnvA of ∼0.9 kcal mol−1. The

other six solvated dimers examined here behave like the benzene diemr, in that the average

interaction energies and components hardly differ between the various environment bin-

ning schemes, with deviations between EnvA/B/C typically of just a few tenths of one kcal

mol−1. Furthermore, deviations from the gas phase interactions are similarly small, leading

us to conclude that other than for the cationic pyridinium–benzene system, each binning

scheme is essentially equivalent, and furthermore that the gas phase SAPT0 computation

provides an adequate description even of the solvated interactions.

Ranges due to Solvent Configuration

Consulting Figures S-1–S12 and Tables S-4–S-15 in the SI, the range in the interaction

energy, or its components, due to the different solvent configurations is fairly constant

for most solvated dimers considered, regardless of the environment binning scheme (En-

vA/B/C). For each F-/ISAPT component, differences between solvent configurations typi-

cally range from ∼0.25-0.5 kcal/mol for exchange or induction, 0.5-1.0 kcal/mol for elec-

trostatics, 0.1 kcal/mol for dispersion, and 0.5-1.5 kcal mol−1 for total interaction energies.

Somewhat larger ranges are seen in some cases, including the pyridinium–benzene system

in panel (b) of Fig. 7.3, which demonstrates spreads of 3 kcal/mol among the electrostatic

energies of the different solvent configurations for EnvB/C, and spreads of 2.5–3 kcal/mol

in the total interaction energies. The range in electrostatics is also somewhat larger than

normal for some environmental binnings of HYD8-4 (nitrobenzene–benzene) and the range

in induction values across snapshots increases to 1 kcal/mol for some environment binnings

for HYD8-4 and HYD8-6 (pyridine–benzene), and can grow to more than 2 kcal/mol for

HYD8-7 (pyridinium–benzene).
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The increased susceptibility of solute interactions to solvent configuration for nitrobenzene–

benzene, pyridine–benzene, and pyridinium–benzene seems counterintuitive; indeed, these

complexes are comprised of the ArX molecules with largest dipole moments among all

HYD8 complexes, with gas-phase dipole µA for monomer A of µA = 4.22, 2.19, and XX

Debye for HYD8-4, 6, 7, respectively, as compared to all other complexes in our test set for

which µA ≤ 1.5 Debye. Since these molecules have the largest permanent dipole moments,

should they not be the least polarizable by the solvent, and therefore their interactions with

benzene less susceptible to changes in the solvent configuration? As it turns out, the op-

posite is actually true: regardless of gas-phase dipole moment, solvent actually enhances

the molecular dipole moment by between 30–40%.229 Furthermore, we believe that the

variation of solute interactions between different solvent configurations is due not to the

polarization of, e.g., nitrobenzene by the solvent environment, but rather the reverse. Since

the polarizability of the solvent environment is highly dependent on the configuration of

individual solvent molecules, the electronic deformation of the solvent by solute molecules

(and therefore, the solvent’s tuning of the solute interactions) is also highly dependent on

the solvent configuration. This higher-order effect seems only to be present when a solute

monomer has a permanent electronic dipole moment of µ ≥ 2 Debye, as the other HYD8

complexes do not exhibit the same variability of F-/ISAPT interactions and components

with respect to solvent configuration.

7.4.3 Many-Body Analysis of Solvated Interactions

To investigate the possibility that variation in F-/ISAPT IEs and components between dif-

ferent solvent configurations could be due to some higher-order interactions between the

“monomers,” as well as to validate our three-body picture (wherein we group all solvent

molecules together into a single SAPT monomer), we have computed the non-additive

three-body component of the total trimer energy according to Eqn. 7.3 at the HF/jun-cc-

pVDZ and MP2/jun-cc-pVDZ levels of theory, as these combinations of methods and basis
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Figure 7.4: Box-and-whisker plots representing the non-additive three-body correction to
total “trimer” energy (∆EABC; kcal mol−1), for both relaxed (R) and unrelaxed (U) solvent
configurations of each doubly-solvated HYD8 complex, computed at the HF/jun-cc-pVDZ
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responding to the median (Q2) and mean ∆EABC indicated as a solid green bar and green
triangle, respectively. Additionally, whiskers encompass the full range of ∆EABC values
for all solvent configurations.
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set provide the most direct comparison to the HF-in-HF embedding present in ISAPT0

and the SAPT0 computations themselves. Presented in Fig. 7.4 are box-and-whisker plots

visualizing the distribution of non-additive three-body energy contribution, ∆E
(3)
ABC , over

different solvent configurations of each HYD8 complex. Immediately, it is apparent that the

complex for which the larges non-additive behavior is present is for HYD8-7, the cationic

pyridinium–benzene complex, which exhibits ∆E
(3)
ABC between 3-4 kcal mol−1 larger in

magnitude on average versus all other HYD8 complexes.

This significant non-additive behavior is likely the cause of variation seen in pyridinium–

benzene interactions both between different binning schemes (EnvA/B/C) and between dif-

ferent solvent configurations. Interestingly, neither HYD8-4 (nitrobenzene–benzene) nor

HYD8-6 (pyridine–benzene) seem to exhibit a large non-additive interaction, as seemed to

be indicated by the variation between solute interactions within different solvent configu-

rations. Instead, however, the ranges of ∆E
(3)
ABC between different solvent configurations

are slightly larger for these systems (∼1-1.5 kcal mol−1) than for other HYD8 complexes

(∼0.5-0.8 kcal mol−1). Instead of non-additive behavior on average, this variation in non-

additivity between different solvent configurations of HYD8-4 and HYD8-6 may be the

cause of the variations present in F-/ISAPT0 IEs and components between solvent config-

urations. This is supported by the fact that for HYD8-7, even larger ranges in ∆E
(3)
ABC of

∼2.3-3.5 kcal mol−1 are present, which matches the behavior for the magnitude of varia-

tion in F-/ISAPT IEs and components observed for this complex relative to other HYD8

members. It appears, therefore, that differences between environment binning scheme is

due largely to the permanent non-additivity present in a given hydrated dimer, while varia-

tions in IE and components between different solvent configurations are due to changes in

the non-additivity with respect to the solvent configuration.

While the preceding analysis has been performed for three-body interactions at the

HF/jun-cc-pVDZ level of theory, it is worth noting that the two-body ArX–Bz interac-

tion energy at this level is in some cases repulsive (see, e.g., Table S-15–S-22 in the Sup-
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plementary Materials). This is unphysical, as we know the T-shaped structure of these

complexes are optimal at the B3LYP-D3M(BJ)/aug-cc-pVDZ level of theory. The repul-

siveness of the ArX–Bz interactions computed with HF/jun-cc-pVDZ is due to the fact

that at the Hartree–Fock level, no description of dispersion is present, as only electro-

statics, exchange-repulsion, and lower-order induction are accounted for. Therefore, to

ensure our conclusions for the non-additive three-body interactions based on energies com-

puted at the Hartree–Fock level are relevant, we have performed an identical analysis at

the MP2/jun-cc-pVDZ level of theory, which is the closest supermolecular wavefunction

method to SAPT0. Provided in Fig. 7.5 is a comparison of the full trimer IE computed with

HF/jun-cc-pVDZ and MP2/jun-cc-pVDZ for the hydrated benzene dimer (HYD8-3) and

hydrated pyridinium–benzene complex (HYD8-7) (all components of the three-body MBE

are given in Tables S-23–S-30 in the Supplementary Information). When using MP2/jun-

cc-pVDZ, all two-body ArX–Bz IEs become attractive; furthermore, all trimer IEs are also

more attractive, by a constant shift of approximately 50-60 kcal mol−1 on average for all

systems. Despite the shift in value for the full two- and three-body interaction energies,

neither the ranges of three-body MBE components over different solvent configurations

nor the non-additive three-body interaction is shifted between HF and MP2 descriptions.

Therefore, the analysis of non-additive three-body interactions at the Hartree–Fock level

above is consistent with MP2, and the conclusions thereof are retained.

7.4.4 Effect of Multiple Hydration Shells

In EnvA and EnvB, the solvent molecules are grouped into a traditional SAPT monomer;

therefore, they contribute to the O(N5) computational scaling of F-/ISAPT0, where N is

proportional to the system size, whereas for EnvC, the solvent molecules are only treated

at the O(N4)-scaling Hartree–Fock level. It is of critical interest, therefore, to determine

exactly “how large” an environment is necessary to include in the F-/ISAPT computation to

ensure the tuning of solute interactions is captured properly. We have therefore examined
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shell solvation (∆IE1−G; striped bars) and second-shell solvation (∆IE2−1; solid bars)
for the (a) HYD8-3mX (benzene dimer) and (b) HYD8-7mX (pyridinium–benzene) com-
plexes, averaged over values computed at the F-/ISAPT0/jun-cc-pVDZ level of theory
for all ten relaxed solvent configurations. “EnvX” labels indicate that explicit solvent
molecules are contained within monomer “X” during the SAPT computation (see text). See
Section II C for additional details regarding our nomenclature and details of the F-/ISAPT
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the difference between total ArX–Bz IEs and components upon the addition of the first

solvation shell (∆E1−G
int ) and upon addition of the second solvation shell (∆E2−1

int ), visual-

ized in Fig. 7.6 for each environment binning of the hydrated benzene dimer (HYD8-3; top

panel, a) and hydrated pyridinium–benzene complex (HYD8-7; bottom panel, b). For sys-

tems where the non-additive trimer interaction is small (e.g., benzene dimer, Fig. 7.6.a), we

find that the differences upon addition of further solvation shells is quite small. Additional

levels of solvation (i.e., gas→1, 1→2) slightly enhances the attractiveness of IEs, thanks to

slightly smaller or negligible changes in exchange repulsion and progressively more favor-

able dispersion interactions. Both electrostatics and induction are screened slightly by the

addition of the first solvation shell, but no additional screening is caused by the addition of

the second solvation shell. For these “additive” systems, the ∆IE1−G is less than 0.3 kcal

mol−1 (∼10% of gas-phase IE), with ∆IE2−1 only slightly larger.

For significantly non-additive systems (e.g., pyridinium–benzene, Fig. 7.6.b), the ef-

fects of adding both the first and second solvation shells are more notable. The electro-

statics and induction are again screened upon addition of the first solvation shell, but to a

larger magnitude; this leads to an overall screening of total IE of between ∼1.9-3.3 kcal

mol−1. Exchange-repulsion and dispersion exhibit identical behavior to the benzene dimer

(Fig. 7.6.a), however since these effects are on the order of only tenths of one kcal mol−1,

their effect is negligible compared to electrostatics and induction. Upon the addition of

the second solvation shell, similar behavior is observed for each component, however the

difference is only about half as large as was observed for the addition of the first solvation

shell. Overall, the changes in IEs and components upon adding solvation shells indicates

that while the solute interactions were roughly “converged” for additive systems after only

a single solvation shell was included, this is not the case for non-additive systems, where

in fact not even two solvation shells is sufficient to converge the solute IEs or compo-

nents. This indicates that, especially for non-additive systems, the presence of significantly

longer-range effects likely necessitates that larger environments be considered.
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7.5 Summary and Conclusions

The extent to which chemical environment “tunes” non-covalent interactions (NCI), as well

as the best manner in which to account for this effect, are open questions in the computa-

tional molecular sciences. To address this, we have presented an approach based on the

functional-group partition and intramolecular formulation of symmetry-adapted perturba-

tion theory (F-/ISAPT) which can (i) compute non-covalent interactions embedded in a

chemical environment, and (ii) quantify the tuning of these interactions due to the environ-

ment relative to the interactions in the gas phase. We have applied our approach to quantify

the extent to which explicit water solvent modulates π− π interactions in several function-

alized, T-shaped arene–benzene complexes, hydrated by a statistically diverse set of sol-

vent configurations. We have found that, for systems wherein no significant non-additive

three-body interaction between the monomers and the collective solvent environment are

present, the solvent environment does not significantly tune π − π interactions, either due

to the choice of system partitioning or solvent configuration. For systems where the non-

additive three-body interaction is significant, however — i.e., where it either is greater than

∼2 kcal mol−1 or where it deviates between solvent configurations by greater than∼1 kcal

mol−1 — the solvent environment does tune the interaction, sometimes by up to several

kcal mol−1 for both total interaction energies and F-/ISAPT components. Finally, we have

shown that for these non-additive systems, even two hydration shells of 50 explicit water

molecules within 7 Å of the solute complex may not be sufficient to ensure convergence of

the solute–solute interactions towards the continuum limit, whereas for additive systems,

only a single shell of 28 water molecules within 3 Å is necessary for convergence.

7.6 Acknowledgements

The authors gratefully acknowledge financial support from Bristol-Myers Squibb, and from

the U.S. National Science Foundation through grant CHE-1566192.

192



PART V

CONCLUSIONS

193



CHAPTER 8

CONCLUSIONS AND OUTLOOK

8.1 Conclusions

In this Thesis, we have taken a three-pronged approach towards the quantum chemical

investigation of non-covalent interactions in extended chemical systems and diverse envi-

ronments: first, we have developed protocols by which the structural and energetic proper-

ties of non-bonded complexes may be benchmarked, in order to establish best practices by

which to obtain “the right answers for the right reasons;” second, we have developed semi-

empirical perturbative approaches based on symmetry-adapted perturbation theory (SAPT),

simultaneously reducing the computational expense of SAPT as well as to increase its ac-

curacy and applicability for diverse non-covalent interaction motifs in extended chemical

systems; and finally, we have applied these approaches, together with the functional group

partitioned and intramolecular formulations of SAPT, to quantify the tuning of non- co-

valent interactions by their chemical environment. Taken together, these advances lay the

foundation for future efforts leveraging computation to quantitatively study the effects of

non-covalent interactions in new arenas, e.g., the long-range effects on enzyme activity due

to allosteric inhibition or missense mutation.

In a broader sense, however, this Thesis feels very much like the end of an era in the

field of non-covalent interactions. Gone are the days where the choice of computational

molecular scientists is between quantum mechanics or classical mechanics, and so to are

the days where simply assessing the quality of some method or another is of interest. Much

of this space has already been explored, and the corners of the map have been largely filled

in. Much of the current state of the field — and indeed, even future of quantum chemistry

itself — seems dominated by the development of data-driven methodologies leveraging
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machine learning (ML) and artificial intelligence (AI) to predict NCI and a host of other

properties, trained to reproduce QM computations at a fraction of the price. Many of the

concerns for ML methods going forward are ones of data curation, feature engineering, and

defining appropriate, transferable models. Fortunately, the construction of massive datasets

of very high-quality energetics (or properties) against which ML models may be fit is facil-

itated by the field’s collective expertise in benchmarking, to which this Thesis contributes.

ML models are only as good as their training, however, so when completely novel chem-

ical phenomena are being studied, neither their accuracy, nor even their appropriateness,

is guaranteed. While ML may be unreliable in these scenarios, quantum mechanics can

still provide definitive predictions of chemical behavior, so long as it is not prohibitively

expensive. As such, the approaches developed in this Thesis for studying NCI in extended

chemical systems and diverse chemical environments are hoped to provide insight where

significantly more empirical approaches are likely to break down, thereby keeping the door

open to new chemical discovery.

8.2 Outlook

Based on the advances made in this Thesis, there exist a number of possible future avenues,

including the two very briefly proposed here.

8.2.1 Towards a Multi-Level Embedded SAPT

In Chapter 7, we have observed that for systems where there exists a nontrivial mutual,

many-body attraction or repulsion, the environment can significantly tune both the total in-

teraction strength as well as interaction components. Also, when including a progressively

larger environment in the computation, the values for IE components (and even the IEs

themselves) begin to converge towards some “bulk” limit, which can be interpreted as the

real interaction strength between two molecules embedded within an infinitely large envi-

ronment. In order to investigate, e.g., the effects of allosteric control on enzyme function,
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the size of the environment which must be included in the ISAPT computation may prove

prohibitively expensive even for this approach. In order to both accelerate convergence

towards the bulk limit and reduce the computational expense incurred by including long-

range contacts in the chemical environment, the ISAPT methodology could be extended

to be compatible with a multi-level embedding scheme amenable to very large systems,

thereby enabling the study of embedded interactions natively in systems which were pre-

viously inaccessible. For example, the HF-in-HF embedding scheme for generating the

ISAPT zeroth-order wavefunctions could be extended by further mechanically embedding

the supersystem wavefunction into effective fragment potentials or classical force fields,

or a field of distributed multipoles, point charges, or even a polarizable continuum model

(PCM). Additionally, these schemes can be further combined to create a hierarchical series

of embeddings, ordered by the relative exactness of the method.

8.2.2 The Influence of Long-Range Contacts in Drug–Protein Binding Specificity

By leveraging the functional group partition of SAPT (F-SAPT), Parrish et al. showed that

the local contact model, where direct interactions between residue side chains in a pro-

tein’s binding pocket and ligand functional groups are hypothesized to be the driving force

for protein-ligand binding, was insufficient to justify the relative binding affinity of chloro

versus methyl aryl substituted factor Xa (fXa) inhibitor drugs.69 Instead, it was shown that

mid- to long-range contacts, in particular involving peptide bonds in the protein backbone

itself, were the cause of binding specificity. The F-SAPT0–D method developed in Chapter

6 can be applied in order to examine these long-range contacts more directly by including

a larger subsystem of fXa in each computation. Furthermore, it will be of interest to inves-

tigate a wider range of conformation space by sampling structures along various binding

trajectories and submitting these structures to F-SAPT. While we hypothesize that the im-

portance of peptide bond contacts will decay with distance from the binding pocket, it is

possible that these contacts are cooperative and more important than previously expected.
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177J. Řezáč and P. Hobza, J. Chem. Theory Comput. 9, 2151–2155 (2013).

178N. J. Singh, S. K. Min, D. Y. Kim, and K. S. Kim, J. Chem. Theory Comput. 5, 515–529
(2009).

179S. van der Walt, S. C. Colbert, and G. Varoquaux, Computing in Science and Engineering
13, 22–30 (2011).

180D. A. Sirianni, D. G. A. Smith, L. A. Burns, D. F. Sitkoff, D. L. Cheney, and C. D. Sher-
rill, “Optimized Damping Parameters for Empirical Dispersion Corrections to Symmetry-
Adapted Perturbation Theory,” in preparation.

181E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 014101 (2010).

182H. L. Williams, K. Szalewicz, R. Moszynski, and B. Jeziorski, J. Chem. Phys. 103,
4586–4599 (1995).

207

http://dx.doi.org/10.1080/00268976.2014.952696
http://dx.doi.org/10.1080/00268976.2014.952696
http://dx.doi.org/10.1063/1.3177061
http://dx.doi.org/10.1063/1.3177061
http://dx.doi.org/10.1063/1.1679012
http://dx.doi.org/Transition-metal Atoms - Nickel Atom and Nickel Hydride
http://dx.doi.org/Transition-metal Atoms - Nickel Atom and Nickel Hydride
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/INTN
http://dx.doi.org/NONE
http://dx.doi.org/10.1021/ct400057w
http://dx.doi.org/10.1021/ct800471b
http://dx.doi.org/10.1021/ct800471b
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1063/1.3451077
http://dx.doi.org/10.1063/1.470646
http://dx.doi.org/10.1063/1.470646


183T. Korona, Mol. Phys. 111, 3705–3715 (2013).

184A. Heßelmann, G. Jansen, and M. Schütz, J. Chem. Phys. 122, 014103 (2005).

185A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 123,
214103 (2005).

186E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 132, 184111 (2010).

187E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, J. M. Turney, and H. F. Schaefer, J.
Chem. Phys. 135, 174107 (2011).

188R. M. Parrish, K. C. Thompson, and T. J. Martínez, J. Chem. Theory Comput. 14, 1737–
1753 (2018).

189R. Podeszwa, K. Pernal, K. Patkowski, and K. Szalewicz, J. Phys. Chem. Lett. 1, 550–
555 (2010).

190A. Hesselmann, J. Phys. Chem. A 115, 11321–11330 (2011).

191K. U. Lao and J. M. Herbert, J. Phys. Chem. Lett. 3, 3241–3248 (2012).

192J. Hepburn, G. Scoles, and R. Penco, Chem. Phys. Lett. 36, 451–456 (1975).

193R. Ahlrichs, R. Penco, and G. Scoles, Chem. Phys. 19, 119–130 (1977).

194C. Douketis, G. Scholes, S. Marchetti, M. Zen, and A. J. Thakkar, J. Chem. Phys. 76,
3057–3063 (1982).

195DFTD3, A dispersion correction for density functionals, Hartree–Fock, and semi-empirical
quantum chemical methods, version 3.2 Rev. 0; Grimme Research Group: Mulliken Cen-
ter for Theoretical Chemistry, Universität Bonn, 2016. https://www.chemie.
uni-bonn.de/pctc/mulliken-center/software/dft-d3/ (accessed
August 23, 2019).

196F.-Y. Lin, C.-I. Liu, Y.-L. Liu, Y. Zhang, K. Wang, W.-Y. Jeng, T.-P. Ko, R. Cau, A. H. J.
Wang, and E. Oldfield, Proc. Natl. Acad. Sci. 107, 21337–21342 (2010).

197T. Warne, P. C. Edwards, A. S. Doré, A. G. W. Leslie, and C. G. Tate, Science 364, 775–
778 (2019).

198T. M. Parker and C. D. Sherrill, J. Chem. Theory Comput. 11, 4197–4202 (2015).

199L. A. Burns, J. C. Faver, Z. Zheng, M. S. Marshall, D. G. A. Smith, K. Vanommeslaeghe,
A. D. MacKerell, K. M. Merz, and C. D. Sherrill, J. Chem. Phys. 147, 161727 (2017).

208

http://dx.doi.org/10.1080/00268976.2012.746478
http://dx.doi.org/10.1063/1.2135288
http://dx.doi.org/10.1063/1.2135288
http://dx.doi.org/10.1063/1.3426316
http://dx.doi.org/10.1063/1.3656681
http://dx.doi.org/10.1063/1.3656681
http://dx.doi.org/10.1021/acs.jctc.7b01053
http://dx.doi.org/10.1021/acs.jctc.7b01053
http://dx.doi.org/10.1021/jz9002444
http://dx.doi.org/10.1021/jz9002444
http://dx.doi.org/10.1021/jp205031e
http://dx.doi.org/10.1021/jz301015p
http://dx.doi.org/INTN
http://dx.doi.org/INTN
http://dx.doi.org/10.1063/1.443345
http://dx.doi.org/10.1063/1.443345
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/
http://dx.doi.org/10.1073/pnas.1010907107/-/DCSupplemental
http://dx.doi.org/10.1021/acs.jctc.5b00588
http://dx.doi.org/10.1063/1.5001028


200R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, Science 315,
1249–1252 (2007).

201R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, J. Chem. Phys.
128, 094313 (2008).

202D. G. A. Smith and K. Patkowski, unpublished.

203S. Li and K. Patkowski, unpublished.

204D. G. A. Smith and K. Patkowski, J. Phys. Chem. C 118, 544–550 (2014).

205S. Li, D. G. A. Smith, and K. Patkowski, Phys. Chem. Chem. Phys. 17, 16560–16574
(2015).

206D. G. A. Smith and K. Patkowski, J. Phys. Chem. C 119, 4934 (2015).
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