
ON SCALABLE AND FAST LANGEVIN-DYNAMICS-BASED SAMPLING
ALGORITHMS

A Dissertation
Presented to

The Academic Faculty

By

Ruilin Li

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mathematics

Georgia Institute of Technology

May 2021

© Ruilin Li 2021

ON SCALABLE AND FAST LANGEVIN-DYNAMICS-BASED SAMPLING
ALGORITHMS

Thesis committee:

Prof. Hongyuan Zha, Advisor
School of Data Science
The Chinese University of Hongkong,
Shenzhen

Prof. Haomin Zhou, Co-Advisor
School of Mathematics
Georgia Institute of Technology

Prof. Molei Tao
School of Mathematics
Georgia Institute of Technology

Prof. Xiaojing Ye
Department of Mathematics and Statistics
Georgia State University

Prof. Cheng Mao
School of Mathematics
Georgia Institute of Technology

Date approved: April 26th

TO MY FAMILY

ACKNOWLEDGMENTS

This thesis could not have been successfully completed without the invaluable assis-

tance of many individualss. The following list of acknowledgements is, by no means,

exhaustive.

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Hongyuan Zha. I am very lucky to have him as my supervisor. In the past five years,

he led me into the beautiful world of machine learning and applied mathematics. His

support, encouragement, and open-minded attitude continues to inspire me to pursue my

own interest in research and in life.

Many thanks go to my co-advisor Prof. Haomin Zhou for his meticulous care which

make my five-year Ph.D career productive, rich and colorful. I would like to express my

gratitude to Prof. Molei Tao, for his hands-on advising and many rewarding discussion, all

of which inspire my interest in sampling and dynamics. I am grateful to Prof. Xiaojing

Ye, for his valuable guidance and help in the early years of my Ph.D study. I would like to

appreciate Prof. Cheng Mao for accepting to serve on my dissertation committee and many

insightful suggestions.

Great persons and colleagues I have had the pleasure to meet in these years, and that

includes my fellow graduate students Fan Zhou, Hao Wu, Haodong Sun, Haoyan Zhai,

Jaewoo Jung, Jiangning Chen, Jiaqi Yang, Qianli Hu, Qingqing Liu, Renyi Chen, Rundong

Du, Shaojun Ma, Shijie Xie, Shu Liu, Weiwei Zhang, Xiao Liu, Xin Wang, Xin Xing,

Yan Wang, Yanxi Hou, Yian Yao and more. I miss those helpful discussions and exciting

moments.

Last but not least, my deepest gratitude goes to my parents and my wife for their un-

conditional support and love. They are the source of my strength and happiness. I dedicate

this thesis to them.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . x

Summary . 2

Chapter 1: Introduction . 3

Chapter 2: Exponential Weighted Stochastic Gradient Methods for Improving
Sampling Accuracy . 8

2.1 Related Work . 10

2.2 Background and Notation . 12

2.3 An Illustration of Non-optimality of Uniform Subsampling 13

2.4 Derivation of Exponential Weighted Stochastic Gradient 17

2.5 Non-asymptotic Error Bound . 22

2.6 Practical Implementation . 34

2.7 Numerical Examples . 36

2.7.1 Gaussian Examples . 37

2.7.2 Bayesian Logistic Regression . 40

v

2.7.3 Bayesian Neural Network . 42

2.8 Conclusion . 43

Chapter 3: Hessian-Free-High-Resolution Nesterov Acceleration for Sampling . 44

3.1 Literature Review . 48

3.2 Terminology and Notations . 48

3.3 The Derivation of HFHR . 49

3.4 Theoretical Analysis of the Continuous HFHR 53

3.5 Discretization . 63

3.6 Numerical Experiments . 76

3.6.1 Simple Target Distributions . 77

3.6.2 A Case Study on Gaussian: Empirical Performances versus Theo-
retical Guarantees for HFHR Dynamics 78

3.6.3 A Case Study on a Nonlinear Problem: Empirical Performances
versus Theoretical Guarantees for HFHR Algorithm 81

3.6.4 Bayesian Neural Network . 84

3.7 Conclusion . 85

Chapter 4: Non-Asymptotic Analysis of Bounded Contractive-SDE-Based Sam-
pling Algorithms via Mean-Square Analysis 87

4.1 Introduction . 87

4.2 Background . 88

4.3 Mean-Square Analysis of Bounded Contractive-SDE-Based Algorithms . . 90

4.4 Application to Langevin Monte Carlo Algorithm 97

4.5 Conclusion . 107

vi

Appendices . 109

Chapter A: Supplementary Materials of Chapter 2 110

A.1 Mini Batch Version of EWSG . 110

A.2 EWSG Version for Overdamped Langevin 111

A.3 Variance Reduction (VR) . 111

A.4 Additional Experiments . 115

A.4.1 A Misspecified Gaussian Case . 115

A.4.2 Additional Results of BNN Experiment 117

A.4.3 Additional Experiment on BNN: Tuning M 117

A.5 EWSG does not necessarily change the speed of convergence significantly . 118

Chapter B: Supplementary Materials of Chapter 3 121

B.1 Poincaré’s Inequalities for Product Measure 121

B.2 Tempered HFHR with Unit PI Constant 122

B.3 Time Derivative of Mcross . 127

B.4 Dependence of error of SDE on initial values 134

B.5 Growth bound of SDE with additive noise 136

B.6 Lipschitz continuity of the drift of HFHR dynamics 137

B.7 Contraction of (Transformed) HFHR Dynamics 139

B.8 Local error between the exact Strang’s splitting method and HFHR dynamics141

B.9 Local error between HFHR algorithm and the exact Strang’s splitting method152

B.10 Local error between HFHR algorithm and HFHR dynamics 157

B.11 α does create acceleration even after discretization 159

vii

References . 167

viii

LIST OF TABLES

2.1 Accuracy, log likelihood and wall time of various algorithms on test data
after one data pass (mean ± std). 40

3.1 Comparison of convergence rate of HFHR and ULD with known depen-
dence on parameters of dynamics. In log-strongly-concave setup, we write
m = λ due to Bakry-Émery condition [117] and denote condition number
κ = L

m
. ρ > 0 is the LSI constant assmued in [35]. The column of γ

contains the values of γ corresponding to the best rate. 62

3.2 Test functions. We use the shorthand notationGd
m,κ(x) = m

2
(κx2

d+
∑d−1

i=1 x
2
i).

Letters ‘S’, ‘C’ and ‘N’ represent strongly convex, convex and non-convex
respectively. 77

4.1 Comparison of iteration complexity results in 2-Wassertein distance of LMC
with L-smooth and m-strongly-convex potential. 107

A.1 Test error (mean ± standard deviation) after 200 epoches. 117

A.2 Test errors of EWSG (top of each cell) and SGHMC (bottom of each cell)
after 200 epoches. b is minibatch size for EWSG, and minibatch size of
SGHMC is set as b × (M + 1) to ensure the same number of data used
per parameter update for both algorithms. Step size is set h = 10

b(M+1)
as

suggested in [18], different from that used to produce Table A.1. Results
with smaller test error is highlighted in boldface. 118

ix

LIST OF FIGURES

2.1 Sampling from Gaussian target . 38

2.2 Bayesian logistic regression learning curve. The shaded area stands for one
standard deviation. 41

2.3 Bayesian neural network learning curve. The shaded area stands for one
standard deviation. 41

3.1 Illustration of the effect of α on iteration complexity 75

3.2 (a) f1 (h = 2). (b) f2 (h = 0.2). (c) f3 (h = 2.5). (d)f4 (h = 0.2). (e)
f5 (h = 0.5). (f) f6 (h = 0.001). (g) f7 (h = 0.1). (h) f8 (h = 0.005).
y-axes are in log scale. 78

3.3 Illustration of the consistency between the theoretical bound in Theorem 6
and experiment results. 79

3.4 Illustration of the consistency between the theoretical bound in Theorem 9
and experiment results. 80

3.5 Illustration of the consistency between the theoretical bound in Theorem
10 and experiment results. 80

3.6 Illustration of the consistency between the theoretical bound in Theorem
12 and experiment results. 82

3.7 Improvement of Algorithm 2 over ULD algorithm in iteration complexity.
(vertical bar stands for one standard deviation.) 83

3.8 Training Negative Log-Likelihood (NLL) for various γ. Top row: step
sizes are below the stability limit of ULD algorithm; Bottom row: a further
increased step size wouild go above the stability limit of ULD algorithm . . 85

x

A.1 KL divergence . 114

A.2 Posterior prediction of mean (left) and standard deviation (right) of log
likelihood on test data set generated by SGHMC, EWSG and EWSG-VR
on two Bayesian logistic regression tasks. Statistics are computed based on
1000 independent simulations. Minibatch size b = 1 for all methods except
FG. M = 1 for EWSG and EWSG-VR. 114

A.3 (a) Histogram of data used in each iteration for FlyMC algorithm. (b) Au-
tocorrelation plot of FlyMC, EWSG and MH. (c) Samples of EWSG. (d)
Samples of FlyMC. 116

B.1 Acceleration of HFHR algorithm over ULD algorithm (despite of an addi-
tional constraint α may place on h) for multi-dimensional quadratic objec-
tives. 1/ε is the condition number. 165

xi

SUMMARY

1

SUMMARY

Langevin dynamics-based sampling algorithms are arguably among the most widely-used

Markov Chain Monte Carlo (MCMC) methods. Two main directions of the modern study

of MCMC methods are (i) How to scale MCMC methods to big data applications, and

(ii) Tight convergence analysis of MCMC algorithms, with explicit dependence on various

characteristics of target distribution, in a non-asymptotic manner.

This thesis continues the previous efforts in this two lines and consists of three parts.

In the first part, we study stochastic gradient MCMC methods for large scale application.

We propose a non-uniform subsampling of gradients scheme to approximately match the

transition kernel of a base MCMC base with full gradient, aiming for better sample quality.

The demonstration is based on underdamped Langevin dynamics.

In the second part, we consider an analog of Nesterov’s accelerated algorithm in op-

timization for sampling. We derive a dynamics termed Hessian-Free-High-Resolution

(HFHR) dynamics, from a high-resolution ordinary differential equation description of the

Nesterov’s accelerated algorithm. We then quantify the acceleration of HFHR over un-

derdamped Langevin dynamics at both continuous dynamics level and discrete algorithm

level.

In the third part, we study a broad family of bounded, contractive-SDE-based sam-

pling algorithms via mean-square analysis. We show how to extend the applicability of

classical mean-square analysis from finite time to infinite time. Iteration complexity in

2-Wasserstein distance is also characterized and when applied to Langevin Monte Carlo

algorithm, we obtain an improved iteration complexity bound.

2

CHAPTER 1

INTRODUCTION

Sampling is an important problem in science and engineering, it arises naturally in Bayesian

statistics [1, 2, 3], statistical physics [4], molecule dynamics [5], machine learning [6, 7],

and computational biology [8]. Except for rare cases, direct sampling is difficult, if not

impossible, and people often resort to approximate sampling, a standard approach of which

is Markov Chain Monte Carlo (MCMC) methods [9]. By constructing a Markov chain that

has the desired distribution as the invariant/equilibrium distribution of the Markov chain,

one can obtain a sample of the desired distribution by recording states from the chain.

A classical example of the family of MCMC is Langevin dynamics, named after the

famous French Physicist Paul Langevin. Langevin dynamics utilizes gradient information

to guide a sampler to explore parameter spaces efficiently. There are two types of Langevin

dynamics, one is called overdamped Langevin dynamics (OLD), and the other is called

kinetic Langevin dynamics (abbreviated as ULD to comply with a convention of calling

it underdamped Langevin dynamics). Suppose we we would like to sample from a Gibbs

target distribution µ whose probability density function (w.r.t. Lebesgue measure in Rd)

is proportional to exp
(
−f(q)

)
where f : Rd 7→ R is a potential function, then OLD and

ULD are respectively given by

(OLD) dqt = −∇f(qt)dt+
√

2dW t (1.1)

(ULD)

dqt = ptdt

dpt = −γptdt−∇f(qt)dt+
√

2γdBt

(1.2)

where qt ∈ Rd is a position variable, pt ∈ Rd is a momentum variable, W t,Bt are i.i.d.

Wiener processes in Rd,γ > 0 is a friction coefficient. Under mild conditions [10] , OLD

3

converges to µ and ULD converges to

dπ(q,p) = dµ(q)ν(p)dp, where ν(p) = (2π)−
d
2 exp

(
−‖p‖

2

2

)
(1.3)

hence the q marginal in ULD follows the target distribution. Overdamped Langevin dy-

namics and underdamped Langevin dynamics are closely related, in fact, OLD is the over-

damping limit of ULD as γ →∞ [11, 10], hence the name.

The following numerical algorithm for discretized overdamped Langevin dynamics is

commonly known as Langevin Monte Carlo (LMC)/ unadjusted Langevin algorithm (ULA)

[12]

qk+1 = qk −∇f(qk)h+
√

2hξk+1, k = 0, 1, 2, · · · (1.4)

where {ξk}k=1,2,··· are independent d-dimension standard Gaussian random vectors. Theo-

retical investigation of LMC dates back to 90s [12] and one of the recommendations made

by the authors of [12] is to avoid use LMC, or at least use it very cautiously since the ergod-

icity of LMC is very sensitive to the choice of step size h. LMC can be a transient chain if

h is badly chosen, even when the continuous OLD is geometrically ergodic. These findings

have strongly influenced subsequent research as the ensuing studies essentially focused on

Metropolis-adjusted version of LMC, known as Metropolis adjusted Langevin algorithm

(MALA) [13, 14, 15, 16].

Over the last decade, enabled by the dramatic increase of computing power, big data

application with millions of data and complex models requiring millions or billions of

parameters e.g. deep learning, are not uncommon. During the same period of time, there

has been a resurgence of the studies on Langevin dynamics and its variants, due to new

findings and deepened understandings. Two main lines of research are

• Scalability Design variants of Langevin dyamics/LMC that can scale to large data

sets [17, 18, 19, 20, 21, 22, 23, 24, 25].

• Convergence Rate Quantitatively characterize the convergence rate of LMC and its

4

variants and the dependence on various factors, particularly on dimension, in an non-

asymptotic manner [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

This thesis continues the effort in these two directions. In the scalability direction,

motivated by the great success of utilizing stochastic gradient (SG) [38] in the field of op-

timization [39, 40], people have also started to combine stochastic gradient with Langevin

dynamics and proposed stochastic gradient Langevin dynamics (SGLD) [17], stochastic

gradient Hamiltonian Monte Carlo (SGHMC) [18] which is closed related to stochas-

tic gradient underdamped Langevin dyanmics (SGULD) 1 and many stochastic gradient

version of variants of Langevin dynamics [19, 20, 21]. However, directly replacing the

batch/full gradient by a (uniform) stochastic one without additional mitigation generally

causes a gradient-based MCMC method to sample from a statistical distribution differ-

ent from the target and can hence undermine the performance of downstream applications

such as Bayesian inference, because the transition kernel of the MCMC method gets cor-

rupted by the noise of subsampled gradient. In this thesis, we present a state-dependent

non-uniform SG-MCMC algorithm termed Exponentially Weighted Stochastic Gradients

method (EWSG), the demonstration of which is based on underdamped Langevin dynam-

ics. The approach is based on designing the transition kernel of a SG-MCMC method to

approximate the transition kernel of a full-gradient-based MCMC method. This approxi-

mation leads to non-uniform (in fact, exponential) weights that aim at capturing the entire

state-variable distribution of the full-gradient-based MCMC method. EWSG differs from

Variance Reduction (VR) techniques as it focuses on the entire distribution instead of just

the variance; nevertheless, its reduced local variance is also proved. EWSG can also be

viewed as an extension of the importance sampling idea, successful for SG-based opti-

mizations, to sampling tasks.

Along the line of convergence rate, we propose an accelerated-gradient-based MCMC

method in this thesis. It relies on a modification of the Nesterov’s accelerated gradient

1SGULD is the same as the well-known SGHMC with B̂ = 0, see eq. (13) and Sec. 3.3 in [18] for details.

5

method for strongly convex functions (NAG-SC): We reformulate NAG-SC as a Hessian-

Free High-Resolution ordinary differential equation, lift its high-resolution coefficient to

be a hyperparameter α, and then inject appropriate noise and discretize the resulting dif-

fusion process. The obtained diffusion process admits underdamped Langevin dynamics

as a special case (when α = 0). Accelerated sampling enabled by the new hyperparam-

eter is theoretically quantified. At continuous-time level, for log-concave/log-strongly-

concave target measures, exponential convergence in χ2 divergence/2-Wasserstein distance

is proved, with a rate analogous to the state-of-the-art results of underdamped Langevin

dynamics, plus an additional acceleration. At discrete algorithm level, a dedicated dis-

cretization algorithm is proposed to simulate the Hessian-Free High-Resolution stochastic

differential equation in a cost-efficient manner. For log-strong-concave target measures, the

proposed algorithm achieves Õ(
√
d
ε

) iteration complexity in 2-Wasserstein distance, same

as underdamped Langevin dynamics, but with a reduced constant.

In the same vein, we study a family of general bounded, contractive-SDE-based sam-

pling algorithms. For this broad group of algorithms, we revisit the classical mean-square

analysis framework for numerical stochastic differential equation. Classical mean-square

analysis has global error bound only for finite time, we manage to extend it to infinite time

for the class of sampling algorithms. Based on the improved mean-square analysis, we

further obtain a general Õ

(
C

1

p2−
1
2

1

ε

1

p2−
1
2

)
iteration complexity in 2-Wasserstein distance

for the family of algorithms where C is a constant containing various information of the

underlying SDE, e.g. dimension d. The iteration complexity bound not only reveals the de-

pendence on tolerance ε, but also, somewhat surprisingly, shows that the dependence on the

parameters of the underlying SDE can also be affected by the order of local strong error.

When applied to Langevin Monte Carlo algorithm, we obtain a Õ
(√

d
ε

)
iteration com-

plexity in 2-Wasserstein distance, which improves upon the previously best known Õ
(
d
ε

)
result, under the standard smoothness and strong-convexity assumptions, plus an additional

linear growth condition on the third-order derivative of a potential function.

6

The rest of the thesis is organized as follows:

In Chapter 2, we show the motivation and derivation of EWSG, followed by a rigorous

non-asymptotic analysis on the global error of EWSG. We present extensive numerical ex-

periments, not only to demonstrate EWSG’s effectiveness, but also to guide hyperparameter

choices, and validate our theoretical analysis.

In Chapter 3, we discuss Hessian-Free-High-Resolution dynamics for sampling, demon-

strate its derivation, theoretical results and a numerical algorithm for the discretized dynam-

ics. We show the acceleration of the proposed algorithm via extensive experiments on both

simulated and real-world applications.

In Chapter 4, we present the mean-square analysis for bounded, contractive-SDE-based

sampling algorithms, derive global error bound without finite time constraint and itera-

tions complexity bound in 2-Wasserstein distance accordingly. An application to Langevin

Monte Carlo algorithm yields improved iteration complexity over previously best known

result.

7

CHAPTER 2

EXPONENTIAL WEIGHTED STOCHASTIC GRADIENT METHODS FOR

IMPROVING SAMPLING ACCURACY

Many Markov Chain Monte Carlo (MCMC) methods use physics-inspired evolution such

as Langevin dynamics [9] to utilize gradient information for exploring posterior distribu-

tions over continuous parameter space efficiently. However, gradient-based MCMC meth-

ods are often limited by the computational cost of evaluating the gradient on large data sets.

Motivated by the great success of stochastic gradient methods for optimization, stochastic

gradient MCMC methods (SG-MCMC) for sampling have also been gaining increasing at-

tention. When the accurate but expensive-to-evaluate batch gradients in a MCMC method

are replaced by computationally cheaper estimates based on a subset of the data, the method

is turned to a stochastic gradient version. Classical examples include SG (overdamped)

Langevin Dynamics (SGLD) [17] and SG Hamiltonian Monte Carlo (SGHMC) [18], both

designed for scalability suitable for machine learning tasks.

However, directly replacing the batch gradient by a (uniform) stochastic one without

additional mitigation generally causes a MCMC method to sample from a statistical distri-

bution different from the target, because the transition kernel of the MCMC method gets

corrupted by the noise of subsampled gradient. In general, the additional noise is tolera-

ble if the learning rate/step size is tiny or decreasing. However, when large steps are used

for better efficiency, the extra noise is non-negligible and undermines the performance of

downstream applications such as Bayesian inference.

In this section, we present a state-dependent non-uniform SG-MCMC algorithm termed

Exponentially Weighted Stochastic Gradients method (EWSG), which continues the ef-

forts of uniform SG-MCMC methods for better scalability. Our approach is based on de-

signing the transition kernel of a SG-MCMC method to match the transition kernel of a full-

8

gradient-based MCMC method. This matching leads to non-uniform (in fact, exponential)

weights that aim at capturing the entire state-variable distribution of the full-gradient-based

MCMC method, rather than providing unbiased gradient estimator and reducing its vari-

ance. Nevertheless, if focusing on the variance, the advantage of EWSG is the following:

recall the stochasticity of a SG-MCMC method can be decomposed into the intrinsic ran-

domness of MCMC and the extrinsic randomness introduced by gradient subsampling; in

conventional uniform subsampling treatments, the latter randomness is independent of the

former, and thus when they are coupled together, variances add up; EWSG, on the other

hand, dynamically chooses the weight of each datum according to the current state of the

MCMC, and thus the variances do not add up due to dependence. However, the gained

accuracy is beyond reduced variance, as EWSG, when converged, samples from a distri-

bution close to the invariant distribution of the full-gradient MCMC method (which has

no variance contributed by the extrinsic randomness), because its transition kernel (of the

corresponding Markov process) is close to that of the full-gradient-MCMC method. This

is how better sampling accuracy can be achieved.

The main demonstration of EWSG is based on underdamped Langevin dynamics, al-

though it works for other MCMC methods too (e.g., Appendix A.2, A.3). To concentrate

on the role of non-uniform SG weights, we will work with constant step sizes only. The fact

that EWSG has locally reduced variance than its uniform counterpart is rigorously shown in

Theorem 2. Furthermore, a global non-asymptotic error analysis is given in Theorem 3 to

quantify the convergence and improved accuracy of EWSG, as well as to provide insights

about hyperparameter choices.

Practically, the non-uniform gradient subsampling of EWSG is efficiently implemented

via a Metropolis-Hastings chain over the data index. A number of experiments on synthetic

and real world data sets, across downstream tasks including Bayesian logistic regression

and Bayesian neural networks, are conducted to demonstrate the effectiveness of EWSG

and validate our theoretical results, despite the approximation used in the implementation.

9

In addition to improved accuracy, the convergence speed was empirically observed, in a fair

comparison setup based on the same data pass, to be comparable to its uniform counterpart

when hyper-parameters are appropriately chosen. The convergence (per data pass) was

also seen to be clearly faster than a classical Variance Reduction (VR) approach (note:

for sampling, not optimization), and EWSG hence provides a useful alternative to VR.

Additional theoretical study of EWSG convergence speed is provided in Appendix A.5.

2.1 Related Work

Stochastic Gradient MCMC Methods Since the seminal work of SGLD [17], much

progress [19, 20] has been made in the field of SG-MCMC. [23] theoretically justified

the convergence of SGLD and offered practical guidance on tuning step size. [24] intro-

duced a preconditioner and improved stability of SGLD. We also refer to [41] and [42]

which will be discussed in Section 2.7. While these work were mostly based on 1st-order

(overdamped) Langevin, other dynamics were considered too. For instance, [18] proposed

SGHMC, which is closely related to underdamped Langevin dynamics [43, 44], and [21]

put it in a more general framework. underdamped Langevin dynamics was recently shown

to be faster than the 1st-order version in appropriate setups [28, 30] and began to gain more

attention.

Variance Reduction For optimization, vanilla SG methods usually find approximate

solutions quickly but the convergence slows down when an accurate solution is needed [45,

46]. SAG [47] improved the convergence speed of stochastic gradient methods to linear,

which is the same as gradient descent methods with full gradient, at the expense of large

memory overhead. SVRG [46] successfully reduced this memory overhead. SAGA [48]

furthers improved convergence speed over SAG and SVRG. For sampling, [49] applied VR

techniques to SGLD (see also [50, 51]). However, many VR methods have large memory

overhead and/or periodically use the whole data set for gradient estimation calibration, and

10

hence can be resource-demanding.

EWSG is derived based on matching transition kernels of MCMC and improves the

accuracy of the entire distribution rather than just the variance. However, it does have a

consequence of variance reduction and thus can be implicitly regarded as a VR method.

When compared to the classic work on VR for SG-MCMC [49], EWSG converges faster

when the same amount of data pass is used, although its sampling accuracy is below that

of VR for Gaussian targets (but well above vanilla SG; see Section 2.7.1). In this sense,

EWSG and VR suit different application domains: EWSG can replace vanilla SG for tasks

in which the priority is speed and then accuracy, as it keeps the speed but improves the

accuracy; on the other hand, VR remains to be the heavy weapon for accuracy-demanding

scenarios. Importantly, EWSG, as a generic way to improve SG-MCMC methods, can be

combined with VR too (e.g., Appendix A.3); thus, they are not exclusive or competitors.

Importance Sampling (IS) IS employs nonuniform weights to improve SG methods for

optimization. Traditional IS uses fixed weights that do not change along iterations, and the

weight computation requires prior information of gradient terms, e.g., Lipschitz constants

of gradient [52, 53, 54], which are usually unknown or difficult to estimate. Adaptive IS

was also proposed in which the importance was re-evaluated at each iteration, whose com-

putation usually required the entire data set per iteration and may also require information

like the upper bound of gradient [55, 56].

For sampling, it is not easy to combine IS with SG [42]; the same paper is, to our

knowledge, the closest to this goal and will be compared with in Section 2.7.3. EWSG

can be viewed as a way to combine (adaptive) IS with SG for efficient sampling. It require

no oracle about the gradient, nor any evaluation over the full data set. Instead, an inner-

loop Metropolis chain maintains a random index that approximates a state-dependent non-

uniform distribution (i.e. the weights/importance).

11

Other Mini-batch MCMC Methods Besides SG-MCMC methods, there are also many

non-gradient-based MCMC methods using only a subset of data in each iteration. For ex-

ample, austerity MH [57] formulates Metropolis-Hastings step as a statistical hypothesis

testing problem and proposes to use only a subset of data to make statistically signifi-

cant accept/reject decision. Using a subsampled unbiased estimator of the likelihood in a

pseudo-marginal framework to accelerate the Metropolis-Hastings algorithm is proposed

in [58]. A notable exact MCMC method is FlyMC [41], which introduces an auxiliary

binary random variable for each datum and only the subset of data whose corresponding

auxiliary binary indicator ”light” up, are used in iteration. Some more recent advances on

exact MCMC methods include [59, 60]. We also refer to [58] for an excellent review on

subsampling MCMC methods.

2.2 Background and Notation

Underdamped Langevin Dynamics (ULD) 1 is

dθ = rdt

dr = −(∇f(θ) + γr)dt+ σdW

(2.1)

where θ, r ∈ Rd are state and momentum variables, V is a potential energy function

which in our context (originated from cost minimization or Bayesian inference over many

data) is the sum of many terms f(θ) =
∑n

i=1 fi(θ), γ is a friction coefficient, σ is in-

trinsic noise amplitude, and W is a standard d-dimensional Wiener process. Under mild

assumptions on V , Langevin dynamics admits a unique invariant distribution π(θ, r) ∼

exp
(
− 1
T

(f(θ) + ‖r‖2
2

)
)

[10] and is in many cases geometric ergodic. T is the temperature

of system determined via the fluctuation dissipation theorem σ2 = 2γT [61].

We consider ULD instead of the overdamped version mainly for two reasons: (i) one

1In the field of machine learning, it is customary to use certain letters such as θ,w, etc. to denote the
parameter of interest , we follow the convention and rewrite ULD in (θ, r)

12

may think ULD is more complicated, and we’d like to show it is still easy to equip it

with EWSG (EWSG can work for many MCMC methods; Appendix A.2 has an over-

damped version); (ii) ULD can converge faster than overdamped Langevin for instance

in high-dimensions (e.g.,[28, 30, 62]). Like the overdamped version, numerical integra-

tors for ULD with well captured statistical properties of the continuous process have been

extensively investigated (e.g, [12, 63]), and both the overdamped and underdamped inte-

grators are friendly to derivations that will allow us to obtain explicit expressions of the

non-uniform weights.

Terminology-wise,∇f will be called the full/batch-gradient, n∇fI with random I will

be called stochastic gradient (SG), and when I is uniform distributed it will be called a uni-

form SG/subsampling, otherwise non-uniform. When uniform SG is used to approximate

the batch-gradient in underdamped Langevin, the method will be referred to as (vanilla)

stochastic gradient underdamped Langevin dynamics (SGULD/SGHMC2), and it serves as

a baseline in experiments.

2.3 An Illustration of Non-optimality of Uniform Subsampling

Uniform subsampling of gradients have long been the dominant way of stochastic gradient

approximations mainly because it is intuitive, unbiased and easy to implement.

However, uniform gradient subsampling can introduce large noise, and is sub-optimal

even in the family of unbiased stochastic gradient estimator, as the following Theorem 1

will show. One intuition is, consider for example cases where data size n is larger than

dimension d. In such cases, {∇fi}i=1,2,··· ,n ⊂ Rd are linearly dependent and hence it

is likely that there exist probability distributions {pi}i=1,2,··· ,n other than the uniform one

such that the gradient estimate is unbiased, however with smaller variance because linearly

dependent terms need not to be all used. This is a motivation for us to develop non-uniform

subsampling schemes (weights may be θ dependent), although we will not require n > d

2To be consistent with existing literature, we will refer SGULD as SGHMC in the sequel.

13

later.

Theorem 1 Suppose given θ ∈ Rd, the errors of SG approximation bi = n∇fi(θ) −

∇f(θ), 1 ≤ i ≤ n are i.i.d. absolutely continuous random vectors with possibly-θ-

dependent density p(·|θ) and n > d. We call p ∈ Rn a sparse vector if the number of

non-zero entries in p is no greater than d + 1, i.e. ‖θ‖0 ≤ d + 1. Then with probability

1, the optimal probability distribution p? that is unbiased and minimizes the trace of the

covariance of n∇fI(θ), i.e. p? which solves the following, is a sparse vector.

min
p

Tr(EI∼p[bIbTI]) s.t. EI∼p[bI] = 0, (2.2)

Proof: Denote the set of all n-dimensional probability vectors by Σn, the set of sparse

probability vectors by S, and the set of non-sparse (dense) probability vectors by D =

Σn \ S . Denote B = [b1, · · · , bn], then the optimization problem can be written as

min
n∑
i=1

pi‖bi‖2

s.t.

Bp = 0

pT1n = 1

pi ≥ 0, i = 1, 2, · · · , n

Note that the feasible region is always non-empty (take p to be a uniform distribution)

and is also closed and bounded, hence this linear programming is always solvable. Denote

the set of all minimizers byM. Note thatM depends on b1, · · · , bn and is in this sense

random.

The Lagrange function is

L(p,λ, µ,ω) = pTs− λTBp− µ(pT1n)− ωTp

14

where s = [‖b1‖2, ‖b2‖2, · · · , ‖bn‖2]T and λ, µ,ω are dual variables. The optimality con-

dition reads as
∂L

∂p
= s−BTλ− µ1n − ω = 0

Dual feasibilty and complementary slackness require

ωi ≤ 0, i = 1, 2, · · · , n

ωTp = 0

Consider the probability of the event {a dense probability vector can solve the above

minimization problem}, i.e., P(M∩D 6= ∅). It is upper bounded by

P(M∩D 6= ∅) ≤ P(p ∈ D and p solves KKT condition)

Since p ∈ D, complementary slackness implies that at least d+ 2 entries in ω are zero.

Denote the indices of these entries by J . For every j ∈ J , by optimality condition, we

have sj − λTbj − µ = 0, i.e.,

‖bj‖2 − λTbj − µ = 0

Take the first d + 1 indices in J , and note a geometric fact that d + 1 points in a d-

dimensional space must be on the surface of a hypersphere of at most d − 1 dimension,

which we denote by S = Sq−1 + x for some vector x and integer q ≤ d. Because bi’s

15

distribution is absolutely continuous, we have

P(p ∈ D and p solves KKT condition)

≤P(p ∈ D and bj ∈ S,∀j ∈ J)

≤P(bj ∈ S,∀j ∈ J)

=P(bjk ∈ S, k = d+ 2, · · · , |J |)

=

|J |∏
k=d+2

P(bjk ∈ S) (independence)

=0 (absolute continuous)

Hence P(M∩D 6= ∅) = 0 and

1 = P(M 6= ∅)

= P((M∩S) ∪ (M∩D) 6= ∅)

≤ P(M∩S 6= ∅) + P(M∩D 6= ∅)

= P(M∩S 6= ∅)

Therefore we have

P(M∩S 6= ∅) = 1

Despite the sparsity of p?, which seemingly suggests one only needs at most d + 1

gradient terms per iteration when using SG methods, it is not practical because p? requires

solving the linear programming problem (2.2) in Theorem 1, for which an entire data pass

is needed. Nevertheless, this result motivates us to seek alternatives to uniform SG. The

EWSG method we will develop indeed has reduced local variance with high probability,

and at the same time remain efficiently implementable without having to use all data per

parameter update; however, its practical implementation can be biased, but a global error

16

analysis (Theorem 3) shows that trading bias for variance can still be worthy.

2.4 Derivation of Exponential Weighted Stochastic Gradient

MCMC methods are characterized by their transition kernels. In traditional SG-MCMC

methods, uniform SG is used, which is independent of the intrinsic randomness of MCMC

methods (e.g. diffusion in ULD), as a result, the transition kernel of SG-MCMC is quite

different from that with full gradient. Therefore, it is natural to ask - is it possible to couple

these two originally independent randomness so that the transition kernels can be better

matched and the sampling accuracy can be hence improved?

Consider Euler-Maruyama (EM) discretization3 of Equation (2.1):

θk+1 = θk + rkh

rk+1 = rk − (∇f(θk) + γrk)h+ σ
√
hξk+1

(2.3)

where h is step size and ξk+1’s are i.i.d. d-dimensional standard Gaussian random variables.

Denote the transition kernel of EM discretization with full gradient by PEM(θk+1, rk+1|θk, rk).

Then, replace ∇f(θk) by a weighted SG n∇fIk(θk), where Ik is the index chosen to ap-

proximate full gradient and has p.m.f. P(Ik = i|θk, rk) = pi. Denote the new transition

3EM is not the most accurate or robust discretization, see e.g., [12, 63], but since it may still be the most
used method, demonstrations here will be based on EM. The same idea of EWSG can easily apply to most
other discretizations such as GLA [63].

17

kernel by P̃EM(θk+1, rk+1|θk, rk). We have the following decomposition

PEM(θk+1, rk+1|θk, rk)

=1{θk+rkh}(θk+1)
1

Z
exp

(
−‖rk+1 − rk + (∇f(θk) + γrk)h‖2

2σ2h

)

=1{θk+rkh}(θk+1)
1

Z
exp

(
−‖x+

∑n
i=1 ai‖2

2

)

=1{θk+rkh}(θk+1)
1

Z

n∑
j=1

1

n

exp

(
−‖x+

∑n
i=1 ai‖2

2
+
‖x+ nai‖2

2

)
︸ ︷︷ ︸

pi

exp

(
−‖x+ nai‖2

2

)

=P̃EM(θk+1, rk+1|θk, rk) (2.4)

where Z is a normalization constant, x , rk+1−rk+hγrk
σ
√
h

and ai ,
√
h∇fi(θk)

σ
. Motivated by

Equation (2.4), if we were able to choose pi ∝ exp
(
−‖x+

∑n
i=1 ai‖2
2

+ ‖x+nai‖2
2

)
, we would

be able to recover the transition kernel of full gradient with that of stochastic gradient.

However, Equation (2.4) is only formal and infeasible, because x is dependent of future

state θk+1 which we do not know. To turn this idea into a practically feasible algorithm,

we will fix x as a hyper-parameter and hope that the approximation is good enough so that

PEM(θk+1, rk+1|θk, rk) ≈ P̃EM(θk+1, rk+1|θk, rk) still holds.

We refer to this choice of pi Exponentially Weighted Stochastic Gradient (EWSG).

Unlike Theorem 1, EWSG does not require n > d to work. Note the idea of designing

non-uniform weights of SG-MCMC to match the transition kernel of full gradient can be

suitably applied to a wide class of gradient-based MCMC methods; for example, Appendix

A.2 shows how EWSG can be applied to Langevin Monte Carlo (overdamped Langevin),

and Appendix A.3 shows how it can be combined with VR. Therefore, EWSG complements

a wide range of SG-MCMC methods.

The weight choice of EWSG is motivated by reproducing the transition kernel of a

full-gradient MCMC method, hence we anticipate EWSG to be statistically more accurate

18

than a uniformly-subsampled stochastic gradient estimator. As a special but commonly

interested accuracy measure, the smaller variance of EWSG is shown with high probability:

Theorem 2 Assume {∇fi(θ)}i=1,2,··· ,n are i.i.d random vectors and |∇fi(θ)| ≤ R for

some constant R almost surely. Denote the uniform distribution over [n] by pU , the expo-

nentially weighted distribution by pE , and let ∆ = Tr[covI∼pE [n∇fI(θ)|θ]−covI∼pU [n∇fI(θ)|θ]].

If x = O(
√
h), we have E[∆] < 0, and ∃C > 0 independent of n or h such that ∀ε > 0,

P(|∆− E[∆]| ≥ ε) ≤ 2 exp

(
− ε2

nCh2

)
.

Proof: Let bi = n∇fi and assume ‖bi‖2 ≤ R for some constant R. Denote B =

[b1, b2, · · · , bn]. For any probability distribution p over {1, · · · , n}, we have

covI∼p[bI |b1, · · · , bn]

=
n∑
i=1

pibib
T
i −

 n∑
i=1

pibi

 n∑
i=1

pibi

T

=
n∑
i=1

pibib
T
i

n∑
i=1

pi −

 n∑
i=1

pibi

 n∑
i=1

pibi

T

=
∑
i<j

(bi − bj)(bi − bj)Tpipj

Therefore we let

f(B) := Tr

∑
i<j

(bi − bj)(bi − bj)Tpipj −
∑
i<j

(bi − bj)(bi − bj)T
1

n2

=
∑
i<j

‖bi − bj‖2pipj −
∑
i<j

‖bi − bj‖2 1

n2
(Tr[AB] = Tr[BA])

and use it to compare the trace of covariance matrix of uniform- and nonuniform- subsam-

plings.

19

First of all,

E[f(B)]

=E[‖bi − bj‖2]
∑
i<j

(
pipj −

1

n2

)

=E[‖bi − bj‖2]

∑
i<j

pipj −
n− 1

2n

=E[‖bi − bj‖2]

(
1−

∑n
i=1 p

2
i

2
− n− 1

2n

)

≤E[‖bi − bj‖2]

(
1− 1

n

2
− n− 1

2n

)

=0

where the inequality is due to Cauchy-Schwarz and it is a strict inequality unless all pi’s

are equal, which means uniform subsampling on average has larger variablity than a non-

uniform scheme measured by the trace of covariance matrix.

Moreover, concentration inequality can help show f(B) is negative with high probabil-

ity if h is small. To this end, plug x = O(
√
h) in and rewrite

pi =
1

Z
exp

Fh
[
‖y + 1

n

∑n
i=1 bi‖2

2
− ‖y + bi‖2

2

]
where y = σ√

h
x = O(1), F = − 1

σ2 and Z is the normalization constant. Denote the

unnormalized probability by

p̃i = exp

Fh
[
‖y + 1

n

∑n
i=1 bi‖2

2
− ‖y + bi‖2

2

]

20

and we have

f(B) =
1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2

(
pipj −

1

n2

)

=
1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2 p̃ip̃j
[
∑n

k=1 p̃k]
2
− 1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2 1

n2

To prove concentration results, it is useful to estimate

Ci = sup
b1,··· ,bn∈B(0,R)

b̂i∈B(0,R)

|f(b1, · · · , bi, · · · , bn)

−f(b1, · · · , b̂i, · · · , bn)|

where B(0, R) is a ball centered at origin with radius R in Rd.

Due to the mean value theorem, we have Ci ≤ 2R sup | ∂f
∂bi
|. By symmetry, it suffices

to compute sup | ∂f
∂b1
| to upper bound C1. Note that

∂p̃j
∂b1

= 2p̃jFh[
1

n
(y +

1

n

n∑
i=1

bi)− (y + bj)δ1j] = O(h)p̃j

where δ1j is the Kronecker delta function. Thus

∂f

∂b1

=
∑
j=1

(b1 − bj)
p̃1p̃j

[
∑n

k=1 p̃k]
2
−

n∑
j=1

(b1 − bj)
1

n2
+

n∑
i,j=1

‖b1 − bj‖2 O(h)p̃ip̃j
[
∑n

k=1 p̃k]
2

− 2
n∑

i,j=1

‖b1 − bj‖2 p̃ip̃j[∑n
k=1 p̃k

]3 n∑
k=1

p̃kO(h)

= p̃1

n∑
j=1

(b1 − bj)
p̃j

[
∑n

k=1 p̃k]
2
−

n∑
j=1

(b1 − bj)
1

n2
+
O(n2)O(h)

O(n2)
+
O(n2)

O(n3)
O(n)O(h)

= O(
h

n
) +O(h) +O(h)

= O(h)

where O(h
n
) in the 2nd last equation comes from the difference of the first two terms in the

21

3rd last equation. This estimation shows that Ci ≤ 2RO(h) = O(h).

Therefore, by McDiarmid’s inequality, we conclude for any ε > 0,

P(|f − E[f]| > ε) ≤ 2 exp

(
−2ε2∑n
i=1C

2
i

)
= 2 exp

(
−2ε2

nO(h2)

)
.

Any choice of h(n) = o(n−1/2) will render this probability asymptotically vanishing as n

grows, which means that f will be negative with high probability, which is equivalent to

reduced variance per step.

It is not surprising that less non-intrinsic local variance correlates with better global

statistical accuracy, which will be made explicit and rigorous in the next subsection.

2.5 Non-asymptotic Error Bound

We now establish a non-asymptotic global sampling error bound (in mean square distance

between arbitrary test observables) of SG underdamped Langevin algorithms (the bound

applies to both EWSG and other methods e.g., SGHMC). The main tool we will be using

is the Poisson equation machinery [64, 25, 22]. A brief overview is the following:

LetX =

θ
r

. The generator L of diffusion process Equation (2.1) is

L(f(X t)) = lim
h→0

E[f(X t+h)]− E[f(X t)]

h

=rT∇θf − (γr +∇f(θ))T∇rf + γ∆rf.

Given a test function φ(x), its posterior average is φ̄ =
∫
φ(x)π(x)dx, approximated

by its time average of samples φ̂K = 1
K

∑K
k=1 φ(XE

k), whereXE
k is the sample path given

by EM integrator. Then the Poisson equation Lψ = φ− φ̄ can be a useful tool for the weak

convergence analysis of SG-MCMC. The solution ψ characterizes the difference between

φ and its posterior average φ̄.

22

Our main theoretical result is the following:

Theorem 3 Assume E[‖∇fi(θEk)‖l] < M1,E[‖rEk ‖l] < M2,∀l = 1, 2, · · · , 12,∀i =

1, 2, · · · , n and ∀k ≥ 0. Assume the Poisson equation solution ψ exists, and up to its

3rd-order derivatives are uniformly bounded ‖Dlψ‖∞ < M3, l = 0, 1, 2, 3. Then exist

constants C1, C2, C3 > 0 depending on M1,M2,M3, such that

E
(
φ̂K − φ̄

)2 ≤ C1
1

T
+ C2

h

T

∑K−1
k=0 E[Tr[cov(n∇fIk |Fk)]]

K
+ C3h

2 (2.5)

where T = Kh is the corresponding time in the underlying continuous dynamics, Ik is

the index of the datum used to estimate gradient at k-th iteration, and cov(n∇fIk |Fk) is

the covariance of stochastic gradient at k-th iteration conditioned on the current sigma

algebra Fk in the filtration.

Proof: We rewrite the generator of underdamped Langevin with full gradient as

Lf(X) = F (X)T

∇θf(X)

∇rf(X)

+
1

2
A : ∇∇f(X)

where

F (X) =

 r

−γr −∇f(θ)

 , A = GGT and G =

Od×d Od×d

Od×d
√

2γId×d

Rewrite the discretized underdamped Langevin with stochastic gradient in variableX

XE
k+1 −XE

k = hF k(X
E
k) +

√
hGkηk+1

23

where

F k(X) =

 r

−γr − n∇fIk(θ)

 , Gk = G =

Od×d Od×d

Od×d
√

2γId×d

and ηk+1 is a 2d dimensional standard Gaussian random vector. Note that this represen-

tation include both SGHMC and EWSG, for SGHMC Ik follows uniform distribution and

for EWSG, Ik follows the MCMC-approximated exponentially weighted distribution.

Denote the generator associated with stochastic gradient underdamped Langevin at the

k-th iteration by

Lkf(X) = F k(X)T

∇θf(X)

∇rf(X)

+
1

2
A : ∇∇f(X)

and the difference of the generators of full gradient and stochastic gradient underdamped

Langevin at k-th interation is denoted by

∆Lkf(X) = (Lk − L)f(X) =(F k(X)− F (X))T

∇θf(X)

∇rf(X)

=〈∇f(θ)− n∇fIk(θ),∇rf(X)〉

For brevity, we write φk = φ(XE
k), F E

k = F k(X
E
k), ψk = ψ(XE

k) and Dlφk =

(Dlψ)(XE
k) where (Dlψ)(z) is the l-th order derivative. We write (Dlψ)[s1, s2, · · · , sl]

for derivative evaluated in the direction sj, j = 1, 2, · · · , l. Define

δk = XE
k+1 −XE

k = hF E
k +
√
hGkηk+1

Under the assumptions of Theorem 3, we show that the vector fieldFE
k also has bounded

momentum up to p-th order.

24

Lemma 4 Under the assumption of Theorem 3, there exists a constant M such that up to

p
2
-th order moments of random vector field F E

k are bounded

E‖F E
k ‖

j
2 ≤M, ∀j = 0, 1, 2, · · · , p

2
, ∀k = 0, 1, 2 · · · ,

Proof: It suffices to bound the highest moment, as all other lower order moments are

bounded by the highest one by Holder’s inequality.

First notice that

‖F E
k ‖2 =

∥∥∥∥∥∥∥
 rEk

−γrEk −∇fIk(θ
E
k)

∥∥∥∥∥∥∥

2

≤
√

1 + γ2‖rEk ‖2 + ‖∇fIk(θEk)‖2

Hence

E‖F E
k ‖

p
2
2 ≤E

(√
1 + γ2‖rEk ‖2 + ‖∇fIk(θEk)‖2

) p
2

=E

p
2∑
i=0

(p
2

i

)
‖rEk ‖i2‖∇fIk(θEk)‖

p
2
−i

2

=

p
2∑
i=0

(p
2

i

)
E
[
‖∇fIk(θEk)‖

p
2
−i

2 ‖rEk ‖i2
]

≤

p
2∑
i=0

(p
2

i

)√
E
[
‖∇fIk(θEk)‖p−2i

2

]√
E
[
‖rEk ‖2i

2

]
(Cauchy-Schwarz inequality)

By assumption, we know each E
[
‖∇fIk(θEk)‖l2

]
,E‖rEk ‖l2, l = 0, 1, · · · , p is bounded, so

we conclude there exists a constantM > 0 that bounds the p
2
-th order moment of F E

k ,∀k =

0, 1, · · · ,

Using Taylor’s expansion for ψ, we have

ψk+1 = ψk +Dψk[δk] +
1

2
D2ψk[δk, δk] +

1

6
D3ψk[δk, δk, δk] +Rk+1

25

where

Rk+1 =

(
1

6

∫ 1

0

s3D4ψ(sXE
k + (1− s)XE

k+1)ds

)
[δk, δk, δk, δk]

is the remainder term. Therefore, we have

ψk+1 =ψk + hLkψk + h
1
2Dψk[Gkηk+1] + h

3
2D2ψk[F

E
k , Gkηk+1] (2.6)

+
1

2
h2D2ψk[F

E
k ,F

E
k] +

1

6
D3ψk[δk, δk, δk] + rk+1 +Rk+1

where

rk+1 =
h

2

(
D2ψk[Gkηk+1, Gkηk+1]− A : ∇∇ψk

)
Summing Equation (2.6) ove the first K terms, dividing by Kh and use Poisson equa-

tion, we have

1

Kh
(ψK − ψ0) =

1

K

K−1∑
k=0

(φk − φ̄) +
1

K

K−1∑
k=0

∆Lkψk +
1

Kh

3∑
i=1

(Mi,K + Si,K), (2.7)

where

M1,K =
K−1∑
k=0

rk+1, M2,K = h
1
2

K−1∑
k=0

Dψk[Gkηk+1], M3,K = h
3
2

K−1∑
k=0

D2ψk[F
E
k , Gkηk+1],

S1,K =
h2

2

K−1∑
k=0

D2ψk[F
E
k ,F

E
k], S2,K =

K−1∑
k=0

Rk+1, S3,K =
1

6

K−1∑
k=0

D3ψk[δk, δk, δk]

Furthermore, it will be convenient to decompose

S3,K = M0,K + S0,K

26

where

S0,K =h2

K−1∑
k=0

(
hD3ψk[F

E
k ,F

E
k ,F

E
k] + 3D3ψk[F

E
k , Gkηk+1, Gkηk+1]

)
M0,K =h

3
2

K−1∑
k=0

(
D3ψk[Gkηk+1, Gkηk+1, Gkηk+1] + 3hD3ψk[F

E
k ,F

E
k , Gkηk+1]

)
Rearrange terms in Equation (2.6), square on both sides, use Cauchy-Schwarz inequal-

ity and take expectation, we have

E
(
φ̂K − φ̄

)2

≤C

E(ψK − ψ0)2

(Kh)2
+

1

K2
E

K−1∑
k=0

(∆Lkψk)

2

+
1

(Kh)2

2∑
i=0

ES2
i,K +

1

(Kh)2

3∑
i=0

EM2
i,K

=C

E(ψK − ψ0)2

T 2
+

1

K2
E

K−1∑
k=0

(∆Lkψk)

2

+
1

T 2

2∑
i=0

ES2
i,K +

1

T 2

3∑
i=0

EM2
i,K

where T = kh, the corresponding time of the underlying continuous dynamics.

We now show how each term is bounded. By boundedness of ψ, we have

E
(ψK − ψ0)2

T 2
≤ 4‖ψ‖2

∞
T 2

= O(
1

T 2
)

The second term 1
K2E

(∑K−1
k=0 (∆Lkψk)

)2 is critical in showing the advantage of EWSG,

and we will show how to derive its bound in detail later.

The technique we use to bound 1
T 2ES2

i,K , i = 0, 1, 2 are all similar, we will first show

an upper bound for |Si,K | in terms of powers of ‖F E
k ‖, then take square and expectation,

and finally expand squares and use Lemma 4 extensively to derive bounds. As a concrete

example, we will show how to bound 1
T 2ES2

0,K . Other bounds follow in a similar fashion

and details are omitted.

27

To bound the term containing S0,K , we first note that

|S0,K | ≤h2

K−1∑
k=0

(
h|D3ψk[F

E
k ,F

E
k ,F

E
k]|+ 3|D3ψk[F

E
k , Gkηk+1, Gkηk+1]|

)
≤h2‖D3ψ‖∞

K−1∑
k=0

(
h‖F E

k ‖3
2 + 3‖F E

k ‖2‖Gkηk+1‖2
2

)
Square both sides of the above inequality and take expectation, we obtain

1

T 2
E|S0,K |2 (2.8)

≤ h
4

T 2
‖D3ψ‖2

∞E
(K−1∑
k=0

h‖F E
k ‖3

2 + 3‖F E
k ‖2‖Gkηk+1‖2

2

)2

≤ h
4

T 2
‖D3ψ‖2

∞K
K−1∑
k=0

E(h‖F E
k ‖3

2 + 3‖F E
k ‖2‖Gkηk+1‖2

2)2 (Cauchy-Schwarz inequality)

=
h4

T 2
‖D3ψ‖2

∞K
K−1∑
k=0

E[h2‖F E
k ‖6

2 + 6‖F E
k ‖4

2‖Gkηk+1‖2
2 + 9‖F E

k ‖2
2‖Gkηk+1‖2

4]

=
h4

T 2
‖D3ψ‖2

∞K
K−1∑
k=0

h2E‖F E
k ‖6

2 + 6E‖F E
k ‖4

2E‖Gkηk+1‖2
2 + 9E‖F E

k ‖2
2E‖Gkηk+1‖2

4

=
1

T 2
O(K2h4)

=O(h2)

To bound the term containing S1,K and S2,K , we have

|S1,K | ≤
h2

2

K−1∑
k=0

‖D2ψ‖∞‖F E
k ‖2

2

|S2,K | ≤
1

24
‖D4ψ‖∞

K−1∑
k=0

‖δk‖4
2 ≤

1

24
h2‖D4ψ‖∞

K−1∑
k=0

‖
√
hF E

k +Gkηk+1‖4
2

28

Then we can obtain the following bound in a similar fashion as in Equation (2.8)

1

T 2
ES2

1,K =O(h2)

1

T 2
ES2

2,K =O(h2)

Now we will use martingale argument to bound 1
T 2EM2

i,K , i = 0, 1, 2, 3. There are two

injected randomness at k-th iteration, the Gaussian noise ηk+1 and the stochastic gradient

term determined by the stochastic index Ik. Denote the sigma algebra at k-th iteration by

Fk. For both SGHMC and EWSG we have

ηk+1 ⊥ Fk and Ik ⊥ ηk+1

hence

E[ηk+1|Fk] =0

E[D3ψk[Gkηk+1, Gkηk+1, Gkηk+1]|Fk] =0

E[D2ψk[F
E
k , Gkηk+1]|Fk] =0

E[D3ψk[F
E
k ,F

E
k , Gkηk+1]|Fk] =0

Therefore, it is clear that Mi,K , i = 0, 1, 2, 3 are all martingales. Due to martingale

29

properties, we have

1

T 2
EM2

0,K =
h3

T 2

K−1∑
k=0

E
(
D3ψk[Gkηk+1, Gkηk+1, Gkηk+1] + 3hD3ψk[F

E
k ,F

E
k , Gkηk+1]

)2

=
1

T 2
O(h3K) = O(

h2

T
)

1

T 2
EM2

1,K =
1

T 2

K−1∑
k=0

Er2
k+1 =

1

T 2
O(h2K) = O(

h

T
)

1

T 2
EM2

2,K =
h

T 2

K−1∑
k=0

E(Dψk[Gkηk+1])2 =
1

T 2
O(hK) = O(

1

T
)

1

T 2
EM2

3,K =
1

T 2
h3

K−1∑
k=0

E(D2ψk[F
E
k , Gkηk+1])2 =

1

T 2
O(h3K) = O(

h2

T
)

We now collect all bounds derived so far and obtain

E
(
φ̂K − φ̄

)2 ≤C

O(
1

T 2
) +

1

K2
E

K−1∑
k=0

(∆Lkψk)

2

+O(h2) +O(
h

T
) +O(

1

T
) +O(

h2

T
)

≤C

O(
1

T
) +

1

K2
E

K−1∑
k=0

(∆Lkψk)

2

+O(h2)

 (2.9)

In the above inequality, we use 1
T 2 <

1
T

and h
T
≤ 1

T
, h

2

T
≤ 1

T
as typically we assume T � 1

and h� 1 in non-asymptotic analysis.

Now we focus on the remaining term 1
K2E

(∑K−1
k=0 ∆Lkψk

)2. For SGHMC, we have

that E[∆Lkψk|Fk] = 0, hence
∑K−1

k=0 ∆Lkψk is a martingale. By martingale property, we

have

1

K2
E

K−1∑
k=0

∆Lkψk

2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2

30

For EWSG,
∑K−1

k=0 ∆Lkψk is no longer a martingale, but we still have the following

1

K2
E

K−1∑
k=0

∆Lkψk

2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E(∆Liψi)(∆Ljψj)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E[(∆Liψi)E[∆Ljψj|Fj]]

(2.10)

For the term E[∆Ljψj|Fj], we have

E[∆Ljψj|Fj] = E[〈∇f(θEj)−n∇fIj(θEj),∇rψj〉|Fj] = 〈E[∇f(θEj)−n∇fIj(θEj)|Fj],∇rψj〉

asψj ∈ Fj . Then by Cauchy-Schwarz inequality, boundedness ofψ and the fact ‖∇f(θEj)−

E[n∇fIj(θEj)|Fj]‖2 = O(h) as shown in the proof of Theorem 2, we conclude E[∆Ljψj|Fj] =

O(h).

Now plug the above result in Equation (2.10), we have

1

K2
E

K−1∑
k=0

∆Lkψk

2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E[(∆Liψi)E[∆Ljψj|Fj]]

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

E[∆Liψi]O(h)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

O(h2)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +
2

K2

∑
i<j

O(h2)

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +O(h2)

31

Combine both cases of SGHMC and EWSG, we obtain

1

K2
E

K−1∑
k=0

∆Lkψk

2

=
1

K2

K−1∑
k=0

E(∆Lkψk)2 +O(h2)

Note that O(h2) term will later be combined with other error terms with the same order.

The final piece is to bound 1
K2

∑K−1
k=0 E(∆Lkψk)2, and we have

1

K2

K−1∑
k=0

E(∆Lkψk)2

=
1

K2

K−1∑
k=0

E〈∇f(θEk)− n∇fIk(θ
E
k),∇rψk〉2

≤ 1

K2

K−1∑
k=0

E[‖∇f(θEk)− n∇fIk(θ
E
k)‖2

2 · ‖∇rψk‖2
2] (Cauchy-Schwarz inequality)

≤M
2
3

K2

K−1∑
k=0

E[‖∇f(θEk)− n∇fIk(θ
E
k)‖2

2]

=
M2

3

K2

K−1∑
k=0

E[E[‖∇f(θEk)− n∇fIk(θ
E
k)‖2

2 | Fk]]

≤2M2
3

K2

K−1∑
k=0

E[E[‖∇f(θEk)− E[n∇fIk(θ
E
k) | Fk]‖2 | Fk]︸ ︷︷ ︸

Q1

]

+E[‖E[n∇fIk(θ
E
k) | Fk]− n∇fIk(θ

E
k)‖2

2 | Fk]︸ ︷︷ ︸
Q2

]

The term Q1 captures the bias of stochastic gradient. For SGHMC, uniform gradient

subsamping leads to an unbiased gradient estimator, so Q1 = 0 for SGHMC. For EWSG,

same as in the proof of Theorem 2, we have that

E
[
‖∇f(θEk)− E[n∇fIk(θ

E
k) | Fk]‖2 | Fk

]
= O(h2)

Combining two cases, we have

Q1 = O(h2)

32

For a random vector v with mean E[v] = 0, we have

E[‖v‖2] = E
[
Tr[vvT]

]
= Tr

[
E[vvT]

]
= Tr

[
cov(v)

]
where cov(v) is the covariance matrix of random vector v. Therefore, we have that

Q2 = Tr
[
cov(n∇fIk |Fk)

]
,

i.e., Q2 is the trace of the covariance matrix of stochastic gradient estimate conditioned on

current filtration Fk.

Combining Q1 and Q2, we have that

1

K2
E

K−1∑
k=0

∆Lkψk

2

≤2M2
3

K2

K−1∑
k=0

[
E[Tr[cov(n∇fIk |Fk)]] +O(h2)

]
=

2M2
3h

T

∑K−1
k=0 E[Tr[cov(n∇fIk |Fk)]]

K
+O(

h3

T
)

Now plug this bound into Equation (2.9) and we obtain

E
(
φ̂K − φ̄

)2 ≤ C1
1

T
+ C2

h

T

∑K−1
k=0 E

[
Tr[cov(n∇fIk |Fk)]

]
K

+ C3h
2

for some constants C1, C2, C3 > 0 depending on M1,M2,M3.

Remark: (interpreting the three terms in the bound) Unlike a typical VR method which

aims at finding unbiased gradient estimator with reduced variance, EWSG aims at bringing

the entire density closer to that of a batch-gradient MCMC. As a consequence, its practical

implementation may correspond to SG that has reduced variance but a small bias too. Equa-

tion (2.5) quantifies this bias-variance trade-off. How the extrinsic local variance and bias

contribute to the global error is respectively reflected in the 2nd and 3rd terms, although

the 3rd term also contains a contribution from the numerical discretization error. With or

33

without bias, the 3rd term remains O(h2) because of this discretization error. However, for

moderate T , the 2nd term is generally larger than the 3rd due to its lower order in h, which

means reducing local variance can improve sampling accuracy even if at the cost of intro-

ducing a small bias. Since EWSG has a smaller local variance than uniform SG (Theorem

2, as a special case of improved overall statistical accuracy), its global performance is also

favorable. The 1st term is for the convergence of the continuous process (Equation (2.1) in

this case).

Remark: (innovation and relation with the literature) Theorem 3, to the best of our

knowledge, is the first that incorporates the effects of both local bias and local variance of

a SG approximation (previous SOTA bounds are only for unbiased SG). It still works when

restricting to unbiased SG, and in this case our bound reduces to SOTA [25, 22]. Some

more facts include: [64], being the seminal work and from which we adapt our proof, only

discussed the batch gradient case, whereas our theory has additional (non-uniform) SG.

[25, 22] studied the effect of SG, but the SG considered there did not use state-dependent

weights, which would destroy several martingales used in their proofs. Unlike in [64] but

like in [25, 22], our state space is not the compact torus but Rd. Also, the time average φ̂K ,

to which our results apply, is a commonly used estimator, particularly when using a long

time trajectory of Markov chain for sampling. However, if one is interested in an alternative

of using an ensemble for sampling, techniques in [28, 65] might be useful to further bound

difference between the law ofXk and the target distribution.

2.6 Practical Implementation

In EWSG, the probability of each gradient term is pi = Ẑ−1 exp

{
−‖x+

∑n
j=1 aj‖2

2
+ ‖x+nai‖2

2

}
.

Although the term ‖x +
∑n

j=1 aj‖2/2 depends on the full data set, it is shared by all pi’s

and can be absorbed into the normalization constant Ẑ−1 (we still included it explicitly due

to the needs of analyses in proofs); unique to each pi is only the term ‖x + nai‖2/2. This

motivates us to run a Metropolis-Hastings chain over the possible indices i ∈ {1, 2 · · · , n}:

34

at each inner-loop step, a proposal of index j is uniformly drawn, and then accepted with

probability P (i→ j) =

min

1, exp

(
‖x+ naj‖2

2
− ‖x+ nai‖2

2

) ; (2.11)

if accepted, the current index i is replaced by j. When the chain converges, the index

will follow the distribution given by pi. The advantage is, we avoid passing through the

entire data sets to compute each pi, but the index will still approximately sample from the

non-uniform distribution.

In practice, we often only perform M = 1 step of the Metropolis index chain per

integration step, especially if h is not too large. The rationale is, when h is small, the

outer iteration evolves slower than the index chain, and as θ does not change much in,

say, N outer steps, effectively N × M inner steps take place on almost the same index

chain, which makes the index r.v. equilibrate better. Regarding the larger h case (where the

efficacy of local variance reduction via non-uniform subsampling is more pronounced; see

e.g., Theorem 3), M = 1 may no longer be optimal, but improved sampling with large h

and M = 1 is still clearly observed in various experiments (Section 2.7).

Another hyper-parameter is x, because pi essentially depends on the future state rk+1

via x, which we do not know, and yet we’d like to avoid expensive nonlinear solvers. Our

heuristic recommendation is x =
√
hγrk
σ

. Its intuition is, as long as rk+1 − rk’s density

is maximized at 0 (which will be the case at least for large k as rk will converge to a

Gaussian), this choice is a maximum likelihood estimator. This approximation appeared to

be a good one in all our experiments with medium h and M = 1.

We further investigates hyperparameter selection in Section 2.7.1 and empirically shows

that approximations due toM and x is not detrimental to our non-asymptotic theory in Sec-

tion 2.5.

Practical EWSG is summarized in Algorithm 1. For simplicity of notation, we restrict

35

Algorithm 1 EWSG
Input: {the number of data terms n, gradient functions Vi(·), i = 1, 2, · · · , n, step size
h, the number of data passes K, index chain length M , friction and noise coefficients γ
and σ}
Initialize θ0, r0 (arbitrarily, or use an informed guess)
for k = 0, 1, · · · , d Kn

M+1
e do

i← uniformly sampled from 1, · · · , n, compute and store n∇fi(θk)
I ← i
for m = 1, 2, · · · ,M do
j ← uniformly sampled from 1, · · · , n, compute and store n∇fj(θk)
I ← j with probability in Equation (2.11)

end for
Evaluate Ṽ (θk) = nVI(θk)
Update (θk+1, rk+1) ← (θk, rk) via one step of Euler-Maruyama integration using
Ṽ (θk)

end for

the description to mini batch size b = 1, but an extension to b > 1 is straightforward. See

Appendix A.1 in appendix. Practical EWSG has reduced variance but does not completely

eliminate the extrinsic noise created by SG due to its approximations. A small bias was

also created by these approximations, but its effect is dominated by the variance effect (see

Section 2.5). In practice, if needed, one can combine EWSG with other VR technique

to further improve accuracy. Appendix A.3 describes how EWSG can be combined with

SVRG.

2.7 Numerical Examples

In this section, the proposed EWSG algorithm will be compared with SGHMC, SGLD [17],

as well as several more recent popular approaches, including FlyMC [41], pSGLD [24],

CP-SGHMC [42] (a method closest to the goal of applying IS idea to SG-based sampling)

and SVRG-LD [49] (overdamped Langevin improved by VR). We conduct a detailed em-

pirical study of EWSG on simple models in Section 2.7.1, with comparison and implication

of two important hyper-parameters M and x, and verification of the non-asymptotic theory

(underdamped Langevin dynamics Theorem 3). We demonstrate EWSG for Bayesian lo-

36

gistic regression on a large-scale data set in Section 2.7.2. We showcase a Bayesian Neural

Network (BNN) example in Section 2.7.3. It serves only as a high-dimensional, multi-

modal test case, and we do not intend to compare Bayesian and non-Bayesian neural nets.

As FlyMC requires a tight lower bound of likelihood, known for only a few cases, it will

only be compared against in Section 2.7.2 where such a bound is obtainable. CP-SGHMC

requires heavy tuning on the number of clusters which differs across data sets/algorithms,

so it will only be included in the BNN example, for which the authors empirically found

a good hyper parameter for MNIST [42]. SVRG-LD is only compared in Section 2.7.1,

because SG-MCMC methods can converge within only one data pass in Section 2.7.2, ren-

dering control-variate based VR technique inapplicable, and it was suggested that VR leads

to poor results for deep models (e.g., Section 2.7.3) [66]

For fair comparison, all algorithms use constant step sizes and are allowed fixed compu-

tation budget, i.e., forL data passes, all algorithms can only call gradient function nL times.

All experiments are conducted on a machine with a 2.20GHz Intel(R) Xeon(R) E5-2630

v4 CPU and an Nvidia GeForce GTX 1080 GPU. If not otherwise mentioned, σ =
√

2γ so

only γ needs specification, the length of the index chain is set M = 1 for EWSG and the

default values of two hyper-parameters required in pSGLD are set λ = 10−5 and α = 0.99,

as suggested in [24].

2.7.1 Gaussian Examples

Consider sampling from a simple 2D Gaussian whose potential function is f(θ) =
∑n

i=1 fi(θ) =∑n
i=1

1
2
‖θ−ci‖2.We set n = 50 and randomize ci from a two-dimensional standard normal

N (0, I2). Due to the simplicity of f(θ), we can write the target density analytically and

will use KL divergence KL(p‖q) =
∫
p(θ) log p(θ)

q(θ)
dθ to measure the difference between

the target distribution and generated samples.

For each algorithm, we generate 10000 independent realizations for empirical estima-

tion. All algorithms are run for 30 data passes with minibatch size of 1. Step size is tuned

37

5 10 15
Number of Data Pass

10
0

10
1

K
L

D
iv

er
ge

nc
e

SGLD
pSGLD
SVRG-LD

SGHMC
EWSG

(a) Sample quality in KL

2 4 6 8 10
Number of Data Pass

2 × 10
1

3 × 10
1

4 × 10
1

K
L

D
iv

er
ge

nc
e

EWSG(x = h rk)
EWSG(x = 0)
EWSG(x = 1)

EWSG(x = (1 + h)rk

h
)

(b) Performance for various x

5 10 15 20
Number of Data Pass

10
0

10
1

10
2

K
L

D
iv

er
ge

nc
e

EWSG(M=0) (SGHMC)
EWSG(M=1)
EWSG(M=9)
EWSG(M=19)

(c) Performance for various
M

0.0 2.5 5.0 7.5 10.0
T

10
3

10
2

10
1

[(
)2]

EWSG(M=1)

C1
1
T + C2

h
T + C3h2

(d) MSE against time T (1st

and 2nd terms in Equation
(2.5))

4 × 10
3

5 × 10
3

6 × 10
3

7 × 10
3

8 × 10
3

9 × 10
3

h
2 × 10

5

[(
)2]

EWSG(M=1)
C1h + C2

(e) MSE against step size h
with fixed finite T (2nd term
in Equation (2.5))

10
17 × 10

2
8 × 10

2
9 × 10

2

h

10
4

4 × 10
5

6 × 10
5

[(
)2]

EWSG(M=1)
O(h2)

(f) MSE against step size h
with T ≈ ∞ (3rd term in
Equation (2.5))

Figure 2.1: Sampling from Gaussian target

from 5×{10−1, 10−2, 10−3, 10−4} and 5×10−3 is chosen for SGLD and pSGLD, 5×10−2

for SGHMC and EWSG and 5 × 10−4 for SVRG-LD. SGHMC and EWSG use γ = 10.

Results are shown in Figure 2.1a and EWSG outperforms SGHMC, SGLD and pSGLD in

terms of accuracy. Note SVRG-LD has the best accuracy4 but the slowest convergence,

and that is why EWSG is a useful alternative to VR: its light-weight suits situations with

limited computational resources better.

Figure 2.1b shows the performance of several possible choices of the hyper-parameter

x, including the recommended option x =
√
hγrk/σ, and x = 0, x = 1, x = (−1 +

hγ)rk/σ
√
h (which corresponds to rk+1 = 0). Step size h = 7 × 10−2 is used for this

experiment. The recommended option performs better than the others.

Another important hyper-parameter in EWSG is M . As the length of index chain M

increases, the subsampling distribution approaches the ideal exponential weights. For finite

M , however, some bias is introduced but variance is also reduced. This tradeoff is worth-
4For Gaussians, mean and variance completely determine the distribution, so appropriately reduced vari-

ance leads to great accuracy for the entire distribution.

38

while for reasonable T and h values according to Theorem 3, and considering that larger

M means more gradient evaluations per step5, there could be some M value that achieves

the best balance between speed and accuracy. Figure 2.1c shows a fair comparison of four

values of M = 0, 1, 9, 19, and the recommended M = 1 case converges as fast as SGHMC

(when M = 0, EWSG does not run the Metropolis-Hastings index chain and hence degen-

erates to SGHMC) but improves its accuracy. It is also clear that as M increases, sampling

accuracy gets improved.

As approximations are used in Algorithm 1, it is natural to ask if results of Theorem

3 still hold. We empirically investigate this question (using M = 1 and variance as the

test function φ). Equation (2.5) in Theorem 3 is a nonasymptotic error bound consisting

of three parts, namely an O(1
T

) term corresponding to the convergence at the continuous

limit, an O(h/T) term coming from the SG variance, and an O(h2) term due to bias and

numerical error. Figure 2.1d plots the mean squared error (MSE) against time T = Kh

to confirm the 1st term. Figure 2.1e plots the MSE against h with fixed T in the small h

regime (so that the 3rd term is negligible when compared to the 2nd) to confirm that the

2nd term scales like O(h).

For the 3rd term in Equation (2.5), we run sufficiently many iterations to ensure all

chains are well-mixed, and Figure 2.1f confirms the final MSE to scale likeO(h2) even for

large h (as the 2nd term vanishes due to T → ∞). In this sense, despite the approxima-

tions introduced by the practical implementation, the performance of Algorithm 1 is still

approximated by Theorem 3, even when M = 1. Theorem 3 can thus guide the choices of

h and T in practice.

5in each iteration of the outer MCMC loop, EWSG consumes M + 1 data points, and hence in a fair
comparison with fixed computation budget (e.g. E total gradient calls), EWSG runs E

M+1 iterations which is
decreasing in M .

39

Table 2.1: Accuracy, log likelihood and wall time of various algorithms on test data after
one data pass (mean ± std).

Method SGLD pSGLD SGHMC EWSG FlyMC
Accuracy(%) 75.283 ± 0.016 75.126 ± 0.020 75.268 ± 0.017 75.306 ± 0.016 75.199 ± 0.080

Log Likelihood -0.525 ± 0.000 -0.526 ± 0.000 -0.525 ± 0.000 -0.523 ± 0.000 -0.523 ± 0.000
Wall Time (s) 3.085 ± 0.283 4.312 ± 0.359 3.145 ± 0.307 3.755 ± 0.387 291.295 ± 56.368

2.7.2 Bayesian Logistic Regression

Consider Bayesian logistic regression for classification problems. The probabilistic model

for predicting a label yk given a feature vector xk is p(yk = 1|xk,θ) = 1/(1+exp(−θTxk)).

We set a Gaussian prior with zero mean and covariance Σ = 10Id for θ. We conduct our

experiments on Covertype data set6, which contains 581,012 data points and 54 features.

Given the large size of this data set, SG is needed to scale up MCMC methods. We use

80% of data for training and the rest 20% for testing.

The FlyMC algorithm7 use a lower bound derived in [41] for likelihood function. For

underdamped Langevin based algorithms, we set friction coefficient γ = 50. After tuning,

we set the step size as {1, 3, 0.02, 5, 5} × 10−3 for SGULD, EWSG, SGLD, pSGLD and

FlyMC. All algorithms are run for one data pass, with minibatch size of 50 (for FlyMC, it

means 50 data are sampled in each iteration to switch state). 100 independent samples are

drawn from each algorithm to estimate statistics. To further smooth out noise, all experi-

ments are repeated 1000 times with different seeds.

Results are shown in Figure 2.2a, 2.2b and Table 2.1. EWSG outperforms others, except

for log likelihood being comparable to FlyMC, which is an exact MCMC method. The wall

time consumed by EWSG is only slightly more than that of SGLD and SGHMC, but fewer

than pSGLD and order-of-magnitude fewer than FlyMC.

6https://archive.ics.uci.edu/ml/datasets/covertype
7https://github.com/HIPS/firefly-monte-carlo/tree/master/flymc

40

0.0 0.2 0.4 0.6 0.8 1.0
Number of Data Pass

50.0

55.0

60.0

65.0

70.0

75.0
Te

st
 A

cc
ur

ac
y

(%
)

SGLD
pSGLD
SGHMC
EWSG

(a) Test Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Number of Data Pass

-0.70

-0.68

-0.65

-0.63

-0.60

-0.58

-0.55

-0.53

Lo
g

Lik
el

ih
oo

d

SGLD
pSGLD
SGHMC
EWSG

(b) Test Log Likelihood

Figure 2.2: Bayesian logistic regression learning curve. The shaded area stands for one
standard deviation.

50 100 150 200
Number of Data Pass

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 E
rr

or
 (%

)

SGLD
pSGLD
SGHMC
CP-SGHMC
EWSG

(a) MLP architecture

50 100 150 200
Number of Data Pass

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 E
rr

or
 (%

)

SGLD
pSGLD
SGHMC
CP-SGHMC
EWSG

(b) CNN architecture

Figure 2.3: Bayesian neural network learning curve. The shaded area stands for one stan-
dard deviation.

41

2.7.3 Bayesian Neural Network

Bayesian inference is compelling for deep learning [67]. Two popular architecture of neural

nets are experimented – multilayer perceptron (MLP) and convolutional neural nets (CNN).

In MLP, a hidden layer with 100 neurons followed by a softmax layer is used. In CNN,

we use standard network configuration with 2 convolutional layers followed by 2 fully

connected layers [68]. Both convolutional layers use 5× 5 convolution kernel with 32 and

64 channels, 2 × 2 max pooling layers follow immediately after convolutional layer. The

last two fully-connected layers each has 200 neurons. We set the standard normal as prior

for all weights and bias.

We test algorithms on the MNIST data set, consisting of 60000 training data and 10000

test data, each datum is a 28 × 28 gray-scale image with one of the ten possible labels

(digits 0 ∼ 9). For ULD based algorithms , we set friction coefficient γ = 0.1 in MLP and

γ = 1.0 in CNN. In MLP, the step sizes are set h = {4, 2, 2} × 10−3 for EWSG, SGHMC

and CP-SGHMC, and h = {0.001, 1} × 10−4 for SGLD and pSGLD, via grid search.

For CP-SGHMC , (clustering-based preprocessing is conducted [42] before SGHMC) we

use K-means with 10 clusters to preprocess the data set. In CNN, the step sizes are set

h = {4, 2, 2} × 10−3 for EWSG, SGHMC and CP-SGHMC, and h = {0.02, 8} × 10−6

for SGLD and pSGLD, via grid search. All algorithms use minibatch size of 100 and are

run for 200 epoches. For each algorithm, we generate 100 independent samples to make

posterior prediction. To smooth out noise and obtain more significant results, we repeat

experiments 10 times with different seeds.

The learning curve of training error is shown in Figure 2.3a and 2.3b. EWSG consis-

tently improves over its uniform counterpart (i.e., SGHMC) and CP-SGHMC (an approxi-

mate IS SG-MCMC). Moreover, EWSG also outperforms two standard benchmarks SGLD

and pSGLD. The improvement over baseline on MNIST data set is comparable to some of

the early works [18, 24].

Note: in the MLP setup, the model has d > 78400 parameters whereas there are

42

n = 60000 data points, which shows EWSG does not require n > d to work and can still

outperform its uniform counterpart in the overparametrized regime (Theorem 1 demon-

strates the underparametrized case only because the sparsity result is easy to understand,

but EWSG doesn’t only work for underparameterized models).

2.8 Conclusion

In this chapter, we proposed EWSG, which uses exponentially weighted subsampling of

gradients to match the transition kernel of a base MCMC base with full gradient. The goal

is better sample quality. Both local variance analysis and global non-asymptotic analy-

sis are presented to demonstrate the advantage of EWSG theoretically. Empirical results

also showed improved sampling/learning performance. We believe non-uniform stochastic

gradient can be introduced to a large class of MCMC methods and capable for impactful

algorithmic improvements.

43

CHAPTER 3

HESSIAN-FREE-HIGH-RESOLUTION NESTEROV ACCELERATION FOR

SAMPLING

Optimization methods have been a major algorithmic machinery that drives both the theory

and practice of machine learning in recent years. Since the seminal work of Nesterov [69],

acceleration has played a key role in gradient-based optimization methods. One of the most

notable examples is the Nesterov’s Accelerated Gradient (NAG) method, an instance of a

more general family of “momentum methods”. NAG in fact consists of multiple methods,

including NAG-C for convex functions, and NAG-SC for strongly convex functions, both

of which have provably faster convergences than the vanilla gradient descent (GD) method

in their corresponding setups [69, 70]. Although they are classical methods, significant

new perspectives of acceleration have recently been studied, e.g., [71, 72, 73, 74, 75, 76].

This work will be based on NAG-SC, and ‘NAG’ from hereon will refer to NAG-SC unless

confusion arises.

Approaches for sampling statistical distributions such as gradient-based Markov Chain

Monte Carlo (MCMC) methods, at the same time, also remain of great importance in ma-

chine learning, primarily due to its link to statistical inference and the ability to capture

uncertainty which is lacking in optimization-based methods. Although not entirely the

same thing, there are profound and interesting interplays between optimization and sam-

pling. For example, the perspective of viewing sampling as optimization in probability

space dates back to late 90s [77], and is gaining increasing attention in machine learning

commmunity [78, 79, 80, 81, 82, 83]. Discretized overdamped Langevin dynamics (OLD)

[12] is commonly considered as the analog of GD in sampling, the convergence proper-

ties of its continuous dynamics and non-asymptotic analysis of discretization error are also

widely studied [12, 84, 10, 26, 32, 33, 37, 29, 85, 86].

44

However, the notion of acceleration is less quantified in sampling compared to that in

optimization, although attention has been rapidly building up. Along this direction, one

line of research is based on diffusion processes, usually derived from the close connection

between OLD and underdamped Langevin dynamics (ULD). For example, the convergence

and nonasymptotics of discretized ULD have been studied in [28, 31, 35], and were demon-

strated provably faster than discretized OLD in suitable setups. These are not only great

progresses but also forming perspectives complementary to the extensive studies of the con-

vergence of continuous ULD in the mathematical community [34, 87, 88, 89, 90, 91, 92,

93]. Another equally important line amounts to accelerating particle-based approaches for

optimization in probability spaces [94, 95, 96], although we note there is no clear bound-

ary between these two lines (e.g., [97]). More generally, it has been known that adding

an irreversible part to the reversible dynamics of OLD1 accelerates its convergence (e.g.,

[99, 100, 101, 102, 103]), and this work can be viewed to be under this umbrella, although

discretization is also important and analyzed.

More precisely, we proposed an accelerated gradient-based MCMC algorithm termed

HFHR, that is based on diffusion process and inspired by a simple yet natural motivation:

how to appropriately inject noise to NAG algorithm in discrete time, so that it is turned into

an algorithm for momentum-accelerated sampling? Note we don’t want to add noise to the

learning-rate→ 0 limit of NAG (which has been well studied [35]), as the discretization of

this low-resolution ODE by a finite step size may not converge as fast as NAG with the same

learning rate. However, we will still use continuous dynamics as intermediate steps and our

roadmap is the following: first view NAG as the discretization of a high-resolution ordinary

differential equation (ODE), then convert it to a stochastic differential equation (SDE) by

injecting noise appropriately, and finally discretize the SDE appropriately to obtain a fast

and efficient HFHR algorithm

More precisely, the first step combines ingredients from the existing literature to pre-

1For irreversibility-induced-acceleration not based on OLD, see e.g., [98] and references therein.

45

pare a non-asymptotic formulation for the later steps. The goal is to better account for

NAG’s behavior when a finite (not infinitesimal) learning rate is used. As pointed out in

[76], a low-resolution limiting ODE [71], albeit being a milestone leading to a new venue

of research (e.g, [72]), does not fully capture the acceleration enabled by NAG — for ex-

ample, it can’t distinguish between NAG and other momentum methods such as heavy ball

[104]. The main reason is, the low-resolution ODE describes the h → 0 limit of NAG,

but in practice NAG uses a finite (nonzero) h. High-resolution ODE was thus proposed to

include additional O(h) terms to account for the finite h effect [76], which led to a better

characterization of NAG. The original form of the high-resolution ODE involves the Hes-

sian of the objective function, which is computationally expensive to evaluate and store

for high-dimensional problems, but this difficulty can be bypassed via a change of variable

(e.g., [105, 106]), which allows us to derive a High-Resolution and Hessian-Free limiting

ODE for NAG.

Then we make the following algorithmic innovations. One is to replace a specific coef-

ficient in the HFHR ODE by a hyperparameter α ≥ 0, which, as we will demonstrate both

theoretically and empirically, can lead to accelerated convergence of the eventual sampling

algorithm The other is to add noise to the hyperparametrized HFHR ODE in a specific way,

which turns it into an SDE suitable for sampling purposes. This SDE will be termed as

HFHR dynamics. For obtaining an actual algorithm, the SDE needs to be discretized, and

we’ll just propose and analyze a relatively simple discretization for demonstrating that the

accelerated convergence is not an artificial consequence of time-rescaling, which would

not give acceleration after discretization with an appropriate step size. Meanwhile, we’d

like to point out that our discretization is just one of the many possible schemes. It was

known that high-order discretizations can improve statistical accuracy and even the speed

of convergence (see e.g., [22, 107]; the analogue in (stochastic) optimization has also been

studied, e.g., [108]), although such improvements often come with a cost of more com-

putations per iteration. The discretization analyzed here is a relatively simple first-order

46

scheme that utilizes the structure of HFHR dynamics more than Euler-Maruyama does.

Our presentation is structured as follows. After detailing the construction of HFHR, we

then theoretically analyze the convergence of HFHR, at both the continuous level (HFHR

dynamics) and the discrete level (HFHR algorithm). We will first show that HFHR dynam-

ics admits the target distribution as its invariant distribution (Theorem 5) and converges

exponentially fast to it, as long as the target distribution satisfies a Poincaré’s inequality

(Theorem 6). Then we move on to a more specific setup of log-concave / log-strongly-

concave target distributions, which is commonly considered in the literature [109, 110,

26, 31, 85, 36, 85], and demonstrate explicitly an additional acceleration of HFHR when

compared to ULD (Theorem 9 / Theorem 10). For our discretized HFHR algorithm, a

non-asymptotic error bound will be obtained (Theorem 11), which confirms that the accel-

eration of HFHR over ULD in continuous time carries through to the discrete territory, at

least for log-strongly-concave target distributions. Finally, the theoretical analysis is com-

plemented with experiment results, demonstrating the performance of HFHR on a series of

representative target distributions as well as Bayesian neural network learning tasks, and

numerically verifying the tightness of our theoretical results.

The main contribution of this article is the idea of adding noise to the NAG-SC opti-

mization algorithm to turn it into a sampler, which provides a new perspective that is neither

overdamped or underdamped Langevin. Theoretical analyses and numerical experiments

are provided just to validate this new perspective. For instance, an example algorithm we

provide (it’s not unique as different discretizations can be used) achieves a Õ(
√
d
ε

) iteration

complexity in 2-Wasserstein distance, which has the same order as the best-known results

for KLMC; meanwhile, we show theoretically that it has a prefactor that can be reduced by

HFHR (Theorem 12 and Corollary 13), and accelerated convergence was empirically and

consistently observed as well (Section 3.6).

47

3.1 Literature Review

Many celebrated approaches exist for establishing the exponential convergence (a.k.a. geo-

metric ergodicity) of OLD, including the seminal work of [12], the ones using spectral gap

(e.g., [26, Lemma 1]), synchronous coupling [84, p33-35][33, Proposition 1], functional

inequalities such as Poincaré’s inequality (PI) [10, Theorem 4.4] and logarithmic Sobolev

inequality (LSI) [37, Theorem 1][35, Section 3.1]. There are also fruitful exponential con-

vergence results for ULD, including the ones leveraging Lyapunov function [87, Theorem

3.2], hypocoercivity [91, 89, 90, 111], coupling [28, Theorem 5][31, Theorem 1][34, The-

orem 2.3], modified Poincaré’s inequality [88, Theorem 1] and spectral analysis [112, 92].

Generally speaking, due to technical difficulty related to lack of uniform ellipticity, the ex-

ponential convergence of ULD takes more effort to establish than OLD, especially when

the potential f is not strongly convex.

However, studying the continuous processes is often not enough and they need to be

discretized in order to be implemented as algorithms. The study of asymptotic conver-

gence of discretized OLD dates back to at least the 1990s [113, 12]. The non-asymptotic

convergence analysis of LMC discretization of OLD can be found in [26] and it shows the

discretization achieves ε error, in total variation distance, in Õ(d
ε2

) steps. Following this,

iteration complexity of discretized OLD was also quantified in different metrics, Õ(d
ε2

) in

2-Wasserstein distance [32] and Õ(d
ε
) in KL divergence [29]. For discretized ULD, one has

improved Õ(
√
d
ε

) iteration complexity in 2-Wasserstein distance [28, 31] and Õ(
√
d√
ε
) in KL

divergence [35]. Better dimension dependence is generally conceived as a major advantage

of ULD over OLD.

3.2 Terminology and Notations

The following conditions will be frequently referred to in various parts of this paper.

Assumption 1 (Standard Smoothness Condition) Assume the potential function f : Rd 7→

48

R is C2 and L-smooth, i.e., there exists a constant L > 0 such that ∀x,y ∈ Rd, we have

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖.

(Note the above assumptions are equivalent to∇2f � LI .)

Assumption 2 (Convexity) The potential function f : Rd 7→ R is convex, if ∀x,y ∈ Rd,

we have

f(y) ≥ f(x) + 〈∇f(x),y − x〉.

Assumption 3 (Strong-convexity) The potential function f : Rd 7→ R is m-strongly-

convex, if there exists m > 0 such that ∀x,y ∈ Rd, we have

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
m

2
‖y − x‖2 .

Two metric/divergence we use to quantify convergence are χ2 divergence and 2-Wasserstein

distance

(χ2 divergence) χ2(µ1‖µ2) =

∫ (
dµ1

dµ2

− 1

)2

dµ2 (3.1)

(2-Wasserstein distance) W2(µ1, µ2) =

(
inf

π∈Π(µ1,µ2)
E(X,Y)∼π[‖X − Y ‖2]

) 1
2

(3.2)

where Π(µ1, µ2) is all couplings of µ1 and µ2.

3.3 The Derivation of HFHR

HFHR is motivated by Nesterov Accelerated Gradient descent algorithm for Strongly Con-

vex function (NAG-SC) in optimization [114]. It is obtained by formulating NAG-SC

as a Hessian free high-resolution ODE (based on [76] and [105, 106]), lifting the high-

resolution correction’s coefficient as a free parameter, and adding appropriate Gaussian

noises.

49

More precisely, let’s start with NAG-SC algorithm:

xk+1 = yk − s∇f(yk) (3.3)

yk+1 = xk+1 + c(xk+1 − xk) (3.4)

where s is the learning rate (also known as step size), and c = 1−
√
ms

1+
√
ms

is a constant chosen

according to step size s and the strong convexity coefficient m of f , although the method

also works for non-strongly-convex f .

A high-resolution ODE description of Equation (3.3) and (3.4) is obtained in [76, Sec-

tion 2]

ÿ +
√
s

(
2(1− c)
s(1 + c)

+∇2f(y)

)
ẏ +

2

1 + c
∇f(y) = 0 (3.5)

which can better account for the effect of non-infinitesimal s than the s → 0 limit. How-

ever, in this original form, Hessian of f is involved, which is expensive to compute and

store especially for high-dimensional problems.

To obtain a Hessian-free high-resolution ODE description of Equation (3.3) and (3.4),

we first turn the iteration into a ‘mechanical’ version by introducing position variable qk =

yk and momentum variable pk = (yk−xk)
h

. Replacing xk+1 in Equation (3.3) and the first

xk+1 in Equation (3.4) by qk+1 and pk+1, the second xk+1 in Equation (3.4) by qk −

s∇f(qk), and the xk in Equation (3.4) by qk and pk, we obtain

qk+1 = qk + hpk+1 − s∇f(qk)

pk+1 = cpk − c sh∇f(qk)

Now, choose γ, α and h as h =
√
cs, γ = 1−c

h
, α = s

h
. It is easy to see that γ > 0, α > 0,

50

then NAG-SC exactly rewrites as

qk+1 = qk + hpk+1 − hα∇f(qk)

pk+1 = pk − hγpk − h∇f(qk)

. (3.6)

Similar ideas for bypassing the Hessian without introducing any approximation are well

described in the literature (e.g., [105, 106]).

So far, both h and α are actually determined by the hyperparameter s of NAG-SC.

However, if we now consider α as an independent variable and let h→ 0, we see Equation

(3.6) is a 1st-order discretization (with step size h) of the dynamics

q̇ = p− α∇f(q)

ṗ = −γp−∇f(q)

. (3.7)

Note α, if inherited from NAG-SC, should be α =
√
s/c = O(h), which, in a low-

resolution ODE will be discarded, and this eventually leads to ULD rather than HFHR.

However, we now allow it to be a free parameter and will see that α 6= O(h) can be

advantageous.

Before quantify these advantages later on, we finish the derivation by appropriately

injecting Gaussian noises to Equation (3.7). This is just like how OLD can be obtained by

adding noise to gradient flow. The right amount and structure of noise turn the ODE into a

Markov process that can serve our purpose of sampling, and the detailed form of our noise

is described by the following:

dqt = pt − α∇f(qt) +

√
2αdW t

dpt = −γpt −∇f(qt) +
√

2γdBt

. (3.8)

Here α ≥ 0, γ > 0 are constant parameters, and W t,Bt are independent standard Brow-

nian motions in Rd. This irreversible diffusion process will be named as Hessian-Free

51

High-Resolution(HFHR) dynamics. We will write it as HFHR(α, γ) to emphasize the

dependence on α and γ when needed.

Note that HFHR can be viewed as a mixture of an ULD and a rescaled OLD
d
dt
qt = pt

d
dt
pt = −γpt −∇f(qt) +

√
2γdBt︸ ︷︷ ︸

ULD

,

d
dt
qt = −α∇f(qt) +

√
2αdW t

d
dt
pt = 0︸ ︷︷ ︸

rescaled OLD

(3.9)

As both OLD and ULD have π as invariant distribution (for OLD, it is more precisely just

the q marginal of π), it is not surprising that the invariant distribution of HFHR is also π as

shown in the following theorem.

Theorem 5 π is the invariant distribution of HFHR described in Equation (3.8).

Proof: The Fokker-Plank equation of HFHR is given by

∂tρt = −∇x ·

 p

−∇f(q)

 ρt
+ α

(
∇q · (∇f(q)ρt) + ∆qρt

)
+ γ

(
∇p · (pρt) + ∆pρt

)

where∇x = (∇q,∇p). For π ∝ e−f(q)− 1
2
‖p‖2 , we have

∇x ·

 p

−∇f(q)

 π
 = 〈

 p

−∇f(q)

 ,∇xπ〉 = 0,

∆qπ = −∇q · (π∇f(q))

∆pπ = −∇p · (πp)

Therefore ∂tπ = 0 and hence π is the invariant distribution of HFHR.

Remark: Note, however, that the ‘decomposition’ in Equation (3.9) is only formal, and

the convergence of Equation (3.8) can be very different from that of ULD or OLD. In fact,

52

even for a linear system ẋ = Ax+Bx, its dynamics can already be very different from any

finite composition of the flow maps of ẋ = Ax and ẋ = Bx unless [A,B] = 0. The high

nonlinearity only makes the mixture of Equation (3.8) even more different from ULD and

OLD.

Remark: The OLD part in Equation (3.9) is a time-rescaled version of the original

OLD in Equation (1.1). If we only had the OLD part, choosing a large α would seemingly

accelerate the convergence but this is meaningless from an algorithmic point of view, be-

cause if one discretizes the original OLD in Equation (1.1) using a step size h, the rescaled

version should use a step size h/α. However, this is no longer the case when ULD and OLD

are summed, as the nonlinear interaction between them will change both the convergence

rate and stability limit in nonlinear ways. The acceleration enabled by HFHR is genuine;

see Section 3.4&3.5.

3.4 Theoretical Analysis of the Continuous HFHR

In this section, we establish exponential convergence guarantees of HFHR in several dif-

ferent setups. We show the most general result in Theorem 6 which only requires target

measures satisfying Poincaré’s inequality (PI). Both Theorem 9 and 10 demonstrate ad-

ditional acceleration to ULD respectively under log-concavity and log-strong-concavity

assumption on target measures.

Before presenting theoretical results, we introduce a few notations that will be used in

the main text as well as some proof.

L′ =
√

2 max

{
√

1 + α2 max

{
1√
2
, L

}
,
√

1 + γ2

}

is the Lipschitz constant of the drift

 p− α∇f(q)

−γp−∇f(q)

 in HFHR dynamics, first appeared

in Lemma 32

53

P =

γI I

0
√

1 + αγI

is a 2d×2dmatrix with which we show contraction property of HFHR dynamics in Lemma

33. Denote the largest and the smallest singular value of P by

σmax =

√
αγ

2
+
γ2

2
+

√
α2γ2 − 2αγ3 + 4αγ + γ4 + 4

2
+ 1,

σmin =s

√
αγ

2
+
γ2

2
−
√
α2γ2 − 2αγ3 + 4αγ + γ4 + 4

2
+ 1,

and its condition number by

κ′ =
σmax

σmin
=

√√√√√ αγ
2

+ γ2

2
+

√
α2γ2−2αγ3+4αγ+γ4+4

2
+ 1

αγ
2

+ γ2

2
−
√
α2γ2−2αγ3+4αγ+γ4+4

2
+ 1

.

λ′ characterizes the rate of exponential convergence of HFHR dynamics and is defined as

λ′ = min

{
m

γ
+ αm,

γ2 − L
γ

}

given that γ2 > L.

We first show HFHR converges exponentially fast as long as µ satisfies a Poincaré’s

inequality.

Theorem 6 Suppose α > 0 and the target measure µ satisfies a Poincaré’s inequality

∫
(g −

∫
gdµ)2 ≤ 1

λPI(µ)

∫
‖∇g‖2dµ (3.10)

for any g ∈ C2(Rd) ∩ L2(Rd, µ) with some positive constant λPI(µ) > 0. Then we have

χ2(ρt, π) ≤ χ2(ρ0, π) exp
(
−2 min{λPI(µ), 1}min{α, γ}t

)
54

where ρt is the joint law of (qt,pt) in HFHR.

Proof: The Fokker-Planck equation of HFHR is given by

∂tρt +∇ · (ρtJ) = 0, where J =

 p− α∇f(q)− α∇q log ρt

−γp−∇f(q)− γ∇p log ρt

 (3.11)

Since

∇ ·

ρt
−∇p log ρt

∇q log ρt

 = 0,

we then have

J =
π

ρt

−αI I

−I −γI

∇q ρtπ
∇p ρtπ

 .
By Lemma 27, π satisfies PI with constant λPI(π) = min{λPI(µ), 1} as it is well known

that ν satisfies Poincaré’s inequality with λPI(ν) = 1 [115, Theorem 3.20]. The time

derivative of χ2(ρt, π) is

d

dt
χ2(ρt, π) = −

∫
2(
ρt
π
−1)∇·(ρtJ) dx = 2

∫
〈∇ρt

π
,J〉ρt dx ≤ −2 min{α, γ}

∫
‖∇ρt

π
‖2dπ

Let g = ρt
π
− 1, by Poincaré’s inequality, we have

∫
‖ρt
π
− 1‖2dπ ≤ 1

λPI(π)

∫
‖∇ρt

π
‖2dπ.

Therefore we have the time derivative of χ2(ρt, π) is bounded by

d

dt
χ2(ρt, π) ≤ −2λPI(π) min{α, γ}χ2(ρt, π) = −2 min{λPI(µ), 1}min{α, γ}χ2(ρt, π)

and the desired result follows by Gronwall’s inequality.

Remark: One always has χ2(µ1‖µ2) ≥ KL(µ1‖µ2) ≥ 1
2
‖µ1 − µ2‖2

TV, due to the

relation to KL divergence and Pinsker’s inequality, hence exponential convergence in χ2

divergence also implies that in KL divergence and total variation distance.

The Poincaré’s inequality assumption holds for a large family of measures, including

55

log-concave ones as shown in the next two propositions. Therefore, Theorem 6 has broad

applicability beyond just log-concave measures.

Proposition 7 [91, Theorem A.19] If lim
‖x‖→∞

(
‖∇f(x)‖2

2
−∆f(x)

)
= ∞, then µ satis-

fies the Poincaré’s inequality.

Proposition 8 [116] Every log-concave measure µ ∝ e−f(x) satisfies the Poincaré’s in-

equality.

We now focus on convex and L-smooth f (i.e., Assumption 1 and 2) for which we

will obtain much tighter bounds. Proposition 8 ensures log-concave target distribution

µ ∝ e−f(q) satisfies PI with some positive constant λPI(µ) , λ > 0. Then:

Theorem 9 Under Assumption 1 and 2, additionally assume γ2 ≥ max{2λ, L}, α ≤
γ
λ
− 2

γ
, we have

χ2(ρt‖π) ≤ e−(
√
λ

2γ
+
√
λ

16
α)tC

where C =

{
χ2(ρ0‖π) + Eπ

[〈
∇x

ρ0

π
, S∇x

ρ0

π

〉]}
is a constant determined by the initial

condition, ρt is the law of (qt,pt),∇x = (∇q,∇p) and S = 1
γ

(2
γ

+ α)I I

I γI

.

Proof: Two main tools we use in this proof are

• a carefully-crafted Lyapunov function, motivated by [35] and

• the Poincaré’s inequality of the joint invariant distribution π.

More specifically, we will consider the following Lypunov function

L(ρt) = χ2(ρt‖π) + Eπ[
〈
∇x

ρt
π
, S∇x

ρt
π

〉
] (3.12)

56

where ∇x = (∇q,∇p) and S =

aI bI

bI dI

 ∈ R2d×2d is a positive definite matrix to be

determined later. Denote

Lcross(ρt) = Eπ[
〈
∇x

ρt
π
, S∇x

ρt
π

〉
]. (3.13)

It is well known that the standard Gaussian measure ν satisfies PI with PI constant

λPI(ν) = 1 [115]. Therefore, by Lemma 27, the joint invariant distribution π satisfies PI

with PI constant λPI(π) = min{1, λPI(µ)} = min{1, λ}. This dependence on λ, however,

is undesirable when λ� 1 because it does not reflect fast convergence of HFHR.

In order to unify the two cases λ > and λ < 1, we will work with a rescaled version

of HFHR. To this end, we need to introduce a larger class of dynamics parametrized by an

inverse temperature parameter β

dq =

(
p− α∇f(q)

)
dt+

√
2αβ−1dB1

t

dp =
(
−γp−∇f(q)

)
dt+

√
2γβ−1dB2

t

. (3.14)

We refer it as tempered HFHR and denote it by tempered-HFHR(α, γ, β). It is easy to see

that the plain HFHR described in Equation (3.8) is a tempered HFHR with β = 1, i.e.

tempered-HFHR(α, β, 1).

Rescaling Since µ ∝ e−f(q) satisfies PI with PI constant λ, it is easy to see that µ̃ ∝ e−f̃(q)

where f(q) = λf̃(q), satisfies PI with PI constant 1.

With the rescaled potential f̃ , HFHR process rewrites as

dq = (p− αλ∇f̃(q))dt+

√
2αdB1

t

dp = (−γp− λ∇f̃(q))dt+
√

2γdB2
t

57

Introduce rescaled velocity p̃ via q(t) =
√
λp̃(t), then the SDE becomes

dq = (

√
λp̃− αλ∇f̃(q))dt+

√
2αdB1

t

dp̃ = (−γp̃−
√
λ∇f̃(q))dt+

√
2γ/λdB2

t

Introduce rescaled dissipation parameters α̃, γ̃ via α = α̃
√
λ
−1

, γ = γ̃
√
λ. Then the SDE

rewrites as
dq = (

√
λp̃− α̃

√
λ∇f̃(q))dt+

√
2α̃
√
λ
−1
dB1

t

dp̃ = (−γ̃
√
λp̃−

√
λ∇f̃(q))dt+

√
2γ̃
√
λ
−1
dB2

t

Rescale time via τ =
√
λt, then

dq = (p̃− α̃∇f̃(q))dτ +

√
2α̃λ−1dB1

τ

dp̃ = (−γ̃p̃−∇f̃q))dτ +
√

2γ̃λ−1dB2
τ

(3.15)

It is easy to see that the rescaled HFHR in Equation (3.15) is a tempered-HFHR(α̃, γ̃, λ).

Apply Lemma 28 to the Tempered HFHR In Equation (3.15), we have that f̃ ∈ C2(Rd)

is convex and L
λ

-smooth. Moreover, µ̃ ∝ e−f̃(q) satisfies PI with PI constant 1.

Since

γ̃2 ≥ max{2, L
λ
} ⇐⇒ γ2 ≥ max{2λ, L}

α̃ ≤ γ̃ − 2

γ̃
⇐⇒ α ≤ γ

λ
− 2

γ
,

we can then apply Lemma 28 to the rescaled HFHR in Equation (3.15) and obtain the

following result

χ2(ρ̃τ‖π̃) ≤ e−(1
2γ̃

+ 1
16
α̃)τ

{
χ2(ρ̃0‖π̃) + Eπ̃

[
〈∇x̃

ρ̃0

π̃
, S̃∇x̃

ρ̃0

π̃
〉
]}

, (3.16)

58

where ρ̃τ (q, p̃) is the law of (qτ , p̃τ) at time τ , π̃ ∝ e−λH̃(q,p̃) with H̃(q, p̃) = f̃(q) +

1
2
‖p̃‖2, ∇x̃ = (∇q,∇p̃) and S̃ =

ãI b̃I

b̃I d̃I

 with ã = (2
γ̃

+ α̃)b̃, d̃ = γ̃b̃, b̃ = 1
γ̃λ

is a

positive definite matrix.

Substitute Back We first write all measures with respect to the original position and

momentum variables (q,p). Since

q
p

 =

I 0

0
√
λI

q
p̃

 , P

q
p̃

 , by change of

variable formula we have

ρτ (q,p) =ρ̃τ (q,
1√
λ
p)λ−

d
2

π(q,p) =π̃(q,
1√
λ
p)λ−

d
2 ∝ exp{−λ

[
f̃(q) +

1

2
‖ p√

λ
‖2

]
} = exp{f(q)− 1

2
‖p‖2}

So π(q,p) is indeed the joint invariant distribution defined in Equation (1.3). Therefore,

χ2(ρ̃τ‖π̃) =

∫
(
ρ̃τ (q, p̃)

π̃(q, p̃)
− 1)2π̃(q, p̃)dqdp̃

=

∫
(
ρ̃τ (q,

p√
λ
)

π̃(q, p√
λ
)
− 1)2π̃(q,

p√
λ

)λ−
d
2dqdp (p =

√
λp̃)

=

∫
(
ρτ (q,p)

π(q,p)
− 1)2π(q,p)dqdp

=χ2(ρτ‖π)

Similar derivation, combined with chain rule, leads to

Eπ̃
[
〈∇x̃

ρ̃τ
π̃
, S̃∇x̃

ρ̃τ
π̃
〉
]

= Eπ
[
〈P∇x

ρτ
π
, S̃P∇x

ρτ
π
〉
]

where∇x = (∇q,∇p).

Next we substitute back the original parameters γ = γ̃
√
λ and α = α̃√

λ
and rewrite the

59

result in Equation (3.16) as

χ2(ρτ‖π) ≤ e−(
√
λ

2γ
+
√
λα
16

)τ

{
χ2(ρ0‖π) + Eπ

[
〈∇xP

ρ0

π
, S̃P∇x

ρ0

π
〉
]}

,

Now write S , P T S̃P = 1
γ

(2
γ

+ α)I I

I γI

 write τ as t we obtain

χ2(ρt‖π) ≤ e−(
√
λ

2γ
+
√
λα
16

)t

{
χ2(ρ0‖π) + Eπ

[
〈∇xP

ρ0

π
, SP∇x

ρ0

π
〉
]}

(3.17)

Remark: Assumptions on the lower bound of γ such as γ2 > max{2λ, L} are also

made in existing works [31, 34]. Assumption α ≤ γ
λ
− 2

γ
is to ensure additional linear

acceleration, i.e. a coefficient
√
λ

16
independent of α. For large α, there will still be additional

acceleration, not necessarily linear in α, though.

When f is not only convex but also m-strongly convex, we have the following result:

Theorem 10 Under Assumption 1, 3 and further suppose f is m-strongly convex, γ2 >

L + m and α ≤ γ2−L−m
mγ

, denote the law of qt by µt, then there exists a constant κ′ > 0

depending only on α and γ, such that

W2(µt, µ) ≤ κ′e−(m
γ

+mα)tW2(µ0, µ).

Proof: Consider two copies of HFHR that are driven by the same Brownian motion

dqt = (pt − α∇f(qt))dt+

√
2αdB1

t

dpt = (−γpt −∇f(qt))dt+
√

2γdB2
t

,

dq̃t = (p̃t − α∇f(q̃t))dt+

√
2αdB1

t

dp̃t = (−γp̃t −∇f(q̃t))dt+
√

2γdB2
t

,

60

where we set (q̃0, p̃0) ∼ π, p0 = p̃0 and q0 such that

W 2
2 (µ0, µ) = E

[
‖q0 − q̃0‖2

2

]
, q0 ∼ µ0

Denote

φt
ψt

 = P

qt − q̃t
pt − p̃t

 where P =

γI I

0
√

1 + αγI

. By Lemma 33 and the

assumption on α, γ, we have

∥∥∥∥∥∥∥
φt
ψt

∥∥∥∥∥∥∥

2

≤ e−2(m
γ

+mα)t

∥∥∥∥∥∥∥
φ0

ψ0

∥∥∥∥∥∥∥

2

.

Therefore we obtain

W 2
2 (µt, µ) = inf

(qt,q̃t)∼Π(µt,µ)
E‖qt − q̃t‖

2 ≤ inf
(qt,q̃t)∼Π(µt,µ),(pt,p̃t)∼Π(νt,ν)

E

∥∥∥∥∥∥∥
qt − q̃t
pt − p̃t

∥∥∥∥∥∥∥

2

≤E‖P−1‖2
2

∥∥∥∥∥∥∥
φt
ψt

∥∥∥∥∥∥∥

2

≤E‖P−1‖2
2e
−2(m

γ
+mα)t

∥∥∥∥∥∥∥
φ0

ψ0

∥∥∥∥∥∥∥

2

≤(κ′)2e−2(m
γ

+mα)t

∥∥∥∥∥∥∥
q0 − q̃0

p0 − p̃0

∥∥∥∥∥∥∥

2

=(κ′)2e−2(m
γ

+mα)tW 2
2 (µ0, µ)

Taking square root yields the desired result.

Respectively, Theorem 9 and 10 state that HFHR converges to the target distribution

exponentially fast in log-concave and log-strongly-concave setup.

Before demonstrating the advantage of HFHR over ULD, we will first need to inspect

the bound for HFHR when α = 0, i.e. ULD, to ensure it is a tight bound for ULD. To this

61

Table 3.1: Comparison of convergence rate of HFHR and ULD with known dependence
on parameters of dynamics. In log-strongly-concave setup, we write m = λ due to Bakry-
Émery condition [117] and denote condition number κ = L

m
. ρ > 0 is the LSI constant

assmued in [35]. The column of γ contains the values of γ corresponding to the best rate.

Dynamics
Setup γ Metric

log-concave log-strongly-concave

ULD
[31, Theorem 1] N/A

√
m√

κ+
√
κ−1

2
√
L W2

ULD [88, Theorem 1] O(
√
λ) O(

√
m)

√
λ χ2

ULD [35, Theorem 1] ρ
10

ρ
10

2 KL
HFHR (Theorem 9)

√
λ

2
√
L+2λ

+
√
λ

16
α 1

2
√
κ+2

+
√
m

16
α

√
L+ 2λ χ2

HFHR (Theorem 10) N/A
√
m

2
√
κ

+mα 2
√
L W2

end, we compare our bound with several existing convergence results for ULD with known

dependence on the parameters of dynamics in Table 3.1.

In the log-concave setup, the O(
√
λ) rate from [88] is optimal when λ → 0 and can

be realized by isotropic quadratic potential [88, Remark 1.1]. This new result is enabled

by assuming growth condition on the Hessian of f and a compact embedding condition, in

additional to PI assumption. Our result for ULD
√
λ

2
√
L+2λ

= O(
√
λ) is comparable to the

optimal one in the same regime, if L = O(1). However, for large L, our result for ULD

is in general weaker than the optimal one, but we can nonetheless pick α = O(1) so that

the rate of HFHR is still comparable to ULD. Our proof of Theorem 9 is motivated by a

powerful machinery proposed in a recent work on ULD [35]. In [35], it is assumed that µ

satisfies logarithmic Soblev inequality (LSI), which is known to be stronger than PI [118,

119], and does not necessarily hold for generic log-concave measures [120]. The rateO(ρ),

however, is not directly comparable with other results as [35] works with a rescaled ULD

2.

In the log-strongly-concave setup, [31, Theorem 1] obtained exponential convergence

result in 2-Wasserstein distance with rate
√
m√

κ+
√
κ−1

using a simple and elegant coupling ap-

2How a rescaling affects convergence rate can be found in [28, Lemma 8] and [31, Theorem 1].

62

proach, and showed this rate is optimal as it is achieved by the bivariate function f(x, y) =

m
2
x2 + L

2
y2. In Theorem 10, we use the same coupling approach to obtain an (asymptoti-

cally) equivalent rate
√
m

2
√
κ

.

After showing our convergence rate results for HFHR(0, γ) are comparable with opti-

mal rates for ULD in many cases, the acceleration of HFHR immediately becomes evident.

For example, if we push α to the upper bound specified in Theorem 10, we obtain rate

O(
√
L) in log-strongly-concave setup. Compared with the rate in [31], this is a speedup of

order κ.

3.5 Discretization

We consider in this section the discretization of the proposed HFHR dynamics and work

with constant step size h. Inspired by Strang’s splitting for partial differential equations,

which is known to have 2nd order accuracy [121, 122], we run the follow Strang-style

splitting scheme for HFHR dynamics in each time interval [kh, (k + 1)h]

φ
h
2 ◦ ψh ◦ φ

h
2 (xkh) (3.18)

where xkh =

qkh
pkh

, φ flow and ψ flow are respectively defined as

φ :

dq = pdt

dp = −γpdt+
√

2γdB

ψ :

dq = −α∇f(q)dt+

√
2αdW

dp = −∇f(q)dt

and φt(x0)/ψt(x0) means running φ/ψ flow for t time with x0 as its initial value.

Note that φ flow can be solved explicitly since the second equation is an Ornstein-

Unlenbeck process and integrating the second equation followed by integrating the first

63

one gives us an explicit solution

qt = q0 + 1−e−γt

γ
p0 +

√
2γ
∫ t

0
1−e−γ(t−s)

γ
dB(s),

pt = e−γtp0 +
√

2γ
∫ t

0
e−γ(t−s)dB(s).

(3.19)

For an implementation of the stochastic integral part in Equation (3.19), denote X =

√
2γ
∫ t

0
1−e−γ(t−s)

γ
dB(s) and Y =

√
2γ
∫ t

0
e−γ(t−s)dB(s), we have

Cov(X,Y) =

γh+4e−γ
h
2 −e−γh−3
γ2

Id
(1−e−γ

h
2)2

γ
Id

(1−e−γ
h
2)2

γ
Id (1− e−γh)Id

 .

Applying Cholesky decomposition, we obtain

X
Y

 = Mξ where M is the matrix square

root of Cov(X,Y), ξ is a 2d standard Gaussian random vector and can be readily simu-

lated.

However, ψ flow is generally not explicitly solvable unless f is a quadratic function in

q. We hence approximate ψh(x0) with one-step Euler-Maruyama integration

ψh(x0) ≈ ψ̃h(x0) =

qh = −α∇f(q0)h+

√
2αhη

ph = −∇f(q0)h

where η is a standard d-dimensional Gaussian random vector. Thus, one step of an imple-

mentable Strang’s splitting for HFHR is hence

φ
h
2 ◦ ψ̃h ◦ φ

h
2 (3.20)

We refer the algorithm depicted in Equation (3.20) as HFHR algorithm and the algorithm is

detailed in Algorithm 2. The proposed Strang’s splitting for HFHR dynamics has a strong

error with order 1 as the following Theorem characterizes

64

Algorithm 2 HFHR Algorithm
Input: potential function f and its gradient ∇f , damping coefficients α and γ, step size
h, initial condition (q0,p0)

k = 0 and initialize

[
q0

p0

]
while not converge do

Generate independent standard Gaussian random vectors ηk+1 ∈ Rd, ξ1
k+1, ξ

2
k+1 ∈

R2d

Run φ
h
2 :

[
q1

p1

]
=

qkh + 1−e−γ
h
2

γ
pkh

e−γ
h
2pkh

+Mξ1
k+1

Run ψ̃h :

[
q2

p2

]
=

[
q1 − α∇f(q1)h+

√
2αhηk+1

p1 −∇f(q1)h

]

Run φ
h
2 :

[
q3

p3

]
=

q2 + 1−e−γ
h
2

γ
p2

e−γ
h
2p2

+Mξ2
k+1[

q(k+1)h

p(k+1)h

]
←

[
q3

p3

]
k ← k + 1

end while

Theorem 11 [Discretization error of Algorithm 2 in L2] Under Assumption 1, 3, and fur-

ther suppose the operator∇∆f grows at most linearly, i.e.
∥∥∇∆f(q)

∥∥ ≤ G
√

1 +‖q‖2,∀q ∈

Rd. Assume without loss of generality that 0 ∈ argminx∈Rd f(x). Also suppose γ in HFHR

dynamics satisfy γ2 > L.

Then there exists C > 0, such that for 0 < h ≤ h0 , min{ 1
4κ′L′

, h1, h2, h3} where

h1 =

√
λ′

4
√

2κ′Lmax{α + 1.25, γ + 1}(1.92 + 2.30αL)
,

h2 =
λ′

16
√

2κ′(L+G) max{α + 1.25, γ + 1}(1.74 + 0.71α)
,

h3 =
λ′

8κ′Lmax{α + 1.25, γ + 1}(1.92 + 2.30αL)
,

we have (
E‖xk − x̄k‖2

) 1
2 ≤ Ch

65

where x̄k is the k-th iterate of Algorithm 2 with step size h starting from x0, xk is the

solution of HFHR dynamics at time kh, starting from x0. This result holds uniformly for

all k ≥ 0 and k can go to∞. In particular, C = O(
√
d) and if γ − L+m

γ
≥ mα, then there

exist b1, b2 > 0, both independent of α and are of order O(
√
d), such that

C ≤ b1α
3 + b2

m
γ

+mα
.

κ′, L′, λ′ are constants depending only on L,m, γ, α.

Proof: Denote tk = kh, the solution of the HFHR dynamics at time t by x0,x0(t), the k-th

iterates of the Strang’s splitting method of HFHR dynamics by x̄0,x0(kh). Both x0,x0(t)

and x̄0,x0(kh) start from the same initial value x0. Let P ,

γI I

0
√

1 + αγI

, that trans-

forms the solution of HFHR dynamics into y0,Px0
(t) = Px0,x0(t) and the Strang’s splitting

discretization of HFHR into ȳ0,Px0
(t) = P x̄0,x0(t).

For the ease of notation, we write y0,y0
(tk) as yk and ȳ0,y0

(tk) as ȳk. We have the

following identity

E
∥∥yk+1 − ȳk+1

∥∥2
=E
∥∥∥ytk,yk(h)− ȳtk,ȳk(h)

∥∥∥2

=E
∥∥∥ytk,yk(h)− ytk,ȳk(h) + ytk,ȳk(h)− ȳtk,ȳk(h)

∥∥∥2

=E
∥∥∥ytk,yk(h)− ytk,ȳk(h)

∥∥∥2

︸ ︷︷ ︸
1

+E
∥∥∥ytk,ȳk(h)− ȳtk,ȳk(h)

∥∥∥2

︸ ︷︷ ︸
2

+2E
〈
ytk,yk(h)− ytk,ȳk(h),ytk,ȳk(h)− ȳtk,ȳk(h)

〉
︸ ︷︷ ︸

3

66

By Lemma 33, when 0 < h < 1
2λ′

, term 1 can be upper bounded as

E
∥∥∥ytk,yk(h)− ytk,ȳk(h)

∥∥∥2

≤e−2λ′hE‖yk − ȳk‖
2

≤
(
1− 2λ′h+ 2(λ′)2h2

)
E‖yk − ȳk‖

2

≤
(
1− λ′h

)
E‖yk − ȳk‖

2

where the second inequality is due to e−x ≤ 1− x+ x2

2
,∀x > 0.

For term 2 , we have by Lemma 36 that

E
∥∥∥ytk,ȳk(h)− ȳtk,ȳk(h)

∥∥∥2

≤ σ2
max E

∥∥xtk,x̄k(h)− x̄tk,x̄k(h)
∥∥2 ≤ σ2

max C
2
2h

3

where σmax is the largest singular value of matrix P .

For term 3 , we have by Lemma 30 that

2E
〈
ytk,yk(h)− ytk,ȳk(h),ytk,ȳk(h)− ȳtk,ȳk(h)

〉
=2E

〈
yk − ȳk + z,ytk,ȳk(h)− ȳtk,ȳk(h)

〉
= 2E

〈
yk − ȳk,ytk,ȳk(h)− ȳtk,ȳk(h)

〉
︸ ︷︷ ︸

3a

+ 2E
〈
z,ytk,ȳk(h)− ȳtk,ȳk(h)

〉
︸ ︷︷ ︸

3b

67

For term 3a , by the tower property of conditional expectation, we have

2E
〈
yk − ȳk,ytk,ȳk(h)− ȳtk,ȳk(h)

〉
=2E

E[〈yk − ȳk,ytk,ȳk(h)− ȳtk,ȳk(h)
〉 ∣∣∣∣Fk

]
=2E

〈
yk − ȳk,E

[
ytk,ȳk(h)− ȳtk,ȳk(h)

∣∣∣∣Fk
]〉

≤2

√
E‖yk − ȳk‖

2

√√√√√E

∥∥∥∥∥∥E
[
ytk,ȳk(h)− ȳtk,ȳk(h)

∣∣∣∣Fk
]∥∥∥∥∥∥

2

≤2

√
E‖yk − ȳk‖

2

√√√√√σ2
maxE

∥∥∥∥∥∥E
[
xtk,x̄k(h)− x̄tk,x̄k(h)

∣∣∣∣Fk
]∥∥∥∥∥∥

2

≤2

√
E‖yk − ȳk‖

2
√
σ2

maxC
2
1h

4

≤2σmaxC1

√
E‖yk − ȳk‖

2h2.

For term 3b , when 0 < h < 1
4L′′

we have by Lemma 30 and Lemma 36

2E
〈
z,ytk,ȳk(h)− ȳtk,ȳk(h)

〉
≤2

√
E‖z‖2

√
E
∥∥∥ytk,ȳk(h)− ȳtk,ȳk(h)

∥∥∥2

=2

√
E‖z‖2

√√√√√E

E[∥∥∥ytk,ȳk(h)− ȳtk,ȳk(h)
∥∥∥2
∣∣∣∣Fk
]

=2

√
E‖z‖2

√√√√√σ2
maxE

E[∥∥xtk,x̄k(h)− x̄tk,x̄k(h)
∥∥2

∣∣∣∣Fk
]

≤2σmax

√
C̃E‖yk − ȳk‖

2 h2

√
C2

2h
3

≤2σmaxC2

√
C̃

√
E‖yk − ȳk‖

2h
5
2

where C̃ = 2 (L′′)2 = 2(κ′)2 (L′)2 is from Lemma 30 and Lemma 32.

68

Recall both C1 and C2 depend on‖xk‖ and we would like to upper bound this term. To

this end, consider x̃(t), a solution of HFHR dynamics with initial value x̃0 that follows the

invariant distribution x̃0 ∼ π and realizes W2(π0, π), i.e., E‖x̃0 − x0‖2 = W 2
2 (π0, π).

Denote x̃k = x̃(kh) and ek =
(
E‖yk − ȳk‖

2
) 1

2
, we then have

E‖x̄k‖2 =E‖xk + x̄k − xk‖2

≤2E‖xk‖2 + 2E‖x̄k − xk‖2

≤4E‖x̃k‖2 + 4E‖x̃k − xk‖2 + 2E‖x̄k − xk‖2

=4E‖x̃k‖2 + 4E
∥∥P−1P (x̃k − xk)

∥∥2
+ 2E

∥∥P−1P (x̄k − xk)
∥∥2

≤4

(∫
Rd
‖q‖2 dµ+ d

)
+

4

σ2
min

E
∥∥P (x̃k − xk)

∥∥2
+

2

σ2
min

E‖ȳk − yk‖
2

(i)

≤4

(∫
Rd
‖q‖2 dµ+ d

)
+

4

σ2
min
e−2λ′khE

∥∥P (x̃0 − x0)
∥∥2

+
2

σ2
min
e2
k

≤4

(∫
Rd
‖q‖2 dµ+ d

)
+ 4κ2W 2

2 (π0, π) +
2

σ2
min
e2
k

,Fe2
k +G

where (i) is due to Lemma 33. Recall from Lemma 36, we have

C1 ≤ A1

√
E‖x̄k‖2 +B1 ≤ A1

√
Fek + (A1

√
G+B1) , U1ek + V1

C2 ≤ A2

√
E‖x̄k‖2 +B2 ≤ A2

√
Fek + (A2

√
G+B2) , U2ek + V2

where

A1 =(L+G) max{α + 1.25, γ + 1}(1.74 + 0.71α)

B1 =(L+G) max{α + 1.25, γ + 1}
[
0.5α + (1.26

√
α + 1.14α

√
α + 2.32

√
γ)
√
hd
]

A2 =Lmax{α + 1.25, γ + 1}(1.92 + 2.30αL)
√
h

B2 =Lmax{α + 1.25, γ + 1}(2.60
√
α + 3.34

√
γh)
√
d

69

Combine the above and bounds for terms 1 , 2 , 3a and 3b , we then obtain

e2
k+1

≤(1− λ′h)e2
k + σ2

max C
2
2h

3 + 2σmaxC1ekh
2 + 2σmaxC2

√
C̃ekh

5
2

≤(1− λ′h)e2
k + σ2

max2(U2
2 e

2
k + V 2

2)h3 + 2σmax(U1ek + V1)ekh
2 + 2σmax(U2ek + V2)

√
C̃ekh

5
2

=

(
1− λ′h+ 2σ2

maxU
2
2h

3 + 2σmaxU1h
2 + 2σmaxU2

√
C̃h

5
2

)
e2
k

+

(
2σmaxV1 + 2σmaxV2

√
C̃h

)
ekh

2 + 2σ2
maxV

2
2 h

3

≤
(

1− λ′h+ 2σ2
maxU

2
2h

3 + 2σmaxU1h
2 + 2σmaxU2

√
C̃h

5
2

)
e2
k +

λ′

8
he2

k

+
2
(

2σmaxV1 + 2σmaxV2

√
C̃h
)2

λ′
h3 + 2σ2

maxV
2

2 h
3

=

(
1− 7

8
λ′h+ 2σ2

maxU
2
2h

3 + 2σmaxU1h
2 + 2σmaxU2

√
C̃h

5
2

)
e2
k

+

2
(

2σmaxV1 + 2σmaxV2

√
C̃h
)2

λ′
+ 2σ2

maxV
2

2

h3

(i)

≤(1− 1

2
λ′h)e2

k +

2
(

2σmaxV1 + 2σmaxV2

√
C̃h
)2

λ′
+ 2σ2

maxV
2

2

h3

,(1− 1

2
λ′h)e2

k +Kh3

where (i) is due to h < min{h1, h2, h3} and

h1 =

√
λ′

4
√

2κ′Lmax{α + 1.25, γ + 1}(1.92 + 2.30αL)
,

h2 =
λ′

16
√

2κ′(L+G) max{α + 1.25, γ + 1}(1.74 + 0.71α)
,

h3 =
λ′

8κ′Lmax{α + 1.25, γ + 1}(1.92 + 2.30αL)
.

70

Unfolding the above inequality, we arrive at

e2
k ≤

(
1− λ′

2
h

)k
e2

0 +

(
1 + (1− λ′

2
h) + · · ·+ (1− λ′

2
h)k−1

)
Kh3

(i)

≤Kh3

∞∑
i=0

(
1− λ′

2
h

)i
=

2K

λ′
h2

where (i) is due to ek = 0. Therefore

(
E‖xk − x̄k‖2

) 1
2

=
(
E
∥∥P−1(yk − ȳk)

∥∥2
) 1

2 ≤ 1

σmin
ek ≤

1

σmin

√
2K

λ′
h

Collecting all the constants and we have

1

σmin

√
2K

λ′

≤8κ′

λ′
(L+G) max{α + 1.25, γ + 1}(1.74 + 0.71α)

√∫
Rd
‖q‖2 dµ+ d+ κ′W2(π0, π)

+

4κ′

λ′
(L+G) max{α + 1.25, γ + 1}

(
0.5α + (1.26

√
α + 1.14α

√
α + 2.32

√
γ)
√
d
)

+
8κ′√
λ′

(√
κ′L′√
λ′

+ 1

)
Lmax{α + 1.25, γ + 1}(1.92 + 2.30αL)×√∫

Rd
‖q‖2 dµ+ d+ κ′W2(π0, π)

+

4κ′√
λ′

(√
κ′L′√
λ′

+ 1

)
Lmax{α + 1.25, γ + 1}(2.60

√
α + 3.34

√
γ)
√
d

,C

It is clear that in terms of the dependence on dimension d, we have C = O(
√
d). In the

regime where γ2−L
γ
≥ m

γ
+ mα, then λ′ = m

γ
+ mα. Recall the definition of κ′ and there

71

exist A′, B′ > 0 such that κ′ ≤ A′
√
α +B′. It follows that

C ≤ a1α
3 + a2α

5
2 + a3α

2 + a4α
3
2 + a5α + a6α

1
2 + a7

λ′
≤ b1α

3 + b2

λ′
=
b1α

3 + b2
m
γ

+mα

for some positive constants a1, a2, a3, a4, a5, a6, a7, b1, b2 > 0 and independent of α, in

particular, we have b1 = O(
√
d), b2 = O(

√
d).

Remark: The linear growth condition on ∇∆f is a mild assumption, and in some

sense, even weaker than classical conditions on the existence of solutions to SDE. For

example, a linear growth condition is assumed in [10] to ensure a global, unique solution

exists for an SDE. If we assume the potential function is a monomial f(x) = fp(x) =

xp, p ∈ Z+, then the linear growth condition on ∇∆f is met whenever p ≤ 4 whereas

classical condition on the existence of solutions to SDE only apply when p ≤ 2.

Remark: The proof is based on the powerful mean-squared analysis framework [123],

we extend the framework and carefully keep track of all constants to study the dependence

on some important parameters such as step size h and dimension d. As a side note, the proof

technique in [31, Theorem 2] does not directly apply to Algorithm 2 since the diffusion on

position variable in HFHR lowers the regularity of sample paths, which is critical in their

proof.

Two results follow immediately from Theorem 11. Theorem 12 characterizes the dif-

ference between the law of position variable q in Algorithm 2 and the target distribution

µ in 2-Wasserstein distance. Corollary 13 gives the iteration complexity of Algorithm 2 to

reach ε-accuracy to the target distribution.

Theorem 12 Under the same assumption as in Theorem 11 and further assume γ− L+m
γ
≥

mα, if we start from (q0,p0) ∼ π0, then there exists h0, C > 0 (same as that in Theorem

11 and C = O(
√
d)) such that when 0 < h < h0, we have

W2(µk, µ) ≤
√

2κ′e−(m
γ

+mα)khW2(π0, π) +
√

2Ch (3.21)

72

where µk is the law of the q marginal of the k-th iterate in Algorithm 2, µ is the q marginal

of the invariant distribution π.

Proof: Denote the k-th iterate of the Strang’s splitting method of HFHR by x̄k with time

step h, the solution of HFHR dynamics at time hk by xk. Both x̄k and xk start from

x0 =

q0

p0

. Also denote the solution of HFHR dynamics starting from x̃0 at time kh by

x̃k where x̃0 =

q̃0

p0

, (q̃0, p̃0) ∼ π and E

∥∥∥∥∥∥∥
q0 − q̃0

p0 − p̃0

∥∥∥∥∥∥∥

2

= W 2
2 (π0, π). Since π is the

invariant distribution of HFHR dynamics, it follows that x̃k ∼ π.

By Lemma 33 and Theorem 11, we have

W 2
2 (µk, µ) = inf

ξ∈Π(µk,µ)
E(q1,q2)∼ξ‖q1 − q2‖

2

≤ inf
ξ∈Π(πk,π)

E(x1,x2)∼ξ‖x1 − x2‖2

≤E‖x̄k − x̃k‖2

≤2C2h2 + 2E
∥∥P−1P (xk − x̃k)

∥∥2

≤2C2h2 + 2‖P−1‖2
2E
∥∥P (xk − x̃k)

∥∥2

≤2C2h2 + 2‖P−1‖2
2e
−2λ′khE

∥∥P (x0 − x̃0)
∥∥2

≤2C2h2 + 2(κ′)2e−2λ′khW 2
2 (π0, π)

Take square root on both sides and apply
√
a2 + b2 ≤ a+ b, we obtain

W2(µk, µ) ≤
√

2Ch+
√

2κ′e−λ
′khW2(π0, π).

Corollary 13 Under the same assumption as in Theorem 11 and further assume γ−L+m
γ
≥

mα, if we start from (q0,p0) ∼ π0, then there exists h0, C > 0 (same as that in Theorem

73

11 and C = O(
√
d)) such that for any target accuracy ε > 0, if we choose h = h? ,

min{h0,
ε

2
√

2C
}, then after

k = k? ,
1

m
γ

+mα
max{ 1

h0

,
2
√

2C

ε
} log

2
√

2κ′W2(π0, π)

ε
(3.22)

steps, we have W2(µk, µ) ≤ ε. When high accuracy is needed, i.e., ε < 2
√

2Ch0, the

iteration complexity becomes k? = 2
√

2 C
m
γ

+mα
1
ε

log 2
√

2κ′W2(π0,π)
ε

= Õ(
√
d
ε

). Recall from

Theorem 11 that C ≤ b1α3+b2
m
γ

+mα
when γ − L+m

γ
≥ mα, so the minimizer of the upper bound

of C
m
γ

+mα

α? = argmin
α≥0

b1α
3 + b2

(m
γ

+mα)2
> 0,

which implies there exists a positive α? that minimizes the iteration complexity of Algorithm

2, in particular, Algorithm 2 with α = α? has better iteration complexity than ULD (HFHR

with α = 0) does.

Proof: By Theorem 12, we have

W2(µk, µ) ≤
√

2Ch+
√

2κ′e−λ
′khW2(π0, π).

Given any target accuracy ε > 0, if we run the Strang’s splitting method of HFHR with

h? = min{h0,
ε

2
√

2C
}, then after k? = 1

λ′
max{ 1

h0
, 2
√

2C
ε
} log 2

√
2κ′W2(π0,π)

ε
, we have

W2(µk? , µ) ≤
√

2Ch+
√

2κ′e−λ
′khW2(µ0, µ) ≤ ε

2
+
ε

2
= ε.

Recall C = O(
√
d), when high accuracy is needed, e.g. ε < 2

√
2Ch0, the iteration

complexity to reach ε-accuracy under 2-Wasserstein distance is k? = O(
√
d
ε

log 1
ε
) =

2
√

2C
λ′

1
ε

log 2
√

2κ′W2(π0,π)
ε

= Õ(
√
d
ε

). Recall from Theorem 11, C ≤ b1α3+b2
m
γ

+mα
, we have

C

λ′
≤ b1α

3 + b2

(m
γ

+mα)2

74

Denote g(α) = b1α3+b2
(m
γ

+mα)2
, simple calculation shows that g′(0) < 0 and limα→∞ g(α) =

+∞, hence

α′ = argmin
α≥0

g(α)

exists and is positive.

Remark: The result of Theorem 12 agrees with Theorem 2 for a discretized algorithm

of ULD termed as 1st-order KLMC in [31], in that both results have an exponentially

decaying first term due to converging continuous dynamics, and a second term caused

by discreitzation error that scale linearly in h
√
d. Consequently, the iteration complexity

result Õ(
√
d
ε

) in Corollary 13 matches that in the discussion after Theorem 2 of [31]. It is

worth mentioning that an even-faster discretized algorithm for ULD with Õ(
√
d√
ε
) iteration

complexity, termed 2nd-order KLMC was proposed in [31]. However, 2nd-order KLMC

requires the hessian of potential functions to work which can be computationally expensive.

Remark: When high-accuracy is needed, the iteration complexity depends linearly in

C
λ′

and C
λ′

is upper bounded by b1α3+b2
(m
γ

+mα)2
. As shown in Figure 3.1, the upper bounded, hence

in some sense the overall iteration complexity is minimized for some α? > 0, better than

that of underdamped Langevin dynamic, which corresponds to the case α = 0.

0

Ite
ra

tio
n

Co
m

pl
ex

ity

b1 3 + b2
(m + m)2

Figure 3.1: Illustration of the effect of α on iteration complexity

75

Inspecting the role of α in Equation (3.21), we see that α clearly increases the rate of

exponential decay, at the same time, may also increase discretization error. However, the

net effect of having a positive α > 0, at least for some α?, is reduced iteration complexity,

and hence enables a more efficient discrete algorithm then ULD algorithm, as illustrated

in Corollary 13 and its remarks. The improved efficiency of Algorithm 2 over ULD al-

gorithm shows that the acceleration of HFHR can be carried from continuous dynamics

realm to the discrete algorithm regime. Appendix B.11 presents a case study that analyt-

ically demonstrates this point, and the same conclusion has been repeatedly observed in

numerical experiments.

3.6 Numerical Experiments

This section empirically studies the performance of HFHR algorithm and compares it with

ULD algorithm (1st-order KLMC algorithm in [26]). In Section 3.6.1, we test both algo-

rithms on a collection of target distributions with simple but representative functions as po-

tential f and cover strongly convex (low/high dimensional Gaussian, small/large strongly-

convex coefficient m), convex and non-convex cases (bi-modal, perturbed Gaussian and

2D Rosenbrock’s function [124]). In Section 3.6.2, we work with Gaussian distribution

and numerically verify the tightness of our theoretical results on HFHR dynamics. A non-

linear potential is studied in Section 3.6.3 to verify the tightness of Theorem 12 and demon-

strate improved iteration complexity of HFHR algorithm over ULD algorithm. In Section

3.6.4, we demonstrate how HFHR performs in a downstream learning task based on a high-

dimensional, non-convex, multi-modal Bayesian neural network model. In all experiments,

we use the same γ and step size h for ULD and HFHR. All experiments are conducted on a

machine with a 2.20GHz Intel(R) Xeon(R) E5-2630 v4 CPU and an Nvidia GeForce GTX

1080 GPU.

76

Table 3.2: Test functions. We use the shorthand notation Gd
m,κ(x) = m

2
(κx2

d +
∑d−1

i=1 x
2
i).

Letters ‘S’, ‘C’ and ‘N’ represent strongly convex, convex and non-convex respectively.

f f1 f2 f3 f4 f5 f6 f7 f8

Expresion 1
2x

2 G2
0.1,10 G2

10,10 G100
1,100

1
4x

4 5x2+sin(10x)
10 5(x4 − 2x2) (x−1)2+10(y−x2)2

2

Convexity S S S S C N N N

3.6.1 Simple Target Distributions

In this subsection, we test 8 target distributions with simple, yet representative poten-

tial functions, summarized in Table 3.2. They are classified into two groups, Gaussians

and non-Gaussians. For Gaussian, smoothness coefficient L is available, hence we take

γ = 2
√
L in accordance with Table 3.1. To be consistent with Theorem 11, we measure

closeness to the target distribution using W2 which has closed-form expression for two

Gaussians. For non-Gaussians, we empirically set γ = 2 and measure sample quality by

χ2 divergence with density approximated by histogram. Note approximating the density

corresponding to f8(x, y) by uniform-mesh-based histogram is either inaccurate or requir-

ing the mesh to be very fine, and we thus report the error in the x component |Ex − µ|

instead, where µ is the true mean of x-component. Step size h is tuned so that it is near

the stability limit of ULD algorithm. In each experiment, we sample 10000 independent

realizations for each algorithm

Figure 3.2 shows the experiment results. Each result contains two phases. In the first

phase, error has a trend of smoothly decreasing, corresponding to the exponentially decay

bound in Equation (3.21); in the second phase, the curve is noisy since algorithms are

saturated by discretization error. Across all experiments, the additional acceleration of

HFHR over ULD is clearly seen in the first phase and can be very significant, for example

in Figure 3.2d and 3.2f.

77

0 20 40 60 80 100
number of iterations

10 1

100

101

102

W
2(

t,
)

ULD(=2)
HFHR(=0.5, =2)

(a) 1D Gaussian

0 20 40 60 80 100
number of iterations

10 1

100

101

W
2(

t,
)

ULD(=2)
HFHR(=1, =2)

(b) 2D Gaussian(m =
0.1)

0 25 50 75 100 125 150 175 200
number of iterations

100

101

102

W
2(

t,
)

ULD(=2)
HFHR(=0.05, =2)

(c) 2D Gaussian(m =
10)

0 200 400 600 800 1000
number of iterations

100

101

102

W
2(

t,
)

ULD(=20)
HFHR(=1, =20)

(d) 100D Gaussian

0 10 20 30 40 50
number of iterations

10 1

100

101

2 (
t,

)

ULD(=2)
HFHR(=0.2, =2)

(e) Convex

0 1000 2000 3000 4000 5000
number of iterations

10 2

10 1

100

101

2 (
t,

)

ULD(=2)
HFHR(=1, =2)

(f) Perturbed

0 10 20 30 40 50
number of iterations

10 1

100

101

102

103

2 (
t,

)

ULD(=2)
HFHR(=0.05, =2)

(g) Bi-modal

0 10000 20000 30000 40000 50000
number of iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

|
x

|

ULD(=2)
HFHR(=0.5, =2)

(h) 2D Rosenbrock

Figure 3.2: (a) f1 (h = 2). (b) f2 (h = 0.2). (c) f3 (h = 2.5). (d)f4 (h = 0.2). (e)
f5 (h = 0.5). (f) f6 (h = 0.001). (g) f7 (h = 0.1). (h) f8 (h = 0.005). y-axes are in log
scale.

3.6.2 A Case Study on Gaussian: Empirical Performances versus Theoretical Guarantees

for HFHR Dynamics

In this subsection, we numerically verify the tightness of theoretical results for the contin-

uous HFHR dynamics in Section 3.4. To this end, we work with Gaussian distributions

because (i) Gaussians have log-strongly-convex densities and hence satisfy all the assump-

tions in our theory; (ii) Gaussians are analytically tractable, all parameters needed for the

theory, including Lipschitz constant L, strongly-convex coefficient m, etc., are known to

us, also the metrics used in our theory (e.g. 2-Wasserstein distance, χ2 divergence) have

closed form expression for Gaussians; (iii) Gaussians are widely used in various machine

learning applications.

The first verification starts with Theorem 6. We experiment with 1-dimensional stan-

dard Gaussian distribution and use Algorithm 2 with tiny step size (h = 10−4, small enough

so that results about the continuous dynamics can be probed) to simulate HFHR dynamics

and compare with the theoretical bound in Theorem 6. We set γ = 2 which corresponds

to the critical damping of ULD and generate 10000 to estimate χ2 divergence to the target

distribution.

We run Algorithm 2 with α ∈ {0.1, 0.5, 1, 2, 5, 10} and plot the results as well as the

78

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 1

100

101

102

2 (
t,

)

ULD
HFHR(= 0.1))

2(0,)exp(2min{ , }t)

(a) α = 0.1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 2

10 1

100

101

102

103

2 (
t,

)

ULD
HFHR(= 0.5))

2(0,)exp(2min{ , }t)

(b) α = 0.5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 3

10 2

10 1

100

101

102

103

2 (
t,

)

ULD
HFHR(= 1))

2(0,)exp(2min{ , }t)

(c) α = 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 7

10 5

10 3

10 1

101

103

2 (
t,

)

ULD
HFHR(= 2)
HFHR(= 5)
HFHR(= 10)

2(0,)exp(2min{ , }t)

(d) α ≥ 2

Figure 3.3: Illustration of the consistency between the theoretical bound in Theorem 6 and
experiment results.

upper bound in Theorem 6 in Figure 3.3. In all four figures, HFHR outperforms ULD in

terms of convergence speed, even when α is small, e.g. Figure 3.3a, and the gap between

convergence speeds becomes larger as we increase α, e.g. Figure 3.3a ∼ 3.3c. Note also

the bound in Theorem 6 may not be tight due to its generality. For example, the rate of the

exponential convergence bound in Theorem 6 reads −2 min{α, γ} and is −2γ whenever

α ≥ γ. However, as Figure 3.3d shows, when α ≥ 2, larger α still practically introduces

acceleration. On a side note, we observe that the convergence of HFHR and ULD in χ2

divergence consists of two phases, the convergence in the first phase is super-linear and

gradually transitions to roughly linear in the second phase. Theorem 6 characterizes the

linear convergence rate in the second phase and appears to be almost tight in Figure 3.3d

(note the line of HFHR(α = 2) is nearly parallel to the upper bound).

Next we empirically verify Theorem 9. The experiment setup is identical to that for

Figure 3.3. The results together with the theoretical bounds in Theorem 9 for both HFHR

and ULD are plotted in Figure 3.4. In all four plots, HFHR converges faster than ULD. In

particular, in Figure 3.4c and 3.4d, HFHR reaches 10−3-accuracy in χ2 divergence in less

than 0.75 unit time while ULD just reaches 10−1-accuracy in the experiment time frame. In

addition, we make two observations: (i) In Figure 3.4a and 3.4b, the two upper bounds for

HFHR and ULD respectively in Theorem 9 are hardly distinguishable because α is small,

however, the actual acceleration created by α is clearly manifested, even when α is tiny,

i.e., α = 0.1 in Figure 3.4a. Therefore, in practice, HFHR dynamics can introduce even

more acceleration than Theorem 9 ensures; (ii) Note that the Lipschitz constant L = 1 and

Poincaré constant λ = 1, so the assumption γ2 ≥ max{2λ, L} is satisfied and α ≤ γ
λ
− 2

γ

79

is satisfied when α ≤ 1. In Figure 3.4c and 3.4d, α is large and breaks the assumption of α

in Theorem 9, but also creates significant acceleration. This observation demonstrates the

applicability of HFHR is wider than conditions needed by Theorem 9. In fact, Theorem 9

only requires convexity but Gaussian targets correspond to strongly convex potentials, so

its bound being not tight should not be surprising.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 1

100

101

102

2 (
t,

) ULD
HFHR(= 0.1))
Cexp((2 + 16)t)

Cexp(2 t)

(a) α = 0.1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 3

10 2

10 1

100

101

102

103

2 (
t,

)
ULD
HFHR(= 1))
Cexp((2 + 16)t)

Cexp(2 t)

(b) α = 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 7

10 5

10 3

10 1

101

103

2 (
t,

)

ULD
HFHR(= 5))
Cexp((2 + 16)t)

Cexp(2 t)

(c) α = 5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 7

10 5

10 3

10 1

101

103

2 (
t,

)

ULD
HFHR(= 10))
Cexp((2 + 16)t)

Cexp(2 t)

(d) α = 10

Figure 3.4: Illustration of the consistency between the theoretical bound in Theorem 9 and
experiment results.

Finally, we verify Theorem 10. The experimental setup is the same as that for Figure

3.3. We plot the W2 errors of HFHR and ULD, together with their respective upper bounds

in Theorem 10 in Figure 3.5. We observe acceleration of HFHR over ULD in all four

subfigures of Figure 3.5. In addition, our theoretical upper bounds are nearly parallel to the

performance of actual HFHR algorithm, which empirically demonstrates that our theory in

Theorem 10 is tight up to a constant. Note that the two assumptions in Theorem 10, i.e.,

γ2 > L+m are satisfied when α ≤ 1. In Figure 3.5c and 3.5d, the choices of α can break

the assumption, nevertheless, Algorithm 2 empirically works well and creates significant

acceleration over ULD.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 1

100

W
2(

t,
)

ULD
HFHR(= 0.5)
′()W2(0,)exp((m + m)t)
′(0)W2(0,)exp(m t)

(a) α = 0.5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 1

100

W
2(

t,
)

ULD
HFHR(= 1)
′()W2(0,)exp((m + m)t)
′(0)W2(0,)exp(m t)

(b) α = 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 2

10 1

100

W
2(

t,
)

ULD
HFHR(= 2)
′()W2(0,)exp((m + m)t)
′(0)W2(0,)exp(m t)

(c) α = 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 8

10 6

10 4

10 2

100

W
2(

t,
)

ULD
HFHR(= 10)
′()W2(0,)exp((m + m)t)
′(0)W2(0,)exp(m t)

(d) α = 10

Figure 3.5: Illustration of the consistency between the theoretical bound in Theorem 10
and experiment results.

80

3.6.3 A Case Study on a Nonlinear Problem: Empirical Performances versus Theoretical

Guarantees for HFHR Algorithm

Numerical verification of the tightness of theoretical results for Algorithm 2 in Section 3.5

is conducted is this subsection. A key feature of HFHR algorithm is that its discretization

error/iteration complexity has a O(
√
d) dependence on the ambient dimension (same as

ULD algorithm and better than OLD algorithm’s O(d) dependence). If we use standard

Gaussian as potential, HFHR dynamics become decoupled across dimensions, and hence

its discretization error having a O(
√
d) dependence would be a natural consequence as we

use 2-Wasserstein distance to quantify statistical accuracy.

To inspect a more interesting example, we consider the following potential, the sum of

a quadratic function and a log-sum-exp function, i.e.,

f(x) = log (ex1 + · · ·+ exd) +
1

2
‖x‖2 , (3.23)

which couples all dimensions in HFHR dynamics. Moreover, the new potential f is still

a strongly convex function and satisfies the assumption in Theorem 12. When the target

measure is non-Gaussian, we no longer have a closed form expression for 2-Wasserstein

distance and it is computationally very expensive to approximate 2-Wasserstein distance

by samples. Instead, we use the error of mean as a surrogate because

∥∥Eµkq − Eµq
∥∥ ≤ W2(µk, µ)

and hence the bound in Equation (3.21) also applies to the error in mean, so does the

iteration complexity bound in Equation (3.22).

We first verify Theorem 12, which says the sampling error is upper bounded by two

terms, the first corresponding to the exponential decay of the continuous dynamics, whose

rate is characterized in Theorem 10 and already numerically verified previously, and the

81

second term corresponding to discretization error. We theoretically proved in Theorem 12

that the discretization error is linear in step size h and square root of dimension
√
d.

To numerically verify the linear dependence on h, we work with d = 2 and ran ULD

algorithm with tiny step size (h = 0.0005) to obtain 108 independent realizations and

use them to estimate Eµq. We then set γ = 2, α = 1 and sample from the potential in

Equation 3.23 using Algorithm 2, with h ∈ {2k| − 7 ≤ k ≤ 0}. For each h, we run T
h

(with T = 50) iterations in Algorithm 2 to ensure the Markov chains are well-mixed and

the contribution to final error from exponential decay is order-of-magnitude smaller than

discretization error. The results are plotted in Figure 3.6a.

We experimentally observe a clear linear dependence on step size h and the observation

strongly support our results on discretization error in Theorem 12.

10 2 10 1 100

Step size

10 5

10 4

10 3

||
x

x|
| 2 O(h)

HFHR Algorithm

(a) Linear dependence of discretization error of
Algorithm 2 on h

100 101 102 103

Dimension

10 1

100

||
x

x|
| 2 O(d)

HFHR Algorithm

(b) Linear dependence of discretization error of
Algorithm 2 on

√
d

Figure 3.6: Illustration of the consistency between the theoretical bound in Theorem 12
and experiment results.

To numerically verify the O(
√
d) dependence on dimension d, we extensively experi-

ment with d ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}, for each d, we run 1000 indepen-

dent realizations of ULD algorithm until converged with tiny step size (h = 0.005) and

use their sample mean as the true mean. We fix γ = 2, α = 1, h = 0.1, T = 10 and for

each d, we run 1000 independent realizations of HFHR algorithm for T
h

= 100 iterations.

Experiment results are plotted in Figure 3.6b. A clear linear dependence of error on
√
d is

82

shown in Figure 3.6b, demonstrating the bound obtained in Theorem 12 is tight in terms of

the dependence in d.

0 100 101 102
0

2

4

6

8

10

12

14

of

 it
er

s t
o

re
ac

h
-c

lo
se

ne
ss ULD Algorithm

HFHR Algorithm

Figure 3.7: Improvement of Algorithm 2 over ULD algorithm in iteration complexity. (ver-
tical bar stands for one standard deviation.)

The final experiment in this subsection is to compare Algorithm 2 with ULD algo-

rithm in terms of iteration complexity. The goal is to demonstrate that the genuine ac-

celeration of HFHR is not an artifact due to time rescaling, which would disappear after

discretization as the stability limit changes accordingly. To do so, we push both ULD

and HFHR to their respective largest h values that still allow monotone converge at a

large scale, and compare their mixing times. For Gaussian targets, this is already an-

alytically studied in Appendix B.11 (see e.g., Fig.B.1). Thus, we again work with the

potential in Equation (3.23). For general nonlinear problems like this one, Remark 3.5

and the illustration of Figure 3.1 suggest that with appropriately chosen α, HFHR algo-

rithm can effectively reduce the prefactor of iteration complexity, which implies reduced

iteration complexity. To just provide one empirical verification of this improvement over

ULD algorithm, we choose d = 10 and use the error of mean
∥∥Eµkq − Eµq

∥∥ to measure

sampling accuracy. The benchmark, i.e., Eµq, is obtained from 1000 independent realiza-

tions of ULD algorithm with tiny step size (h = 0.005), ran for long enough to ensure the

83

Markov chains are well-mixed. The initial measure is chosen as a Dirac measure at (1d,0d),

where 1d,0d are d-dimensional vectors filled with 1 and 0 respectively. We pick threshold

ε = 0.1, then for each α ∈ {0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}, we try all combinations

of (γ, h) ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}× {5, 1, 0.5, 0.1, 0.05, 0.01, 0.005} for Al-

gorithm 2 (ULD algorithm when α = 0), and empirically find the best combination that

requires the fewest iterations to meet
∥∥Eµkq − Eµq

∥∥ ≤ ε. We find that h = 5 already sur-

passes the stability limit of ULD algorithm, hence the range of step size in the experiment

covers the largest step size that can be practically used for ULD algorithm We repeat the

experiment with 10 different random seeds for better statistical significance and the results

are shown in Figure 3.7. When α > 0, HFHR algorithm consistently outperforms ULD

algorithm In particular when α = 1, empirically the best α we found in this experiment,

HFFR algorithm reaches the specified ε-closeness nearly 6× times faster than ULD algo-

rithm This empirical study corroborates that the acceleration HFHR dynamics creates also

carries to its discretization, and the acceleration of HFHR algorithm over ULD algorithm

can be significant.

3.6.4 Bayesian Neural Network

We now consider a Bayesian neural network (BNN) which is a compelling learning model

[67] and at the same time a high-dimensional and multi-modal example. The specific net-

work considered here has a fully-connected architecture with [22, 10, 2] neurons in each

layer and ReLU activation. Standard Gaussian prior is used for all parameters. We com-

pare both ULD and HFHR on Parkinson’s disease data set from UCI machine learning

repository [125].

Choices of hyper-parameter for Algorithm 2 and ULD algorithm are extensively inves-

tigated. For each pair (γ, α) ∈ {0.1, 0.5, 1, 5, 10, 50, 100}2, we empirically tune the step

size to the stability limit of ULD algorithm, simulate 10,000 independent realizations of

the Markov chain, and use the ensemble to conduct Bayesian posterior prediction. HFHR

84

will then use the same step size. For each γ, we plot the negative log likelihood of HFHR

algorithm (with different α choices) and ULD algorithm on training and test data in Figure

3.8. Large α causing numerical instability are not drawn.

From Figure 3.8, we find that HFHR converges significantly faster than ULD in a wide

range of setups. In general, the (strongly) log-concave assumption required in Theorem 9

and Theorem 11 may not hold for complex models. However, the BNN experiment shows

the acceleration of HFHR over ULD still holds for highly complex models such as BNN,

even when there is no obvious theoretical guarantee.

This demonstrates the applicability and effectiveness of HFHR as a beyond-log-concave,

general sampling algorithm

0 100 200 300 400 500
Number of Data Passes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
NL

L

ULD
HFHR(= 0.1)
HFHR(= 0.5)
HFHR(= 1.0)

(a) γ = 0.1 (h =
0.005)

0 100 200 300 400 500
Number of Data Passes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
NL

L

ULD
HFHR(= 0.1)
HFHR(= 0.5)
HFHR(= 1.0)

(b) γ = 1 (h = 0.01)

0 100 200 300 400 500
Number of Data Passes

0.2

0.3

0.4

0.5

0.6

0.7
Tr

ai
n

NL
L

ULD
HFHR(= 0.1)

(c) γ = 10 (h = 0.05)

0 100 200 300 400 500
Number of Data Passes

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
NL

L

ULD
HFHR(= 0.1)

(d) γ = 100 (h = 0.1)

0 100 200 300 400 500
Number of Data Passes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
NL

L

ULD
HFHR(= 0.1)
HFHR(= 0.5)
HFHR(= 1.0)

(e) γ = 0.1 (h = 0.01)

0 100 200 300 400 500
Number of Data Passes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
NL

L

ULD
HFHR(= 0.1)
HFHR(= 0.5)

(f) γ = 1 (h = 0.02)

0 100 200 300 400 500
Number of Data Passes

0

100

200

300

400

Tr
ai

n
NL

L

ULD
HFHR(= 0.1)

(g) γ = 10 (h = 0.1)

0 100 200 300 400 500
Number of Data Passes

0.70

0.75

0.80

0.85

0.90

0.95
Tr

ai
n

NL
L

ULD

(h) γ = 100 (h = 0.2)

Figure 3.8: Training Negative Log-Likelihood (NLL) for various γ. Top row: step sizes
are below the stability limit of ULD algorithm; Bottom row: a further increased step size
wouild go above the stability limit of ULD algorithm

3.7 Conclusion

This chapter proposes HFHR, an accelerated gradient-based MCMC method for sampling.

To demonstrate the acceleration enabled by HFHR, the geometric ergodicity of HFHR

(both the continuous and the discretized versions) is quantified, and its convergence is

85

provably faster than Underdamped Langevin Dynamics, which by itself is often already

considered as an acceleration of Overdamped Langevin Dynamics. As HFHR is based

on a new perspective, which is to turn NAG-SC optimizer with finite learning rate into a

sampler, there are a number of interesting directions in which this work can be extended.

Besides further theoretical investigations that aim at refining the error bounds, examples

also include the followings: to scale HFHR up to large data sets, full gradient may be re-

placed by stochastic gradient (SG) — how to quantify, and hence optimize the performance

of SG-HFHR? Can the generalization ability of HFHR trained learning models (e.g., BNN)

be quantified, and how does it compare with that by LMC and/or KLMC? We plan to study

these in follow-up works.

86

CHAPTER 4

NON-ASYMPTOTIC ANALYSIS OF BOUNDED CONTRACTIVE-SDE-BASED

SAMPLING ALGORITHMS VIA MEAN-SQUARE ANALYSIS

4.1 Introduction

Many sampling algorithms are based on stochastic differential equations (SDE). By set-

ting a target distribution as the invariant distribution of a SDE, and running an appropriate

numerical algorithm that simulate the SDE for long enough, the iterates of the numerical

algorithm will approximately follow the target distribution and can be used for downstream

applications such as Bayesian inference. Such examples include Langevin Monte Carlo al-

gorithm (LMC) [12], Metropolis-Adjusted Langevin Algorithm (MALA) [15] and Kinetic

Langevin Monte Carlo algorithm (KLMC) [31], etc.

Quantitatively characterizing the sampling error of numerical algorithms, particularly

in a non-asymptotic manner, is usually critical for people to evaluate and compare various

sampling algorithms, guide hyperparameter selection in practice and better understand the

nature of these sampling algorithms. Many approaches have been proposed to this end,

for example, Lyapunov analysis [29, 35], viewing sampling as optimization in probability

space [29, 126] and numerical analysis [26, 32, 31, 28]. These studies lead to fruitful

results on non-asymptotic error bounds with explicit dependence on various parameters

of the underlying SDE, e.g. dimension, condition number of the potential function of the

target, etc. A classical and powerful framework– mean-square analysis [123] in the study

of numerical SDE, however, is largely unexplored for modern non-asymptotic analysis

of sampling algorithms. This is partly because traditional mean-square analysis only has

bound for finite time, i.e. t ∈ [0, T] and does not extend to regime t → ∞, in addition,

the dependence of the error bound on the parameters of underlying SDE is implicit and

87

it is hard to evaluation the performance of a numerical algorithm in e.g. high-dimension

problems.

In this chapter, we study a broad family of bounded numerical algorithms for discretized

SDE, whose underlying SDE have contraction property. For this type of algorithms, we

revisit mean-square analysis, and show that we manage to extend the the bound of global

error to infinite time, i.e. t ∈ R. Same as in classical mean-square analysis, we show

global error is only half order lower than the order of local strong error (p2). We further

obtain the Õ

(
C

1

p2−
1
2

1

ε

1

p2−
1
2

)
iteration complexity in 2-Wasserstein distance for the family

of algorithms where C is a constant containing various information of the underlying SDE,

e.g. dimension d. The iteration complexity bound not only reveals the dependence on

tolerance ε, but also, somewhat surprisingly, shows that the dependence on the parameters

of the underlying SDE is also determined by the order of local strong error.

As an application of the general iteration complexity result, we study the widely used

Langevin Monte Carlo algorithm (LMC) for sampling from a Gibbs distribution µ ∝

exp
(
−f(x)

)
, which is an Euler-Maruyama discretization of Langevin dynamics. Un-

der the standard smoothness and strong-convexity assumptions, plus an additional linear

growth condition on the third-order derivative of f , we obtain a Õ
(√

d
ε

)
iteration com-

plexity in 2-Wasserstein distance, which improves upon the previously best known Õ
(
d
ε

)
result [33].

4.2 Background

Consider a general SDE

dxt = b(t,xt)dt+ σ(t,xt)dBt (4.1)

where b ∈ Rd is a drift term, σ ∈ Rl×d is a diffusion coefficient matrix and Bt is a

d-dimensional Wiener process. Under mild condition [10], there exists a unique strong

88

solution xt to Equation (4.1). Some SDEs admit invariant distribution and their solutions

are geometrically ergodic, e.g. Ornstein-Unlenbeck process, Langevin dynamics and ki-

netic Langevin dynamics. Such SDE are desired for sampling purposes, because one can

set a target distribution as the invariant distribution of an SDE, by solving the solution xt

of the SDE and pushing time t to infinity, one can then (approximately) sample from the

target distribution. Except for a few known cases, however, explicit solutions of Equa-

tion (4.1) are elusive and people resort to numerical schemes to simulate/integrate SDE,

such examples include but not limited to Euler-Maruyama method, Milstein methods and

Runge-Kutta method. At k-th iteration, a typical numerical algorithm takes a previous iter-

ate x̄k−1 and a step size h, and outputs a new iterate x̄k as an approximation of the solution

xt of Equation (4.1) at time t = kh.

A classical and powerful framework to quantify the global discretization error of a

numerical algorithm for Equation (4.1), i.e.,

ek =
{
E‖xkh − x̄k‖

} 1
2

is mean-square analysis [123]. Mean-square analysis studies how local error propagate to

global error, in particular, if one-step (local) weak error and strong error (both the solution

xt and the numerical algorithm start from initial value x) satisfy

‖Exh − Ex̄h‖ ≤C1

(
1 + E‖x‖2

) 1
2
hp1 , (local weak error)(

E‖xh − x̄h‖2
) 1

2 ≤C2

(
1 + E‖x‖2

) 1
2
hp2 , (local strong error)

(4.2)

over a time interval [0, Kh] for some constants C1, C2 > 0, p2 ≥ 1
2

and p1 ≥ p2 + 1
2
, then

the global error can be bounded by

ek ≤ C
(

1 + E‖x0‖2
) 1

2
hp2−

1
2 , k = 1, 2, · · · , K (4.3)

89

for some C > 0. This result roughly says the global error is half-order lower than the local

strong error. Despite the nice result in Equation (4.3), there are two limitations that prevent

directly employing mean-square analysis in the non-asymptotic analysis of sampling algo-

rithms. First, the bound of global error in Equation (4.3) only holds in finite time because

the constant C can grow exponentially as K increases, rendering the bound useless when

K →∞. Second, the classical mean-square analysis does not keep track of the dependence

of C on various parameters, e.g. dimension, condition number of the potential function of

the target distribution, which are the main focus of current research in the field.

4.3 Mean-Square Analysis of Bounded Contractive-SDE-Based Algorithms

In this section, we study a family of bounded algorithms for contractive SDE and show that

we can lift the finite time limitation of classical mean-square analysis for this type of algo-

rithms. One bottleneck in classical mean-square analysis is that local error (Equation (4.2))

typically depends on initial values. These initial values are iterates of numerical algorithm,

changing from iteration to iteration and can be unbounded, which poses challenges when

pushing time limit to infinity.

We note that if a numerical algorithm is bounded, then aforementioned technical diffi-

culty can be easily bypassed. A numerical algorithm is bounded if all of its iterates meet

E‖x̄k‖2 ≤ U, k = 0, 1, · · ·

for some constant U > 0. The upper bound U may depend on the parameters of the

underlying SDE, e.g. dimension, Lipschitz constant of drift and noise diffusion, and may

also depend on the initial value x0 of the algorithm.

A bounded numerical algorithm makes sense only if the underlying SDE is also bounded,

for which we impose the following sufficient condition:

Definition 14 A stochastic differential equation is contractive if there exists a constant

90

β > 0, such that the solution of the SDE satisfy

(
E‖xt − yt‖

2
) 1

2 ≤‖x− y‖ exp(−βt), ∀x,y (4.4)

where x,y are initial values of xt,yt.

It is easy to see that Equation (4.4) leads to bounded solution of the SDE. If initial value

y is chosen to follow the invariant distribution of Equation (4.1) i.e., y ∼ µ, then yt ∼ µ

and

E‖xt‖2 ≤E‖xt − yt‖
2 + E‖yt‖

2

≤Ey∼µ‖x− y‖2 exp(−2βt) + E‖yt‖
2

≤2‖x‖2 exp(−2βt) +
(
1 + 2 exp(−2βt)

) ∫
Rd
‖w‖2 dµ

≤2‖x‖2 + 3

∫
Rd
‖w‖2 dµ.

One important and famous example of contractive SDE is Langevin dynamics which

we will detail in Section 4.4.

We have the following result for the family of bounded numerical algorithms for con-

tractive SDE:

Theorem 15 Suppose Equation (4.1) is contractive with rate β and there is a numerical

algorithm A with step size h simulating the solution xt of the SDE, whose iterates are

denoted by x̄k, k = 0, 1, · · · . If there exists h0 > 0, C0, C1, C2 > 0, p1 ≥ 1, 1
2
< p2 ≤ p1− 1

2

such that two solutions xt,yt of Equation (4.1) starting from x,y satisfy

xt − yt = x− y + z and E‖z‖2 ≤ C0‖x− y‖2 h, ∀x,y, 0 < h ≤ h0, (4.5)

91

and the algorithm A has local weak(strong) error of order p1(p2)

‖Exh − Ex̄h‖ ≤ C1h
p1 ,

(
E‖xh − x̄h‖2

) 1
2 ≤ C2h

p2 , ∀0 < h ≤ h0 (4.6)

where xh is a solution of Equation (4.1) with some initial value x and x̄h is the result of

applying A to x for one step. If the solution of SDE xt and algorithm A both start from

x0, then for 0 < h ≤ min{ 1
4β
, h0}, the global error ek at k-th iteration is bounded as

ek ≤ Chp2−
1
2 , k = 0, 1, 2, · · · (4.7)

where C = 2C2√
β

(
1 +

√
2
(
C1
C2

+C0

)
√
β

)
.

Proof: We write the solution of an SDE by xt0,xt0 (t0 + t) when the dependence on initial-

ization needs highlight. Denote tk = kh and xtk = xk for better readability.

We have the following decomposition

e2
k+1 =E‖xk+1 − x̄k+1‖2

=E
∥∥∥xtk,xtk (tk+1)− xtk,x̄k(tk+1) + xtk,x̄k(tk+1)− x̄k+1

∥∥∥2

=E
∥∥∥xtk,xtk (tk+1)− xtk,x̄k(tk+1)

∥∥∥2

︸ ︷︷ ︸
1

+E
∥∥xtk,x̄k(tk+1)− x̄k+1

∥∥2︸ ︷︷ ︸
2

(4.8)

+ 2E〈xtk,xtk (tk+1)− xtk,x̄k(tk+1),xtk,x̄k(tk+1)− x̄k+1〉︸ ︷︷ ︸
3

.

Term 1 is taken care of the contraction property

E
∥∥∥xtk,xtk (tk+1)− xtk,x̄k(tk+1)

∥∥∥2

≤ e2
k exp(−βh). (4.9)

92

Term 2 is dealt with by the bound on local strong error

E
∥∥xtk,x̄k(tk+1)− x̄k+1

∥∥2 ≤ C2
2h

2p2 . (4.10)

Term 3 requires more efforts to cope with, and by the decomposition in Equation

(4.5) we have

E〈xtk,xtk (tk+1)− xtk,x̄k(tk+1),xtk,x̄k(tk+1)− x̄k+1〉

=E〈xk − x̄k,xtk,x̄k(tk+1)− x̄k+1〉+ E〈z,xtk,x̄k(tk+1)− x̄k+1〉
(i)
=E〈xk − x̄k,E[xtk,x̄k(tk+1)− x̄k+1|Fk]〉+ E〈z,xtk,x̄k(tk+1)− x̄k+1〉

(ii)

≤ek
(
E
∥∥E[xtk,x̄k(tk+1)− x̄k+1|Fk]

∥∥2
) 1

2
+
(
E‖z‖2

) 1
2
(
E
∥∥xtk,x̄k(tk+1)− x̄k+1

∥∥2
)

(iii)

≤ ek C1h
p1 + C0ek

√
hC2h

p2

(iv)

≤ (C1 + C0C2)ekh
p2+ 1

2

(v)

≤ β
4
e2
kh+

(C1 + C0C2)2

β
h2p2 (4.11)

where (i) uses the tower property of conditional expectation and Fk is the filtration at k-th

iteration, (ii) uses Cauchy-Schwarz inequality, (iii) is due to local weak error, local strong

error and Equation (4.5), (iv) is due to p1 ≥ p2+ 1
2
, and (v) is again due to Cauchy-Schwarz

inequality.

Now plug Equation (4.9), (4.10) and (4.11) in Equation (4.8), we obtain

e2
k+1 ≤e2

k exp(−βh) +
β

2
e2
kh+

(
C2

2 +
2(C1 + C0C2)2

β

)
h2p2

(i)

≤

(
1− βh+

β2h2

2

)
e2
k +

βh

2
e2
k +

(
C2

2 +
2(C1 + C0C2)2

β

)
h2p2

≤
(

1− βh

4

)
e2
k +

(
C2

2 +
2(C1 + C0C2)2

β

)
h2p2

93

where (i) is due to the assumption 0 < h ≤ 1
4β

and e−x ≤ 1 − x + x2

2
for 0 < x < 1.

Unfolding the above inequality gives us

e2
k+1

≤
(

1− βh

4

)k+1

e2
0 +

(
1 +

(
1− βh

4

)
+ · · ·+

(
1− βh

4

)k)(
C2

2 +
2(C1 + C0C2)2

β

)
h2p2

≤ 4

β

(
C2

2 +
2(C1 + C0C2)2

β

)
h2p2−1.

Taking square root on both sides and using
√
a2 + b2 ≤ a+ b yields

ek+1 ≤
2C2√
β

1 +

√
2
(
C1

C2
+ C0

)
√
β

hp2−
1
2 .

Remark: Equation (4.5) is only a mild condition, and can be shown for stochastic

differential equations with Lipschitz-continuous drift and diffusion terms, see, e.g. [123,

Lemma 1.3]. Boundness of numerical algorithms is implicitly assumed in Equation (4.6).

Following Theorem 15, we have a non-asymptotic error bound of the sampling error in

2-Wasserstein distance.

Theorem 16 Under the same assumption and with the same notation of Theorem 15, we

have

W2(Law(x̄k), µ) ≤
√

2e−βkhW2(Law(x0), µ) +
√

2Chp2−
1
2

for 0 < h ≤ min{ 1
4β
, h0}.

Proof: Let y0 ∼ µ and (x0,y0) are coupled such that E‖x0 − y0‖
2 = W 2

2 (Law(x0), µ).

Denote the solution of Equation (4.1) starting from x0,y0 by xt,yt respectively, and tk =

94

kh. We have

W 2
2 (Law(x̄k), µ) ≤E

∥∥∥x̄k − ytk∥∥∥2

≤2E
∥∥x̄k − xtk∥∥2

+ 2E
∥∥∥xtk − ytk∥∥∥2

(i)

≤2e2
k + 2E‖x0 − y0‖

2 exp (−2βtk)

=2e2
k + 2 exp (−2βtk)W

2
2 (Law(x0), µ)

where (i) is due to the contraction assumption on Equation (4.1).

Taking square roots on both sides, we obtain

W2(Law(x̄k), µ) ≤
√

2e2
k + 2 exp (−2βtk)W 2

2 (Law(x0), µ)

≤
√

2 exp (−βkh)W2(Law(x0), µ) +
√

2ek

Invoking the conclusion of Theorem 15 completes the proof.

As a natural corollary of Theorem 16, we can characterize the iteration complexity of a

general bounded contractive-SDE-based algorithm as shown in Theorem 17

Corollary 17 Under the same assumption and with the same notation of Theorem 15, after

k ≥ k? = max{4, 1

βh0

,
1

β

(
2C

ε

) 1

p2−
1
2 } log

2
√

2W2(Law(x0), µ)

ε

iterations of algorithm A, it is guaranteed that W2(Law(x̄k), µ) ≤ ε. In particular, when

high accuracy is needed, i.e., ε < 2C
(

min{ 1
4β
, h0}

)p2− 1
2
, we have

k? =
(2C)

1

p2−
1
2

β

1

ε
1

p2−
1
2

log
2
√

2W2(Law(x0), µ)

ε
= Õ

C 1

p2−
1
2

β

1

ε
1

p2−
1
2

Proof: Given any tolerance ε > 0, we know from Theorem 16 that if k is large enough and

95

h is small enough such that

√
2 exp (−βkh)W2(Law(x0), µ) ≤ ε

2
. (4.12)

Chp2−
1
2 ≤ ε

2
(4.13)

we then have W2(Law(x̄k), µ) ≤ ε. Solving Inequality (4.12) yields

k ≥ 1

βh
log

2
√

2W2(Law(x0), µ)

ε
, k? (4.14)

To minimize the lower bound, we want pick step size h as large as possible. Besides

h ≤ min{ 1
4β
, h0}, Equation (4.13) poses further constraint on h, hence we have

h ≤ min{ 1

4β
, h0,

(
ε

2C

) 1

p2−
1
2 }.

Plug the upper bound of h in Equation (4.14), we have

k? = max{4, 1

βh0

,
1

β

(
2C

ε

) 1

p2−
1
2 } log

2
√

2W2(Law(x0), µ)

ε
.

When high accuracy is needed, i.e., ε < 2C
(

min{ 1
4β
, h0}

)p2− 1
2
, we have

k? =
(2C)

1

p2−
1
2

β

1

ε
1

p2−
1
2

log
2
√

2W2(Law(x0), µ)

ε
= Õ

C 1

p2−
1
2

β

1

ε
1

p2−
1
2

Corollary 17 states how iteration complexity depends on the order of local (strong) er-

ror (i.e., p2) of a numerical algorithm. Clearly, the higher order error an algorithm yields

locally, the better the iteration complexity of the algorithm is, in term of the dependence

on tolerance/accuracy ε. What is probably somewhat surprising, is that Corollary 17 re-

veals that a high-order numerical algorithm can also improve on the iteration complexity’s

96

dependence on various parameters of the underlying SDE, e.g., dimension d, condition

number of potential function κ, which are all contained in C.

As an application of Theorem 16 and Corollary 17, we will work with Langevin dy-

namics and its discretization Langevin Monte Carlo algorithm, and derive tight bounds on

its iteration complexity in the next section.

4.4 Application to Langevin Monte Carlo Algorithm

Assumption 4 (L-smoothness) Assume f is L-smooth, i.e. there exists L > 0 such that

∥∥∇f(x)−∇f(y)
∥∥ ≤ L‖x− y‖ , ∀x,y ∈ Rd.

Assumption 5 (Strongly-convex potential) Suppose f is m-strongly-convex, i.e., there ex-

ists a constant m > 0 such that

f(y)− f(x)− 〈∇f(x),y − x〉 ≥ m

2
‖y − x‖2 , ∀x,y ∈ Rd.

If f also satisfies Assumption 4, we denote κ , L
m

, known as the condition number of f .

Assumption 6 (3rd-order derivatives grow at most linearly) Assume the operator∇(∆f)

grows at most linearly, i.e., there exists a constant G > 0 such that

∥∥∇(∆f(x))
∥∥ ≤ G

(
1 +‖x‖

)
.

In addition, for normalization purpose, we assume without loss of generality, the origin

is a local minimizer of f , i.e. ∇f(0) = 0.

We first show in Lemma 18 that Langevin dynamics is a member of the family of

contractive SDE, and with a contraction rate of strong-convexity coefficient β = m.

97

Lemma 18 Suppose Assumption 5 holds. Then two copies of overdamped Langevin dy-

namics have the following contraction property

{
E‖yt − xt‖

2
} 1

2 ≤‖y − x‖ exp(−mt)

where x,y are the initial values of xt,yt.

Proof: xt,yt are respectively the solutions to

dxt =−∇f(xt)dt+
√

2dBt

dyt =−∇f(yt)dt+
√

2dBt

where Bt is a standard d-dimensional Brownian motion. Denote Lt = 1
2
E‖yt − xt‖

2 and

take time derivative, we obtain

d

dt
Lt = −E〈yt − xt,∇f(yt)−∇f(xt)〉

(i)

≤ −mE‖yt − xt‖
2 = −2mLt

where (i) is due to the strong-convexity assumption made on f . We then obtain Lt ≤

L0 exp(−2mt) and it follows that

{
E‖yt − xt‖

2
} 1

2 ≤‖y − x‖ exp(−mt)

Next, we will need to work out the constants C0, C1, C2 needed in Theorem 15. Before

proceed with the derivation, we introduce the following lemma on the growth of over-

damped Langevin dynamics, which turns out to be very useful in quantifying local weak

error and local strong error.

Lemma 19 Suppose Assumption 4 and 5 hold, then when 0 ≤ h ≤ 1
4κL

, the solution of

98

overdamped Langevin dynamics xt over satisfies

E‖xh − x‖2 ≤ 6

(
d+

m

2
‖x‖2

)
h

where x is the initial value at t = 0.

Proof: We have

E‖xh − x‖2 =E

∥∥∥∥∥−
∫ h

0

∇f(xt)dt+
√

2

∫ h

0

dBt

∥∥∥∥∥
2

≤2E

∥∥∥∥∥
∫ h

0

∇f(xt)dt

∥∥∥∥∥
2

+ 4E

∥∥∥∥∥
∫ h

0

dBt

∥∥∥∥∥
2

(i)
=2E

∥∥∥∥∥
∫ h

0

∇f(xt)dt

∥∥∥∥∥
2

+ 4hd

≤2E

(∫ h

0

∥∥∇f(xt)−∇f(x)
∥∥ dt+

∫ h

0

∥∥∇f(x)
∥∥ dt)2

+ 4hd

≤2E

(L∫ h

0

‖xt − x‖ dt+ h
∥∥∇f(x)

∥∥)2
+ 4hd

≤4E

L2

(∫ h

0

‖xt − x‖ dt

)2

+ h2
∥∥∇f(x)

∥∥2

+ 4hd

(ii)

≤4hd+ 4h2
∥∥∇f(x)

∥∥2
+ 4L2h

∫ h

0

E‖xt − x‖2 dt

where (i) is due to Ito’s isometry, (ii) is due to Cauchy-Schwarz inequality. By Gronwall’s

inequality, we obtain

E‖xh − x‖2 ≤ 4h
(
d+ h

∥∥∇f(x)
∥∥2
)

exp
{

4L2h2
}
.

Since
∥∥∇f(x)

∥∥ =
∥∥∇f(x)−∇f(0)

∥∥ ≤ L‖x‖, when 0 < h ≤ 1
4κL

, we finally reach at

E‖xh − x‖2 ≤ 4e
1
4

(
d+ 2hL2‖x‖2

)
h ≤ 6

(
d+

m

2
‖x‖2

)
h

99

We are now ready to compute C0, C1, C)2. As the following result shows, we have

C0 =
√
m
2

.

Lemma 20 Suppose Assumption 4 and 5 hold. Let xt,yt be two solutions of overdamped

Langevin dynamics starting from x,y respectively, for 0 < h ≤ 1
4κL

, we have the following

representation

xh − yh = x− y + z

with

E‖z‖2 ≤ m

4
‖x− y‖2 h

Proof: Let z = (xh − yh) − (x − y) = −
∫ h

0
∇f(xs) −∇f(ys)ds. Ito’s lemma readily

implies that

E‖xh − yh‖
2 =‖x− y‖2 − 2E

∫ h

0

〈xs − ys,∇f(xs)−∇f(ys)〉ds

(i)

≤‖x− y‖2 − 2m

∫ h

0

E‖xs − ys‖
2 ds

≤‖x− y‖2

100

where (i) is due to strong-convexity of f . We then have that

E‖z‖2 =

∥∥∥∥∥∥E
[∫ h

0

∇f(xs)−∇f(ys)ds

]∥∥∥∥∥∥
2

≤

(∫ h

0

∥∥∥E [∇f(xs)−∇f(ys)
]∥∥∥ ds)2

≤
∫ h

0

12ds

∫ h

0

∥∥∥E [∇f(xs)−∇f(ys)
]∥∥∥2

ds

≤h
∫ h

0

E
∥∥∇f(xs)−∇f(ys)

∥∥2
ds

≤L2h

∫ h

0

E‖xs − ys‖
2 ds

≤L2‖x− y‖2 h2

(i)

≤m
4
‖x− y‖2 h

where (i) is due to h ≤ 1
4κL

.

The local strong error and local weak error are bounded in Lemma 21 and 22 respec-

tively.

Lemma 21 Suppose Assumption 4 and 5 hold. Denote the one-step iteration of LMC al-

gorithm with step size h by x̄h and the solution of overdamped Langevin dynamics at time

t = h by xh. Both the discrete algorithm and the continuous dynamics start from the same

initial value x. If 0 ≤ h ≤ 1
4κL

, then the local strong error of LMC algorithm satisfies

{
E‖x̄h − xh‖2

} 1
2 ≤ C̃2h

3
2

with C̃2 = 2L
(
d+ m

2
‖x‖2

) 1
2
.

101

Proof: We have for 0 ≤ h ≤ 1
4κL

,

E‖x̄h − xh‖2 =E

∥∥∥∥∥
∫ h

0

∇f(xs)−∇f(x)ds

∥∥∥∥∥
2

≤E

(∫ h

0

∥∥∇f(xs)−∇f(x)
∥∥ ds)2

≤L2E

(∫ h

0

‖xs − x‖ ds

)2

(i)

≤L2h

∫ h

0

E‖xs − x‖2 ds

(ii)

≤3L2

(
d+

m

2
‖x‖2

)
h3

where (i) is due to Cauchy-Schwartz inequality and (ii) is due to Lemma 19. Taking square

roots on both side completes the proof.

Lemma 22 Suppose Assumption 4, 5 and 6 hold. Denote the one-step iteration of LMC

algorithm with step size h by x̄h and the solution of overdamped Langevin dynamics at

time t = h by xh. Both the discrete algorithm and the continuous dynamics start from the

same initial value x. If 0 ≤ h ≤ 1
4κL

, then the local weak error of LMC algorithm satisfies

‖Ex̄h − Exh‖ ≤ C̃1h
2

with C̃1 = 1
2

(
√
m
(
L+ G

L

)√
d+ m

2
‖x‖2 +‖x‖+G

)
.

Proof: By Ito’s lemma, we have

d∇f(xt) = −∇2f(xt)∇f(xt)dt+∇(∆f(xt))dt+
√

2

∫ t

0

∇2f(xt)dBt.

102

It follows that

‖Ex̄h − Exh‖

=

∥∥∥∥∥E
∫ h

0

∇f(xs)−∇f(x)ds

∥∥∥∥∥
=

∥∥∥∥∥∥E
{∫ h

0

∫ s

0

−∇2f(xr)∇f(xr) +∇(∆f(xr))drds+
√

2

∫ h

0

∫ s

0

∇2f(xr)dBrds

}∥∥∥∥∥∥
=

∥∥∥∥∥∥E
{∫ h

0

∫ s

0

−∇2f(xr)∇f(xr) +∇(∆f(xr))drds

}∥∥∥∥∥∥
≤
∫ h

0

∫ s

0

E
∥∥∇2f(xr)∇f(xr)

∥∥ drds+

∫ h

0

∫ s

0

E
∥∥∇(∆f(xr))

∥∥ drds
≤L

∫ h

0

∫ s

0

E
∥∥∇f(xr)

∥∥ drds+

∫ h

0

∫ s

0

E
∥∥∇(∆f(xr))

∥∥ drds
(i)

≤(L2 +G)

∫ h

0

∫ s

0

E‖xr‖ drds+
G

2
h2

≤(L2 +G)

∫ h

0

∫ s

0

E‖xr − x‖ drds+
h2

2
‖x‖+

G

2
h2

(ii)

≤ (L2 +G)

∫ h

0

∫ s

0

√
E‖xr − x‖2drds+

h2

2
‖x‖+

G

2
h2

(iii)

≤ (L2 +G)

∫ h

0

∫ s

0

√
6

(
d+

m

2
‖x‖2

)
rdrds+

h2

2
‖x‖+

G

2
h2

≤

(
(L2 +G)

√
d+

m

2
‖x‖2

√
h+

1

2
‖x‖+

1

2
G

)
h2

(iv)

≤ 1

2

(
√
m

(
L+

G

L

)√
d+

m

2
‖x‖2 +‖x‖+G

)
h2

where (i) is due to Assumption 6, (ii) is due to Jensen’s inequality, (iii) is due to Lemma

19 and (iv) is due to h ≤ 1
4κL

Note that the bound for local strong/weak error depends on initial value, which changes

from iteration to iteration. It would be helpful if we have a uniform bound on all iterates of

LMC. To this end, we provide such a bound in Lemma 23.

Lemma 23 Suppose Assumption 4 and 5 hold. Denote the iterates of LMC by x̄k. If

103

0 ≤ h ≤ 1
4κL

we then have the iterates of LMC algorithm are uniformly upper bounded by

E‖x̄k‖2 ≤‖x0‖2 +
8d

7m
, ∀k ≥ 0

Proof: We have

E‖x̄k+1‖2 =E
∥∥∥x̄k − h∇f(x̄k) +

√
2hξk+1

∥∥∥2

(i)
=E‖x̄k‖2 + h2E

∥∥∇f(x̄k)
∥∥2

+ 2hd− 2hE〈x̄k,∇f(x̄k)〉
(ii)

≤E‖x̄k‖2 + h2L2E‖x̄k‖2 + 2hd− 2hE〈x̄k,∇f(x̄k)〉
(iii)

≤ E‖x̄k‖2 + h2L2E‖x̄k‖2 + 2hd− 2mhE‖x̄k‖2

(iv)

≤ (1− 7

4
mh)E‖x̄k‖2 + 2hd

where (i) is due to the independence between ξk+1 and x̄k, (ii) is due to Assumption 4,

(iii) is due to the property of m-strongly-convex functions, 〈∇f(y) − ∇f(x),y − x〉 ≥

m‖y − x‖2 ∀x,y ∈ Rd, and (iv) uses the assumption h ≤ 1
4κL

.

Unfolding the inequality, we obtain

E‖x̄k‖2 ≤ (1− 7

4
mh)kE‖x̄0‖2 + 2hd

(
1 +

7

4
mh+ · · ·+ (

7

4
mh)k−1

)
≤‖x0‖2 +

8d

7m

Now, combine Lemma 23 with (conditional expectation version of) Lemma 21 and 22,

we obtain C1 and C2, namely

C̃1 ≤
1

2

(
√
m

(
L+

G

L

)√
d+

m

2
(‖x0‖2 +

8d

7m
) +

√
‖x0‖2 +

8d

7m
+G

)

≤1

2

[m(L+
G

L

)
+ 1

]√
2d

m
+‖x0‖2 +G

 , C1

104

and

C̃2 ≤ 2L

(
d+

m

2

(
‖x0‖2 +

8d

7m

)) 1
2

≤ 2
√
mL

√
2d

m
+‖x0‖2 , C2

With all the necessary ingredients, we now invoke Theorem 16 and obtain the following

result:

Theorem 24 Suppose assumption 4, 5 and 6 hold. If we run LMC from x0, then after k

iterations, we have

W2(Law(x̄k), µ) ≤
√

2e−mkhW2(Law(x0), µ) +
√

2CLMCh, 0 < h ≤ 1

4κL
, k ∈ N

where CLMC = L√
m

√
2d
m

+‖x0‖2

(
7 +
√

2
m(L+G

L)+1

mL

)
+
√

2G

m
3
2

= O(
√
d).

Proof: We collection all constants here in the proof for easier reference

β = m, h0 =
1

4κL
, C0 =

√
m

2

C1 =
1

2

[m(L+
G

L

)
+ 1

]√
2d

m
+‖x0‖2 +G

C2 = 2

√
mL

√
2d

m
+‖x0‖2.

Then the constant in Theorem 15 for LMC algorithm is

CLMC =
L√
m

√
2d

m
+‖x0‖2

(
7 +
√

2
m
(
L+ G

L

)
+ 1

mL

)
+

√
2G

m
3
2

Assuming L,m,G are all constants then clearly CLMC = O(
√
d). Then applying Theorem

16 to LMC, we have

W2(Law(x̄k), µ) ≤
√

2e−mkhW2(Law(x0), µ) +
√

2CLMCh (4.15)

for 0 < h ≤ 1
4κL

.

105

Note that the discretization error term
√

2CLMCh is tight (up to a constant) in terms

of the dependence on the order of step size h and dimension d. For example, consider a

standard d-dimensional Gaussian as our target, then f(x) = 1
2
‖x‖2 ,x ∈ Rd with L =

m = 1, G = 0. For simplicity, suppose LMC algorithm starts from x0 = 0. We then have

CLMC = (7+2
√
d)
√

2d and the discretization error is
√

2CLMCh = (4+4
√

2)
√
dh. We have

explicit expression for the solution xt of the linear Langevin equation (Ornstein-Unlenbeck

process) and the iterates x̄k of LMC

xt =
√

2

∫ t

0

exp
(
−(t− s)

)
dBs ∼ N

(
0, (1− e−2t)I

)
,

x̄k =
√

2h
(
ξk + (1− h)2ξk−1 + · · ·+ (1− h)2(k−1)ξ1

)
∼ N

(
0,

2

2− h

(
1− (1− h)2k

)
I

)
.

When 0 < h < 1
L

= 1, the discretization error of LMC is

W2(Law(x̄k),Law(xkh)) =
√
d

(√
2

2− h
(
1− (1− h)2k

)
−
√

1− e−2kh

)
(i)

≤
√
d
√

1− e−2kh

(√
2

2− h
− 1

)

≤1

2

√
dh

where (i) is due to 1− x < e−x. The discretization error has the same order of dependence

in dimension d and step size h. Therefore, our quantification of the global discretization

error of LMC is already tight.

In the same vein, we apply Corollary 17 to LMC and obtain the following characteriza-

tion of iteration complexity for LMC.

Theorem 25 Suppose assumption 4, 5 and 6 hold. If we run LMC from x0, then when

k > k?LMC = max{4κ2,
2CLMC

m

1

ε
} log

2
√

2W2(Law(x0), µ)

ε
,

106

Table 4.1: Comparison of iteration complexity results in 2-Wassertein distance of LMC
with L-smooth and m-strongly-convex potential.

Iteration Complexity Additional Assumption

[27, Theorem 1] Õ
(
d
ε2

)
N/A

[29, Theorem 1] Õ
(
d
ε2

)
N/A

[126, Corollary 10] Õ
(
d
ε2

)
N/A

[33, Theorem 8] Õ
(
d
ε

) ∥∥∇2f(x)−∇2f(y)
∥∥ ≤ L̃‖x− y‖

This work (Theorem 24) Õ
(√

d
ε

)
Assumption 6

it is guarantees that W2(Law(x̄k), µ) ≤ ε. CLMC is the same as defined in Theorem 24.

When high accuracy is needed, i.e., ε ≤ CLMC
2mκ2

, we further have

k?LMC =
2CLMC

m

1

ε
log

2
√

2W2(Law(x0), µ)

ε
= Õ

(√
d

ε

)
.

Proof: The proof is straight by Corollary 17 and the computation of CLMC from Theorem

24.

The Õ
(√

d
ε

)
iteration complexity in 2-Wasserstein distance improves upon the previous

ones [27, 29, 33, 126]. A brief comparison is summarized in Table 4.1. We note that

a recent work [86] establishes Õ(
√
d) iteration complexity in 2-Wasserstein distance for

Metropolis-Adjusted Langevin Algorithm (MALA) under warm start assumption, and the

dimension dependence is optimal. In view of Corollary 17, LMC hence has the same

dimension dependence as MALA.

4.5 Conclusion

In this chapter, we revisit the classical mean-square analysis for a family of bounded,

contractive-SDE-based numerical algorithms and extend the global error bound of mean-

square analysis from finite time to infinite time. The global error is further used to derive a

Õ

(
C

1

p2−
1
2

1

ε

1

p2−
1
2

)
iteration complexity in 2-Wasserstein distance. The iteration complex-

ity bound unveils how a high-order numerical algorithm can help improve dependence on

107

various parameters, e..g. dimension. When applied to Langevin Monte Carlo algorithm,

we obtain an improved Õ
(√

d
ε

)
under the standard smoothness and strongly-convexity

assumption, plus an addition linear growth condition on the third-order derivative of the

potential function.

108

Appendices

109

APPENDIX A

SUPPLEMENTARY MATERIALS OF CHAPTER 2

A.1 Mini Batch Version of EWSG

When mini batch size b > 1, for each mini batch {i1, i2, · · · , ib}, we use n
b

∑b
j=1∇fij to ap-

proximate full gradient∇f , and assign the mini batch {i1, i2, · · · , ib} probability pi1i2,··· ,ib .

We can easily extend the transition probability of b = 1 to general b, simply by replacing

n∇fi with n
b

∑b
j=1∇fij and end up with

P̃ (θk+1, rk+1|θk, rk) = δ(θk+1 = θk + rkh)×

∑
i1,i2,··· ,ib

pi1i2···ibΦ
(
x+ nai1i2···ib

) 1

σ
√
h

where

x =
rk+1 − rk + hγrk

σ
√
h

, ai1i2···ib =

√
h

σ

1

b

b∑
j=1

∇fij(θk)

Therefore, to match the transition probability of underdamped Langevin dynamics with

stochastic gradient and full gradient, we let pi1i2···ib =

1

Z
exp

1

2

‖x+ nai1i2···ib‖
2 − ‖x+

∑
i1i2···ib

ai1i2···ib‖
2

where Z is a normalization constant.

To sample multidimensional random data indices I1, · · · , Ib from pi1i2···ib , we again use

a Metropolis chain, whose acceptance probability only depends on ai1i2···ib and aj1j2···jb but

not the full gradient.

110

A.2 EWSG Version for Overdamped Langevin

Overdamped Langevin equation is the following SDE

dθt = −∇f(θt)dt+
√

2dBt

where V (θ) =
∑n

i=1 Vi(θ) and Bt is a d-dimensional Brownian motion. The Euler-

Maruyama discretization is

θk+1 = θk − h∇f(θk) +
√

2hξk+1

where ξk+1 is a d-dimensional random Gaussian vector. When stochastic gradient is used,

the above numerical schedme turns to

θk+1 = θk − h∇fIk(θk) +
√

2hξk+1

where Ik is the datum index used in k-th iteration to estimate the full gradient.

Denote x = θk+1−θk√
2h

and ai =
√
h∇fi(θk)√

2
. If we set

pi = P(Ik = i) ∝ exp
{
−
‖x+

∑n
j=1 aj‖2

2
+
‖x+ nai‖2

2

}
and follow the same steps in the derivation of EWSG for ULD, we will see the transition

kernel of full gradient and the transition kernel of stochastic gradient are matched up.

A.3 Variance Reduction (VR)

We have seen that when step size h is large, EWSG still introduces extra variance. To

further mitigate this inaccuracy, we provide in this section a complementary variance re-

duction technique.

111

Locally (i.e., conditioned on the state of the system at the current step), we have in-

creased variance

cov[rk+1|rk] = E[cov[rk+1|I]] + cov[E[rk+1|I]]

= h(Σ2
k+1 + h cov[n∇fI(θk)]) (A.1)

where Σ2
k+1 = 1

h
E[cov[rk+1|I]]. The extra randomness due to the randomness of the

index I enters the parameter space through the coupling of θ and r and eventually de-

viates the stationary distribution from that of the original dynamics. Adopting the per-

spective of modified equation [127, 128, 129], we model this as an enlarged diffusion

coefficient. To correct for this enlargement and still sample from the correct distribution,

we can either, in each step, shrink the size of intrinsic noise to Σk ∈ Rd×d such that

σ2I = Σ2
k + hcov[n∇fI(θk−1)], or alternatively increase the dissipation. More precisely,

due to the matrix version fluctuation dissipation theorem Σ2 = 2ΓT , one could instead

increase the friction coefficient Γ ∈ Rd×d rather than shrinking the intrinsic noise. The

second approach is computationally more efficient because it no longer requires square-

rooting / Cholesky decomposition of (possibly large-scale) matrices. Therefore, in each

step, we set

Γk =
1

2T
(σ2I + hcov[n∇fI(θk−1)]).

Accurately computing cov[n∇fI(θk−1)] is expensive as it requires running I through

1, · · · , n, which defeats the purpose of introducing a stochastic gradient. To downscale the

computation cost fromO(n) toO(1), we use an SVRG type estimation of the this variance

instead. More specifically, we periodically compute cov[n∇fI(θk−1)] only every L data

passes, in an outer loop. In every iteration of an inner loop, which integrates the Langevin,

an estimate of cov[n∇fI(θk−1)] is updated in an SVRG fashion. sof See Algorithm 3 for

detailed description. We refer variance reduced variant of EWSG as EWSG-VR.

To demonstrate the performance of EWSG-VR, we reuse the setup of simple Gaus-

112

Algorithm 3 EWSG-VR
1: Input: {number of data terms n, gradient functions∇fi(·), step size h, number of data

passes K, period of variance calibration L, index chain length M , friction and noise
coefficients γ and σ}

2: initialize θ0, r0, γ0 = γ
3: initialize inner loop index k = 0
4: for l = 1, 2, · · · , K do
5: if (l − 1) mod L = 0 then
6: computem1 ← EI [n∇fI(θk)], m2 ← EI [n2∇fI(θk)∇fI(θk)T]
7: ω ← θk
8: else
9: for t = 1, 2, · · · , d n

M+1
e do

10: i← uniformly sampled from 1, · · · , n, compute and store n∇fi(θk)
11: for m = 1, 2, · · · ,M do
12: j ← uniformly sampled from 1, · · · , n, compute and store n∇fj(θk)
13: i← j with probability in Equation 2.11
14: end for
15: update (θk+1, rk+1) ← (θk, rk) according to Equation 2.3, using n∇fi(θk) as

gradient and Γk as friction
16: m1 ←m1 +∇fi(θk)−∇fi(ω)
17: m2 ←m2 + n∇fi(θk)∇fi(θk)T − n∇fi(ω)∇fi(ω)T

18: covar←m2 −m1m
T
1

19: Γk+1 ← 1
2T

(σ2I + h covar)
20: k ← k + 1
21: end for
22: end if
23: end for

sian example in subsection 2.7.1. As shown in Algorithm 3, the only hyper-parameter of

EWSG-VR additional to EWSG is the period of variance calibration, for which we set

L = 1. All other hyper-parameters (e.g. step size h, friction coefficient γ) are set the same

as EWSG. We also run underdamped Langevin dynamics with full gradient (FG) using the

same hyper-parameters of EWSG. We plot the KL divergence in Figure A.1. We see that

EWSG-VR further reduces variance and achieves better statistical accuracy measured in

KL divergence. Although EWSG-VR periodically use full data set to calibrate variance

estimation, it is still significantly faster than the full gradient version. Note that KL diver-

gence of SGLD, pSGLD and SGHMC are too large so that we can not even see them in

Figure A.1

113

0 5 10 15 20 25 30
Number of Data Pass

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

KL
 D

iv
er

ge
nc

e

SGLD
pSGLD
SGULD
EWSG
EWSG-VR
FG

Figure A.1: KL divergence

We also consider applying EWSG-VR to Bayesian logistic regression problems. We

run experiments on two standard classification data sets parkinsons 1, pima2 from

UCI repository [130].

0 10 20 30 395 400

number of data pass
0.4

0.6

0.8

1.0

1.2

1.4

m
ea

n
of

 p
os

te
rio

r l
og

 li
ke

lih
oo

d SGULD
EWSG
EWSG-VR
FG

0 10 20 30 395 400

number of data pass
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

st
d

of
 p

os
te

rio
r l

og
 li

ke
lih

oo
d SGULD

EWSG
EWSG-VR
FG

(a) parkinsons

0 2 4 6 8 10 398 400

number of data pass
0.4

0.6

0.8

1.0

1.2

1.4

m
ea

n
of

 p
os

te
rio

r l
og

 li
ke

lih
oo

d SGULD
EWSG
EWSG-VR
FG

0 2 4 6 8 10 398 400

number of data pass

0.0

0.1

0.2

0.3

0.4

0.5

st
d

of
 p

os
te

rio
r l

og
 li

ke
lih

oo
d SGULD

EWSG
EWSG-VR
FG

(b) pima

Figure A.2: Posterior prediction of mean (left) and standard deviation (right) of log like-
lihood on test data set generated by SGHMC, EWSG and EWSG-VR on two Bayesian
logistic regression tasks. Statistics are computed based on 1000 independent simulations.
Minibatch size b = 1 for all methods except FG. M = 1 for EWSG and EWSG-VR.

From Figure A.2, we see stochastic gradient methods (SGHMC, EWSG and EWSG-

VR) only take tens of data passes to converge while full gradient version (FG) requires

hundreds of data passes to converge. Compared with SGHMC, EWSG produces closer

results to FG for which we treat as ground truth, in terms of statistical accuracy. With

variance reduction, EWSG-VR is able to achieve even better performance, significantly

improving the accuracy of the prediction of mean and standard deviation of log likelihood.

It, however, converges slower than EWSG without VR.

One downside of EWSG-VR is that it periodically use whole data set to calibrate vari-

1https://archive.ics.uci.edu/ml/datasets/parkinsons
2https://archive.ics.uci.edu/ml/datasets/diabetes

114

ance estimation, so it may not be suitable for very large data sets (e.g. Covertype data set

used in subsection 2.7.2) for which stochastic gradient methods could converge within one

data pass.

A.4 Additional Experiments

A.4.1 A Misspecified Gaussian Case

In this subsection, we follow the same setup as in [58] and study a misspecified Gaussian

model where one fits a one-dimensional normal distribution p(θ) = N (θ|µ0, σ
2
0) to 105 i.i.d

points drawn according to Xi ∼ logN (0, 1), and flat prior is assigned p(µ0, log σ0) ∝ 1.

It was shown in [58] that FlyMC algorithm behaves erratically in this case, as “bright”

data points with large values are rarely updated and they drive samples away from the

target distribution. Consequently the chain mixes very slowly. One important commonality

FlyMC shares with EWSG is that in each iteration, both algorithms select a subset of data in

a non-uniform fashion. Therefore, it is interesting to investigate the performance of EWSG

in this misspecified model.

For FlyMC3, a tight lower bound based on Taylor’s expansion is used to minimize

“bright” data points used per iteration. At each iteration, 10% data points are resampled

and turned “on/off” accordingly and the step size is adaptively adjusted. FlyMC algorithm

is run for 10000 iterations. Figure A.3a shows the histogram of number of data points

used in each iteration for FlyMC algorithm. On average, FlyMC consumes 10.9% of all

data points per iteration. For fair comparison, the minibatch size of EWSG is hence set

105×10.9% = 10900 and we run EWSG for 1090 data passes. We set step size h = 1×10−4

and friction coefficient γ = 300 for EWSG. An isotropic random walk Metropolis Hastings

(MH) is also run for sufficiently long and serves as the ground truth.

Figure A.3b shows the autocorrelation of three algorithms. The autocorrelation of

FlyMC decays very slowly, samples that are even 500 iterations away still show strong

3https://github.com/rbardenet/2017JMLR-MCMCForTallData

115

correlation. The autocorrelation of EWSG, on the other hand, decays much faster, suggest-

ing EWSG explores parameter space efficiently than FlyMC does. Figure A.3c and A.3d

show the samples (the first 1000 samples are discarded as burn-in) generated by EWSG

and FlyMC respectively. The samples of EWSG center around the mode of the target

distribution while the samples of FlyMC are still far away from the true posterior. The

experiment shows EWGS works quite well even in misspecified models, and hence is an

effective candidate in combining importance sampling with scalable Bayesian inference.

10000 12000 14000 16000 18000

Number of Data Used per Iteration

0

500

1000

1500

2000

2500

3000

3500

C
ou

nt

(a) Histogram

0 100 200 300 400 500

Lag

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

ti
on

FlyMC

EWSG

(b) Autocorrelation

1.63 1.64 1.65 1.66 1.67 1.68

2.150

2.155

2.160

2.165

2.170

2.175

2.180

2.185

EWSG

Ground Truth

(c) Samples of EWSG

1.62 1.63 1.64 1.65 1.66 1.67 1.68

2.15

2.16

2.17

2.18

2.19
FlyMC

Ground Truth

(d) Samples of FlyMC

Figure A.3: (a) Histogram of data used in each iteration for FlyMC algorithm. (b) Auto-
correlation plot of FlyMC, EWSG and MH. (c) Samples of EWSG. (d) Samples of FlyMC.

116

A.4.2 Additional Results of BNN Experiment

We report the test error of various SG-MCMC methods after 200 epochs in Table A.1. For

both MLP and CNN architecture, EWSG outperforms its uniform counterpart SGHMC as

well as other benchmarks SGLD, pSGLD and CP-SGHMC. The results clearly demonstrate

the effectiveness of the proposed EWSG on deep models.

Table A.1: Test error (mean ± standard deviation) after 200 epoches.

Method Test Error(%), MLP Test Error(%), CNN
SGLD 1.976 ± 0.055 0.848 ± 0.060

pSGLD 1.821 ± 0.061 0.860 ± 0.052
SGHMC 1.833 ± 0.073 0.778 ± 0.040

CP-SGHMC 1.835 ± 0.047 0.772 ± 0.055
EWSG 1.793 ± 0.100 0.753 ± 0.035

A.4.3 Additional Experiment on BNN: Tuning M

In each iteration of EWSG, we run an index Markov chain of length M and select a “good”

minibatch to estimate gradient, therefore EWSG essentially uses b × (M + 1) data points

per iteration where b is minibatch size. How does EWSG compare with its uniform gradient

subsampling counterpart with a larger minibatch size (b× (M + 1))?

We empirically answer this question in the context of BNN with MLP architecture. We

use the same step size for SGHMC and EWSG and experiment a large range of values

of minibatch size b and index chain length M . Each algorithm is run for 200 data passes

and 10 independent samples are drawn to estimate test error. The results are shown in

Table A.2. We find that EWSG beats SGHMC with larger minibatch in 8 out of 9 com-

parison groups, which suggests in general EWSG could be a better way to consuming data

compared to increasing minibatch size and may shed light on other areas where stochastic

gradient methods are used (e.g. optimization).

117

Table A.2: Test errors of EWSG (top of each cell) and SGHMC (bottom of each cell)
after 200 epoches. b is minibatch size for EWSG, and minibatch size of SGHMC is set
as b × (M + 1) to ensure the same number of data used per parameter update for both
algorithms. Step size is set h = 10

b(M+1)
as suggested in [18], different from that used to

produce Table A.1. Results with smaller test error is highlighted in boldface.

b M + 1 = 2 M + 1 = 5 M + 1 = 10

100
1.86%
1.94%

1.83%
1.92%

1.80%
1.97%

200
1.90%
1.87%

1.87%
1.97%

1.80%
2.07%

500
1.79%
1.97%

2.01%
2.17%

2.36%
2.37%

A.5 EWSG does not necessarily change the speed of convergence significantly

Changing the weights of stochastic gradient from uniform to non-uniform, as we saw, can

increase the statistical accuracy of the sampling; however, it does not necessarily increase

or decrease the speed of convergence to the (altered) limiting distribution. Numerical exam-

ples already demonstrated this fact, but on the theoretical side, we note the non-asymptotic

bound provided by Theorem 3 may not be tight in terms of the speed of convergence due

to its generality. Therefore, here we quantify the convergence speed on a simple quadratic

example:

Consider Vi(θ) = 1
n
(θ−µi)2/2 where µi’s are constant scalars. Assume without loss of

generality that
∑

i µi = 0, and thus V (θ) =
∑n

i=1 Vi(θ) = θ2/2 + some constant. We will

show the convergence speed of Eθ is comparable for uniform and a class of non-uniform

SG-MCMC (including EWSG) applied to second-order Langevin equation (overdamped

Langevin will be easier and thus omitted):

Theorem 26 Consider, for 0 < γ < 2, respectively SGHMC and EWSG,

θ′k+1 = θ′k + hr′k

r′k+1 = r′k − hγr′k − h(θ′k − µI′k) +
√
hσξ′k+1

118

and
θk+1 = θk + hrk

rk+1 = rk − hγrk − h(θk − µIk) +
√
hσξk+1

,

where I ′k are i.i.d. uniform random variable on [n], Ik are [θ, r] dependent random variable

on [n] satisfying P(Ik = i) = 1/n + O(hp), and ξk+1, ξ
′
k+1 are standard i.i.d. Gaussian

random variables. Denote by θ̄′k = Eθ′k, r̄′k = Er′k, θ̄k = Eθk, r̄k = Erk, x′k = [θ̄′k, r̄
′
k]
T ,

and xk = [θ̄k, r̄k]
T , then

x′k = (I + Ah)kx′0, where A =

 0 1

−1 −γ

 , (A.2)

for small enough h, ‖x′k‖ converges to 0 exponentially with k →∞, and xk converges at a

comparable speed in the sense that ‖xk − x′k‖ = O(hp) if x0 = x′0.

Proof: Taking the expectation of the [θ′, r′] iteration and using the fact that
∑

i µi = 0 and

hence EµI′k = 0, one easily obtains (A.2). The geometric convergence of x′k thus follows

from the fact that eigenvalues of I + Ah have less than 1 modulus for small enough h.

Let ek = [0,EµIk]T and then

ek = [0,
n∑
i=1

P(Ik = i)µi]
T = [0,O(hp)]T

Now we take the expectation of both sides of the [θ, r] iteration and obtain xk+1 = (I +

Ah)xk + hek. Therefore

xk =(I + Ah)kx0 + (I + Ah)k−1he0 + · · ·+ (I + Ah)hek−2 + hek−1

=x′k + h
(
(I + Ah)k−1e0 + · · ·+ (I + Ah)ek−2 + ek−1

)
To bound the difference, note I + Ah is diagonalizable with complex eigenvalues λ1,2

119

satisfying

|λ1| = |λ2| =
√

1− hγ + h2 = 1− γh/2 +O(h2).

Projecting ej to the corresponding eigenspaces via ej = v1,j + v2,j , we can get

h‖(I + Ah)k−1e0 + · · ·+ ek−1‖

≤h
(
‖(I + Ah)k−1e0‖+ · · ·+ ‖ek−1‖

)
=h
(
|λ1|k−1‖v1,0‖+ |λ2|k−1‖v2,0‖+ · · ·+ ‖v1,k−1‖+ ‖v2,k−1‖

)
≤hChp(|λ1|k−1 + · · ·+ 1)

=hChp
1− |λ1|k

1− |λ1|

≤hChp 1

1− |λ1|

≤Ĉhp

for some constant C and Ĉ.

Important to note is, although this is already a nonlinear example for EWSG (as non-

linearity enters through the µIk term), it is a linear example for SGHMC. For the fully non-

linear cases, a tight quantification of EWSG’s convergence speed remains to be an open

theoretical challenge (a loose quantification is already given by the general Theorem 3).

120

APPENDIX B

SUPPLEMENTARY MATERIALS OF CHAPTER 3

B.1 Poincaré’s Inequalities for Product Measure

Lemma 27 Suppose X1 = X2 = Rd, and measures µ1 ∈ P(X1), µ2 ∈ P(X2) satisfy

Poincaré’s inequality with constant λPI(µ1), λPI(µ2). Then the product measure µ = µ1 ⊗

µ2 ∈ P(X1×X2) satisfies Poincaré’s inequality with constant λPI(µ) = min{λPI(µ1), λPI(µ2)}.

Proof: For any smooth function f(x1, x2), denote g(x1) =
∫
fdµ2 and it follows that∫

gdµ1 =
∫
fdµ. We have

∫
(f −

∫
fdµ)2dµ

=

∫
(f − g + g −

∫
fµ)2dµ

=

∫
(f − g)2dµ+ 2

∫
(f − g)(g −

∫
fdµ)dµ+

∫
(g −

∫
fdµ)2dµ

=

∫
(

∫
(f − g)2dµ2)dµ1 +

∫
(g −

∫
fdµ)2dµ1

≤ 1

λPI(µ2)

∫
(

∫
‖∇x2f‖2dµ2)dµ1 +

1

λPI(µ1)

∫
‖∇x1g‖2dµ1

=
1

λPI(µ2)

∫
‖∇x2f‖2dµ+

1

λPI(µ1)

∫
‖
∫
∇x1fdµ2‖2dµ1

(i)

≤ 1

λPI(µ2)

∫
‖∇x2f‖2dµ+

1

λPI(µ1)
(

∫
(

∫
‖∇x1f‖2dµ1)

1
2dµ2)2

(ii)

≤ 1

λPI(µ2)

∫
‖∇x2f‖2dµ+

1

λPI(µ1)

∫
‖∇x1f‖2dµ

≤ 1

min{λPI(µ1), λPI(µ2)}

∫
‖∇f‖2dµ

where (i) is due to Minkowski’s inequality and (ii) is due to Holder’s inequality.

121

B.2 Tempered HFHR with Unit PI Constant

Lemma 28 Under Assumption 1, 2 and suppose γ2 ≥ max{2, L} and α ≤ γ− 2
γ

. Then the

tempered HFHR(α, γ, β) in Equation (3.14) converges to π ∝ e−βH(q,p) where H(q,p) =

f(q) + 1
2
‖p‖2. Moreover, if the joint invariant distribution π satisfies PI with PI constant

λPI(π) = β, we have the following exponential convergence

χ2(ρt‖π) ≤ e−(1
2γ

+ 1
16
α)t

{
χ2(ρ0‖π) + Eπ

[
〈∇x

ρ0

π
, S∇x

ρ0

π
〉
]}

,

where χ2(µ, ν) =
∫

(dµ
dν
−1)2dν and ρt is the joint law of (qt,pt) of tempered HFHR(α, γ, β)

at time t, ∇x = (∇q,∇p) and S ∈ R2d×2d is a symmetric matrix, more specifically,

S =

aI bI

bI dI

 with a = (
2

γ
+ α)b, d = γb, b =

1

γβ
.

Proof: Denote the eigenvalues of∇2f by ηi, i = 1, 2, · · · , d. By convexity assumption

on f and L-smoothness assumption on∇f , we have 0 ≤ ηi ≤ L, i = 1, 2, · · · , d.

By assumption, κ ∝ e−f(q) satisfies PI with PI constant 1, it is easy to see µ ∝ e−βf(q)

satisfies PI with PI constant β. It is well known that standard Gaussian measure satisfies PI

with constant 1, so ν ∝ e−
β
2
‖p‖2 satisfies PI with PI constant β. By Lemma 27, we know π

satisfies PI with constant λPI(π) = min{λPI(µ), λPI(ν)} = β.

Consider the following Lyapunov function, χ2 divergence augmented by the cross term

L(ρt) = χ2(ρt‖π) + Lcross(ρt)

where Lcross(ρt) is defined in Equation (3.13) with

S =

aI bI

bI dI

 with a = (
2

γ
+ α)b, d = γb, b =

1

γβ
(B.1)

122

By direct computation and Lemma 29, we have

d

dt
L(ρt) ≤ −Eπ

[〈
∇x

ρt
π
, (β−1D +Mcross)∇x

ρt
π

〉]
(B.2)

where D ,

2αI 0

0 2γI

 and Mcross is the matrix from Equation (B.6) in Lemma 29.

Denote A , β−1D +Mcross, then we have

A =

2α
β
I 0

0 2 γ
β
I

+

 2bI + 2aα∇2f(q) (bα− a)∇2f(q) + bγI + dI

−(a− bα)∇2f(q) + bγI + dI −2b∇2f(q) + 2dγI + 2γI

=2β−1

αI 0

0 γI

+ 2aα

∇2f(q) 0

0 0

+
2

γβ

 I γI − 1
γ
∇2f(q)

γI − 1
γ
∇2f(q) γ2I −∇2f(q)

Denote

E =
1

λPI(π)
I + S =

1

β
I + S =

1

β
I +

1

γβ

(2
γ

+ α)I I

I γI

The rest of the proof is dedicated to matrix analysis of A and E. Denote P � Q if

P −Q is a positive semi-definite matrix and we will frequently use the following property

of block matrix

det

A11 A12

A21 A22

 = det (A11A22 − A12A21) if A21A22 = A22A21. (B.3)

First since α ≤ γ − 2
γ

, we have

E =
1

β
I +

1

γβ

(α + 2
γ
)I I

I γI

 � 1

β
I +

1

γβ

γI I

I γI

 =
1

β

2I 1
γ
I

1
γ
I 2I

 (B.4)

123

Since 2aα

∇2f(q) 0

0 0

 � 0, we have

A � 2β−1

αI 0

0 γI

+
2

γβ

 I γI − 1
γ
∇2f(q)

γI − 1
γ
∇2f(q) γ2I −∇2f(q)

 (B.5)

Now we consider the following difference

A− (
1

2γ
+

1

16
α)E

� 2

γβ

 I γI − 1
γ
∇2f(q)

γI − 1
γ
∇2f(q) 2γ2I −∇2f(q)

− 1

γβ

 I 1
2γ
I

1
2γ
I I

︸ ︷︷ ︸

B

+2β−1

αI 0

0 0

− 1
16
α

2β

 I 1
2γ
I

1
2γ
I I

where the matrix inequality is due to assumption γ2 ≥ L, Equation (B.4) and (B.5).

For B, we have

B =
1

γβ

 I 2γI − 2
γ
∇2f(q)− 1

2γ
I

2γI − 2
γ
∇2f(q)− 1

2γ
I 4γ2I − 2∇2f(q)− I

Using Equation (B.3) and diagonalization of ∇2f(q), we know the eigenvalues of B are

the collections of eigenvalues of the following 2× 2 matrices

Bi =
1

γβ

 1 2γI − 2ηi
γ
− 1

2γ

2γ − 2ηi
γ
− 1

2γ
I 4γ2 − 2ηi − 1

124

Notice

det(Bi) =
1

γ2β2
(1− 1

4γ2
+

6ηiγ
2 − 2ηi − 4η2

i

γ2
) ≥ 1

γ2β2
(1− 1

4γ2
) > 0

hence each Bi is positive definite and the smaller eigenvalue of each Bi is

λ−(Bi) =
1

2γβ

4γ2 − 2ηi −

√
1− 1

4γ2
+

6ηiγ2 − 2ηi − 4η2
i

γ2

=

1

2γβ

4γ2 − 2ηi −

√
(1− 1

4γ2
) +

(2ηiγ2 − 2ηi) + (4ηiγ2 − 4η2
i)

γ2

(i)

≥ 1

2γβ

[
2γ2 −

√
1 + 2γ2 − 2 + 4L

]
(ii)

≥ 1

2γβ
(2γ2 −

√
6γ)

≥ γ

8β

where (i), (ii) follow by 0 ≤ ηi ≤ L and the assumption γ2 ≥ max{2, L}.

Therefore, the smallest eigenvalue of B is also lower bounded

λmin(B) = min
i=1,2,··· ,d

λ−(Bi) ≥
γ

8β
.

and this is equivalent to B � 8γ
β
I .

We now obtain

A− (
1

2γ
+

1

16
α)E �2β−1

αI 0

0 0

+
γ

8β
I −

1
16
α

2β

 I 1
2γ
I

1
2γ
I I

=

1

8β

(4α− 1
4
α + γ)I − α

8γ
I

− α
8γ
I (γ − α

4
)I

︸ ︷︷ ︸

F

125

By Equation (B.3), it is easy to see that the eigenvalues of F are identical to the eigenvalues

(ignoring multiplicity) of the following 2× 2 matrix F̃ = 1
8β

4α− 1
4
α + γ − α

8γ

− α
8γ

γ − α
4

 and

we have

det(F̃) =
1

(8β)2

(
−15α2

16
− α2

64γ2
+

7αγ

2
+ γ2

)
(i)

≥ 1

(8β)2

(
1

16
γ2 − 1

64
+

7αγ

2

)
(ii)
> 0

where (i) and (ii) follow by the assumption α ≤ γ − 2
γ
< γ and γ2 > 2. Therefore F̃ is a

positive definite matrix and all of its eigenvalues are positive, and hence the eigenvalues of

F are also positive, equivalently F � 0.

We now have established the relation A − (1
2γ

+ 1
16
α)E � 0 and return to the time

derivative in Equation (B.2)

d

dt
L(ρt) ≤− Eπ

[〈
∇x

ρt
π
,A∇x

ρt
π

〉]
≤− (

1

2γ
+

1

16
α)Eπ

[〈
∇x

ρt
π
,E∇x

ρt
π

〉]
=− (

1

2γ
+

1

16
α)

[
1

λPI(π)
Eπ
[
‖∇x

ρt
π
‖2

]
+ Lcross(ρt)

]
(i)

≤− (
1

2γ
+

1

16
α)

[
Eπ[(

ρt
π
− 1)2] + Lcross(ρt)

]
=− (

1

2γ
+

1

16
α)L(ρt)

where (i) is due to Poincaré’s inequality.

By Gronwall’s inequality, L has exponential decay L(ρt) ≤ e−(1
2γ

+ 1
16
α)tL(ρ0) and since

S is positive definite, we further have

χ2(ρt‖π) ≤ L(ρt) ≤ e−(1
2γ

+ 1
16
α)tL(ρ0),

126

B.3 Time Derivative of Mcross

Lemma 29
d

dt
Lcross(ρt) ≤ −β−1

∫ 〈
∇x

ρt
π
,Mcross∇x

ρt
π

〉
dπ

where ρt is the law of (qt,pt) of tempered-HFHR(α, γ, β) and

Mcross =

 2aα∇2f(q) + 2bI −a∇2f(q) + bα∇2f(q) + bγI + dI

−a∇2f(q) + bα∇2f(q) + bγI + dI −2b∇2f(q) + 2dγI

(B.6)

Proof: For better readability, we collect some notations used in the proof here

µ(q) ∝ e−βf(q), ν(p) ∝ e−
β
2
‖p‖2 , π(q,p) ∝ e−βH(q,p)

where H(q,p) = f(q) + 1
2
‖p‖2 and write tempered HFHR again for reference

dq =

(
p− α∇f(q)

)
dt+

√
2αβ−1dB1

t

dp =
(
−γp−∇f(q)

)
dt+

√
2γβ−1dB2

t

.

The Fokker-Planck equation of tempered HFHR in Equation (3.14) is given by

∂tρt +∇ · (ρtJ) = 0, where J =

 p− α∇f(q)− αβ−1∇q log ρt

−γp−∇f(q)− γβ−1∇p log ρt

 (B.7)

Since∇ ·

ρt
−∇p log ρt

∇q log ρt

 = 0, we can then further simplify J to

J = −β−1 π

ρt
A

∇q ρtπ
∇p ρtπ

 , (B.8)

127

where A =

αI −I
I γI

.

The functional derivative w.r.t. ρt is

δLcross(ρt)

δρt
= 2(∇x)?(S∇x

ρt
π

)

where (∇x)? is the adjoint operator with respect to Eπ[
〈
·, ·
〉
] and

(∇x)? = −∇T
x −∇T

x log π = ((∇q)?, (∇p)?) = (−∇T
q + β(∇f(q))T ,−∇T

p + βpT).

The time derivative of the Lcross(ρt) is

d

dt
Lcross(ρt)(ρt) =

∫
δLcross(ρt)

δρt
∂tρtdx

=−
∫
δLcross(ρt)

δρt
∇x · (ρtJ)dx

=

∫
〈∇x

δLcross(ρt)

δρt
,J〉ρtdx

=− 2β−1

∫
〈∇x(∇x)?(S∇x

ρt
π

),

αI −I
I γI

∇xρt
π
〉dπ

=− 2β−1

∫
〈∇x(∇x)?(S∇xh),

αI −I
I γI

∇xh〉dπ (h ,
ρt
π

)

(B.9)

128

For the term in Equation (B.9), we have

− 2β−1Eπ[
〈
∇x((∇x)?S∇xh),

αI −I
I γI

∇xh〉]
=− 2aβ−1Eπ[

〈
∇x(∇q)?∇qh,

αI −I
I γI

∇xh〉] (B.10)

− 2bβ−1Eπ[
〈
∇x((∇q)?∇ph+ (∇p)?∇qh),

αI −I
I γI

∇xh〉] (B.11)

− 2dβ−1Eπ[
〈
∇x(∇p)?∇ph,

αI −I
I γI

∇xh〉] (B.12)

For the cross term in Equation (B.11), we have

− 2bβ−1Eπ[
〈
∇x((∇q)?∇ph+ (∇p)?∇qh),

αI −I
I γI

∇xh〉]
=− 2bβ−1Eπ[

〈
∇x((∇q)?∇ph+ (∇p)?∇qh),

αI 0

0 γI

∇xh〉]
− 2bβ−1Eπ[

〈
∇x((∇q)?∇ph+ (∇p)?∇qh),

0 −I

I 0

∇xh〉]
=− 2bαβ−1Eπ[

〈
∇q((∇q)?∇ph+ (∇p)?∇qh),∇qh

〉
] (B.13)

− 2bγβ−1Eπ[
〈
∇p((∇q)?∇ph+ (∇p)?∇qh),∇ph

〉
] (B.14)

− 2bβ−1Eπ[
〈
∇x((∇q)?∇ph+ (∇p)?∇qh),

0 −I

I 0

∇xh〉] (B.15)

129

For the term in Equation (B.13), we have

− 2bαβ−1Eπ[
〈
∇q((∇q)?∇ph+ (∇p)?∇qh),∇qh

〉
]

=− 2bαβ−1Eπ[
〈
∇q(∇q)?∇ph,∇qh

〉
+
〈
∇q(∇p)?∇qh,∇qh

〉
]

=− 2bαβ−1Eπ[
〈
∇ph,∇q(∇q)?∇qh

〉
+
〈
(∇q)?∇q∇qh,∇ph

〉
]

=− 2bαβ−1Eπ[
〈
∇ph, ((∇q)?∇q +∇q(∇q)?)∇qh

〉
]

=− 2bαβ−1Eπ[
〈
∇ph, (2(∇q)?∇q + [∇q, (∇q)?])∇qh

〉
]

=− 4bαβ−1Eπ[
〈
∇q∇ph,∇q∇qh

〉
F

]− 2bαEπ[
〈
∇ph,∇2f(q)∇qh

〉
]

where we make use of the commutator [∇q, (∇q)?] of∇q and (∇q)?

[∇q, (∇q)?] = ∇q(∇q)? − (∇q)?∇q = β∇2f(q) +∇T
q∇q −∇q∇T

q .

For the term in Equation (B.14), we have

− 2bγβ−1Eπ[
〈
∇p((∇q)?∇ph+ (∇p)?∇qh),∇ph

〉
]

=− 2bγβ−1Eπ[
〈
∇p(∇q)?∇ph,∇ph

〉
+
〈
∇p(∇p)?∇qh,∇ph

〉
]

=− 2bγβ−1Eπ[
〈
∇qh, (∇p)?∇p∇ph

〉
+
〈
∇qh,∇p(∇p)?∇ph

〉
]

=− 2bγβ−1Eπ[
〈
∇qh, ((∇p)?∇p +∇p(∇p)?)∇ph

〉
]

=− 2bγβ−1Eπ[
〈
∇qh, (2(∇p)?∇p + [∇p, (∇p)?])∇ph

〉
]

=− 4bγβ−1Eπ[
〈
∇p∇qh,∇p∇ph

〉
F

]− 2bγEπ[
〈
∇ph,∇qh

〉
]

where we make use of the commutator [∇p, (∇p)?] of∇p and (∇p)?

[∇p, (∇p)?] = ∇p(∇p)? − (∇p)?∇p = βI +∇T
p∇p −∇p∇T

p .

130

For the term in Equation (B.15), we have

− 2bβ−1Eπ[
〈
∇x((∇q)?∇ph+ (∇p)?∇qh),

0 −I

I 0

∇xh〉]
=− 2bβ−1Eπ[((∇q)?∇ph+ (∇p)?∇qh) · (∇xh)?(

0 −I

I 0

∇xh)]

=− 2bβ−1Eπ[((∇q)?∇ph+ (∇p)?∇qh) · (−(∇q)?∇ph+ (∇p)?∇qh)]

=− 2bβ−1Eπ[((∇p)?∇qh)2 − ((∇q)?∇ph)2]

=− 2bβ−1Eπ[
〈
∇qh,∇p(∇p)?∇qh

〉
−
〈
∇ph,∇q(∇q)?∇ph

〉
]

=− 2bβ−1Eπ[
〈
∇qh,∇p(∇p)?∇qh

〉
−
〈
∇qh, (∇p)?∇p∇qh

〉
]

− 2bβ−1Eπ[
〈
∇qh, (∇p)?∇p∇qh

〉
−
〈
∇ph,∇q(∇q)?∇ph

〉
]

=− 2bβ−1Eπ[
〈
∇qh, [∇p, (∇p)?]∇qh

〉
+
〈
∇qh, (∇p)?∇p∇qh

〉
−
〈
∇ph,∇q(∇q)?∇ph

〉
]

=− 2bβ−1Eπ[
〈
∇qh, [∇p, (∇p)?]∇qh

〉
+
〈
∇ph, (∇q)?∇q∇ph

〉
−
〈
∇ph,∇q(∇q)?∇ph

〉
]

=− 2bβ−1Eπ[
〈
∇qh, [∇p, (∇p)?]∇qh

〉
−
〈
∇ph, [∇q, (∇q)?]∇ph

〉
]

=− 2bEπ[
〈
∇qh,∇qh

〉
−
〈
∇ph,∇2f(q)∇ph

〉
]

131

For the quadratic term in Equation (B.10), we have

− 2aβ−1Eπ[
〈
∇x(∇q)?∇qh,

αI −I
I γI

∇xh〉]
=− 2aβ−1Eπ[(∇q)?∇qh · (∇x)?

α∇qh−∇ph
∇qh+ γ∇ph

]

=− 2aβ−1Eπ[(∇q)?∇qh · (α(∇q)?∇qh− (∇q)?∇ph+ (∇p)?∇qh+ γ(∇p)?∇ph)]

=− 2aαβ−1Eπ[
〈
∇qh,∇q(∇q)?∇qh

〉
]− 2aγβ−1Eπ[(∇q)?∇q(∇p)?∇ph]

− 2aβ−1Eπ[−(∇q)?∇qh(∇q)?∇ph+ (∇q)?∇qh(∇p)?∇qh]

=− 2aαβ−1Eπ[
〈
∇qh, ((∇q)?∇q + β∇2f(q))∇qh

〉
] + 2aβ−1Eπ[

〈
∇ph, [∇q, (∇q)?]∇qh

〉
]

− 2aβ−1Eπ[
〈
∇p∇qh,∇q∇qh

〉
F

]

=− 2aαβ−1Eπ[
〈
∇q∇qh,∇q∇qh

〉
F

]− 2aαEπ[
〈
∇qh,∇2f(q)∇qh

〉
]

+ 2aEπ[
〈
∇ph,∇2f(q)∇qh

〉
]− 2aγβ−1Eπ[

〈
∇q∇ph,∇q∇ph

〉
F

]

132

Similarly, for the term in Equation (B.12), we have

− 2dβ−1Eπ[
〈
∇x(∇p)?∇ph,

αI −I
I γI

∇xh〉]
=− 2dβ−1Eπ[(∇p)?∇ph · (∇x)?

α∇qh−∇ph
∇qh+ γ∇ph

]

=− 2dβ−1Eπ[(∇p)?∇ph · (α(∇q)?∇qh− (∇q)?∇ph+ (∇p)?∇qh+ γ(∇p)?∇ph)]

=− 2dαβ−1Eπ[
〈
∇ph,∇p(∇q)?∇qh

〉
]

− 2dβ−1Eπ[−(∇p)?∇ph(∇q)?∇ph+ (∇p)?∇ph(∇p)?∇qh]

− 2dγβ−1Eπ[
〈
∇p,∇p(∇p)?∇ph

〉
]

=− 2dαβ−1Eπ[
〈
∇q∇ph,∇q∇ph

〉
F

]− 2dβ−1Eπ[
〈
∇qh, [∇p, (∇p)?]∇ph

〉
]

− 2dγβ−1Eπ[
〈
∇p, ((∇p)?∇p + βI)∇ph

〉
]

=− 2dαβ−1Eπ[
〈
∇q∇ph,∇q∇ph

〉
F

]− 2dEπ[
〈
∇qh,∇ph

〉
]

− 2dγβ−1Eπ[
〈
∇p∇ph,∇p∇ph

〉
F

]− 2dγEπ[
〈
∇ph,∇ph

〉
]

We now collect all terms in regular Euclidean inner product, i.e.,
〈
,
〉
, we have

〈
∇qh,∇qh

〉
: −2aα∇2f(q)− 2b〈

∇qh,∇ph
〉

: 2a∇2f(q)− 2bα∇2f(q)− 2bγ − 2d〈
∇ph,∇ph

〉
: 2b∇2f(q)− 2dγ

Therefore, if we denote

Mcross =

 2aα∇2f(q) + 2bI −a∇2f(q) + bα∇2f(q) + bγI + dI

−a∇2f(q) + bα∇2f(q) + bγI + dI −2b∇2f(q) + 2dγI

(B.16)

then the component containing regular Euclidean inner product can be written in a compact

133

form

−Eπ[
〈
∇xh,Mcross∇xh

〉
]

Next, we collect all terms in Frobenius inner product, i.e.,
〈
,
〉
F

, we have

− 2αβ−1Eπ
[
a
〈
∇q∇qh,∇q∇qh

〉
F

+ 2b
〈
∇q∇ph,∇q∇qh

〉
F

+ d
〈
∇q∇ph,∇q∇ph

〉
F

]
− 2γβ−1Eπ

[
a
〈
∇q∇ph,∇q∇ph

〉
F

+ 2b
〈
∇p∇qh,∇p∇ph

〉
F

+ d
〈
∇p∇ph,∇p∇ph

〉
F

]
= −2αβ−1Eπ[

〈
∇x∇qh, S∇x∇qh

〉
F

]− 2γβ−1Eπ[
〈
∇x∇ph, S∇x∇ph

〉
F

]

Now we sum up all terms and obtain

d

dt
Lcross(ρt)(ρt)

=− Eπ[
〈
∇x

ρt
π
,Mcross∇x

ρt
π

〉
]

− 2αβ−1Eπ[
〈
∇x∇qh, S∇x∇qh

〉
F

]− 2γβ−1Eπ[
〈
∇x∇ph, S∇x∇ph

〉
F

]

≤− Eπ[
〈
∇x

ρt
π
,Mcross∇x

ρt
π

〉
]

B.4 Dependence of error of SDE on initial values

Lemma 30 Consider the following two SDE with different initial condition

dxt = a(xt)dt+ σdW t,

x(0) = x0

dyt = a(yt)dt+ σdW t,

y(0) = y0

where a(u) ∈ Rd is L-Lipschitz, and σ ∈ Rn×n is a constant matrix. For 0 < h < 1
4L

, we

have the following representation

xh − yh = x0 − y0 + z

134

with

E‖z‖2 ≤ 2L2‖x0 − y0‖
2 h2

Proof: Let z = (xh−yh)− (x0−y0) =
∫ h

0
a(xs)−a(ys)ds. Ito’s lemma readily implies

that

E‖xh − yh‖
2 =‖x0 − y0‖

2 + 2E
∫ h

0

〈xs − ys,a(xs)− a(ys)〉ds

≤‖x0 − y0‖
2 + 2L

∫ h

0

E‖xs − ys‖
2 ds

By Gronwall’s inequality, it follows that

E‖xh − yh‖
2 ≤‖x0 − y0‖

2 e2Lh ≤ 2‖x0 − y0‖
2 , for 0 < h <

1

4L

We have that

E‖z‖2 =

∥∥∥∥∥∥E
[∫ h

0

a(xs)− a(ys)ds

]∥∥∥∥∥∥
2

≤

(∫ h

0

∥∥∥E [a(xs)− a(ys)
]∥∥∥ ds)2

≤
∫ h

0

12ds

∫ h

0

∥∥∥E [a(xs)− a(ys)
]∥∥∥2

ds

≤h
∫ h

0

E
∥∥a(xs)− a(ys)

∥∥2
ds

≤L2h

∫ h

0

E‖xs − ys‖
2 ds

≤2L2‖x0 − y0‖
2 h2

135

B.5 Growth bound of SDE with additive noise

Lemma 31 Consider the following SDE with constant diffusion

dxt = a(xt)dt+ σdW t,

x(0) = x0

where a(x) ∈ Rd is L-smooth, i.e., |a(y) − a(x)| ≤ L|y − x|, a(0) = 0 and σ ∈ Rd×d

is a constant matrix independent of time t and xt. Then for 0 < h < 1
4L

, we have

E‖xh − x0‖2 ≤ 2.57
(
‖σ‖2

F + 2hL2‖x0‖2
)
h.

Proof: We have

E‖xh − x0‖2 =E

∥∥∥∥∥
∫ h

0

a(xt)dt+

∫ h

0

σdW t

∥∥∥∥∥
2

≤2E

∥∥∥∥∥
∫ h

0

a(xt)dt

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
∫ h

0

σdW t

∥∥∥∥∥
2

(i)
=2E

∥∥∥∥∥
∫ h

0

a(xt)dt

∥∥∥∥∥
2

+ 2

∫ h

0

‖σ‖2
Fdt

≤2E

(∫ h

0

∥∥a(xt)
∥∥ dt)2

+ 2h‖σ‖2
F

≤2E

(∫ h

0

∥∥a(xt)− a(x0)
∥∥ dt+

∫ h

0

∥∥a(x0)
∥∥ dt)2

+ 2h‖σ‖2
F

≤2E

(L∫ h

0

‖xt − x0‖ dt+ h
∥∥a(x0)

∥∥)2
+ 2h‖σ‖2

F

≤4E

L2

(∫ h

0

‖xt − x0‖ dt

)2

+ h2
∥∥a(x0)

∥∥2

+ 2h‖σ‖2
F

(ii)

≤2h‖σ‖2
F + 4h2

∥∥a(x0)
∥∥2

+ 4L2h

∫ h

0

E‖xt − x0‖2 dt

136

where (i) is due to Ito’s isometry, (ii) is due to Cauchy-Schwarz inequality and ‖σ‖F is

the Frobenius norm of σ. By Gronwall’s inequality, we obtain

E‖xh − x0‖2 ≤
(

2h‖σ‖2
F + 4h2

∥∥a(x0)
∥∥2
)

exp
{

4L2h2
}
.

Since
∥∥a(x0)

∥∥ =
∥∥a(x0)− a(0)

∥∥ ≤ L‖x0‖, when 0 < h < 1
4L

, we finally reach at

E‖xh − x0‖2 ≤ 2
(
‖σ‖2

F + 2hL2‖x0‖2
)
e

1
4h ≤ 2.57

(
‖σ‖2

F + 2hL2‖x0‖2
)
h

B.6 Lipschitz continuity of the drift of HFHR dynamics

Lemma 32 Assume ∇f is L-Lipschitz, i.e.
∥∥∇f(x)−∇f(y)

∥∥ ≤ L‖x− y‖, then the

drift term of HFHR dynamics p− α∇f(q)

−γp−∇f(q)

is L′-Lipschitz, where L′ ,

√
2 max{

√
1 + α2 max{ 1√

2
, L},

√
1 + γ2}. Denote P ,γI I

0
√

1 + αγI

 and

φ
ψ

 = P

q
p

, then

φ
ψ

 satisfies the following SDE

dφ
dψ

 = P

 p(φ,ψ)− α∇f(q(φ,ψ))

−γp(φ,ψ)−∇f(q(φ,ψ))

 dt+ P

√2αI 0

0
√

2γI

dW
dB

and the drift term

P

 p(φ,ψ)− α∇f(q(φ,ψ))

−γp(φ,ψ)−∇f(q(φ,ψ))

is L′′-Lipschitz, where L′′ = κ′L′ and κ′ is the condition number of P .

137

Proof: By direct computation and Cauchy-Schwarz inequality, we have

∥∥∥∥∥∥∥
 p1 − α∇f(q1)

−γp1 −∇f(q1)

−
 p2 − α∇f(q2)

−γp2 −∇f(q2)

∥∥∥∥∥∥∥

=

√∥∥∥−α (∇f(q1)−∇f(q2)
)

+ (p1 − p2)
∥∥∥2

+
∥∥∥− (∇f(q1)−∇f(q2)

)
− γ(p1 − p2)

∥∥∥2

≤
√

2α2
∥∥∇f(q1)−∇f(q2)

∥∥+ 2‖p1 − p2‖
2 + 2

∥∥∇f(q1)−∇f(q2)
∥∥+ 2γ2‖p1 − p2‖

2

≤
√

(2α2L2 + 2L2)‖q1 − q2‖+ (2 + 2γ2)‖p1 − p2‖
2

≤
√

2 max{L
√

1 + α2,
√

1 + γ2}

∥∥∥∥∥∥∥
q1 − q2

p1 − p2

∥∥∥∥∥∥∥

≤
√

2 max{
√

1 + α2 max{ 1√
2
, L},

√
1 + γ2}

∥∥∥∥∥∥∥
q1 − q2

p1 − p2

∥∥∥∥∥∥∥

,L′

∥∥∥∥∥∥∥
q1 − q2

p1 − p2

∥∥∥∥∥∥∥

By Ito’s lemma, we have

dφ
dψ

 = P

 p(φ,ψ)− α∇f(q(φ,ψ))

−γp(φ,ψ)−∇f(q(φ,ψ))

 dt+ P

√2αI 0

0
√

2γI

dW
dB

138

Using the Lipschitz constant obtained for the drift of HFHR, we further have

∥∥∥∥∥∥∥P
 p(φ1,ψ1)− α∇f(q(φ1,ψ1))

−γp(φ1,ψ1)−∇f(q(φ1,ψ1))

− P
 p(φ2,ψ2)− α∇f(q(φ2,ψ2))

−γp(φ2,ψ2)−∇f(q(φ2,ψ2))

∥∥∥∥∥∥∥

≤σmax

∥∥∥∥∥∥∥
 p1 − α∇f(q1)

−γp1 −∇f(q1)

−
 p2 − α∇f(q2)

−γp2 −∇f(q2)

∥∥∥∥∥∥∥

≤σmaxL
′

∥∥∥∥∥∥∥
q1 − q2

p1 − p2

∥∥∥∥∥∥∥

≤σmaxL
′

∥∥∥∥∥∥∥P−1

φ1 − φ2

ψ1 −ψ2

∥∥∥∥∥∥∥

≤σmaxL
′ 1

σmin

∥∥∥∥∥∥∥
φ1 − φ2

ψ1 −ψ2

∥∥∥∥∥∥∥

=κ′L′

∥∥∥∥∥∥∥
φ1 − φ2

ψ1 −ψ2

∥∥∥∥∥∥∥

where σmax, σmin and κ′ are the largest, smallest singular values and the condition number

(w.r.t. 2-norm) of matrix P .

Remark: The following inequalities associated with L′ will turn out to be useful in

many proofs

L′ ≥ 1, L′ ≥
√

2γ, L′ ≥
√

2α,L ≥
√

2L and L′ ≥
√

2αL.

B.7 Contraction of (Transformed) HFHR Dynamics

Lemma 33 Suppose f is L-smooth, m-strongly convex and γ2 > L. Consider two copies

of HFHR dynamics

qt
pt

,

q̃t
p̃t

 (driven by the same Brownian motion) with initialization

139

q0

p0

,

q̃0

p̃0

 respectively, then we have

∥∥∥∥∥∥∥P
qt − q̃t
pt − p̃t

∥∥∥∥∥∥∥ ≤ e−λ

′t

∥∥∥∥∥∥∥P
q0 − q̃0

p0 − p̃0

∥∥∥∥∥∥∥

where P ,

γI I

0
√

1 + αγI

 and λ′ = min{m
γ

+ αm, γ
2−L
γ
}.

Proof: Consider two copies of HFHR that are driven by the same Brownian motion

dqt = (pt − α∇f(qt))dt+

√
2αdB1

t

dpt = (−γpt −∇f(qt))dt+
√

2γdB2
t

,

dq̃t = (p̃t − α∇f(q̃t))dt+

√
2αdB1

t

dp̃t = (−γp̃t −∇f(q̃t))dt+
√

2γdB2
t

.

The difference of the two copies satisfies the following equation

d

dt

qt − q̃t
pt − p̃t

 =−

αHt −I

Ht γI

qt − q̃t
pt − p̃t

 , −A

qt − q̃t
pt − p̃t

where Ht =

∫ 1

0
∇2f(q̃t + s(q− q̃t))ds. Denote the eigenvalues of Ht by ηi, 1 ≤ i ≤ d, by

strong convexity and smoothness assumption on f , we have m ≤ ηi ≤ L, 1 ≤ i ≤ d.

140

Denote

φt
ψt

 = P

qt − q̃t
pt − p̃t

 and consider Lt = 1
2

∥∥∥∥∥∥∥
φt
ψt

∥∥∥∥∥∥∥

2

, we have

d

dt
Lt =−

φt
ψt

T

PAP−1

φt
ψt

=−

φt
ψt

T

1

2
(PAP−1 + (P−1)TATP T)

φt
ψt

=−

φt
ψt

T

1

γ

(1 + αγ)Ht 0d×d

0d×d γ2I −Ht

φt
ψt

,−

φt
ψt

T

B(α)

φt
ψt

It is easy to see that

λmin(B(α)) = min
i=1,2,··· ,d

{min{ηi
γ

+ αηi, γ −
ηi
γ
}} ≥ min{m

γ
+ αm,

γ2 − L
γ
} , λ′.

Therefore we have d
dt
Lt ≤ −2λminB(α)Lt ≤ −2λ′Lt. By Gronwall’s inequality, we obtain

∥∥∥∥∥∥∥
φt
ψt

∥∥∥∥∥∥∥

2

≤ e−2λ′t

∥∥∥∥∥∥∥
φ0

ψ0

∥∥∥∥∥∥∥

2

.

and the desired inequality follows by taking square root.

B.8 Local error between the exact Strang’s splitting method and HFHR dynamics

Lemma 34 Assume f is L-smooth and 0 ∈ argminx∈Rd f(x), i.e. ∇f(0) = 0. If 0 <

h ≤ 1
4L′

, then compared with the HFHR dynamics, the exact Strang’s splitting method has

local mathematical expectation of deviation of order p1 = 2 and local mean-squared error

141

of order p2 = 2, i.e. there exist constants Ĉ1, Ĉ2 > 0 such that

∥∥Ex(h)− Ex̂(h)
∥∥ ≤ Ĉ1h

p1

(
E
[∥∥x(h)− x̂(h)

∥∥2
]) 1

2

≤ Ĉ2h
p2

where x(h) =

q(h)

p(h)

 is the solution of the HFHR dynamics with initial value x0 =

q0

p0

and x̂(h) =

q̂(h)

p̂(h)

 is the solution of the implementable Strang’s splitting with initial

value x0 =

q0

p0

, p1 = 2 and p2 = 2. More concretely, we have

Ĉ1 = Lmax{α + 1.25, γ + 1}
(

1.74‖x0‖+ (1.26
√
α + 2.84

√
γ)
√
hd
)
,

Ĉ2 = Lmax{α + 1.25, γ + 1}
(

1.92‖x0‖+ (1.30
√
α + 3.22

√
γ)
√
hd
)
.

Proof: The exact Strang’s splitting integrator with step size h reads as φ
h
2 ◦ ψh ◦ φh

2 where

φ :

dq = pdt

dp = −γpdt+
√

2γdB

ψ :

dq = −α∇f(q)dt+

√
2αdW

dp = −∇f(q)dt

.

The φ flow can be explicitly solved and the solution is

q(t) = q0 + 1−e−γt

γ
p0 +

√
2γ
∫ t

0
1−e−γ(t−s)

γ
dB(s)

p(t) = e−γtp0 +
√

2γ
∫ t

0
e−γ(t−s)dB(s)

.

142

The ψ flow can be written as

q(t) = q0 −

∫ t
0
α∇f(q(s))ds+

√
2α
∫ t

0
dW (s)

p(t) = p0 −
∫ t

0
∇f(q(s))ds

.

The solution of one-step exact Strang’s splitting integrator with step size h can be writ-

ten as

q3 = q2(h) + 1−e−γ
h
2

γ
p2(h) +

√
2γ
∫ h
h
2

1−e−γ(h−s)
γ

dB(s)

p3 = e−γ
h
2p2(h) +

√
2γ
∫ h
h
2
e−γ(h−s)dB(s)

q2(r) = q1 −
∫ r

0
α∇f(q2(s))ds+

√
2α
∫ r

0
dW (s) (0 ≤ r ≤ h)

p2(r) = p1 −
∫ r

0
∇f(q2(s))ds

q1 = q0 + 1−e−γ
h
2

γ
p0 +

√
2γ
∫ h

2

0
1−e−γ(

h
2−s)

γ
dB(s)

p1 = e−γ
h
2p0 +

√
2γ
∫ h

2

0
e−γ(h

2
−s)dB(s)

143

Therefore, we have q̂(h) = q3, p̂(h) = p3 and

q̂(h)

=
√

2γ

∫ h

h
2

1− e−γ(h−s)

γ
dB(s) + q1 −

∫ h

0

α∇f(q2(s))ds+
√

2α

∫ h

0

dW (s)︸ ︷︷ ︸
q2(h)

+
1− e−γ h2

γ

p1 −
∫ h

0

∇f(q2(s))ds︸ ︷︷ ︸
p2(h)

=
√

2γ

∫ h

h
2

1− e−γ(h−s)

γ
dB(s)−

∫ h

0

α∇f(q2(s))ds+
√

2α

∫ h

0

dW (s)

− 1− e−γ h2
γ

∫ h

0

∇f(q2(s))ds+ q0 +
1− e−γ h2

γ
p0 +

√
2γ

∫ h
2

0

1− e−γ(h
2
−s)

γ
dB(s)︸ ︷︷ ︸

q1

+
1− e−γ h2

γ

e−γ h2p0 +
√

2γ

∫ h
2

0

e−γ(h
2
−s)dB(s)︸ ︷︷ ︸

p1

=q0 +

1− e−γh

γ
p0 −

(
α +

1− e−γ h2
γ

)∫ h

0

∇f(q2(s))ds

+
√

2α

∫ h

0

dW (s) +
√

2γ

∫ h

h
2

1− e−γ(h−s)

γ
dB(s) +

√
2γ

∫ h
2

0

1− e−γ(h
2
−s)

γ
dB(s)

+
1− e−γ h2

γ

√
2γ

∫ h
2

0

e−γ(h
2
−s)dB(s)

144

p̂(h) =e−γ
h
2

p1 −
∫ h

0

∇f(q2(s))ds︸ ︷︷ ︸
p2(h)

+
√

2γ

∫ h

h
2

e−γ(h−s)dB(s)

=e−γ
h
2

e−γ h2p0 +
√

2γ

∫ h
2

0

e−γ(h
2
−s)dB(s)︸ ︷︷ ︸

p1

− e−γ h2
∫ h

0

∇f(q2(s))ds

+
√

2γ

∫ h

h
2

e−γ(h−s)dB(s)

=e−γhp0 − e−γ
h
2

∫ h

0

∇f(q2(s))ds+ e−γ
h
2

√
2γ

∫ h
2

0

e−γ(h
2
−s)dB(s)

+
√

2γ

∫ h

h
2

e−γ(h−s)dB(s)

It is clear that q̂(h), p̂(h) should be compared with the exact solution of HFHR at time

h, which can be written as

q(h) =q0 +
1− e−γh

γ
p0 −

∫ h

0

(
1− e−γ(h−s)

γ
+ α

)
∇f(q(s))ds+

√
2α

∫ h

0

dW s

+
√

2γ

∫ h

0

1− e−γ(h−s)

γ
dBs

p(h) =e−γhp0 −
∫ h

0

e−γ(h−s)∇f(q(s))ds+
√

2γ

∫ h

0

e−γ(h−s)dB(s)

Subtracting q(h),p(h) from q̂(h), p̂(h) respectively, we obtain

q̂(h)− q(h) =−

(
α +

1− e−γ h2
γ

)∫ h

0

∇f(q2(s))−∇f(q(s))ds

+

∫ h

0

(
1− e−γ(h−s)

γ
− 1− e−γ h2

γ

)
∇f(q(s))ds

p̂(h)− p(h) =− e−γ
h
2

∫ h

0

∇f(q2(s))−∇f(q(s))ds+

∫ h

0

(
e−γ(h−s) − e−γ

h
2

)
∇f(q(s))ds

It should be clear now that we will need to bound the term ∇f(q2) − ∇f(q) and ∇f(q).

145

Since

q2(r) =q0 +
1− e−γ h2

γ
p0 +

√
2γ

∫ h
2

0

1− e−γ(h
2
−s)

γ
dB(s)− α

∫ r

0

∇f(q2(s))ds

+
√

2α

∫ r

0

dW (s)

q(r) =q0 +
1− e−γr

γ
p0 −

∫ r

0

(
1− e−γ(r−s)

γ
+ α

)
∇f(q(s))ds+

√
2α

∫ r

0

dW (s)

+
√

2γ

∫ r

0

1− e−γ(r−s)

γ
dB(s),

we then have

q2(r)− q(r)

=
e−γr − e−γ h2

γ
p0 − α

∫ r

0

∇f(q2(s))−∇f(q(s))ds+

∫ r

0

1− e−γ(r−s)

γ
∇f(q(s))ds

+
√

2γ

∫ h
2

0

1− e−γ(h
2
−s)

γ
dB(s)−

√
2γ

∫ r

0

1− e−γ(r−s)

γ
dB(s)

By Lemma 32 and 31, when 0 < h < 1
4L′

, we have the following for the solution of HFHR

dynamics

E[
∥∥x0,x0(h)− x0

∥∥2
] ≤ Ĉ0h

146

where Ĉ0 = 5.14
{

(α + γ)d+ h (L′)2‖x0‖2
}

and hence

E
[∫ r

0

∥∥∇f(q(s))
∥∥2
ds

]
≤E

[
2

∫ r

0

∥∥∇f(q(0))
∥∥2
ds+ 2

∫ r

0

∥∥∇f(q(s))−∇f(q(0))
∥∥2
ds

]
≤E

[
2L2r

∥∥q(0)
∥∥2

+ 2L2

∫ r

0

∥∥q(s)− q(0)
∥∥2
ds

]
≤2L2r‖x0‖2 + 2L2E

[∫ r

0

∥∥q(s)− q(0)
∥∥2
ds

]
≤2L2r‖x0‖2 + 2L2Ĉ0

∫ r

0

sds

≤L2r
(

2‖x0‖2 + hĈ0

)
≤L2r

(
2.33‖x0‖2 + 5.14(α + γ)dh

)
(B.17)

147

Now E
[
‖q2 − q‖

2
]

can be bounded as follow

E
[∥∥q2(r)− q(r)

∥∥2
]

≤5

(
e−γr − e−γ h2

γ

)2

‖p0‖
2 + α2E

∥∥∥∥∫ r

0

∇f(q2(s))−∇f(q(s))ds

∥∥∥∥2

+ 5E

∥∥∥∥∥
∫ r

0

1− e−γ(r−s)

γ
∇f(q(s))ds

∥∥∥∥∥
2

+ 5

2γE

∥∥∥∥∥
∫ h

2

0

1− e−γ(h
2
−s)

γ
dB(s)

∥∥∥∥∥
2

+ 2γE

∥∥∥∥∥
∫ r

0

1− e−γ(r−s)

γ
dB(s)

∥∥∥∥∥
2

≤5

{
h2

4
‖x0‖2 + α2L2r

∫ r

0

E
∥∥q2(s)− q(s)

∥∥2
ds

}

+ 5

∫ r

0

(
1− e−γ(r−s)

γ

)2

ds

∫ r

0

E
∥∥∇f(q(s))

∥∥2
ds+ 5

{
γdh3

12
+

2γd

3
r3

}

≤5

{
h2

4
‖x0‖2 + α2L2r

∫ r

0

E
∥∥q2(s)− q(s)

∥∥2
ds+

h3

3
E
[∫ r

0

∥∥∇f(q(s))
∥∥2
]

+
3γd

4
h3

}

≤5

{
h2

4
‖x0‖2 +

3γd

4
h3 +

h3

3
L2
(

2.33‖x0‖2 + 5.14(α + γ)dh
)
r

}

+ 5α2L2r

∫ r

0

E
∥∥q2(s)− q(s)

∥∥2
ds

≤5h2

{
1

4
‖x0‖2 +

3γd

4
h+

h2

3
L2
(

2.33‖x0‖2 + 5.14(α + γ)dh
)}

+ 5α2L2h

∫ r

0

E
∥∥q2(s)− q(s)

∥∥2
ds

148

By Gronwall’s inequality and 0 < h ≤ 1
4L′

, we have

E
[∥∥q2(r)− q(r)

∥∥2
]

(B.18)

≤5h2

{
1

4
‖x0‖2 +

3γd

4
h+

h2

3
L2
(

2.33‖x0‖2 + 5.14(α + γ)dh
)}

exp{5α2L2h2}

≤5h2

{
1

4
‖x0‖2 +

3γd

4
h+

h2

3
L2
(

2.33‖x0‖2 + 5.14(α + γ)dh
)}

e
5
32

≤5.85h2
{

0.28‖x0‖2 + (0.06α + 0.81γ)hd
}

≤h2
{

1.64‖x0‖2 + (0.36α + 4.74γ)hd
}
. (B.19)

With bounds in Equation (B.17) and (B.19), we are now ready to show p1 and p2. For p1,

149

i.e. the order of the mathematical expectation of deviation, we have

∥∥∥∥∥∥∥∥E

q̂(h)

p̂(h)

−
q(h)

p(h)

∥∥∥∥∥∥∥∥

≤
∥∥∥E [q̂(h)− q(h)

]∥∥∥+
∥∥∥E [p̂(h)− p(h)

]∥∥∥
≤

(
α +

1− e−γ h2
γ

)∥∥∥∥∥
∫ h

0

E
[
∇f(q2(s))−∇f(q(s))

]
ds

∥∥∥∥∥
+

∥∥∥∥∥∥
∫ h

0

(
1− e−γ(h−s)

γ
− 1− e−γ h2

γ

)
E
[
∇f(q(s))

]
ds

∥∥∥∥∥∥
+ e−γ

h
2

∥∥∥∥∥
∫ h

2

0

E
[
∇f(q2(s))−∇f(q(s))

]
ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ h

0

(
e−γ(h−s) − e−γ

h
2

)
E
[
∇f(q(s))

]
ds

∥∥∥∥∥
≤
(
α + 1 +

h

2

)
L

∫ h

0

E
∥∥q2(s)− q(s)

∥∥ ds
+

∫ h

0

∣∣∣∣∣1− e−γ(h−s)

γ
− 1− e−γ h2

γ

∣∣∣∣∣+
∣∣∣e−γ(h−s) − e−γ

h
2

∣∣∣
∥∥∥E [∇f(q(s))

]∥∥∥ ds
≤L

(
α + 1 +

h

2

)∫ h

0

E
∥∥q2(s)− q(s)

∥∥ ds
+

∫ h

0

∣∣∣∣∣1− e−γ(h−s)

γ
− 1− e−γ h2

γ

∣∣∣∣∣
2

ds

 1
2

+

(∫ h

0

∣∣∣e−γ(h−s) − e−γ
h
2

∣∣∣2 ds) 1
2

×

(∫ h

0

∥∥∥E [∇f(q(s))
]∥∥∥2

ds

) 1
2

≤L
(
α + 1 +

h

2

)∫ h

0

(
E
∥∥q2(s)− q(s)

∥∥2
) 1

2
ds+

1 + γ

2
√

3
h

3
2

(
E
∫ h

0

∥∥∥[∇f(q(s))
]∥∥∥2

ds

) 1
2

≤L
(
α + 1 +

h

2

)
h2
{

1.64‖x0‖2 + (0.36α + 4.74γ)hd
} 1

2

+
1 + γ

2
√

3
h2L

(
2.33‖x0‖2 + 5.14(α + γ)dh

) 1
2

≤Lh2 max{α + 1.25, γ + 1}
(

1.74‖x0‖+ (1.26
√
α + 2.84

√
γ)
√
hd
)

150

The above derivation proves p1 = 2 with

Ĉ1 = Lmax{α + 1.25, γ + 1}
(

1.74‖x0‖+ (1.26
√
α + 2.84

√
γ)
√
hd
)
.

We now proceed with p2, i.e. mean-square error

E

∥∥∥∥∥∥∥
q̂(h)

p̂(h)

−
q(h)

p(h)

∥∥∥∥∥∥∥

2

≤2

(
α +

h

2

)2

E

∥∥∥∥∥
∫ h

0

∇f(q2(s))−∇f(q(s))ds

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
∫ h

0

(
1− e−γ(h−s)

γ
− 1− e−γ h2

γ

)
∇f(q(s))ds

∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
∫ h

0

∇f(q2(s))−∇f(q(s))ds

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
∫ h

0

(
e−γ(h−s) − e−γ

h
2

)
∇f(q(s))ds

∥∥∥∥∥
2

≤2

(
(α +

h

2
)2 + 1

)
L2E

(∫ h

0

|q2(s)− q(s)|ds

)2

+ 2

∫ h

0

∣∣∣∣∣1− e−γ(h−s)

γ
− 1− e−γ h2

γ

∣∣∣∣∣
2

ds

∫ h

0

E
∥∥∇f(q(s))

∥∥2
ds

+ 2

∫ h

0

∣∣∣e−γ(h−s) − e−γ
h
2

∣∣∣2 ds ∫ h

0

E
∥∥∇f(q(s))

∥∥2
ds

≤2

(
(α +

h

2
)2 + 1

)
L2h

∫ h

0

E|q2(s)− q(s)|2ds+
1 + γ2

6
h3

∫ h

0

E|∇f(q(s))|2ds

≤2

(
(α +

h

2
)2 + 1

)
L2
{

1.64‖x0‖2 + (0.36α + 4.74γ)hd
}
h4

+
1 + γ2

6
L2
{

2.33‖x0‖2 + 5.14(α + γ)hd
}
h4

≤L2 max{(α + 1.25)2, 1 + γ2}
(

3.67‖x0‖2 + (1.68α + 10.34γ)hd
)
h4

The above derivation implies p2 = 2 with

Ĉ2 = Lmax{α + 1.25, 1 + γ}
(

1.92‖x0‖+ (1.30
√
α + 3.22

√
γ)
√
hd
)
.

151

B.9 Local error between HFHR algorithm and the exact Strang’s splitting method

Lemma 35 Assume f is L-smooth, 0 ∈ argminx∈Rd f(x), i.e. ∇f(0) = 0 and the oper-

ator ∇∆f grows at most linearly, i.e.
∥∥∇∆f(q)

∥∥ ≤ G
√

1 +‖q‖2. If 0 < h ≤ 1
4L′

, then

compared with the exact Strang’s splitting method of HFHR dynamics, the implementable

Strang’s splitting method has local mathematical expectation of deviation of order p1 = 2

and local mean-squared error of order p2 = 1.5, i.e. there exist constants C̄1, C̄2 > 0 such

that ∥∥Ex̂(h)− Ex̄(h)
∥∥ ≤ C̄1h

p1

(
E
[∥∥x̂(h)− x̄(h)

∥∥2
]) 1

2

≤ C̄2h
p2

where x̂(h) =

q̂(h)

p̂(h)

 is the solution of the exact Strang’s splitting method for HFHR with

initial value x0 =

q0

p0

 and x̄(h) =

q̄(h)

p̄(h)

 is the one-step result of Algorithm 2 with

initial value x0 =

q0

p0

, p1 = 2 and p2 = 1.5. More concretely, we have

C̄1 = α(α + 1.125)(L+G)
[
0.5 + 0.71‖x0‖+ (1.14

√
α + 0.21

√
γh)
√
hd
]

and

C̄2 = L(α + 0.73)
(

2.30
√
hαL‖x0‖+ (2.27

√
α + 0.12

√
γh)
√
d
)
.

Proof: The solution of one-step exact Strang’s splitting integrator with step size h can

152

be written as

q3 = q2(h) + 1−e−γ
h
2

γ
p2(h) +

√
2γ
∫ h
h
2

1−e−γ(h−s)
γ

dB(s)

p3 = e−γ
h
2p2(h) +

√
2γ
∫ h
h
2
e−γ(h−s)dB(s)

q2(r) = q1 −
∫ r

0
α∇f(q2(s))ds+

√
2α
∫ r

0
dW (s) (0 ≤ r ≤ h)

p2(r) = p1 −
∫ r

0
∇f(q2(s))ds

q1 = q0 + 1−e−γ
h
2

γ
p0 +

√
2γ
∫ h

2

0
1−e−γ(

h
2−s)

γ
dB(s)

p1 = e−γ
h
2p0 +

√
2γ
∫ h

2

0
e−γ(h

2
−s)dB(s)

and the solution of one-step implementable Strang’s splitting integrator with step size h can

be written as

q̄3 = q̄2(h) + 1−e−γ
h
2

γ
p̄2(h) +

√
2γ
∫ h

2

0
1−e−γ(

h
2−s)

γ
dB(h

2
+ s)

p̄3 = e−γ
h
2 p̄2(h) +

√
2γ
∫ h

2

0
e−γ(h

2
−s)dB(h

2
+ s)

q̄2(r) = q1 −
∫ r

0
α∇f(q1)ds+

√
2α
∫ r

0
dW (s) (0 ≤ r ≤ h)

p̄2(r) = p1 −
∫ r

0
∇f(q1)ds

q1 = q0 + 1−e−γ
h
2

γ
p0 +

√
2γ
∫ h

2

0
1−e−γ(

h
2−s)

γ
dB(s)

p1 = e−γ
h
2p0 +

√
2γ
∫ h

2

0
e−γ(h

2
−s)dB(s)

Note that in the implementable Strang’s splitting method, φ flow can be explicitly integrated

and hence q1,p1 are the same as that in the exact Strang’s splitting method.

First, we will bound the deviation of mathematical expectation and mean squared error

of q2(h)− q̄2(h) and p2(h)− p̄2(h). We have

q2(h)− q̄2(h) = −α

∫ h
0
∇f(q2(s))−∇f(q1)ds

p2(h)− p̄2(h) = −
∫ h

0
∇f(q2(s))−∇f(q1)ds

(B.20)

153

Square both sides of the first equation in (B.20) and take expectation, we obtain

E
∥∥q2(h)− q̄2(h)

∥∥2

=α2E

∥∥∥∥∥
∫ h

0

∇f(q2(s))−∇f(q1)ds

∥∥∥∥∥
2

≤α2E

(∫ h

0

∥∥∇f(q2(s))−∇f(q1)
∥∥ ds)2

≤α2L2E

(∫ h

0

∥∥q2(s)− q1

∥∥ ds)2

≤α2L2h

∫ h

0

E
∥∥q2(s)− q1

∥∥2
ds

Note that q2 is the solution of a rescaled overdamped Langevin dynamics whose drift vector

field is αL-Lipschitz, by conditional expectation version of Lemma 31, for 0 < h < 1
4L′

<

1
4αL

, we have E
∥∥q2(h)− q1

∥∥2 ≤ C̄0h with C̄0 = 5.14
{
αd+ h(αL)2E‖q1‖

2
}

and it

follows that
E
∥∥q2(h)− q̄2(h)

∥∥2 ≤ α2L2C̄0h
3

E
∥∥p2(h)− p̄2(h)

∥∥2 ≤ L2C̄0h
3.

Now consider p1, i.e., the deviation of mathematical expectation. By Ito’s lemma, we have

q2(h)− q̄2(h)

=− α
∫ h

0

∇f(q2(s))−∇f(q1)ds

=− α
∫ h

0

[∫ s

0

−α∇2f(q2(r))∇f(q2(r))dr + α

∫ s

0

∇∆f(q2(r))dr + ρ

]
ds (B.21)

where ρ is a stochastic integral term. Take expectation and norm for Equation (B.21), we

154

have

∥∥∥E [q2(h)− q̄2(h)
]∥∥∥

=α2

∥∥∥∥∥
∫ h

0

E
[∫ s

0

∇2f(q2(r))∇f(q2(r))dr −
∫ s

0

∇∆f(q2(r))dr

]
ds

∥∥∥∥∥
≤α2

∫ h

0

E
[∫ s

0

‖∇2f(q2(r))‖2

∥∥∇f(q2(r))
∥∥ dr +

∫ s

0

∥∥∇∆f(q2(r))
∥∥ dr] ds

≤α2

∫ h

0

E
[
L

∫ s

0

∥∥q2(r)
∥∥ dr +

∫ s

0

G(1 +
∥∥q2(r)

∥∥)dr

]
ds

=α2(L+G)

∫ h

0

∫ s

0

E
∥∥q2(r)

∥∥ dr + α2G
h2

2

≤α2(L+G)

∫ h

0

∫ s

0

E
∥∥q2(r)− q1

∥∥+ E‖q1‖ dr + α2G
h2

2

≤α2(L+G)

∫ h

0

∫ s

0

√
E
∥∥q2(r)− q1

∥∥2
+ E‖q1‖ dr + α2G

h2

2

≤α2(L+G)
√
C̄0h

h2

2
+ α2(L+G)

h2

2
E‖q1‖+ α2G

h2

2

≤α2

{√
C̄0h+ E‖q1‖

2
(L+G) +

G

2

}
h2

≤1

2
α2(L+G)

{√
C̄0h+ E‖q1‖+ 1

}
h2

Similarly, we have
∥∥∥E [p2(h)− p̄2(h)

]∥∥∥ ≤ 1
2
α(L+G)

{√
C̄0h+ E‖q1‖+ 1

}
h2.

For p2, i.e., mean-square error, we have

E
∥∥q2(h)− q̄2(h)

∥∥2 ≤α2E

{∫ h

0

∥∥∇f(q2(s))−∇f(q1)
∥∥ ds}2

≤α2E

{∫ h

0

1ds

∫ h

0

∥∥∇f(q2(s))−∇f(q1)
∥∥2
ds

}

≤α2L2h

∫ h

0

E
∥∥q2(s)− q1

∥∥2
ds

≤α
2L2C̄0

2
h3

155

Similarly we obtain E
∥∥p2(h)− p̄2(h)

∥∥2 ≤ L2C̄0

2
h3. Recall

q3 − q̄3 = q2(h)− q̄2(h) + 1−e−γ

h
2

γ
(p2(h)− p̄2(h))

p3 − p̄3 = e−γ
h
2 (p2(h)− p̄2(h))

.

and it follows that when 0 < h ≤ 1
4L′

< 1

∥∥∥∥∥∥∥E
q3 − q̄3

p3 − p̄3

∥∥∥∥∥∥∥ ≤α(α + 1 +

h

2
)(L+G)

√
C̄0h+ E‖q1‖+ 1

2
h2 (B.22)

E

∥∥∥∥∥∥∥
q3 − q̄3

p3 − p̄3

∥∥∥∥∥∥∥

2

≤L2C̄0

(
α2 +

1

2
+
h2

4

)
h3. (B.23)

Finally we need to bound E‖q1‖
2 by E‖x0‖2, to this end, we have

E‖q1‖
2 =E

∥∥∥∥∥q0 +
1− e−γ h2

γ
p0 +

√
2γ

∫ h
2

0

1− e−γ(h
2
−s)

γ
dB(s)

∥∥∥∥∥
2

≤(1 +
h2

4
)E‖q0‖

2 + (1 +
h2

4
)E‖p0‖

2 + 2γd

∫ h
2

0

(
1− e−γ(h

2
−s)

γ

)2

ds

≤(1 +
h2

4
)E‖x0‖2 +

γd

12
h3 (B.24)

=(1 +
h2

4
)‖x0‖2 +

γd

12
h3 (B.25)

Collecting all pieces together, including (B.22), (B.23), (B.25), the definition of C̄0 and

156

0 < h < 1
4L′

, it is not difficult to obtain the following

∥∥∥∥∥∥∥E
q3 − q̄3

p3 − p̄3

∥∥∥∥∥∥∥ ≤C̄1h

2

E

∥∥∥∥∥∥∥
q3 − q̄3

p3 − p̄3

∥∥∥∥∥∥∥

2

1
2

≤C̄2h
3
2

with

C̄1 = α(α + 1.125)(L+G)
[
0.5 + 0.71‖x0‖+ (1.14

√
α + 0.21

√
γh)
√
hd
]

and

C̄2 = L(α + 0.73)
(

2.30
√
hαL‖x0‖+ (2.27

√
α + 0.12

√
γh)
√
d
)

B.10 Local error between HFHR algorithm and HFHR dynamics

Lemma 36 Assume f is L-smooth, 0 ∈ argminx∈Rd f(x), i.e. ∇f(0) = 0 and the oper-

ator ∇∆f grows at most linearly, i.e.
∥∥∇∆f(q)

∥∥ ≤ G
√

1 +‖q‖2. If 0 < h ≤ 1
4L′

, then

compared with the HFHR dynamics, the implementable Strang’s splitting method has local

weak error of order p1 = 2 and local mean-squared error of order p2 = 1.5, i.e. there exist

constants C1, C2 > 0 such that

∥∥Ex(h)− Ex̄(h)
∥∥ ≤ C1h

p1

(
E
[∥∥x(h)− x̄(h)

∥∥2
]) 1

2

≤ C2h
p2

157

where x(h) =

q(h)

p(h)

 is the solution of HFHR with initial value x0 =

q0

p0

 and x̄(h) =

q̄(h)

p̄(h)

 is the solution of the implementable Strang’s splitting with initial value x0 =

q0

p0

, p1 = 2 and p2 = 1.5. More concretely, we have

C1 =(L+G) max{α + 1.25, γ + 1}
[
0.5α + (1.74 + 0.71α)‖x0‖

]
+ (L+G) max{α + 1.25, γ + 1}

[(
1.26
√
α + 1.14α

√
α + 2.32

√
γ
)√

hd
]

and

C2 = Lmax{α + 1.25, γ + 1}
[
(1.92 + 2.30αL)

√
h‖x0‖+ (2.60

√
α + 3.34

√
γh)
√
d
]

Proof: Denote by x̂(h) =

q̂(h)

p̂(h)

 the solution of the exact Strang’s splitting method with

initial value x0 =

q0

p0

. By triangle inequality and Minkowski’s inequality, we have

∥∥Ex(h)− Ex̄(h)
∥∥ ≤∥∥Ex(h)− Ex̂(h)

∥∥+
∥∥Ex̂(h)− Ex̄(h)

∥∥ ,(
E
∥∥x(h)− x̄(h)

∥∥2
) 1

2 ≤
(
E
∥∥x(h)− x̂(h)

∥∥2
) 1

2
+
(
E
∥∥x̂(h)− x̄(h)

∥∥2
) 1

2
.

By Lemma 34 and 35, we have

∥∥Ex(h)− Ex̂(h)
∥∥ ≤ Ĉ1h

2,
∥∥Ex̂(h)− Ex̄(h)

∥∥ ≤ C̄1h
2(

E
∥∥x(h)− x̂(h)

∥∥2
) 1

2 ≤ Ĉ2h
3
2 ,

(
E
∥∥x̂(h)− x̄(h)

∥∥2
) 1

2 ≤ C̄2h
3
2

158

and hence

∥∥Ex(h)− Ex̄(h)
∥∥ ≤(Ĉ1 + C̄1)h2(

E
∥∥x(h)− x̄(h)

∥∥2
) 1

2 ≤(Ĉ2 + C̄2)h
3
2

with

Ĉ1 + C̄1

≤(L+G) max{α + 1.25, γ + 1}
[
0.5α + (1.74 + 0.71α)‖x0‖

]
+ (L+G) max{α + 1.25, γ + 1}

(
1.26
√
α + 1.14α

√
α + 2.32

√
γ
)√

hd

,C1

Ĉ2 + C̄2

≤Lmax{α + 1.25, γ + 1}
[
(1.92 + 2.30αL)

√
h‖x0‖+ (2.60

√
α + 3.34

√
γh)
√
d
]

,C2

B.11 α does create acceleration even after discretization

If α → ∞ while γ remains fixed, then dq = −α∇f(q) +
√

2αdW is the dominant part

of the dynamics, and in this case the role of α could be intuitively understood as to simply

rescale the time of gradient flow, which does not create any algorithmic advantage, as the

timestep of discretization has to scale like 1/α in this case. However, finite α no longer

corresponds to solely a time-scaling, but closely couples with the dynamics and creates

acceleration. This is true even after the continuous dynamics is discretized by an algorithm

We will analytically illustrate this point by considering quadratic f . In this case, the

diffusion process remains Gaussian, and it suffices to quantify the convergence of its mean

and covariance. In fact, it can be shown that both have the same speed of convergence, and

159

therefore for simplicity we will only consider the mean process. Two demonstrations (with

different focuses) will be provided.

Demonstration 1 (1D, γ given; infinite acceleration). Consider f(x) = x2/2, γ fixed.

The mean process is
q̇ = p− αq

ṗ = −q − γp

Consider, for simplicity, an Euler-Maruyama discretization of the HFHR dynamics, which

coressponds to a Forward Euler discretization of the mean process (other numerical meth-

ods can be analyzed analogously):

qk+1

pk+1

 = A

qk
pk

 , A =

1− αh h

−h 1− γh

 .
We will show that, unless γ = 2, an appropriately chosen α will converge infinitely faster

than the case with α = 0, if both cases use the optimal h.

To do so, let us compute A’s eigenvalues, which are

1

2

(
2− (α + γ)h± h

√
−4 + (α− γ)2

)

Consider the case where |α−γ| ≤ 2, then the eigenvalues are a pair of complex conjugates.

Their modulus determines the speed of convergence, and it can be computed to be

1

2

√
(2− (α + γ)h)2 + h2(4− (α− γ)2) =

√
1− (α + γ)h+ (1 + αγ)h2

Minimizing the quadratic function gives the optimal h that ensures the fastest speed of

160

convergence, and the optimal h is

h =
α + γ

2(1 + αγ)

and the optimal spectral radius is

√
1− (α + γ)2

4(1 + αγ)
.

When one uses low-resolution ODE, in which α = 0, the optimal rate is 1−γ2/4 (note it is

not surprising that the critically damped case, i.e., γ = 2, will give the fastest convergence).

If γ 6= 2, the additional introduction of α can accelerate the convergence by reducing

the spectral radius. For instance, if α = γ + 2, upon choosing the optimal h = 1
1+γ

,

the optimal spectral radius is 0 (note in this case A actually has Jordan canonical form of0 1

0 0

 and thus the discretization converges in 2 steps instead of 1, irrespective of the

initial condition).

Demonstration 2 (multi-dim, γ, α and h all to be chosen; acceleration quantified in

terms of condition number). Consider quadratic f with positive definite Hessian, whose

eigenvalues are 1 = λ1 < · · · < λn = ε−1 for some 0 < ε � 1. Assume without loss

of generality that f = q2
1/2 + ε−1q2

2/2. Similar to Demonstration 1, the forward Euler

discretization of the mean process is

q1,k+1

p1,k+1

q2,k+1

p2,k+1

=

A1 0

0 A2

q1,k

p1,k

q2,k

p2,k

, A1 =

1− αh h

−h 1− γh

 , A2 =

1− αε−1h h

−ε−1h 1− γh

(B.26)

161

We will (i) find h and γ that lead to fastest convergence of the ULD discretization, i.e. the

above iteration with α = 0, and then (ii) constructively show the existence of h, γ and

α that lead to faster convergence than the optimal one in (i) — note these may not even

be the optimal choices for HFHR, but they already lead to significant acceleration. More

specifically,

(i) In a ULD setup, α = 0. It can be computed that the eigenvalues of A1 and A2 are

respectively

1

2

(
2− hγ ± h

√
−4 + γ2

)
and

1

2

(
2− hγ ± h

√
−4ε−1 + γ2

)

We now seek γ > 0, h > 0 to minimize the maximum of their norms for obtaining the

optimal convergence rate. This is done in cases.

Case (i1) When γ ≤ 2, both A1 and A2 eigenvalues are complex conjugate pairs. To

minimize the maximum of their norms, let’s first see if their norms could be made equal.

A1 eigenvalue’s norm squared *4 is

(2− hγ)2 − h2(−4 + γ2) = 4(h− γ/2)2 + 4− γ2 (B.27)

A2 eigenvalue’s norm squared *4 is

(2− hγ)2 − h2(−4ε−1 + γ2) = 4ε−1(h− εγ/2)2 + 4− εγ2 (B.28)

It can be seen that for (B.27) is always strictly smaller than (B.28) for any h > 0. Therefore,

the max of the two is minimized when h = εγ/2, and the corresponding max value is

4− εγ2. γ that minimizes this max value is γ = 2. Corresponding rate of convergence is

√
1− ε.

162

Case (i2) When γ ≥ 2ε−1/2, both A1 and A2 eigenvalues are real. Since ε � 1, we can

order them*2 as

2− hγ − h
√
−4 + γ2 <2− hγ − h

√
−4ε−1 + γ2 < 2− hγ + h

√
−4ε−1 + γ2

<2− hγ + h
√
−4 + γ2 < 2.

To minimize the max of their norms, consider cases in which the smallest of four is nega-

tive, in which case at optimum one should have

−(2− hγ − h
√
−4 + γ2) = 2− hγ + h

√
−4 + γ2.

This gives h = 2/γ (which does verify the assumption that the smallest of four is negative).

Corresponding max of their norms is thus
√

1− 4/γ2. γ that minimizes this max value is

γ = 2ε−1/2, which gives rate of convergence of

√
1− ε.

Case (i3) When 2 ≤ γ ≤ 2ε−1/2, A1 eigenvalues are real and A2 eigenvalues are complex

conjugates. Again, the max of their norms is minimized if the norms can be made all equal.

NoteA1 eigenvalues cannot be of the same sign, because otherwise 2−hγ−h
√
−4 + γ2 =

2 − hγ + h
√
−4 + γ2, which means either h = 0 or γ = 2, but if γ = 2 then 2 − hγ +

h
√
−4 + γ2 being equal to 2*norm ofA2 eigenvalue, which is

√
4ε−1(h− εγ/2)2 + 4− εγ2,

leads to h = 0 again.

Therefore, the equality of norms of A1, A2 eigenvalues means

−(2− hγ − h
√
−4 + γ2) = 2− hγ + h

√
−4 + γ2 =

√
4ε−1(h− εγ/2)2 + 4− εγ2.

The first equality gives hγ = 2, which, together with the second equality, gives h =

163

±
√

2ε
1+ε

. Selecting the positive value of optimal h, we also obtain optimal γ =
√

2(1 + ε)ε−1/2,

which is≤ 2ε−1/2 and thus satisfying our assumption (2 ≤ γ ≤ 2ε−1/2). The corresponding

rate of convergence is thus

1

2

(
2− hγ + h

√
−4 + γ2

)
=

√
1− ε
1 + ε

.

Summary of (i) Since
√

1−ε
1+ε

<
√

1− ε, the ULD Euler-Maruyama discretization converges

the fastest when

h =

√
2ε

1 + ε
, γ =

√
2(1 + ε)ε−1/2,

and the corresponding discount factor of convergence is

√
1− ε
1 + ε

, where ε = 1/κ with κ being Hessian’s condition number. (B.29)

(ii) Now consider the HFHR setup. Let’s first state a result: when

γ =

√
4c2ε4 + 8c2ε3 + 4c2ε2 + ε2 − 2ε+ 1 + ε+ 3

2cε2 + 2cε
> 0, (B.30)

α =
−
√

4c2ε4 + 8c2ε3 + 4c2ε2 + ε2 − 2ε+ 1 + 3ε+ 1

2cε2 + 2cε
> 0, h = cε (B.31)

for any c > 0 independent of ε, the iteration (B.26) converges with discount factor

1√
2(1 + ε)

√
(1− ε)

(
1− ε+

√
4c2ε4 + 8c2ε3 + (4c2 + 1) ε2 − 2ε+ 1

)
. (B.32)

While the exact expression is lengthy, it can proved that the HFHR non-optimal discount

factor (B.32) is strictly smaller than the ULD optimal discount factor B.29 for not only

small but also large ε’s.

164

For some quantitative intuition, discount factors Taylor expanded in ε are respectively

HFHR non-optimal: 1− 2ε+

(
c2

2
+ 2

)
ε2 +O

(
ε3
)

(B.33)

ULD optimal: 1− ε+
ε2

2
+O

(
ε3
)

(B.34)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

di
sc

ou
nt

 fa
ct

or

acceleration enabled by HFHR

HFHR non-optimal hyper-parameters
ULD optimal hyper-parameters

Figure B.1: Acceleration of HFHR algorithm over ULD algorithm (despite of an addi-
tional constraint α may place on h) for multi-dimensional quadratic objectives. 1/ε is the
condition number.

The exact expressions of discount factors are also plotted in Fig.B.1 (c = 1 was arbi-

trarily chosen) and one can see acceleration for any (not necessarily small) ε.

(ii details) How were values in (B.31) chosen? Following the idea detailed in (i), we

consider a case whereA1 eigenvalues are both real,A2 eigenvalues are complex conjugates,

and all their norms are equal. Note there are 3 more cases, namely real/real, complex/real,

and complex/complex, but we do not optimize over all cases for simplicity — the real/com-

plex case is enough for outperforming the optimal ULD.

165

This case leads to at least the following equations

trA1 = 0

detA1 + detA2 = 0

(B.35)

One can solve this system of equations to obtain α and γ as functions of h. Following the

idea of choosing h small enough to resolve the stiffness of the ODE

q̇2 = p2 − αε−1q2

ṗ2 = −ε−1q2 − γp2

,

pick h = cε. Then (B.35) gives

γ =

√
4c2ε4 + 8c2ε3 + 4c2ε2 + ε2 − 2ε+ 1 + ε+ 3

2cε2 + 2cε

α =
−
√

4c2ε4 + 8c2ε3 + 4c2ε2 + ε2 − 2ε+ 1 + 3ε+ 1

2cε2 + 2cε

or

γ =
−
√

4c2ε4 + 8c2ε3 + 4c2ε2 + ε2 − 2ε+ 1 + ε+ 3

2cε2 + 2cε

α =

√
4c2ε4 + 8c2ε3 + 4c2ε2 + ε2 − 2ε+ 1 + 3ε+ 1

2cε2 + 2cε

The former is our choice (B.31) because it can be checked that the latter leads to detA1 > 0

which violates the assumption of a pair of plus and minus real eigenvalues.

It is possible to find optimal α, γ, h for HFHR. One has to minimize detA2 under the

constraint detA2 > 0 in addition to (B.35). And then do similar calculations for the other 3

cases, and then finally the best among the 4 cases. We chose not to carry out all the details

in this paper.

166

REFERENCES

[1] P. M. Lee, Bayesian statistics. Oxford University Press London: 1989.

[2] J.-M. Marin and C. Robert, Bayesian core: a practical approach to computational
Bayesian statistics. Springer Science & Business Media, 2007.

[3] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin,
Bayesian data analysis. CRC press, 2013.

[4] M. Kardar, Statistical physics of particles. Cambridge University Press, 2007.

[5] J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, “Molecular dynamics
simulation: Elementary methods,” Computers in Physics, vol. 7, no. 6, pp. 625–
625, 1993.

[6] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to mcmc
for machine learning,” Machine learning, vol. 50, no. 1, pp. 5–43, 2003.

[7] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[8] B. Ballnus, S. Hug, K. Hatz, L. Görlitz, J. Hasenauer, and F. J. Theis, “Comprehen-
sive benchmarking of markov chain monte carlo methods for dynamical systems,”
BMC systems biology, vol. 11, no. 1, pp. 1–18, 2017.

[9] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook of markov chain
monte carlo. CRC press, 2011.

[10] G. A. Pavliotis, Stochastic processes and applications: diffusion processes, the
Fokker-Planck and Langevin equations. Springer, 2014, vol. 60.

[11] E. Nelson, “Dynamical theories of brownian motion,” 1967.

[12] G. O. Roberts, R. L. Tweedie, et al., “Exponential convergence of langevin distri-
butions and their discrete approximations,” Bernoulli, vol. 2, no. 4, pp. 341–363,
1996.

[13] S. F. Jarner and E. Hansen, “Geometric ergodicity of metropolis algorithms,” Stochas-
tic processes and their applications, vol. 85, no. 2, pp. 341–361, 2000.

[14] G. O. Roberts, J. S. Rosenthal, et al., “General state space markov chains and mcmc
algorithms,” Probability surveys, vol. 1, pp. 20–71, 2004.

167

[15] G. O. Roberts and J. S. Rosenthal, “Optimal scaling of discrete approximations to
langevin diffusions,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 60, no. 1, pp. 255–268, 1998.

[16] O. Stramer and R. Tweedie, “Langevin-type models i: Diffusions with given sta-
tionary distributions and their discretizations,” Methodology and Computing in Ap-
plied Probability, vol. 1, no. 3, pp. 283–306, 1999.

[17] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient langevin
dynamics,” International Conference on Machine Learning, pp. 681–688, 2011.

[18] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic Gradient Hamiltonian Monte
Carlo,” International Conference on Machine Learning, pp. 1683–1691, 2014.

[19] S. Ahn, A. Korattikara, and M. Welling, “Bayesian posterior sampling via stochas-
tic gradient fisher scoring,” in 29th International Conference on Machine Learning,
ICML 2012, 2012, pp. 1591–1598.

[20] S. Patterson and Y. W. Teh, “Stochastic gradient Riemannian Langevin dynamics
on the probability simplex,” Advances in Neural Information Processing Systems,
pp. 3102–3110, 2013.

[21] Y.-A. Ma, T. Chen, and E. Fox, “A complete recipe for stochastic gradient mcmc,”
in Advances in Neural Information Processing Systems, 2015, pp. 2917–2925.

[22] C. Chen, N. Ding, and L. Carin, “On the convergence of stochastic gradient mcmc
algorithms with high-order integrators,” in Advances in Neural Information Pro-
cessing Systems, 2015, pp. 2278–2286.

[23] Y. W. Teh, A. H. Thiery, and S. J. Vollmer, “Consistency and fluctuations for
stochastic gradient langevin dynamics,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 193–225, 2016.

[24] C. Li, C. Chen, D. Carlson, and L. Carin, “Preconditioned stochastic gradient
langevin dynamics for deep neural networks,” in Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[25] S. J. Vollmer, K. C. Zygalakis, and Y. W. Teh, “Exploration of the (non-) asymp-
totic bias and variance of stochastic gradient langevin dynamics,” The Journal of
Machine Learning Research, vol. 17, no. 1, pp. 5504–5548, 2016.

[26] A. S. Dalalyan, “Theoretical guarantees for approximate sampling from smooth and
log-concave densities,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 79, no. 3, pp. 651–676, 2017.

168

[27] ——, “Further and stronger analogy between sampling and optimization: Langevin
monte carlo and gradient descent,” conference on learning theory, pp. 678–689,
2017.

[28] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, “Underdamped langevin
mcmc: A non-asymptotic analysis,” Proceedings of the 31st Conference On Learn-
ing Theory, PMLR, 2018.

[29] X. Cheng and P. L. Bartlett, “Convergence of langevin mcmc in kl-divergence,”
PMLR 83, no. 83, pp. 186–211, 2018.

[30] X. Cheng, N. S. Chatterji, Y. Abbasi-Yadkori, P. L. Bartlett, and M. I. Jordan,
“Sharp convergence rates for langevin dynamics in the nonconvex setting,” arXiv
preprint arXiv:1805.01648, 2018.

[31] A. S. Dalalyan and L. Riou-Durand, “On sampling from a log-concave density
using kinetic Langevin diffusions,” Bernoulli, vol. 26, no. 3, pp. 1956–1988, 2020.

[32] A. Durmus and E. Moulines, “Sampling from strongly log-concave distributions
with the unadjusted langevin algorithm,” arXiv preprint arXiv:1605.01559, vol. 5,
2016.

[33] A. Durmus, E. Moulines, et al., “High-dimensional bayesian inference via the un-
adjusted langevin algorithm,” Bernoulli, vol. 25, no. 4A, pp. 2854–2882, 2019.

[34] A. Eberle, A. Guillin, R. Zimmer, et al., “Couplings and quantitative contraction
rates for langevin dynamics,” The Annals of Probability, vol. 47, no. 4, pp. 1982–
2010, 2019.

[35] Y.-A. Ma, N. Chatterji, X. Cheng, N. Flammarion, P. Bartlett, and M. I. Jordan, “Is
there an analog of nesterov acceleration for mcmc?” arXiv preprint arXiv:1902.00996,
2019.

[36] R. Shen and Y. T. Lee, “The randomized midpoint method for log-concave sam-
pling,” in Advances in Neural Information Processing Systems, 2019, pp. 2098–
2109.

[37] S. Vempala and A. Wibisono, “Rapid convergence of the unadjusted langevin algo-
rithm: Isoperimetry suffices,” in Advances in Neural Information Processing Sys-
tems, 2019, pp. 8092–8104.

[38] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, pp. 400–407, 1951.

169

[39] J. C. Spall, Introduction to stochastic search and optimization: estimation, simula-
tion, and control. John Wiley & Sons, 2005, vol. 65.

[40] L. Bottou, “Stochastic learning,” in Advanced Lectures on Machine Learning, ser. Lec-
ture Notes in Artificial Intelligence, LNAI 3176, O. Bousquet and U. von Luxburg,
Eds., Berlin: Springer Verlag, 2004, pp. 146–168.

[41] D. Maclaurin and R. P. Adams, “Firefly monte carlo: Exact mcmc with subsets of
data,” in Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[42] T. Fu and Z. Zhang, “Cpsg-mcmc: Clustering-based preprocessing method for stochas-
tic gradient mcmc,” in Artificial Intelligence and Statistics, 2017, pp. 841–850.

[43] N. Bou-Rabee and J. M. Sanz-Serna, “Geometric integrators and the Hamiltonian
Monte Carlo method,” Acta Numerica, vol. 27, pp. 113–206, 2018.

[44] N. Bou-Rabee, A. Eberle, and R. Zimmer, “Coupling and convergence for Hamil-
tonian Monte Carlo,” arXiv preprint arXiv:1805.00452, 2018.

[45] F. Bach, “Stochastic gradient methods for machine learning,” Tech. Rep., 2013.

[46] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive
variance reduction,” in Advances in neural information processing systems, 2013,
pp. 315–323.

[47] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochas-
tic average gradient,” Mathematical Programming, vol. 162, no. 1-2, pp. 83–112,
2017.

[48] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives,” in Advances
in neural information processing systems, 2014, pp. 1646–1654.

[49] K. A. Dubey, S. J. Reddi, S. A. Williamson, B. Poczos, A. J. Smola, and E. P.
Xing, “Variance reduction in stochastic gradient langevin dynamics,” in Advances
in neural information processing systems, 2016, pp. 1154–1162.

[50] J. Baker, P. Fearnhead, E. B. Fox, and C. Nemeth, “Control variates for stochastic
gradient mcmc,” Statistics and Computing, vol. 29, no. 3, pp. 599–615, 2019.

[51] N. S. Chatterji, N. Flammarion, Y.-A. Ma, P. L. Bartlett, and M. I. Jordan, “On the
theory of variance reduction for stochastic gradient monte carlo,” ICML, 2018.

170

[52] D. Needell, R. Ward, and N. Srebro, “Stochastic gradient descent, weighted sam-
pling, and the randomized kaczmarz algorithm,” in Advances in Neural Information
Processing Systems, 2014, pp. 1017–1025.

[53] M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and A. Sarkar,
“Non-uniform stochastic average gradient method for training conditional random
fields,” in artificial intelligence and statistics, 2015, pp. 819–828.

[54] D. Csiba and P. Richtárik, “Importance sampling for minibatches,” The Journal of
Machine Learning Research, vol. 19, no. 1, pp. 962–982, 2018.

[55] P. Zhao and T. Zhang, “Stochastic optimization with importance sampling for reg-
ularized loss minimization,” in International Conference on Machine Learning,
2015, pp. 1–9.

[56] R. Zhu, “Gradient-based sampling: An adaptive importance sampling for least-
squares,” in Advances in Neural Information Processing Systems, 2016, pp. 406–
414.

[57] A. Korattikara, Y. Chen, and M. Welling, “Austerity in mcmc land: Cutting the
metropolis-hastings budget,” in International Conference on Machine Learning,
PMLR, 2014, pp. 181–189.

[58] R. Bardenet, A. Doucet, and C. C. Holmes, “On markov chain monte carlo methods
for tall data,” Journal of Machine Learning Research, vol. 18, no. 47, 2017.

[59] R. Zhang and C. De Sa, “Poisson-minibatching for gibbs sampling with conver-
gence rate guarantees,” arXiv preprint arXiv:1911.09771, 2019.

[60] R. Zhang, A. F. Cooper, and C. De Sa, “Asymptotically optimal exact minibatch
metropolis-hastings,” arXiv preprint arXiv:2006.11677, 2020.

[61] R. Kubo, “The fluctuation-dissipation theorem,” Reports on progress in physics,
vol. 29, no. 1, p. 255, 1966.

[62] M. Tao and T. Ohsawa, “Variational optimization on lie groups, with examples of
leading (generalized) eigenvalue problems,” AISTATS, 2020.

[63] N. Bou-Rabee and H. Owhadi, “Long-run accuracy of variational integrators in the
stochastic context,” SIAM Journal on Numerical Analysis, vol. 48, no. 1, pp. 278–
297, 2010.

[64] J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov, “Convergence of numerical
time-averaging and stationary measures via poisson equations,” SIAM Journal on
Numerical Analysis, vol. 48, no. 2, pp. 552–577, 2010.

171

[65] A. S. Dalalyan and A. G. Karagulyan, “User-friendly guarantees for the langevin
monte carlo with inaccurate gradient,” arXiv preprint arXiv:1710.00095, 2017.

[66] A. Defazio and L. Bottou, “On the ineffectiveness of variance reduced optimization
for deep learning,” in Advances in Neural Information Processing Systems, 2019,
pp. 1755–1765.

[67] A. G. Wilson, “The case for bayesian deep learning,” arXiv preprint arXiv:2001.10995,
2020.

[68] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-
stage architecture for object recognition?” In 2009 IEEE 12th international confer-
ence on computer vision, IEEE, 2009, pp. 2146–2153.

[69] Y. Nesterov, “A method for unconstrained convex minimization problem with the
rate of convergence o (1/k2̂),” in Doklady AN USSR, vol. 269, 1983, pp. 543–547.

[70] ——, Introductory lectures on convex optimization: A basic course. Springer Sci-
ence & Business Media, 2013, vol. 87.

[71] W. Su, S. Boyd, and E. Candes, “A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights,” in Advances in Neural Informa-
tion Processing Systems, 2014, pp. 2510–2518.

[72] A. Wibisono, A. C. Wilson, and M. I. Jordan, “A variational perspective on accel-
erated methods in optimization,” proceedings of the National Academy of Sciences,
vol. 113, no. 47, E7351–E7358, 2016.

[73] A. C. Wilson, B. Recht, and M. I. Jordan, “A lyapunov analysis of momentum
methods in optimization,” arXiv preprint arXiv:1611.02635, 2016.

[74] B. Hu and L. Lessard, “Dissipativity theory for nesterov’s accelerated method,” in
Proceedings of the 34th International Conference on Machine Learning-Volume
70, JMLR. org, 2017, pp. 1549–1557.

[75] H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont, “Fast convergence of iner-
tial dynamics and algorithms with asymptotic vanishing viscosity,” Mathematical
Programming, vol. 168, no. 1-2, pp. 123–175, 2018.

[76] B. Shi, S. S. Du, M. I. Jordan, and W. J. Su, “Understanding the acceleration phe-
nomenon via high-resolution differential equations,” arXiv preprint arXiv:1810.08907,
2018.

172

[77] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of the fokker–
planck equation,” SIAM journal on mathematical analysis, vol. 29, no. 1, pp. 1–17,
1998.

[78] Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose bayesian
inference algorithm,” in Advances in neural information processing systems, 2016,
pp. 2378–2386.

[79] A. Wibisono, “Sampling as optimization in the space of measures: The langevin dy-
namics as a composite optimization problem,” in Conference On Learning Theory,
2018, pp. 2093–3027.

[80] R. Zhang, C. Chen, C. Li, and L. Carin, “Policy optimization as wasserstein gra-
dient flows,” in International Conference on Machine Learning, 2018, pp. 5737–
5746.

[81] C. Frogner and T. Poggio, “Approximate inference with wasserstein gradient flows,”
in International Conference on Artificial Intelligence and Statistics, 2020.

[82] L. Chizat and F. Bach, “On the global convergence of gradient descent for over-
parameterized models using optimal transport,” in Advances in neural information
processing systems, 2018, pp. 3036–3046.

[83] C. Chen, R. Zhang, W. Wang, B. Li, and L. Chen, “A unified particle-optimization
framework for scalable bayesian sampling,” in The Conference on Uncertainty in
Artificial Intelligence, 2018.

[84] C. Villani, Optimal transport: old and new. Springer Science & Business Media,
2008, vol. 338.

[85] R. Dwivedi, Y. Chen, M. J. Wainwright, and B. Yu, “Log-concave sampling: Metropolis-
hastings algorithms are fast,” Journal of Machine Learning Research, vol. 20, no. 183,
pp. 1–42, 2019.

[86] S. Chewi, C. Lu, K. Ahn, X. Cheng, T. L. Gouic, and P. Rigollet, “Optimal dimen-
sion dependence of the metropolis-adjusted langevin algorithm,” arXiv preprint
arXiv:2012.12810, 2020.

[87] J. C. Mattingly, A. M. Stuart, and D. J. Higham, “Ergodicity for sdes and approxi-
mations: Locally lipschitz vector fields and degenerate noise,” Stochastic processes
and their applications, vol. 101, no. 2, pp. 185–232, 2002.

[88] Y. Cao, J. Lu, and L. Wang, “On explicit l2-convergence rate estimate for under-
damped langevin dynamics,” arXiv preprint arXiv:1908.04746, 2019.

173

[89] J. Dolbeault, C. Mouhot, and C. Schmeiser, “Hypocoercivity for kinetic equations
with linear relaxation terms,” Comptes Rendus Mathematique, vol. 347, no. 9-10,
pp. 511–516, 2009.

[90] ——, “Hypocoercivity for linear kinetic equations conserving mass,” Transactions
of the American Mathematical Society, vol. 367, no. 6, pp. 3807–3828, 2015.

[91] C. Villani, “Hypocoercivity,” Memoirs of the American Mathematical Society, vol. 202,
no. 950, 2009.

[92] J.-P. Eckmann and M. Hairer, “Spectral properties of hypoelliptic operators,” Com-
munications in mathematical physics, vol. 235, no. 2, pp. 233–253, 2003.

[93] F. Baudoin, “Bakry-emery meet villani,” Journal of Functional Analysis, 2017.

[94] C. Liu, J. Zhuo, P. Cheng, R. Zhang, and J. Zhu, “Understanding and accelerat-
ing particle-based variational inference,” in International Conference on Machine
Learning, 2019, pp. 4082–4092.

[95] A. Taghvaei and P. Mehta, “Accelerated flow for probability distributions,” in Pro-
ceedings of the 36th International Conference on Machine Learning, K. Chaud-
huri and R. Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research,
vol. 97, Long Beach, California, USA: PMLR, Sep. 2019, pp. 6076–6085.

[96] Y. Wang and W. Li, “Accelerated information gradient flow,” arXiv preprint arXiv:1909.02102,
2019.

[97] B. Leimkuhler, C. Matthews, and J. Weare, “Ensemble preconditioning for markov
chain monte carlo simulation,” Statistics and Computing, vol. 28, no. 2, pp. 277–
290, 2018.

[98] G. Bierkens, P. Fearnhead, and G. Roberts, “The zig-zag process and super-efficient
sampling for bayesian analysis of big data,” Annals of Statistics, vol. 47, no. 3,
2019.

[99] C.-R. Hwang, S.-Y. Hwang-Ma, S.-J. Sheu, et al., “Accelerating diffusions,” Annals
of Applied Probability, vol. 15, no. 2, pp. 1433–1444, 2005.

[100] T. Lelievre, F. Nier, and G. A. Pavliotis, “Optimal non-reversible linear drift for the
convergence to equilibrium of a diffusion,” Journal of Statistical Physics, vol. 152,
no. 2, pp. 237–274, 2013.

[101] M. Ohzeki and A. Ichiki, “Langevin dynamics neglecting detailed balance condi-
tion,” Physical Review E, vol. 92, no. 1, p. 012 105, 2015.

174

[102] L. Rey-Bellet and K. Spiliopoulos, “Irreversible langevin samplers and variance
reduction: A large deviations approach,” Nonlinearity, vol. 28, no. 7, p. 2081, 2015.

[103] A. B. Duncan, T. Lelievre, and G. Pavliotis, “Variance reduction using nonre-
versible langevin samplers,” Journal of statistical physics, vol. 163, no. 3, pp. 457–
491, 2016.

[104] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1–
17, 1964.

[105] F. Alvarez, H. Attouch, J. Bolte, and P. Redont, “A second-order gradient-like dis-
sipative dynamical system with hessian-driven damping.: Application to optimiza-
tion and mechanics,” Journal de mathématiques pures et appliquées, vol. 81, no. 8,
pp. 747–779, 2002.

[106] H. Attouch, Z. Chbani, J. Fadili, and H. Riahi, “First-order optimization algorithms
via inertial systems with hessian driven damping,” Mathematical Programming,
pp. 1–43, 2020.

[107] X. Li, D. Wu, L. Mackey, and M. A. Erdogdu, “Stochastic Runge-Kutta accelerates
Langevin Monte Carlo and beyond,” NeurIPS, 2019.

[108] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie, “Direct runge-kutta discretization
achieves acceleration,” in NeurIPS, 2018.

[109] A. K. Kim, R. J. Samworth, et al., “Global rates of convergence in log-concave
density estimation,” The Annals of Statistics, vol. 44, no. 6, pp. 2756–2779, 2016.

[110] S. Bubeck, R. Eldan, and J. Lehec, “Sampling from a log-concave distribution with
projected langevin monte carlo,” Discrete & Computational Geometry, vol. 59,
no. 4, pp. 757–783, 2018.

[111] J. Roussel and G. Stoltz, “Spectral methods for langevin dynamics and associ-
ated error estimates,” ESAIM: Mathematical Modelling and Numerical Analysis,
vol. 52, no. 3, pp. 1051–1083, 2018.

[112] S. M. Kozlov, “Effective diffusion in the fokker-planck equation,” Mathematical
notes of the Academy of Sciences of the USSR, vol. 45, pp. 360–368, 1989.

[113] S. P. Meyn, R. L. Tweedie, et al., “Computable bounds for geometric convergence
rates of markov chains,” The Annals of Applied Probability, vol. 4, no. 4, pp. 981–
1011, 1994.

175

[114] Y. Nesterov, “Introductory lectures on convex programming volume i: Basic course,”
Lecture notes, vol. 3, no. 4, p. 5, 1998.

[115] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press, 2013.

[116] J. Cheeger, “A lower bound for the smallest eigenvalue of the laplacian,” in Pro-
ceedings of the Princeton conference in honor of Professor S. Bochner, 1969,
pp. 195–199.

[117] D. Bakry and M. Émery, “Diffusions hypercontractives,” in Séminaire de Proba-
bilités XIX 1983/84, Springer, 1985, pp. 177–206.

[118] J.-D. Deuschel and D. W. Stroock, Large deviations. American Mathematical Soc.,
2001, vol. 342.

[119] F.-Y. Wang, “A generalization of poincaré and log-sobolev inequalities,” Potential
Analysis, vol. 22, no. 1, pp. 1–15, 2005.

[120] S. G. Bobkov et al., “Isoperimetric and analytic inequalities for log-concave prob-
ability measures,” The Annals of Probability, vol. 27, no. 4, pp. 1903–1921, 1999.

[121] G. Strang, “On the construction and comparison of difference schemes,” SIAM
journal on numerical analysis, vol. 5, no. 3, pp. 506–517, 1968.

[122] R. I. McLachlan and G. R. W. Quispel, “Splitting methods,” Acta Numerica, vol. 11,
p. 341, 2002.

[123] G. N. Milstein and M. V. Tretyakov, Stochastic numerics for mathematical physics.
Springer Science & Business Media, 2013.

[124] H. Rosenbrock, “An automatic method for finding the greatest or least value of a
function,” The Computer Journal, vol. 3, no. 3, pp. 175–184, 1960.

[125] D. Dua and C. Graff, UCI machine learning repository, 2017.

[126] A. Durmus, S. Majewski, and B. Miasojedow, “Analysis of langevin monte carlo
via convex optimization.,” J. Mach. Learn. Res., vol. 20, pp. 73–1, 2019.

[127] V. S. Borkar and S. K. Mitter, “A strong approximation theorem for stochastic
recursive algorithms,” Journal of optimization theory and applications, vol. 100,
no. 3, pp. 499–513, 1999.

176

[128] S. Mandt, M. D. Hoffman, and D. M. Blei, “Stochastic gradient descent as approx-
imate bayesian inference,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 4873–4907, 2017.

[129] Q. Li, C. Tai, and E. Weinan, “Stochastic modified equations and adaptive stochas-
tic gradient algorithms,” in International Conference on Machine Learning, 2017,
pp. 2101–2110.

[130] M. Lichman et al., UCI machine learning repository, 2013.

177

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Exponential Weighted Stochastic Gradient Methods for Improving Sampling Accuracy
	Related Work
	Background and Notation
	An Illustration of Non-optimality of Uniform Subsampling
	Derivation of Exponential Weighted Stochastic Gradient
	Non-asymptotic Error Bound
	Practical Implementation
	Numerical Examples
	Conclusion

	3 | Hessian-Free-High-Resolution Nesterov Acceleration for Sampling
	Literature Review
	Terminology and Notations
	The Derivation of HFHR
	Theoretical Analysis of the Continuous HFHR
	Discretization
	Numerical Experiments
	Conclusion

	4 | Non-Asymptotic Analysis of Bounded Contractive-SDE-Based Sampling Algorithms via Mean-Square Analysis
	Introduction
	Background
	Mean-Square Analysis of Bounded Contractive-SDE-Based Algorithms
	Application to Langevin Monte Carlo Algorithm
	Conclusion

	Appendices
	A | Supplementary Materials of Chapter 2
	Mini Batch Version of EWSG
	EWSG Version for Overdamped Langevin
	Variance Reduction (VR)
	Additional Experiments
	EWSG does not necessarily change the speed of convergence significantly

	B | Supplementary Materials of Chapter 3
	Poincaré's Inequalities for Product Measure
	Tempered HFHR with Unit PI Constant
	Time Derivative of Mcross
	Dependence of error of SDE on initial values
	Growth bound of SDE with additive noise
	Lipschitz continuity of the drift of HFHR dynamics
	Contraction of (Transformed) HFHR Dynamics
	Local error between the exact Strang's splitting method and HFHR dynamics
	Local error between HFHR algorithm and the exact Strang's splitting method
	Local error between HFHR algorithm and HFHR dynamics
	 does create acceleration even after discretization

	References

