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SUMMARY

Federal Aviation Regulations (FARs) are critical drivers of aircraft design. Early-stage

aircraft design involves a tight coupling between structural dynamics, aerodynamics, and

flight mechanics, with time-dependent loads arising from the considerations of the FARs.

The current state-of-the-art decouples the time-domain simulation from the structural fail-

ure computation due to high computational costs associated with time-domain structural

failure computation. The need to account for the dynamic loads specified by the FARs

while simultaneously achieving low structural weight for fuel efficiency in early-stage air-

craft design motivates the following question: How to enable computationally efficient

structural analysis and optimization of early-stage aircraft wing design, considering dy-

namics?

Existing methods simplify the dynamic loads to equivalent static ones and design the

structure using shell-based analysis. Other literature approaches use computationally ef-

ficient beam models for structural sizing but make assumptions on the geometry and/or

material distribution. Higher-order beam theories for structural analysis have been suc-

cessfully applied to the design of slender structures subjected to time-dependent loads, like

rotorcraft blades. While aircraft wings can be considered slender structures, aperiodicity,

and inhomogeneity along the span render beam theory ineffective.

The present work aims to bridge this gap by proposing a method for analyzing 3-D

structures through dimensional reduction. The use of the Variational Asymptotic Method

(VAM) is explored for the systematic reduction of 3-D structures to 1-D models and further,

recover 3-D stresses and strains after solving the 1-D problem.

A stiffness matching approach is proposed to dimensionally reduce 3-D features such

as stiffeners by locally smearing them on the base plate. The proposed method allows for

stiffeners of varying dimensions, topology, and spacing to be smeared. The stiffness match-

ing further allows the beam cross-sectional properties computed from VAM to be equal to a

xxiv



box-beam cross-section. The equivalence enables the use of Euler-Bernoulli type analytical

stiffness computation while retaining the accuracy of VAM. Analytical expressions allow

for rapid evaluation of the beam properties and stress recovery and further permit the use

of Automatic Differentiation (AD) to obtain partial derivatives. The proposed structural

analysis method is applied to the wing structural analysis of a novel distributed electric

propulsion aircraft – NASA’s PEGASUS concept, and the open-source Common Research

Model (CRM).

A general adjoint method for dynamic simulations is presented and applied to a nonlin-

ear Timoshenko beam theory. It combines general beam residual equations with an adjoint

method to extract gradient information from the load time-history. Aggregated constraints

implemented for sizing are stress-based, combining axial stresses at the beam corners with

shear stresses from torsion and external loads at both corners and mid-sections. CasASDi,

an open-source tool for nonlinear optimization and algorithmic differentiation, is used to

generate expressions and calculate derivatives for the relevant equations used for analysis

and optimization. Numerical tests are conducted to test the accuracy of the adjoint compu-

tations and scalability as the number of design variables increase.

A structural optimization framework is developed for the beam-based dynamic analysis

method presented, allowing for the structure’s sizing under strength-based failure consider-

ations. The PEGASUS concept is used as a testbed to demonstrate the sizing capabilities.

The structure is sized for FARs specified maneuver loads – static 2.5g and -1.0g, and dy-

namic gusts.

Findings show that: 1) the use of VAM allows for the systematic extraction of beam

properties for aircraft wings, 2) the displacement and stress response of the aircraft using

beam models match reasonably well against those produced by shell-based models, 3) for

dynamic simulations the derived adjoint method computes accurate gradients efficiently to

be used in structural optimization, 4) sizing of aircraft wings for 14 CFR specified maneu-

vers using the proposed approach produces a 6% error compared to shell-based method,

xxv



but with a 7.8x speed-up.

The proposed approach provides improvements on the existing literature methods- it

is computationally efficient, provides reasonable accuracy for early-stage structural sizing

and weight prediction, and includes dynamic effects. The computational efficiency makes

it well-suited for many-query applications like optimization, uncertainty quantification, and

generating data for surrogate modeling.
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CHAPTER 1

MOTIVATION

1.1 Introduction

1.1.1 Aircraft Certification

Federal Aviation Administration (FAA) certification requirements are of central importance

to the process of aircraft design. An airframe manufacturer carries out computational anal-

yses, flight tests and extensive ground tests on a proposed design to gain confidence that it

can withstand loads prescribed by regulatory standards. Such exhaustive tests are necessary

for a design to be deemed safe, durable and reliable [1, 2].

Critical loads (also called sizing loads) often occur during dynamic maneuvers, during

which the motion of aircraft itself contributes significantly to the developed loads. Catas-

trophic failures can occur due to large and unforeseen dynamic loads. This phenomenon

is evidenced by the vertical stabilizer structural failure on American Airlines Flight 587.

The investigation revealed that large loads had developed on the vertical tail due to the

first officer’s rapid, aggressive, and oscillatory rudder inputs. The rudder inputs were in

response to a wake turbulence encounter and caused the loads on the vertical tail to exceed

the aircraft’s ultimate design load limits [3].

The Federal Aviation Administration (FAA) defines regulations on the structural in-

tegrity of the airframe [4], called 14 Code of Federal Regulations (CFR). 14 CFR often

involve a consideration of critical loads occurring during dynamic maneuvers. Maneu-

vers such as 14 Code of Federal Regulations (CFR) 25.331(c)(2), commonly known as the

Checked Pitch Maneuver, and 14 CFR 25.351, commonly referred to as the Rudder Kick

Maneuver provide critical loads which size the horizontal tail and vertical tail, respectively.

Following the American Airlines Flight 587 incident, the FAA has proposed to add a new
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Figure 1.1: Boeing 787 certification [5]

load condition to the design standards for transport category airplanes – 14 CFR 25.353-

rudder control reversal conditions.

To demonstrate compliance with 14 CFR, airframe manufacturers must show that the

aircraft can sustain the loads defined by the FAA. Fig. 1.1 shows the number of regulations,

requirements, and tests performed for the Boeing 787 certification program.

1.1.2 Certification-By-Analysis

In the past, limited computing resources and inaccurate simulation capabilities resulted in

heavy reliance on physical testing. Making prototypes and performing physical tests for

certification is an expensive endeavor, as shown in Table 1.1. Numerous studies show that

when issues are discovered too late in the design process, the unforeseen redesign and

fixes are costly [6]. There has been an increase in certification cost and time over the past

few decades [7]. For instance, the Airbus A380 faced a delay in its entry into service by

almost two years [8, 9]. Boeing has experienced similar cost challenges and delays with its

commercial 787 aircraft. The Boeing 787 entered into service more than three years late

and tens of billions of dollars over budget in development costs [10, 11].

Table 1.1: FAA certification cost estimates

Light Sport Aircraft Primary Category Normal

∼$125,000 ∼$1,000,000 ∼$25,000,000

With the growth in computational power and numerical simulations’ accuracy over the
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past few decades, a potentially cheaper option presents itself to airframe manufacturers.

The aircraft can be simulated, designed, and tested virtually, reducing the number of physi-

cal tests. The paradigm-shift towards certification-by-analysis is seen in reports by airframe

manufacturers. For example, Airbus claimed a reduction of 40% [12] in wind tunnel testing

time for the development of the A350.

Table 1.2 shows the number of days to obtain certification for some recent aircraft

development programs. Despite the reduction in physical testing and increased usage of

numerical simulations, the time taken for certification is increasing.

Table 1.2: FAA certification timelines

Aircraft Application Date Certification Date Years

C500 07/16/1968 09/09/1971 3.2

A330 07/17/2000 05/17/2004 3.8

A380 12/20/2001 12/12/2006 5.0

B787 10/01/2006 08/26/2011 4.9

GVII 09/30/2013 10/11/2019 6.0

1.1.3 Certification-Driven Virtual Design

Design is naturally an iterative process. Design entails picking specific values for the pa-

rameters specifying the system, determining the system’s response, and assessing if the

response is satisfactory. If the response is not satisfactory, the designer changes the val-

ues of parameters and determines the system’s response again. Design entails repeating

the simulation with different parameter values to discover a design that satisfies all the

specified requirements.

Not only can simulation-based tools, be used for certification-by-analysis, but can

also be used to virtually design the aircraft. The shift from experiment-based design to

simulation-based design is shown in Fig. 1.2. For example, the Boeing 777 aircraft was

designed virtually [13].
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Figure 1.2: Shift to simulation-based virtual design

The certification requirements are constraints the system must satisfy. A satisfactory

aircraft design must sustain all the forces applied to it, as specified by the 14 CFR. The

design must also meet some performance requirements. For aircraft, fuel efficiency and

reduction in emissions are major important performance metrics.

Aircraft have become more complex over the past few decades. The increase in com-

plexity is in part due to aggressive environmental goals put forth by NASA’s [14] ‘N+i’

programs, which have spurred organizations to develop new concepts in a bid to meet

demands/projections in the decades to come. Consequently, novel designs featuring sev-

eral technologies related to advanced materials (e.g. composites), efficient propulsion, and

aerodynamics have emerged, as shown in Fig. 1.3.

With new technologies or concepts, the FAA adds additional certification requirements

to ensure the design is safe, durable, and reliable. Considering the lack of historical data for

these new concepts and the expense of physical testing, using physics-based simulations is
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(a) Truss-braced wing (b) Box-wing concept

(c) Blended wing body concept (d) D8 concept

Figure 1.3: Unconventional aircraft configurations (Images taken from NASA)

paramount. These simulations that consider certification requirements enable certification-

driven virtual design of aircraft.

As described earlier, the process of design is iterative. The term many-query [15] has

been used in the literature to describe applications that require evaluation of a model mul-

tiple times. Since the model will be evaluated many times, a single model evaluation must

be as computationally efficient as possible for the overall process to be computationally

efficient.

Optimization is an example of many-query applications, where the algorithm provides

guesses of the design parameters to the model to evaluate objectives and constraints. The al-

gorithm iteratively hones-in on the optimum. Gradient-based optimization algorithms have

been shown to be computationally efficient for a large number of design parameters [16].

To use gradient-based optimization algorithms the model must provide, in addition to the

objective function value and constraint functions values, the gradient of the functions with

respect to the design parameters.
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Other many-query applications include sensitivity analysis, design-space exploration,

trade studies, uncertainty quantification [17], and surrogate model data generation. For

these applications, the gradient is not necessary, but if available enables the use of more

efficient gradient-enhanced methods [18].

1.1.4 Chapter Outline

Summarizing the requirements based on the discussion so far, a simulation-based virtual

design framework must:

1. Account for dynamic maneuvers defined by 14 CFR

2. Be capable of handling new concepts and technologies

3. Have low computation cost to allow for design-space exploration and optimization

This chapter lays the foundation for formulating the main high-level motivating re-

search question that this work investigates. The current early-stage aircraft design process

used by airframe manufacturers is first introduced. The rationale for the process and how

it meets the requirements is explained. This is followed by identification of the limita-

tions and gaps in the current state-of-the-art. Finally, the discussion is summarized with

observations leading to the motivating question this dissertation aims to tackle.

1.2 Simulation-Based Early-Stage Aircraft Design

There is competition among airframe manufacturers to increase fuel efficiency, both from

a cost perspective and to meet the aggressive environmental goals. The efficiency can be

assessed qualitatively using the Breguet range equation:

R =
V

g

1

SFC

L

D
ln

(
1 +

Wfuel

Wpayload +Wstructure

)
(1.1)
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where L/D is the lift to drag ratio, SFC the specific fuel consumption, V the velocity

at cruise, Wfuel the fuel weight, Wpayload the payload weight, and Wstructure the structural

weight. As seen, the aircraft range can be improved by improving the aerodynamic effi-

ciency, L/D, or decreasing the structural weight, Wstructure, or improving the propulsive

efficiency, SFC. In other words, for a given desired range, the fuel used can be decreased.

Neglecting propulsive considerations, reducing the required fuel for a given flight mis-

sion is achieved by improving aerodynamics and decreasing the aircraft’s structural weight.

Thus, novel aircraft have high aerodynamic efficiency and low structural weight fraction,

which yields inherently flexible wings and nonlinear structural and flight dynamics.

Some examples of unconventional configurations proposed are shown in Fig.1.3. The

Boeing truss-braced wing [19] and the D-8 concept [20] feature high aspect ratio wings.

The blended wing body concept [21], and the joined wings concept [22, 23] also feature

large structural deformation. The aeroelastic response of most unconventional aircraft con-

cepts is nonlinear due to nonlinearities in the structural and aerodynamic responses. An

accident that highlights the importance of nonlinear multi-disciplinary analysis is the crash

of Helios aircraft. The Helios was a very high aspect ratio wing aircraft that crashed due to

gust disturbance. The cause of the accident as determined by the investigation panel [24]

was “lack of adequate analysis methods led to an inaccurate risk assessment of the effects

of configuration changes leading to an inappropriate decision to fly an aircraft configura-

tion highly sensitive to disturbances.” Thus, the tools to design aircraft need to account for

the nonlinearity [25] and be applicable to unconventional design concepts.

Fig. 1.4 shows the notional aircraft early-stage design process followed today (synthe-

sized from multiple literature sources [26, 27]. There are two main groups: the Loads

group and the Stiffness and Stress group. The following assumptions are made:

1. The aircraft’s Outer Mold Line (OML) has been fixed

2. The engine has been sized and an engine deck is available to obtain thrust as a func-

tion of throttle setting, Mach number and altitude
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Figure 1.4: Aircraft early-stage design process

Consider the Loads group seen in Fig. 1.4. This group provides the set of critical

loads experienced by the aircraft during its mission and due to maneuvers defined by 14

CFR [28]. Computational tools used here must account for a tight coupling between aero-

dynamics, structural dynamics, and flight mechanics. To efficiently perform these dynamic

simulations (has a time-varying behavior), the tools used typically reduce the Degrees of

Freedom (DoF) to reduce the computational burden [29, 30, 31].

The Loads group communicates the critical loads to the Stress and Stiffness Group

using a load envelop. High fidelity structural modules with a large number of DoF compute

deformation and check for structural failure [32, 33]. The stress and stiffness group sizes

the structure to withstand the loads. In doing so, the mass properties and stiffness of the

components are determined. These two groups iterate with each other to size the wing’s

internal structure, ensuring it can withstand the critical loads experienced by it during flight.

In the preceding discussion of early-stage aircraft design, it is noted that the dynamic

maneuvers defined by 14 CFR – key drivers in the design process – are considered by the

Loads Group. The dynamics necessitate the use of models with low DoF. On the other
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hand, the Stress and Stiffness group use models with larger DoF to accurately account

for technologies such as composite and the complexities of the aircraft’s internal structure.

Using low DoF models for the expensive dynamic simulations and high DoF models for the

relatively inexpensive static simulations allows for the overall computational cost, allowing

for efficient design space exploration and optimization [34, 28, 35].

1.3 Challenges in Simulation-Based Early-Stage Aircraft Design

In the design framework shown in Fig. 1.4, the two groups are decoupled. There is an

“over-the-wall” transfer of data between the two groups while performing the iterations.

In large organizations, these iterations are time-consuming. The two groups may be geo-

graphically separated or make modeling assumptions the other group may not know. Such

organizational barriers increase the overall design time. Also, the simulation approach does

not account for the coupling between the two multi-disciplinary analyses:

• The simplifications the loads group makes to obtain a low DoF model do not accu-

rately capture the complexities of the aircraft’s internal structure, nor can they fully

account for composites. Section 2.2 discusses these issues.

• The stress and stiffness group simplifies the dynamic loads to equivalent static loads.

The process produces many load cases, on the order of thousands. Standard methods

developed downselect to load cases on the order of hundreds. Sizing occurs for these

reduced load cases. Section 2.3 discusses these issues.

A coupled framework with simultaneous loads generation and structural sizing would

overcome the challenges stated above and reduce design cycle time. Fig. 1.5 shows such

a framework. This dissertation argues that one of the most significant challenges for such

a framework is the trade-off between accuracy and computational cost. On the one hand,

running dynamic simulations with large DoF has a prohibitively high computational cost.
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Figure 1.5: A coupled aircraft early-stage design process

On the other hand, the simplifications used to create low DoF models results in insufficient

accuracy to correctly predict structural yielding and structural failure.

1.4 Summary

Aircraft design must account for the dynamic maneuvers specified by 14 CFR. The growth

of the computational power and improvement in simulation capabilities over the last few

decades have afforded the possibility of certification-driven virtual design. Adopting these

methods in the early stages of design requires a low computational cost to run the sim-

ulation while repreatedly changing design parameters to allow for efficient design space

exploration and optimization.

This chapter provided an overview of the current state-of-the-art decoupled design pro-

cess and outlined how it meets the design framework requirements. It then highlighted the

limitations of the framework and proposed a coupled framework. Finally, it elucidated the

challenges to implementing the coupled framework. A summary of the discussion in this

chapter is presented as the following observations:
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Observations 1

1.1 Dynamic maneuver certification requirements from 14 CFR are key-drivers in

the aircraft design process.

1.2 There is a paradigm shift towards using simulation-based tools for

certification-by-analysis and certification-driven virtual design.

1.3 The simulation tool must have low computational cost to facilitate many-query

applications, with a gradient computation capability preference.

1.4 The current state-of-the-art decoupled design process adopted faces two

issues- 1) organizational barriers and 2) reliance on modeling assumptions.

1.5 The desired coupled framework is impractical due to the trade-off between

accuracy and computational cost in structural failure assessment.

Deferring details on the specific deficiencies in the state-of-the-art to Chapter 2, the

motivating question for the work in this dissertation is introduced.

Motivating Question

How to account for dynamics while maintaining computational efficiency in struc-

tural analysis and optimization of early-stage aircraft wing design?

The observations serve as high-level reasons to justify a focus on developing a model

with the following characteristics:
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Desired Capabilities

• Couple dynamic simulation and structural failure assessment

• Incorporate geometric intricacies and new material technologies

• Easily obtain gradients

The desired capabilities stated above require an accurate, yet computationally efficient

model. Thus, the research objective may be stated as:

Research Objective

Develop a framework for aircraft wing design that

1. Dimensionally reduces complex 3-D structures to produce a low DoF struc-

tural analysis model

2. Obtain the gradient of the structural analysis model in the time-domain

1.5 Document Outline

The remaining chapters of this dissertation are organized as follows:

• Chapter 2 presents relevant background information on certification, dynamic loads

generation, structural analysis and multi-disciplinary optimization.

• Chapter 3 addresses the gaps in the literature and proposes, at a high level, a struc-

tural analysis and optimization method

• Chapter 4 dives into each component of the proposed method. This includes de-

scriptions of the research questions, the hypotheses to solve the research questions,

the toy problems and test cases to prove/disprove the hypotheses, and the results of
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each experiment.

• Chapter 5 applies the proposed method to the design of the wings of a novel distributed-

electric propulsion aircraft, the PEGASUS concept.

• Chapter 6 summarizes the contributions and the main findings of this dissertation.

• Chapter 7 outlines the limitations of this dissertation. Some potential avenues for

future research are explored. Finally, concluding remarks are provided.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

To meet certification-by-analysis, one has to show that the aircraft structure is safe through-

out its mission. There are three aspects to consider: what does the internal structure look

like (Section 2.1), what the loads its experiences (Section 2.2), and can the aircraft sustain

the loads without failure (Section 2.3). Also, for a certification-driven design, we need to

size the aircraft to sustain the loads. Section 2.4 explores Multi-Disciplinary Optimization

(MDO) and structural optimization methods.

2.1 Physical Decomposition of the Internal Structure of Aircraft Wings

The load bearing component of an aircraft wing is the wingbox. Fig. 2.1 shows a typical

wingbox. It consists of skin, spars and ribs each playing a role in the overall capacity to

resist loads. The construction is usually semi-monocoque, where the skin resists tension

and shear while the stiffeners resist compression. The skin is stiffened by stringers that run

along the span of the wing. The primary function of the spar webs is to resist the shear and

torsional loads. If we isolate the rib itself (Fig. 2.2), we see that it is a complex structure.

The rib has four primary functions:

1. Maintain the airfoil shape of the wing

2. Transfer air pressure loads from the skins to the spars

3. Resist fuel pressure loading

4. Diffuse local concentrated loads such as engine pylon mounts and movable surface

attachments
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In the rib’s design, it is idealized as a chord-wise beam that transfers the loads from the

skin to the spars. The rib feet transfer the load from the skin to the rib body. The horizontal

stiffeners resist the shear loads, while the vertical stiffeners resist the compressive loads

due to air pressure. The rib has cut-outs within it, either to reduce weight or to allow for

servicing or system holes. The system holes are necessary to enable hydraulic lines to pass

through the rib. These geometric intricacies make the design of an aircraft wing complex.

Gharbi et al. [36], Mills and Burley [37], and Gunther et al. [38] give descriptions of the

complexity involved in the design of aircraft wings and ribs.

Figure 2.1: Breakdown of main components of an aircraft
wingbox

Figure 2.2: Aircraft wing rib

The complexity of the structural design of aircraft components arises from many fea-

tures that each component is comprised of. Each of these features has a particular role

and undergoes a unique design process. Consider the rib discretized into n rows and m

columns. Each cell is called a panel. Hence there are m× n panels. Several configuration

decisions are made in each design operation, such as what type of holes to include in a

panel or what shape of castellation is used. Further, each configuration chosen needs to be

sized hence having its own design variables. In order to estimate the scale of the problem,
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Table 2.1: Rib design morphological matrix

Feature Number in one rib Example

No of rows m 3

No of columns n 14

No of panels m× n 42

No of vertical stiffeners m+ 1 4

No of horizontal stiffeners m× n 42

Feature Configurations Combinations Example

Stiffener section profile Blade T Hat 3× [(m× n) + (m+ 1)] 138

Holes Manhole Lightening System 3× (m× n) 126

Booms Simple Double 2× (m+ 1) 16

Cleats Type 1 Type 2 Type 3 2× 3× n 84

Seal plate 2× n 28

the morphological matrix is used, which provides a structured and systematic way of gen-

erating a large number of possibilities. Including all the design parameters of the wing rib

into the morphological matrix would result in a massive number of design decisions that

need to be made for each rib as illustrated in Table 2.1.

2.1.1 Smearing of Stiffeners

Models of wings based on equivalent plate representation are common in the literature. The

complexities of the features shown in Fig. 2.2 are smeared onto the base plate, as shown

in Fig. 2.3. Basic smearing approaches were explored as far back as 1951 in a NACA-TN-

2289 report [39] and in 1965 by Hedgepath and Hall [40]. More recently, Collier et al. [41,

42] extended the Classical Lamination Theory (CLT) to stiffened panels. Yu [43] general-

ized VAM-based plate theory to model the constitutive behavior of composite plates.

The methods in the literature to perform smearing make assumptions on the stiffeners.

As seen in Fig. 2.3, all three stiffeners are of the same blade stiffener topology. Each

stiffener is also of the same dimensions. A uniform stiffener spacing of a is assumed.

These assumptions allow for analytical formulae to compute the material properties of the
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Figure 2.3: Smearing of stiffeners onto the base plate

equivalent plate.

2.1.2 Summary

The literature on internal structure of the wing is summarized as the following observations:

Observations: Internal Structure of Wing

• Internal structure of the wing is very complex with a very large number of

design variables.

• Computationally intractable to consider all the variables in early-stages of de-

sign.

• Methods in literature consider the effect of stiffeners through smearing

• Creating equivalent 2-D structures for stiffeners of varying topology, dimen-

sions and rib spacing has not been done in the literature

2.2 Computation of Dynamic Loads

The primary goal of the loads group shown in Fig. 1.4 is to provide a set of critical loads the

airframe will experience. The critical loads are communicated through the use of the Load

Envelope. The process of generating a load envelope and a description of it is explained
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next. As stated earlier, 14 CFR place requirements on the structural integrity of all certified

aircraft.

2.2.1 Example 14 CFR Manuever: 14 CFR 25.331(c)(2)

14 CFR 25.331(c)(2) is named the Checked-Pitch Maneuver. This maneuver is typically the

one that results in the most critical loads on the horizontal tail. The checked pitch maneuver

(nose up or nose down) consists of the aircraft’s pitching motion generated through control

input from the pilot, then checked or stopped with an opposite control input. The maneuver

is precisely described in the text of 14 CFR 25.331(c)(2) in terms of control deflection as a

function of time, achieved load factor, and pilot force. The function that describes the yoke

displacement over time is given as

δ(t) = δmax sin(ωt), for 0 ≤ t ≤ tmax and ω ≤ ωmax (2.1)

with:

• δmax: the maximum yoke deflection, as limited by the control system stops, control

surface stops, or by pilot effort as prescribed in 14 CFR 25.397.

• tmax = 3π
2ω

• ω: circular frequency (rad/sec) of the control deflection taken equal to the undamped

natural frequency of the short period rigid mode of the airplane, with active control

system effects included where appropriate.

• ωmax = πV
2VA

: with V the speed of the airplane at entry of the maneuver and VA the

design maneuvering speed.

Eq. 2.1 is modified to account for achievable load factors. If the maximum load factor is

not reached with the control input specified by Eq. 2.1, then the pilot must hold the control

surface deflected until the load factor is reached but for no more than five seconds. On the
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Figure 2.4: Elevator deflection inputs for checked-pitch maneuver

other hand, the maximum prescribed positive load factor must not be exceeded. In such

cases, the flight deck pitch control deflection amplitude should be scaled down. Figure 2.4

shows examples of these types of longitudinal control inputs.

Furthermore, the loads do not need to be recorded after the time for which the load

factor goes below zero (respectively, above 2.5) during the second phase of the nose up

(respectively, nose down) maneuver, in which case the maneuver can be stopped. 14 CFR

specifies that the maneuver may be stopped if the pilot’s effort to control the airplane falls

outside the ranges prescribed by 14 CFR 25.397- viz, 300 lbf.

The simulator must perform the maneuver for entry speeds between the design maneu-

vering speed VA and the design dive speed VD. To correctly implement 14 CFR 25.331(c)(2),

the simulation must perform the checked pitch maneuver for several points in the aircraft

flight envelope corresponding to speeds between those two values. The flight condition is

defined by the entry speed, starting altitude, and loadout of the aircraft (weight and CG po-

sition). For each flight condition, the dynamics of the aircraft are different. Consequently,

both the circular frequency of the control input ω and the maximum control deflection δmax

need to be computed for each case to generate the appropriate control input for the pilot.

The simulation step involves a tight coupling between aerodynamic, structural dynam-

ics, and flight mechanics, as seen in the loads group of Fig. 1.4. Next, we review the tools

used in the literature to perform these simulations.
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2.2.2 Rigid Structure Assumption

The simulator can find the airframe’s critical loads by assuming the aircraft to be rigid and

only considering the interactions between aerodynamics, propulsion, and flight mechanics.

Goron et al. [44] adopted such an approach. The authors simulated the checked-pitch ma-

neuver for a business jet through the entire flight envelope and three weight configurations.

An aircraft dynamics model is defined by

1. Mass properties

2. Aerodynamic characteristics which describe the total forces and moments at a refer-

ence point as a function of aircraft states and control surface deflections

3. Propulsive performance (engine deck) which defines the propulsive loads at the ref-

erence point as a function of altitude, Mach number and throttle

Fig. 2.5 shows such an environment represented as a Design Structure Matrix (DSM).

The user specifies a desired maneuver in the Maneuver block. The Controller block com-

pares the desired maneuver to the current state of the aircraft and produces a control vec-

tor ~u. The control vector specifies all control surface deflection and throttle settings on

the vehicle. The Vehicle block contains within it the mass properties, aerodynamics, and

propulsion. Given the current state vector, ~x, and control vector ~u, the vehicle block calls

appropriate methods to compute the loads due to gravity, aerodynamics, and propulsion.

The net loads, ~F and ~M , are sent to the Equations of Motion block which computes the

time derivative of the states vector, ~̇x. The time derivative of the states vector is integrated

forward in time using an appropriate time-integration scheme to obtain the states vector at

the next time step, ~x at ti + ∆t. The entire loop is time-marched till the final time tf .

External loads acting on the lifting surface is obtained from the state’s time history.

The proposed method involves dividing the lifting surface into sections, or “strips”, with

known aerodynamic characteristics and mass properties, and then calculating the forces and
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Figure 2.5: Aircraft rigid-body dynamics simulation framework

moments that develop on each strip at each time step. Finally, the most severe loads are

found from the time history of loads for each flight condition. Fig. 2.6 shows a high-level

flowchart of this process.

1: Mass Properties:
Strip CG, inertia matrix,
aircraft reference point

2: Aero Properties:
Load per unit span,
strip span lengths

0:
FAR Flight

Simulation Model
1: Aircraft states

2: Aircraft states,
control surface

deflections

1:
Strip Inertial Loads

Computation

Inertial loads
distribution
time history

2:
Strip Aerodynamic
Loads Computation

Aero loads
distribution
time history

3:
Critical Loads

Critical load
distribution

Figure 2.6: Flowchart for the computation of structural loads time history
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Equations of Motion

The equations of motion are cast about a fixed reference point O rather than the CG. This

enables, for instance, the dynamics of a moving CG (e.g., due to decreasing fuel mass or

fuel transfer) to be modeled. The force and moment equations in vector form are given

below.

~Ftotal = m
(
~̇V0 + ~ω × ~V0 + ~̈rg + ~̇ω × ~rg + 2 ~ω × ~̇rg + ~ω × (~ω × ~rg)

)
, (2.2)

~Mtotal = ¯̄I~̇ω + ~ω × ¯̄Iω +m ~rg ×
(
~̇V0 + ~ω × ~V0

)
, (2.3)

where ~rg is the position vector running from O to the center of gravity (CG) of the aircraft,

~V0 = {u, v, w}T the velocity of the reference point O, ~ω = {p, q, r}T the angular velocity

of the aircraft, and ¯̄I the mass moment of inertia matrix of the aircraft about O. The more

specific case where the reference point O coincides with the CG can be obtained by setting

~rg = 0 in the above. Kinematic relationships are used to obtain the derivatives of the Euler

angles φ, θ, and ψ from the angular rates p, q, and r, and also derivatives of the position

x0, y0, and z0 of the reference point O from the velocities u, v, and w. The resulting

system of 12 nonlinear ordinary differential equations (in u, v, w, p, q, r, φ, θ, ψ, x0, y0, z0)

for six degrees-of-freedom rigid body motion is numerically integrated to obtain the motion

history of the aircraft during the maneuver.

Inertial Loads Computation

The concept of inertial loads allows for the generalization of equilibrium, which is funda-

mentally a statics concept, to the case of dynamics problems through D’Alembert’s princi-

ple and the notion of dynamic equilibrium. The equations of motion of strip ‘k’, subjected
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to externally applied forces
∑ ~F

(k)
ext and moments

∑ ~M
(k)
ext , are given by

∑
~F

(k)
ext = m

(k)
strip ~a

(k)
strip =⇒

∑
~F

(k)
ext +

[
−m(k)

strip~a
(k)
strip

]
= ~0 (2.4)

and similarly ∑
~M

(k)
ext +

[
− ¯̄I

(k)
strip ~̇ω − ~ω ×

(
¯̄I
(k)
strip ~ω

)]
= ~0 (2.5)

By definition, the inertial loads, namely the inertial force ~F (k)
i and the inertial moment

~M
(k)
i , enforce the dynamic equilibrium conditions

∑ ~F
(k)
ext+~F

(k)
i = ~0 and

∑ ~M
(k)
ext+ ~M

(k)
i =

~0. They are equal to the terms within brackets in Eq. 2.4 and Eq. 2.5. Thus, the inertial

force ~F (k)
i and moment ~M (k)

i acting on strip ‘k’ are given by

~F
(k)
i = −m(k)

strip~a
(k)
strip (2.6)

~M
(k)
i = − ¯̄I

(k)
strip ~̇ω − ~ω ×

(
¯̄I
(k)
strip ~ω

)
(2.7)

with

~a
(k)
strip = ~̇V0 + ~ω × ~V0 +

�
�
�>

0
~̈r

(k)
strip + ~̇ω × ~r(k)

strip + 2~ω ×
�
�
�>

0
~̇r

(k)
strip + ~ω × (~ω × ~r(k)

strip) (2.8)

where ~V0 = {u, v, w}T is the velocity of the aircraft reference point O, ~ω = {p, q, r}T

is the aircraft angular velocity, and ~r(k)
strip is the strip’s CG position relative to the aircraft

reference point O. The time derivatives of the position vector ~r(k)
strip are zero since the strip’s

CG location is assumed to be fixed relative to the reference point. It is worth noting that

this inertial force depends on the mass properties of the strip (through m(k)
strip), the position

of the mass element (through ~r(k)
strip), and on the kinematics of the aircraft (through ~V0, ~̇V0,

~ω, and ~̇ω). These calculations are performed for every simulation time step, resulting in

time histories of the inertial forces and moments on each strip of the lifting surface.
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2.2.3 Stickmodel approach

Duca et al. [45] performed uncertainty analysis on the rigid-body simulations performed by

Goron et al. [44]. The authors highlighted the necessity to compute the center of gravity’s

location accurately and capture aeroelastic effects. Sarojini et al. [46] developed a frame-

work to couple the rigid-body simulations performed by Goron et al. [44] with aeroelastic

considerations. Their approach considered the aircraft to be beams joined to one another.

The authors used a nonlinear Timoshenko beam theory.

In a series of papers by Nguyen and colleagues, the authors derived the equations for

flexible aircraft’s flight dynamics. The authors used an Euler-Bernoulli beam theory for-

mulation for structural dynamics and the vortex-lattice code, Vorview, to obtain the aero-

dynamic loads. Theodorsen’s theory accounts for unsteady effects. In an early paper,

Nguyen [47] derived the equations for strain in a beam where the bending deflections were

coupled to the torsional deflection via the slope of the wing pre-twist angle. Subsequently,

the flight dynamics equations for six DoF motion of the aircraft were coupled to the struc-

ture’s elastic response [48]. In [49], a detailed derivation of the aeroelastic angle of attack

in the presence of deformation was presented. The paper also provided the partial deriva-

tives of the angle of attack with respect to the states being solved-for. Ting et al. [50], de-

veloped a static aeroelastic model coupled with a three degree-of-freedom longitudinal trim

flight dynamics model. The equilibrium equations were written in the stability axes. An-

alytic expressions for the Jacobian matrix were provided. The system was solved through

Newton iterations. Thus, at any given flight condition, the trim aeroelastic configuration of

the wing could be determined. They showed that the “trim angles of attack for the flexible

models are higher than that of the rigid models due to the effect of the aeroelastic bending

and torsion on the aeroelastic angle of attack.” In [29], the authors investigated the inertial

force effect on aircraft elasticity with geometric nonlinearity due to rotational and tension

stiffening. The axial, bending, and torsion stiffnesses were fully coupled in the stiffness

matrix. The partial differential equations which describe the coupled bending and torsion
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motion of the wing due to aerodynamic, propulsive, and inertial forces were derived. The

equations were solved using FEM with Hermite shape functions.

Drela [51] simplified the nonlinear beam equations derived by Rivello [52] to only ac-

count for wing up-down bending. The beam equations were coupled to a lifting line theory

with roll rate, yaw, and yaw rate effects. The coupled nonlinear system was solved simul-

taneously using a Newton system for the structural and aerodynamic states. Subsequently,

the tool ASWING [53] was developed, which coupled the flight dynamics equations with

the aeroelastic system. ASWING uses the nonlinear Timoshenko beam theory developed

by Minguet [54], an unsteady lifting-line model, and a structural damping model. Time

marching was based on a 2nd order Backward Difference Formula (BDF).

Patil et al. [55, 56] modeled the aircraft as a set of beams attached to one another. Each

beam was modeled using the geometrically exact mixed variational formulation. These

equations are geometrically exact in the sense of no ad-hoc assumptions were made in their

derivation. The aerodynamic analysis was performed using the finite-state approach. The

finite-state aerodynamic theory of Peters and co-workers [57, 58, 59] allowed for a state-

space representation of the aerodynamic problem with a low number of states. This theory

includes compressibility effects and captures dynamic stall using the ONERA stall model.

Finite elements in space and time were used to march in time and get the system’s dynamic

nonlinear behavior. Patil et al. [60] investigated the effects of structural and aerodynamic

nonlinearities on static aeroelastic solution, flutter solution and, limit-cycle oscillations.

The method was applied to the Goland wing. Patil and Hodges [61, 25] showed the im-

portance of accounting for nonlinearities for highly curved and high aspect ratio wings,

such as the HALE aircraft. They also showed the necessity of using correct cross-sectional

analysis because the aeroelastic results are susceptible to the cross-sectional stiffness pa-

rameters. Chang et al. [62] extended the work to model multiple beams joined together to

allow for fuselage and tails to be modeled.

Milne et al. [63, 64] showed the concept of a mean axis that “decouples the equations
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of motion for flight dynamics from the equations for structural dynamics for small defor-

mations”. Shearer, in the thesis [31] and paper [65], coupled the flight dynamics governing

equations at a reference point on the aircraft with structural dynamics equations of GEBT

and the aerodynamics equations of the finite-state theory. The propagation through time

was performed using a novel modified Newmark time-marching scheme. The concept of

mean axis was generalized to account for large deformations [66].

Murua et al. [67] coupled an unsteady vortex-lattice method (UVLM) with a nonlinear

beam model to model the dynamics of a free-flying flexible aircraft. The UVLM is a

time-domain aerodynamic model and provides a direct coupling to the time-domain beam

theories. The UVLM also captures the interference effects between the lifting surfaces and

the non-planar wakes, and is thus a higher-fidelity method than lifting-line or finite-state

approaches.

Tuzcu, in the thesis [68] and papers [69, 70], developed a framework for aeroservoe-

lasticity with both rigid-body motion and elastic deformations. The rigid-body motion

consisted of six ODEs and beam ODEs for elastic deformation. All equations were written

directly in the time-domain (state-space representation). It was shown that a zeroth order

form exists for the maneuvers of the aircraft. In a paper by Tuzcu and Meirovitch [71],

the authors investigated the coupling between rigid-body motion and aeroelasticitiy. Their

investigation demonstrates that “it is not always safe to treat separately rigid body and

flexibility effects in a flexible flying aircraft.” Meirovitch et al. investigated the impact

of a flexible aircraft undergoing a time-varying pitch maneuver [72], and illustrated the

drawbacks of using the mean axes to decouple the rigid-body motion from the elastic de-

formations inertially [73].

Neto et al. [74] developed an inertially coupled formulation that allows for an arbitrary

choice of body-fixed reference frame, with small deformation assumptions. A thorough

literature review of the mean axes and other axes systems was presented in the paper. The

general framework was specialized to three-axes system commonly used in the literature.
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2.2.4 Beam Model Generation

Hajela and Chen [75] presented an equivalent beam model. This approach represents the

span-wise distribution of sectional moments of inertia and the torsional constant for a built-

up wing structure for an equivalent beam. This kind of representation was referred to as

a stick model. The section properties are scaled to account for shear lag effects. The

use of a nominal “average material” concept to link geometrical data to cross-sectional

stiffness properties has been explored. Gern et al. [76] used a hexagonal wing box, where

the thickness of the six sides of a hexagon was varied to match the structure’s stiffness.

Bindolino et al. [77] use a rectangular shape. Piperni et al. [78] presented another method

for generating the stick model. They used thin-walled, single-cell sections to represent the

wing box. Each wing box section was modeled with a set of skin-stringer panels, front and

rear spars, and upper and lower spar caps.

Displacement Matching Approach

The idea of the displacement matching approach is shown notionally in Fig. 2.7. A higher-

fidelity model, typically a 3-D shell model, is created. Unit loads are applied to the higher-

fidelity model, and the displacement response is found. A beam model of the same length is

created, and the same loading is applied. The beam stiffness constant, EI in this example,

is found by matching the displacements as:

δshell = δbeam =⇒ δshell =
FL3

3EI
=⇒ EI =

FL3

3δshell
(2.9)

Elsayed et al. [79] presented a methodology for extracting an aircraft wing’s stiffness

properties using its 3-D finite element model to be used in the stickmodel. A step-by-step

approach is enumerated to obtain the bending stiffnesses Ixx, Iyy and Ixy, and the torsional

stiffness Izz, where the terms are as defined in the paper.

Palacios et al. [80] developed a method to construct a 1-D model from built-up 3-D
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Figure 2.7: Notional depiction of displacement matching approach to stickmodel genera-
tion

FEM models. The 1-D beam model is written in modal coordinates, which reduces the

number of degrees-of-freedom. Static condensation [81] of the 3-D FEM model is used to

obtain the coefficients.

Cirillo [82] extracts beam stiffnesses and mass parameters from detailed FEM models.

The stiffness of the empennage (horizontal tail, vertical tail, rudder) was extracted. The

method is validated using modal analysis where the beam frequencies were compared to

detailed FEM modal analysis frequencies.

Guyan Reduction

Guyan reduction is a mathematical technique commonly used in FEM analysis of struc-

tures. In FEM, the structure is represented as a mesh with a finite number of nodes, with

each node having upto six degrees of freedom. For aerospace structures, the resulting

stiffness matrix is very large and is computationally expensive to solve. The idea of Guyan

reduction is to reduce the total DoF. The unloaded DoF are expressed in terms of the loaded

DoF. The linear system solved in FEM is

~f = K · ~d (2.10)
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where K is the stiffness matrix, ~d the displacement vector, and ~f the applied force vector.

The force vector is partitioned into a loaded (~f 6= 0) and unloaded (~f = 0) portions as:


Kll Klu

Kul Kuu



~dl

~du

 =


~f

0

 (2.11)

Writing out the second equation

Kul · ~dl +Kuu · ~du = 0 −→ ~du = −K−1
uuKul

~dl (2.12)

Substituting ~du into the first equation gives:

[Kll −KluK
−1
uuKul]~dl = ~f (2.13)

Thus, the condensed stiffness matrix [Kll − KluK
−1
uuKul] is equivalent to the original

problem, but expressed in terms of the loaded DoF.

2.2.5 Modal approach

A common approach used is the frequency-domain approach of representing the structural

deformation using a set of orthogonal modes. This approach will be referred to as modal

approach. A brief summary of the process is given next. Consider the equation of motion

in time-domain

[M ]{ü}+ [B]{u̇}+ [K]{u} = {P (t)} (2.14)

where {u} is the displacement at nodal locations, {u̇} the velocity, {ü} the acceleration,

{P (t)} the external forces, [K] the stiffness matrix, [B] the damping matrix, and [M ] the

mass matrix. For a detailed finite element model, there can be thousands of grid points,

each having upto 6 degrees of freedom. This makes the matrices defined to be quite large.
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It is possible to solve an eigenvalue problem (neglecting damping) of the form

(ω2
i [M ] + [K]){φi} = {0} (2.15)

to obtain the natural frequencies, ωi, and the mode shapes φi. These mode shapes satisfy

orthogonality such that

{φi}T [M ]{φi} = {φi}T [K]{φi} = 0 (2.16)

To use modal analysis in dynamic response, we assume the displacement vector to be a

linear combination of low frequency modes

{u(t)} = [φh]{ξ(t)} (2.17)

where nh are the number of low frequency modes considered. The equation to be solved

reduces to

[Mhh]{ξ̈}+ [Bhh]{ξ̇}+ [Khh]{ξ} = {Ph(t)} (2.18)

where [Mhh] = [φh]
T [M ][φ] is the generalized mass matrix, [Khh] = [φh]

T [K][φ] the

generalized stiffness matrix, [Bhh] = [φh]
T [B][φ] the generalized damping matrix, and

{Ph(t)} = [φh]
T{P (t)} the generalized force vector. The assumption in Eq. 2.17 reduces

the number of degrees of freedom to be solved to nh, and hence reduces the computational

time for flutter analysis and dynamic response. A detailed derivation of using modal anal-

ysis for dynamic response of structures is given by Hurty [83]. Waszak and Schmidt [84]

explain the use of modal analysis in aeroelastic analysis. Lagrange’s equations are derived

coupling the aircraft rigid body states and the generalized coordinates associated with struc-

tural deformation. In obtaining the generalized forces, aerodynamic strip theory was used.

The mode shapes (assumed to known from FEM) were used to influence the attack’s aeroe-

lastic angle. The paper also derives practical mean axes constraints.

30



The use of modal analysis is implemented in NASTRAN’s SOL 145 (flutter) and SOL

146 (Dynamic Aeroelasticity) and is widely used in industry and academia. van Schoor

and von Flotow [85] used FEM to obtain the mode shapes of the structure. Schmidt and

Raney [86] used “elastic mode shapes to simulate an aircraft model with both longitudi-

nal and lateral rigid body dynamics coupled with flexible structures.” Pedro and Bigg [87]

used “normal modes to develop an environment that incorporates pilot and gust modeling to

study flexibility effects on piloted aircraft response.” Karpel and colleagues [88, 89, 90, 30]

used a frequency-domain formulation. They also developed state-space time-domain mod-

els for the control design process. They showed that “the state-space equations of motion

are more suitable for time simulations and the interaction with control design algorithms

with some accuracy loss because of the rational approximation.” Saltari et al. [91] also

derived the coupled equations of flight dynamics and elastic deformation with the beam

structure on a mean axis. Recently, Medeiros et al. [92] used a modal analysis approach for

nonlinear analysis

2.2.6 Higher-fidelity methods

The use of CFD, either Euler or Navier-Stokes equations, for aircraft design considering

flight dynamics and aeroelasticity, is still computationally demanding [93]. One of the rea-

sons for the high computational time is the need to perform mesh deformation every time

the structure deforms. Palacios and Cesnik [94] coupled an Euler CFD solver for aero-

dynamics with a 1-D nonlinear beam theory for structural dynamics. 3-D displacements

were recovered using the Variational Asymptotic Beam Sectional Analysis (VABS) [95]

tool. They applied the method to a HALE aircraft. Garcia [96] coupled a nonlinear 12

DoF beam theory model with CFD to predict aeroelastic characteristics of a swept high-

aspect ratio wings at transonic speeds. Garcia showed that the “washout due to the strong

bending–torsion coupling inherent in swept wings.” Garcia also showed a difference in the

system’s response between linear and nonlinear modeling. Raveh and Karpel [97, 98] use
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Table 2.2: Methods used in the literature for aerodynamics and structural dynamics

Discipline Method Paper

Aerodynamics

Lifting line [51, 53]

Lattice methods [49, 50, 67]

Finite-state theory [56, 61, 66, 65]

CFD [93, 96, 94], [97, 98, 99]

Structural Dynamics

Modal Analysis [83, 84, 86, 87], [88, 89, 90, 30, 97, 98]

StickModel [47, 48, 49, 50, 29], [51, 53], [56, 61, 66, 65, 94]

FEM [99]

modal analysis for the structure and time-accurate CFD used to obtain generalized aerody-

namic forces.

2.2.7 Critical load determination

14 CFR provide all the necessary information to precisely simulate the maneuver. An

example maneuver was described in Section 2.2.1. When such a simulation is executed for

a given flight condition, a load time history is obtained, as shown in the left of Fig. 2.8a.

The peak shear force and bending moment for this condition correspond to a single point

on the flight envelope. Repeating this process for every point in the flight envelope allows

for a heat map to be generated, as shown in the middle of Fig. 2.8a. The most critical loads

here are used to populate a single point on the load envelope, as shown to the right of Fig.

2.8a. Performing several such maneuvers results in multiple points on the load envelope,

as shown in Fig. 2.8b. The load envelope shown in Fig. 2.8b is representative of one for

the horizontal tail. Representative load envelops for the wing and vertical tail are shown in

Fig. 2.8c and Fig. 2.8d respectively. The above is the general process of obtaining critical

loads for which the airframe must be sized. The simulation step involves a tight coupling

between aerodynamic, structural dynamics, and flight mechanics as seen in the loads group

of Fig. 1.4.
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(a) Dynamic simulation of one maneuver to obtain a point on the load
envelope

(b) Multiple maneuvers to build a load envelope

(c) Representative max/min
plot for spanwise torsion of a
wing [100]

(d) Representative load envelope
of a vertical tail [100]

Figure 2.8: Process of building load envelope based on maneuvers
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The approach described above is very conservative. Other approaches exist in the lit-

erature to convert dynamic loads into a set of static load cases [101, 102, 103, 104, 105,

106]. For practical aerospace problems, this leads to a large number of static load cases.

Standard approaches have been developed in the industry to downselect to a set of critical

load cases for which sizing is performed.

2.2.8 Summary

The literature on loads generation is summarized as the following observations:

Observations: Loads Generation

• The aircraft loads generation process is a time-domain problem requiring dy-

namic simulations, with strong coupling among the disciplines of structures,

aerodynamics, flight mechanics, and propulsion.

• For the analysis to be computationally tractable, the methods in the literature

focus on low DoF models.

• The intent of the analysis is focused on obtaining a load history and critical

loads. There is sparse literature on coupling the loads’ generation with struc-

tural analysis and structural failure computation.

• Methods to obtain the low DoF stiffness and mass matrices for dynamics rely

on running a shell model.

2.3 Aircraft Wings Structural Analysis Methods

Methods of Megson [107] and Peery [108] are typical of traditional aircraft structural anal-

ysis. Here, idealizations were used to reduce the problem to plates, shells, or beams. The

methods described are highly decoupled and thus simple enough to solve by hand. For
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example, the vertical stiffeners were idealized as a beam-column of varying cross-sections

between the upper and lower skin. Axial, shear, and lateral loading were applied to it.

The beam can be treated as simply-supported with rotational restraints, thus providing any

fixation degree at the upper and lower skin attachments, between pinned and fully fixed.

Strength of materials based calculations continues to be used today to predict stresses

and strains in skin and strigners [109]. Nui’s Airframe Structural Design book [110]

provides the equations to test for the strength given input geometry, loading, and material

properties. These equations can be coded to automate the process and are being used for

structural design [111]. Takahashi and Lemonds [112] sized the structure based on tensile,

compressive, and buckling considerations to produce a minimum wing weight. Multiple

loading conditions were used to size the skin, transverse wing stringers, and wing spar caps.

Altus and Kroo [113] represented the wing as a box beam and performed MDO us-

ing the Optimizer-Based Decomposition (OBD) architecture, coupling aerodynamics and

structural analysis. The wingbox structural weight was computed empirically. Ning and

Kroo [114, 115] performed trade studies for a C-wing configuration. The wingbox was

treated as a box-beam. Stresses were computed using the strength of materials calcula-

tions. The structural weight prediction was based on a single loading parameter – the root

wing bending. Xu and Kroo [116] consider the aircraft conceptual design accounting for

maneuver load alleviation, gust load alleviation, and natural laminar flow.

Elham et al. [117] also represented the wing as a box-beam to obtain the wingbox

weight. The secondary weights of the aircraft (flaps, slats, etc.) were obtained from em-

pirical methods. Sizing was performed using the strength of material analytical formulae.

Aerodynamic loads were obtained using AVL and XFOIL.

Hajela [118, 75] represented the wing by equivalent beam models and provided a

method to estimate the optimum weight. The structural optimization method used was a

fully stressed design. Stresses were obtained using Euler-Bernoulli beam theory equations.

The method was applied to a joined-wing configuration.
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Giles [119, 120] represented the wing box as an equivalent plate. The width and thick-

ness of the plate can be varied along the span. The skin was assumed to be made of

orthotropic layers. The Rayleigh-Ritz method was used to obtain the approximate static so-

lution. Krishnamurthy and Mason [121] presented an equivalent plate method to match the

stiffness and natural frequency of an aircraft wing. The method depended on the solution

of a full FEM model to obtain the displacement field. Riks [122] presented a finite strip

approach for the buckling and post-buckling analysis of wing box stiffened skin-panels.

Sexstone [123] developed a methodology to use the tool Equivalent LAminated PLate So-

lution (ELAPS) tool to perform aircraft mass property analysis. The paper described the

structural analysis and weight analysis capability of the tool. These approaches idealized

the wings to be stiffened plates/shells.

Bindolino et al. [77] represented the wingbox as a rectangular box beam. CFD analysis

was used to obtain the loads. The beam load resultants were used to compute the skin

and web panel shear stresses. MDO was carried out using NASTRAN SOL200. Ajaj et

al. [124] assumed the wingbox to be a thin-walled beam. Sizing of components were done

using closed-form equations based on beam theory and strength of materials formulae. The

weight of secondary wing structures was estimated using semi-empirical equations. Gern

et al. [76] developed a bending weight calculation process for the strut-braced wing. The

wing box was assumed to be comprised of top and bottom plates which resist the bending

moment. The loads on the wing were computed using a VLM.

The preceding discussion shows that beam models are used for their low computational

cost and provide reasonable accuracy. The subsequent subsections will explore beam mod-

els in more detail.
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2.3.1 Beam Theories for Structural Analysis

Variational Asymptotic Method (VAM)

The Variational Asymptotic Method (VAM) is a rigorous beam theory approach in the lit-

erature. Appendix C provides all the mathematical machinery of VAM applied to beams.

This section provides an overview of the method and references to literature on the devel-

opment, implementation, validation, and application.

The Variational Asymptotic Method (VAM) was developed by Hodges et al. [125] to

perform structural analysis in a computationally efficient manner. Fig. 2.9 shows the overall

process. When applied to beams, VAM splits the analysis into three parts.

The first part deals with the 2-D cross-sectional analysis. Unlike existing beam theories

such as Euler-Bernoulli and Timoshenko beam theory, VAM does not assume the cross-

section is rigid- the cross-section is allowed to warp. The 2-D cross-sectional analysis aims

to determine the warping, stiffness matrix, and mass matrix. VAM employs asymptotic

expansion of the energy functional (instead of a system of differential equations [126, 127,

128]) in terms of the small parameters (a, l, R) and makes the modeling more compact and

variationally consistent; i.e., all variables follow naturally from a minimization problem

based on the variational principle. Minimizing the cross-section’s strain energy functional,

with a constraint on the average warping over the entire cross-section, provides the warping

variable’s solution. The derivative of the strain energy then provides the stiffness matrix.

Similarly, the derivative of the kinetic energy provides the mass matrix.

The second part is the 1-D nonlinear analysis phase. The stiffness and mass matrices at

cross-sections along the span of the structure produce a beam model. Section 2.3.2 provides

details of two beam theories from the literature. The beam analysis solution results in

displacement and load resultant solutions along the 1-D beam reference line.

The final part is the recovery of 3-D displacements, strains, and stresses. Using the 1-D

displacements and warping solutions, one can extract the 3-D displacements at each node
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of the cross-sections using VAM equations. The displacement solutions and the solutions

of forces, moments, and momentum yield 2-D strains. The 3-D strains, and consequently,

3-D stresses, are obtained by transforming the 2-D strains to 3-D strains using warping

variables.

Rajagopal and Hodges [129] made some recent advancements to the cross-sectional

analysis with regards to taper and cross-sectional obliqueness. Chen et al. [130] presented

a comprehensive validation study for a VAM-based beam analysis against 3-D FEM for

rotor blade structures. Gupta et al. [131] validated the method for thin-walled beams.

Based on VAM, the Variational Asymptotic Beam Section (VABS) [132] and the Ge-

ometrically Exact Beam Theory (GEBT) [133] were implemented for 2-D cross-sectional

analysis and 1-D beam analysis, respectively. Liu and Yu [134, 135, 136] have developed an

approach to solve complex sections using Mechanics of Structural Genome (MSG) where

a 3-D structural genome is identified and used to solve heterogeneous beams, but with

periodic appearances of the identified structural genome.

VAM-based methods have been successfully used in the analysis and design of rotor-

craft blades [137, 138, 139], wind turbines [140, 141], and very flexible aircraft such as

HALE [142]. However, its applicability to the analysis and design of commercial aircraft

has been limited.

Other Higher-Order Beam Theory Methods

Carrera et al. [143, 144] used a component-wise model where each component (stringers,

panels, ribs) has a unique 1-D formulation. The authors obtained both the displacement

field and stresses. The wing box was simplified to stringers, skin, and spars in the paper. In

[143], the authors considered a NACA 2415 airfoil shape as the cross-sectional geometry.

Pagani [145, 146] extended the formulation by Carrera to include dynamic response and

aeroelastic effects. Recently, the Carrera Unified Formulation (CUF) has been applied to

beams [147] and shells [148, 149]. Another higher-order theory for cross-sectional analysis

38



Figure 2.9: Process flowchart describing the sequence of calculations for VAM

is BEam Cross-sectional Analysis Software (BECAS) [150]. The code is written in Matlab

and works for anisotropic materials and inhomogeneous beams of arbitrary cross-section.

2.3.2 1-D Analysis Beam Theories

In this section two nonlinear beam theories that have been applied to the dynamic analysis

of aircraft are presented.
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Nonlinear Timoshenko Beam Theory

Drela [53] presents an aero-servo-elastic tool named ASWING. The documentation of

ASWING contains all the equations of a nonlinear Timoshenko beam theory developed

for the structural dynamic analysis of aircraft [54]. Appendix A contains equations and

algorithms to implement the beam theory. Here, a summary is presented.

The quantities tracked at each node are shown in Table 2.3. They include nodal posi-

tions, Euler angles, translational and angular velocities, translational and angular accelera-

tions, and reaction forces and moments.

Table 2.3: Quantities tracked by the nonlinear Timoshenko beam theory

Variable Body-fixed axes for “i”-th node

~ri = {xi, yi, zi} Position

~̇ri = ~ui = {ui, vi, wi} Nodal velocities

~̈ri = ~̇ui Nodal acceleration

~θi = {ψ, θ, φ} Euler angles triad

~ωi = {pi, qi, ri} Nodal angular rates

~̇ωi Nodal angular acceleration

~Fi = {Fx, Fy, Fz} Force resultant

~Mi = {Mx,My,Mz} Moment resultant

With a state vector defined as X = {~r, ~θ, ~F , ~M, ~u, ~ω}T , the governing structural equa-

tions can be written in residual form as R(X, Ẋ) = 0, where the quantities in Ẋ are the

time derivatives of the quantities in X . First order finite differencing can be used to relate

the states to their derivatives as follows:

Xn =
1

tn − tn−1

Xn +
−1

tn − tn−1

Xn−1 (2.19)

For each node there are 18 variables to be solved for. If n is the number of nodes for a

flexible surface, each flexible surface has 18n unknowns. The equations to solve the system
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are:

1. Element equations

(a) 3(n− 1) Force equilibrium equations

(b) 3(n− 1) Moment equilibrium equations

(c) 3(n− 1) Moment-curvature relationships

(d) 3(n− 1) Strain-displacement relationships

2. Boundary conditions

(a) 6 conditions at the root

(b) 6 conditions at the tip

3. Nodal equations

(a) 3n transformations: ~̇ri = ~ui

(b) 3n transformations: ~̇θi = [C] ~ωi (matrix C relates the Euler angle rates to angu-

lar velocities)

In addition, there are 12 equation-variable pairs for each “joint” in the system. Joints

are used to transfer forces and moments from one beam to the other. They also enforce

the constraints that the relative position and orientation between the beams (at the joint)

must remain invariant. The structural dynamics formulation for this work uses nonlinear

beam theory including shear deformation, for which the discretized equations are presented

in Appendix A. Fig. 2.10 shows a notional representation of the aircraft represented as a

stickmodel.

Geometrically Exact Beam Theory (GEBT)

GEBT is a beam theory code implemented by Yu and Blair [133]. It utilizes the mixed

variational formulation of the geometrically exact intrinsic beam theory developed by Dr.
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Figure 2.10: Aircraft stick model

Hodges [151]. The equations of GEBT are summarized in Appendix C.

GEBT uses a right-hand coordinate system. The beam coordinate system is denoted by

x1, x2 and x3, where x1 is along the beam axis and x2 and x3 are the local Cartesian coor-

dinates of the cross section. For static and dynamic analysis, GEBT tracks the quantities

shown in Table 2.4.

Table 2.4: Quantities tracked by GEBT

Variable Description

{u1, u2, u3} Position

{θ1, θ2, θ3} Euler angles triad

{F1, F2, F3} Force resultant

{M1,M2,M3} Moment resultant

{P1, P2, P3} Linear momentum

{H1, H2, H3} Angular momentum

GEBT has the capability to perform the following types of analyses:

1. Static

2. Steady-state

3. Dynamic

4. Eigenvalue

For dynamic analysis, the load history is provided to GEBT in the form of time functions.
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Discontinous Beams

Curvature discontinuities along the span of the beam result from flexural-stiffness jumps,

which reflect abrupt changes in the material properties and/or the cross-section geome-

try. There exist methods in the literature to handle discontinuities for so-called 2-D Euler-

Bernoulli beams [152, 153, 154]. The methods described have not been applied to the

spatial beam theories typically used for aircraft dynamic load prediction and stress analy-

sis.

2.3.3 Structural Failure Theories

Consider a state of stress at a point represented in matrix form as:
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (2.20)

It is possible to find principal stresses σ1, σ2, and σ3 for this state of stress. For metallic

components where ductile fracture is the primary failure mechanism a number of theories

exist [155]:

• Rankine or Maximum Principal stress theory: max(σ1, σ2, σ3) ≤ σY

• Tresca or Maximum Shear Stress Theory: σ1 − σ3 ≤ σY

• von-Mises Criterion - Maximum Shear Strain Energy Theory:

1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 ≤ σY

where sσY is the yield stress of the material. The von-Mises criteria are the most widely

used failure theory used.

For composite materials, it is more common to use strains instead of stresses when

defining failure criteria. In this work a simplification is made to only consider metallic

components, though the method developed can be applied to composite materials as well. A
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detailed treatment of composite material failure is given by Carlson and Kardomateas [156]

and Talreja and Singh [157]

2.3.4 Summary

The literature on structural analysis is summarized as the following observations:

Observations: Structural Analysis

• Aircraft wings are complex structures with intricate features, each responsible

for bearing the loads

• In the early stages of design, stiffeners’ effect is included in the model through

the smearing approach. Creating equivalent 2-D structures for stiffeners of

varying topology, dimensions, and rib spacing is not done in the literature

• Shell models are the most common structural analysis methods for the wing-

box.

• Beam models have been used for structural analysis, but with assumptions on

the geometry or material or using simple beam theories. The use of higher-

order beam theory considering technologies has been explored for loads but

not for structural analysis

• Existing 1-D beam theories do not work well in the presence of aperiodicity

along the span of the beam

• Higher-order beam theory methods have been used for the structural analysis

and design of rotorcraft blades, but not aircraft wings
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2.4 Multi-Disciplinary Design Optimization (MDO)

Multidisciplinary design optimization (MDO) has emerged as a powerful tool with a wide

range of applications. MDO methods account for the interdisciplinary interaction of sys-

tems that involve multiple disciplines. It enables the true optimum of the coupled system to

be determined. Aircraft design is inherently a multidisciplinary process. Fig. 1.4 showed

some of the disciplines involved in the early-stage design process. This section explores

the literature on MDO as it pertains to aircraft design.

Cavagna [158, 159] and his group developed a tool named NeoCASS to perform struc-

tural sizing and optimization considering aeroelasticity. The toolkit provided the flexibility

to use varying levels of fidelity in the structural and aerodynamic disciplines. It used a

combination of physics-based methods and semi-empirical regressions to perform sizing.

Piperni et al. [160, 78, 161] described an MDO environment named VADOR. Aero-

dynamics was considered through the use of CFD. Skin, cap, stringers, and spars were

considered, and structural sizing was performed assuming a shell model. Loads were ob-

tained from the aeroelastic analysis, where a stickmodel was used. The stickmodel was

extracted from the full FEM. Asymmetric Subspace Optimization (ASO) MDO archi-

tecture was used. Deblois and Abdo [162] decomposed the aircraft design problem into

smaller sub-problems, optimized each sub-problem, and ensured consistency with the top-

level optimizer. Sizing was performed based on two critical maneuvers defined in 14 CFR

25.331(b): 2.5g and -1g. For both metallic and composite components, skin and stringers

in each bay were sized to consider both stress and buckling considerations [163]. Metal-

lic components were sized using a genetic algorithm, whereas composite ones were sized

using an interior point method.

Maute et al. [164] coupled 3-D Euler equations with 3-D FEM to optimize a nonlinear

aeroelastic system for steady-state conditions. Gradient-based optimization was used to

arrive at a local optimum. The gradients for the coupled system were found using the
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adjoint method.

Kennedy [165] developed a parallel finite-element code called Toolkit for the Analysis

of Composite Structures (TACS). The code was designed for the analysis of stiffened, thin-

walled, composite structures. Skins, spars, and ribs were represented as shell elements in

the formulation. TACS allows for the parallel-analysis and gradient evaluation using the

adjoint method for aircraft components. In a series of papers, Kennedy et al. [32, 166, 167,

168, 169, 170, 171] performed high-fidelity aerostructural optimization for aircraft wings.

In [168], the aerodynamic code was solved using GMRES with a block Jacobi ILU

preconditioner. TACS used GMRES and the Krylov method GCROT to solve the non-

symmetric, linear systems. The geometry parametrization for both aerodynamic and struc-

tural meshes was based on free-form deformation (FFD) volumes. Panel strength and

buckling constraints were imposed. The constraints were aggregated using Kreisselmier-

Stienhauser (KS) constraint aggregation technique. Multiple KS functions aggregating sim-

ilar structural components were used, rather than using a single KS function overall stress

constraints in the entire structure. Four aerostructural solvers (nonlinear block Jacobi, New-

ton Krylov, nonlinear block Gauss–Seidel and approximate Newton Krylov methods) are

compared based on solution times. The authors concluded that the Newton Krylov ap-

proach was an efficient and robust solution technique.

In [32], aeroelasticity was considered with the aerodynamic analysis performed using

a panel method, and structural analysis performed using TACS. Blade stiffeners were in-

cluded in the structure with associated design variables and were smeared into the panels.

A parallel Newton Krylov method was described for the solution of the coupled aerostruc-

tural system of equations.

Jacobson et al. [99] used higher-fidelity methods to optimize a wing subjected to dy-

namic aerodynamic loading. The structure was represented using high DoF shell elements.

The unsteady aerodynamics was computed using CFD. The objective function for opti-

mization was evaluated using time-averaged quantities. The maximum stress over the con-
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sidered time interval was imposed as the structural constraint. The authors did not couple

the aeroelastic model with aircraft flight dynamics in this work.

Hwang and Martins [172] developed an open-source geometry modeling tool named

GeoMACH. GeoMACH was created with the intent of a geometry-centric approach to

MDAO. In a review paper by Martins and Hwang [173], the authors detailed various ap-

proaches to obtain the derivatives of computational models. The authors note that gradient-

based optimization for a large number of design variables requires fewer function evalu-

ations than meta-heuristic optimizers. In another review paper, Martins and Lambe [174]

survey multidisciplinary design-optimization architectures that have been presented in the

literature. Jasa et al. [175] developed an open-source aerostructural optimization named

OpenAeroStruct. OpenAeroStruct uses a panel method to obtain the loads. The structure is

modelled as a circular beam using E-B beam theory. OpenAeroStruct has recently been en-

hanced to use a wingbox structure [176]. Static aeroelastic considerations were considered

while performing optimization.

Based on the preceding discussion, it was seen that most MDO methods assume static

analysis. A DSM for static aero-structural MDO is shown in Fig. 2.11. These MDO meth-

ods allow for the simultaneous aerodynamic shape and internal structural optimization.

However, current MDO methods in the literature do not account for dynamics.

2.4.1 Constraint Aggregation Techniques

When performing structural optimization, the constraints imposed are usually on strength

and buckling criteria. Consider a simple von-Mises yield stress criteria for isotropic metal-

lic components:

σ(ζ, x, µ) ≤ σY =⇒ g =
σ(ζ, x, µ)

σY
− 1 ≤ 0 (2.21)

where ζ is a point in the structural domain Ω, x the state variables of the governing equa-

tions being solved, µ the design variables, and σY the yield stress value of the material. As

it is not possible to know apriori where the maximum stress will occur in the structure, it

47

https://github.com/mdolab/OpenAeroStruct


Figure 2.11: Static aeroelastic design process

is necessary to impose this constraint throughout the structure. In a discretized setting, this

results in a stress constraint at every nodal point of the mesh. Such a formulation drastically

increases the size of the optimization problem.

One way to deal with the large number of constraints is to find the maximum stress

violation and impose it as a constraint:

max
ζ∈Ω

g ≤ 0 (2.22)

However, the max function is not differentiable and thus gradients cannot be found. Instead,

a smooth function, c, can be constructed such that

lim
ρ→∞

c(ρ, g) = max
ζ∈Ω

g ≤ 0 (2.23)

where ρ is a parameter of the constraint aggregation function that controls its non-linearity.

Thus the function c(ρ, g) can be imposed as a constraint in the optimization problem. The

readers are referred to Lambe et al. [177] for further details.

Implementing constraint aggregation for dynamic loads and simulations poses addi-
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tional challenges. The constraint that must be imposed is that stress at every point in the

structure must be less than the yield stress throughout the dynamic maneuver. As it is not

possible to know apriori at which time the maximum stress will occur, stress constraints

are placed at every spatial location and at every time. In literature, a large number of such

constraints are typically handled using constraint aggregation techniques spatially [178,

179, 180]. Limited attention in literature [181, 182] has been given to imposing stress con-

straints using aggregation techniques in both space and time. This poses a challenge as

the maximum stress over time must be used to size the structure. For these computational

challenges, the dynamics loads obtained are converted into a set of static critical load cases,

and structural sizing is performed for the static loads.

2.4.2 Adjoint

Consider a vector of state variables x ∈ Rnx and a vector of design variables µ ∈ Rnµ .

Consider a function of interest F (x(µ), µ) : R, and governing equations written in residual

form R(x(µ), µ) = 0 : Rnx . Given values for µ, the residual system of equations is first

solved to obtain x. The function of interest can then be computed. The adjoint method is an

efficient method to compute the total derivative (gradient) df
dµ

. Differentiating the function

of interest gives

dµF = Fxxµ + Fµ (2.24)

where Fx ∈ Rnx , xµ ∈ Rnx×nµ , and Fµ ∈ Rnµ . Next consider the residual system of

equations:

R(x(µ), µ) = 0 =⇒ dµR = 0 (2.25)

Expanding the total derivative,

dµR = Rxxµ +Rµ = 0 =⇒ xµ = −R−1
x Rµ (2.26)
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Substituting the above into the derivative of the function of interest gives:

dµF = Fxxµ + Fµ (2.27)

= Fx
[
−R−1

x Rµ

]
+ Fµ (2.28)

=
[
−FxR−1

x

]
Rµ + Fµ (2.29)

The bracketed term in the last equation can be viewed as the following linear system solu-

tion:

RT
xλ = −F T

x (2.30)

where λ is called the adjoint vector. Eq. 2.30 is called the adjoint system. The derivative

of the function of interest can now be written as:

dµF = Rµλ
T + Fµ (2.31)

Thus the required gradient is computed as a two-step process:

1. First, solve the adjoint system Eq. 2.30 for λ

2. Compute the gradient using Eq. 2.31

It should be noted that no assumptions were made on the form of the function of interest

F or the residual system of equations R. They may be linear or nonlinear equations. The

adjoint system, Eq.2.30 is always a linear system. The reader should see Bradley [183] or

Johnson [184] for further details.

Current literature focuses on the use of adjoint method in shell model structural sizing

for static loads. The adjoint method for time-dependent problems poses challenges in com-

putational time and computational memory [183]. As previously said, dynamic simulations

with models which have large DoFs is computationally intractable for many-query appli-

cations such as optimization. Further, the adjoint method requires the entire state history
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of the forward-simulation to be stored and used in the adjoint-simulation [181, 182]. For

models with large DoF this can be gigabytes of data for a single simulation.

2.4.3 Summary

The literature on MDO is summarized as the following observations:

Observations: MDO

• Multi-disciplinary optimization methods have become mature in the literature

for static loads

• For a large number of design variables, gradient-based optimization is needed.

The efficient computation of gradients can be done with the adjoint method.

• To deal with a large number of constraints typical in structural optimization,

constraint aggregation techniques are used

2.5 Summary of Literature Review

In this chapter, we explored literature in the context of the question How do we simulate,

predict structural failure, and design aircraft to show compliance with 14 CFR regula-

tions? Four categories of literature were explored- what does the internal structure look

like, what the loads on the aircraft, can the aircraft sustain the loads without failure, and

multi-disciplinary design optimization. The gaps in the literature are summarized as the

following:
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Gaps in the literature

• Dynamic Loads

– Gap 1: Coupling the loads generation with structural failure computation

– Gap 2: Systematic extraction of beam stiffness constants accounting for

couplings without running higher fidelity tools

• Internal Structure

– Gap 3: Creating equivalent 2-D structures for stiffeners of varying topol-

ogy, dimensions and rib spacing

• Structural Analysis

– Gap 4: Existing 1-D beam theories do not work well in the presence of

aperiodicity along the span of the beam

– Gap 5: Simple beam theories used for stress recovery with limited con-

siderations for airfoil shape and composites

– Gap 6: Using VAM for structural analysis of aircraft wings

• Multi-Disciplinary Optimization (MDO)

– Gap 7: MDO methods simplify simulations to statics

∗ Gap 7a: Adjoint in the time-domain applied to aircraft structural

optimization

∗ Gap 7b: Constraint aggregation methods not extended for dynamics
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CHAPTER 3

PROPOSED METHOD

First, recall the motivating question and research objective:

Motivating Question

How to account for dynamics while maintaining computational efficiency in struc-

tural analysis and optimization of early-stage aircraft wing design?

Research Objective

Develop a framework for aircraft wing design that

1. Dimensionally reduces complex 3-D structures to produce a low DoF struc-

tural analysis model

2. Obtain the gradient of the structural analysis model in the time-domain

Chapter 2 explored the literature and found existing methods to perform the dimen-

sional reduction of structures. However, the methods have limitations or gaps that listed at

the end of the chapter.

This chapter draws from the dimensional reduction methods from the literature to pro-

pose a computationally efficient structural analysis method for aircraft wings. Where there

are limitations or gaps in the literature to apply the methods directly, research questions are

formulated to fill the gaps. Solutions are hypothesized to answer the research questions.
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3.1 Reduction of 3-D Features to 2-D1

In the literature, it is evident that aircraft structures are complex. Fig. 3.1 (repeated from

Fig. 2.2) shows the complexity of an important 3-D feature- the rib. It was observed that

considering all the complexities early in the design was infeasible and not considered in

the literature.

Figure 3.1: Complexity of an aircraft wingbox rib

The response of a rib depends mainly on its length and cross-sectional properties. The

cross-sectional properties are dependent on two factors:

1. The cross-section geometric shape

2. Material properties and additional information such as layup orientation if composite

materials are involved

A change in the cross-section geometric shape produces a significantly larger effect on the

component’s overall sectional properties than a change in material properties. It is for this

reason that designers add stiffeners to a component. The addition of a stiffener makes a

structure stiffer in one or more modes or avoid stress concentration in a particular region.

In ribs, stiffeners oppose buckling and crushing loads. As the wing deflects upwards, it

induces a buckling load on the upper skin panels. The addition of stringers opposes the

1The method and results of this section have been published in a prior work [185, 186]
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buckling of the skin panel. Thus, most aerospace structures are made of thin-walled stiff-

ened panels that are more effective and efficient than a thicker panel at carrying the types

of loads experienced by the aircraft.

For the reasons above, in the early stages of design, a subset of the rib’s intricate

components- the load-bearing stiffeners (vertical and horizontal)- are included. There is

existing literature on techniques to include the effect of the stiffeners. The idea is shown

notionally in Fig. 3.2a. The response of the structure with stiffener(s) (hereafter referred

to as built-up structure) can be obtained by finding the response of a structure without the

stiffener (hereafter referred to as equivalent structure) by modifying the material properties

of the equivalent structure such that its energy is the same as that of the built-up structure.

Two approaches to generate the equivalent structure are shown in Fig. 3.2b and Fig. 3.2c.

Fig. 3.2b shows the smearing approach that is extensively used in plate theory [187]. Here,

the stiffener properties are smeared entirely on the base plate, thus having an equivalent

plate of a uniform anisotropic material, whose material properties are now represented as a

general 6×6 matrix, cij . The limitations of this method are:

1. Different stiffener topologies (such as blade stiffeners, hat stiffeners, T-stiffeners) on

a single rib/skin cannot be accounted-for

2. Even for a single stiffener topology, the dimensions of each stiffener on the rib/skin

must remain the same

3. Uniform spacing between the stiffeners is assumed

Thus a research question is formulated as

Research Question 1.1

How can an equivalent plate be created that accounts for stiffeners of varying topol-

ogy, dimensions and non-uniform spacing?
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(a) Intent

(b) Smearing properties on entire section (c) Local smearing of properties

Figure 3.2: Methods to obtain equivalent section

This work proposes a new local smearing approach. The equivalent structure is treated

as a composite plate as shown in Fig. 3.2c. The region where the stiffener is attached to the

base-plate is modified to have anisotropic properties. The rest of the structure is unaltered.

In a prior work [185], the authors showed that it is possible to obtain equivalent or-

thotropic properties to match stiffness components in some (not all) directions. They did

so by running many cases and fitting a surrogate model to understand the influence material

properties have on the stiffness matrix. Creating a surrogate model is cumbersome, and a

new one is required for every shape or dimension changes of the cross-section. Here, we

generalize the approach to work for any arbitrary cross-section without generating surro-

gate models.

The problem is posed as a stiffness matching optimization. It boils down to finding the

anisotropic material constants cij shown in Fig. 3.2. Given the sensitivities of the elements

in the stiffness matrix S with respect to the material constants, it is possible to set up the
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following optimization statement:

minimize
cij

Sbuiltup − Sequivalent

subject to Bounds on cij

(3.1)

The hypothesis for RQ 1.1 thus becomes

Hypothesis 1.1

If

1. smearing the stiffener of the built-up structure to the corresponding portion

of the equivalent structure, thereby, accounting for the effects of stiffeners of

varying topology, dimensions and spacing, and subsequently,

2. the anisotropic material properties of the composite equivalent structure com-

puted as a stiffness matching minimization problem

converges to within first order optimality criteria,

Then,

the structural response of this equivalent structure matches that of the built-up struc-

ture.

3.2 Reduction of 3-D Wingbox to 1-D

In the literature on the generation of stickmodels (Section 2.2.4), it was observed that the

current approaches rely on the generation of a higher fidelity model and using a displace-

ment matching approach to obtain the beam stiffness properties. The higher fidelity model

used is typically a shell model. Generating a shell model entails meshing the 2-D surfaces

that form the shell model, applying appropriate boundary conditions, and applying appro-

priate material properties to each shell. In design, this process has to be done parametrically
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and is a cumbersome step. Specialized tools [159, 32, 188] have been developed over years

of implementation to facilitate this, but these tools are not always available open-source. It

was noted that a gap in the literature exists to obtain the beam stiffness properties without

running a higher fidelity model.

In the structural analysis literature (Section 2.3.1), it was observed that methods exist

to obtain the beam stiffness properties. These methods rely on assumptions of the cross-

sectional geometry. It is common to assume the cross-section to be a hollow circle [175]

or a hollow rectangle [118, 77]. Such assumptions neglect the airfoil shape and result

in inaccurate stiffness computation. An open-source tool – OpenAeroStruct [176] doe

s account for the airfoil shape in the cross-sectional properties computation. However,

less accurate beam theory analytical formulae are used. Further, the material is assumed

to be metallic (isotropic), and thus composite materials cannot be used. Based on the

aforementioned gaps, a research question is formulated as

Research Question 1.2

How to compute beam cross-sectional properties for a wingbox airfoil cross-section

of arbitrary shape and material definition?

Higher-fidelity beam models such as VAM-based VABS (Section 2.3.1) exist in the lit-

erature to systematically compute the cross-sectional properties of any arbitrary shape and

accounting of composite and anisotropic materials. VABS has been successfully applied to

the analysis of rotorcraft blades, wind turbines, and the HALE aircraft. However, VABS

has not been applied to the structural analysis of aircraft wings due to the aperiodicity

and inhomogeneity along the beam’s span. This work proposes to use VABS for aircraft

structural analysis. The hypothesis for RQ 1.2 is:
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Hypothesis 1.2

If

VAM-based VABS is applied to an aircraft wingbox cross-section

Then,

beam cross-sectional properties of a wingbox airfoil of arbitrary shape can be calcu-

lated

3.3 1-D Analysis

It was noted that accurate beam theories exist to solve the 1-D analysis in the literature.

Given loads (or load time history), the time marching scheme propagates the beam the-

ory equations of motion forward in time to obtain a time history of nodal states given in

Table 2.3.

Consider the beam governing equations written in residual form R(X, Ẋ) = 0. The

solver will attempt to find the values of the unknowns (elements of X) by driving the

residuals of non-linear system of equations to zero. To start the time marching, the states

from the trim solution can be given as the initial conditions. The residual system is solved

using Newton iterations. The pseudo-code for the solver is given in Algorithm 1.

A key step in Algorithm 1 is a linear system solve
[
∂~r
∂~x

+ k0
∂~r

∂~̇x

]
~δx = −~r. The form of

59



Algorithm 1: Structural Dynamics Time Marching
1 while t < tfinal do
2 t = t+ ∆t
3 ~xn = ~xn−1 // Guess from previous solution

4 ~̇xn = 0
5 k0 = 1

∆t
, k1 = −k0

6 Convergence Flag = 0
7 ~x = ~xn, ~̇x = ~̇xn // Initialize for current time step
8 while Convergence Flag != 1 do
9 Compute residual vector ~r

10 Compute Jacobians ∂~r
∂~x

, ∂~r
∂~̇x

11

[
∂~r
∂~x

+ k0
∂~r

∂~̇x

]
~δx = −~r // Solve Linear System

12 if ||~r||2 < ε then
13 Convergence Flag = 1
14 end
15 else
16 ~x = ~x+ ~δx // New guess for ~x

17 ~̇x = k0~x+ k1~xn−1

18 end
19 end
20 ~xn = ~x, ~̇xn = ~̇x // Converged solution at a time step
21 end
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the Jacobian of the linear system is as follows:

J =



∂Res1|n1
∂rx|n1

∂Res1|n1
∂ry |n1

. . .
∂Res1|n1
∂ωz |n1

∂Res1|n1
∂rx|n2

. . .
∂Res1|n1
∂ωz |nn

∂Res2|n1
∂rx|n1

∂Res2|n1
∂ry |n1

. . .
∂Res2|n1
∂ωz |n1

∂Res2|n1
∂rx|n2

. . .
∂Res2|n1
∂ωz |nn

...
...

...
...

...
...

...

∂Res12|n1
∂rx|n1

∂Res12|n1
∂ry |n1

. . .
∂Res12|n1
∂ωz |n1

∂Res12|n1
∂rx|n2

. . .
∂Res12|n1
∂ωz |nn

∂Res1|n2
∂rx|n1

∂Res1|n2
∂ry |n1

. . .
∂Res1|n2
∂ωz |n1

∂Res1|n2
∂rx|n2

. . .
∂Res1|n2
∂ωz |nn

...
...

...
...

...
...

...

∂Res12|nn
∂rx|n1

∂Res12|nn
∂ry |n1

. . . ∂Res12|nn
∂ωz |n1

∂Res12|nn
∂rx|n2

. . . ∂Res12|nn
∂ωz |nn



(3.2)

The Jacobian has a specific structure: the first 18 rows are the derivatives of 18 residual

equations for the first node, rows 19 to 36 are the derivatives of 18 residual equations of

node 2, etc. The first column is the partial derivative of a residual equation w.r.t. variable rx

at node 1. Columns 1-18 are the partial derivatives of a residual equation w.r.t. ~x variables

at the 1st node, columns 19-36 are the partial derivatives of a residual equation w.r.t. ~x

variables at the 2nd node, and so on. The Jacobian will have 18n × 18n terms in it per

beam.

In the presence of joints, six force and moment balance equations are removed from

each node and replaced with six kinematic constraints. Hence, the appropriate rows in the

Jacobian must be modified. Further, the Jacobian must be augmented with 12 rows and

columns corresponding to each joint’s equations. The sparse Jacobian nature for a case

with three beams joined together is shown in Fig. 3.4.
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Figure 3.3: Stickmodel representation of a representative business jet

Figure 3.4: Jacobian matrix
[
∂~r
∂~x

+ k0
∂~r

∂~̇x

]
structure for three beams joined to another

For aircraft wings, the 1-D beam analysis poses a unique challenge. This is depicted

notionally in Fig. 3.5. In the case that the 3-D part is complex, i.e., if it consists of discon-

tinuous beam/strip-like elements such as stiffeners, along the length, then the need for an

equivalent model arises (e.g., consider the presence of stiffened ribs in a beam-like struc-

ture as shown in Fig. 3.5a). The 3-D parts are dimensionally reduced to 2-D structures as

shown in Fig. 3.5b, using a stiffness matching process described in Section 3.1. Each 2-D

section is now theoretically made of a composite material whose properties depend on the

choice of the matrix matching process from Section 3.1.

The overall structure now comprises regions with lower stiffness – those regions that

only have skin, spars, and stringers, and regions of higher stiffness – those regions that

have skin, spars, and stringers, and the composite rib. Referring to Fig. 3.6, we see that the

ribs are located at discreet small regions along the span of the wingbox. This results in an
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(a) 3-D geometry with aperiodicity along
length

(b) Isolate regions containing aperiodicity.
Aperiodic regions are themselves 3-D ge-
ometries.

(c) 3-D geometry now has aperiodicity
along span with each aperiodic region
being a 2-D geometry.

(d) 1-D geometry with segments hav-
ing different stiffness properties along
length of the beam.

Figure 3.5: Presence of aperiodicity in the form of soft-stiff sections along the span of a
aircraft wing represented as a beam

overall structure that is beam-like with aperiodicity along the span as shown in Fig. 3.5c

and Fig. 3.5d.

Consider the baseline PEGASUS concept wing described in Appendix D.2. When

represented as a beam, the static solver properties are:

• Jacobian matrix size: R342×342

• Condition number: 367.60× 109

• Rank: 342

It is noted that this matrix has a high condition number, even for simple beams. The soft-

stiff sections cause numerical ill-conditioning in the Jacobian matrix, resulting in a singular

matrix. The ill-conditioning is exacerbated for very thin structures close to yielding, which

are typical in aerospace structures. Thus, robustly solving the 1-D analysis in an optimiza-

tion framework is challenging.
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Figure 3.6: Internal structure of the aircraft wing. Taken from Moors et al. [38]

Exploring the pre-conditioning method to solve this problem is relegated to future work.

Instead, in this work, the effect of neglecting the ribs will be considered. It is seen in

the literature aircraft sizing neglecting the ribs produces reasonably good estimates of the

weight [112, 176]. These effects will be studied further and quantified. The research

question here is stated as:

Research Question 1.3a

How much accuracy is lost in the structural response and sizing calculations of the

aircraft wingbox when its ribs are neglected?

Research Question 1.3b

How accurate is the displacement response when the wingbox structure is repre-

sented as a beam model?
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3.4 1-D solution to 3-D fields

It was noted in Section 2.3.3 that to predict structural failure requires the computation of

stress and strain fields on the entire wing structure. Simple beam theories such as E-B

theory and Timoshenko theory have analytical formulae for the prediction of stress. These

methods produce reasonable accuracy but do not predict stress concentrations accurately.

The methods have also only been applied to the static analysis of aircraft structures [189].

The research question is stated as:

Research Question 1.4

How can stress and strain field time-history computations be made accurate and

efficient when the aircraft wingbox structure is subjected to dynamic loads?

Higher-order beam theories, such as VABS, can more accurately predict the stress con-

centrations and work for dynamic analysis [189]. VABS has been applied for rotorcraft

blades, but not to aircraft wings. The hypothesis is stated as

Hypothesis 1.4

If

VAM-based VABS is applied to aircraft wings,

Then,

it accurately computes stress and strain field time histories.

3.5 Structural Optimization for Dynamic Loads

The beam-based low DoF structural analysis method is now used to size aircraft wings.

First, a scoping exercise is done to limit the number of design variables considered in this
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dissertation. An adjoint method is proposed to obtain the required gradients for optimiza-

tion. Finally, the structural optimization problem considered is formally stated.

3.5.1 Design Variables

It was noted in Section 2.1 that the wing’s internal structure is complex, and only a subset

of the variables are sized in the early stages of design. It was also noted in Section 3.1 that

the stiffeners’ primary function is to resist crushing loads on the rib and buckling of the

skin panels. However, due to the limitations of beam theories pointed-out in Section 3.3,

the ribs are not considered in this work. The sizing of stringers due to buckling loads is

well-established in the literature [112, 110]. Due to the above reasons, the stiffeners are

not considered in this work.

The primary wingbox consisting of the front spar, rear spar, upper skin, and lower skin

will be considered in this work. The design variables considered are similar to other beam-

based structural sizing tools [176]. However, dynamic simulations will be considered in

this work instead of static ones in the literature.

3.5.2 Adjoint for Dynamic Simulations

It was noted in the literature on MDO (Section 2.4) that for a large number of design

variables, gradient-based optimization is computationally efficient. Section 2.4.2 shows

that the adjoint method is an efficient approach to obtaining the gradient. Current literature

focuses on using the adjoint method in shell model structural sizing for static loads.

The adjoint method for dynamic loads has its own set of challenges. The governing

equations for many systems of interest are second-order differential equations in time. It

is possible to convert any second-order system into a first-order system using standard

approaches. Any set of governing equations can be written generically in the form:

R(µ, x, ẋ, t) = 0 (3.3)
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where µ ∈ Rnµ represents the design variables, x and ẋ ∈ Rnx are the state variables and

their first derivatives w.r.t. time (denoted by t). It will also be observed that the chosen

form of representing the system lends itself to a simple derivation of the adjoint system of

equations.

Several methods exist for integrating the numerical differential-algebraic equations aris-

ing from the governing equations. Each method treats the discrete system of algebraic

equations differently (for instance, requiring solutions from different time steps). There-

fore, the adjoint system must be derived separately for each method. The adjoint system of

equations is derived for the Backward Difference Formula (BDF) scheme due to its stability

properties in this work. The state approximation of the BDF scheme is given by:

Si =
1

δi

p∑
j=0

αjxi−j − ẋi (3.4)

where αk are the standard BDF coefficients.

In this work, a second order (p = 2) BDF scheme is implemented. The time derivative

at a time instant is defined as:

ẋi = α0xi + α1xi−1 + α2xi−2 (3.5)

with α0 = 1.5
δi

, α1 = −2
δi

, and α2 = 0.5
δi

. At each time-step, Newton iterations (l = 0, 1, . . .)

are used to converge the system. The update to the state vector is:

xl+1
i = xli + δx (3.6)

with [
∂R

∂xli
+ α0

∂R

∂ẋli

]
δx = −Rl (3.7)

In the context of design through numerical optimization, an objective/constraint func-
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tional can be expressed as a sum over time as:

f(µ) =

∫ T

0

F (µ, x, ẋ, t)dt ≈
n∑
i=0

δiFi(µ, xi, ẋi, ti) (3.8)

Here, the integrand F can be any arbitrary function of the state and design variables. What

follows is a summary of the equations that will be used for the discrete-time adjoint system

of equations [181]. The Lagrangian can be written as follows:

L =
n∑
i=0

δiFi +
n∑
i=0

δiλ
T
i Ri +

n∑
i=0

φTi Si (3.9)

where Ri is the residual of the governing equations, Si the state approximations using the

BDF scheme, λ and φ the corresponding Lagrange multipliers respectively, δ the step size

in time, and subscript i denotes position in time.

Setting the partial derivative of the Lagrangian w.r.t. to the state variables to zero will

reduce to a linear system of the following form at each time step, i:

(∂Ri

∂x
+ α0

∂Ri

∂ẋ

)T
λi = −

(∂Fi
∂x

+ α0
∂Fi
∂ẋ

)
−
( p∑
j=1

αj
∂RT

i+j

∂ẋ
λi+j −

p∑
j=1

αj
∂F T

i+j

∂ẋ

)
(3.10)

After solving for the adjoint variable at each time step, the derivative of the functional

of interest w.r.t. design variables can be found as:

∂f

∂µ
=

n∑
i=0

δi
∂Fi
∂µ

+
n∑
i=0

δiλ
T
i

∂Ri

∂µ
(3.11)

Eq. 3.10 shows that the adjoint method requires the entire state history of the forward-

simulation to be stored and used in the adjoint-simulation [181, 182]. For models with

large DoF, this data can be on the order of gigabytes in size for a single simulation.

Another challenge in implementing structural sizing for dynamic loads is the handling
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of constraints. The constraint that must be imposed is that stress at every point in the

structure must be less than the dynamic maneuver’s yield stress. As it is not possible to

know apriori at which time the maximum stress will occur, stress constraints are placed at

every spatial location and at every time. In literature, a large number of such constraints are

typically handled using constraint aggregation techniques spatially [178, 179, 180]. There

exists some literature on imposing stress constraints using aggregation techniques in both

space and time [181, 182]. However, to the best of the authors’ knowledge, there have

been no studies on performing aircraft wingbox design using gradient-based optimization

techniques considering dynamics in-the-loop. This poses a challenge as the maximum

stress overtime must be used to size the structure. For these computational challenges, the

dynamics loads obtained are converted into static critical load cases, and structural sizing

is performed for the static loads. The research question to address these gaps is stated as

Research Question 2.1

How can the gradient of aggregated strength-based failure criteria be computed effi-

ciently during structural dynamic simulations?

In this work, for a given residual system of equations, the adjoint method for time-

dependent problems solved with the stable BDF (Eq. 3.10 and Eq. 3.11) will be shown to

require computation of six terms. This generalization allows for a generic adjoint solver

to be implemented. The structure will be represented as beams to alleviate the compu-

tational costs- both runtime and memory. Stresses are obtained at points on each cross-

section of the beam (space) and at each time-step of the simulation (time). The Kreis-

selmeier–Steinhauser (KS) constraint aggregation method will be extended to aggregate

stress constraints in both space and time. The hypotheses for this research question is

stated as:
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Hypothesis 2.1

If

low DoF beam models, in place of high DoF shell models are used to represent the

structure,

Then,

the computational cost (runtime and memory) reduces significantly.

And if

the spatial Kreisselmeier–Steinhauser (KS) constraint aggregation function is ex-

tended to include temporal aspects,

Then,

accurate predictions of the maximum strength constraint violation during the dy-

namic simulation are obtained.

Finally, if

the six quantities (Eq. 3.10 and Eq. 3.11) required for the adjoint method are com-

puted for the beam model and the modified Kreisselmeier–Steinhauser (KS) con-

straint aggregation function,

Then,

the gradient of aggregated strength-based failure criteria can be computed efficiently

during structural dynamic simulations.

3.6 Summary of Proposed Approach

Fig. 3.7 shows a flowchart with the steps of the proposed approach. The salient features of

the novel structural analysis and optimization method are:

• The use of stiffness matching allows for stiffeners of varying topology, dimensions,

and spacing to be smeared into the base plate creating an equivalent structure. This
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process is referred to as 3-D Feature to 2-D.

• Using a higher-fidelity beam theory allows for the systematic reduction of the 3-D

wingbox to a 1-D beam for any arbitrary cross-section and material definition.

• It is hypothesized that for early-stage aircraft design, the ribs may be neglected and

the structural response and sizing will remain within acceptable error.

• Using a higher-fidelity beam theory allows for the accurate computation of stress and

strain fields.

• The adjoint method in the time-domain for beams with constraint aggregation over

cross-sections and time-steps produces an accurate and efficient gradient computa-

tion method.

The optimization problem solved in this dissertation is given as:

minimize
Skin, Spar Thicknesses

weight

subject to R(µ, x, ẋ, t, P, E) = 0 Beam theory residual equations

cvm,KS ≤ 0 Aggregated strength failure constraint

data P (t)(N), E(Pa),

σy(Pa), ρ(kg/m3)

(3.12)

3.7 Experimental Plan

The overarching research objective is to develop a structural analysis and optimization

method to size aircraft wings subjected to dynamic loads in a computationally efficient

manner. This objective is broken down into two research questions: the first on structural
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Figure 3.7: Flowchart of the proposed method

analysis, and the second on structural optimization, as described in this chapter and shown

pictorially in Fig. 3.7.
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Table 3.1: Workstation configuration for all experiments

Component Installed Part

Processor Intel(R) Core(TM) i7-7700T CPU @ 2.90GHz (8 CPUs)

RAM 16384 MB

Display Intel(R) HD Graphics 630

Disk Drives THNSN5512GPUK NVMe TOSHIBA 512 GB

The experiments have two parts to validate the stated hypotheses: accuracy and com-

putational efficiency. A shell/solid element model will be assumed to be the ground truth

in all the experiments. The accuracy of lower DoF model generated in this thesis will be

compared to the higher fidelity model. While running the models, computational efficiency

metrics such as the number of function calls and clock time will be measured. The over-

arching hypothesis is that the lower DoF will have better computational efficiency than the

higher-fidelity models while retaining accuracy.

For RQ1 pertaining to the structural analysis, the metrics that will be measured are the

displacement field, stress field, and analysis clock time. For RQ 2 pertaining to structural

optimization, the metrics that will be measured are the optimized thickness distribution,

optimized weight, and the number of function calls and clock time for the optimizer to

converge.

All the numerical experiments are run on a desktop workstation whose configuration

is given in Table 3.1. It should be noted that the workstation has up to eight cores. The

implementation of the proposed method is performed in MATLAB. MATLAB’s profile

functionality is used to measure the clock time and the number of function calls. MAT-

LAB’s spmd functionality is used to run VABS in-parallel on four cores.

As was seen in Fig. 1.3, many of the novel aircraft concepts feature high aspect ratio

wings. It is desirable that the proposed method be applicable to both existing conventional

tube-and-wing configurations, as well as novel high aspect ratio wings. The method will

be applied to two aircraft configurations:

73



1. The Common Research Model (CRM) that is representative of a wide-body twin-

aisle aircraft similar to the Boeing-777 aircraft. This aircraft will demonstrate the

method’s applicability to existing conventional tube-and-wing configurations. A de-

tailed description of this model is given in Appendix D.3.

2. The Parallel Electric-Gas Architecture with Synergistic Utilization Scheme (PEGA-

SUS) concept developed by NASA. This concept has two hybrid-electric engines on

each wing, with the outboard engine at the wing tip. The concept has a high aspect

ratio of 11.06. A detailed description of this concept is given in Appendix D.2.

The rationale for the entire thesis, the components of it, and the planned experiments

are summarized in Fig. 3.8.
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Figure 3.8: Thesis execution summary
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CHAPTER 4

RESEARCH QUESTIONS AND HYPOTHESIS TESTING

The overall research objective is repeated here:

Research Objective

Develop a framework for aircraft wing design that

1. Dimensionally reduces complex 3-D structures to produce a low DoF struc-

tural analysis model

2. Obtain the gradient of the structural analysis model in the time-domain

Chapter 3 proposed a computationally efficient structural analysis and optimization

method for advanced aircraft design. It laid out the research questions to address the liter-

ature gaps and formulated hypotheses to tackle the research questions.

In this section, the research questions will be explored in-depth. For each hypothesis,

an experimental plan is laid-out to test the hypothesis. Experiments are carried out, and

the results are discussed. The geometry of the test case problems used in this chapter are

discussed in detail in Appendix D.

4.1 RQ 1.1 – 3-D Feature to 2-D1

The gap this research question addresses relates to the smearing approach of creating an

equivalent plate taking stiffeners into account. The literature’s smearing approach assumes

stiffeners of the same topology, same dimensions, and uniform rib spacing. To address this

1The challenges have been published in aprior work [185]. The method and results have been publish in
aprior work [186]
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gap, the research question was:

Research Question 1.1

How can an equivalent plate be created that accounts for stiffeners of varying topol-

ogy, dimensions and non-uniform spacing?

A local smearing approach was proposed as a solution to the research question. This is

shown in Fig. 4.1. The hypothesis is stated as:

Hypothesis 1.1

If

1. smearing the stiffener of the built-up structure to the corresponding portion

of the equivalent structure, thereby, accounting for the effects of stiffeners of

varying topology, dimensions and spacing, and subsequently,

2. the anisotropic material properties of the composite equivalent structure com-

puted as a stiffness matching minimization problem

converges to within first order optimality criteria,

Then,

the structural response of this equivalent structure matches that of the built-up struc-

ture.

The stiffness matching optimization problem of Hypothesis 1.1 is:

minimize
cij

Sbuiltup − Sequivalent

subject to Bounds on cij

(4.1)
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Figure 4.1: Local smearing approach (Repeated from Fig. 3.2c)

Writing out the terms explicitly using the zeroth-order approximation, i.e., classical stiff-

ness matrix

minimize
cij


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


builtup

−


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


equivalent

subject to Bounds on cij

(4.2)

where

cij = E



c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66


(4.3)

Eq. 4.3 is the material matrix which must be determined in the optimization process. In

the most general case of anisotropic materials, this matrix is symmetric with 21 independent

terms.
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Figure 4.2: Rectangular and square cross section

Table 4.1: Stiffness values for a rectan-
gular section

Stiffness Axis Formula

Axial 1 Ebd

Bending 2 E bd3

12

Bending 3 E db3

12

Table 4.2: Stiffness values for a square
section

Stiffness Axis Formula

Axial 1 Eeqb
2
1

Bending 2 Eeq
b41
12

Bending 3 Eeq
b41
12

4.1.1 Challenges in Stiffness Matching

The present work is based on matching stiffness properties of two cross-sections of differ-

ent shapes by altering material properties to enable partial smearing. However, matching

stiffness properties entirely (i.e., matching all 21 elements of the 6 × 6 stiffness matrix for

cross-sections of different shapes) is often not easy and, at times, infeasible. To clearly ex-

plain this challenge, consider a prismatic isotropic beam made of a material with Young’s

modulus E and rectangular cross-section, as shown in Fig. 4.2, of width b and depth d. The

analytical expressions for axial and bending stiffness properties of this section are given

in Table 4.1. Using the current approach, if a square section of side b1 and homogeneous,

isotropic material properties with Young’s Modulus Eeq is chosen to be a section of equiv-

alent stiffness, then the analytical expressions for corresponding stiffness properties are

shown in Table 4.2.

As seen, it is impossible to vary the material property Eeq in such a way that the axial
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and the two different bending stiffness components all match. For a beam made of a rect-

angular cross-section, the two flexural stiffness values would be different instead of a beam

made of a square cross-section. Hence, the material properties in the equivalent section

generated would have to be different in different directions for appropriate stiffness match-

ing. Isotropic materials cannot have such behavior, but orthotropic or anisotropic materials

do possess such characteristics and may help get the equivalent section’s stiffness matrix to

match the stiffness matrix of the original cross-section.

4.1.2 Stiffness Matching using Orthotropic Materials

For orthotropic materials there are 9 independent material parameters. These parameters

appear in the 6× 6 material matrix as below:

E



c11 0 0 c14 0 c16

c22 0 0 0 0

c33 0 0 0

c44 0 c46

c55 0

c66


(4.4)

Choosing an Initial Guess

As an initial guess, the material properties are chosen such that the 6 × 6 material matrix

is not fully populated. The non-zero elements of that matrix are found by identifying the

anisotropic material matrix possessing properties of an orthotropic material is given by the
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inverse of the matrix in the equation below

σ11

σ12

σ13

σ22

σ23

σ33


=



1
E1

0 0 −ν12
E1

0 −ν13
E1

0 1
G12

0 0 0 0

0 0 1
G13

0 0 0

−ν12
E1

0 0 1
E2

0 −ν23
E2

0 0 0 0 1
G23

0

−ν13
E1

0 0 −ν23
E2

0 1
E3


︸ ︷︷ ︸

c



γ11

2γ12

2γ13

κ1

κ2

κ3


(4.5)

Further, orthotropic materials properties can be chosen so that the moduli in different

directions bear the same value, which matches the axial and at least one flexural stiffness.

As the axial stiffness depends on the cross-sectional area, the material properties of the

equivalent cross-sections are chosen such that

E1 = E2 = E3 = kAE (4.6)

where E is the Young’s modulus of the built-up section, E1, E2, E3 are chosen to be

orthotropic baseline values for the equivalent section, and the area factor kA is given by

kA =
Area of built-up section

Area of equivalent section
(4.7)

The shear stiffness values are chosen to be

G12 =
E1

2(1 + ν12)
, G13 =

E1

2(1 + ν13)
, G23 =

E

2(1 + ν23)
(4.8)

where ν12 = ν23 = ν13 = ν, for simplicity. This process helps to choose a baseline material

matrix that would help match the axial stiffness, transverse shear stiffnesses, and one of the

two bending stiffnesses (which was bound to happen) right at the start of the stiffness

matching process. This baseline matrix would be used during the matching process and

iterated upon to find a suitable material matrix that matches the two stiffness matrices in
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consideration. It is important to note that the two bending stiffness values vary differently,

as pointed out earlier in this section, because of the two cross sections’ dimensions under

consideration.

Obtaining the gradients

To use gradient-based optimization, an efficient method to obtain the gradient of the stiff-

ness matrix with respect to the material matrix is needed. The authors use automatic dif-

ferentiation to obtain the gradients using the package CasADi [190]. CasADi allows for

custom functions to be defined in terms of symbolic variables. The 9 parameters of Eq. 4.4

are defined as CasADi SX symbolics. The function of interest is the minimization state-

ment in Eq. 4.1. The process of building a function for optimization with the gradients is

shown in Fig. 4.3.

Figure 4.3: CasADi flowchart to generate function for optimization

Optimization methods

The optimization is carried out using Matlab’s fmincon function. The 4×4 stiffness matrix

is symmetric and hence has ten independent parameters. It was found that it is not possible

to minimize all ten independent parameters exactly. The optimization problem is relaxed to
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match terms along the diagonal of the stiffness matrix. The following objective functions

are tested:

• Method 1: Analytical initial guess developed in Section 4.1.2. With this method

it is expected that one of the bending stiffness (S33) matches exactly, with a slight

mismatch of axial stiffness (S11). Thus the displacement for the equivalent section

should match that of the original section for loading case 2 (Table 4.8 row 2).

• Method 2: Matching S44 using gradient-based optimization. The optimization prob-

lem is posed as

minimize
cij

S44builtup − S44equivalent

subject to Bounds on cij

(4.9)

The bounds set for the variables is given in Table 4.3. It is seen that the upper bound

of c11 has been set to 10 times the Young’s Modulus. Thus, in order to match the

bending stiffness in the z-direction, it is necessary to incur a large mismatch in the

axial stiffness.

• Method 3: Matching bending stiffnessE44 and torsional stiffness S22 using gradient-

based optimization. The optimization problem is posed as

minimize
cij

∣∣∣∣∣∣∣∣
S22 S24

S42 S44


builtup

−

S22 S24

S42 S44


equivalent

∣∣∣∣∣∣∣∣
F

subject to Bounds on cij

(4.10)

with the bounds on the variables given in Table 4.4. It should be noted that the lower

bounds on c22 and c33 are negative. This is necessary in order to match both the

bending stiffness and torsional stiffness. The resulting equivalent plate cannot be

physically created, but is mathematically possible. The equivalent plate is used to
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Table 4.3: Variable bounds used to match S44 in gradient-based optimization

c11 c14 c16 c22 c33 c44 c46 c55 c66

lb 1 0 0 0.1 0.1 1 0.5 0.1 1

ub 10 1 1 1 1 1000 1 1 1000

Table 4.4: Variable bounds used to match S44 and S22 in gradient-based optimization

c11 c14 c16 c22 c33 c44 c46 c55 c66

lb 1 0 0 -10 -10 1 0.5 0.1 1

ub 10 1 1 1 1 1000 1 1 1000

accurately recover the displacement under applied loading, but the original plate can

be used to recover stresses.

4.1.3 Experiment for Hypothesis 1.1

A simple problem is constructed to illustrate stiffness matching: a prismatic plate of length

L with stiffeners. The geometric quantities of the cross-section are shown parametrically

in Fig. 4.4. Four variants are created as shown in Figs. 4.5a, 4.5b, 4.5c and 4.5d.

1. Specimen 1: A plate without any stiffeners. The dimensions of the plate are given in

Table 4.5.

2. Specimen 2: A single small stiffener is added onto the plate. The dimensions and

location of the stiffener are given in Table 4.6 row 1.

3. Specimen 3: A single large stiffener is added onto the plate. The dimensions and

location of the stiffener are given in Table 4.6 row 2.

4. Specimen 4: Two stiffeners of different dimensions and locations Table 4.7

All of the four specimens are beam-like. On an aircraft wing, they are representative

of a rib with horizontal stiffeners. VABS can be run for each of these cases directly to
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Figure 4.4: Parametrization used for test cases

Table 4.5: Dimensions of plate

Dimension Value Unit

Length 0.75 m

Width (b) 0.17 m

Thickness (t) 0.01 m

obtain the 4 × 4 classical stiffness matrix. The nonlinear Timoshenko beam theory code

described in Section A is used for the 1-D analysis. Cantilever beam boundary conditions

are applied. Tip loading is applied in-turn on the x, y and z axes, respectively. The loading

is summarized in Table 4.8.

If we focus on the load applied in the z-direction, the stiffeners only play a role in

improving the bending stiffness in this direction. The displacements obtained from 3-D

FEM simulations shown in Fig. 4.6. It is seen that the effect of the stiffeners is to lower the

displacement.

The optimization problem’s goal will be to create an equivalent plate without the rib

with the material properties modified such that the stiffness (and hence displacement) of

Table 4.6: Dimensions of single stiffener cases

Stiffener Type ai wi hi

Small Stiffener 1 [cm] 1 [cm] 1 [cm]

Large Stiffener 1 [cm] 1 [cm] 3 [cm]
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 4.5: Test cases used in this work

the equivalent plate matches that of the original plate with stiffener.

4.1.4 Results

In Section 4.1.2, three methods to perform stiffness matching are proposed. This section

discusses the results and applicability of the methods. For ease of reading, the expected

outcomes from the three methods are repeated here:

Table 4.7: Dimensions of two stiffeners case

Stiffener location ai wi hi

Upper stiffener 1 [cm] 1.2 [cm] 0.75 [cm]

Lower stiffener -3.5 [cm] 0.75 [cm] 1.25 [cm]
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Table 4.8: Loading Conditions

Loading case number Fx Fy Fz

Case 1 1× 106 [N] 0 0

Case 2 0 5× 104 [N] 0

Case 3 0 0 2× 102 [N]

Figure 4.6: 3-D FEM simulations for loading case 3

1. Method 1: Analytically matches bending stiffness S33 at the cost of a slight mismatch

in axial stiffness S11. It is expected that the displacement results for load case 2 (force

along the y-direction) will match since S33 is correct.

2. Method 2: Matches bending stiffness S44. It is expected that the displacement results

for load case 3 (force along the z-direction) will match.

3. Method 3: Matches both bending stiffness S44 and torsional stiffness S22. As with

Method 2, it is expected that the displacement results for load case 3 will match.

First, specimen 2 (Fig. 4.5b) results will be discussed. This specimen has a small

stiffener which drastically increases the bending stiffness (S44), with some increase in the

other stiffnesses.
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• The displacement as a function of span for load case 1 and load case 2 for method

1 are compared to 3-D FEM results in Fig. 4.7a and Fig. 4.7b, respectively. As seen,

using method 1, the displacement for load case 2 matches, whereas that of load case

1 has some error.

• The displacement as a function of span for load case 2 and load case 3 for method

2 are compared to 3-D FEM results in Fig. 4.8a and Fig. 4.8b, respectively. As seen,

using method 2, the displacement for load case 3 matches, whereas that of load case

2 has some error.

• The results of method 3 for load case 2 and load case 3 are very similar to those of

method 2 as seen in Fig. 4.9a and Fig. 4.9b.

• The results of method 3 for load case 1, however, has a large discrepancy. This

is seen in Fig. 4.10. In an effort to simultaneously match both S22 and S44, the

optimization resulted in a large axial stiffness (S11).

(a) Load case 1: load along x-direction (b) Load case 2: load along y-direction

Figure 4.7: Specimen 2, method 1 displacement results for load cases 1 and 2

For specimen 3 (Fig. 4.5c), the results are qualitatively similar to those of specimen 2.

The displacement values are smaller as specimen 3 has a larger stiffener than specimen 2.

The displacement vs. span plots are combined and shown in Figs. 4.11a, 4.11b and 4.11c.
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(a) Load case 2: load along y-direction (b) Load case 3: load along z-direction

Figure 4.8: Specimen 2, method 2 displacement results for load cases 2 and 3

(a) Load case 2: load along y-direction (b) Load case 3: load along z-direction

Figure 4.9: Specimen 2, method 3 displacement results for load cases 2 and 3

Figure 4.10: Specimen 2, method 3 displacement results for load case 1

Method 2 (matches S44) results are not shown here since method 3 matches both S22 and

S44.
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(a) Load case 1: load along x-direction (b) Load case 2: load along y-direction

(c) Load case 3: load along z-direction

Figure 4.11: Specimen 3 displacement vs. span results

For specimen 4 (Fig. 4.5d), the results are qualitatively similar to those of both spec-

imen 2 and specimen 3. The displacement values are smaller than specimen 2, but larger

than specimen 3. This behavior is consistent with the 3-D FEM results shown in Fig. 4.6.

The displacement vs. span plots are combined and shown in Fig. 4.12a, Fig. 4.12b and Fig.

4.12c. The results being similar, for conciseness, method 1 and method 2 results are not

shown here.

4.1.5 Summary

A method has been developed to smear the properties of a stiffener onto the base-plate

locally. Unlike plate smearing approaches that assume a stiffener of constant dimension

uniformly spaced on the plate, this method allows for discrete control over the stiffeners’
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(a) Load case 1: load along x-direction (b) Load case 2: load along y-direction

(c) Load case 3: load along z-direction

Figure 4.12: Specimen 4 displacement vs. span results

dimensions, number, and location.

The method is based on stiffness matching, where the stiffness of the cross-section

with stiffener is matched to a cross-section without the stiffener by locally modifying the

material properties. The stiffness of cross-sections is computed using VABS, which can

handle arbitrary geometry and anisotropic materials. The stiffness matching is formulated

as an optimization problem to allow for the process to be automated.

Three optimization formulations using orthotropic material are presented and com-

pared. It is found that an analytical solution exists if it is desired to recover displace-

ments due to out-of-plane bending accurately. It is possible to recover in-plane bending

displacement with minimal loss of axial displacement accuracy by using a gradient-based

optimizer with positive material bounds. To simultaneously recover both in-plane bend-
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ing displacement and torsional displacement, the material bounds have to be relaxed to

allow for negative values. The material obtained is not physical but mathematically possi-

ble. Using orthotropic materials, it is not possible to match in-plane bending, out-of-plane

bending, and torsion simultaneously.

For the most part, this confirms our Hypothesis 1.1, stating that locally modifying the

portion of the equivalent structure where the stiffener exists allows for different stiffener

topologies, dimensions, and spacing, and the anisotropic material properties of the com-

posite equivalent structure can be found by a stiffness matching minimization problem. The

limitation lies in not being able to match in-plane bending, out-of-plane bending, and tor-

sion simultaneously. The method can be used to obtain equivalent plates accounting for

stiffeners by having regions of orthotropic materials. This is useful to design structures

such as aircraft ribs that require a plate/shell analysis subject to stress and buckling con-

straints.

4.2 RQ 1.2 – 3-D Wingbox to 1-D

The gap this research question addresses relate to the computation of beam cross-sectional

properties. The literature approaches to obtain beam properties for dynamic response anal-

ysis rely on the generation and execution of a shell model. For structural analysis, higher-

order beam theory has not been used in aircraft wing stiffness computation accounting for

airfoil shape and composites. To address these gaps, the research question was:

Research Question 1.2

How to compute beam cross-sectional properties for a wingbox airfoil cross-section

of arbitrary shape and material definition?

It was proposed to use VABS to compute the cross-sectional properties. The hypothesis

is stated as:
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Hypothesis 1.2

If

VAM-based VABS is applied to an aircraft wingbox cross-section

Then,

beam cross-sectional properties of a wingbox airfoil of arbitrary shape can be calcu-

lated

4.2.1 Information from 3-D Geometry

This section aims to provide a method to obtain the beam model from the 3-D geometry

directly. This avoids generating 3-D shell models that can be time-consuming to generate

in an automated manner. Fig. 4.13 shows the information available from the 3-D geometry:

1. Beam axis: A series of nodes along a 1-D curve. In this work, we connect the rib

CGs to generate the beam axis. They are shown as red cross marks in Fig. 4.13.

2. Cross-sections OML: In this work, points on the OML of the rib surface are ex-

tracted. These are shown as yellow cross marks in Fig. 4.13.

3. Load nodes: The loads are applied on the beam as a piecewise uniform distributed

load along the wingspan. The aerodynamic loads are aggregated to a series of points

along the span of the wing. The points chosen in this work are the midpoint between

two ribs, seen as blue cross marks in Fig. 4.13b. This allows for the concentrated

load to be distributed to the beam section between two ribs.

4.2.2 VABS for Cross-Sectional Analysis

As described in Section 2.3.1, VAM can be used to obtain beam cross-sectional properties

rigorously. VABS requires two cross-sectional quantities to compute the mass and stiffness

matrices for each cross-section:
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(a) CRM wing

(b) PEGASUS concept wing

Figure 4.13: Information from 3-D geometry needed to generate the beam model

1. Shape of the cross-section as a 2-D mesh

2. Material definition and distribution over the cross-section

In addition, VABS requires the following information about how the cross-section re-

lates with respect to to the rest of the structure:

1. Curvature of the 1-D beam line
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2. Oblique angles to relate the cross-section orientation with respect to the 1-D beam

line

All the necessary inputs to VABS are described in greater detail by Yu [191]. Fig. 4.14

shows the process of computing the cross-sectional properties. The points on the rib OML

obtained from the 3-D surface geometry are the cross-section midline points. Given the

thicknesses of the front spar, rear spar, top skin, and bottom skin, the midline points are

offset outwards and inwards to generate a hollow cross-section, as seen in Fig. 4.15a. The

2-D cross-section is meshed with triangular elements using DistMesh, as seen in Fig. 4.15b.

The mesh size is chosen such that there are at least five elements through the cross-section.

In this work, we consider metallic components. Every 2-D mesh element is assigned Alu-

minium as the material. It should be noted that using metallic components is a simplifica-

tion done in this work. VABS has no such restriction and can be used to analyze composite

components.

Figure 4.14: Computation of wingbox cross-sectional properties using VABS
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(a) Cross-section geometry (b) Cross-section mesh

Figure 4.15: 2-D cross-section and mesh used as input for VABS

With the 2-D mesh and material definition, VABS is run to obtain the stiffness and

mass matrices at every ‘rib’ cross-section along the beam’s span. Fig. 4.16 shows the beam

representation.

It should be noted that in VAM’s literature, some small parameters are not considered.

One such parameter is the taper, an important planform variable for aircraft wings. How-

ever, when slices of the aircraft wingbox are taken to obtain the 2-D cross-sections on which

VABS analysis is performed, taper effect is accounted for due to the change in dimensions

of the cross-sections. Instantaneous taper changes, such as a stepped beam, would incur

error as VAM does not consider that a small parameter. For aircraft wings, it is rare to

find instantaneous changes in the taper. Thus, VABS may be used for the cross-sectional

analysis for the problem under consideration.

It should also be noted that that stringers on the skin are geometric entities seen in the

cross-section. If the dimensions and spacing of the stringers are available, it is possible to

include them in the 2-D mesh, as seen in Fig. 4.17. However, the stringers have a minimal

effect on the global response of the wingbox. The primary function of the stringers is to

resist the buckling of the shell panel. The stringers can therefore be treated in-isolation

when setting up buckling constraints for each shell panel.
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(a) CRM wing

(b) PEGASUS concept wing

Figure 4.16: Beam representation

4.2.3 Limitation of using VABS for Sizing

Using VABS to obtain the stiffness and mass matrices and further obtain the stress requires

a 2-D mesh generation for each design candidate. The finite difference method to obtain the

gradient is inefficient as the number of design variables increases. To be efficiently used in

the design process, mesh deformation and the adjoint of VABS has to be derived. Deriving

the adjoint for VABS is considered out-of-scope for this work. Instead, the cross-section is

assumed to be a hollow rectangular box for which analytical formulae exist for the stiffness
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Figure 4.17: 2-D mesh of cross-section with stringers

matrix. This is discussed next.

4.2.4 Rectangular Box Wingbox

Consider a typical cross-section seen in Fig. 4.18. The upper and lower portions of the

cross-section are curves instead of straight lines. This curvature adds to the complexity,

and no analytical formulae exist to compute the stiffness matrix. Assumptions have to be

made to create a rectangular box cross-section seen in the right of Fig. 4.18. The width w is

fixed by the chosen structural topology (front and rear spar locations) and can be computed

as

w =
w1 + w2

2
(4.11)

Determining the height h is more challenging due to the curvature. One possible option

is to average the heights at several locations on the top and bottom skin curves, as seen in

Fig. 4.18. The height is computed as

h =
h1 + h2 + . . .+ h10

10
(4.12)

The thickness variables tleft, tright, tup, and tdown of the front spar, rear spar, top skin,

and bottom skin respectively are design variables in the optimization. Fig 4.19 shows the
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process to obtain the box cross-sectional properties. The analytical formulae are given in

Appendix F.

Figure 4.18: Rectangular box cross-section assumption and parameters

Figure 4.19: Computation of wingbox box cross-sectional properties

Stiffness Matching

As seen in Section 4.2.2, VABS provides an accurate way to obtain the stiffness matrix of

aircraft wings. However, its use in design is limited due to the lack of an efficient way

to obtain gradient with respect to design variables. On the other hand, the rectangular

box cross-section allows for efficient gradients to be obtained using the adjoint method but

lacks accuracy. Hence, a procedure is proposed to correct the stiffness of the rectangular

box cross-section using VABS.
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Consider the flowchart shown in Fig. 4.20. The VABS stiffness matrix, SV ABS , is ob-

tained from the 2-D mesh (Fig. 4.15a), and the material definition. The analytical stiffness

matrix, Sanalytical, is calculated with the material definition, width, height, and thicknesses

using known standard Euler-Bernoulli beam theory formulae. These are presented in Ap-

pendix F. Stiffness matching intends to ensure the two stiffness matrices are as close to

each other as possible.

minimize
w,h

SVABS − Sanalytical

subject to Bounds on w, h
(4.13)

Figure 4.20: Flowchart to correct the rectangular box cross-section stiffness with informa-
tion from VABS

In general, the 6 × 6 stiffness matrix has 21 independent elements. Matching the 21

components is impossible, with only the width and height as the design variables. However,
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the majority of the deformation of aircraft wing occurs due to up-down bending and torsion.

It has also been shown that the coupling between bending and torsion is important [192,

193]. Hence, a sub-matrix from the 6×6 stiffness matrix is considered as given in Eq. 4.14.

minimize
w,h

∣∣∣∣∣∣∣∣
EIxx EIxy

EIxy GJ


VABS

−

EIxx EIxy

EIxy GJ


analytical

∣∣∣∣∣∣∣∣
F

subject to Bounds on w, h

(4.14)

Based on the above discussion, the hypothesis for this research question is modified to

include the provision of using a box cross-section with stiffness corrected by VABS:

Modified Hypothesis 1.2

If

the aircraft wingbox cross-section is treated as a box cross-section with analytical

expressions to compute an analytical stiffness matrix,

And

a stiffness matching optimization problem modifying the width and height converges

on the objective function that is the matrix Frobenius norm of the difference between

the VAM-based VABS computed stiffness matrix on the wingbox cross-section and

the analytical stiffness matrix

Then,

beam cross-sectional properties of a wingbox airfoil of arbitrary shape can be calcu-

lated using the resulting width and height

4.2.5 Experiments: Cross-Section Properties Computation and Stiffness Matching

The claim made by Hypothesis 1.2 is that VABS can be used to compute the cross-sectional

properties of the wingbox. Information from the 3-D geometry (Section 4.2.1) can be used

to generate the necessary inputs to VABS.
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Consider the PEGASUS concept wing’s root and tip cross-sections shown in Fig. 4.16b.

When the method described in Section 4.2.2 is applied, the resulting stiffness matrices are

given in Table 4.9 and Table 4.10.

Table 4.9: PEGASUS root rib stiffness matrix

1.55× 109 56.77× 103 −12.64× 103 5.42× 10−5 −17.38× 106 167.45× 106

56.77× 103 466.41× 106 1.67× 106 167.22× 10−3 −14.08× 103 −526.11× 103

−12.64× 103 1.67× 106 26.28× 106 −66.84× 10−3 47.94× 103 121.78× 103

54.18× 10−6 167.22× 10−3 −66.84× 10−3 23.84× 106 15.01 7.1753

−17.38× 106 −14.08× 103 47.94× 103 15.01 19.35× 106 −2.90× 106

167.43× 106 −526.11× 103 121.78× 103 7.18 −2.90× 106 369.56× 106

Table 4.10: PEGASUS tip rib stiffness matrix

60.14× 107 4.35× 103 −2.17× 103 32.50× 10−6 −2.57× 106 25.68× 106

4.35× 103 180.49× 106 677.59× 103 224.31× 10−3 −5.12× 103 −102.15× 103

−2.17× 103 677.59× 103 11.02× 106 −134.34× 10−3 6.10× 103 51.37× 103

32.50× 10−6 224.31× 10−3 −134.34× 10−3 1.48× 106 9.07 2.80

−2.57× 106 −5.12× 103 6.10× 103 9.07 1.20× 106 −168.48× 103

25.68× 106 −102.15× 103 51.37× 103 2.80 −168.48× 103 21.53× 106

From Table 4.9 and Table 4.10, the following qualitative observations are made:

• The diagonal values of the matrix are non-zero

• One of the bending stiffness values (5,5) is much larger than the other bending stiff-

ness value (6,6). This is due to the airfoil having a much larger chord than the thick-

ness

• The values of the root cross-section are larger than the values of the tip cross-section

102



A further claim Hypothesis 1.2 makes on the use of a box cross-section with width and

height corrected to match the VABS stiffness values through an optimization problem given

in Eq. 4.14.

Fig. 4.21 compares the widths and heights before and after the stiffness matching proce-

dure. For the PEGASUS wing, which only has a small taper, the width and height changes

were minimal. However, for the CRM wing that has a considerable amount of sweep and

taper, the changes are more pronounced.

(a) CRM wing

(b) PEGASUS concept wing

Figure 4.21: Comparison of the widths and heights of the rectangular box cross-section
before and after the stiffness has been corrected
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It is indeed seen that the optimization problem claimed in Hypothesis 1.2 successfully

modifies the widths and heights of the box cross-section to match the stiffness values of

VABS. Thus Hypothesis 1.2 is validated. However, no claim can be made on the accuracy

of the cross-sectional values computed on the structural response of the wing. Experiments

to check this are deferred to Section 4.3 for the displacement response and Section 4.4 for

the stress field response.

4.3 RQ 1.3 – 1-D Analysis

Representing the wingbox structure (Fig. 2.1) as curved shell panels is standard in the

literature and the industry; and has shown to be well suited for the structural analysis of

such structures[120, 32]. In this section, a case will be made to support simplifying the

wingbox structure to a beam model.

Consider the wireframe view of the PEGASUS wingbox shell model in Fig. 4.22a. It

is observed that the wingbox without the ribs consists primarily of the upper skin, lower

skin, front spar, and rear spar. The skins are curved surfaces following the airfoil shape

truncated by the spars. A slice through the wingbox would have a 2-D cross-section similar

to that shown in Fig. 4.22b. Thus, in the absence of ribs, the wingbox is a series of such

cross-sections with varying dimensions. Such a structure is well-suited to be idealized as a

non-prismatic beam.

(a) Wireframe view (b) Cross-section view

Figure 4.22: PEGASUS wingbox

It was seen in literature that 1-D beam theories do not work well in the presence of

aperiodicities. Due to this, the inclusion of the ribs in the wingbox is challenging. Instead,
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in this work, the effect of neglecting the ribs will be considered. It was also seen in the

literature that aircraft sizing is done neglecting the ribs and produces reasonably good es-

timates of the weight [112, 176]. These effects will be studied further and quantified. The

research question here was stated as:

Research Question 1.3a

How much accuracy is lost in the structural response and sizing calculations of the

aircraft wingbox when its ribs are neglected?

Research Question 1.3b

How accurate is the displacement response when the wingbox structure is repre-

sented as a beam model?

In this dissertation, we hypothesize that the aircraft wingbox can be simplified to a non-

prismatic beam by removing the ribs. To justify this hypothesis, it is essential to quantify

the ribs’ influence on the structural response. This is done next in Section 4.3.1.

In RQ 1.2, a method was proposed to obtain the beam cross-sectional properties. In

Section 4.3.2, a 1-D beam model is generated using the properties. Experiments are run to

validate the beam model’s accuracy by comparing it to a higher-fidelity shell model.

4.3.1 Influence of Ribs on the Structural Response of the Wingbox

In this section, the ribs’ influence on the structural response of the wingbox will be quan-

tified. The experimental philosophy that will be followed is to monitor the structural re-

sponse of the wingbox with two models:

1. A wingbox model with skin, spars, and ribs

2. A wingbox model with only skin and spars.
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The response due to the following analyses will be monitored:

• Modal frequencies response

• Static response to 1g load

• Dynamic response to a gust

• Sizing weights due to 1g load

For each analysis, the structural model’s response with the ribs will be compared to that

without the ribs. The data will show the ribs’ influence on the structural response of the

wingbox.

Test 1: Modal Response of a ‘Wing-Like’ Structure

A ‘wing-like’ structure described in Section D.1 was considered. For this model, 3-D solid

elements FEM was used to perform the analysis. The modal frequencies without the rib

were treated as the baseline values. A single rib was added at an inboard cross-section:

cross-section 2. The thickness of this rib was varied from 0m (no rib) to 0.5m in steps of

0.05m. For each thickness, modal analysis was run. Fig. 4.23 shows the results. The y-axis

shows the percent change in the modal response compared to the baseline value.

As seen, for a rib thickness of 0m, there is no change in any modal frequencies. The

torsional mode frequency of the structure dramatically increases when even a thin rib is

added. After that, increasing the thickness of the rib linearly increases the torsional mode

frequency. It is also seen that the bending mode frequencies are less affected by the ribs.

This study shows that the structure’s torsional stiffness can be increased by inserting very

thin ribs without significantly affecting the bending stiffnesses.

Test 2: Static Load Response

Consider the PEGASUS wing concept described in Appendix D.2. For this aircraft’s wing-

box, two Nastran shell models- one with ribs and one without ribs. It was ensured that both
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Figure 4.23: Modal response due to insertion of a rib

models have the same thicknesses of the skin and spars. The structure was subjected to 1g

aerodynamic loads obtained from AVL. Fig. 4.24 compares the displacement response of

the two models. It is seen qualitatively that the displacement response is similar. Fig. 4.25

shows the response for nodes along the span of the wing. It is seen that the displacement

in the z-direction is similar. However, the torsional rotation of the model without ribs is

larger (maximum error of around 5 degrees) than that with ribs.

(a) With ribs (b) Without ribs

Figure 4.24: Qualitative comparison of static response displacement contour of PEGASUS
concept wing subjected to 1g loads
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(a) Vertical displacement (b) Torsional rotation

Figure 4.25: Comparison of static response of nodes along PEGASUS concept wing span
subjected to 1g loads

Test 3: Gust Response

Consider the same PEGASUS wing concept considered in the previous experiment. Two

SOL146 (gust analysis) shell models were created in Nastran- one where the entire shell

model is used, and one where Guyan Reduction [81] is used to statically reduce the model

to a series of ‘ASET’ nodes on a 1-D curve along the span of the wing. Since Guyan

Reduction uses the shell model containing the ribs, it is expected to capture the torsional

stiffness better than purely a beam model that does not have the ribs.

The response of a node at the CG of wingtip rib is shown in Fig. 4.26. As seen in

Fig. 4.26a, the vertical displacement for the shell model and the ASET model match very

well. The ASET model over-predicts the torsional stiffness as seen in Fig. 4.26b.

Test 4: Sizing for 1g Loads

We once again consider the same PEGASUS concept wing. The structure was subjected to

1g aerodynamic loads obtained from AVL. The components of the wingbox structure were

sized to withstand the loads. Sizing was carried out using a commercial tool- Hypersizer.

The mass of the wingbox was set as the objective function. The following failure mode

constraints were setup in Hypersizer:
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(a) Vertical displacement (b) Torsional rotation

Figure 4.26: Comparison of gust response of tip node PEGASUS concept wing

• Isotropic material strength failure

• Panel buckling failure

• Crippling failure

Table 4.11 compares the masses of the structural components of the PEGASUS wing. The

following observations can be made:

1. The mass of the ribs is a small percent of the overall mass (5.6% for the case shown)

2. In the absence of ribs, the other components bear the load the rib would have and

hence are sized to be thicker

3. The difference in weight of the structure in the absence of rib is small (2.04% for the

case shown)

Table 4.11: Static sizing of components of PEGASUS wing subjected to 1g loads. All
masses in lbs

Upper Skin Lower Skin Ribs Spars Total

With ribs 760.86 616.75 87.83 102.90 1568.34

Without ribs 844.65 637.68 118.63 1600.96
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Table 4.12 compares the masses of the structural components for the CRM wing, from

which similar observations can be made.

Table 4.12: Static sizing of components of CRM wing subjected to 1g loads. All weights
in lbs

Upper Skin Lower Skin Ribs Spars Total

With ribs 26808.27 14746.52 4220.94 2095.19 47870.92

Without ribs 30327.49 16929.32 2919.23 50176.05

Summary

From the preceding tests, it was seen that the structural response that the ribs impacted the

most was the torsional rotation. The role of the rib in the overall wingbox is to increase

the torsional stiffness of the wingbox. Accurately capturing the torsional rotation response

is critical in aeroelastic studies [193]. Thus for aeroelastic studies, using a non-prismatic

beam model consisting only of skins and spars would not be adequate. The test on sizing

the wingbox structure showed that in the absence of the ribs, the skins and spars size to

larger thicknesses and bear the loads that would have been borne by the ribs. It was also

seen that the final mass obtained when sized without ribs is only slightly heavier than that

obtained with the ribs. Thus, it may be possible for early structural sizing to neglect the

ribs and simplify the wingbox to a non-prismatic beam.

4.3.2 Experiment: Displacement Comparison to Shell Model

In this section, the displacement response of the beam model will be compared to a higher-

fidelity shell model to determine the accuracy of the beam model. The test case geometries

are the PEGASUS concept wing described in Appendix D.2 and the CRM wing described

in Appendix D.3. For each case, a shell model is created in Nastran using RADE. 1g loads

from AVL are applied to both models. Three beam models are considered:

1. Beam model generated using VABS- VbS
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2. Beam model with box cross-section

3. Beam model with box cross-section corrected by VABS- BbcVS

Fig. 4.27 shows the comparison of the displacement response of the beam model gen-

erated using VABS against that of a Nastran shell model. It is seen that the displacement

response is quite accurate. The tip displacement error is 4.22% for the CRM wing and

0.57% for the PEGASUS wing.

(a) CRM wing (b) PEGASUS concept wing

Figure 4.27: Displacement response comparison between Nastran shell model and VbS
model

Next, we consider the rectangular box-beam. The width and height at each cross-section

are computed using the averaging method shown in Fig. 4.18. Fig. 4.28 compares the

displacement response of the box cross-section beam against Nastran shell model. As seen,

this assumption does poorly in predicting the displacement. The tip displacement error is

34.86% for the CRM wing and 19.45% for the PEGASUS wing.

Finally we consider the box cross-section beam corrected by VABS, the BbcVS model,

following the stiffness matching process described in Section 4.2.4. Fig. 4.29 shows the

displacement response. As seen, when the stiffness matching correction is applied, the

BbcVS model displacement response matches that of the Nastran shell model accurately.

The tip displacement error between the shell model and BbcVS model is 9.77% for the

CRM wing and 1.29% for the PEGASUS wing.
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(a) CRM wing (b) PEGASUS concept wing

Figure 4.28: Displacement response comparison between Nastran shell model and rectan-
gular box-beam model when averaged height method is used (Fig. 4.18)

(a) CRM wing (b) PEGASUS concept wing

Figure 4.29: Displacement response comparison between Nastran shell model, VbS
model, rectangular box-beam model, and BbcVS model

4.4 RQ 1.4 – 3-D Stress/Strain Recovery

The 1-D analysis solution must now be used to obtain the 3-D stress and strain fields on

the structure. This section addresses the 3-D recovery. The research and hypothesis are

repeated here:

Research Question 1.4

How can stress and strain field time-history computations be made accurate and

efficient when the aircraft wingbox structure is subjected to dynamic loads?
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Hypothesis 1.4

If

VAM-based VABS is applied to aircraft wings,

Then,

it accurately computes stress and strain field time histories.

4.4.1 Experiment: Stress Comparison to Higher-Fidelity Methods

In this section, the stress response of the beam model will be compared to higher-fidelity

models to determine the accuracy of the beam model.

Toy Problem: ‘Wing-like’ geometry

We consider a ‘wing-like’ geometry described in Section D.1. Fig. 4.30 qualitatively shows

the comparison of von-Mises stress contour on the four cross-sections. It is seen that VABS

captures the stress contours accurately for cross-sections two and three. It should be noted

that the fourth cross-section is at the tip where a load is applied. The local effect of a

large force applied to this cross-section causes differences in the von-Mises stress contour

plot. The first cross-section is the root where a fixed boundary condition is applied. Such

differences are common near the boundaries. The beam theory is accurate at regions away

from the boundary, as in cross-sections two and three.
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(a) Cross-section 1

(b) Cross-section 2

(c) Cross-section 3

(d) Cross-section 4

Figure 4.30: von-Mises stress comparison between VABS beam model (left) and 3-D solid
element FEM model (right)

Table 4.13 compares the average von-Mises stress, and displacements. Case 1 loading

is such that the stresses in the structure are below the yield stress. For case 2, the loads

produce stress far higher than the yield stress. It is seen that for case 1, the von-Mises stress

error is around or less than 1.5%, which is acceptable given the time-saving benefits of the

beam code as compared to 3-D solid element FEM. For case 2, the error is higher. This is

to be expected as beam theory assumes small strains. The strains produced by the loading

of case 2 is large, and the stresses are beyond the yield stress. For design-optimization, the

stresses in the structure will be constrained to be below the yield stress. Hence, the results

of case 1 show the beam code to be adequate for optimization. It should also be noted that
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the stresses produced by the beam are higher than those from 3-D FEM. This leads to a

conservative structure, which is desirable in the early stages of aircraft design.

Table 4.13: Comparison of displacement and stress response of the geometry seen in
Fig. D.2e

von-Mises Stress (Pa) Displacement (m)

3-D FEM Beam % Error 3-D FEM Beam % Error

Case 1

Fx 0 N CS2 6.13× 107 6.20× 107 -1.19 2.66× 10−2 2.45× 10−2 7.81

Fy 0 N CS3 3.40× 107 3.41× 107 -0.09 1.29× 10−1 1.26× 10−1 2.5

Fz 1.00× 106 N CS4 2.38× 10−1 2.35× 10−1 1.42

Case 2

Fx 0 N CS2 3.49× 108 3.79× 108 -8.49 2.93× 10−1 2.34× 10−1 20.16

Fy 1.00× 107 N CS3 2.00× 108 2.20× 108 -9.66 1.38 1.17 15.20

Fz 5.00× 106 N CS4 2.48 2.16 12.93

PEGASUS Wing

Consider the PEGASUS concept wing described in Appendix D.2. 1g aerodynamic loads

are computed from AVL and applied to the structure. A Nastran SOL 101 shell model is

created for comparison.

Fig. 4.31 compares the von-Mises stress contours qualitatively on the shell and beam

model. It is seen that there is excellent agreement in the stress values, except for a shell

panel on the front spar root section. Here, a local high-stress concentration is observed for

the shell model. We believe it to be an artifact of the SPC constraint at the root.

Fig. 4.32 compares the average von-Mises stress at each cross-section along the span

of the wing. As seen, the maximum error is at the root where the local high-stress concen-

tration is seen. The average error neglecting the root section is 4.84%.

4.4.2 Stress Recovery for Box Cross-Sections

In RQ 1.2 on the computation of cross-sectional properties, it was seen that a box cross-

section was assumed as an alternate to VbS. This was done as an adjoint to VABS has not

been implemented and hence would be a computational bottleneck during sizing. VABS
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Figure 4.31: von-Mises stress contour comparison of shell and VABS beam model

Figure 4.32: von-Mises stress comparison of shell and VbS

was used to correct the cross-sectional properties such that the analytical stiffness of the

box cross-section matches the stiffness computed by VABS.

Similarly, for the 3-D stress recovery, using VABS directly would be a computational

bottleneck. It is proposed to use the box cross-section corrected by VABS for the 3-D

recovery. Hypothesis 1.4 is modified as:

Modified Hypothesis 1.4

If

the aircraft wingbox cross-section is treated as a box cross-section,

And
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the box cross-section has been stiffness matched (Hyp 1.2),

Then,

the accuracy of the stress field time history computed using analytical equa-

tions improves significantly.

Standard analytical Euler-Bernoulli beam theory formulae exists to compute the stress

fields. These are described next.

Stress Field Computation Formulae

The beam theory described in Section A tracks the states defined in Table 2.3. For node

k = 1, . . . , n and time t = t0, . . . , tfinal, the following information is obtained:

~x(k, t) =



~r(k, t)

~θ(k, t)

~F (k, t)

~M(k, t)

~̇r(k, t)

~̇θ(k, t)



(4.15)

This resultant state vector is obtained in the inertial XYZ frame. From the state vector, the

set of internal forces and moments can be computed in the chord-span-normal (csn) frame
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by performing the following transformation:

~Mcsn = [T ] ~MXY Z (4.16)

~Fcsn = [T ]~FXY Z (4.17)

where

~Mcsn =



Mc(k, t)

Ms(k, t)

Mn(k, t)


, ~Fcsn =



Fc(k, t)

Fs(k, t)

Fn(k, t)


(4.18)

The internal forces and moments at each cross-section are used to compute the state of

stress in the beam. At each cross-section, points j = 1, . . . , 12 are considered as shown

in Fig. 4.33. The locations of these points, xc,j and xn,j along with the local chord, c, and

normal, n, directions respectively, are specified as inputs to the simulation and are directly

dependent on the design variables shown in Fig. 4.18.

Figure 4.33: Points in each beam cross-section where stresses are computed

Given a cross-section k, the equations to compute the beam state of stress is described

next. At the four corner points, the axial stress, σss for a corner point j at time t is computed
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by

σcornerssk,j,t
=
Nk,t

Ai
− xn,j

Mck,t

EIcck
+ xc,j

Mnk,t

EInnk
(4.19)

The corner points, however, do not consider the torsional stresses due to the shear flow

resulting from torsion within the beam. For that, given a mid-line and assuming a closed

thin-walled square section, the shear flow and torsional shear can be assumed to be constant

and equal to:

qk,t =
Tk,t
Ā
−→ τmidsk,j,t

=
Tk,t

2Ā · tk,j
(4.20)

For the mid-corner points, a resultant shear is calculated by computing the von-Mises re-

sultant shear flow of both flanges that intersect the corner:

(τmidrk,j,t
)2 = (τmidsk,p,t

)2 + (τmidsk,q,t
)2 − τmidsk,p,t

· τmidsk,q,t

where p and q are flanges that intersect at the corner j. Next, an axial stress resultant is

computed, taking into account the position of the corner points with respect to the neutral

axis:

σmidssk,j,t
=
Nk,t

Ak
−
(
xn,j −

tk,p
2

)
Mck,t

EIcck
+

(
xc,j −

tk,q
2

)
Mnk,t

EInnk

where p and q are flanges that intersect at the corner j. After both the shear and normal

stresses are computed, a net stress is obtained by generating a von-Mises resultant at the

corners, since the torsion and normal stress are perpendicular to each other:

(σmidvmk,j,t
)2 = (σmidssk,j,t

)2 + (τmidrk,j,t
)2 − σmidssk,j,t

· τmidrk,j,t
(4.21)

At the center of the flanges, the loads are assumed to be mostly composed of shear

loads. These points were set up in place to capture beam stresses that lie along or close

to the neutral axis of the beam. A shear flow through a cross section of total thickness t is
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calculated by:

q = τ · t −→ τ =
V ·Q
It

(4.22)

τck,t =
Vck,t ·Qnk

Innk · (ttop,k + tbottom,k)
, τnk,t =

Vnk,t ·Qck

Icck · (tright,k + tleft,k)
(4.23)

The shear flow occurs due to torsional and transverse loads. Fig. 4.34 shows the convention

and combination of loads that is used. The shear stress is calculated by combining torsional

and force shear stresses specific to each flanges direction:

τrc,k,t = τsc,k,t + τck,t (4.24)

τrn,k,t = τsn,k,t + τnk,t (4.25)

(a) Torsional Shear (b) Horizontal force Shear

(c) Vertical force Shear

Figure 4.34: Shear sign convention

This results in a stress matrix of the size and composition shown in Fig. 4.35. As a
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result, the following five sets of stress constraints for the box beam are constructed:

gvmj,k,t =
σmidvmk,j,t

σy
− 1 (4.26)

gssj,k,t = ±
σcornerssk,j,t

σy
− 1 (4.27)

gcentj,k,t = ±
τ centrk,j,t

σy
− 1 (4.28)

Figure 4.35: Generalized Stress matrix

Experiment: Stress Comparison to Shell and VABS Beam Models

Consider again the PEGASUS concept wing described in Appendix D.2, with 1g loads

applied on it. Stresses are computed at the following regions:

• Shell model: The 3-D surfaces have a mesh that has either triangular or quadrilateral

elements. At every mesh node location, stresses are computed.

• VbS model: On each cross-section 20 points are used to define the upper and lower

skin curvatures. Stresses are computed on the 20 points.
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• Rectangular box-beam models: From among the 20 points used to define the points

for VbS model, 4 points correspond to the intersection of upper skin and front spar,

upper skin and rear spar, lower skin and front spar, and lower skin and rear spar

respectively. The 4 points form a quadrilateral and stresses are recovered at these 4

points.

Fig. 4.36 compares the structural responses of the VbS model and the BbcVS model.

As seen in Fig. 4.36a, the displacement magnitude matches very well. Fig. 4.36b compares

the axial stress. It is seen, as expected, that the top surface is under compression and the

bottom surface is in tension. In the zoomed portion the differences between the cross-

sectional geometry assumption between the VbS model and the BbcVS model is apparent.

Similarly, Fig. 4.36c compares the von-Mises stresses.

Fig. 4.37 compares the relative error of the average von-Mises stress at each cross-

section along the span of the wing. It is seen that the stresses predicted by E-B theory

match well outboard. At inboard sections, the stresses are underpredicted.

Figure 4.37: von-Mises stress comparison of shell and beam models

Referring to Fig. 4.28, the rectangular cross-section is created from the two horizontal

lines seen. The curvature of the airfoil is such that the locations of points furthest away
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(a) Displacement magnitude

(b) Axial stress

(c) von-Mises Stress

Figure 4.36: Comparison between VbS model and BbcVS model for the PEGASUS con-
cept
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from the neutral axis does not fall inside the rectangle. This is also seen in the zoomed

portion of Fig. 4.36c. We attribute the underprediction of stresses in the BbcVS model to

this aspect.

4.5 Structural Analysis Computation Time

Consider the PEGASUS aircraft wing described in Section D.2. Table 4.14 describes the

computational time of the operations carried out by RADE to execute a shell model analysis

using Nastran. As seen, the process of generating a 3-D surface representation of the

wingbox involves the parametric generation of the OML, followed by the generation of

the main wing and center wing surfaces. These operations for the wing under consideration

take 31.34 seconds. In order to obtain realistic aerodynamic loads, an AVL model is created

and executed by RADE. These tasks take 84.51 seconds. Finally, the 3-D surface is meshed,

a Nastran model is generated and executed in 38.05 seconds. The static structural analysis

(SOL 101) time in Nastran (8.01 seconds) is a small percentage (5.238%) of the time taken

for the whole process (153.9 seconds).

If we consider the structural sizing process, it involves running the model at differ-

ent thicknesses’ values until a design is found that has the lowest weight and satisfies the

structural failure constraints. For the shell model, the mesh does not change when the

thicknesses are changed. The Nastran model’s PSHELL cards are updated with the new

thickness values. This takes about 2 seconds in RADE. Re-running the Nastran analysis

takes about 8 seconds. Thus a new candidate design can be evaluated in about 10 seconds.

Consider next the computational time for the same geometry and loads using beam

models. The beam model also requires the 3-D surface representation of the wingbox. This

was shown to be 31.34 seconds in Table 4.14. The time to extract the information from the

3-D geometry needed to generate the beam model (Fig. 4.13) was 0.12 seconds.

For the VbS model, the execution time for the various tasks are shown in Table 4.15.

The table also compares the execution time of operations that can be run in parallel (2-D
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Table 4.14: 3-D geometry, aerodynamics and shell model execution time

Task Time (seconds)

Generate OML time 13.79

Main wing geometry generation time 16.79

Center wing geometry generation time 0.76

AVL generation time 2.11

AVL execution time 82.4

Nastran model generation time 26.79

Nastran model execution time 8.014

Mesh generation time 3.25

Total 153.9

mesh generation, VABS cross-sectional analysis, and 3-D stress recovery) to running the

same operations serially. It is seen that for the few cross-sections of the Pegasus wing, the

communication overhead when running in parallel results in mesh generation being slower.

Running VABS in parallel is shown to reduce the total execution time, particularly for the

3-D stress recovery. The beam model generation step involves using CasADi[190] to create

symbolic containers for the beam parameters, the residual equations, and the loads. This is

described in detail in a prior work [46] and in Appendix G. The total execution time from

OML to structural response takes 137.87 seconds.

As before, we consider the time required to obtain the structural response of a new

design candidate. Unlike the shell model, when the thicknesses are changed, a new 2-D

mesh must be generated for each cross-section (alternatively, mesh deformation can be

used). VABS cross-sectional analysis, the 1-D analysis, and the 3-D stress recovery must

be re-run. Thus, a new candidate design can be evaluated in 17.71 seconds, which is slower

than the shell model.

It should be noted that VABS is ‘embarrassingly parallelizable’ in the sense that all

the cross-sectional analyses can be computed in-parallel if the requisite computational re-
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Table 4.15: VbS model execution time

Task
Time (seconds)

Serial Parallel

Extract beam from geometry time 0.118

Offset to create 2-D cross-sections 2.196

Compute VABS parameters 1.047

Compute mesh 3.392 2.545

VABS run 8.893 6.842

Beam model gen 0.943

1-D analysis 0.018

3-D stress recovery 37.813 8.316

sources are available. The computation of the mass and stiffness matrices for the cross-

section can be run in-parallel to obtain the necessary information to generate the 1-D beam

model. Once the 1-D analysis has been run (which constitutes a very small fraction of the

overall computational time- Table 4.15), the stress recovery can be parallelized over not

only cross-sections but also over time steps in the dynamic simulation. Thus, the beam-

based method would scale better than shell-based methods.

We now consider structural analysis using the analytical box-beam involves three operations-

the beam model generation, 1-D analysis, and 3-D stress recovery. Table 4.16 shows the

execution time. For the beam that has been corrected by VABS- the BbcVS model, the

execution time is given in Table 4.17.

It is seen that the time taken to generate the symbolic representation for the beam model

using CasADi is 2.79 seconds for the analytical beam and 0.94 seconds for the VABS

beam. This difference is due to the beam model having to construct symbolics for the beam

parameters, residual equations and loads, and stresses. Once the symbolics is constructed,

it is seen that the execution time of the 1-D analysis (O(10−2) seconds) and 3-D stress

recovery (O(10−3) seconds) are short. The total execution time from OML to structural
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response takes 118.77 seconds.

Table 4.16: Box cross-section beam model execution time

Task Time (seconds)

Extract beam from geometry time 0.118

Beam model gen 2.784

1-D analysis 0.018

3-D stress recovery 0.002

We have seen previously that correcting the analytical beam using VABS results in

much greater accuracy. Including the time taken to generate the VABS mesh, run cross-

sectional analysis and correct the box cross-section properties, the total execution time

from OML to structural response takes 131.95 seconds. Once again, we consider the time

required to obtain the structural response of a new design candidate. VABS correction

and beam model generation are one-time operations. Thus, a new candidate design can

be evaluated in O(10−2) seconds, which is significantly faster than the shell model, while

incurring a small loss of accuracy.

4.6 RQ 2.1 – Gradient with Adjoint Method2

In this section, the necessary gradient information for optimization of the structural anal-

ysis method of RQ 1 will be derived. As seen in the literature, an efficient method to

compute the gradient is the adjoint method. The general adjoint equation and gradient

computation equation for dynamic simulations solved with the BDF scheme was presented

in Section 3.5.2. The adjoint variable is solved at each time-step using Eq. 3.10. Four

quantities are required here:

• ∂R
∂x

- the Jacobian matrix of the derivative of the residual equations with respect to the

2The method and results for the solid rectangular cross-section beam case have been published in a prior
work [194]
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Table 4.17: BbcVS model execution time

Task Time (seconds)

Extract beam from geometry time 0.118

Offset to create 2-D cross-sections 2.196

Compute VABS parameters 1.047

Compute mesh 2.545

VABS run 6.842

Correct box CS properties 0.545

Beam model gen 2.790

1-D analysis 0.018

3-D stress recovery 0.003

state variables

• ∂R
∂ẋ

- the Jacobian matrix of the derivative of the residual equations with respect to the

first time derivative of the state variables

• ∂Fi
∂x

- the vector of derivatives of the function of interest with respect to the state

variables

• ∂Fi
∂ẋ

- the vector of derivatives of the function of interest with respect to the first time

derivative of the state variables

The required gradient is then computed using Eq. 3.11. Two additional quantities are re-

quired here:

• ∂Fi
∂µ

- the vector of derivatives of the function of interest with respect to the design

variables

• ∂R
∂µ

- the matrix of derivatives of the residual equations with respect to the design

variables
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In summary, to solve a different system six quantities are required: ∂R
∂x

, ∂R
∂ẋ

, ∂Fi
∂x

, ∂Fi
∂ẋ

, ∂Fi
∂µ

,

and ∂R
∂µ

. A general adjoint solver can thus be implemented.

In this section, the adjoint method derived will be applied to specific residual equations.

First, the method is illustrated on a simple spring-mass-damper system in Section 4.6.1.

Next, the nonlinear beam theory of Appendix A is considered. The approach to obtain

the gradient of the stresses with respect to the design variables using the adjoint method

is presented. The modified KS constraint aggregation function to aggregate stresses over

cross-sections and time steps is also presented here.

Appendix F contains the standard analytical formulae used to obtain the stiffness and

mass matrices to be used in the beam code for a box cross-section. Analytical equations are

used to compute the stresses in the beam, and further, the strength-based failure constraints

are shown. Assuming a solid beam and only axial stresses, all the terms’ analytical expres-

sions are obtained in Section 4.6.2. The method is then generalized to a box cross-section,

including axial, shear, and torsional stresses in Section 4.6.3.

4.6.1 Illustration on Spring-Mass-Damper System

The GDE of a spring-mass-damper (SMD) system is written as:

mẍ+ cẋ+ kx = 0 (4.29)

where m is the mass of the spring, c the damping constant, and k the spring stiffness. This

system can be re-written as a first order set of equations as:

R1 =mẋ2 + cx2 + kx1 = 0 (4.30)

R2 =x2 − ẋ1 = 0 (4.31)
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The state vector and its time derivative are represented as:

x =


x1

x2

 , ẋ =


ẋ1

ẋ2

 (4.32)

The function of interest is chosen to be the integral of the potential energy

f =
n∑
i=1

δi
1

2
kx2

1i
=

n∑
i=1

Fi (4.33)

To propagate a system of equations forward in time using the BDF scheme, two jaco-

bian matrices
(
∂R
∂x

and∂R
∂ẋ

)
are needed. For the SMD system, they are given by

∂R

∂xi
=


∂R1

∂x1

∂R1

∂x2

∂R2

∂x1

∂R2

∂x2

 =


k c

0 1

 (4.34)

∂R

∂ẋi
=


∂R1

∂ẋ1i

∂R1

∂ẋ2i

∂R2

∂ẋ1i

∂R2

∂ẋ2i

 =


0 m

−1 0

 (4.35)

Table 4.18: SMD parameters

m c k n δi

2.5 0.2 5.0 10 1× 10−3

In addition to ∂R
∂x

and ∂R
∂ẋ

, to solve the adjoint system, two more vectors
(
∂Fi
∂x

and∂Fi
∂ẋ

)
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are needed. For the SMD system, they are given by:

∂Fi
∂xi

=


∂Fi
∂x1i

∂Fi
∂x2i

 =


δikx1i

0

 (4.36)

∂Fi
∂xi

=


∂Fi
∂ẋ1i

∂Fi
∂ẋ2i

 =


0

0

 (4.37)

Finally to obtain the gradient of the function of interest with respect to design variables,

the vector ∂Fi
∂µ

, and the matrix ∂R
∂µ

. For the SMD system, these are given by

∂Fi
∂µ

=
∂Fi
∂k

=
1

2
x2

1i
(4.38)

∂R

∂µ
=


∂R1

∂k

∂R2

∂k

 =


x1i

0

 (4.39)

Table 4.19 compares the accuracy of the gradient computation against finite-differnce when

solving the system for the parameters given in Table 4.18 and second order accurate BDF

(p = 2).

Table 4.19: SMD adjoint results

f Finite-difference ∂f
∂k

Adjoint ∂f
∂k

8.666966423590475 1.160819927186196 1.160579582598164

4.6.2 Gradient of a Solid Beam subjected to Axial Stress

In this section, the following two simplifications are made:

• Cross-section is assumed to be a solid rectangle

131



• Only axial stress failure constraint is considered

For each cross-section (k) and time (i), the maximum axial stress can be found using

Euler-Bernoulli beam theory. It occurs at the location furthest away from the neutral axis

and is given by:

σik =
M

I
y =

M i
2k

wkh
3
k

12

hk
2

=
6M i

2k

wkh2
k

(4.40)

whereM i
2k

is the moment about the y-axis at cross-section k and time i. The corresponding

stress constrain is given by:

gik =
σik
σy
− 1 ≤ 0, i = 0, . . . , n, k = 1, . . . , nn (4.41)

The moment in Eq. 4.40 can be either positive or negative depending on the loading on the

beam. To account for both, two sets of stress constraints are imposed:

gi1,k =
6M i

2k

wkh2
kσy
− 1 ≤, i = 0, . . . , n, k = 1, . . . , nn

gi2,k =
−6M i

2k

wkh2
kσy
− 1 ≤, i = 0, . . . , n, k = 1, . . . , nn

(4.42)

The above results in a very large number of constraints (2nnn). A large number of con-

straints makes it harder for the optimizer to converge. Hence, constraint aggregation meth-

ods are used [180]. One possible constraint aggregation will be the the KS function given

by

cKS = m+
1

ρKS
ln

[
nn∑
k=1

eρKS(gk−m)

]
(4.43)

with m = max gk, ρKS a constraint aggregation parameter. Note that the above equation is

conventionally used when constraints are aggregated over space.

The peak stress on the beam could occur at any time instant between 0 and T . As

it is not possible to know apriori which time instant the peak load occurs, the constraint

aggregation must also be done over time. The KS functional in Eq. 4.43 can be modified
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to integrate over time as well:

cKS = m+
1

ρKS
ln

[
n∑
i=0

nn∑
k=1

eρKS(gik−m)

]
(4.44)

where m = max gik. With the definition in Eq. 4.44, the two stress constraints defined in

Eq. 4.42 can be aggregated into the following two functions:

c1,KS = m+
1

ρKS
ln

[
n∑
i=0

nn∑
k=1

eρKS(gi1,k−m)

]

c2,KS = m+
1

ρKS
ln

[
n∑
i=0

nn∑
k=1

eρKS(gi2,k−m)

] (4.45)

As previously said in Section 4.6.1 the adjoint system requires six quantities: ∂R
∂x

, ∂R
∂ẋ

,

∂Fi
∂x

, ∂Fi
∂ẋ

, ∂Fi
∂µ

, and ∂R
∂µ

. The Jacobians ∂R
∂x

and ∂R
∂ẋ

are obtained using CasADi during the

forward solve. CasADi also provides the term ∂R
∂µ

. The remaining three terms are derived

analytically next. The derivative of the function of interest (aggregated stress constraints)

w.r.t the design variables hk and wk are:

∂c1,KS

∂hk
=

1

ρKS

1∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

n∑
i=0

eρKS(gi1,k−m)ρKS
∂

∂hk

(
6M i

2k

wkh2
kσy
− 1

)

=

∑n
i=0 e

ρKS(gi1,k−m)∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

−12M i
2k

wkh3
kσy

(4.46)

∂c1,KS

∂wk
=

1

ρKS

1∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

n∑
i=0

eρKS(gi1,k−m)ρKS
∂

∂wk

(
6M i

2k

wkh2
kσy
− 1

)

=

∑n
i=0 e

ρKS(gi1,k−m)∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

−6M i
2k

w2
kh

2
kσy

(4.47)
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and

∂c2,KS

∂hk
=

1

ρKS

1∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

n∑
i=0

eρKS(gi1,k−m)ρKS
∂

∂hk

(−6M i
2k

wkh2
kσy
− 1

)

=

∑n
i=0 e

ρKS(gi1,k−m)∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

12M i
2k

wkh3
kσy

(4.48)

∂c2,KS

∂wk
=

1

ρKS

1∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

n∑
i=0

eρKS(gi1,k−m)ρKS
∂

∂wk

(−6M i
2k

wkh2
kσy
− 1

)

=

∑n
i=0 e

ρKS(gi1,k−m)∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

6M i
2k

w2
kh

2
kσy

(4.49)

The derivative of the aggregated stress constraints with respect to state vector x is given by

∂c1,KS

∂xi
=

1

ρKS

∂

∂xi

(
ln

[
n∑
i=0

nn∑
k=1

eρKS(gi1,k−m)

])

=
6eρKS(gi1,k−max gi1,k)

σywkh2
k

∑n
i=0

∑nn
k=1 e

ρKS(gi1,k−m)

(4.50)

and

∂c2,KS

∂xi
=

1

ρKS

∂

∂xi

(
ln

[
n∑
i=0

nn∑
k=1

eρKS(gi2,k−m)

])

=
6eρKS(gi2,k−max gi2,k)

σywkh2
k

∑n
i=0

∑nn
k=1 e

ρKS(gi2,k−m)

(4.51)

The derivative of the aggregated stress constraints with respect to the derivative of the state

vector ẋ is given by

∂c1,KS

∂ẋ
= 0

∂c2,KS

∂ẋ
= 0

(4.52)
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The derivative of the aggregated stress constraint, c1,KS , with respect to design variables

(hk andwk) is computed using the adjoint method and compared with those computed using

central difference. Using complex-step method would produce better results. Ten beam

cross-sections (nn) are used for this test case. The results for the are shown in Table 4.20.

The gradients obtained are good enough to be used for optimization.

Table 4.20: Gradient comparison between adjoint method and central differences (step-
size: 1× 10−8) for 20 design variables for stress aggregated constraint c1,KS

DV Finite Difference Adjoint Error (%)

h1 -0.04169 -0.04169 -0.00269

h2 -0.03141 -0.03142 -0.00833

h3 -0.02626 -0.02627 -0.0106

h4 -0.02376 -0.02376 -0.01268

h5 -0.02232 -0.02233 -0.01492

h6 -0.02035 -0.02036 -0.01883

h7 -0.01548 -0.01548 -0.0301

h8 -0.00636 -0.00637 -0.09516

h9 0.00057 0.000561 1.516774

h10 0.000775 0.000769 0.73688

w1 -0.0693 -0.0693 -0.00179

w2 -0.0426 -0.0426 -0.00563

w3 -0.02918 -0.02918 -0.00725

w4 -0.02155 -0.02155 -0.00906

w5 -0.01639 -0.0164 -0.01192

w6 -0.01191 -0.01191 -0.01821

w7 -0.00699 -0.00699 -0.03754

w8 -0.00199 -0.00199 -0.16605

w9 0.00045 0.000446 0.897364

w10 0.000264 0.000263 0.697847
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Table 4.21: Comparison of time (in seconds) to compute the gradient between finite-
difference and adjoint method

# DV FD Time (s) Adjoint Time (s)

20 6.58 0.32

40 17.78 0.32

100 87.24 0.66

500 1989.55 2.70

1000 7917.03 5.34

Table 4.21 compares the time to compute the gradient using finite-difference and ad-

joint method as the number of design variables scales. As the number of design variables

increases, the time to compute the gradient using finite-difference method becomes infea-

sible.

4.6.3 Gradient of a Box-Beam using Automatic Differentiation

The computation of stress fields on the box cross-section was described in Section 4.4.2.

Constraint aggregation methods are then used to generate the KS functions that will be used

for optimization. It should be noted that the aggregation is occurring over the j = 1, . . . , 4

points where the stresses were computed, the k = 1, . . . , n cross-sections of the beam, and

the t = 0, . . . , nT time steps of the dynamic simulation.

cvm,KS = m+
1

ρKS
ln

[
4∑
j=1

n∑
k=1

nT∑
t=0

eρKS(gvmj,k,t−m)

]
= m+

1

ρKS
lnAvm (4.53)

css,KS = m+
1

ρKS
ln

[
4∑
j=1

n∑
k=1

nT∑
t=0

eρKS(gssj,k,t−m)

]
= m+

1

ρKS
lnAss (4.54)

ccent,KS = m+
1

ρKS
ln

[
4∑
j=1

n∑
k=1

nT∑
t=0

eρKS(gcentj,k,t−m)

]
= m+

1

ρKS
lnAcent (4.55)

Each of the stress constraints defined can have hundreds of expressions dependent on
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geometric properties, state variables, or external dimensions. To calculate the different

sets of derivatives needed, automatic differentiation (AD) package CasADi was used. The

procedure to obtain the gradients using AD is explained in detail in Appendix G. As a

simplified explanation, Fig. 4.38 shows a diagram that illustrates the basic premise behind

the calculation of the symbolic gradients.

Figure 4.38: Workflow summary for symbolic gradients and functions

Given a set of specific symbolic variables of interest, such as the thickness distribution

in the beam or the corner points, functions at the beam level, such as beam stiffness expres-

sions, are constructed. These are then used to construct stress functions representing the

equations given in Section 4.4.2 and the constraint aggregation functions given in this sec-

tion. With these expressions at hand, CasADi can then be used to provide function objects

associated with them. These function objects can then be used in conjunction with data

obtained by forward-solving and backward-solving the model to generate proper constraint

values and gradients associated with the state of deformation of the beam.

The derivative of the aggregated stress constraint cvm,KS with respect to the 16 design

variables are computed using the adjoint method and compared with those computed using

the central difference method. A tip load of Fx = 1× 106N and Fz = 1× 106N is applied.

The simulation was run for 3 seconds with a time step of 0.01 seconds. The results are

shown in Table 4.22. The gradients obtained have the right sign and order of magnitude,

and thus may be used for optimization.

It should be noted that using the finite-difference method as a validation tool may be

prone to errors. The errors are due to the finite-difference method being very sensitive to
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Table 4.22: Gradient comparison between adjoint method and central differences (step-
size: 1× 10−8) for 16 design variables for von-Mises stress aggregated constraint cvm,KS

DV Finite Difference Adjoint Error (%)

tleft1 -0.14267 -0.14268 0.00505

tleft2 -0.03586 -0.03587 0.021513

tleft3 0.001537 0.001519 -1.21537

tleft4 0.001505 0.001488 -1.12154

ttop1 -2.72883 -2.72898 0.005573

ttop2 -0.64338 -0.64348 0.016194

ttop3 0.002966 0.002918 -1.61295

ttop4 0.004861 0.004807 -1.10627

tright1 -0.14268 -0.14269 0.006823

tright2 -0.03596 -0.03597 0.02369

tright3 0.00125 0.001236 -1.1515

tright4 0.001358 0.001342 -1.13942

tbot1 -2.72883 -2.72898 0.005666

tbot2 -0.64336 -0.64346 0.016564

tbot3 0.002986 0.00294 -1.53316

tbot4 0.004865 0.004812 -1.09163

the chosen step-size and the region of the design space at which the gradient is computed.

Thus, finite-difference serves as a check and verifies the sign and order of magnitude of

the gradient, as previously stated. Future work will implement a complex-step approach to

validate the gradient obtained from the adjoint method.

4.6.4 Summary

This section specialized the general adjoint method towards gradient computation for dy-

namic simulations with the BDF time-marching scheme. A simple spring-mass-damper

system illustrated the method. Constraint aggregation methods were extended to find the
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maximum stress over every cross-section and over every time-step for Euler-Bernoulli-like

stress recovery relations. AD provided the necessary terms for the computation of the gra-

dient of the aggregated stress constraints with respect to the thickness design variables. The

gradient had a good agreement when compared to that computed by the finite difference

method. The adjoint method showed good scalability as the number of design variables

increased.

4.7 RQ 2.2 – Structural Optimization3

The structural optimization method is shown in Fig. 4.39. The material, width, and height

of each cross-section are external fixed inputs to the box-beam cross-sectional properties

computation. The load time history and nodes along the 1-D beamline are external fixed

inputs to the beam solver. For the computation of stresses, the solver needs to know the four

extreme corner points of the quadrilateral cross-section. At each iteration, the optimizer

gives a new guess for the thickness design variables. The adjoint method derived in the

previous section enabled gradient computation of the stress constraints and weight objective

function required for structural optimization.

In Section 4.7.1, the cross-section is simplified to a solid rectangular cross-section. In

Section 4.7.2, structural optimization of a box cross-section is described.

4.7.1 Optimization of a Solid Rectangular Cantilever Beam

The test case here will be a non-prismatic cantilever beam subjected to dynamic loads.

The beam’s cross-section is simplified to be a rectangular-beam, with loads applied at the

principal axes. These assumptions simplify the problem and allow us to focus on testing

the method. The beam axis is aligned along the x-axis, and a sinusoidal load is applied at

the beam tip along the z-axis to simulate dynamic loads.

3The method and results for the solid rectangular cross-section beam case have been published in a prior
work [194]
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Figure 4.39: Structural optimization XDSM

The beam is discretized into a finite number of nodes (nn). At each node, a rectangular

cross-section of width (wk) and height (hk) is defined. Thus there are 2nn = nµ design

variables. The optimization problem is setup as:

minimize
wk,hk

mass(wk, hk)

subject to R(µ, x, ẋ, t, P, E) = 0

c1,KS ≤ 0

c2,KS ≤ 0

hmin ≤ hk ≤ hmax

bmin ≤ bk ≤ bmax

data P (t)(kN), E(GPa), σy(MPa), ρ(kg/m3)

(4.56)

where x ∈ R18nn , ẋ ∈ R18nn , µ ∈ R2nn , P (t) is the applied external load as a function of

time, E, ρ and σy the Young’s modulus density, and yield stress of the material of the beam

respectively, and c1,KS, c2,KS are the constraint aggregation of the stress failure criteria over

space and time.

A MATLAB package OPTI [195], which implements an interior-point method algo-
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Table 4.23: Parameters used for solid rectangular cross-section optimization studies

Parameter Value Unit

E 70× 109 Pa

σy 276× 106 Pa

ρ 2700 kg
m3

hmin 0.4 m

hmax 5.0 m

wmin 0.2 m

wmax 5.0 m

(a) Feasible guess (b) Feasible guess with taper (c) Infeasible guess

Figure 4.40: Initial guesses given to the optimizer

rithm, is used to perform optimization. The parameters chosen for the optimization run

are given in Table 4.23. The first set of optimization runs are performed with ten beam

sections. The loading is a sinusoidal tip load of Fz = 1× 106 sin(20δii). The loading is

shown in Fig. 4.41a. The optimizer is run with three initial guesses shown in Fig. 4.40. The

results for the three optimization runs are tabulated in Table 4.24. The optimizer converges

to the same solution (shown in Fig. 4.41b) in all three cases. This shows the robustness

of the method to initial guesses. When starting from an infeasible design (Fig. 4.40c), the

optimizer requires more iterations to converge.

The second set of optimization runs compare static load sizing to dynamic load sizing.

A constant tip load of Fz = 1× 106 N is applied. In the static case, a static solver is used,

which drives the time derivatives (ẋ) to zero and converges to the equilibrium deflection.
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(a) Dynamic sinusoidal tip load
(b) Optimum solution for a tip loaded
cantilever beam

Figure 4.41: Optimization of a cantilever beam subjected to sinusoidal tip load

Table 4.24: Optimization results for different initial guesses

Guess Algorithm Min Weight Value # iterations # func calls # gradient calls Time to solve (s)

Fig. 4.40a opti: IP 10273.00 136 147 147 73.15

Fig. 4.40b opti: IP 10273.00 164 197 165 91.07

Fig. 4.40c opti: IP 10272.75 258 333 259 153.21

In the dynamic case, the DAEs are marched forward in time. The displacement oscillates

and damps out as time progresses. Table 4.25 compares the optimization results for these

two runs. As seen, the effect of dynamics causes the weight of the optimum structure to

increase. The heights of the cross-sections for the dynamic simulation constant load case

are greater than those for the static case, as seen in Fig. 4.42.

Table 4.25: Comparison of structural sizing for static and dynamic loads

Simulation Type Loading Condition Initial Guess Optimum weight (N)

Static Constant Tip Load Fig. 4.40b 10942.00

Dynamic Constant Tip Load Fig. 4.40b 11705.00

4.7.2 Optimization of a Box-Beam ‘Wing-Like’ Structure

The test case here will be the ‘wing-like’ geometry shown previously in Fig. F.1a. There

are four cross-sections, each with four design variables. The structure is cantilevered at
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Figure 4.42: Cross-section height distribution along span of the beam for static and dy-
namic constant tip loading

cross-section 1 at the end left. The optimization problem is setup as:

minimize
tleft,k,ttop,k,tright,k,tbot,k

mass(tleft,k, ttop,k, tright,k, tbot,k) k = 1, . . . , 4

subject to R(µ, x, ẋ, t, P, E) = 0

c1,vm,KS ≤ 0, c2,ss,KS,tn ≤ 0

c3,ss,KS,c ≤ 0, c4,cent,KS,tn ≤ 0, c5,cent,KS,c ≤ 0

0.003 ≤ tleft,k ≤ 0.25 k = 1, . . . , 4

0.003 ≤ ttop,k ≤ 1.5 k = 1, . . . , 4

0.003 ≤ tright,k ≤ 0.25 k = 1, . . . , 4

0.003 ≤ tbot,k ≤ 1.5 k = 1, . . . , 4

data P (t)(N), E(Pa), σy(Pa), ρ(kg/m3)

(4.57)

Where P (t) is the applied external load as a function of time, E, ρ and σy the Young’s

modulus density, and yield stress of the material of the beam respectively, and c1,vm,KS ,

c2,ss,KS,tn, c3,ss,KS,c, c4,cent,KS,tn, and c5,cent,KS,c are the constraint aggregation of the stress

failure criteria over space and time.
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Study 1: Static Loading

Consider sizing the structure for the following settings:

• Tip load of Fx = 0N, Fy = 0N, Fz = 2× 106N

• Midpoint von-Mises stress constraints

• Initial guess to optimizer set to the upper bounds

• Aluminium material with properties: E = 70× 109Pa, ρ = 2700kg/m3, σy =

276× 106Pa

Matlab’s fmincon function was used to perform the optimization with the objective and

constraint gradients supplied. The optimizer converged in 70 iterations satisfying con-

straints with a tolerance of 9.764× 10−7. The optimizer execution time was 7.7 seconds.

Fig. 4.44b through Fig. 4.44e show the von-Mises stresses on cross-sections 1 through 4 re-

spectively when the optimum solution is analyzed using a higher fidelity tool- VABS [132].

It is seen that the stresses on cross-sections 1, 2, and 3 are close-to but lower than the yield

stress of 2.76× 108 Pa. However, on cross-section 4, the stresses are higher than the yield

stress. This is due to the beam stress assumptions made that cannot accurately capture the

stress at a tip cross-section where zero moments are. The thicknesses of the two webs and

two flanges as a function of the span is shown in Fig. 4.44a. We see a gradual decrease of

thickness along the top and bottom flange span due to the internal pitching moment buildup

from the vertical tip load. Since the applied loads are at the wingtip, the resulting internal

torsional moment sized the webs, with a section that experiences an increased thickness far

from the wing’s root. Fig. 4.43 shows the moment and internal shear plots for the loads

during loading for Study 1.

The thickness distributions resulting from the load in Case 1 show tendencies of sizing

the top and bottom flanges from the axial stress generated by the moment buildup due to
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Figure 4.43: Study 1 bending moment, torsional moment and shear loads with interpolated
section numbers and highlighted main sections in red

the tip load Fz, tapering down as span increases. This behavior follows the My vs span

seen in Fig. 4.43.

Another interesting feature of the thickness distribution in Case 1 comes from the thick-

ness buildup far from the root from the left and right webs; this as a combination of the

mild increase of the internal torsional moment also seen in Fig. 4.43, as well as the shear

stress coming from the applied vertical load. Since in the left web the direction of the

vertical load shear matches the direction of the torsional shear, and in the right web they

are opposite, there is an appreciable thickness difference between both of them, as seen in

Fig. 4.44a.

Study 2: Static Loading

Consider sizing the structure for the following settings:

• Tip load in ‘lift, drag, and moment directions of Fx = 0N, Fy = 1× 105N, Fz =

2× 106N,Mx = 1× 106N m,My = 0N m,Mz = 0N m

• Initial guess to optimizer set to the upper bounds

• Aluminium material with properties: E = 70× 109Pa, ρ = 2700kg/m3, σy =

276× 106Pa
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The following five constraint cases were considered:

1. Corner points axial stress only

2. Midpoint von-Mises stress only

3. Flange shear stress only

4. Midpoint von-Mises stress, and flange shear stress

5. Midpoint von-Mises stress, corner point axial stress, and flange shear stress
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Figure 4.45: Solutions for different constraints in study 2

147



Fig. 4.45 compares the optimum solution thicknesses obtained. As seen, the behavior of

the different constraints is as expected from a beam theory:

1. Axial stresses only depend on distance from the neutral point. The optimizer favors

increasing the top and bottom flange thicknesses, while the left and right webs are

at the lower bounds, as their thicknesses do not affect axial stress with the loading

profile considered, as Fz > Fy, while also Izz > Iyy.

2. With respect to the von-Mises only stress analysis, the top and bottom flanges were

still sized by the axial stress component in the von-Mises resultant. The shear flow in

the right and left webs did contribute to their final sized thickness. Fig. 4.46 shows

that the internal torsional moment has a large negative value at the root while having

a positive value at the tip. This difference in signs and magnitudes sizes the right and

left webs differently.

3. If only the flange shear is used to size the beam, top and bottom flanges are sized

to its minimum. This is due to not having to deal with axial stress and dealing with

relatively low shear stress due to the cross-sectional inertia in the top-bottom direc-

tion. On the other hand, the webs did get a size increment due to the shear stresses

from two sources- the torsional shear and the force shear- which size the right web.

Unlike torsional shear, which depends on the torsional loads, shear loads depend on

the shear forces experienced by the beam, which are constant along its span, as seen

in Fig. 4.46. Also, since the torsion at the tip is non-zero, it sizes one of the flanges

to counter the stresses. This constraint results in the lowest sized weight.

4. When the von-Mises corner points include the shear at the center of the flanges, it

results in thicker left and right webs with even the tip section sized, resulting in a

lesser need of top-bottom flange thickness.

5. If all constraints are enabled, the beam ends up with the highest weight, and thickness

develops along all the different flanges, with a similar outcome of Case 4.
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Table 4.26: Comparison of structural sizing for different constraints

Case 1 Case 2 Case 3 Case 4 Case 5

Optimizer Iterations 133 44 30 111 87

Optimum Weight (kg) 4901.52 5275.87 624.85 4917.23 5386.58

Constraint tolerance 9.14× 10−8 9.13× 10−7 5.14× 10−7 6.13× 10−8 8.97× 10−7

Execution Time (s) 12.039 6.138 2.955 12.688 12.544
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Figure 4.46: Study 2 bending moment, torsional moment and shear loads with interpolated
section numbers and highlighted main sections in red

Table 4.26 compares the sizing for the different constraints. As seen in Fig 4.46, the

tip loading is consistent with Study 2 specified tip loads and shows the variation of shear.

As expected, the case that uses all constraints ends up with the highest thickness for all

sections, as it took into account every high point of stress within the beam.

Study 3: Constant Load Dynamic Analysis

Consider the same settings as in Study 2. The tip load is held constant throughout the

dynamic analysis. Stress constraints are imposed on midpoint von-Mises stress, corner

point axial stress, and flange shear stress. The simulation is run for 5 seconds with a step

size of 0.01 seconds.

Table 4.27 compares the sizing for static analysis against that for dynamic analysis. It

is seen that the weight increased by 10.8% due to the dynamics. The optimizer execution
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time is much longer for dynamics.

Table 4.27: Comparison of structural sizing for static and dynamic analysis

Static Dynamic

Optimization Iterations 87 174

Weight (kg) 5386.58 5935.87

Execution time (s) 12.54 335.57

The breakdown of execution time is given in Table 4.27. The generation of the sym-

bolic beam model is a one-time cost. After that, at each iteration of the optimizer, it is seen

that the forward solver and each gradient computation using the adjoint solver are on the

same order of magnitude. The computational time is higher due to the five stress gradient

computations. It was seen previously in Table 4.26 that the optimum point found consider-

ing only the midpoint von-Mises stresses and that found considering all three (von-Mises,

axial, and shear) produce comparable results. Thus, larger optimization problems consid-

ering only the von-Mises stress constraint would yield acceptable results with a far lower

computational cost.

Table 4.28: Breakdown of computation time (in seconds) of dynamic solver

Task Time (seconds)

Generate symbolic beam model 47.53

Time marching forward solve 3.12

von-Mises stress gradient 3.90

Compressive axial stress gradient 3.92

Tensile axial stress gradient 3.82

Postitive shear stress gradient 4.15

Negative shear stress gradient 4.10

The optimum results are shown in Fig. 4.47. It is seen that all four thicknesses have

been sized to larger values when comparing to a static analysis. The top and bottom flange
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thicknesses are symmetric, and hence the plot lines overlap.

(a) 3-D view
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Figure 4.47: Optimum solution for study 3

151



CHAPTER 5

APPLICATION

Referring back to the overall research objective of this dissertation:

Research Objective

Develop a framework for aircraft wing design that

1. Dimensionally reduces complex 3-D structures to produce a low DoF struc-

tural analysis model

2. Obtain the gradient of the structural analysis model in the time-domain

The beam-based structural analysis and optimization method described in Section 3 is

used to size the wingbox structure. The process is shown as an XDSM in Fig. 5.1. First, a 3-

D surface representation of the geometry is generated by RADE from the OpenVSP OML

model. RADE then extracts the IML points at each rib location. The IML points are offset

using the given baseline thickness to create the 2-D cross-sections seen in Fig. 4.15. The

required beam curvature, frame angles, and oblique angles [191] for VABS are computed.

At this stage, VABS can be run in-parallel over all cross-sections to obtain the stiffness and

mass matrices.

Next, the stiffness correction procedure described in Section 4.2.4 is applied to obtain

new values of the width and height of the rectangular box cross-section. The corrected

widths and heights are used in all further computations of the box cross-section’s cross-

sectional properties.

The beam model described in Appendix A is generated using CasADi as described

in Appendix G. The beam model is now used for structural optimization. The optimizer
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controls the upper skin’s thicknesses, lower skin, front spar, and rear spar of each cross-

section. At each iteration, the thicknesses and corrected widths and heights are used to

compute the beam’s stiffness and mass matrices. The input load time-history is applied on

the beam and time-marched using the 2nd order BDF scheme described in Algorithm 1.

The time history of beam states obtained from the 1-D beam analysis is used to obtain the

E-B stresses described in Section 4.4.2.

The stresses are aggregated over every cross-section and over every time-step. The

beam model uses the created symbolic definition through automatic differentiation to obtain

the quantities required to solve Eq. 3.10. The adjoint solver time marches from tfinal to t0

and solves for the adjoint variable λ at each time step. The gradient of the constraints w.r.t.

the thickness design variables are computed using Eq. 3.11. The optimizer (fmincon in

Matlab) uses these gradients to find a new guess for the design variables. The optimization

iterations continue till a minimum weight design is found that satisfies the constraints to a

tolerance of 1× 10−7.

Notes on implementation:

1. The RADE toolkit is implemented in python. The first analysis box of the XDSM

(Fig. 5.1) where the structural geometry is built occurs in RADE, and hence in

python. RADE exports tables containing the 3-D coordinates of points on the rib

IML, and the beam axis nodal 3-D coordinates. The structural analysis and opti-

mization method proposed in this thesis is implemented in MATLAB. MATLAB

reads the tables exported by RADE and builds the information needed to run VABS,

and create a beam model

2. The 1-D analysis used in this thesis comes from Drela [53]. Drela implemented

the beam equations, along with an unsteady aerodynamic theory and control laws

in a commercial tool named ASWING. It should be noted that this thesis did not

use ASWING directly. ASWING’s documentation provides in-detail all the equa-

tions needed. The beam theory structural dynamics equations from ASWING were

153



V
S

P
O

M
L,

To
po

lo
gy

va
ria

bl
es

B
as

el
in

e
th

ic
kn

es
se

s,

M
at

er
ia

l

B
as

el
in

e
th

ic
kn

es
se

s,

M
at

er
ia

l
B

as
el

in
e

th
ic

kn
es

se
s

M
at

er
ia

l
Lo

ad
tim

e
hi

st
or

y

S
tr

uc
tu

ra
lG

eo
m

et
ry

G
en

er
at

or

3-
D

S
ur

fa
ce

R
ep

re
se

nt
at

io
n

E
xt

ra
ct

B
ea

m
In

fo

R
ib

s
IM

L

Po
in

ts

B
ea

m
N

od
al

Po
in

ts
w

0
,h

0
B

ea
m

N
od

al

Po
in

ts
C

S
ex

tre
m

e
po

in
ts

C
re

at
e

2-
D

C
S

s

2-
D

M
es

h,

M
at

er
ia

l,

C
om

pu
te

VA
B

S
P

ar
am

et
er

s

C
ur

va
tu

re
,

O
bl

iq
ue

an
gl

es
,

R
un

VA
B

S
VA

B
S

st
iff

ne
ss

S
tif

fn
es

s

C
or

re
ct

io
n

w
,h

w
∗ ,
h
∗

B
ox

C
S

S
tif

fn
es

s
A

na
ly

tic
al

st
iff

ne
ss

M
at

rix
no

rm
S

tif
fn

es
s

m
at

ch
in

g

op
tim

iz
at

io
n

fu
nc

tio
n

t∗ l
ef
t,
t∗ r
ig
h
t

t∗ t
o
p
,t
∗ bo
t

S
tr

uc
tu

ra
l

O
pt

im
iz

at
io

n

t l
ef
t,
t r
ig
h
t

t t
o
p
,t
bo
t

W
ei
g
h
t∗

W
ei
g
h
t

∇
(W

ei
g
h
t)

B
ox

-b
ea

m

P
ro

pe
rt

ie
s

S
tif

fn
es

s
M

at
rix

M
as

s
M

at
rix

S
tif

fn
es

s
M

at
rix

S
ol

ve

B
ea

m
~x

(t
im
e)

~x
(t
im
e)

E
ul

er
-B

er
no

ul
li

S
tre

ss
S
tr
es
s(
C
S
,t
im
e)

g K
S

S
tre

ng
th

Fa
ilu

re

C
on

st
ra

in
tA

gg
re

ga
tio

n
g K

S

∇
(g
K
S
)

A
dj

oi
nt

S
ol

ve
r

Fi
gu

re
5.

1:
X

D
SM

fo
rs

tr
uc

tu
ra

lo
pt

im
iz

at
io

n
of

w
in

gb
ox

us
in

g
an

al
yt

ic
al

be
am

co
rr

ec
te

d
by

VA
B

S

154



implemented in MATLAB, verified and validated for use in this thesis.

3. The loads on the aircraft are obtained in this work using ether Nastran or AVL. Static

loads (1.0g, -1.0g, 2.5g loads) are obtained running AVL with AVL setting the angle

of attack and elevator deflection in order to obtain the aircraft trim settings for the

given flight condition and static maneuver. To obtain dynamic gust loads, Nastran

SOL 146 is used. Details of the gust simulation are provided in Section 5.2.1. The

structure is idealized as a beam when running SOL 146. It should be noted that the

structure could have been treated as a shell model, or a Guyan reduction [81] reduced

shell model. It was found that the loads obtained from all three representations are

comparable. As the scope of this thesis is focused on performing structural analysis

and optimization, the accuracy of the loads is not a priority. The beam representation

in Nastran provides realistic loads while being computationally tracktable.

4. In the overall implementation in MATLAB, the structural geometry information, and

the loads (static load cases, or dynamic load time history) are the two external inputs

obtained from RADE. Once this information is available, the rest of the framework

executes automatically, and optimizes the structure for the given loads.

5.1 Static Load Optimization

In this section, the optimization method described is applied to size the structure for static

loads. The geometry considered is the PEGASUS concept wing described in Appendix D.2.

The baseline OML with values shown in Table D.3, and structural topology variable values

shown in Table D.4 will be used. Two critical loading conditions on an aircraft wing are the

2.5g and -1.0g maneuvers [188, 32]. These maneuvers are typically used for static sizing of

the aircraft. The PEGASUS wing will be sized for these maneuvers using the optimization

framework described in this work.

AVL is used to trim the aircraft at 2.5g and -1.0g, assuming a TOGW of 41005 lbs,
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altitude of 20000 ft, and Mach number 0.5. This provides the aerodynamic loading for

the two conditions. The aerodynamic lift and moment distribution is shown in Fig. 5.2.

It is seen how the 2.5g maneuver distribution has a large positive value, and the -1.0g

maneuver has a large negative value. The aircraft’s weight provides inertial relief for the

2.5g maneuver but adds on in the -1.0g maneuver.

(a) Aerodynamic lift (b) Aerodynamic moment

Figure 5.2: Aerodynamic load distribution for the PEGASUS wing

The chosen rib spacing of 28 inches results in 18 ribs for which IML points are ex-

tracted. The root rib is replicated at the y = 0 symmetry plane to create a center wingbox

inside the fuselage. The design variables optimization problem are shown in Table 5.1. The

material is assumed to be Aluminium. Two constraints are setup- the aggregated von-Mises

stress-based strength failure criteria for the 2.5g and -1.0 loading conditions, respectively.

It should be noted the regions close to the tip of the wingbox are subjected to lower

loads and hence results in very thin structures. If freedom is given to the optimizer, it will

thin the structure to an extent that makes manufacturing the part difficult. The concept of

minimum gauge exists specifying the lower limit of allowable thickness of the manufactur-

ing process. This lower limit value can be incorporated as lower bound side constraints in

the optimization problem. The lower bounds used in this thesis are given in Table 5.1.

The sizing results of the beam-based methods must be compared to that produced by a

higher DoF model. A Nastran SOL 101 shell model was created with the same geometry
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Table 5.1: Design variables for optimization of PEGASUS wing

Variable Description Number Lower bound

tfs Front spar thickness at a cross-section 19 0.001 m/0.04 in

tus Upper skin thickness at a cross-section 19 0.001 m/0.04 in

tls Lower skin thickness at a cross-section 19 0.001 m/0.04 in

trs Rear spar thickness at a cross-section 19 0.001 m/0.04 in

Total design variables 76

(with ribs) and aerodynamic loading. The Nastran .bdf file was linked with Hypersizer

for optimization. Hypersizer uses the internal loads produced by Nastran and optimizes

the thickness of the structure. Material failure constraints were setup in Hypersizer for an

unstiffened panel concept. Four iterations between Nastran and Hypersizer were performed

to ensure convergence on the optimized structure.

Fig. 5.3 shows the optimized thickness distribution from the beam-based optimization

and compared to that produced by the shell-based Hypersizer optimization. It is seen that

there is excellent agreement in the thickness distribution for the skins. The largest discrep-

ancy is at the root section of the front spar (Fig. 5.3c). Hypersizer sizes this section to a

large value. The section immediately outboard has a much smaller value. Referring back

to Fig. 4.31, it was at the root section of the front spar that a region of high local stress

was seen. This high-stress results in the large thickness seen in Fig. 5.3c. The beam model

does not have this non-physical high-stress region, and thus, we see a smooth decrease in

thickness from the root to the tip. The rear spar (Fig. 5.3d) is sized to a larger value by the

beam model as compared to the shell model due to the shear stress constraints.

The total wing weight predicted by the beam-based optimization is 405.64 kg. The

shell-based Hypersizer optimization predicts 392.62 kg for the skin and spars and 38.89 kg

for the ribs, resulting in a total weight of 431.51 kg. It is again seen that the ribs account for

a relatively small percent (9.01%) of the total weight. The error between the beam weight

and shell weight is 6%. The results are summarized in Table 5.2, and a comparison of the
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Figure 5.3: Static sizing thickness distribution

computational time needed to reach the optimum.

Table 5.2: Weight and computational time comparison for static sizing

Analysis Weight (kg) Optimization time (seconds)

Beam 405.64 85.89

Shell 431.51 656.4

6% error 7.64X speed-up

5.2 Dynamic Load Optimization

This section considers the same PEGASUS wing sized for 2.5g and -1.0g loads, as in

Section 5.1. Optimization is now done for dynamic loads instead of static loads. Nastran

SOL 146 is used to simulate a gust and obtain the load as a function of time. A gust or other
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dynamic aeroelastic simulation depends on the user’s parameters, which in turn depend on

14 CFR 25.341 requirements.

5.2.1 Gust Simulation

In this work, we consider a one-minus cosine gust. As a test case example, we consider the

one minus cosine gust defined in 14 CFR 25.341(a)(2):

U =
Uds
2

[
1− cos

(πs
H

)]
(5.1)

where 0 ≤ s ≤ 2H is the distance penetrated into the gust (feet), Uds the design gust

velocity in equivalent airspeed, and H the gust gradient which is the distance (feet) parallel

to the airplane’s flight path for the gust to reach its peak velocity. To comply with 14 CFR

25.341 regulations, the aircraft must have satisfactory performance when handling gusts

of gradient distances ranging from 30 ft to 350 ft. The design gust velocity (in accordance

with 14 CFR 25.341(a)(4)) is given by:

Uds = UrefFg

(
H

350

) 1
6

(5.2)

where Uref is the reference gust velocity in equivalent airspeed, and Fg the flight profile

alleviation factor. Multiple reference gust velocities between must be considered depending

on the altitude. The different values of Uref and H result in a combinatorial problem. For

each case, a gust simulation must be run. In this work, we demonstrate for a single gust

run. The flight profile alleviation factor also depends on the altitude. Table 5.3 gives the

chosen gust settings.

For the dynamic analysis, a practical value of 0.02 is assumed for structural damping,

constant through the frequency range from 0 Hz to 10.0 Hz. The simulation is designed

to delay the application of the gust for 0.2 seconds to observe if the response has damped

out sufficiently during the previous period in the periodic Fourier solution. Consequently,
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a total simulation time of 5 seconds was given to ensure that the response damps out ad-

equately before the next period begins. The study for both cases also focuses on the 11

first elastic modes of the wing and uses the Modified Givens Method normalized to their

maximum displacements to obtain the modes.

Table 5.3: Gust simulation settings

Parameter Value Unit

Altitude 25000 ft

Mach number 0.5

Reference gust velocity 30 ft/s

Gust distance 350 ft

Total simulation time 5 s

Reduced frequencies [0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1.]

The aircraft is trimmed at cruise using elevator and angle of attack using Nastran and

AVL, and the gust is initiated at 1 second. Fig. 5.4 shows the aerodynamic lift as a function

of time for an inboard and outboard section of the wing. As expected, the effect of dynamics

is more pronounced at the outboard section.

(a) Inboard section (b) Outboard section

Figure 5.4: Gust load time history for the PEGASUS wing
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5.2.2 Optimization

The optimization design variables are the same as the static loading case, shown in Ta-

ble 5.1. The entire gust load time history is provided, and a dynamic simulation is run. A

single von-Mises stress-based strength failure criteria aggregated over every cross-section

and every time-step is used as the constraint.

Fig. 5.5 compares the four components’ thicknesses between the static and dynamic

sizing cases. The upper and lower skins’ inboard stations are sized by the static cases,

whereas the gust loads size the outboard sections. The magnitude of the torsion and shear

moment on the spars is larger for the gust loads than the static maneuvers, resulting in

larger thicknesses.
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Figure 5.5: Comparison of thicknesses between static maneuvers sizing and gust sizing

The optimized area of the cross-sections and beam section weights as a function of
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the span is shown in Fig. 5.6a, and compared to the static maneuvers sizing. The upper

and lower skin has a larger surface area than the front and rear spars. Thus, the larger

thicknesses of the static maneuvers give a larger area on the inboard stations. As expected,

in Fig. 5.6b, the static maneuvers size the inboard portions of the wing, whereas the gust

sizes the outboard portions of the wing.
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Figure 5.6: Comparison of area and weights between static maneuvers sizing and gust
sizing

The results of sizing are summarized in Table 5.4. It is seen that the dynamic optimiza-

tion is significantly slower than the static one. The computational expense is due to two

dynamic simulations performed at each iteration- one for the forward solve and one for the

adjoint.

Table 5.4: Weight and computational time comparison for static sizing

Type of Simulation Weight (kg) Optimization time (seconds)

Static 405.64 85.89

Dynamic 465.90 409.52

The beam-based structural analysis method with adjoint for gradient computation al-

lows for the dynamic optimization to be computationally faster than the static shell-based

Hypersizer optimization.
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CHAPTER 6

SUMMARY

This section discusses the main findings of this work. The need to account for the dynamic

loads specified by Code of Federal Regulations (CFR) while simultaneously achieving low

structural weight for fuel efficiency in early-stage aircraft design motivated the following

question:

Motivating Question

How to account for dynamics while maintaining computational efficiency in struc-

tural analysis and optimization of early-stage aircraft wing design?

This formed the basis for the research objective of this dissertation, stated below:

Research Objective

Develop a framework for aircraft wing design that

1. Dimensionally reduces complex 3-D structures to produce a low DoF struc-

tural analysis model

2. Obtain the gradient of the structural analysis model in the time-domain

The literature was explored to determine the state-of-the-art pertaining to

• The generation of dynamic loads

• Reduction methods to account for intricate load-bearing features such as stiffeners

• Reduction methods to obtain a low DoF model
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• Structural failure computation

• Multi-disciplinary optimization, and sizing of aircraft wings

The gaps found in the literature are summarized below:

Gaps in the literature

• Dynamic Loads

– Gap 1: Coupling the loads generation with structural failure computation

– Gap 2: Systematic extraction of beam stiffness constants accounting for

couplings without running higher fidelity tools

• Internal Structure

– Gap 3: Creating equivalent 2-D structures for stiffeners of varying topol-

ogy, dimensions and rib spacing

• Structural Analysis

– Gap 4: Existing 1-D beam theories do not work well in the presence of

aperiodicity along the span of the beam

– Gap 5: Simple beam theories used for stress recovery with limited con-

siderations for airfoil shape and composites

– Gap 6: Using VAM for structural analysis of aircraft wings

• Multi-Disciplinary Optimization (MDO)

– Gap 7: MDO methods simplify simulations to statics

∗ Gap 7a: Adjoint in the time-domain applied to aircraft structural

optimization

∗ Gap 7b: Constraint aggregation methods not extended for dynamics
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The research follows the two points of the research objective- (1) structural analysis,

and (2) structural optimization.

Gap 3 pertains to the absence of a method to create equivalent 2-D structures for stiff-

eners of varying topology, dimensions, and rib spacing. Such stiffeners are standard on the

rib, as seen in Fig. 3.1. The following research question was posed to address this gap:

Research Question 1.1

How can an equivalent plate be created that accounts for stiffeners of varying topol-

ogy, dimensions and non-uniform spacing?

It was hypothesized that a local smearing approach to creating a composite structure

with anisotropic properties allows for stiffeners of varying dimensions and topology to be

smeared. This approach does not assume any stiffener spacing as it is possible to smear any

number of stiffeners. A stiffness matching optimization problem was posed to obtain the

values of the anisotropic properties, where the stiffness of the built-up section was matched

to the stiffness of the equivalent section. The hypothesis for RQ 1.1 was stated as:

Hypothesis 1.1

If

1. smearing the stiffener of the built-up structure to the corresponding portion

of the equivalent structure, thereby, accounting for the effects of stiffeners of

varying topology, dimensions and spacing, and subsequently,

2. the anisotropic material properties of the composite equivalent structure com-

puted as a stiffness matching minimization problem

converges to within first order optimality criteria,

Then,
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the structural response of this equivalent structure matches that of the built-up struc-

ture.

An experiment consisted of stiffeners of varying numbers and dimensions being smeared

onto the base plate. The stiffness matching process showed that it was possible to obtain

anisotropic material properties such that the stiffness matching optimization problem mini-

mized the error to zero. Next, the structural response of the built-up structure was compared

against the response of the equivalent structure. It was seen that in the direction of interest

(out-of-plane bending) the response was accurate, thus validating Hypothesis 1.1. RQ 1.1

successfully enabled the dimensional reduction of 3-D features to 2-D.

With the 3-D features of stiffeners and stringers smeared, the 3-D wingbox now consists

of skin, spars, and ribs represented as curved surfaces. Gap 2 addresses the lack of a

method to extract a low DoF model (a beam model) properties directly from the 3-D surface

wingbox without the necessity of creating and executing a higher DoF model or relying on

assumptions of the cross-sectional shape and material distribution. RQ 1.2 was posed as:

Research Question 1.2

How to compute beam cross-sectional properties for a wingbox airfoil cross-section

of arbitrary shape and material definition?

It was hypothesized that a higher-order beam theory, VAM-based VABS, can be used

to obtain the cross-sectional properties. In the literature, VAM was successfully applied

in the analysis and design of rotorcraft blades, but not aircraft wings. This gap, Gap 6, is

also addressed in RQ 1.2. A limitation of VABS was noted in that the adjoint has not been

implemented. This limitation creates a bottleneck for structural optimization. It was hy-

pothesized that a box cross-section with known analytical formulae and a one-time stiffness

matching correction allows for the box-beam’s stiffness to match the stiffness calculated by
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VABS. The hypothesis for RQ 1.2 was stated as:

Modified Hypothesis 1.2

If

the aircraft wingbox cross-section is treated as a box cross-section with analytical

expressions to compute an analytical stiffness matrix,

And

a stiffness matching optimization problem modifying the width and height converges

on the objective function that is the matrix Frobenius norm of the difference between

the VAM-based VABS computed stiffness matrix on the wingbox cross-section and

the analytical stiffness matrix

Then,

beam cross-sectional properties of a wingbox airfoil of arbitrary shape can be calcu-

lated using the resulting width and height

Two aircraft were chosen as test cases in this dissertation:

1. A conventional large twin-aisle commercial transport-based aircraft: the CRM

2. A novel distributed electric propulsion aircraft: the PEGASUS concept

A parametric geometry creation tool, RADE, was used to create a surface representation

of the 3-D geometry. Information from the 3-D geometry was used as input to VABS,

which successfully calculated the beam stiffness and mass matrices. Further, the stiffness

matching optimization problem minimized the error between the box cross-section bending

and torsion stiffness sub-matrix and the VABS stiffness matrix, thus validating hypothesis

1.2. Overall, RQ 1.2 allowed for the reduction of a 3-D wingbox to a 1-D beam.

Now that a 1-D model exists, it is necessary to apply dynamic loads on the model and

obtain the dynamic response. However, a limitation exists in the literature- aperiodicities
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along the beam’s span cause numerical errors in the 1-D analysis (Gap 4). No robust

method has been found to deal with this gap, and thus an alternate method was chosen-

neglecting the ribs. The influence of the ribs on the wingbox had to be quantified. RQ 1.3

was stated as:

Research Question 1.3a

How much accuracy is lost in the structural response and sizing calculations of the

aircraft wingbox when its ribs are neglected?

Research Question 1.3b

How accurate is the displacement response when the wingbox structure is repre-

sented as a beam model?

Two shell models, one with ribs and one without, were created, and their response was

tested. It was seen that the primary effect of the rib on the global response of the wing

is on the torsional stiffness. The absence of the ribs causes an over-prediction of the tor-

sional rotation of the wingbox. However, in the lift-direction, the z-displacement and stress

response and the two models’ sizing were comparable. Thus, for the application of non-

prismatic beams to early-stage aircraft structural sizing and weight prediction, neglecting

the ribs would not incur large errors.

RQ 1.3 also bore the burden of validating the cross-sectional properties found by RQ

1.2. RQ 1.2 merely showed that it was possible to obtain the properties. In RQ 1.3, loads

were applied to the models, and their displacement response was compared. If the stiffness

properties were correctly computed, the shell model’s displacement response should match

that of the beam model. When VbS was used, it was seen that when the PEGASUS concept

wing and the CRM were subjected to 1g loads, the displacement response was accurate
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with a tip-displacement error of of 4.22% for the CRM wing and 0.57% for the PEGASUS

wing. For the box cross-section, the response was inaccurate with a tip displacement error

of about 20%. However, when the stiffness matching correction was applied to the box

cross-section to create the BbcVS model, the error was reduced to 9.77% for the CRM

wing and 1.29% for the PEGASUS wing. Thus, it validated hypothesis 1.2 and showed the

capability to obtain accurate displacement response from beam models.

In gap 5, it was seen that the literature uses simple beam theories to recover the stresses.

Such beam theories struggle to accurately capture stress concentrations, account for com-

posite materials, or apply to arbitrary cross-sectional shapes. Higher-order beam theories

have been used to obtain the aircraft’s loads accurately, but not coupled with structural

failure computation. To address this gap, RQ 1.4 was stated as:

Research Question 1.4

How can stress and strain field time-history computations be made accurate and

efficient when the aircraft wingbox structure is subjected to dynamic loads?

As before, it was hypothesized that VABS could accurately compute the stress fields

needed to compute structural failure. The box cross-section assumption is also under con-

sideration here. Hypothesis 1.4 is stated as

Modified Hypothesis 1.4

If

the aircraft wingbox cross-section is treated as a box cross-section,

And

the box cross-section has been stiffness matched (Hyp 1.2),

Then,
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the accuracy of the stress field time history computed using analytical equa-

tions improves significantly.

As with the displacement matching of RQ 1.2, to test hypothesis 1.4, the beam’s stress

field response was compared against that computed by a shell model. The PEGASUS

concept wing was used as the test case. The maximum error was at the root where the

local high-stress concentration was seen. The average error neglecting the root section

was 4.84%. The stiffness matching correction applied to the box cross-section created

the BbcVS model which had a higher but still acceptable error. Thus, hypothesis 1.4 was

validated and showed the capability to obtain accurate stress field responses from beam

models.

The above four research questions allowed for a structural analysis method. Starting

from the 3-D geometry, a low DoF model was generated. The loads were applied to the

model, and 3-D stress fields were obtained.

A final experiment was carried out to check for computational efficiency. It was seen

that for a single analysis, both theVbS model and the BbcVS were only slightly faster than

the shell model. For many-query applications where thicknesses are modified the VbS is

the least efficient method. On the other hand, the BbcVS, is very efficient at accepting new

thicknesses and obtaining the stress field response. Thus the BbcVSmodel provides the

right trade-off between accuracy and computational efficiency to be used for sizing.

The literature on multi-disciplinary optimization methods showed that gradient-based

optimization methods are computationally efficient to size a structure with many design

variables. Further, obtaining the gradient can be done efficiently using the adjoint method.

However, as stated in Gap 7, the methods have been applied to static analysis and optimiza-

tion. The adjoint method for dynamic simulations had not been applied to aircraft sizing

(Gap 7a). Further, constraint aggregation techniques needed to deal with many structural

constraints had not been extended for dynamics (Gap 7b). To address these gaps, the re-
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search question is stated as:

Research Question 2.1

How can the gradient of aggregated strength-based failure criteria be computed effi-

ciently during structural dynamic simulations?

The use of computationally efficient beam models alleviates the time and storage re-

quirements for dynamic simulations. The KS constraint aggregation has a simple exten-

sion to extend to aggregate over both spatial and temporal domains. Thus Hypothesis 2.1

is posed as:

Hypothesis 2.1

If

low DoF beam models, in place of high DoF shell models are used to represent the

structure,

Then,

the computational cost (runtime and memory) reduces significantly.

And if

the spatial Kreisselmeier–Steinhauser (KS) constraint aggregation function is ex-

tended to include temporal aspects,

Then,

accurate predictions of the maximum strength constraint violation during the dy-

namic simulation are obtained.

Finally, if

the six quantities (Eq. 3.10 and Eq. 3.11) required for the adjoint method are com-

puted for the beam model and the modified Kreisselmeier–Steinhauser (KS) con-

171



straint aggregation function,

Then,

the gradient of aggregated strength-based failure criteria can be computed efficiently

during structural dynamic simulations.

A general adjoint solver was implemented for the BDF scheme. It was found that the

solver requires six quantities. Table 6.1 summarizes the computation of the six terms for the

three cases on which the solver was validated. For all three cases, the gradient computed

by the adjoint solver was compared against finite-differences. The maximum error was

1.16%. Scalability studies were performed by increasing the number of design variables.

It was seen that finite-difference scales poorly, while the adjoint method scales well as

expected. These experiments validate hypothesis 2.1.

Table 6.1: Quantities required for adjoint solver

∂R
∂x

∂R
∂ẋ

∂Fi
∂x

∂Fi
∂ẋ

∂R
∂µ

∂Fi
∂µ

Spring-Mass-Damper Analytical Analytical Analytical 0 Analytical Analytical

Solid rectangular cross-section AD with CasADi AD with CasADi Analytical 0 Analytical Analytical

Box cross-section AD with CasADi AD with CasADi AD with CasADi 0 AD with CasADi AD with CasADi

Finally, standard optimization methods were used to size the structure for static and

dynamic loads. The optimization was validated using a simple ‘wing-like’ toy problem.

It was seen, as expected, that the optimization produces larger thicknesses when dynamic

simulation is performed instead of a static simulation for the same load.

A flowchart summary of relationship of the gaps, research questions and experiments

is shown in Fig. 6.1. Having validated all the hypotheses and addressed the gaps (except

Gap 4), the proposed structural analysis and optimization method was applied to size the

PEGASUS wing. Two studies were performed:

1. Sizing for static loading of 2.5g and -1.0g- It was seen that the proposed approach

produces a 6% error compared to the shell-based method, but with a 7.8x speed-up.
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Figure 6.1: Summary of research
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2. Sizing for dynamic gust loads- It was seen, as expected, that the optimization algo-

rithm sized the outboard sections of the wing to thicknesses larger than those seen

for static sizing.

Overall, the proposed method works well as an early-stage structural weight estimation

tool. With the ribs neglected, the resulting thickness distribution would be less accurate as

compared to a higher-fidelity model. However, the thickness distribution obtained from the

proposed method can be used as an initial guess when running higher-fidelity methods, and

thus helps improve the overall design cycle-time.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Limitations and Future Work

In this dissertation, simplifying assumptions were made or the studies were scoped to be

more manageable. For this method to have more significant practical applications, the

assumptions must be relaxed, and the scope expanded. These aspects are discussed in this

chapter.

7.1.1 Applicability of Beam Theory

A fundamental assumption of beam theory is that the structure is slender – VAM indeed

uses the fact that the cross-sectional dimension is much smaller than the beam’s length.

The slenderness assumption holds for the two test cases considered in this dissertation –

the CRM wing and the PEGASUS concept wing. More generally, the aerodynamic benefits

of high aspect ratio wings have spurred unconventional aircraft concepts that have slender

wings. However, it should be noted that for low aspect ratio wings or wings with large

chord length, the structure cannot be considered slender. A popular aircraft concept that

features a large chord is the blended-wing body (BWB) concept. Future work must test the

applicability of beam theory for the structural analysis and optimization of such aircraft. It

should also be noted that some small parameters are not considered in VAM’s derivation.

One such parameter is the taper, an important planform variable for aircraft wings. The lack

of consideration of taper in VAM’s derivation could explain why the method worked better

for the PEGASUS concept wing than the CRMwing. Further investigation is necessary to

quantify the effect of taper.
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Figure 7.1: Coupled aircraft early-stage design process (Repeated from Fig. 1.5)

7.1.2 Aero-Servo Elastic MDAO

Consider the motivating coupled framework described in Section 1, repeated in Fig. 7.1.

In this dissertation, a claim was made that such a coupled framework was impractical due

to the computational expensive structural failure computation. Through the course of this

work, it was shown that the proposed approach allows for efficient structural failure com-

putation. Thus, the proposed approach is an enabler for the framework. However, this

work did not implement or test the coupled framework. Implementation and testing of the

coupled framework is another proposed future work. Some limitations and challenges still

exist for this framework to be practical. These are discussed next.

Buckling constraints

This dissertation simplified the structural sizing only to consider strength failure con-

straints. Another important failure mode is buckling [180, 165, 32]. As described in

Section 3.1, the stiffeners are the primary components that resist buckling. This disser-

tation proposed a method to smear stiffeners locally, thus allowing for stiffeners of varying

topology, dimensions, and spacing to be used. It is, however, noted that considering such
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Figure 7.2: Dimensionality of stiffeners

stiffeners is not a necessity.

Consider the design variables for stiffeners shown in Fig. 7.2. For uniform stiffeners

on a panel, the design variables are the thickness of the skin ts, the stiffener spacing b,

the stiffener height tb, and the stiffener width tw. The notional non-uniform stiffener on

the hand has ten design variables. It should be noted that each panel has stiffener design

variables. Thus, non-uniform stiffeners lead to a very large number of design variables for

the optimization problem. For early-stages of design, it is acceptable to assume uniform

stiffeners and use the smearing approach described in Section 2.1.1. In either case, the

stiffener design variables and buckling constraints must be included in the optimization.

An approach to consider buckling of skin panels and rib crushing is described in Niu [110].

The buckling loads can be computed from the 1-D analysis responses. After that, shell

buckling equations of the smeared anisotropic structure can be used to check failure and

impose constraints. A method to consider buckling for tow-steered composite aircraft wing

was described by Guimaraes et al. [196].

Flutter constraints

Flutter is a crucial consideration in aircraft design [197, 198]. To capture flutter requires an

accurate prediction of the bending-torsion coupling of the wingbox. It is seen in the litera-

ture that beam models have been used to predict the flutter response accurately [199]. The

beam models in the literature (Section 2.2.4) were generated using either Guyan reduction
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or the displacement matching approach. This dissertation’s proposed method advocates

for a new method to generate the stickmodel directly from the 3-D geometry. However,

the method does not capture the torsional stiffness accurately. A method to overcome this

limitation is proposed as future work (Section 7.1.3). If successful, the proposed method

would result in a beam model used for flutter computations.

Kennedy [197, 198] described a method to impose a flutter constraint and use gradient-

based optimization methods to size the structure. The structural model used in the work

was a shell model. The method is readily adaptable to beams. Lupp et al. [200, 201, 199]

described a gradient-based flutter constraint method using beams.

Aero-servo-elasticity

In this work, the dynamic loads were obtained externally and supplied to the structural

solver. In the framework described in Fig. 7.1, the loads’ generations is coupled with

the stress computation. Accurate computation of dynamic loads for aircraft using beam

models is well established in the literature [202]. As with flutter, it requires an accurate

representation of torsional stiffness and bending-torsion coupling.

Summary of Future Work for AeroServoElasticity

It is seen that implementation of the coupled framework of Fig. 7.1 requires (at least) three

aspects beyond the scope of this thesis to be considered: 1) dynamic load generation, 2)

flutter constraints, and 3) buckling constraints. The current limitation for all three is the

lack of inclusion of the ribs. The following section proposes potential ways to include the

ribs.

7.1.3 Ribs in the Wingbox

As was noted in Gap 4, the presence of aperiodicities along the beam’s span causes numeri-

cal issues for the 1-D analysis. Ribs in the wingbox are an example of such an aperiodicity.
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The rib is a solid section with stiffness larger than the cross-sections immediately before

and after it. This results in a beam with soft-stiff sections along the span. It was seen that

the presence of these aperiodicities causes the condition number to increase and results in

a singular Jacobian matrix when solving the 1-D analysis.

In this dissertation, the ribs were neglected, and the wingbox simplified to a non-

prismatic beam hollow beam without aperiodicities. The inclusion of the ribs is essential

to compute the torsional stiffness of the wing accurately. The bending-torsion coupling is

particularly crucial for composite high-aspect wings. Two potential solutions are discussed

next.

Pre-Conditioners

As noted earlier, the 1-D analysis fails due to the Jacobian matrix becoming singular. A

method in linear algebra called preconditioning is available in the literature. The precondi-

tioner matrix, P for a matrix A is a matrix such that P−1A has a lower condition number

than A. The Jacobian matrix’s analytical form for the 1-D beam residual equations (Sec-

tion A) is available. A potential future work would be to demonstrate that a preconditioner

matrix can be constructed robustly for the Jacobian matrix such that the aperiodicities along

the span do not result in a singular matrix.

Multi-Fidelity Field Surrogate Approach

Another potential solution side-steps the problem of an ill-conditioned Jacobian matrix. It

was seen that a shell model could be used to compute the structural response of the wingbox

accurately. The drawback was the high computational time of the high DoF shell model for

dynamic simulations.

A popular solution in the literature to obtain high accuracy and computationally effi-

cient models is to replace the high-fidelity simulations with a surrogate model [203]. The

surrogate model is an inexpensive-to-evaluate model designed to mimic the output of a
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more complex and expensive model. There are two factors to consider in using surrogate

models:

1. Training cost: The cost to run the simulation many times to gather the data needed

for training

2. Accuracy: How faithfully the surrogate model predicts the actual simulation re-

sponse

There is a trade-off between accuracy and cost in the field of surrogate modeling. Generally

speaking, the more data available to train the surrogate, the more accurate the model would

be. However, generating more data requires running the simulation many more times, re-

sulting in a higher cost. Since surrogate models are meant to replace simulations, collecting

large volumes of data can be computationally prohibitive. One must carefully balance the

surrogate model accuracy with its training cost, mostly the computational cost of creating

the training dataset.

Most surrogate modeling literature focuses on the prediction of scalars. Review of such

models is found in Forrester and Keane [204], Queipo et al. [205], Yondo et al. [206], and

Bhosekar and Ierapetritou [207]. On the other hand, structural responses require predict-

ing field quantities (such as displacements, stresses, and strains), which bring additional

difficulties. A relatively recent solution to field surrogate model generation is to employ a

Reduced Order Model (ROM) [208, 209, 210]. While ROM’s work well for field quantities,

the high computational cost of creating the training dataset persists, and in fact, exacerbated

as compared to scalar surrogate models.

A way to address the dilemma between accuracy and training cost is to build a surro-

gate model using multiple data sources. Consider a scenario with two fidelities of models

available to capture the response of the system:

1. A high-fidelity (high accuracy) computationally expensive physics-based model

2. A lower-fidelity computationally inexpensive physics-based model
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The low fidelity model could be inaccurate in two aspects:

1. Inability to capture one (or more) physical phenomenon

2. Less accurate response values

For example, in the aerodynamics load generation, it is possible to obtain loads using CFD.

CFD can accurately compute the lift and drag on the aircraft. However, CFD is a com-

putationally expensive simulation. One could use a lower-fidelity Doublet Lattice Method

(DLM). DLM gives less accurate values for the lift on the wing and fails to account for

viscous drag, drastically underpredicting the wing’s total drag. However, DLM is compu-

tationally inexpensive and can provide large volumes of data quickly.

A recent idea in field surrogate models is to combine data from different fidelities of

simulation, a so-called multi-fidelity surrogate model [211]. The idea is to obtain two

datasets: a few data samples from the high-fidelity model and many data samples from

the low-fidelity model. The sparse high-fidelity data provides accuracy while the dense

low-fidelity data provides a useful approximation of the rest of the design space. Thus, an

accurate surrogate model is obtained at a lower overall computational cost.

In the context of the present work, the ‘low-fidelity’ model is the proposed beam model

that is inaccurate at capturing the torsional response due to the ribs’ absence. The ‘high-

fidelity’ model is the shell model. The beam model is computationally efficient, whereas

the shell model is computationally efficient. The multi-fidelity field surrogate model can be

trained running a few samples of the expensive shell model and many samples of the cheap

beam model. The process is shown notionally in Fig. 7.3. The generated field surrogate

can then be used for structural optimization.

A challenge to combining beam model data with shell model data is that the two fields

are topologically inconsistent. A recent method to create multi-fidelity field surrogates with

topologically inconsistent fields based on manifold alignment was developed by Perron et

al [212].

181



Figure 7.3: Notional structural multi-fidelity field surrogate model

7.1.4 Additional Experiments to Validate the Method

The experiments run to validate the accuracy of the proposed structural analysis method

focused on the displacement and stress response of the aircraft wings (CRM and PE-

GASUS concept) subjected to a 1g aerodynamic loads. It is essential to test the wings’

modal response to test the wings’ dynamic response thoroughly. Thus, the proposed future

work is to generate the beam model described in this thesis and run modal analysis using

GEBT [133]. The resulting frequencies should be compared against a higher-fidelity shell

model run with Nastran SOL 103. It is expected that the fore-aft bending modes and the

up-down bending modes would be accurate, but the torsional mode would be inaccurate.

In Section 5.2, the PEGASUS concept wing was sized subjected to dynamic gust loads.

It was seen, as expected, that the dynamic loads sized the outboard portions of the wings.

The experiment served as a verification of the method. However, to validate the method,

it is essential to compare it to a higher-fidelity method. It is proposed as future work to

develop a framework that reduces the dynamic loads into static critical load cases. The

aircraft wing must be sized for the load cases using a shell model, and the resulting weight

and thickness distributions compared to those produced by the beam model.
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7.2 Conclusions

The work presented in this dissertation explored the use of dimensional reduction for struc-

tural analysis and sizing of aircraft wings. Existing methods simplify the problem to statics

and/or make assumptions on the structural geometry or material distribution.

A structural analysis method was proposed that relies on only the 3-D geometry as the input

and systematically

1. Reduces the 3-D features to 2-D, capturing the effects of stiffeners of varying topol-

ogy, dimensions, and spacing in the base plate

2. Reduces the 3-D wingbox to a 1-D beam

The key step in these reduction steps was the novel stiffness matching method used in this

work. Stiffness matching ensured the simplified structure’s energy matched the complex

structure’s energy, and thus the structural response was also matched. The dynamics were

solved in 1-D, and recovery relations were used to obtain the 3-D stress fields for the com-

putation of failure metrics. Spatial constraint aggregation techniques in the literature were

extended to the temporal domain to accurately constrain the maximum stress occurring at

any point of the structure and at any time step of the dynamic simulation. A general ad-

joint solver was implemented for BDF time-marching scheme. The terms the adjoint solver

required for the aggregated strength constraints were computed using Automatic Differen-

tiation (AD).

The aviation industry will continue to move towards higher aspect ratio wings, employ

more composites, and use simulation-driven methods and optimization techniques to design

aircraft. The proposed approach provides improvements on the existing methods in the

literature – it is computationally efficient, provides reasonable accuracy for early-stage

structural sizing and weight prediction, and includes dynamic effects. The computational

efficiency makes it well-suited for many-query applications like optimization, design space

exploration, uncertainty quantification, and generating data for surrogate modeling.
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APPENDIX A

NONLINEAR TIMOSHENKO BEAM THEORY

The beam theory used in this work was described by Drela [53] in the aero-servo-elastic

tool ASWING. The ASWING manual provides all the equations of the beam theory. This

appendix summarizes the equations and algorithmically organizes them. In this disserta-

tion, the equations were implemented in Matlab and used for all studies.

The structural dynamics formulation for this work uses a nonlinear beam theory, includ-

ing shear deformation [53, 213, 214, 54], for which the discretized equations are presented

here for completeness.

It is necessary to model the flexibility of all aircraft surfaces: wings, fuselage, horizontal

tail, and vertical tail. The flexible surfaces are treated as beam joined together to form a

stickmodel, as shown in Fig. A.1.

Figure A.1: Aircraft stick model

A.1 Definitions of Matrices

There exist two axis frames in the formulation:

1. A global XYZ inertial frame

2. A body-fixed xyz frame

3. Local csn frames for each beam segment
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A matrix ¯̄Ti is defined that transforms a vector from body-fixed axes to local csn axes as



()c

()s

()n


i

= ¯̄Ti



()x

()y

()z


i

(A.1)

To avoid a singular matrix, the transformation sequence is different for surface beam and

for fuselage beam. For a surface beam, the Euler angles are applied in the order ϕ, ψ, ϑ to

give ¯̄T surfacei . For a fuselage beam, the Euler angles are applied in the order ψ, ϕ, ϑ to give

¯̄T fuselagei . Finally we define a matrix ¯̄TE which transforms a vector from the body-fixed

axes to the inertial axes via a backward sequence Φ,−Θ,Ψ as



()X

()Y

()Z


i

= ¯̄TE



()x

()y

()z


i

(A.2)

The above transformation is required to couple the structural dynamics equations to the

flight dynamics equations.

As seen in Fig. A.1, each beam consists of a number of nodes. The curvature matrix

relates the beam to the xyz frame. The curvature of i’th node is given by

¯̄Ksurface
i =



cosφ cos θ 0 − sin θ

− sinφ 1 0

cosφ sin θ 0 cos θ


i

(A.3)

186



¯̄Kfuselage
i =



cos θ 0 − cosψ sin θ

0 1 sinψ

sin θ 0 cosψ cos θ


i

(A.4)

The complete stiffness matrix is a 6× 6 of the form:



S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66



(A.5)

ASWING simplifies the above matrix to ignore the coupling between the axial and bending

terms to produce two sub-matrices. ¯̄Ei is the moment/curvature stiffness submatrix of i’th

node defined as

¯̄Ei =



EIcc EIcs EIcn

. GJ EIsn

. . EInn


i

(A.6)
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Figure A.2: Cross section properties. Figure based on [53].

¯̄Si is the axial stiffness submatrix of i’th node defined as

¯̄Si =



1
GKc

0 0

. 1
EA

. . 1
GKn


i

(A.7)

In general, a wingbox cross-section has the properties shown in Fig. A.2. The origin

of the c-n axis shown is where the beam axis passes through the cross-section. The mass

centroid, elastic axis, and tension axis are, in general, distinct. An offset matrix of i’th node

to tension and elastic axes of the corresponding cross-section is defined as:

¯̄Di =



0 −nea 0

nta 0 −cta

0 cea 0


i

(A.8)
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A.2 Residual System of Equations

With a state vector defined as X = {~r, ~θ, ~F , ~M, ~u, ~ω}T , the governing structural equations

can be written in residual form as R(X, Ẋ) = 0, where the quantities in Ẋ are the time

derivatives of the quantities in X . First order finite differencing can be used to relate the

states to their derivatives as follows:

Xn =
1

tn − tn−1

Xn +
−1

tn − tn−1

Xn−1 (A.9)

For each node there are 18 variables to be solved for. If n is the number of nodes for a

flexible surface, each flexible surface has 18n unknowns. The equations to solve the system

are:

1. Element equations

(a) 3(n-1) Force equilibrium equations

(b) 3(n-1) Moment equilibrium equations

(c) 3(n-1) Moment-curvature relationships

(d) 3(n-1) Strain-displacement relationships

2. Boundary conditions

(a) 6 conditions at the root

(b) 6 conditions at the tip

3. Nodal equations

(a) 3n transformations: ~̇ri = ~ui

(b) 3n transformations: ~̇θi = [C] ~ωi (matrix C relates the Euler angle rates to angu-

lar velocities)
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In addition, there are 12 equation-variable pairs for each “joint” in the system. Joints

are used to transfer forces and moments from one beam to the other. They also enforce the

constraints that the relative position and orientation between the beams (at the joint) must

remain invariant.

The force and moment equilibrium equations in discretized form are

~Fi+1 − ~Fi + fa∆s+ ∆~F = 0 (A.10)

~Mi+1 − ~Mi +ma∆s+ ∆ ~M + ∆~r × ~Fa = 0 (A.11)

where ()a refers to an average defined as 1
2

(
()i + ()i+1

)
, and fa and ma are the distributed

force and moment for an element. These loads comprise aerodynamic, propulsive and

inertial loads. Further,

~Fa =
1

2

(
~Fi+1 + ~Fi

)
(A.12)

~fa = f
(
~θ, ~ω, ~̇ω, ~r, ~u, ~̇u

)
(A.13)

~ma = f
(
~θ, ~ω, ~̇ω, ~r, ~u, ~̇u

)
(A.14)

∆~r = ~ri+1 − ~ri (A.15)

∆s = (1 + εs)∆s
0 (A.16)

where εs is the axial strain, and ∆s0 the arc length of the element in the undeformed con-

figuration.

First consider the computation of the nodal acceleration. Algorithm 2 shows the com-

putation steps. ~Vac = {U, V,W}T is the gross aircraft velocity in body-fixed axes, and

~Ωac = {P,Q,R}T the gross aircraft angular rates in body-fixed axes.

The inertial force and moment are calculated as shown in Algorithm 3. µ is the mass per

unit length of the element, [i] the mass moment of inertia tensor per unit length, ~α0 the

acceleration of the rigid body, and ~Ω the aircraft rigid body angular velocity.

190



Algorithm 2: Calculate nodal acceleration

1 Read nodal quantities: ~ri, ~ui, ~̇ui, ~ωi, ~̇ωi
2 Read element quantities: ~∆r

i

CG

3 Read aircraft quantities: ~A0, ~Ω, ~α0

4 Read number of nodes on the beam n
5 Pre-allocate variables: aCG : 3× (n− 1), ai : 3× n
6 Compute acceleration at the node as
~ai = ~A0 + ~̇ui + ~α0 × ~ri + ~Ω× ( ~Ω× ~ ir) + 2~Ω× ~ui

7 Compute the acceleration at the location of the center of gravity for each element
~aiCG

8 for i = 1 −→ n− 1 do
9 ~aiCG = 1

2
(~ai + ~ai+1) +

[
~α0 + 1

2
(~ωi + ~ωi+1)

]
× ~∆r

i

CG + ~Ω× (~Ω× ~∆r
i

CG) +[
1
2
(~ωi + ~ωi+1)

]
×
{[

1
2
(~ωi + ~ωi+1)

]
× ~∆r

i

CG

}
10 end
11 return ~aCG

Algorithm 3: Calculate inertial loads

1 Read nodal quantities: ¯̄Ti, ~̇ωi, ~ωi

2 Read element quantities: ~µi, ¯̄ιi,~aiCG, ~∆r
i

CG

3 Read aircraft quantities: ¯̄TE, ~α0

4 Read number of nodes on the beam n
5 Pre-allocate variables: facc : 3× (n− 1),macc : 3× (n− 1)
6 for i = 1 −→ n− 1 do

7 ~f iacc = ~µi ∗

 ¯̄T TE


0

0

−9.81

− ~a
i
CG


8 TιT =

[
1
2

¯̄T Ti + ¯̄T Ti+1

]
¯̄ι
[

1
2

¯̄Ti + ¯̄Ti+1

]
9 ~mi

acc = ~∆r
i

CG × ~f iacc − TιT
(
~α0 +

[
1
2
(~̇ωi + ~̇ωi+1)

])
−(

Ω +
[

1
2
(~ωi + ~ωi+1)

])
×
{
TιT

(
Ω +

[
1
2
(~ωi + ~ωi+1)

])}
10 end
11 return facc,macc
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The offset of the center of gravity of the section from the csn origin expressed in xyz was

shown in Fig. A.2. The effect is taken into account through the term rcg defined as:

~rcg = ccg ĉ+ ncgn̂ (A.17)

The external loads, nodal average reactions, and length of the beam beam are computed as

shown in Algorithm 4.

Algorithm 4: Calculate beam elemental quantities required by residual equations
1 Pre-allocate variables:

f : 3× (n− 1),m : 3× (n− 1), Fav : 3× (n− 1),∆s : 1× (n− 1)
2 Calculate total loading for i = 1 −→ n do
3 ~f i = ~f iacc + ~f iaero
4 ~mi = ~mi

acc + ~mi
aero

5 end
6 Calculate average nodal reactions for i = 1 −→ n− 1 do
7 ~F i

av = 1
2
~Fi + ~Fi+1

8 end
9 Calculate length of element for i = 1 −→ n− 1 do

10 ∆r = ~ri+1 − ~ri
11 ∆si = ||∆r||2
12 end
13 return f,m, Fav,∆s

Finally, the strains are computed as as shown in Algorithm 5.

Algorithm 5: Calculate Strains in csn axes

1 Read nodal quantities: ~Fi, ~Mi,
¯̄Ti,

¯̄Di,
¯̄Si

2 Read number of nodes on the beam n

3 Pre-allocate variables: F csn : 3× n,M csn : 3× n,M ′csn : 3× n, εcsn : 3× n
4 for i = 1 −→ n do
5 ~F csn

i = ¯̄Ti ~Fi

6 ~M csn
i = ¯̄Ti ~Mi

7 M
′csn
i = ~M csn

i + ¯̄DT
i
~F csn
i

8 εcsni = ¯̄Si ~F
csn
i + ¯̄Di

¯̄E−1
i M

′csn
i

9 end
10 return εcsn
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To create a square system to solve, six more equations are needed. The moment-

curvature relations for an element are defined as:

1

2

(
[K]i + [K]i+1

) (
~θi+1

~θi

)
=

1

2

([
K0
]
i
+
[
K0
]
i+1

)

(
~θ0
i+1
~θ0
i

)
+

∆s

2

(
[E]i + [E]i+1

)


M
′
c

M
′
s

M
′
n


a

(A.18)

where

M
′
c

M
′
s

M
′
n


a

=
1

2

(
[T ]i

~Mi + [T ]i+1
~Mi+1

)
+

1

2

(
[D]i [T ]i

~Fi + [D]i+1 [T ]i+1
~Fi+1

)
(A.19)

The strain-displacement relations for an element are defined as:

~ri+1 − ~ri =∆s0

(
1

2
[T ]i+1 + [T ]i

)




0

1

0


+
(

¯̄S [T ] ~F
)
a

+


[
DT
] [
E−1

]


M
′
c

M
′
s

M
′
n




a


(A.20)

The final residual system of equations is populated as shown in Algorithm 6. The residuals

are arranged as a 18 × n matrix for easy visualization. When solving the residuals, the

matrix is reshaped into a 18n× 1 vector.
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Algorithm 6: Populating matrix of residuals
1 Pre-allocate variables: < : 18× n
2 for i = 1 −→ n do
3 if i ≤ n− 1 then
4 Force equilibrium equation: <(1 : 3)i = ~Fi+1 − ~Fi + ~f i∆si + ~∆F

i

ext

5 Moment equilibrium equation:

<(4 : 6)i = ~Mi+1 − ~Mi + ~mi∆si + ~∆M
i

ext + (~ri+1 − ~ri)× ~F i
av

6 Moment-curvature relationship: <(7 : 9)i =[
1
2
( ¯̄Ki + ¯̄Ki+1)

] [
~θi+1 − ~θi

]
−
[

1
2
( ¯̄K0i + ¯̄K0i+1

)
] [
~θ0i+1

− ~θ0i

]
−[

1
2
( ¯̄E−1

i+1 + ¯̄E−1
i )
] [

0.5(M
′csn
i+1 +M

′csn
i )

]
∆si +

tκc 0 0

0 tκs 0

0 0 tκn

{[1
2
( ¯̄Ki + ¯̄Ki+1)

] [
¯̄K−1
i+1

¯̄Ti+1~ωi+1 − ¯̄K−1
i

¯̄Ti~ωi

]}
+


tκc 0 0

0 tκs 0

0 0 tκn

{( ¯̄Ki+1 − ¯̄Ki)
[

1
2
( ¯̄K−1

i+1
¯̄Ti+1~ωi+1) + ¯̄K−1

i
¯̄Ti~ωi

]}
7 Strain-displacement relationship: <(10 : 12)i =

(~ri+1−~ri)−∆si0

[
1
2
( ¯̄Ti+1 + ¯̄Ti)

]T
1

2




0

1

0

+ εcsni +


0

1

0

+ εcsni+1


+


tγc 0 0

0 tγs 0

0 0 tγn

{(~ui+1 − ~ui)−
[

1
2
(~ωi+1+~ωi)

]
× (~ri+1 − ~ri)

}
8 Nodal equations: <(13 : 15)i = ~ui − ~̇ri, <(16 : 18)i = ~ωi − ¯̄T Ti

¯̄Ki
~̇θi

9 end
10 else
11 Nodal equations: <(13 : 15)i = ~ui − ~̇ri, <(16 : 18)i = ~ωi − ¯̄T Ti

¯̄Ki
~̇θi

12 BC at fixed end: <(1 : 3)i = ~r1 − ~rspec1 , <(4 : 6)i = ~θ1 − ~θspec1

13 BC at free end: <(7 : 9)i = ~Fn − ~F spec
n , <(10 : 12)i = ~Mn − ~M spec

n

14 end
15 end
16 return <
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APPENDIX B

RAPID AIRFRAME DESIGN ENVIRONMENT (RADE)

A supporting tool used in this work is the Rapid Airframe Design Environment (RADE)

toolkit [188], developed at the Aerospace Systems Design Laboratory (ASDL). A flowchart

of the capabilities of RADE is shown in Fig. B.1.

RADE contains a module for parametric variation of a baseline OML through the Open-

VSP API, where aerodynamic shape variables such as span, sweep, chord, area, aspect

ratio, twist, among others, can be defined. An example is shown in Fig. B.2a, where a

baseline horizontal tail (gold) was changed to a planform with a larger sweep angle, higher

aspect ratio, and smaller taper ratio.

Once the OML is defined, RADE has an automated capability to create a structural

topology within the bounds of the OML. This is also a parametric implementation, and

RADE has a library of various topological categories, each with its own set of parameters.

Fig. B.2b shows a simple two spar wingbox for the horizontal tail (HT) in which variation of

the front and rear spar locations, rib spacing, and rib orientation can be defined. The RADE

structural geometry module then organizes the spars, ribs, and skin parts into an assembly

hierarchy, in which various definitions can be made for the discretization of surfaces to set

up material and sectional properties. A structural mesh can also be created automatically

with definitions supplied by the user, including desired mesh size, growth rates, curvature

rules, and element types. Example meshes for both configurations can be seen plotted on

top of each other in the right side portion of the HT in Fig. B.2b. The structural model

generation capabilities of RADE are not limited to a single component or section of the

aircraft. Fig. D.8 shows structural geometry layout and mesh for the wing, horizontal tail,

and vertical tail within a fused representation of the OML for the Common Research Model

(CRM).
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(a) Outer mold line (b) Structural geometry and mesh

Figure B.2: Parametric features of the geometry pre-processor shown for a horizontal tail
of the CRM aircraft

Figure B.3: Parametric mesh generation capability: geometry and mesh of mesh of wing
and empennage of the CRM

RADE can also generate an AVL file based on the modified OML to compute realistic

aerodynamic loads. Fig. B.4 shows an AVL model for the B777 aircraft. AVL is used to

obtain cruise loads, and loads at static maneuver conditions of such as 2.5g and -1.0g.

Inertial loads associated with components and subsystems such as engines, control

surfaces, actuators, and hydraulic lines are implemented through concentrated masses.

Fig. B.5 shows a structural layout for the HT with two concentrated masses for the two

actuators of the elevator. The elevator structure itself is treated as a concentrated mass at-

tached to the rear spar, and therefore its stiffness in the system is neglected. Thus, the mass

of the subsystems is accounted for in structural sizing.

The transfer of aerodynamic loads to the structure is by integrating surface pressures to
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Figure B.4: AVL model of a B777

reference points along the span of a wing-like component. A module in RADE [188, 215]

estimates the elastic axis and sets these reference points at the intersection of this line with

rib components. The forces and moments associated with each reference point are then

distributed to the structure via rigid body elements at key intersecting nodes between the

rib and skin.

RADE also provides a module to translate data required for structural analysis with

Nastran in the form of .bdf file, or structural sizing with Hypersizer. RADE executes the

code and obtains responses of interest. Along with stress, strain, and deflection distributions

calculated in Nastran, potential component-based outputs from HyperSizer include

• Optimal sectional dimensions (skin thickness, stiffener height,...)

• Margins of safety

• Critical failure mode (categorization)

• Critical failure method (failure equation)
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Figure B.5: Subsystems treated as concentrated masses and attached to the structure via
rigid body elements

Sizing in RADE is done in three stages. First, the structure is sized for rigid aerody-

namic loads provided by AVL for 2.5g and -1.0g maneuvers. The shell model structure and

loads are given to Nastran SOL 101 for static load analysis. The internal loads computed

by Nastran are used by Hypersizer to size the structure.

Next, the structure is sized for static aeroelastic conditions. Nastran SOL 144 is used

for aeroelastic static load analysis. The main difference between SOL 101 and SOL 144

is the allocation of control constraints in SOL 144, which specify angles of attack, net

pitching moment at the neutral point, and total load factor, which condition the interaction

of the generated aerodynamic mesh with the mission conditions.

Recently the capabilities of RADE were extended to include dynamic aeroelastic sim-

ulations [216]. Nastran SOL 146 is used for gust analysis. The user supplies the following

gust parameters:

• Total simulation time (must include enough time for gust dissipation)
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• Structural damping (assumed 0.02 throughout all the frequency range)

• Time-step of the simulation (0.01 seconds for 5 seconds)

• Number of vibrational modes to take into account (11 wing modes)

• Shape of the gust, either one-minus-cosine or sharp

RADE executes SOL 146 and extracts a set of deflections from each node recorded for each

time-step specified.

For the dynamic simulations to be computationally tractable, RADE uses Guyan Re-

duction[81]. However, the most difficult part is to select the degrees of freedom that are

expected to be ‘unloaded’, and that requires careful analysis of the structure in question.

For that, Nastran with the ASET card allows a custom set of nodes to take into account

as the loaded nodes and generate the required reduced system according to the selected

nodes and degrees of freedom. The reduced stiffness matrix,KASET is also obtained from

Nastran. The following were the different degrees of freedom considered:

• All nodes where the loads are applied, connected with the structure by the rigid body

(RBE3) elements

• The nodes where the engines are connected

• The nodes at the front and rear spars

Apart from the ASET implementation’s speed bonus, it also provides an efficient way

to obtain the loads on the structure during a dynamic simulation.

~fapplied(t) = KASET · ~dASET (t) (B.1)

The loads computed include the applied loads through the FORCE and MOMENT cards

and the inertial, aerodynamic, and other loads that give rise to the deflections observed after

the analysis finishes. Thus the load time-history due to gusts can be computed. Such a load
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history can then be used to find critical load cases, which then can be employed to size the

structure. As before, Hypersizer is used for structural sizing.

Finally, a Nastran SOL 145 flutter check is performed, using the same aerodynamic

and structural mesh as previous solutions. It performs a PK-method flutter analysis, which

allows the estimation of divergent modes in the aircraft structure given a set of flight con-

ditions.
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APPENDIX C

VARIATIONAL ASYMPTOTIC METHOD (VAM)

The theoretical foundation for using the VAM method for composite beams was originally

developed by Hodges [125]. A code named Variational Asymptotic Beam Sectional Analy-

sis (VABS) was developed based on the theory. This appendix presents the equations from

the relevant papers [191, 133, 132, 151, 125, 139].

C.1 Cross-Sectional Analysis using VAM

The behavior of beams is governed by the extended Hamilton’s Principle as shown

∫ t2

t1

[δ(K − U) + δW ]dt = 0 (C.1)

where t1 and t2 are arbitrary fixed times, K is the kinetic energy, U is the internal energy, δ

is the Lagrangian variation for a fixed time, and δW is the virtual work by applied loads.

As seen in Fig. C.1, a beam can be represented by a reference line r measured by x1,

and a reference cross-section which has all the points perpendicular to the undeformed

reference line and along with the xα coordinates. The orthonormal triad of unit vectors

bi is specified at each point along r, such that b1(x1) always remains tangential to the

undeformed reference curve. The position vector of any point in the undeformed beam r̂ is

given as

r̂(x1, x2, x3) = r(x1) + xαbα(x1) (C.2)

where r is the position vector of the points along the reference line. After deformation, the

particle that had position vector r̂ in the undeformed state now has the position vector R̂ in

the deformed state. Another orthonormal triad Bi for deformed configuration are specified

at each point along R which is related to bi as Bi = CBb
ij bj . The position vector of an
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arbitrary point in the deformed state denoted by R̂(x1, x2, x3) can now be expressed as

R̂(x1, x2, x3) = R(x1) + xαBα(x1) + wi(x1, x2, x3)Bi(x1) (C.3)

where the functions wi are the warping displacements, subject to constraints

〈wi(x1, x2, x3)〉 = 0

〈w2,3(x1, x2, x3)− w3,2(x1, x2, x3)〉 = 0

(C.4)

for unique warping solutions, where

〈·〉 =

∫ b
2

− b
2

∫ h
2

−h
2

(·) dx2dx3

Figure C.1: Schematic of Beam Deformation

It is possible to write the 3-D formulation of the extended Hamilton’s Principle (Eq.

C.1) in terms of 1-D beam displacements, rotations and warping defined in Eq. C.3. Strain
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energy is written as

U =

∫ L

0

〈〈σTΓ〉〉dx1 (C.5a)

〈〈•〉〉 =〈•√g〉 (C.5b)

assuming that the material is linearly elastic and thus satisfies Hooke’s law

σ = DΓ (C.6)

where Γ is the 3-D strain and is written as Γ = b Γ11 2Γ12 2Γ13 Γ22 2Γ23 Γ33 cT . Here, xi

represents the beam coordinate frame such that the unit vector x1 points along the span of

the beam and x2, x3 are corresponding cross-sectional coordinates for the cross section.

Warping functions are assumed to be of the order of the strain with assumption of small

local rotations. Thus, the product of warping and 1-D generalized strains may be neglected

and the 3-D strain field can be written as

Γ = Γaw + Γεε+ ΓRw + Γ`w
′ (C.7)

where Γa is a 6×3 matrix, sparsely populated with operators of derivatives with respect to

the cross-sectional coordinates as described in Eq. (C.8). The other symbols (i.e., Γe, ΓR

and Γ`) are defined in Eqs. (C.9), (C.10) and (C.11), respectively. These symbols in Eq.
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(C.7) are further defined and derived in Ref. [125].

Γa =



0 0 0

∂
∂x2

0 0

∂
∂x3

0 0

0 ∂
∂x2

0

0 ∂
∂x3

∂
∂x2

0 0 ∂
∂x3



(C.8)

Γε =
1√
g



1 0 x3 −x2

0 −x3 0 0

0 x2 0 0

0 0 0 0

0 0 0 0

0 0 0 0



=
1√
g

Γε =
4∑
i=0

giΓε (C.9)
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Γ` =
1√
g



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0



=
1√
g

Γ` =
3∑
i=0

giΓ` (C.10)

ΓR =
1√
g



ΓhR −k3 k2

k3 ΓhR −k1

−k2 k1 ΓhR

0 0 0

0 0 0

0 0 0



=
1√
g

ΓR =
3∑
i=0

giΓR (C.11)

where

ΓhR = k1

(
x3

∂

∂x2

− x2
∂

∂x3

)
(C.12)

A detailed derivation of the 3-D strains and the expressions for strain energy density (strain

energy per unit length) is presented in Ref. [125]. The derivation for the strain energy

density and warping constraints were updated by Yu et al. [132]. Further, to do the dimen-
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sional reduction, one must rely on the inherent small parameters that are generally present

in a beam geometry. Denoting the characteristic radius of initial curvature or twist by R,

the two small geometric parameters are b/l and b/R. Therefore, using the finite element

discretization of the warping field [125]

w (x1, x2, x3) = S (x2, x3)V (x1)

w = bw1 w2 w3
cT

(C.13)

where S(x2, x3) are the finite-element shape functions, the expression for the strain energy

from Eq. (C.5) can be rewritten as

2U =V TEV + 2V T (Daεε+DaRV +Da`V
′) + εTDεεε+ V TDRRV

+ V ′TD``V
′ + 2V TDRεε+ 2V ′TD`εε+ 2V TDR`V

′
(C.14)

The matrices in the above equation are defined carefully with the order of magnitude written

in subscript as

Daε = 〈(ΓaS)TDΓ`S〉

= 〈(ΓaS)TDΓε〉
(C.15)

DaR = 〈(ΓaS)TDΓRS〉 (C.16)

Da` = 〈(ΓaS)TDΓ`S〉 (C.17)

207



Dεε = 〈〈ΓTε DΓε〉〉

= 〈 1√
g

Γ
T

ε DΓε〉

= 〈g0Γ
T

ε DΓε〉+ 〈g1Γ
T

ε DΓε〉+ 〈g2Γ
T

ε DΓε〉

+ 〈g3Γ
T

ε DΓε〉+ 〈g4Γ
T

ε DΓε〉

= Dεε0 +Dεε1 +Dεε2 +Dεε3 +Dεε4

(C.18)

DRR = 〈〈(ΓRS)TDΓRS〉〉

= 〈 1√
g

(ΓRS)TDΓRS〉

= 〈g0(ΓRS)TDΓRS〉+ 〈g1(ΓRS)TDΓRS〉+ 〈g2(ΓRS)TDΓRS〉

= DRR2 +DRR3 +DRR4

(C.19)

D`` = 〈〈(Γ`S)TDΓ`S〉〉

= 〈 1√
g

(Γ`S)TDΓ`S〉

= 〈g0(Γ`S)TDΓ`S〉+ 〈g1(Γ`S)TDΓ`S〉+ 〈g2(Γ`S)TDΓ`S〉

= D``2 +D``3 +D``4

(C.20)
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DRε = 〈〈(ΓRS)TDΓε〉〉

= 〈 1√
g

(ΓRS)TDΓε〉

= 〈g0(ΓRS)TDΓε〉+ 〈g1(ΓRS)TDΓε〉+ 〈g2(ΓRS)TDΓε〉+ 〈g3(ΓRS)TDΓε〉

= DRε1 +DRε2 +DRε3 +DRε4

DRεi+1
= 〈gi(ΓRS)TDΓε〉

(C.21)

D`ε = 〈〈(Γ`S)TDΓε〉〉

= 〈 1√
g

(Γ`S)TDΓε〉

= 〈g0(Γ`S)TDΓε〉+ 〈g1(Γ`S)TDΓε〉+ 〈g2(Γ`S)TDΓε〉+ 〈g3(Γ`S)TDΓε〉

= D`ε1 +D`ε2 +D`ε3 +D`ε4

(C.22)

DR` = 〈〈(ΓRS)TDΓ`S〉〉

= 〈 1√
g

(ΓRS)TDΓ`S〉

= 〈g0(ΓRS)TDΓ`〉+ 〈g1(ΓRS)TDΓ`〉+ 〈g2(ΓRS)TDΓ`〉

= DR`2 +DR`3 +DR`4

(C.23)

209



and finally,

E =〈〈(ΓaS)TDΓaS〉〉

=〈(ΓaS)TD(ΓaS)
√
g〉

= 〈(ΓaS)TDΓaSg0〉︸ ︷︷ ︸
E0

+ 〈(ΓaS)TDΓaSg1〉︸ ︷︷ ︸
E1

= E0 + E1

(C.24)

After substituting the values obtained above in Eq. (C.14), the total strain energy that is to

be considered is therefore

2U =(V0 + V1 + V2)T (E0 + E1)(V0 + V1 + V2)

+ 2(V0 + V1 + V2)T (Daε)ε

+ 2(V0 + V1 + V2)T (DaR)(V0 + V1 + V2)

+ 2(V0 + V1 + V2)T (Da`)(V
′

0 + V ′1 + V ′2)

+ εT (Dεε0 +Dεε1 +Dεε2 +Dεε3 +Dεε4)ε

+ (V0 + V1 + V2)T (DRR2 +DRR3 +DRR4)(V0 + V1 + V2)

+ (V ′0 + V ′1 + V ′2)T (D``2 +D``3 +D``4)(V
′

0 + V ′1 + V ′2)

+ 2(V0 + V1 + V2)T (DRε1 +DRε2 +DRε3 +DRε4)ε

+ 2(V ′0 + V ′1 + V ′2)T (D`ε1 +D`ε2 +D`ε3 +D`ε4)ε

+ 2(V0 + V1 + V2)T (DR`2 +DR`3 +DR`4)(V
′

0 + V ′1 + V ′2)

(C.25)

The terms are now split into orders for the asymptotic analysis. It is important to note that

the definitions of the symbols are such that the order of any symbol is the sum of all the

numbers that appear as subscripts in that symbol. While minimizing the strain energy, one

needs to also consider the constraints due to warping mentioned in Eq. (C.4) which are
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represented in terms of discretized warping variables as

V TDc = 0 (C.26)

The kernel of Γa, ψ, from Hodges [125] can be used during the development such that

Γaψ = 0 =⇒ E0Ψ = 0

ψ = SΨ

(C.27)

Zeroth-Order Analysis

From Eq. (C.25), the zeroth-order energy can be obtained as

2U0 =V T
0 E0V0 + 2V T

0 Daεε+ εTDεε0ε (C.28)

Keeping track of the warping constraints, the final equation for zeroth-order warping is

therefore

E0V0 +Daεε = 0 (C.29)

After considering singularities of E0 [125], the final solution is

V0 = V̂0ε (C.30)

The substitution of the zeroth-order warping solutions in the strain energy expression

yields the asymptotically correct zeroth-order strain energy which is given by the expres-

sion

2U0 = εTDεε1ε+ (V ′T0 D`ε1 + V T
0 DRε1)ε+ 2V T

0 DaR1V0 (C.31)

This approximation contains no corrections due to the transverse shear strains. So,

the stiffness matrix obtained from this approximation is analogous to the Euler-Bernoulli
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stiffness matrix such that S in the equation shown below depicts the 4×4 stiffness matrix



F1

M1

M2

M3



=



S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


︸ ︷︷ ︸

S



γ11

κ1

κ2

κ3



(C.32)

Note this this stiffness matrix accounts for corrections due to initial curvature and pre-twist,

unlike conventional Euler-Bernoulli stiffness matrix.

C.1.1 First-Order Analysis

The warping is now perturbed and substituted back in the strain energy. Now, the relevant

terms in the strain energy are those through second-order. However, after the substitution of

the zeroth-order warping solutions in the strain energy expression, the zeroth-order strain

energy is a constant and does not feature in the first-order warping calculation. So, the

expression for strain energy after removing the zeroth-order terms can be written as

2U1 =εTDεε1ε+ (V ′T0 D`ε1 + V T
0 DRε1)ε

+ 2V T
0 DaR1V0 +���

��V T
1 E0V0 + V T

0 E1V0 +���
��V T

0 E0V1 + 2V T
0 Da`1V

′
0

(C.33)
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Further, the second-order terms in the strain energy can be combined and written in the

following expression as

2U2 =εDεε2ε+ (���
��2V T

2 Daε + 2V ′T1 D`ε1 + 2V ′T0 D`ε2 + 2V T
1 DRε1 + 2V T

0 DRε2)ε

+ 2V T
1 DaR1V0 + V T

0 DRR2V0 +���
��V T

2 E0V0 + V T
1 E1V0 + 2V T

0 DaRV1

+ V T
1 E0V1 + V T

0 E1V1 +���
��V T

0 E0V2 + 2V T
1 Da`V

′
0

+ 2V T
0 DR`2V

′
0 + 2V T

0 Da`V
′

1

(C.34)

The canceled terms in the above two equations are results of Eq. (C.29). As expected the

second-order warping plays no part in the second-order strain energy. After considerations

of the warping constraints, the final equation for V1 is

E0V1 =(Dc(Ψ
TDc)

−1ΨT −∆)(DRε+DSε
′)

DR =E1V̂0 + (DaR +DT
aR)V̂0 +DRε1

DS =(Da` −DT
a`)V̂0 −D`ε1

(C.35)

The solution after removing the singularities of E0 may be written as

V1 = V1Rε+ V1Sε
′ (C.36)

Only the terms related with V1 are relevant in the process of the minimization of the strain

energy. After performing integration by parts with respect to x1 to get rid of the derivatives
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of V1, the relevant terms are

F =V T
1 E0V1 + 2V T

1 (E1V0 +Daε1ε+ (DaR +DT
aR)V0 +DRε1ε)

+ 2V T
1 ((Da` −DT

a`)V
′

0 −D`ε1ε
′)

=V T
1 E0V1 + 2V T

1 (E1V̂0 + (DaR +DT
aR)V̂0 +DRε1)ε

+ 2V T
1 ((Da` −DT

a`)V̂0 −D`ε1)ε
′

=V T
1 E0V1 + 2V T

1 DRε+ 2V T
1 DSε

′

(C.37)

Keeping the constraints in mind, one can use the standard procedure of the calculus of

variations to solve for the warping field. Hence

E0V1 =(Dc(Ψ
TDc)

−1ΨT −∆)(DRε+DSε
′)

V1 =V1Rε+ V1Sε
′

(C.38)

where Ψ is the kernel matrix forE0 andDc is the constraint matrix associated with warping

(i.e., E0Ψ = 0 and V TDc = 0, respectively). Using this, we may now obtain the second-

order asymptotically correct strain energy as

2U = εTAε+ 2εTBε′ + ε′TCε′ + 2εTDε′′ (C.39)

The matrices in the above equation are defined as

A =V̂0

T
Daε +Dεε0 + V̂0

T
E1V̂0 + 2V̂0

T
DaR1V̂0 +Dεε1 + 2V̂0

T
DRε1

+Dεε2 + V̂0
T
DRR2V̂0 + 2V̂0

T
DRε2 + V T

1RDR

B =V̂0

T
Da`1V̂0 +DT

`ε1
V̂0 +DT

`ε2
V̂0 + V̂0

T
DR`2V̂0 +

1

2
(V T

1RDS +DT
RV1S)

+ (V̂0
T
Da`1 +DT

`ε1
)V1R

C =V̂0

T
D``2V̂0 + V T

1SDS

D =(V̂0
T
Da` +DT

`ε1
)V1S

(C.40)
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where

DR =(Dc(Ψ
TDc)

−1ΨT + ∆)DR

DS =(Da` +DT
a`)V̂0 +D`ε1

(C.41)

To summarize the minimization process, the strain energy functional thus formed in Eq. (C.25)

is minimized with respect to the warping functions and the warping solutions are further

perturbed to obtain asymptotically correct second order approximations of the strain en-

ergy, Eq. (C.39), respectively. The Generalized Timoshenko (GT) transformation now fol-

lows to convert Eq. (C.39) into the following form

2U = εTXε+ 2εTY γs + γTs Gγs (C.42)

where X , Y and G are unknowns to be found to fit Eq. (C.39) in the GT (i.e. shear de-

formable) model, Eq. (C.42). Here matrices X , Y , and G are of the size 4×4, 4×4, and

2×2, respectively. The transformation procedure involves applying 1-D kinematic equa-

tions, constitutive law, and static equilibrium equations. The result is a system of nonlinear

algebraic equations with unknowns consisting of stiffness matrices X , Y , and G. Because

the strain energy, Eq. (C.42) is a quadratic form involving generalized strain measures, one

obtains a physically linear one-dimensional model. The cross-sectional stress resultants are
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linear in the 1-D generalized strains and can be written in the form



F1

F2

F3

M1

M2

M3



=


X Y

Y T G




ε

γs

 (C.43)

After rearranging the terms in the equation above, one obtains a 1-D constitutive law relat-

ing the 1-D generalized resultant forces on the beam cross section to the 1-D generalized

strains as 

F1

F2

F3

M1

M2

M3



=



S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66


︸ ︷︷ ︸

S



γ11

2γ12

2γ13

κ1

κ2

κ3



(C.44)
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where S is the 6×6 sectional stiffness matrix. The Eq. (C.44) can be written in a condensed

form as 
F

M

 =


A B

BT D




γ

κ

 (C.45)

where A,B and D are the 3× sub-matrices of the stiffness matrix S and have no relation

with the matrices used in laminate theory. F = [ F1 F2 F3 ]T , M = [M1 M2 M3 ]T , γ =

[ γ11 2γ12 2γ13 ]T and κ = [ κ1 κ2 κ3 ]T as shown. Apart from this, one also obtains the 6×6

inertia matrix [I] from the cross-sectional analysis as part of the Eq. (C.46) which is written

as 
P

H

 = [I]


V

Ω

 (C.46)

C.2 1-D Beam Analysis with GEBT

GEBT is based on a mixed formulation. The variational statement in Eq. C.1, after substi-

tuting values for K, U and δW from Ref. [133], is rewritten as a variational statement in

the mixed formulation in Eq. C.47.

∫ t2

t1

∫ l

0

{(
δ̇q + Ω̃δq + Ṽ δψ

)
P +

(
˙δψ + Ω̃δψ

)
H −

(
δq
′
+ K̃δq + (ẽ1 + γ̃)δψ

)
F

−
(
δψ
′
+ K̃δψ

)
M + δq

T
f + δψ

T
m
}
dx1dt =

∫ l

0

(
δq

T
P̂ + δψ

T
Ĥ
)∣∣∣t2

t1
dx1

−
∫ t2

t1

(
δq

T
F̂ + δψ

T
M̂
)∣∣∣l

0
dt

(C.47)

To proceed, the constitutive law from Eq. C.45 and the momentum-velocity relations

containing the mass-matrix from Eq. C.46 are required. Further, to derive the mixed formu-
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lation, the kinematic differential relations in Eq. C.48 are incorporated into the variational

statement in Eq. C.47 with the help of Lagrange multipliers and using the calculus of vari-

ations.

u′ = CbB(e1 + γ)− e1 − k̃u (C.48a)

u̇ = CbBV − v − ω̃u (C.48b)

c′ = Q−1(κ+ k − CbBk) (C.48c)

ċ = Q−1(Ω− CbB)ω (C.48d)

whereQ is a set of Wiener-Milenković rotation parameters defined in Ref [217]. Following

Wang [217], after identifying Lagrange multipliers associated with the kinematic differen-

tial equations in C.48, one obtains

∫ l

0

{
δu′Ta Fa + δψ

′T
a Ma + δuTa (Ṗa + ω̃aPa) + δψ

T

a

[
Ḣa + ω̃aHa + ṼaPa − CaB(ẽ1 + γ̃)FB

]
− δF T

a

[
CaB(e1 + γ)− Cabe1

]
− δF ′Ta ua − δM

′T
a ca − δM

T

aQ
−1
a Cabκ

+ δP
T

a (−u̇a + Va − va − ω̃aua) + δH
T

a (ΩB − ωB − CbaQaċa)− δuTa fa − δψ
T

ama

}
dx1 =(

δuTa F̂a + δψ
T

a M̂a − δF
T

a ûa − δM
T

a ĉa

)∣∣∣l
0

(C.49)

The variational statement in Eq. C.49 is further treated using a suitable 1-D finite ele-

ment discretization. Following Ref. [133], the system of equations, thus formed, is solved

using the Newton-Raphson method along with a line search algorithm to ensure global

convergence. Hence, solutions for the beam 1-D displacement variables are obtained.
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APPENDIX D

DESCRIPTION OF TEST CASE GEOMETRIES

In this appendix, the baseline geometries used as test cases in this paper are described.

Three geometries are considered- a ‘Wing-Like’ Box Beam, the PEGASUS concept air-

craft, and the Common Research Model (CRM). Details of the geometric parametrization,

baseline values, load application mechanism, and 3-D views of the structure are shown.

D.1 ‘Wing-Like’ Box Beam

The parametrization of the box beam is shown in Fig. D.1. It consists of four cross-sections

and three trapezoidal sections. Each cross-section i is rectangular in shape with hi and wi

as the width and height respectively. The spar and skin thicknesses are denoted by ti and

bi, respectively. Three sweep angles, λ1, λ2, and λ3 are used for each of the sections. A

single dihedral angle, θ is used.

From the parametrization described above, five structures were created as shown in

Fig. D.2. The structures are chosen so as to test different aspects of an aircraft wing plan-

form. The simplest is that of a prismatic beam, shown in Fig. D.2a. Fig D.2b is a geometry

where the cross-section of the beam is tapered from root to tip. Sweep and dihedral cases

are shown in Fig. D.2c and Fig. D.2d respectively. Fig. D.2e shows the most complex ge-

ometry which combines taper, sweep and dihedral to generate a structure resembling that

of an aircraft wing. The distance between the cross-sections- d1, d2, and d3, and the heights

of the cross-sections- h1, h2, h3, and h4 are held constant for all five geometries. The val-

ues are given in Table D.1. The dimensions of the widths of the cross-section- w1, w2, w3,

and w4, sweep angles- λ1, λ2, λ3, and dihedral angle- θ differ for the five geometries. The

values are shown in Table D.2.
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(a) Top view

(b) Side view

(c) Cross-section i

Figure D.1: Box beam geometry parametrization
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(a) Prismatic (b) Taper-only

(c) Sweep-only (d) Dihedral-only

(e) Combined taper, sweep and dihedral

Figure D.2: Box beam geometries considered
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Table D.1: Dimensions held constant for all five geometries shown in Fig. D.2

d1 d1 d1

3 m 4 m 3 m

h1 h2 h3 h4

0.5 m 0.5 m 0.5 m 0.5 m

Table D.2: Dimensions varied for the five geometries shown in Fig. D.2

Parameter Prismatic Taper-only Sweep-only Dihedral-only Combined

w1 (m) 3 3 3 3 3

w2 (m) 3 2.5 3 3 2.5

w3 (m) 3 2 3 3 2

w4 (m) 3 1.5 3 3 1.5

λ1 (deg) 0 0 10 0 10

λ2 (deg) 0 0 15 0 15

λ3 (deg) 0 0 20 0 20

θ (deg) 0 0 0 5 5

D.2 PEGASUS Concept Aircraft

The geometry manager used in this work is facilitated through the Rapid Airframe Design

Environment (RADE) toolkit [188], developed at the Aerospace Systems Design Labora-

tory (ASDL). RADE contains a module for parametric variation of a baseline OML through

the OpenVSP API, where aerodynamic shape variables such as span, sweep, chord, area,

aspect ratio, twist, among others can be defined. The OpenVSP model for the Pegasus

wing is shown in Fig. D.3. The PEGASUS wing baseline OML variable values and flight

conditions are shown in TableD.3.

Once the OML is defined, RADE has an automated capability to create a structural

topology within the bounds of the OML. This is also a parametric implementation, and

RADE has a library of various topological categories, each with its own set of parameters.
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Table D.3: Baseline OML & flight condition values for PEGASUS aircraft

Parameter Value Unit

Planform area 586.33280 ft2

Span 80.58962 ft

Aspect ratio 11.0596 -

Taper ratio 0.986 -

TOGW 41005 lbs

Altitude 20000 ft

Mach number 0.5 -

Figure D.3: OpenVSP model of the PEGASUS aircraft

The RADE structural geometry module then organizes the spars, ribs, and skin parts into

an assembly hierarchy, in which various definitions can be made for the discretization of

surfaces to set up material and sectional properties. A structural mesh can also be created

automatically with definitions supplied by the user, including desired mesh size, growth

rates, curvature rules, and element types. The structural topology variable values are shown

in Table D.4.

Fig. D.4 show a wireframe view of the PEGASUS wingbox. The wingbox is divided

into two portions:

1. Center wingbox: This portion of the wingbox extends from the intersection of the
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Table D.4: Baseline structural topology values

Parameter Value Unit

Front spar chord normalized loc 0.18 -

Rear spar chord normalized loc 0.75 -

Rib spacing 28 in

Rib roll 0 deg

Rib yaw 0 deg

Root rib span normalized loc 0.08 -

Tip rib span normalized loc 0.995 -

fuselage outer skin to the symmetry plane at the center of the fuselage.

2. Main wingbox: The portion of the wingbox inside the wing from the root rib to the

tip rib

For the chosen rib spacing of 28 inches, there are 18 ribs. Wingbox stations are numbered

from 0 to 19, with 0 being the symmetry plane, 1 the root rib, and 19 the tip rib. The chosen

front and rear spar normalized locations give a wingbox whose size compared to the wing

OML are shown in Fig. D.5.

Figure D.4: Wireframe view of the PEGASUS wingbox

RADE sets up a series of nodes along the CG of each rib. These nodes are the load

application points. Point forces and moments are applied along these nodes and transfered
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Figure D.5: Wing OML and ribs view of the PEGASUS wingbox

to the skin, spars and ribs through RBE3 elements. This is shown in Fig. D.6a. As in the

shell model with ribs, in the shell model where the ribs have been removed a series of nodes

are created on a 1-D line connecting the CGs of the cross-sections. The loads are applied

at these nodes and distributed via RBE3 elements to the skin and spar. This is shown in

Fig. D.6b.

(a) With ribs (b) Without ribs

Figure D.6: PEGASUS concept wing shell models

Finally, RADE also creates an AVL model to compute aerodynamic loads. Fig. D.7

shows the AVL model for the PEGASUS aircraft. The fuselage is treated as a cruciform.

The four electric engines on the wings are neglected in the AVL model.

225



Figure D.7: AVL model of the PEGASUS aircraft

D.3 Common Research Model (CRM) Aircraft

The RADE toolkit is used to generate the 3-D structural representation of the Common

Research Model (CRM) wing as well. The CRM is an “open-source configuration based

on a transonic transport configuration designed to fly at a cruise Mach number of M=0.85

with a nominal lift condition of CL=0.50, and at a Reynolds number of Rn=40 million

per reference chord”. Fig. D.8 shows structural geometry layout and mesh for the wing,

horizontal tail, and vertical tail within a fused representation of the OML. The baseline

OML, structural topology variables of the CRM wing are given in Table D.5 and Table D.6.

Figure D.8: Geometry and mesh of mesh of wing and empennage of the CRM
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Table D.5: Baseline OML & flight condition values

Parameter Value Unit

Planform area 4444.38127 ft2

Span 193.34768 ft

Aspect ratio 8.3325 -

Taper ratio 0.86031 -

Leading edge sweep 37 deg

TOGW 650000 lbs

Altitude 30000 ft

Mach number 0.8 -

Table D.6: Baseline structural topology values

Parameter Value Unit

Front spar chord normalized loc 0.17 -

Rear spar chord normalized loc 0.68 -

Rib spacing 32 in

Rib roll 0 deg

Rib yaw -10 deg

Root rib span normalized loc 0.1 -

Tip rib span normalized loc 0.995 -
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APPENDIX E

1-D ANALYSIS IMPLEMENTATION VERIFICATION AND VALIDATION

The nonlinear Timoshenko beam theory described in Appendix A was implemented in

Matlab. This appendix provides verification and validation cases for the implementation.

E.1 Comparison to known Analytical Formulae

The code was first validated using simple static load conditions for which analytical solu-

tions exists. Table E.1 shows the analytical cases considered and Fig. E.1 the error.

Table E.1: Analytical test cases to validate beam code

Case Loading Deflection Analytical Formula

Self-weight q = ρA(beam span) δ = qL4

8EI

Concentrated load Tip load F δ = FL3

3EI

Concentrated moment Tip moment M δ = ML2

2EI

Uniformly distributed load UDL q δ = qL4

8EI

Uniformly varying load UVL q δ = qL4

30EI

A dynamic simulation was performed where the structure was initialized at the jig-

shape and subjected to gravity. As seen in Fig. E.2, the simulation reaches steady-state at

the self-weight solution. At time 7.5 seconds, the model was then subjected to a free-fall

which should simulate weightlessness. As seen, the simulation reaches steady-state back

at the jig shape.

E.2 Representative Business Jet

Next, a representative business jet was represented as a stickmodel as shown in Fig. E.3a.

The tip displacement and leading edge up rotation for the wing was validated with data
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Figure E.1: Error between implemented code and known analytical solution for static
loads

provided by a business jet manufacturer, as seen in Fig. E.3b. Note, the axes have been

normalized to protect proprietary data.

E.3 ‘Wing-Like’ Box Beam

Next, a wing-like structure is used. Section D.1 describes the parametrization of the struc-

ture used to validate the code. The results from the beam code were compared against those

from 3-D solid elements FEM model.

In this validation study, the thicknesses of the spars- t1, t2, t3, and t4, and the thicknesses

of the skin- b1, b2, b3, and b4 are held constant to values shown in Table E.2. Fig. D.2 shows

the five geometries considered.

Table E.2: Thicknesses of spars and skin for validation study

t1 t1 t1 t1

0.2 m 0.2 m 0.2 m 0.2 m

b1 b1 b1 b1

0.1 m 0.1 m 0.1 m 0.1 m
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Figure E.2: Dynamic simulation. At 0 seconds, gravity is turned on. At 7.5 seconds, the
beam let into free-fall.

The geometries are created with 3-D solid elements, with the mesh having about 200,000

elements. A fixed boundary condition is used at one end, and tip loads are applied at the

other end. The average displacements over cross-sections 2, 3, and 4 are measured in

3-D FEM, and compared against the beam axis displacements. The values are shown in

Table E.3 for three loading conditions.

Table E.3: Comparison of displacements (m) for validation study

Loading (N) Prismatic Taper-only Sweep-only Dihedral-only Combined

3-D FEM Beam 3-D FEM Beam 3-D FEM Beam 3-D FEM Beam 3-D FEM Beam

Case 1 Fx 0 CS2 0.025139 0.0229 0.025967 0.024538 0.0268 0.025119 0.025448 0.022894 0.026579 0.024502

Fy 0 CS3 0.10974 0.1058 0.12195 0.120345 0.1213 0.120572 0.11108 0.105869 0.12873 0.125516

Fz 1.00E+06 CS4 0.19627 0.1876 0.22239 0.220482 0.22173 0.219244 0.19858 0.187801 0.23837 0.234978

Case 2 Fx 0 CS2 0.12853 0.113618 0.13218 0.12191 0.13705 0.124094 0.12919 0.112809 0.1339 0.12122

Fy -1.00E+06 CS3 0.56642 0.524786 0.62145 0.596382 0.62462 0.593538 0.56729 0.51973 0.64476 0.611695

Fz 5.00E+06 CS4 1.0099 0.930288 1.1289 1.091077 1.1361 1.077246 1.0097 0.920347 1.1854 1.137097

Case 3 Fx 0 CS2 0.29563 0.223217 0.29589 0.237945 0.31535 0.242789 0.29187 0.21942 0.29318 0.234073

Fy -1.00E+06 CS3 1.324 1.025793 1.3628 1.155278 1.4569 1.153865 1.2949 1.003472 1.3768 1.167504

Fz 1.00E+07 CS4 2.3168 1.813536 2.4269 2.103945 2.5931 2.086705 2.2597 1.770524 2.4759 2.155846

Case 1 loading is such that the stresses in the structure are below the yield stress. For

case 2, the loads produce stress slightly higher than the yield stress, while case 3 produces

stresses far above yield. It is seen in Fig. E.4 that for case 1, the error is less than 5%,

which is acceptable given the time-saving benefits of the beam code as compared to 3-D
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Figure E.3: Representative business jet simulation

solid element FEM. For case 2 and case 3, the error is higher. This is to be expected as

beam theory assumes small strains. The strains produced by the loading of case 2 and case

3 is large, and the stresses are beyond the yield stress. For design-optimization, the stresses

in the structure will be constrained to be below the yield stress. Hence, the results of case

1 show the beam code to be adequate for optimization.
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Figure E.4: Percentage error of displacements for validation study
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APPENDIX F

CROSS-SECTIONAL PROPERTIES OF A BOX-BEAM

F.1 Objective Function

The objective function has been adjusted as the total wing weight, which is given by the

following equations:

fm =
n−1∑
i=1

mi

mi = ρ · Vi −→ Vi =
1

3
· si · (Ai+1 + Ai +

√
Ai · Ai+1)

F.2 Box-Beam Cross-Sectional Properties Computation

Consider a box cross-section beam such as seen in Fig. F.1a. The geometry has typical

aircraft wing planform features such as taper, dihedral, and sweep. Each cross-section is a

hollow rectangle.

(a) ‘Wing-like’ geometry used in this work
(b) Rectangular box cross-section assump-
tion and parameters

Figure F.1: Wingbox and cross-section

In general, the beam axis can be chosen to be at any location within the cross-section.

This makes the beam axis location potentially different from the elastic axis, the tension
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axis, and the geometric CG, as shown in Fig. A.2. The design variables of each box cross-

section i of the beam are shown in Fig. F.1b and can be defined by the following quantities:

• hi: height

• wi: width

• ttop,i: top thickness

• tbot,i: bottom thickness

• tright,i: right thickness

• tleft,i: left thickness

The moment/curvature stiffness submatrix, Eq. A.6, used in the equations defined in Sec-

tion A are about the local beam csn frame. We first compute the cross-sectional properties

about the inertial XYZ frame and then transform it to the local csn frame.

We use the notation ( )j,i to denote a property at cross-sectional i and component j can

be top, left, bottom, or right corresponding to 1, 2, 3, or 4 respectively. The area of the

cross-section in inertial XYZ frame is given by:

Ai = A1,i + A2,i + A3,i + A4,i (F.1)

where

A1,i = ttop,i · wi (F.2)

A2,i = tleft,i · (hi − ttop,i − tbot,i) (F.3)

A3,i = tbot,i · wi (F.4)

A4,i = tright,i · (hi − ttop,i − tbot,i) (F.5)
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The area moments of inertia in the inertial XYZ frame are given by:

Ixx,i =
4∑
j=1

Ixx,j,i + Ai · (xi,j,x − cea,x,i)2 (F.6)

Izz,i =
4∑
j=1

Izz,j,i + Ai · (xi,j,z − nea,z,i)2 (F.7)

Ixz,i =
4∑
j=1

−Ai · (xi,j,z − nea,z,i) · (xi,j,x − cea,x,i) (F.8)

where the terms of the top flange are given by:

Ixx,1,i =
wi · t3top,i

12
(F.9)

Izz,1,i =
w3
i · ttop,i

12
(F.10)

xi,1,z =
hi − ttop,i

2
(F.11)

xi,1,x = 0 (F.12)

The terms of the left web are given by

Ixx,2,i =
tleft,i · (hi − ttop,i − tbot,i)3

12
(F.13)

Izz,2,i =
t3left,i · (hi − ttop,i − tbot,i)

12
(F.14)

xi,2,z =
h

2
− ttop,i −

hi − ttop,i − tbot,i
2

(F.15)

xi,2,x =
tleft,i − wi

2
(F.16)
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The terms of the bottom flange are given by

Ixx,3,i =
wi · t3bot,i

12
(F.17)

Izz,3,i =
w3
i · tbot,i

12
(F.18)

xi,3,z =
tbot,i − hi

2
(F.19)

xi,3,x = 0 (F.20)

The terms of the right web are given by

Ixx,4,i =
tright,i · (hi − ttop,i − tbot,i)3

12
(F.21)

Izz,4,i =
t3right,i · (hi − ttop,i − tbot,i)

12
(F.22)

xi,4,z =
h

2
− ttop,i −

hi − ttop,i − tbot,i
2

(F.23)

xi,4,x =
wi − tright,i

2
(F.24)

The modulus weighted centroid is used to compute the elastic axis, and feeds into Eq. A.1.

We make the assumption here that the tension axis coincides with the beam axis.

cea,x,i =

∑4
j=1Aj · Ej · xi,j,x∑4

j=1Aj · Ej
(F.25)

nea,z,i =

∑4
j=1Aj · Ej · xi,j,z∑4

j=1Aj · Ej
(F.26)

cta,x,i = 0 (F.27)

nta,z,i = 0 (F.28)

The torsional stiffness is given by:

Ji =
2 · ((hi − ttop,i

2
− tbot,i

2
) · (wi − tright,i

2
− tleft,i

2
))2

(
(wi−

tright,i
2
−
tleft,i

2
)

(
ttop,i

2
+
tbot,i

2
)

+
((hi−

ttop,i
2
−
tbot,i

2
)

(
tright,i

2
+
tleft,i

2
)

))

(F.29)
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The moment/curvature stiffness submatrix in the inertial XYZ frame is given by

EIXY Z,i =



Ei · Ixx,i 0 Ei · Ixz,i

0 Gi · Ji 0

Ei · Ixz,i 0 Ei · Izz,i


(F.30)

It is transformed into the local csn frame to be used in Eq. A.6 as

EIcsn = [T ]EIXY Z [T ]T (F.31)

For shear stress computation, the stiffness is given by:

Qx,i = wi · ttop,i · (
hi
2
− nea,z,i −

ttop,i
2

)

+
1

2
· tright,i · (

hi
2
− nea,z,i − ttop,i)2

+
1

2
· tleft,i · (

hi
2
− nea,z,i − ttop,i)2

(F.32)

Qz,i = hi · tleft,i · (
wi
2
− cea,x,i −

tleft,i
2

)

+
1

2
· ttop,i · (

wi
2
− cea,x,i − tleft,i)2

+
1

2
· tbot,i · (

wi
2
− cea,x,i − tleft,i)2

(F.33)

The center of gravity of the cross-section feeds into Eq. A.17 and is given by:

rcg,c,i =

∑4
j=1Aj · ρj · xi,j,x∑4

j=1Aj · ρj
(F.34)

rcg,n,i =

∑4
i=1Ai · ρi · xi,j,z∑4

j=1Aj · ρj
(F.35)
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APPENDIX G

GRADIENT OF STRESS CONSTRAINTS USING SYMBOLIC

DIFFERENTIATION

Fig. G.1 explains the process in a DSM format. Table. G.1 shows the symbolic quantities

used as independent variables for the equations formulated.

Table G.1: Symbolic variables used in the formulation for automatic differentiation

Variable Variable Function

x̃sim ∈ R[18·n×t] State vector history

c̃sdv ∈ R[4×n] Cross-Section design variables

c̃p ∈ R[4×2×n] Corner point locations in the csn axis

m̃ ∈ R Maximum stress found

x̃slice ∈ R[18·n] Slice of state at a given time

x̃dotslice ∈ R[18·n] Slice of state derivatives at a given time

F̃ ∈ R[3×n−1] External point forces acting on the beam

M̃ ∈ R[3×n−1] External point moments acting on the beam

F̃c ∈ R[3×n−1] External distributed forces acting on the beam

M̃c ∈ R[3×n−1] External distributed moments acting on the beam

Based on these different symbolic variables, geometric characteristics, and materials,
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more complex functions fs() can be constructed, first at the beam level, following the

mathematical expressions directly, as seen in Table. G.2.

Table G.2: Symbolic Functions at the Beam Level

Quantity Function Reference

cea, nea ≡ fs(c̃sdv) Location of elastic axis with respect to geometric center

Icc, Icn, Inn, J ≡ fs(c̃sdv) Cross-section second moments of inertia

Qn, Qc ≡ fs(c̃sdv) First moments of inertia

¯Amid ≡ fs(c̃sdv) Mid cross-sectional areas

While its true that each of the preceding terms also used other variables such as rotations

and translations ~r, ~θ and material properties E,G, those are fixed after the equations are

defined, and no derivatives with respect to such quantities are calculated for the specific

analysis performed.

From the equations obtained at the beam level, the stress and residual equations are

constructed at the stick model level, as seen in Table. G.3.

Table G.3: Symbolic Functions at the Stick Model Level

Quantity Function Reference

R ≡ fs(c̃sdv, x̃slice, ˜xdotslice, F̃ , M̃ , F̃c, M̃c) Main residual equations for the stick model

σmidvmk,j,t
≡ fs(Icc, Inn, J, cea, nea, Amid) ≡ fs(c̃sdv, x̃sim, c̃p) Von-misses stress

σcornerssk,j,t
≡ fs(Icc, Icn, Inn, cea, nea) ≡ fs(c̃sdv, x̃sim, c̃p) Axial stress

τ centrk,j,t
≡ fs(Icc, Icn, Inn, J, Amid, Qn, Qc, ¯Amid) ≡ fs(c̃sdv, x̃sim, c̃p) Flange shear stress

Fmass ≡ fs(Amid, ¯Amid) ≡ fs(c̃sdv) Total stick model mass
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Table G.4: Symbolic Functions for Constraint Aggregation

Quantity Function Reference

Avm ≡ fs(σ
mid
vmk,j,t

, m̃) ≡ fs(c̃sdv, x̃sim, c̃p, m̃) Von-misses aggregated constraint summation term

Ass ≡ fs(σ
corner
ssk,j,t

, m̃) ≡ fs(c̃sdv, x̃sim, c̃p, m̃) Axial aggregated constraint summation term

Acent ≡ fs(τ
center
rk,j,t

, m̃) ≡ fs(c̃sdv, x̃sim, c̃p, m̃) Flange shear aggregated constraint summation term

cvm,KS ≡ fs(Avm, m̃) ≡ fs(c̃sdv, x̃sim, c̃p, m̃) Von-misses aggregated constraint

css,KS ≡ fs(Ass, m̃) ≡ fs(c̃sdv, x̃sim, c̃p, m̃) Axial aggregated constraint

ccent,KS ≡ fs(Acent, m̃) ≡ fs(c̃sdv, x̃sim, c̃p, m̃) Flange shear aggregated constraint

Table G.5: Derivative functions for optimization

Quantity Function Reference

∂R
∂xi
≡ dR

d~xslice

∂R
∂csi
≡ dR

dc̃sdv

}
fs(c̃sdv, x̃sim, c̃p, m̃) Matrices of residual vectors

∂cvm,KS
∂xi

≡ dcvm,KS
d~xslice

∂cvm,KS
∂csi

≡ dcvm,KS
dc̃sdv

}
fs(c̃sdv, x̃sim, c̃p, m̃) Derivative of aggregated von-Mises con-

straint
∂css,KS
∂xi

≡ dcss,KS
d~xslice

∂css,KS
∂csi

≡ dcss,KS
dc̃sdv

}
fs(c̃sdv, x̃sim, c̃p, m̃) Derivative of aggregated axial constraint

∂ccent,KS
∂xi

≡ dccent,KS
d~xslice

∂ccent,KS
∂csi

≡ dccent,KS
dc̃sdv

}
fs(c̃sdv, x̃sim, c̃p, m̃) Derivative of aggregated axial constraint

∂Fmass
∂csi

≡ dFmass
dc̃sdv

}
fs(c̃sdv) Derivative of total stickmodel mass

From the stress functions, the aggregated constraint functions can then be constructed

as seen in Table. G.4.

Equivalent constraints can be constructed for a slice of time if x̃sim is substituted with

x̃slice . Once the equations have been constructed, CASADI can construct the direct deriva-

tives of the functions with respect to the design variable of choice, resulting in the deriva-

tives shown in Table. G.5.

The usage of the derivatives within the optimization algorithm follow the workflow ob-

served in Fig. G.1 to generate the constraint function [~g,∇g] = f(c̃sdv, c̃p,model). For
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the systems of constraints and the gradients, a sequence of analyses needs to be performed.

All symbolic functions are stored in a model object that describes the structure being sim-

ulated and contains all the relevant constants and the time history of forces and moments

that perturb the structure through time. The constraint function is meant to evaluate the

wing structure’s failure criteria, employing the expressions previously derived. As numer-

ical inputs, it starts with some immediate value of the cross-section design variables ~csdv,

given during optimization, and the numerical locations where the stress is evaluated. The

function will forward-solve each of the load cases independently and store the state history

values.

Then, using the symbolic functions of stress and stress constraints, numerical values for

~g can be obtained, which is a vector construction of the values obtained from the functions

in Table. G.4. The resultant constraint vector has a size of 5 by the number of running load

cases specified. For the calculation of the derivatives of the stress constraints with respect

to the design variables, a backward adjoint solver is used to calculate the sensitivity of the

stress constraints to the evolution of the state ~xsim and, in combination with the symbolic

functions seen in Table G.5, ∇g is finally calculated. This gradient has a size of the length

of ~g by the length of ~csdv. The user can enable or disable stress constraints to verify the

optimization trends with respect to different types of stress.

241



REFERENCES

[1] C Mares and N Ursache, “Aircraft ground structural testing,” Encyclopedia of Aerospace
Engineering, vol. 1-16, 2014.

[2] F. De Florio, Airworthiness: an introduction to aircraft certification. Elsevier, 2010.

[3] “Aircraft accident report ntsb/aar-04/04,” National Transportation Safety Board,
[Online; accessed 20 November 2020].

[4] Code of Federal Regulations, Title 14, Federal Aviation Regulations, Part 25 - Air-
worthiness Standards: Transport Category Airplanes, Federal Aviation Adminis-
tration, 2019.

[5] “Certifying boeing’s airplanes,” The Boeing Company., 2020.

[6] R. S. Lineberger and A. Hussain, “Program management in aerospace and defense;
still late and over budget,” Deloitte Development LLC, New York, 2016.

[7] T Captain, Can we afford our own future? why A&D programs are late and over-
budget — and what can be done to fix the problem, 2009.

[8] I. Dörfler and O. Baumann, “Learning from a drastic failure: The case of the Airbus
A380 program,” Industry and Innovation, vol. 21, no. 3, pp. 197–214, 2014.

[9] A. Naikal and A. Chua, “Airbus A380: A risk management framework,” PhD thesis,
2009.

[10] D. Greising and J. Johnsson, “Behind boeing’s 787 delays,” Chicago Tribune, vol. 10,
2007.

[11] Y. Zhao, “Why 787 slips were inevitable?” Rutgers University, New York, 2013.

[12] A. Flaig, “Airbus A380: Solutions to the aerodynamic challenges of designing the
world’s largest passenger aircraft,” Airbus, Hamburg, Tech. Rep., 2008.

[13] W. L. Glende, “The Boeing 777: A look back,” in AGARD CP, AGARD, 1998.

[14] R. Ruben Del, Propulsion Technologies for Future Aircraft Generations: Clean,
Lean, Quiet, and Green. 2011.

242



[15] G. Rozza, D. B. P. Huynh, and A. T. Patera, “Reduced basis approximation and
a posteriori error estimation for affinely parametrized elliptic coercive partial dif-
ferential equations,” Archives of Computational Methods in Engineering, vol. 15,
no. 3, 2007.

[16] Z. Lyu, Z. Xu, and J. Martins, “Benchmarking optimization algorithms for wing
aerodynamic design optimization,” in Proceedings of the 8th International Con-
ference on Computational Fluid Dynamics, Chengdu, Sichuan, China, Citeseer,
vol. 11, 2014.

[17] R. Dwight and Z.-H. Han, “Efficient uncertainty quantification using gradient-
enhanced kriging,” in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Con-
ference 11th AIAA No, 2009, p. 2276.

[18] M. A. Bouhlel and J. R. Martins, “Gradient-enhanced kriging for high-dimensional
problems,” Engineering with Computers, vol. 35, no. 1, pp. 157–173, 2019.

[19] I. Chakraborty, T. Nam, J. R. Gross, D. N. Mavris, J. A. Schetz, and R. K. Kapa-
nia, “Comparative assessment of strut-braced and truss-braced wing configurations
using multidisciplinary design optimization,” Journal of Aircraft, vol. 52, no. 6,
pp. 2009–2020, 2015.

[20] M. Drela, “Development of the d8 transport configuration,” in 29th AIAA Applied
Aerodynamics Conference, 2011, p. 3970.

[21] R. H. Liebeck, “Design of the blended wing body subsonic transport,” Journal of
aircraft, vol. 41, no. 1, pp. 10–25, 2004.

[22] W. Silva, E. Vartio, A. Shimko, R. Kvaternik, K. Eure, and R. Scott, “Develop-
ment of aeroservoelastic analytical models and gust load alleviation control laws
of a sensorcraft wind-tunnel model using measured data,” in 47th AIAA/ASME/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th
AIAA/ ASME/AHS Adaptive Structures Conference 7th, 2006, p. 1935.

[23] D. Lucia, “The sensorcraft configurations: A non-linear aeroservoelastic challenge
for aviation,” in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics and Materials Conference, 2005, p. 1943.

[24] T. E. Noll, J. M. Brown, M. E. Perez-Davis, S. D. Ishmael, G. C. Tiffany, and
M. Gaier, “Investigation of the helios prototype aircraft mishap volume i mishap
report,” Downloaded on, vol. 9, p. 2004, 2004.

243



[25] M. J. Patil and D. H. Hodges, “On the importance of aerodynamic and structural
geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings,” Jour-
nal of Fluids and Structures, vol. 19, no. 7, pp. 905–915, 2004.

[26] G. Schuhmacher, I. Murra, L. Wang, A. Laxander, O. O’Leary, and M. Herold,
“Multidisciplinary design optimization of a regional aircraft wing box,” in 9th
AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 5406.

[27] T. Klimmek, “Parametric set-up of a structural model for fermat configuration
aeroelastic and loads analysis,” Journal of Aeroelasticity and Structural Dynam-
ics, vol. 3, no. 2, 2014.
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This research is reprinted with permission of the American Institute of Aeronautics and

Astronautics.
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