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SUMMARY 

Metal additive manufacturing (AM) is a group of processes by which metal parts are 

built layer by layer from powder or wire feedstock with high-energy laser or electron 

beams. The most well-known metal AM processes include selective laser melting, electron 

beam melting, and direct energy deposition. Metal AM can significantly improve the 

manufacturability of products with complex geometries and heterogeneous materials. It 

has the potential to be widely applied in various industries including automotive, 

aerospace, biomedical, energy, and other high-value low-volume manufacturing 

environments. However, the lack of complete and reliable process-structure-property (P-

S-P) relationships for metal AM is still the bottleneck to produce defect-free, structurally 

sound, and reliable AM parts. There are several technical challenges in establishing the P-

S-P relationships for process design and optimization. First, there is a lack of fundamental 

understanding of the rapid solidification process during which microstructures are formed 

and the properties of solid parts are determined. Second, the curse of dimensionality in the 

process and structure design space leads to the lack of data to construct reliable P-S-P 

relationships.  

Simulation becomes an important tool to enable us to understand rapid solidification 

given the limitations of experimental techniques for in-situ measurement. In this research, 

a mesoscale multiphysics simulation model, called phase-field and thermal lattice 

Boltzmann method (PF-TLBM), is developed with simultaneous considerations of 

heterogeneous nucleation, solute transport, heat transfer, and phase transition. The 

simulation can reveal the complex dynamics of rapid solidification in the melt pool, such 



 

xx 
 

as the effects of latent heat and cooling rate on dendritic morphology and solute 

distribution. The microstructure evolution in the complex heating and cooling environment 

in the layer-by-layer AM process is simulated with the PF-TLBM model.  

To meet the lack-of-data challenge in constructing P-S-P relationships, a new scheme 

of multi-fidelity physics-constrained neural network (MF-PCNN) is developed to improve 

the efficiency of training in neural networks by reducing the required amount of training 

data and incorporating physical knowledge as constraints. Neural networks with two levels 

of fidelities are combined to improve prediction accuracy. Low-fidelity networks predict 

the general trend, whereas high-fidelity networks model local details and fluctuations. The 

developed MF-PCNN is applied to predict phase transition and dendritic growth. A new 

physics-constrained neural network with the minimax architecture (PCNN-MM) is also 

developed, where the training of PCNN-MM is formulated as a minimax problem. A novel 

training algorithm called Dual-Dimer method is developed to search high-order saddle 

points. The developed PCNN-MM is also extended to solve multiphysics problems. A new 

sequential training scheme is developed for PCNN-MMs to ensure the convergence in 

solving multiphysics problems. A new Dual-Dimer with compressive sampling (DD-CS) 

algorithm is also developed to alleviate the curse of dimensionality in searching high-order 

saddle points during the training. A surrogate model of process-structure relationship for 

AM is constructed based on the PF-TLBM and PCNN-MM. Based on the surrogate model, 

multi-objective Bayesian optimization is utilized to search the optimal initial temperature 

and cooling rate to obtain the desired dendritic area and microsegregation level. The 

developed PF-TLBM and PCNN-MM provide a systematic and efficient approach to 

construct P-S-P relationships for AM process design. 



 

 1 

CHAPTER 1. INTRODUCTION 

Metal additive manufacturing (AM) is a group of processes by which metal parts are 

built layer by layer from powder or wire feedstock with high-energy laser or electron 

beams. The most well-known metal AM processes include selective laser melting (SLM), 

electron beam melting (EBM), and direct energy deposition (DED). Metal AM can 

significantly improve the manufacturability of products with complex geometries and 

heterogeneous materials. It can be used to produce complex or customized parts, such as 

meta-materials [1], without the need for expensive tooling. It also allows us to control the 

chemical composition of a part locally by adjusting the mixture of different powders at 

each layer or even at individual voxel level [2]. Furthermore, metal AM enables tailoring 

microstructures and thereby mechanical properties of a part by the local control of 

crystallographic grain orientation [3]. It has the potential to be widely applied in various 

industries including automotive, aerospace, biomedical, energy, and other high-value low-

volume manufacturing environments. In automotive, metal AM has been used for 

prototyping, rapid fabrication, and repair of industrial hardware such as dies, punches, and 

customized tooling. In aerospace, lighter and more durable fuel nozzles are directly 

produced by metal AM without assembly of multiple parts with significant cost savings. 

In biomedical applications, metal AM can significantly improve the integration and 

biocompatibility of medical implants. In the energy industry, mixing and swirling burner 

tips made by metal AM can save energy, extend component lifetime, and reduce system 

repair frequencies and downtime.  
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The microstructures of materials are the direct results of processing conditions, 

whereas the microstructures determine the material properties. The process-structure-

property (P-S-P) relationships constitute the guiding principles of materials design. The 

essential task of material and process design is to establish the P-S-P relationships. The P-

S-P relationships in metal AM processes are complex since many process parameters can 

be controlled locally at the fine-grained level. Experimental studies have shown that 

processing conditions such as the power of heat source, scanning speed, scanning patterns 

[3,4], powder layer thickness, hatch spacing, building directions [5], shielding gas [6], 

external electromagnetic field [7], post processing [8], in-situ feedstock materials blending 

[9,10], nanoscale nucleants [11], microalloying with grain refiners [12], and others have 

major influences on the final solidified microstructures. Major microstructural 

characteristics such as internal defects (e.g., gas pore, lack of fusion), surface roughness, 

grain size distribution, grain shapes (e.g., cellular, columnar, equiaxed), phase distribution, 

composition distribution, precipitation, and others affect the mechanical, thermal, and 

electrochemical properties of final parts [13–16]. The lack of complete and reliable P-S-P 

relationships for metal AM is still the bottleneck to produce defect-free, structurally sound, 

and reliable AM parts [14]. 

1.1 Challenges of AM Process Design and Optimization 

There are two major technical challenges in establishing P-S-P relationships for AM 

process design and optimization. The first challenge is the lack of fundamental 

understanding of the rapid solidification process during which microstructures are formed 

and the properties of solid parts are determined. During the complex process of rapid 

solidification, interactions between solute transport, heat transfer, fluid dynamics, and 
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phase transition have significant effects on the formation of the microstructure. The final 

solidified microstructure determines the mechanical strength, thermal conductivity, 

corrosion resistance, and other properties of the final parts. Currently, the capabilities of 

in-situ observation for rapid solidification at the nano- and micro-scales are very limited. 

Compared to experimental studies, simulation is more cost-effective to reveal the cause-

effect relationships. Therefore, multiscale multiphysics simulation models are needed to 

enable a deeper understanding of rapid solidification. Traditional macroscale or mesoscale 

simulations [17,18] can predict multiphysics of heat transfer and melt flow [19–24], as well 

as powder dynamics [25,26], residual stress and distortion [27–29]. However, they do not 

provide the details of microstructure formation. Although empirical and semi-empirical 

approaches [30–32] have been developed to predict texture evolutions very efficiently, they 

do not provide fine-grained details of dendritic growth and composition distribution, which 

are important for property predictions. Therefore, mesoscale simulations such as phase-

field method and cellular automaton are needed to predict microstructure evolution during 

rapid solidification. 

The second challenge is the curse of dimensionality in the process and structure 

design spaces, which leads to the lack of data to construct reliable P-S-P relationships. To 

systematically optimize process parameters, a comprehensive P-S-P relationship is 

necessary. Given a large number of design parameters for processes and structures 

therefore high complexity of P-S-P relationships, surrogates of P-S-P relationships need to 

be constructed to systematically guide the design optimization. Constructing surrogates of 

high-dimensional P-S-P relationships with data-driven approaches such as machine 

learning (ML) requires a significant amount of training data, which are obtained from 
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experiments or simulations. As ML tools need to capture more detailed patterns or sensitive 

features, more complex modeling structures need to be introduced with more parameters 

and degrees of freedom. As a result, training algorithms need to explore and exploit in a 

very high-dimensional parameter space to search for the optimal parameters. When the 

dimension increases, the volume of the parameter space increases exponentially, so does 

the required amount of training data to cover the space, to ensure the convergence of 

training. Only relying on expensive simulations or physical experiments to generate a large 

volume of training data will be very expensive. When the size of the training data set is 

small, overfitting can occur. That is, the training results in a spurious relationship that looks 

deceptively good but has low generality outside the labeled data range. Therefore, new 

data-driven machine learning frameworks are needed to construct reliable P-S-P surrogates 

even with a small amount of training data. 

1.2 An Overview of the Developed Process Design Framework 

The objective of this research is to investigate the feasibility of a hybrid physics-

based data-driven process optimization approach to establish reliable surrogates of process-

structure-property relationships for metal additive manufacturing aided by mesoscale 

multiphysics simulation and physics-constrained machine learning. 
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Figure 1.1. Process optimization based on multiphysics simulation and physics-
constrained machine learning. 

The proposed generic process design framework is shown in Figure 1.1. Mesoscale 

multiphysics simulation models help reveal the details of rapid solidification with 

predictions of grain texture and composition distributions in microstructures. A phase-field 

and thermal lattice Boltzmann method (PF-TLBM) is developed with simultaneous 

considerations of heterogeneous nucleation, solute transport, heat transfer, fluid dynamics, 

and phase transition. To reduce the computational costs in establishing the process-

structure relationships, a physics-constrained machine learning approach is taken to 

construct the surrogate to predict dendritic morphology and alloy compositions from 

process parameters. A new scheme of multi-fidelity physics-constrained neural network 

(MF-PCNN) is developed to improve the efficiency of training in neural networks by 

reducing the required amount of training data and incorporating physical knowledge as 
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constraints. A new physics-constrained neural network with the minimax architecture 

(PCNN-MM) is also developed, where the training of PCNN-MM is formulated as a 

minimax problem. The training can be based on either simulation or experimental data. 

After training, this new machine learning tool can predict microstructures from process 

parameters efficiently as a surrogate without relying on expensive simulations or 

experiments. The process-structure surrogate relationship can be applied to perform 

process optimization. Global optimization tools such as Bayesian optimization can be used 

to search the optimal process parameters so that the desired microstructures such as 

dendritic area and composition distribution with target material properties can be achieved. 

Continuum simulations such as finite element analysis (FEA) can be used to predict 

properties (e.g. mechanical strength, corrosion resistance) from microstructures. The 

predicted structure-property mappings can also be utilized in the optimization. 

The process design framework in Figure 1.1 is generic. In this dissertation, we only 

focus on its three core components, which are the proposed phase-field and thermal lattice 

Boltzmann method for multiphysics simulation, physics-constrained neural network with 

minimax architecture, and Bayesian optimization for process design. 

1.2.1 Phase-Field and Thermal Lattice Boltzmann Method 

To better understand the rapid solidification during AM processes, we developed a 

mesoscale multiphysics simulation model, called phase-field and thermal lattice 

Boltzmann method (PF-TLBM), with simultaneous considerations of heterogeneous 

nucleation, solute transport, heat transfer, fluid dynamics, and phase transition. In this 

model, the phase-field method simulates the dendrite growth of alloys, whereas the thermal 

lattice Boltzmann method models heat transfer and fluid flow. The phase-field method and 
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the thermal lattice Boltzmann method are tightly coupled. A nucleation model is introduced 

in the PF-TLBM model to simulate heterogeneous nucleation at the boundary of the melt 

pool in SLM. The PF-TLBM model is also extended to predict the multi-layer epitaxial 

grain growth in the complex heating and cooling environment in SLM. A new marching 

cell simulation scheme is developed to reduce the computational cost. 

1.2.2 Multi-Fidelity Physics-Constrained Neural Network 

To meet the lack-of-data challenge in constructing P-S-P relationships, a new scheme 

of multi-fidelity physics-constrained neural network (MF-PCNN) is developed to improve 

the efficiency of training in neural networks by reducing the required amount of training 

data and incorporating physical knowledge as constraints. Neural networks with two levels 

of fidelities are combined to improve prediction accuracy. A low-cost low-fidelity physics-

constrained neural network (LF-PCNN) is used as the baseline model, whereas a limited 

amount of data from a high-fidelity physics-constrained neural network (HF-PCNN) is 

used to train a second neural network to predict the difference between the two models.  

1.2.3 Physics-Constrained Neural Network with the Minimax Architecture 

To systematically adjust the weights of different losses for data and physical 

constraints in a physics-constrained neural network (PCNN), a new physics-constrained 

neural network with the minimax architecture (PCNN-MM) is developed. The training of 

the PCNN-MM is searching the high-order saddle points of the objective or loss function. 

A novel saddle point search algorithm called the Dual-Dimer algorithm is developed, 

where only first derivatives need to be calculated. It is demonstrated that the Dual-Dimer 

method is computationally more efficient than the gradient descent ascent (GDA) method 
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for nonconvex-nonconcave functions and provides additional eigenvalue information to 

verify the search results. To further reduce the computational cost, a multi-fidelity PCNN-

MM (MF-PCNN-MM) is developed to integrate the low-fidelity (LF) and high-fidelity 

(HF) data. In the MF-PCNN-MM, LF and HF data are integrated together to make the 

tradeoff between efficiency and accuracy for multi-fidelity metamodeling. The MF-PCNN-

MM is composed of two artificial neural networks (ANNs). The first ANN is used to 

approximate the LF data, whereas the second ANN is adopted to approximate the mapping 

function between the LF and HF data.  

To accelerate the convergence of PCNN-MMs during training in solving 

multiphysics problems, a new sequential training scheme is developed. For each of the 

coupled physical fields, one neural network is constructed. The trainings of them are done 

sequentially. The sequential training scheme helps improve the convergence speed and the 

prediction accuracy from the original PCNN-MM. A new saddle point search algorithm 

called Dual-Dimer with compressive sampling (DD-CS) is developed with iterations of 

three stages in the DD-CS algorithm. In the first stage, the PCNN-MM is trained in the 

complete parameter space with all weights of neurons. In the second stage, the PCNN-MM 

is trained in the reduced parameter space by taking advantage of sparsity. In the third stage, 

the compressive sampling approach is used to recover the original weights of the neural 

network. 

1.2.4 Process Design Framework 

A new generic process design framework is developed. The dendritic growth under 

different processing parameters (initial temperature and cooling rate) are simulated by PF-

TLBM. The simulation outputs include phase field, temperature field, and composition 
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field. Partial simulation results serve as the training data for the training of the PCNN-MM. 

Once the training of PCNN-MM is completed, the predicted microstructures from the 

PCNN-MM are characterized with dendritic area and microsegregation. In this way, a 

surrogate model of the process-structure relationship is built for additive manufacturing. 

Based on the surrogate model, multi-objective Bayesian optimization (BO) is utilized to 

search the optimal initial temperature and cooling rate to obtain the desired dendritic area 

and microsegregation level. 

1.3 Technical Contributions 

The novel contributions of the dissertation are highlighted as follows. 

• A new mesoscale multiphysics simulation model called PF-TLBM is 

developed to predict microstructure evolution of alloys in rapid solidification 

by concurrently coupling heterogeneous nucleation, solute transport, heat 

transfer, latent heat, fluid dynamics, and phase transition. A new method is 

developed to compute heat fluxes for a two-dimensional small melt pool to 

approximate the actual non-isothermal temperature field in metal AM 

processes. To reduce the computational cost, a new marching cell 

simulation scheme is introduced in the PF-TLBM model to predict the 

multi-layer epitaxial grain growth in metal AM processes. The developed 

PF-TLBM model enables a deeper understanding of the rapid solidification 

process in metal AM and makes it possible to simulate the microstructure 

evolution at the scale of the whole building part. 

• A novel physics-based machine learning model called MF-PCNN is proposed 

to reduce the required amount of training data, and multi-fidelity networks 
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are constructed to improve the training efficiency. A new PCNN-MM is 

proposed to adjust the weights of different losses systematically. A novel and 

general saddle point search algorithm called Dual-Dimer method is 

developed to train the PCNN-MM. To reduce the computational cost, a new 

MF-PCNN-MM is developed to integrate the LF and HF data for the 

concurrent training of LF and HF neural networks. A new sequential training 

scheme is developed to improve the convergence and prediction accuracy of 

PCNN-MMs in solving multiphysics problems. A new saddle point search 

algorithm called DD-CS is also developed to alleviate the curse of 

dimensionality in searching high-order saddle points during the training. The 

developed physics-constrained machine learning models and training 

algorithms are promising approaches to alleviate the curse of dimensionality 

in general ML applications. 

• A new generic process design framework is developed for process 

optimization. A surrogate model of process-structure relationships is 

constructed based on the PCNN-MM trained by the simulation data from PF-

TLBM. The constructed surrogate model is used in multi-objective BO to 

search the optimal process parameters so that the desired dendritic area and 

composition distribution can be achieved. 

1.4 Dissertation Organization 

In the remainder of this dissertation, CHAPTER 2 provides some background 

knowledge related to the topics of phase-field method, nucleation models, multiphysics 

simulation of rapid solidification coupled with phase field or cellular automaton 
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simulations, methods of incorporating prior knowledge in machine learning, saddle point 

search methods, and physics-constrained neural networks for solving multiphysics 

problems. The PF-TLBM model is developed to simulate rapid solidification of Ti-6Al-4V 

alloy in CHAPTER 3. In CHAPTER 4, the PF-TLBM model is extended to simulate the 

nucleation and dendritic growth of AlSi10Mg alloy in single scanning pass and multiple 

scanning passes. The MF-PCNN is developed and demonstrated by three examples of 

materials modeling in CHAPTER 5. The formulation and demonstration of the PCNN-MM 

and the MF-PCNN-MM are described in CHAPTER 6. The formulation, convergence 

analysis, and evaluation of the Dual-Dimer algorithm are also included. In CHAPTER 7, 

the PCNN-MM is extended to solve multiphysics problems. A generic process design 

framework is developed for rapid solidification process optimization for metal AM 

processes in CHAPTER 8. 
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CHAPTER 2. BACKGROUND 

In this chapter, the background of phase-field method and nucleation models are 

introduced. The literature review on multiphysics simulation of rapid solidification coupled 

with phase-field method or cellular automaton is included. Existing methods of 

incorporating prior knowledge in machine learning are described. The existing saddle point 

search methods are reviewed. The background of physics-constrained neural networks for 

solving multiphysics problems is also given. 

2.1 Phase-Field Method 

Various simulation models have been developed to understand and predict 

microstructure evolution during rapid solidification. These include sharp interface 

tracking, enthalpy, level-set, cellular automaton (CA), and phase-field method (PFM) [33]. 

Particularly, PFM and CA are the most used methods. PFM simulates a much longer time 

scale than what molecular dynamics is able to, and provides more physical details of 

material phases than what kinetic Monte Carlo simulation can. CA [34–39] is 

computationally much more efficient than PFM since it explicitly tracks the liquid-solid 

front so that coarser mesh can be used. CA can be applied to simulate much larger systems 

than PFM. PFM method [40,41] implicitly models the interface and can reveal more details 

of interface geometry and side branch emission. The major technical issue of CA is its 

predictions of anisotropic grain structures are sensitive to the choice of mesh shapes and 

sizes due to coarse representation [42]. Improvements of CA have been made to calculate 

the local interface curvature and velocity from solid fractions of cells [43–49] in order to 

mitigate the mesh-dependent anisotropy issue. Yet these improvements require much 
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denser meshes than regular CA. As a result, CA’s major advantage of computational 

efficiency quickly diminishes and computational cost can become comparable to PFM 

[50].  

In PFM, a continuous variable named phase field indicates the solid phase fraction 

in the simulated domain. The microstructure evolution is modeled with a partial differential 

equation driven by the interfacial and chemical free energies. In parallel, the composition 

field is also evolved as a diffusion process coupled with the phase field. PFM has been 

widely used to simulate dendritic growth in the solidification processes of casting and 

welding [51–53]. Comprehensive models such as multi-component multiphase field model 

coupled with thermodynamic databases can simulate alloy solidification accurately and 

reveal details [54]. Recently, PFM was employed to simulate the grain growth of Ti-6Al-

4V alloy in the EBM process [55,56]. It has been revealed that increases in temperature 

gradient and beam scanning speed reduce the primary arm spacing of columnar dendrites. 

However, in the studies with PFM only, the multiphysics effects of melt flow and local 

temperature due to latent heat were not considered. Those effects need to be studied to 

better understand rapid solidification. 

2.2 Nucleation Models 

Nucleation affects the accuracy of simulated microstructures in metal AM, but it has 

only been considered in few studies of PFM simulation. Shimono et al. [57] simulated the 

columnar-to-equiaxed (CET) transition of Ti-6Al-4V alloy during the AM process by 

coupling PFM with the calculation of phase diagrams (CALPHAD). A continuous 

Gaussian nucleation distribution was used to describe the grain density increase with the 

increase in undercooling. The empirical nucleation parameters, such as maximum 



 

 14 

nucleation density and mean undercooling, were calibrated based on experimental results. 

However, this empirical model missed some important physics of nucleation compared to 

classical nucleation theory (CNT). Gránásy et al. [58,59] described two methods to include 

homogeneous nucleation into PFM simulations. In the first method, Langevin noise terms 

were introduced in PFM as a nucleation force. In the second one, the nucleation energy 

barrier was determined by solving the Euler–Lagrange equations of the phase-field and 

composition field. PFM was also used to determine the nucleation energy barrier for 

heterogeneous nucleation, where appropriate boundary conditions were introduced at the 

foreign wall to realize the required contact angle [60]. Pusztai et al. [61] introduced 

Langevin noise terms in PFM to simulate homogeneous and heterogeneous nucleation in 

polycrystalline. However, by introducing Langevin noises, nucleation could occur 

anywhere in the simulation domain rather than the solid-liquid interface because of the 

nature of stochastic partial differential equations. The model works well for large melt 

pools such as in casting, but is not accurate in SLM with small melt pools.  

In powder-based SLM, the size of the melt pool is usually less than 100 μm. 

Furthermore, it is known that nucleation and growth occur at different time scales, the 

observation of nucleation would require an impractically large number of sample 

frequencies and integration cycles. Therefore, Simmons et al. [62] replaced the Langevin 

noise terms in PFM with a Poisson seeding algorithm, where viable nuclei were introduced 

at a time-dependent nucleation rate. However, the developed model is used for 

homogeneous nucleation rather than heterogeneous nucleation. In the work of Li et al. [63], 

the nucleation kinetics of binary melts is calculated based on CNT. The model was 

originally used to simulate polycrystalline solidification of NiCu alloy in casting, where 
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the clear CET transition was clearly shown. However, the heterogeneous nucleation in the 

model occurred in the melt pool rather than the boundary of the melt pool. In SLM, 

heterogeneous nucleation tends to occur at the solid-liquid interface at the bottom of the 

small melt pool as experimentally observed. An accurate and reliable nucleation model is 

necessary to simulate microstructure evolution within the melt pool in metal AM processes. 

2.3 Multiphysics Simulation of Rapid Solidification Coupled with PFM or CA 

The rapid solidification in AM is a highly complex process, where it is not 

appropriate to make equilibrium assumptions about the thermal field and melt flow. A 

multiphysics simulation approach is necessary to understand the coupling effects among 

temperature, velocity, composition, and phase fields. Fluid dynamics can be simulated with 

finite volume method (FVM), lattice Boltzmann method (LBM), and finite element method 

(FEM), whereas heat transfer is usually simulated with FEM. Integrated models include 

CA-FVM [64], CA-LBM [65–68], PFM-FEA [69–73], and PFM-FVM [74] have been 

developed. However, in those multiphysics models, simple one-way coupling was adopted, 

which cannot reveal the complex coupling effects between different physics. Some efforts 

have been made to combine PFM and LBM to simulate the dendritic growth in the 

solidification of pure metals and alloys [75–79], allowing for the interplay between grain 

growth and melt flow. However, in these integrated models, either the isothermal condition 

or a one-dimensional temperature field was assumed [80], which still oversimplifies the 

physical processes. The temperature field during rapid solidification can be much more 

complex than that of solidification under the equilibrium thermal condition because melt 

flow and the release of latent heat will constantly change the temperature distribution. 

Therefore, the effects of latent heat and melt flow on phase transition should be 
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simultaneously considered in tightly coupled multiphysics modeling of solidification for 

more accurate predictions. 

In this dissertation, a new mesoscale multiphysics simulation approach is proposed, 

which couples PFM and thermal lattice Boltzmann method (TLBM) to simulate 

microstructure evolution during the rapid solidification process. Compared to traditional 

finite volume methods to simulate fluid flow, the lattice Boltzmann method (LBM) has 

computational advantages for systems with complex boundaries [81–83]. LBM is capable 

of simulating single-phase and multiphase flow with complex boundary conditions and 

multiphase interfaces. To incorporate thermal effects into fluid dynamics, the thermal 

lattice Boltzmann method (TLBM) [84–90] has also been developed. Unlike LBM, which 

uses a single particle distribution function for fluids, TLBM uses two distinct particle 

distribution functions for fluid dynamics and heat transfer respectively. TLBM has been 

recently adopted to simulate the evolution of temperature and velocity fields in the EBM 

process [91]. However, the simulation using TLBM alone lacks fine-grained phase 

information, because it cannot simulate the evolution of dendrite structures. Our new 

integrated phase-field and thermal lattice Boltzmann method (PFM-TLBM) provides 

multiple physics information of phase field, composition, fluid velocity, and temperature 

simultaneously for the first time. Besides, a nucleation model is introduced into the PF-

TLBM for simulating the microstructure evolution of alloys in SLM. 

2.4 Methods of Incorporating Prior Knowledge in Machine Learning 

Our goal of employing ML tools is to help establish P-S-P relationships. In various 

engineering and scientific applications, the cost of obtaining a large amount of data from 

experiments or high-fidelity simulations can be prohibitive. Data sparsity is the bottleneck 
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for applying the state-of-the-art ML techniques in the domains of engineering, where 

establishing high-dimensional P-S-P relationships for either product or process design is 

the essential task. Training ML tools based on prior knowledge of physics can help navigate 

the high-dimensional parameter space with a smaller amount of training data [92].  

Incorporating physical meanings and physical knowledge in artificial neural 

networks (ANNs) has been studied from two major perspectives [93,94]. The first approach 

is to customize ANNs and incorporate physical meanings in the architecture [95,96]. For 

instance, prior knowledge can be applied as preprocessing tools to filter training data 

[97,98], or embedded as some analytical input-output functions in additional layers of 

ANNs [99,100], to improve the training efficiency. Prior knowledge can also be expressed 

as rules and interpreted with weights and basis functions in the ANN architecture, which 

could be further refined using training data [101–104]. The major challenge of 

incorporating physical meanings into the ANN architecture is the complexity of 

customized networks.  

The second approach to incorporate physical knowledge is treating prior knowledge 

as constraints so that it can guide the training process. For instance, prior knowledge can 

be embedded in ANNs as architectural constraints and connection weight constraints to 

improve training efficiency [105]. In addition to functional values, the information of 

derivatives has also been incorporated as prior knowledge for support vector regression 

[106]. ANNs have been used to approximate the solutions of partial differential equations 

(PDEs). The prior knowledge of model forms and boundary conditions can be embedded 

as regularization terms into the objective function during the training process [107–111]. 

A regularization parameter has been introduced to control the trade-off between data fitting 
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and knowledge-based regularization [112]. Instead of regularization, information about 

boundary conditions can be explicitly used as equality constraints between the weights in 

ANNs such that a constrained backpropagation training can be taken [113–115]. The 

effectiveness of regularization during the ML training has been demonstrated in the above 

work. However, the training efficiency is still limited in high-dimensional problems, where 

the sampling of PDE solutions can be costly. Furthermore, the choices of weights to 

incorporate constraints as regularization in the cost functions are largely empirical and 

require case-by-case sensitivity studies. 

Recently, physics-constrained machine learning emerged as a promising approach to 

alleviate the issue of data sparsity. In this approach, prior knowledge in science and 

engineering is incorporated as constraints to guide the training of ML models. In the 

training of physics-constrained neural networks (PCNNs) [112,116–121], physical models 

serve as the constraints and regularize the training loss. It has been shown that the required 

amount of training data can be reduced by adding physical constraints as the regularization 

terms. However, the training efficiency is sensitively dependent on the weights associated 

with the different losses with respect to data and physical constraints. In existing PCNNs, 

the weights were either fixed or adjusted empirically. Systematic approaches for weight 

adjustment are needed.  

Although PCNNs can significantly reduce the required amount of training data, a 

large set of high-fidelity training data is still needed for PCNNs to learn the unknown 

weights of neural networks. On the other hand, the concept of multi-fidelity has been 

widely explored in metamodeling, particularly Gaussian process (GP) or co-kriging. In the 

scheme of multi-fidelity metamodeling, it is assumed that accurate high-fidelity (HF) data 
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are sparse and expensive, whereas less accurate low-fidelity (LF) data are sufficient and 

cheaper. The tradeoff between efficiency and accuracy for metamodeling can be made by 

integrating LF and HF data [122–124]. Multi-fidelity Gaussian process modeling has been 

widely adopted to search optimal design choices for various engineering problems [125–

128]. To further reduce the cost of data acquisition, multi-fidelity physics-informed neural 

networks [129] were developed to solve PDEs. However, the weights of different losses 

are fixed in this work.  

Different from the above work, a multi-fidelity physics-constrained neural network 

(MF-PCNN) is proposed in this dissertation to further enhance the efficiency of training 

by considering the different costs of low- and high-fidelity samples. In addition, a new 

physics-constrained neural network with minimax architecture (PCNN-MM) is proposed, 

where the training of the PCNN is formulated as a minimax problem. In this way, the 

robustness of training is improved by systematically and adaptively adjusting the weights 

during the training. Furthermore, a multi-fidelity physics-constrained neural network with 

minimax architecture (MF-PCNN-MM) is also proposed. In the MF-PCNN-MM, LF and 

HF data are integrated together to make the tradeoff between efficiency and accuracy for 

multi-fidelity metamodeling. 

2.5 Saddle Point Search Methods 

The training of our new PCNN-MM is searching high-order saddle points. Various 

saddle point search algorithms have been developed [130,131]. These include surface 

walking algorithm [132], DHS method [133], partitioned rational function optimization 

method [134], activation-relaxation technique [135], dimer method [136–138], nudged 

elastic band [139,140], curve swarm method [141,142], and Kriging metamodels [143–
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145]. However, these methods can only identify first-order saddle points instead of high-

order ones.  

The well-known gradient descent ascent (GDA) algorithm has been widely used to 

search saddle points. In the past decade, the GDA algorithm has been applied to solve the 

nonconvex-nonconcave minimax problems, which arise from game theory [146], 

generative adversarial networks [147], and robust optimization [148]. However, it has 

difficulty converging to the saddle points of the nonconvex-nonconcave functions [149]. 

Some GDA extensions are also available. For instance, a proximally guided stochastic 

subgradient method [150] was proposed to solve a class of weakly-convex-concave 

minimax problems. A multi-step GDA algorithm [151] and a proximal dual implicit 

accelerated gradient algorithm [152] were developed to solve the nonconvex but concave 

minimax problems. Two-time-scale GDA [153] was shown to converge to stationary local 

Nash equilibria under certain strong conditions. Symplectic gradient adjustment (SGA) 

algorithm [154] was proposed to search stable fixed points in general games, including 

potential games and Hamiltonian games. Hessian-based algorithms [155] were developed 

to search local saddle points in the nonconvex-nonconcave settings. However, the 

computation of the Hessian matrix is expensive for high-dimensional problems. A novel 

saddle point search method called Dual-Dimer is developed in this dissertation to search 

the high-order saddle points for training our proposed PCNN-MM. 

2.6 Physics-Constrained Neural Networks for Solving Multiphysics Problems 

Training PCNNs to solve multiphysics problems is similar to a multi-objective 

optimization or multi-task learning problem. The weighted-sum objective function is 

commonly used in multi-objective optimization. Different losses in the total objective 
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function could be in conflict and the gradients of different losses could be unbalanced, both 

of which can lead to the failure of convergence in training PCNNs. There are three major 

challenges to solve multiphysics problems using PCNNs. First, the weights of different 

losses from data and physical constraints need to be adjusted systematically to balance their 

respective gradients. Second, different physics are tightly coupled with each other in 

multiphysics problems, which could cause instability during the training. To mitigate the 

instability, the weights of losses for different physics need to be adjusted properly or the 

training of different physics need to be partially decoupled. Third, the high dimensionality 

of the parameter space needs to be reduced to some degree so that the training of PCNNs 

can escape local minima and converge to a better one. 

PCNNs have been used to solve some single-physics problems, such as Navier-

Stokes equations [156–158], heat transfer [121], and phase transition [121]. There is only 

limited work on multiphysics problems, including dendritic growth [121], 

electroconvection [159], alloy solidification [160], Stefan problem [161], and thermal 

convection [162,163]. An AI-driven multiphysics simulation framework called SimNet 

[164] was developed by NVIDIA to accelerate simulations in science and engineering. 

However, the weights of different losses from data and physical constraints are either fixed 

or adjusted empirically in PCNNs in the above work.  

Some efforts have been made to improve the training of PCNNs to solve multiphysics 

problems. PCNNs were first applied to dendritic growth with simultaneous consideration 

of thermal distribution and phase field [121]. By formulating the training of PCNNs as a 

minimax problem, a novel training algorithm called Dual-Dimer was proposed in our 

previous work to systematically adjust the weights of different losses for reliable training 
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[165]. New architectures of PCNNs were also proposed to solve multiphysics problems. 

New architectures that employ spatio-temporal and multi-scale random Fourier features 

were proposed to mitigate the issue of unbalanced gradients of different losses [166]. Two 

subnetworks in a PCNN were trained sequentially to mitigate instability in traditional 

training methods [167]. However, the high dimensionality is still the bottleneck of training 

PCNNs to solve multiphysics problems. New architectures of neural networks and novel 

training algorithms are needed to alleviate the curse of dimensionality in training PCNNs 

to solve multiphysics problems or other general ML applications. 
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CHAPTER 3. MULTIPHYSICS SIMULATION OF RAPID 

SOLIDIFICATION OF TI-6AL-4V ALLOY 

3.1 Introduction 

Powder bed fusion is a recently developed AM technique for alloys, which builds 

parts by selectively melting metallic powders with a high-energy laser or electron beam. 

Different alloys have been used in metal AM processes. Particularly, titanium alloy Ti–

6Al–4V has a wide range of applications from aerospace to biomedical devices. As a high 

strength (𝛼𝛼 + 𝛽𝛽 ) titanium alloy, Ti–6Al–4V’s microstructure mainly depends on its 

chemical composition, processing condition, and heat treatment history. Nevertheless, 

there is still a lack of fundamental understanding of the rapid solidification process for 

better quality control.  

To simulate the microstructure evolution of alloys during the rapid solidification, in 

this chapter, PF-TLBM is proposed to simulate rapid solidification of Ti-6Al-4V alloy by 

concurrently coupling solute transport, heat transfer, latent heat, fluid dynamics, and 

phase transition. In this model, the phase-field method simulates the dendrite growth of 

alloys, whereas the thermal lattice Boltzmann method models heat transfer and fluid flow. 

The phase-field method and the thermal lattice Boltzmann method are tightly coupled.  

In the remainder of this chapter, the formulation of the proposed PF-TLBM model 

is described in Section 3.2. The simulation results and effects of latent heat and melt flow 

on the dendrite growth are shown in Section 3.3, which also contains experimental 

comparison, sensitivity analysis of mesh sizes, as well as quantitative analyses of the 

temperature gradient, growth velocity, and their combinations. 
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3.2 Methodology 

In the PF-TLBM model, phase formation is described with partial differential 

equations of phase field and composition variables, whereas fluid flow and thermal effects 

are modeled with convection-diffusion equations of velocity and temperature fields, 

respectively. Information exchange between the phase, temperature, and velocity fields is 

achieved by updating the variables in each iteration of the simulation. The latent heat effect 

is also incorporated in the simulation of heat transfer. The PF-TLBM model proposed here 

is an extension of our previous work [168–174]. In the extension, a local non-equilibrium 

partition coefficient is considered for rapid solidification, and a variable grid computational 

scheme is developed to simulate the phase field and the temperature field. A coarser grid 

is used in TLBM to improve simulation efficiency and accuracy because the thermal 

diffusivity and solute diffusivity differ by three orders of magnitude.  

3.2.1 Phase-Field Method 

The multi-phase multi-component phase-field method is a generic formulation for 

phase transitions of alloys. In this work, the multi-phase field method [77] is adopted. The 

essential component of PFM is a free energy functional that describes the kinetics of phase 

transition. The free energy functional  

 𝐹𝐹 = � (𝑓𝑓𝐺𝐺𝐺𝐺 + 𝑓𝑓𝐶𝐶𝐶𝐶)𝑑𝑑𝑑𝑑
 

Ω
 (3.1) 

is defined with an interfacial free energy density 𝑓𝑓𝐺𝐺𝐺𝐺 and a chemical free energy density 

𝑓𝑓𝐶𝐶𝐶𝐶 in a domain Ω.  
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A continuous variable called phased field 𝜙𝜙 indicates the fraction of the solid phase 

in the simulation domain during the solidification process, and the fraction of the liquid 

phase is 𝜙𝜙𝑙𝑙 = 1 − 𝜙𝜙. The interfacial free energy density is defined as 

 
𝑓𝑓𝐺𝐺𝐺𝐺 =

4𝜎𝜎∗(𝐧𝐧)
𝜂𝜂

�|∇𝜙𝜙|2 +
𝜋𝜋2

𝜂𝜂2
𝜙𝜙(1 − 𝜙𝜙)� (3.2) 

where 𝜎𝜎∗(𝐧𝐧) is the anisotropic interfacial energy stiffness, 𝜂𝜂 is the interfacial width, and 

𝐧𝐧 = ∇𝜙𝜙/|∇𝜙𝜙| = �𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦� is the local normal direction of the interface. The anisotropic 

interfacial energy stiffness is defined as 

 
𝜎𝜎∗(𝐧𝐧) = 𝜎𝜎 +

𝜕𝜕2𝜎𝜎
𝜕𝜕𝜓𝜓2 = 𝜎𝜎0∗�1 − 3𝛿𝛿 + 4𝛿𝛿�𝑛𝑛𝑥𝑥4 + 𝑛𝑛𝑦𝑦4�� (3.3) 

where 𝜎𝜎 is the interface energy, 𝜓𝜓 = arctan�𝑛𝑛𝑦𝑦/𝑛𝑛𝑥𝑥� indicates the grain orientation, 𝜎𝜎0∗ is 

the prefactor of interface energy stiffness, and 𝛿𝛿 is the anisotropy strength of interface 

energy stiffness, which models the difference between the primary and secondary growth 

directions of dendrites. 

The chemical free energy is the combination of bulk free energies of individual 

phases 

 𝑓𝑓𝐶𝐶𝐶𝐶 = ℎ(𝜙𝜙)𝑓𝑓𝑠𝑠(𝐶𝐶𝑠𝑠) + ℎ(𝜙𝜙𝑙𝑙)𝑓𝑓𝑙𝑙(𝐶𝐶𝑙𝑙) + 𝜇𝜇[𝐶𝐶 − (𝜙𝜙𝐶𝐶𝑠𝑠 + 𝜙𝜙𝑙𝑙𝐶𝐶𝑙𝑙)] (3.4) 

where 𝐶𝐶𝑠𝑠 and 𝐶𝐶𝑙𝑙 are the weight percentages (wt%) of solute in the solid or liquid phase, 

respectively. 𝐶𝐶 is the overall composition of a solution in the simulation domain. 𝑓𝑓𝑠𝑠(𝐶𝐶𝑠𝑠) 

and 𝑓𝑓𝑙𝑙(𝐶𝐶𝑙𝑙)  are the chemical bulk free energy densities of solid and liquid phases, 

respectively. 𝜇𝜇 is the generalized chemical potential of solute introduced as a Lagrange 

multiplier to conserve the solute mass balance 𝐶𝐶 = 𝜙𝜙𝐶𝐶𝑠𝑠 + 𝜙𝜙𝑙𝑙𝐶𝐶𝑙𝑙. The weight function 

 ℎ(𝜙𝜙) =
1
4
�(2𝜙𝜙 − 1)�𝜙𝜙(1 − 𝜙𝜙) +

1
2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛(2𝜙𝜙 − 1)� (3.5) 
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provides the coefficients associated with solid and liquid bulk energies.  

The evolution of the phase field is described by 

 𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

= 𝑀𝑀𝜙𝜙 �𝜎𝜎∗(𝐧𝐧) �∇2𝜙𝜙 +
𝜋𝜋2

𝜂𝜂2
�𝜙𝜙 −

1
2
�� +

𝜋𝜋
𝜂𝜂
�𝜙𝜙(1 − 𝜙𝜙)Δ𝐺𝐺𝑉𝑉� (3.6) 

where 𝑀𝑀𝜙𝜙 is the coefficient of interface mobility, and the driving force is given by 

 Δ𝐺𝐺𝑉𝑉 = Δ𝑆𝑆(𝑇𝑇𝑚𝑚 − 𝑇𝑇 + 𝑚𝑚𝑙𝑙𝐶𝐶𝑙𝑙) (3.7) 

where Δ𝑆𝑆 is the entropy difference between solid and liquid phases, 𝑇𝑇𝑚𝑚  is the melting 

temperature of a pure substance, 𝑇𝑇 is the temperature field, and 𝑚𝑚𝑙𝑙 is the slope of liquidus. 

Existing studies of interface mobility are restricted to pure metal or one-component 

systems. For the complex ternary alloy Ti-6Al-4V, there is a lack of information to reveal 

the dependency of interface mobility on temperature. For simplification, the interface 

mobility is assumed to be constant in this work. 

The evolution of the composition is modeled by 

 𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

+ 𝐮𝐮𝑙𝑙 ⋅ ∇[(1− 𝜙𝜙)𝐶𝐶𝑙𝑙] = ∇ ⋅ [𝐷𝐷𝑙𝑙(1 − 𝜙𝜙)∇𝐶𝐶𝑙𝑙] + ∇ ⋅ 𝐣𝐣𝑎𝑎𝑎𝑎 (3.8) 

where 𝐮𝐮𝑙𝑙 is the velocity of the liquid phase. During rapid solidification, the assumption of 

local composition equilibrium is not reasonable. Therefore, the local non-equilibrium 

partition coefficient 𝑘𝑘 is computed based on Aziz’s model [175,176] 

 
𝑘𝑘 =

𝐶𝐶𝑠𝑠
𝐶𝐶𝑙𝑙

=
𝑘𝑘𝑒𝑒 + 𝑑𝑑𝐼𝐼𝜆𝜆/𝐷𝐷𝑙𝑙
1 + 𝑑𝑑𝐼𝐼𝜆𝜆/𝐷𝐷𝑙𝑙

 (3.9) 

where 𝑘𝑘𝑒𝑒 is the equilibrium partition coefficient, 𝜆𝜆 is the actual interface width in atomic 

dimensions, and 𝑑𝑑𝐼𝐼 = �̇�𝜙/|∇𝜙𝜙| is the local velocity of the interface. 𝐷𝐷𝑙𝑙  is the diffusion 

coefficient of liquid, which is assumed to follow an Arrhenius form based on [177] 
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 𝐷𝐷𝑙𝑙 = 𝐷𝐷0 exp �
−∆𝐸𝐸
𝑅𝑅𝑇𝑇

� (3.10) 

where 𝐷𝐷0  is the prefactor of the diffusion coefficient of the liquid phase, ∆𝐸𝐸  is the 

activation energy, and 𝑅𝑅 is gas constant. Furthermore, 𝐣𝐣𝑎𝑎𝑎𝑎 is the anti-trapping current and 

defined as 

 
𝐣𝐣𝑎𝑎𝑎𝑎 =

𝜂𝜂
𝜋𝜋
�𝜙𝜙(1 − 𝜙𝜙)(𝐶𝐶𝑙𝑙 − 𝐶𝐶𝑠𝑠)

𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

∇𝜙𝜙
|∇𝜙𝜙| (3.11) 

which is used to eliminate the unphysical solute trapping during the interface diffusion 

process. It removes the anomalous chemical potential jump [40,178] so that simulations 

can be done more efficiently with the simulated interface width exceeding that of the 

physical one.  

Eqs. (3.6) and (3.8) are the main equations to solve during the phase field simulation. 

The anti-trapping current was originally introduced for the quasi-equilibrium condition. 

For simplification, it is still used here under the non-equilibrium condition for rapid 

solidification, since here the simulated domain size of 90 × 90 μm2  is small and the 

simulation time of 1.4 ms is short. The upwind scheme of the finite difference method is 

applied to solve Eqs. (3.6) and (3.8). 

3.2.2 Thermal Lattice Boltzmann Method 

The conservation equations of mass, momentum, and energy are given by 

 ∇ ⋅ (𝜙𝜙𝑙𝑙𝐮𝐮𝑙𝑙) = 0 (3.12) 

 𝜕𝜕
𝜕𝜕𝑡𝑡

(𝜙𝜙𝑙𝑙𝐮𝐮𝑙𝑙) + ∇ ⋅ (𝜙𝜙𝑙𝑙𝐮𝐮𝑙𝑙 ⊗ 𝐮𝐮𝑙𝑙) = −
𝜙𝜙𝑙𝑙
𝜌𝜌
∇𝑃𝑃 + ∇ ⋅ [𝜈𝜈∇(𝜙𝜙𝑙𝑙𝐮𝐮𝑙𝑙)] +

𝐅𝐅𝑑𝑑
𝜌𝜌

 (3.13) 

 𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

+ ∇ ⋅ (𝜙𝜙𝑙𝑙𝐮𝐮𝑙𝑙𝑇𝑇) = ∇ ⋅ (𝛼𝛼∇𝑇𝑇) + �̇�𝑞 (3.14) 
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respectively, where 𝐮𝐮𝑙𝑙 is the velocity of liquid with density 𝜌𝜌, 𝑃𝑃 is the pressure, 𝜈𝜈 is the 

coefficient of kinematic viscosity, 𝛼𝛼 is the thermal diffusivity, and 

 
𝐅𝐅𝑑𝑑 = −ℎ∗(1 − 𝜙𝜙)𝜌𝜌𝜈𝜈

𝜙𝜙2

𝜂𝜂2
𝐮𝐮𝑙𝑙 (3.15) 

is the dissipative force caused by the interaction between solid and liquid phases, where 

ℎ∗ = 147 is a coefficient fitted from the calculation of Poiseille flow in a channel with 

diffuse walls [77]. Furthermore, 

 
�̇�𝑞 =

𝐿𝐿𝐶𝐶
𝑎𝑎𝑝𝑝
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

 (3.16) 

is the released latent heat during solidification, where 𝐿𝐿𝐶𝐶 is the latent heat of fusion, and 

𝑎𝑎𝑝𝑝 is the specific heat capacity.  

Instead of solving Eqs. (3.12)-(3.14) directly, particle distribution functions for 

density 𝑓𝑓𝑖𝑖(𝐱𝐱, 𝑡𝑡) and temperature 𝑔𝑔𝑖𝑖(𝐱𝐱, 𝑡𝑡) are used to capture the dynamics of the system in 

TLBM. The macroscopic properties of velocity 𝐮𝐮𝑙𝑙  and temperature 𝑇𝑇 can be calculated 

based on the density and temperature distribution functions. In the TLBM model, the 

spatial domain is discretized as a lattice. Particles move dynamically between neighboring 

lattice nodes. In a two-dimensional D2Q9 model, each node has eight neighbors. The 

velocity vector 

 
𝐞𝐞𝑖𝑖 = �

(0,0),                       𝑎𝑎 = 0
(±𝑎𝑎, 0), (0, ±𝑎𝑎),    𝑎𝑎 = 1,⋯ ,4
(±𝑎𝑎, ±𝑎𝑎),                𝑎𝑎 = 5,⋯ ,8 

 (3.17) 

represents the velocity along the i-th direction in the lattice with respect to a reference node, 

where 𝑎𝑎 = ∆𝑥𝑥/∆𝑡𝑡 is the lattice velocity with spatial resolution ∆𝑥𝑥 and time step ∆𝑡𝑡, i=0 is 

the reference lattice node, and i=1 to 4 indicate the right, top, left, and down directions, 



 

 29 

whereas i=5 to 8 indicate the top-right, top-left, down-left, and down-right directions, 

respectively. 

The evolution of particle distribution for density 𝑓𝑓𝑖𝑖 is modeled by 

 𝑓𝑓𝑖𝑖(𝐱𝐱 + 𝐞𝐞𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝐱𝐱, 𝑡𝑡) +
1
𝜏𝜏𝑓𝑓
�𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝐱𝐱, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝐱𝐱, 𝑡𝑡)� + 𝐹𝐹𝑖𝑖(𝐱𝐱, 𝑡𝑡)∆𝑡𝑡 (3.18) 

where 𝜏𝜏𝑓𝑓 = 𝜈𝜈/(𝑎𝑎𝑠𝑠2∆𝑡𝑡) + 0.5 is a dimensionless relaxation time parameter with the speed 

of the sound 𝑎𝑎𝑠𝑠2 = 𝑎𝑎2/3,  

 
𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝐱𝐱, 𝑡𝑡) = ω𝑖𝑖𝜌𝜌 �1 +

𝐞𝐞𝑖𝑖 ⋅ 𝐮𝐮𝑙𝑙
𝑎𝑎𝑠𝑠2

+
(𝐞𝐞𝑖𝑖 ⋅ 𝐮𝐮𝑙𝑙)2

2𝑎𝑎𝑠𝑠4
−
𝐮𝐮𝑙𝑙2

2𝑎𝑎𝑠𝑠2
� (3.19) 

is the equilibrium distribution, and 

 
𝐹𝐹𝑖𝑖 = �1 −

1
2𝜏𝜏𝑓𝑓

�ω𝑖𝑖 �
𝐞𝐞𝑖𝑖 − 𝐮𝐮𝑙𝑙
𝑎𝑎𝑠𝑠2

+
𝐞𝐞𝑖𝑖 ⋅ 𝐮𝐮𝑙𝑙
𝑎𝑎𝑠𝑠4

𝐞𝐞𝑖𝑖� ⋅ 𝐅𝐅𝑑𝑑 (3.20) 

is the force source [89,179]. In the D2Q9 scheme, the weights ω𝑖𝑖 ’s associated with 

direction i’s are 

 
ω𝑖𝑖 = �

4/9,            𝑎𝑎 = 0
1/9,            𝑎𝑎 = 1,⋯ ,4
1/36, 𝑎𝑎 = 5,⋯ ,8 

 (3.21) 

The evolution of particle distribution for temperature 𝑔𝑔𝑖𝑖 is modeled in parallel by 

 𝑔𝑔𝑖𝑖(𝐱𝐱 + 𝐞𝐞𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) = 𝑔𝑔𝑖𝑖(𝐱𝐱, 𝑡𝑡) +
1
𝜏𝜏𝑔𝑔
�𝑔𝑔𝑖𝑖

𝑒𝑒𝑒𝑒(𝐱𝐱, 𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝐱𝐱, 𝑡𝑡)� + 𝑄𝑄𝑖𝑖(𝐱𝐱, 𝑡𝑡)∆𝑡𝑡 (3.22) 

where 𝜏𝜏𝑔𝑔 = α/(𝑎𝑎𝑠𝑠2∆𝑡𝑡) + 0.5 is similarly a dimensionless relaxation time,  

 
𝑔𝑔𝑖𝑖
𝑒𝑒𝑒𝑒(𝐱𝐱, 𝑡𝑡) = ω𝑖𝑖𝑇𝑇 �1 +

𝐞𝐞𝑖𝑖 ⋅ 𝐮𝐮𝑙𝑙
𝑎𝑎𝑠𝑠2

+
(𝐞𝐞𝑖𝑖 ⋅ 𝐮𝐮𝑙𝑙)2

2𝑎𝑎𝑠𝑠4
−
𝐮𝐮𝑙𝑙2

2𝑎𝑎𝑠𝑠2
� (3.23) 

is the equilibrium distribution, and  

 
𝑄𝑄𝑖𝑖 = �1 −

1
2𝜏𝜏𝑔𝑔

�ω𝑖𝑖�̇�𝑞 (3.24) 
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is the heat source. 

Eqs. (3.18) and (3.23) are the main equations to be solved in TLBM, based on which 

density and temperature distributions are updated at each time step. During a simulation, 

the macroscopic quantities of density, velocity, and temperature can be calculated from 

𝑓𝑓𝑖𝑖’s and 𝑔𝑔’s as 

 𝜌𝜌 = �𝑓𝑓𝑖𝑖
𝑖𝑖

 (3.25) 

 𝜌𝜌𝐮𝐮𝑙𝑙 = �𝐞𝐞𝑖𝑖𝑓𝑓𝑖𝑖 +
∆𝑡𝑡
2
𝐅𝐅𝑑𝑑

𝑖𝑖

 (3.26) 

 𝑇𝑇 = �𝑔𝑔𝑖𝑖 +
∆𝑡𝑡
2
�̇�𝑞

𝑖𝑖

 (3.27) 

respectively. At each iteration, the properties are calculated, and Eqs. (3.18) and (3.23) are 

updated accordingly. 

In rapid solidification, heat transfer is much faster than solute diffusion, where 

thermal diffusivity can be three orders of magnitude larger than solute diffusivity. In this 

work, to reduce the computational cost and improve accuracy, a fine grid spacing 𝑑𝑑𝑥𝑥 is 

used for the PFM simulation, whereas a coarse grid spacing ∆𝑥𝑥 = 30 𝑑𝑑𝑥𝑥 is used for the 

TLBM simulation. The same time step ∆𝑡𝑡 is used for both simulations. The results of PFM 

are averaged and transferred to the TLBM model, while the results of TLBM are linearly 

interpolated as the input for the PFM model. To satisfy the no-slip boundary condition, a 

bounce-back scheme is used at the solid-liquid interface. The density distribution function 

at the boundary node 𝑓𝑓𝚤𝚤̅(𝐱𝐱𝑏𝑏, 𝑡𝑡 + ∆𝑡𝑡) with the direction 𝚤𝚤 ̅such that 𝐞𝐞𝚤𝚤̅ = −𝐞𝐞𝑖𝑖 is determined 

by 
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 𝑓𝑓𝚤𝚤̅(𝐱𝐱𝑏𝑏 , 𝑡𝑡 + ∆𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝐱𝐱𝑏𝑏 , 𝑡𝑡) +
1
𝜏𝜏𝑓𝑓
�𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝐱𝐱𝑏𝑏, 𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝐱𝐱𝑏𝑏, 𝑡𝑡)� − 6ω𝑖𝑖𝜌𝜌𝑤𝑤
𝐞𝐞𝑖𝑖 ⋅ 𝐮𝐮𝑤𝑤
𝑎𝑎2

 (3.28) 

where 𝐮𝐮𝑤𝑤 is the velocity of the moving wall at the location 𝐱𝐱𝑤𝑤 = 𝐱𝐱𝑏𝑏 + 0.5𝐞𝐞𝑖𝑖∆𝑡𝑡 and 𝜌𝜌𝑤𝑤 is 

the density at the wall. For the thermal boundary condition, an anti-bounceback scheme 

[180–182] is used. At the boundary, the temperature distribution function 𝑔𝑔𝚤𝚤̅(𝐱𝐱𝑏𝑏 , 𝑡𝑡 + ∆𝑡𝑡) is 

given by 

 𝑔𝑔𝚤𝚤̅(𝐱𝐱𝑏𝑏 , 𝑡𝑡 + ∆𝑡𝑡) = −𝑔𝑔𝑖𝑖(𝐱𝐱𝑏𝑏 , 𝑡𝑡) −
1
𝜏𝜏𝑔𝑔
�𝑔𝑔𝑖𝑖

𝑒𝑒𝑒𝑒(𝐱𝐱𝑏𝑏, 𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝐱𝐱𝑏𝑏 , 𝑡𝑡)�

+ 2ω𝑖𝑖𝑇𝑇𝑤𝑤 �1 + 4.5
(𝐞𝐞𝑖𝑖 ⋅ 𝐮𝐮𝑤𝑤)2

𝑎𝑎2
− 1.5

|𝐮𝐮𝑤𝑤|2

𝑎𝑎2
� 

(3.29) 

The temperature of the wall 𝑇𝑇𝑤𝑤 is given by 

 𝑇𝑇𝑤𝑤 = 𝑇𝑇𝑏𝑏 −
𝑞𝑞𝐶𝐶∆𝑥𝑥

2𝜅𝜅
 (3.30) 

where 𝑇𝑇𝑏𝑏  is the temperature at the boundary node, 𝑞𝑞𝐶𝐶  is the outward heat flux at the 

boundary, and 𝜅𝜅 is the thermal conductivity of the material. 

3.2.3 PF-TLBM Algorithm Implementation 

In the multi-physics PF-TLBM simulation, different variables are tightly coupled, 

including liquid velocity 𝐮𝐮𝑙𝑙, composition 𝐶𝐶, temperature 𝑇𝑇, and phase field 𝜙𝜙 and its time 

derivative �̇�𝜙. Figure 3.1 illustrates the algorithm of PF-TLBM. The composition is first 

calculated based on the initial temperature and phase field by solving Eq. (3.8) with the 

finite difference method. Then phase field is updated based on Eq. (3.6) with the updated 

composition values. The dissipative force in Eq. (3.15) is updated with the latest values of 

the phase field. The total force applied in LBM as in Eq. (3.20) is then updated. 

Temperature and liquid velocity field are coupled in TLBM as in Eq. (3.23). The updated 
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velocity values are passed to update the composition by solving the advection equations. 

The updated temperature and fluid velocity in TLBM are then used in PFM for the next 

iteration. The proposed PF-TLBM algorithm is implemented and integrated with the 

open-source phase field simulation toolkit OpenPhase [183].  

 

Figure 3.1. The flow chart of the PF-TLBM simulation algorithm 

3.3 Simulation Results and Discussion 

Here, Ti-6Al-4V alloy is used to demonstrate the PF-TLBM simulation scheme. In 

this model, the ternary Ti-6Al-4V alloy is treated as a binary alloy, and the solute is the 

combination of Al and V. This pseudo-binary approach is similar to the existing work 
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[55,184], which was shown to be an effective replacement of the multi-component 

approach for modeling solidification kinetics of Ti-6Al-4V alloy. The physical properties 

of Ti-6Al-4V alloy are given in Table 3.1 [77].  

To reduce or eliminate the effect of numerical solute trapping, the fine grid spacing 

𝑑𝑑𝑥𝑥 should be smaller than the solute diffusion length 𝐷𝐷𝑙𝑙/𝑑𝑑, where 𝐷𝐷𝑙𝑙 is solute diffusivity 

and 𝑑𝑑  is interface velocity. The maximum dendrite growth velocity is assumed to be 

𝑑𝑑𝑚𝑚𝑎𝑎𝑥𝑥 = 50 mm/s. Therefore, a fine grid spacing 𝑑𝑑𝑥𝑥 = 0.1 μm and a coarse grid spacing 

∆𝑥𝑥 = 30 𝑑𝑑𝑥𝑥 = 3 μm are adopted. Based on the von Neumann stability analysis or Fourier 

stability analysis, the upper limit of the time step is ∆𝑡𝑡 ≤ 𝑚𝑚𝑎𝑎𝑛𝑛{𝑑𝑑𝑥𝑥2/(4𝐷𝐷𝑙𝑙),∆𝑥𝑥2/(4𝜈𝜈),∆𝑥𝑥2/

(4𝛼𝛼)}. Therefore, the time step ∆𝑡𝑡 = 0.1 μs is applied in all simulation runs. The initial 

temperature is 𝑇𝑇 = 1920 K, which means that the undercooling is 8 K given the initial 

composition. The length of the simulated domain is 𝐿𝐿𝑥𝑥 = 900 𝑑𝑑𝑥𝑥 in the x-direction and the 

width is 𝐿𝐿𝑦𝑦 = 900 𝑑𝑑𝑥𝑥 in the y-direction. The initial radius of the nucleus is 𝐷𝐷 = 9 𝑑𝑑𝑥𝑥 and 

the interface width is 𝜂𝜂 = 5 𝑑𝑑𝑥𝑥, which means that there are 6 nodes on the interface or 

boundary layer. The initial composition of the solute is set as 𝐶𝐶0 = 10 wt% for the whole 

simulation domain. The setup of boundary conditions for all simulations is schematically 

illustrated in Figure 3.2. Zero Neumann conditions are set at the bottom 𝑦𝑦 = 0 and top 𝑦𝑦 =

𝐿𝐿𝑦𝑦  boundaries for the phase field 𝜙𝜙  and composition 𝐶𝐶 . Although the change of 

temperature gradient within the melt pool will affect the grain structure and grain size 

distribution [185], the change of temperature gradient can be assumed to be small given 

the fact that the small simulation domain is small compared with the whole melt pool. A 

fixed heat flux 𝑞𝑞𝐶𝐶 = 𝜌𝜌𝑎𝑎𝑝𝑝𝐿𝐿𝑦𝑦�̇�𝑇  [186] is set at the bottom boundary given the constant 

cooling rate �̇�𝑇 = 5 × 104 K/s, whereas an adiabatic boundary condition is set at the top 
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boundary. When the dendrite grows in a forced flow, a constant flow velocity |𝐮𝐮𝑤𝑤| =

0.1 m/s is imposed at the top boundary of the domain. Periodic boundary conditions are 

set at the left 𝑥𝑥 = 0 and right 𝑦𝑦 = 𝐿𝐿𝑥𝑥  boundaries for the phase field 𝜙𝜙, composition 𝐶𝐶, 

temperature 𝑇𝑇, and flow 𝐮𝐮𝑙𝑙. The nuclei are located at the bottom cold wall with constant 

heat flux to simulate the directional dendrite growth in selective laser melting. The 

locations of the three nuclei are 𝑥𝑥 = 10 μm, 45 μm, and 80 μm, respectively. To compare 

the simulation results with the experiments done by Simonelli et al. [187], the orientation 

of the three nuclei is set to be almost the same as the orientation of reconstructed 𝛽𝛽 grains 

based on the electron backscatter diffraction (EBSD) data. 

Table 3.1. Physical properties of Ti-6Al-4V alloy 

Physical properties Value 
Melting point of pure Ti, 𝑇𝑇𝑚𝑚 [K] 1941 
Liquidus temperature, 𝑇𝑇𝑙𝑙 [K] 1928 
Solidus temperature, 𝑇𝑇𝑠𝑠 [K] 1878 
Liquidus slope, 𝑚𝑚𝑙𝑙 [K/wt%] -1.3 
Equilibrium partition coefficient, 𝑘𝑘𝑒𝑒 0.206 
Prefactor of interfacial energy stiffness, 𝜎𝜎0∗ [J/m2] 0.5 
Interfacial energy stiffness anisotropy, 𝜀𝜀∗ 0.35 
Interface mobility, 𝑀𝑀𝜙𝜙 [m4/(J∙s)] 1.2×10-8 
Entropy difference, ∆𝑆𝑆 [J/(m3∙K)] 1×106 
Physical interface width, 𝜆𝜆 [m] 3×10-9 
Prefactor of diffusion coefficient of liquid phase, 𝐷𝐷0 [m2/s] 5.93×10-2 
Activation energy, ∆𝐸𝐸 [J/mol] 2.5×105 
Kinematic viscosity, 𝜈𝜈 [m2/s] 6.11×10-7 
Thermal diffusivity, 𝛼𝛼 [m2/s] 8.1×10-6 
Thermal conductivity, 𝜅𝜅 [W/(m∙K)] 28.25 
Latent heat of fusion, 𝐿𝐿𝐶𝐶  [J/kg] 2.90×105 
Specific heat capacity, 𝑎𝑎𝑝𝑝 [J/(kg∙K)] 872 
Density, 𝜌𝜌 [kg/m3] 4000 
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Figure 3.2. Setup of boundary conditions. 

3.3.1 Dendrite Growth without Latent Heat 

For comparison, dendrite growth is first simulated without the release of latent heat. 

Figure 3.3 shows the simulation results. The grain identification (ID) 0 represents the liquid 

phase, while other grain IDs represent solid phases with different orientations. Using the 

temperature gradient 𝐺𝐺 = |∇𝑇𝑇| and growth rate 𝑑𝑑, a solidification map is constructed based 

on the values of the local cooling rate 𝐺𝐺𝑑𝑑  and the ratio 𝐺𝐺/𝑑𝑑  [188]. The solidified 

microstructure can be equiaxed dendritic, columnar dendritic, cellular, or planar as the ratio 

𝐺𝐺/𝑑𝑑  increases. When the ratio 𝐺𝐺/𝑑𝑑  is small at the beginning of the simulation, the 

columnar dendritic growth pattern can be easily recognized at the time of 0.35 ms, as 

shown in Figure 3.3(a). The primary arms and secondary arms can be differentiated easily. 

It is observed that the primary arms of the dendrite grow faster than the secondary arms, as 

a result of the anisotropy of the interface energy. Without the release of latent heat, the 

secondary arms grow so fast that they quickly merge with each other as shown in Figure 
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3.3(b-d). It is also seen in Figure 3.3(d) that growth competition between grains of different 

orientations exists. Vertices or corners occur during dendrite growth, as highlighted by 

circles. The segregation of solute occurs at the solid-liquid interface because the solid phase 

has a lower composition than the liquid phase. High segregation of solute can be observed 

at the grain boundaries between secondary arms inside the grains, as shown in Figure 

3.3(e).  

In this model, the effect of latent heat is not considered. As a result, the temperature 

is reduced monotonically from the top to the bottom of the simulation domain. At the same 

time, the detailed morphology of secondary arms cannot be observed, and there is no gap 

between grains. With the limitation of in-situ experimental methods, there is still no direct 

observation of dendrite growth under rapid solidification. For a slow solidification process, 

in-situ X-ray microscopy experiments [189] showed much slower growth of secondary 

arms and that gaps between grains sustain for a long period during dendrite growth. 

Therefore, it is reasonable to suspect that the simulation without latent heat overestimates 

the solidification speed. 
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Figure 3.3. Dendrite growth without latent heat. Phase field at (a) 0.35 ms, (b) 0.7 ms, (c) 
1.05 ms, (d) 1.4 ms, (e) composition field at 1.4 ms, and (f) temperature field at 1.4 ms. 
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3.3.2 Non-Isothermal Dendrite Growth with Latent Heat 

In the second model, non-isothermal dendrite growth with the release of latent heat 

during the phase transition is considered. Figure 3.4 shows the simulation results. The 

temperature field, composition distribution, and the morphology of the dendrite are quite 

different from the case of dendrite growth without latent heat in Section 3.3.1. The 

columnar dendritic growth pattern is shown in Figure 3.4(a-d). Because of the release of 

latent heat, the temperature gradient G  is smaller than that in the case without latent heat, 

which results in a lower ratio /G V . At the initial stage of growth, the columnar dendrites 

grow with the four-fold symmetry that is similar to equiaxed dendrites. Because of the high 

temperature gradient along the vertical direction, the vertical secondary arms become 

dominant, while the growth of horizontal secondary arms is suppressed. In Figure 3.4(e), 

high segregation of solute can be observed at the grain boundaries and between secondary 

arms inside the grains, where some small portions of liquid are trapped and surrounded by 

the solid phase. The composition of the trapped liquid phase increases as the liquid phase 

shrinks. The small pocket of the liquid phase may remain liquid for a long period until solid 

diffusion takes away the remaining solute supersaturation before it is completely solidified. 

The degree of solute segregation at the solid-liquid phase decreases from the bottom to the 

top of the grains.  
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Figure 3.4. Non-isothermal dendrite growth with latent heat. Phase field at (a) 0.35 ms, 
(b) 0.7 ms, (c) 1.05 ms, (d) 1.4 ms, (e) composition field at 1.4 ms, and (f) temperature 

field at 1.4 ms. 
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The simulated solute trapping is verified as follows. Based on the simulation results, 

the partition coefficient at the tips of dendrites is estimated as 𝑘𝑘 = 𝐶𝐶𝑠𝑠/𝐶𝐶𝑙𝑙 ≈ 0.223. With 

𝑑𝑑𝐼𝐼 = 0.043 m/s and 𝐷𝐷𝑙𝑙 = 7.9 × 10−9 m/s2, the partition coefficient, according to Aziz’s 

model, is calculated as  

𝑘𝑘 = 𝑘𝑘𝑒𝑒+𝑉𝑉𝐼𝐼𝜆𝜆/𝐷𝐷𝑙𝑙
1+𝑉𝑉𝐼𝐼𝜆𝜆/𝐷𝐷𝑙𝑙

≈ 0.219, 

which is close to the above simulation result. The average temperature in the whole 

simulation domain is higher than that in the case without latent heat. The temperature of 

the solid phase is higher than that of the liquid phase, as shown in Figure 3.4(f), which 

decreases the undercooling and the driving force of growth. The release of latent heat 

prevents the secondary arms from merging with each other quickly, which explains the 

columnar dendritic growth to some extent. The simulation results suggest that it is 

important to consider heat transfer, especially latent heat, during the solidification process, 

which provides detailed composition, temperature, and grain growth pattern information. 

3.3.3 Non-Isothermal Dendrite Growth with Latent Heat in a Forced Flow 

A further refinement of the model is to incorporate fluid flow. A constant flow 

velocity |𝐮𝐮𝑤𝑤| = 0.1 m/s is imposed at the top boundary of the domain along the positive 

x-direction. Simulation results are shown in Figure 3.5. Note that the magnitude of the 

velocity field is represented by the colors of the arrows rather than their sizes. The 

velocities corresponding to the arrows appearing in the solid phase region are near zero.  

It is observed that the columnar dendrite morphology is slightly different from that 

in non-isothermal dendrite growth without flow. Compared to Figure 3.4(e), the growth of 

some horizontal secondary arms in Figure 3.5(e) is enhanced under the effect of flow, 
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which is shown in the regions highlighted with rectangles. In addition, the primary dendrite 

is inclined slightly under the forced flow, as the vertical dashed line in Figure 3.5(e) 

indicates. When the flow encounters the continually growing dendrites, the local velocity 

field is disturbed. Some vortexes are observed in Figure 3.5(a). The flow changes the 

dendrite morphology by affecting both the composition and the temperature field. The flow 

can accelerate grain growth by enhancing solute diffusion and increasing undercooling, 

which results in a higher driving force. It is also observed in Figure 3.5(f) that the 

temperature and temperature gradient rise slightly in a forced flow. This is because the 

flow enhances the growth of some horizontal secondary arms and increases the release of 

latent heat. The simulation results suggest that the melt flow has some effect on dendrite 

growth. However, our sensitivity study shows that rapid solidification can suppress the 

flow effect if velocity is relatively small. 
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Figure 3.5. Non-isothermal dendrite growth with latent heat in a forced flow. Phase field 
and flow field at (a) 0.35 ms, (b) 0.7 ms, (c) 1.05 ms, (d) 1.4 ms, (e) composition field at 

1.4 ms, and (f) temperature field at 1.4 ms. 
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3.3.4 Experimental Comparison 

Solidification of Ti-6Al-4V has several pathways, including suppression of the 

reaction and primary beta phase formation, monovariant reactions, and invariant reactions 

for the residue alloy melt [190]. Our model simulates the rapid solidification process of Ti-

6Al-4V with emphasis on primary beta phase formation. During the SLM process of Ti-

6Al-4V alloy, the 𝛽𝛽 phase is formed from the liquid. Then the prior 𝛽𝛽 phase transforms to 

the acicular 𝛼𝛼′  martensite phase. This solid-state phase transition is described by the 

Burgers orientation relationship. However, the solid-state phase transition is not considered 

in our solidification simulation. Given that in-situ experimental observation of dendrite 

evolution during the rapid solidification process is challenging, it is difficult to compare 

simulated dendrite morphology and growth with experimental observation directly. 

Nevertheless, EBSD images of acicular 𝛼𝛼′ martensite phases, which originate from 

the parent 𝛽𝛽 grains, are available. Here, the simulated dendrite morphology is compared 

with the reconstructed prior 𝛽𝛽 phase orientation map from an EBSD image [187], as shown 

in Figure 3.6. It is observed that acicular 𝛼𝛼′ martensite phases are formed in the prior 

columnar 𝛽𝛽 grains. Usually, prior columnar 𝛽𝛽 grains have a high aspect ratio because of 

the high temperature gradient along the building direction. The simulated dendrite 

morphology in Figure 3.5(d) matches qualitatively with the prior columnar 𝛽𝛽 grains, such 

as the bottom-right corner with a size of 90 × 90 μm2 in Figure 3.6. The primary arm 

spacing is 35 μm. Because of the growth competition between grains of different 

orientations, curved grain boundaries, highlighted by circles, are observed when two 

dendrites encounter each other, which was also predicted by simulations. Furthermore, the 

secondary arm spacing of the simulated microstructure is 𝜆𝜆2 = 1.2 μm, which is close to 
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the calculated value 𝜆𝜆2 = 1.5 μm based on an analytical model proposed by Bouchard and 

Kirkaldy [191], as 

 
𝜆𝜆2 = 12𝜋𝜋 �

4𝜎𝜎
𝐶𝐶0(1 − 𝑘𝑘)2𝜌𝜌𝐿𝐿𝐶𝐶

�
𝐷𝐷𝑙𝑙
𝑑𝑑𝐼𝐼
�
2

�

1
3
 (3.31) 

The difference between the predicted and observed secondary arm spacing is possibly 

caused by parameter uncertainty and model form uncertainty. The parameter uncertainty 

can be associated with the interface energy 𝜎𝜎, latent heat 𝐿𝐿𝐶𝐶, solute diffusivity 𝐷𝐷𝑙𝑙, and local 

velocity of the interface 𝑑𝑑𝐼𝐼. 

 

Figure 3.6. 𝛼𝛼′ and corresponding reconstructed 𝛽𝛽 orientation maps from EBSD data. 
Courtesy of Simonelli et al. [187] 

Though microsegregation occurs in the SLM of AlSi10Mg [192] and IN718 [193] 

alloys, the microsegregation effect for the main alloy elements Al and V is weak in metal 

AM of Ti-6Al-4V alloy [194,195]. The weak microsegregation effect of Ti-6Al-4V alloy 

is mainly because the partition coefficients of Al and V are close to unity [196,197]. It has 

been shown that when trace element Fe with a theoretical partition coefficient of 0.38 is 

used to refine the grains and reduce the microstructural anisotropy of Ti-6Al-4V alloy, a 
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strong microsegregation effect can be observed during the rapid solidification[198]. 

Therefore, it is necessary to simulate solute transport for the accurate prediction of 

microstructure evolution in metal AM. The difference in compositions between our 

simulation and experimental results is likely caused by the inaccurate equilibrium partition 

coefficient in the pseudo binary approach. In future work, a multi-component multi-phase 

field model is needed to predict the composition distribution more accurately. 

3.3.5 Convergence Study with Finer Mesh 

To assess the sensitivity of mesh size on the simulation results, a finer mesh 𝑑𝑑𝑥𝑥 =

0.03 μm is used in the convergence study. Other simulation setups are kept the same. 

Figure 3.7 shows the simulation results of dendrite growth without latent heat and non-

isothermal dendrite growth with latent heat in a forced flow at 0.7 ms. After the mesh 

refinement, the difference in dendrite growth speed with and without latent heat becomes 

more obvious. Without latent heat, as shown in Figure 3.7(a), some detailed morphology 

of secondary arms can now be observed around the dendrite tips, but not at the bottom of 

dendrites. In contrast, with latent heat, as shown in Figure 3.7(c), the morphology has clear 

patterns of secondary arms that are similar to the ones in Figure 3.5(b). The growth speed 

of dendrites using the fine mesh 𝑑𝑑𝑥𝑥 = 0.03 μm is almost the same as that in the coarse 

mesh 𝑑𝑑𝑥𝑥 = 0.1 μm. The dendrite growth slows down when latent heat is considered. The 

solute distribution with the fine mesh is also similar to that of the coarse mesh. The results 

further confirm that considering latent heat is necessary to reveal the details of secondary 

arms and provide more realistic kinetics of dendrite growth. Compared to the fine mesh, 

the simulation with the coarse mesh 𝑑𝑑𝑥𝑥 = 0.1 μm reveals enough details of dendrite 

growth and reduces the computational cost. 



 

 46 

 

Figure 3.7. With fine mesh, (a) phase field and (b) composition field in dendrite growth 
without latent heat at 0.7 ms; (c) phase field and flow field, and (d) composition field in 

non-isothermal dendrite growth with latent heat in a forced flow at 0.7 ms. 

3.3.6 Quantitative Analysis 

To compare the effects on temperature quantitatively, the thermal histories in 

different simulation scenarios are plotted in Figure 3.8, where the three curves are the 

temperatures observed at the location of 𝑥𝑥 = 45 μm and 𝑦𝑦 = 0 μm for the cases without 

latent heat, with latent heat, and with latent heat and flow, respectively. There is little 

difference in the thermal histories with and without considering melt flow, whereas 
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considering latent heat gives a significantly different prediction. At the beginning of 

solidification (0 ≤  𝑡𝑡 <  175 µs), the effect of latent heat is not obvious because the 

fraction of phase transition is small. The temperature drops at a similar rate for all three 

cases. When 𝑡𝑡 ≥  175 µs , the temperature without latent heat decreases linearly. In 

contrast, the temperature with latent heat decreases slowly and starts to increase at 𝑡𝑡 =

 875 µs because of the continuous release of latent heat. The phenomenon is commonly 

known as recalescence during the solidification of metals, similarly observed in the 

simulation results of Ref. [186].  

 

Figure 3.8. Thermal histories at the location of 𝑥𝑥 = 45 μm and 𝑦𝑦 = 0 μm under different 
conditions. 

Figure 3.9 shows the temperature distribution of non-isothermal dendrite growth 

along the y-direction at 𝑥𝑥 = 45 μm . It is observed that the forced flow reduces the 

temperature values but increases the temperature gradients only slightly. 
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Figure 3.9. The temperature distribution of non-isothermal dendrite growth along the 
vertical line at 𝑥𝑥 = 45 μm. 

Table 3.2 summarizes the dendrite tip temperature gradient 𝐺𝐺, dendrite tip growth 

velocity 𝑑𝑑, and their combinations for the three cases of simulations. When the release of 

latent heat is considered, the dendrite tip temperature gradient 𝐺𝐺 , dendrite tip growth 

velocity 𝑑𝑑, and average growth velocity 𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒 are smaller than those without latent heat. 

The local cooling rate 𝐺𝐺𝑑𝑑 and the ratio 𝐺𝐺/𝑑𝑑 are also lower. When a forced flow is imposed, 

the dendrite tip temperature gradient 𝐺𝐺 and dendrite tip growth velocity 𝑑𝑑 slightly increase. 

This suggests that the forced flow can accelerate dendrite growth, resulting in further 

release of latent heat and a higher temperature gradient. The average growth velocities 𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒 

with the flow and without the flow are almost the same, which means that the release of 

latent heat can stabilize the dendrite growth. The local cooling rate 𝐺𝐺𝑑𝑑 and the ratio 𝐺𝐺/𝑑𝑑 

increase slightly with the forced flow. The effect of melt flow on dendrite growth is 

suppressed by rapid solidification. 
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Table 3.2. Quantitative analysis of simulation results 

 Without 
latent heat 

With latent 
heat 

With latent 
heat and 
flow 

Dendrite tip temperature gradient 𝐺𝐺 
at 1.4 ms [K/mm] 130 80 100 

Dendrite tip growth velocity 𝑑𝑑 at 
1.4 ms [mm/s] 49 43 44 

Average growth velocity 𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒  [mm/
s] 46.9 44.7 45 

Local cooling rate 𝐺𝐺𝑑𝑑 [K/s] 6370 3440 4400 
Ratio 𝐺𝐺/𝑑𝑑 [K⋅s/mm2] 2.65 1.86 2.27 

 

3.4 Conclusions 

In this work, a mesoscale multi-physics model is developed to simulate the rapid 

solidification of Ti-6Al-4V alloy by integrating the phase-field method and the thermal 

lattice Boltzmann method. This model simulates the rapid solidification process of Ti-6Al-

4V with emphasis on primary 𝛽𝛽 phase formation. The model concurrently predicts solute 

transport, phase transition, heat transfer, latent heat, and melt flow. The local non-

equilibrium partition coefficient is calculated based on Aziz's model to compute the solute 

distribution during rapid solidification. The diffusivity of the liquid is temperature-

dependent, while other physical properties of Ti-6Al-4V are assumed to be constant. By 

considering the release of latent heat, the model can predict the composition distribution, 

temperature field, grain growth, and dendrite morphology with more detail than models 

without latent heat. The results show that considering latent heat is important for modeling 

thermal effects on dendrite growth. The average growth rate 𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒 is lower with latent heat 

than without it. The local cooling rate 𝐺𝐺𝑑𝑑  and the ratio 𝐺𝐺/𝑑𝑑  are lower as well. The 

recalescence occurs during the non-isothermal dendrite growth.  
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The effect of fluid flow on dendrite growth is small under rapid solidification. The 

advection changes the distributions of temperature and composition. The flow can 

accelerate the grain growth by enhancing solute diffusion and increasing undercooling, 

which results in a higher driving force. The forced flow enhances the growth of horizontal 

secondary arms and increases the temperature gradient slightly. 

The simultaneous considerations of solute transport, kinetics of phase transition, and 

thermal effects are necessary to understand rapid solidification. The multi-physics 

modeling approach can elucidate the complex physical processes with more details. The 

challenge of coupling multiple physical effects is the highly varied time scales used in these 

simulated processes. Because of the high cooling rate in rapid solidification, the time step 

needs to be small enough for numerical stability. However, the dimensionless relaxation 

time in TLBM should be greater than 0.5 and not much larger than 1 because of truncation 

errors [199]. The trade-offs mostly rely on sensitivity studies. In our model, a variable grid 

approach is taken to treat PFM and TLBM separately to alleviate this problem.  

There are several approximations in our model that may affect the accuracy of 

predictions. First, the interface mobility is assumed to be constant. However, it depends on 

the temperature in reality. Since there is a lack of experimental results, molecular dynamics 

simulations can be applied to estimate mobility and assess the influential factors such as 

temperature. Interatomic potentials for Ti-6Al-4V alloy for molecular dynamics 

nevertheless need to be developed. Second, the pseudo-binary approach is adopted to 

model the ternary alloy. However, Al and V will not be trapped in the same way during 

rapid solidification. A multi-component multi-phase field model is needed to reveal further 

details. Third, to simulate the complete process of SLM, nucleation and solid-state phase 
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transition should also be considered to predict the final microstructure. This allows for 

direct quantitative comparison and model validation based on existing experimental 

capabilities. Some emerging in-situ characterization techniques for rapid solidification 

such as dynamic transmission electron microscopy [200] can help calibrate and validate 

models. Fourth, the current model is only applied to the 2D domain. Future work will 

include the extension to 3D domains. 3D models will be much more computationally 

demanding. Parallelization is a viable solution to this issue. Both the phase-field method 

and the thermal lattice Boltzmann method can be easily adapted for parallel computation.  
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CHAPTER 4. MULTIPHYSICS SIMULATION OF 

NUCLEATION AND GRAIN GROWTH IN SELECTIVE LASER 

MELTING OF ALLOYS 

4.1 Introduction 

In this chapter, a nucleation model is introduced in our previously developed PF-

TLBM [168–174] model to simulate heterogeneous nucleation at the boundary of the melt 

pool in SLM. AlSi10Mg alloy is used to demonstrate the simulation framework. AlSi10Mg 

alloy, with good weldability, hardenability and high dynamic properties, has been widely 

applied in the automotive and aerospace industries. The main contribution of this work is 

the simulation of nucleation and dendritic growth of alloys in the small melt pool of SLM, 

where heterogeneous nucleation tends to occur at the boundary. A new method to calculate 

heat fluxes out of the small melt pool for PF-TLBM is also developed, given a constant 

cooling rate. The effects of latent heat and cooling rate on dendritic morphology and solute 

distribution are studied. The PF-TLBM model is also extended to predict the multi-layer 

epitaxial grain growth in the complex heating and cooling environment in SLM. The re-

melting and solidification process in multiple scanning passes are simulated. A marching 

cell simulation scheme is proposed to further reduce the computational complexity. 

In the melt pool model, the nucleus with random orientations are planted at the 

bottom of a 2D simulation domain in advance to simulate the columnar dendrite growth 

during the SLM process. An accurate and reliable thermal model is critical for predicting 

microstructure evolution. To save the computational cost, however, the well-known 
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Rosenthal equation rather than the thermal lattice Boltzmann method is used to predict the 

thermal history for simulating multi-layer epitaxial grain growth.  

In this chapter, the melt is assumed to be static in the small melt pool for 

simplification. The solid phase transition and recrystallization are not simulated. The effect 

of Marangoni flow on dendritic growth will be considered in future work. In the remainder 

of this chapter, the formulation of PF-TLBM with zero fluid velocity, the new nucleation 

model, and the new method for calculation of heat fluxes out of the melt pool are described 

in Section 4.2. The thermal model and the marching cell simulation scheme for simulating 

multi-layer epitaxial grain growth are also shown in Section 4.2. The simulation settings 

and simulation results of single-layer and multi-layer dendritic growth of AlSi10Mg alloy 

are shown in Section 4.3. It also includes the effects of latent heat and cooling rate on 

dendritic growth. The quantitative analyses of thermal history, the time evolution of solid-

phase fraction, and composition distribution are also provided. 

4.2 Methodology 

In this study, the simplified formulation of PF-TLBM with zero velocity in the static 

melt is used, which is different from the original formulation of PF-TLBM in Section 3.2. 

The phase-field and composition are calculated by solving the Allen-Cahn equation and 

diffusion equation. Since the melt is static, the kinetic equation for the composition field is 

modified to 

 𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= ∇ ⋅ [𝐷𝐷𝑙𝑙(1 − 𝜙𝜙)∇𝐶𝐶𝑙𝑙] + ∇ ⋅ 𝐣𝐣𝑎𝑎𝑎𝑎 (4.1) 

TLBM [82,86] is used to calculate the temperature field only for simulating single-layer 

dendritic growth in this study. TLBM is used to simulate the temperature evolution in the 
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melt pool and consider the effects of the release of latent heat at the solid-liquid interface. 

PFM and TLBM are tightly coupled by updating and exchanging the information of phase, 

composition, and temperature fields in each iteration of the simulation. More details about 

TLBM can be found in Section 3.2.2.  

In the remainder of this section, the thermal lattice Boltzmann method for static melt 

is introduced in Section 4.2.1. In Section 4.2.2, the new nucleation model is described, 

which is used to simulate the heterogeneous nucleation in the mushy zone of the melt pool 

in the SLM process. In Section 4.2.3, a new method to calculate heat fluxes out of the SLM 

melt pool model given a constant cooling rate is described. The thermal model and the 

marching cell simulation scheme for simulating multi-layer epitaxial grain growth are 

shown in Section 4.2.4. 

4.2.1 Thermal Lattice Boltzmann Method for Static Melt 

The heat conduction equation is given by 

 𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

= ∇ ⋅ (𝛼𝛼∇𝑇𝑇) + �̇�𝑞 (4.2) 

where 𝛼𝛼 is the thermal diffusivity. The released latent heat �̇�𝑞 during solidification is given 

by Eq. (3.16). Instead of solving Eq. (4.2) directly, a particle distribution function of 

temperature 𝑔𝑔𝑖𝑖(𝐱𝐱, 𝑡𝑡)  is utilized to capture the dynamics of the system in TLBM. The 

equilibrium particle distribution of temperature is given by 

 𝑔𝑔𝑖𝑖
𝑒𝑒𝑒𝑒(𝐱𝐱, 𝑡𝑡) = ω𝑖𝑖𝑇𝑇 (4.3) 

To improve the computational efficiency, a fine grid spacing 𝑑𝑑𝑥𝑥 is used for the PFM 

simulation, whereas a coarse grid spacing ∆𝑥𝑥 = 50 𝑑𝑑𝑥𝑥 is used for the TLBM simulation. 

The same time step ∆𝑡𝑡 is used for both simulations. The results of TLBM are linearly 
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interpolated as the input for the PFM model, whereas the results of PFM are averaged and 

transferred to the TLBM model in each iteration. The anti-bounceback scheme [181,182] 

is used for the thermal boundary condition. The particle distribution of temperature at the 

boundary node 𝑔𝑔𝚤𝚤̅(𝐱𝐱𝑏𝑏, 𝑡𝑡 + ∆𝑡𝑡), for direction 𝚤𝚤 ̅such that 𝐞𝐞𝚤𝚤̅ = −𝐞𝐞𝑖𝑖, is determined by 

 𝑔𝑔𝚤𝚤̅(𝐱𝐱𝑏𝑏 , 𝑡𝑡 + ∆𝑡𝑡) = −𝑔𝑔𝑖𝑖(𝐱𝐱𝑏𝑏 , 𝑡𝑡) −
1
𝜏𝜏𝑔𝑔
�𝑔𝑔𝑖𝑖

𝑒𝑒𝑒𝑒(𝐱𝐱𝑏𝑏, 𝑡𝑡) − 𝑔𝑔𝑖𝑖(𝐱𝐱𝑏𝑏 , 𝑡𝑡)� + 2ω𝑖𝑖𝑇𝑇𝑤𝑤 (4.4) 

4.2.2 Nucleation Model 

During the SLM process, columnar dendrites grow from the bottom of the melt pool 

upwards, as usually observed in experiments. Heterogeneous nucleation usually has a much 

lower energy barrier than homogeneous nucleation. Therefore, it is reasonable to assume 

that heterogeneous nucleation dominates and nuclei concentrate at the solid-liquid 

interface. To simulate the heterogeneous nucleation process, a Poisson seeding algorithm 

[62,63] is adopted. Nucleation can be treated as fully localized events and can be modeled 

as a Poisson process. The major assumption is the spatial and temporal independence 

between events with the memoryless property. The nucleation probability is given by 

 𝑃𝑃𝑛𝑛 = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝐼𝐼𝐼𝐼∆𝑡𝑡) (4.5) 

where 𝐼𝐼 is the nucleation rate, 𝐼𝐼 is the cell spacing, and ∆𝑡𝑡 is a sufficiently small time 

interval. Based on the CNT, the nucleation rate can be calculated by 

 
𝐼𝐼 = 𝐼𝐼0𝑒𝑒𝑥𝑥𝑒𝑒 �−

16𝜋𝜋𝜎𝜎3𝑓𝑓(�̅�𝜃)
3𝑘𝑘𝐺𝐺𝑇𝑇(∆𝐺𝐺𝑉𝑉)2� (4.6) 

where 𝐼𝐼0 ≈ 1 × 1016 m−2𝑎𝑎−1  is the prefactor of the nucleation rate determined by the 

jump frequency across the interface, 𝜎𝜎  is the interface energy, 𝑓𝑓(�̅�𝜃) = (2 − 3𝑎𝑎𝑐𝑐𝑎𝑎�̅�𝜃 +

𝑎𝑎𝑐𝑐𝑎𝑎3�̅�𝜃)/4 = 1 × 10−5 with �̅�𝜃 as the contact angle, 𝑘𝑘𝐺𝐺 is the Boltzmann constant, ∆𝐺𝐺𝑉𝑉 is 
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the driving force in Eq. (3.7). The prefactor of the nucleation rate for AlSi10Mg alloy is 

calibrated based on the average β grain size observed in the SLM experiment [201], which 

is 5 µm. During each time step, the nucleation probability 𝑃𝑃𝑛𝑛 is calculated at each liquid 

cell at the boundary of the melt pool during the simulation. At the same time, a random 

number with the standard uniform distribution between 0 and 1 will be generated and 

compared with the nucleation probability 𝑃𝑃𝑛𝑛 . If the random number is less than the 

nucleation probability 𝑃𝑃𝑛𝑛, then the nucleus is planted. 

4.2.3 Calculation of Heat Fluxes out of the Melt Pool 

The setup of boundary conditions for simulating single-layer dendritic growth in 

SLM is schematically illustrated in Figure 4.1. The rectangular region stands for the cross-

section of the melt pool, which is perpendicular to the scanning direction. The curve 

indicates the boundary of the melt pool, where nuclei with random distributions are 

generated. Zero Neumann conditions are set at all boundaries for the phase-field 𝜙𝜙 and 

composition 𝐶𝐶.  

 

Figure 4.1. Schematic diagram of the setup of boundary conditions. 
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Constant cooling rates are applied indirectly. It is noted that the nonisothermal 

solidification in the melt pool is simulated by applying heat fluxes at boundaries rather than 

cooling the whole simulation domain at a constant cooling rate. Firstly, four constant heat 

fluxes 𝑞𝑞𝑇𝑇, 𝑞𝑞𝐺𝐺, 𝑞𝑞𝐿𝐿, and 𝑞𝑞𝑅𝑅 are calculated based on a constant cooling rate. Then these four 

heat fluxes  𝑞𝑞𝑇𝑇, 𝑞𝑞𝐺𝐺, 𝑞𝑞𝐿𝐿, and 𝑞𝑞𝑅𝑅 are applied at the top, bottom, left, and right boundaries, 

respectively. The relationship between a constant cooling rate and heat fluxes at the 

boundaries needs to be established so that the solidification in the melt pool is 

nonisothermal to reflect the real situation. Three heat fluxes 𝑞𝑞𝐺𝐺, 𝑞𝑞𝐿𝐿, and 𝑞𝑞𝑅𝑅 are estimated 

based on their geometric relation to the heat flux 𝐪𝐪 which is normal to the boundary of the 

melt pool. More specifically, 𝐪𝐪 is decomposed into three heat fluxes 𝑞𝑞𝐺𝐺, 𝑞𝑞𝐿𝐿, and 𝑞𝑞𝑅𝑅. It is 

assumed that the heat flux 𝐪𝐪 has a constant magnitude. It is necessary to determine the 

relationship between heat fluxes 𝑞𝑞𝐺𝐺 , 𝑞𝑞𝐿𝐿 , and 𝑞𝑞𝑅𝑅  so that the magnitude of heat fluxes at 

boundaries can be calculated. To make it more general, it is assumed that the shape of the 

melt pool is a semi-ellipse, which is defined as 

 𝑎𝑎(𝜃𝜃) = (𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝜃𝜃, 𝑏𝑏𝑎𝑎𝑎𝑎𝑛𝑛𝜃𝜃) (4.7) 

where 𝑎𝑎 is the major axis, 𝑏𝑏 is the minor axis, and 𝜃𝜃 is an angular parameter that defines 

the position. The heat flux 𝐪𝐪 normal to the boundary of the melt pool has a constant 

magnitude and is given by 

 𝐪𝐪 = 𝑞𝑞𝐍𝐍 =
𝑞𝑞

√𝑎𝑎2𝑎𝑎𝑎𝑎𝑛𝑛2𝜃𝜃 + 𝑏𝑏2𝑎𝑎𝑐𝑐𝑎𝑎2𝜃𝜃
(𝑏𝑏𝑎𝑎𝑐𝑐𝑎𝑎𝜃𝜃,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝜃𝜃) (4.8) 

where 𝐍𝐍 is the unit normal vector perpendicular to the boundary of the melt pool. The heat 

flux 𝐪𝐪  can be decomposed to 𝐪𝐪𝒙𝒙 = 𝑞𝑞/√𝑎𝑎2𝑎𝑎𝑎𝑎𝑛𝑛2𝜃𝜃 + 𝑏𝑏2𝑎𝑎𝑐𝑐𝑎𝑎2𝜃𝜃(𝑏𝑏𝑎𝑎𝑐𝑐𝑎𝑎𝜃𝜃, 0)  and 𝐪𝐪𝒚𝒚 = 𝑞𝑞/

√𝑎𝑎2𝑎𝑎𝑎𝑎𝑛𝑛2𝜃𝜃 + 𝑏𝑏2𝑎𝑎𝑐𝑐𝑎𝑎2𝜃𝜃(0,𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝜃𝜃). Because the semi-ellipse is symmetric with respect to the 
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y-axis, let us consider the case when −2/𝜋𝜋 ≤ 𝜃𝜃 ≤ 0 first. By using vector calculus, the 

rate of heat flow caused by the horizontal heat flux 𝐪𝐪𝒙𝒙 can be calculated by 

 
�̇�𝑄𝑥𝑥 = � 𝐪𝐪𝒙𝒙 ⋅ 𝐍𝐍

0

−𝜋𝜋2

𝑑𝑑𝑎𝑎 = � 𝐪𝐪𝒙𝒙 ⋅ 𝐍𝐍
0

−𝜋𝜋2

|𝑎𝑎′(𝜃𝜃)|𝑑𝑑𝜃𝜃

= �
𝑞𝑞𝑏𝑏2𝑎𝑎𝑐𝑐𝑎𝑎2𝜃𝜃

√𝑎𝑎2𝑎𝑎𝑎𝑎𝑛𝑛2𝜃𝜃 + 𝑏𝑏2𝑎𝑎𝑐𝑐𝑎𝑎2𝜃𝜃

0

−𝜋𝜋2

𝑑𝑑𝜃𝜃 

(4.9) 

Similarly, the rate of heat flow caused by the vertical heat flux 𝐪𝐪𝒚𝒚 is given by 

 
�̇�𝑄𝑦𝑦 = � 𝐪𝐪𝒚𝒚 ⋅ 𝐍𝐍

0

−𝜋𝜋2

𝑑𝑑𝑎𝑎 = � 𝐪𝐪𝒚𝒚 ⋅ 𝐍𝐍
0

−𝜋𝜋2

|𝑎𝑎′(𝜃𝜃)|𝑑𝑑𝜃𝜃

= �
𝑞𝑞𝑎𝑎2𝑎𝑎𝑎𝑎𝑛𝑛2𝜃𝜃

√𝑎𝑎2𝑎𝑎𝑎𝑎𝑛𝑛2𝜃𝜃 + 𝑏𝑏2𝑎𝑎𝑐𝑐𝑎𝑎2𝜃𝜃

0

−𝜋𝜋2

𝑑𝑑𝜃𝜃 

(4.10) 

Both �̇�𝑄𝑥𝑥 and �̇�𝑄𝑦𝑦 can be calculated by numerical integration. On the other hand, from the 

definition of rate of heat flow, we have 

 �̇�𝑄𝑥𝑥
�̇�𝑄𝑦𝑦

=
𝑞𝑞𝑅𝑅𝐿𝐿𝑦𝑦
𝑞𝑞𝐺𝐺𝐿𝐿𝑥𝑥/2

 (4.11) 

Because of the symmetry of the melt pool, the rates of heat flow at the left and right 

boundaries are the same, as 

 𝑞𝑞𝐿𝐿𝐿𝐿𝑦𝑦 = 𝑞𝑞𝑅𝑅𝐿𝐿𝑦𝑦 (4.12) 

For all simulations in this work, the length and width of the simulation domain are the 

same. Therefore, the ratio between the rates of heat flow along the x-direction and y-

direction can be computed by numerical integration of Eqs. (4.9) and (4.10) as 

 �̇�𝑄𝑥𝑥
�̇�𝑄𝑦𝑦

=
2𝑞𝑞𝑅𝑅𝐿𝐿𝑦𝑦
𝑞𝑞𝐺𝐺𝐿𝐿𝑥𝑥

=
2𝑞𝑞𝑅𝑅
𝑞𝑞𝐺𝐺

≈ 2.84 (4.13) 

Based on Eqs. (4.12) and (4.18), a relationship can be derived as 
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 𝑞𝑞𝐿𝐿 = 𝑞𝑞𝑅𝑅 = 1.42𝑞𝑞𝐺𝐺 (4.14) 

The heat flux at the top boundary caused by the convection and radiation heat transfer is 

defined as [202] 

 𝑞𝑞𝑇𝑇 = ℎ(𝑇𝑇𝑙𝑙 − 𝑇𝑇0) + 𝜎𝜎𝑆𝑆𝐺𝐺𝜀𝜀(𝑇𝑇𝑙𝑙4 − 𝑇𝑇04) (4.15) 

where 𝜎𝜎𝑆𝑆𝐺𝐺  is Stefan–Boltzmann constant and 𝑇𝑇0 = 298 K is room temperature. Given a 

constant cooling rate �̇�𝑇, the other three heat fluxes 𝑞𝑞𝐺𝐺, 𝑞𝑞𝐿𝐿, and 𝑞𝑞𝑅𝑅 can be calculated based 

on the energy balance equation [186] 

 𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦𝜌𝜌𝑎𝑎𝑝𝑝�̇�𝑇 = 𝑞𝑞𝑇𝑇𝐿𝐿𝑥𝑥 + 𝑞𝑞𝐺𝐺𝐿𝐿𝑥𝑥 + 𝑞𝑞𝐿𝐿𝐿𝐿𝑦𝑦 + 𝑞𝑞𝑅𝑅𝐿𝐿𝑦𝑦 (4.16) 

After four heat fluxes are obtained, the temperature of the wall 𝑇𝑇𝑤𝑤 can be updated in each 

iteration based on Eq. (3.30). 

4.2.4 Multi-Layer Epitaxial Grain Growth 

To simulate multi-layer epitaxial grain growth in SLM, an analytical thermal model 

is combined with a new marching cell simulation scheme to save the computational cost. 

The re-melting and solidification processes in multiple scanning passes are simulated. To 

start the simulation, nuclei with random orientations are planted in a two-dimensional (2D) 

simulation domain that represents the substrate layer. The initial grains in the substrate 

layer are first simulated by growing from some random nuclei. After the initial grains are 

formed, in the first laser scan, the moving laser from left to right partially re-melts the 

substrate layer to enable cross-layer dendritic growth. Afterwards, feedstock materials are 

added layer-by-layer and the laser scans through the domain in the SLM process. That is, 

the nuclei implanted in the substrate domain serve as the initialization of grain growth. To 

accelerate the process of nuclei implant in the substrate, a larger PFM grid spacing is 
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applied since the detailed dendritic morphology in the substrate is not the focus here. 

During the layer-by-layer process, the stochastic nucleation model is applied and nuclei are 

introduced as the result of impurity and defects. An analytical thermal model is applied to 

model laser heating. 

4.2.4.1 Thermal Model 

To save the computational cost, the thermal history for multi-layer grain growth can 

be approximated by an analytical model. The analytical thermal model is based upon 

Rosenthal equation [203] for the temperature distribution resulting from a point heat source 

traversing the surface with a constant scanning speed 𝑑𝑑𝑏𝑏 = 1.4 m/s. The temperature 

distribution is assumed to be quasi-stationary and a moving coordinate system centered is 

used at the origin of the beam. With the beam traversing in the x-direction, the coordinate 

transformation from the fixed to the moving coordinate system is 𝑑𝑑𝑥𝑥 = 𝑥𝑥 − 𝑑𝑑𝑏𝑏𝑡𝑡 . The 

temperature of any given point is calculated as 

 
𝑇𝑇 = 𝑇𝑇0 +

𝐴𝐴𝑃𝑃𝑏𝑏
2𝜋𝜋𝜅𝜅𝑑𝑑

𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑑𝑑𝑏𝑏(𝑑𝑑 + 𝑑𝑑𝑥𝑥)

2𝛼𝛼
� (4.17) 

where 𝑇𝑇0 = 300 K  is the start temperature, 𝐴𝐴 = 0.32  is the powder absorptivity, 𝑃𝑃𝑏𝑏 =

200 W is the laser beam power, 𝜅𝜅 is the thermal conductivity of the alloy, 𝛼𝛼 is the thermal 

diffusivity of the alloy, 𝑑𝑑 is the distance from the given point to the heat source. 

4.2.4.2 Marching Cell Simulation Scheme 

One major challenge of PFM for larger domain simulation is the computational 

complexity. The building tank in the SLM process has a volume of several cubic 

decimeters, and the cross-layer melting and heat-affected zone (HAZ) is in the scale of 

millimeters. However, the actual solidification only occurs inside the melt pool on the scale 
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of 100 micrometers. In order to improve the computational efficiency for multi-layer grain 

growth simulation, here we propose a marching-cell simulation scheme, as illustrated in 

Figure 4.2. The actively simulated 2D domain only has a depth of heat-affected zone in the 

thermal model instead of modeling the complete building tank. The solidified workpiece 

below the heat-affected zone is not actively simulated during the layer-by-layer process. 

The formed grain structures from previous simulation steps are just stored in the computer 

memory. The PFM model only focuses on a cell that is large enough to include the melt 

pool, where the actual solidification occurs. After one layer of cells is finished, all cells 

corresponding to the same one-layer thickness at the bottom of the thermal model domain 

are stored, the cells above are shifted downwards and an equal number of new cells are 

initialized at the top. By repeating this procedure, an arbitrary build height with the constant 

computational effort per layer is possible. When the simulation is completed, the stored 

cells are merged to show the whole build volume. 

 

Figure 4.2. The schematic illustration of the proposed marching-cell simulation scheme 

 

Cell (PFM domain) 
Melt pool 

HAZ (Thermal model domain) 

Layers to be stored next (Stored domain) 
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4.3 Results and Discussion 

In this section, the simulation setup and the simulation results are described. The 

effects of latent heat and cooling rate on the dendritic growth of AlSi10Mg alloy in the 

melt pool are studied. The quantitative analyses of thermal history, the time evolution of 

solid-phase fraction, and composition distribution are also provided. 

4.3.1 Computational Setup 

4.3.1.1 Single-Layer Dendritic Growth of AlSi10Mg Alloy 

The PF-TLBM framework is used to simulate nucleation and dendritic growth of 

AlSi10Mg alloy in the melt pool during the single-layer SLM process. In AlSi10Mg alloy, 

the composition of Si is high (9~11 wt%) and the composition of Mg is low (0.2~0.45 

wt%). Therefore, it is reasonable to assume the main solute of AlSi10Mg alloy is Si. By 

using the pseudo-binary approach, the ternary AlSi10Mg alloy is treated as a binary alloy, 

and the solute is the combination of Si and Mg. The physical properties of AlSi10Mg alloy 

are listed in Table 4.1 [202,204–209]. For simplification, most properties of AlSi10Mg 

except the diffusivity of the liquid phase are assumed to be temperature independent during 

solidification. The dependence of physical properties on temperature needs to be 

considered to further improve prediction accuracy in future work. The algorithm is 

implemented in C++ programming language and integrated with the open-source software 

OpenPhase [183]. PFM and LBM have been implemented in the original OpenPhase. The 

OpenMP shared-memory parallel programming framework is used to accelerate the 

computation. There are three main contributions and new features in our implementation. 

First, LBM has been extended as TLBM so that heat transfer can be simulated. Second, a 
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probabilistic nucleation model has been introduced in the framework. Finally, a double-

mesh scheme has been implemented to improve the computational efficiency of the 

multiphysics model. 

Table 4.1. Physical properties of AlSi10Mg alloy 

Physical properties Value 
The melting point of pure Al, 𝑇𝑇𝑚𝑚 [K] 933 [204] 
Liquidus temperature, 𝑇𝑇𝑙𝑙 [K] 867 [205] 
Solidus temperature, 𝑇𝑇𝑠𝑠 [K] 831 [205] 
Liquidus slope, 𝑚𝑚𝑙𝑙 [K/wt%] −6.6 [204] 
Equilibrium partition coefficient, 𝑘𝑘𝑒𝑒 0.104 [204] 
Prefactor of interface energy stiffness, 𝜎𝜎0∗ [J/m2] 0.169 [206] 
Interfacial energy stiffness anisotropy, 𝛿𝛿 0.27 [206] 
Interface mobility, 𝑀𝑀𝜙𝜙 [m4/(J∙s)] 1×10-8 [207] 
Entropy difference, ∆𝑆𝑆 [J/(m3∙K)] 1.3×106 
Physical interface width, 𝜆𝜆 [m] 3×10−9 [208] 
Prefactor of diffusion coefficient of liquid phase, 𝐷𝐷0 [m2/s] 1.34×10-7 [209] 
Activation energy, ∆𝐸𝐸 [J/mol] 3×104 [209] 
Kinematic viscosity, 𝜈𝜈 [m2/s] 4.87×10-7 [205] 
Thermal diffusivity, 𝛼𝛼 [m2/s] 4.5×10-5 [205] 
Thermal conductivity, 𝜅𝜅 [W/(m∙K)] 110 [205] 
Latent heat of fusion, 𝐿𝐿𝐶𝐶  [J/kg] 4.23×105 [205] 
Specific heat capacity, 𝑎𝑎𝑝𝑝 [J/(kg⋅K)] 915 [205] 
Density, 𝜌𝜌 [kg/m3] 2670 [205] 
Heat transfer coefficient, ℎ [W/(m2∙K)] 82 [202] 
Emissivity, 𝜀𝜀 0.4 [202] 

 

Since thermal diffusivity is three to four orders of magnitude larger than solute 

diffusivity, a double-mesh scheme is adopted in simulations to reduce computational cost. 

A fine grid spacing 𝑑𝑑𝑥𝑥 = 0.2 μm is used for the PFM simulation, whereas a coarse grid 

spacing ∆𝑥𝑥 = 50 𝑑𝑑𝑥𝑥 = 10 μm is used for the TLBM simulation. Based on the stability 

analysis, the upper limit of the time step should be ∆𝑡𝑡 ≤ 𝑚𝑚𝑎𝑎𝑛𝑛{𝑑𝑑𝑥𝑥2/(4𝐷𝐷𝑙𝑙),∆𝑥𝑥2/(4𝜈𝜈),∆𝑥𝑥2/

(4𝛼𝛼)}. As a result, the time step ∆𝑡𝑡 = 0.2 μs is applied. The experimental results show that 
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the width and depth of the melt pool in SLM of AlSi10Mg are 100 μm [201]. Therefore, 

the length and width of the two-dimensional simulation domain as the cross-section of the 

melt pool are chosen to be 𝐿𝐿𝑥𝑥 = 𝐿𝐿𝑦𝑦 = 500 𝑑𝑑𝑥𝑥 = 100 μm. The interface width is 𝜂𝜂 = 5 𝑑𝑑𝑥𝑥, 

meaning that there are 6 nodes on the interface or boundary layer. The initial composition 

of the solute is set as 𝐶𝐶0 = 10 wt%  for the whole simulation domain. The initial 

temperature is 𝑇𝑇0 = 867 K for the whole simulation domain. 

4.3.1.2 Multi-Layer Epitaxial Grain Growth of AlSi10Mg Alloy 

To save the computational cost, a coarse grid spacing 𝑑𝑑𝑥𝑥 = 1 μm and a large time 

step ∆𝑡𝑡 = 1 μs are used for the PFM to speed up the simulation of the multi-layer epitaxial 

grain growth of AlSi10Mg alloy in SLM. Since a coarse mesh is used, the accuracy of the 

predicted composition field reduces. It is noted that the grain morphology is the focus of 

multi-layer epitaxial grain growth simulation. The physical properties of AlSi10Mg alloy 

are shown in Table 4.1. To reduce the side effect caused by the coarse mesh, the interface 

mobility 𝑀𝑀𝜙𝜙 = 1×10-7 m4/(J∙s) of AlSi10Mg alloy is calibrated based on the growth speed 

reported in the experiment [201] so that the dynamics of grain growth is correct. 

The length and width of the two-dimensional simulation domain are chosen to be 

𝐿𝐿𝑥𝑥 = 300 𝑑𝑑𝑥𝑥 = 300 μm and 𝐿𝐿𝑦𝑦 = 140 𝑑𝑑𝑥𝑥 = 140 μm, respectively. The interface width 

is 𝜂𝜂 = 5 𝑑𝑑𝑥𝑥. The initial composition of the solute is set as 𝐶𝐶0 = 10 wt% for the whole 

simulation domain. Zero Neumann conditions are set at all boundaries for the phase-field 

𝜙𝜙 and composition 𝐶𝐶. The simulation time is 20 ms. At the beginning of the simulation, 

30 spherical nuclei with a radius of 5 μm and random orientations are planted at the bottom 

of the simulation domain. The grown grains based on the nuclei serve as the base plate of 

the powder bed. The powder layer thickness is 30 μm. When the top layer of the simulation 
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domain is fully solidified, all cells corresponding to one-layer thickness at the bottom are 

stored. The cells above are shifted downwards and an equal number of new cells are 

initialized on top. The unidirectional scanning strategy is adopted for simplification. Once 

the laser beam reaches the scanning length of 4 mm, it will move back to the origin of the 

scanning path. 

4.3.2 Simulation Results of Single-Layer Dendritic Growth 

4.3.2.1 Dendritic Growth without Latent Heat 

The dendritic growth of AlSi10Mg alloy is first simulated without the release of 

latent heat for comparison. A constant cooling rate �̇�𝑇 = 5 × 104 K/s  is used. The 

simulation results are shown in Figure 4.3. The grain identification (ID) 0 represents the 

liquid phase, whereas other grain IDs represent solid phases with different orientations. 

During the rapid solidification process, the columnar dendritic growth dominates in the 

melt pool, as shown in Figure 4.3. 

At the time of 2.8 ms, the columnar dendritic growth pattern is observed, as shown 

in Figure 4.3(a). The primary arms and secondary arms still can be differentiated. As a 

result of the anisotropy of interface energy, the primary arms grow faster than secondary 

arms. Since the release of latent heat is ignored, the secondary arms grow so fast that they 

quickly merge with each other as shown in Figure 4.3(b). At the time of 11.2 ms, the melt 

has been completely solidified as shown in Figure 4.3(d). The composition field at 11.2 ms 

is shown in Figure 4.3(e), where primary arms and secondary arms can be differentiated 

easily. The microsegregation occurs at the grain boundaries and the small pockets between 

secondary arms. In Figure 4.3(f), the temperature at the upper center of the melt pool is the 

highest, which is caused by the setup of heat fluxes at the boundaries. Since the primary 
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arms aligned with the temperature gradient grow faster than those that do not, this results 

in the radial distribution pattern of columnar dendrites in the melt pool, as shown in Figure 

4.3(d). Since the latent heat is ignored, the temperature decreases so fast that it approaches 

room temperature at 11.2 ms as shown in Figure 4.3(f). This observation does not agree 

well with the experimental evidence, which also indicates the significance of considering 

the release of latent heat. 
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Figure 4.3. Dendritic growth without latent heat. 

(b) Phase field at 5.6 ms 

(c) Phase field at 8.4 ms (d) Phase field at 11.2 ms 

(e) Composition field at 11.2 ms (f) Temperature field at 11.2 ms 

(a) Phase field at 2.8 ms 
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4.3.2.2 Dendritic Growth with Latent Heat 

In the second case, the dendritic growth with the release of latent heat is simulated. 

The cooling rate is also kept as �̇�𝑇 = 5 × 104 K/s. Figure 4.4 shows the simulation results. 

At the time of 4 ms, a clear dendritic growth pattern is shown in Figure 4.4(a), where 

primary arms and secondary arms can be differentiated easily. When the dendrites continue 

to grow, the primary arms aligned with the temperature gradient grow faster than those that 

do not as shown in Figure 4.4(b-d). However, there is still some residual melt between 

grains. The melt is not completely solidified even at the time of 16 ms, as shown in Figure 

4.4(d). The composition field at 16 ms is shown in Figure 4.4(e), where secondary arms 

can still be observed clearly. The small pockets of the liquid phase at grain boundaries may 

remain liquid for a long period of time until solid diffusion takes away the remaining solute 

supersaturation before it is completely solidified. The microsegregation at grain boundaries 

in the case with latent heat is lower than that in the case without latent heat. Figure 4.4(f) 

shows the temperature field at 16 ms. The temperature in the case with latent heat is higher 

than that in the case without latent heat. The maximum temperature (742.5 K) is lower than 

the temperature of solidus (831 K) in equilibrium. However, the melt is not completely 

solidified. This is because the actual solidus temperature during nonequilibrium 

solidification is lower than that in the equilibrium case. This observation agrees with the 

CALPHAD results in the work of Marola et al. [204]. Based on the above comparison, the 

inclusion of latent heat is very necessary because it reveals the details of the formation of 

secondary arms. 
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Figure 4.4. Dendritic growth with latent heat. 

(a) Phase field at 4 ms (b) Phase field at 8 ms 

(c) Phase field at 12 ms (d) Phase field at 16 ms 

(e) Composition field at 16 ms (f) Temperature field at 16 ms 
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The simulated grain structure in Figure 4.4(d) qualitatively matches the experimental 

observation by electron backscatter diffraction (EBSD) [201] in Figure 4.5. After one 

scanning pass, the dendrites at the curved boundary of the melt pool will grow and result 

in a radial distribution pattern. The cross-section of the AlSi10Mg sample by SLM in the 

top layer is highlighted with a dashed rectangle. The secondary arm spacing of the 

simulated dendrite is 𝜆𝜆2 = 1.1 μm, which is close to the calculated value 𝜆𝜆2 = 0.6 μm 

based on the analytical model developed by Bouchard and Kirkaldy [191], as shown in Eq. 

(3.31). The difference between the predicted and observed secondary arm spacing could 

be caused by parameter uncertainty and model form uncertainty. The parameter uncertainty 

can be associated with the interface energy 𝜎𝜎, latent heat 𝐿𝐿𝐶𝐶, solute diffusivity 𝐷𝐷𝑙𝑙, and local 

velocity of the interface 𝑑𝑑𝐼𝐼. 

 

Figure 4.5. Experimental EBSD result of the grain texture in the cross-section of the 
AlSi10Mg sample produced by SLM (Courtesy of Thijs et al. [201]). 

4.3.2.3 The Effect of Cooling Rate 

In order to investigate the effect of cooling rate on dendritic morphology and 

composition distribution, a higher cooling rate �̇�𝑇 = 1 × 105 K/s is used. The release of 
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latent heat is included in this case. The simulation results are presented in Figure 4.6. It is 

observed that the growth velocity of dendrites increases with the cooling rate. As a result, 

the secondary arms merge with each other and disappear. The melt is almost completely 

solidified at the time of 16 ms as shown in Figure 4.6(d). Because of the competitive growth 

of different grains, a small grain is merged with its neighbor grain, as shown in Figure 4.6. 

The final grain structure in Figure 4.6(d) is different from those in Figure 4.3(d) and Figure 

4.4(d) because the increased cooling rate influences the competitive growth of dendrites. 

The rising cooling rate also increases the microsegregation at grain boundaries, as shown 

in Figure 4.6(e). Figure 4.6(f) shows that the temperature is lower than that in the case of 

the cooling rate �̇�𝑇 = 5 × 104 K/s in Figure 4.4(f). 
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Figure 4.6. Dendritic growth with latent heat and a high cooling rate. 

(a) Phase field at 4 ms (b) Phase field at 8 ms 

(c) Phase field at 12 ms (d) Phase field at 16 ms 

(e) Composition field at 16 ms (f) Temperature field at 16 ms 
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4.3.2.4 Quantitative Analysis 

In this section, a quantitative analysis is conducted to compare the effects of latent 

heat and cooling rate on temperature field, dendritic morphology, and composition field. 

Figure 4.7 shows the thermal histories at the location of 𝑥𝑥 = 50 μm, 𝑦𝑦 = 50 μm for the 

simulated three situations. When the release of latent heat is not considered, the 

temperature decreases linearly. When the release of latent heat is considered and the 

nominal cooling rate is �̇�𝑇 = 5 × 104 K/s , the temperature drops quasi-linearly at the 

beginning of solidification (0 ≤  𝑡𝑡 <  4 ms). Since the fraction of phase transition is small 

at the beginning, the effect of latent heat is not obvious. When 𝑡𝑡 ≥  4 ms, the temperature 

starts to increase until 10 ms and then decreases again. This phenomenon is widely known 

as recalescence during the solidification of alloys. When the cooling rate is increased to 

�̇�𝑇 = 1 × 105 K/s , the effect of latent heat on the temperature field is reduced. the 

temperature drops quasi-linearly at the beginning of solidification (0 ≤  𝑡𝑡 <  4 ms) and it 

is lower than that in the case of �̇�𝑇 = 5 × 104 K/s. When 𝑡𝑡 ≥  4 ms, the temperature starts 

to increase until 13 ms and then decreases again. 
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Figure 4.7. Thermal histories at the location of 𝑥𝑥 = 50 μm, 𝑦𝑦 = 50 μm under different 
conditions. 

The histories of the solid-phase fractions for different cases are shown in Figure 4.8. 

Here, the solid phase fraction means the total fraction of solid phases in the simulation 

domain. When solid phase fraction equals to one, the melt is completely solidified. When 

the latent heat is ignored, the history curve of solid-phase fraction looks like an "S"-shaped 

logistic sigmoid function, which increases slowly at the beginning, then increases rapidly 

and reaches plateaus near the end. The solid phase fraction reaches 1.0 at the time of 11 

ms, meaning that the liquid-solid phase transition is finished. When the latent heat is 

considered and the nominal cooling rate is �̇�𝑇 = 5 × 104 K/s, the solid fraction increases at 

the beginning, then decreases and increases again. This means the remelting happens 

during rapid solidification because of the release of latent heat.  The solid phase fraction is 

0.72 at the time of 16 ms. It will take some additional time to finish the solidification 

process because of the release of latent heat and microsegregation in small pockets. When 
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the cooling rate increases to �̇�𝑇 = 1 × 105 K/s, the speed of phase transition increases, and 

the solid fraction is 0.76 at the time of 16 ms. 

 

Figure 4.8. Histories of solid-phase fractions under different conditions. 

The composition distributions at the location of 𝑦𝑦 = 50 μm at the time of 11.2 ms 

without latent heat and 16 ms with latent heat are shown in Figure 4.9. It is observed that 

the locations where microsegregation occurs are mostly the same for different cases. 

Microsegregation can be defined as 

 𝜒𝜒 =
𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥
𝐶𝐶𝑚𝑚𝑖𝑖𝑛𝑛

 (4.18) 

where 𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum of composition, and 𝐶𝐶𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum of composition. 

When the latent heat is ignored, the microsegregation is overestimated, which is 𝜒𝜒 =

45.44/1.27 = 35.78. When the latent heat is considered and the nominal cooling rate is 

�̇�𝑇 = 5 × 104 K/s, there are more secondary arms and peaks of microsegregation. The 

microsegregation is 𝜒𝜒 = 29.5/1.1 = 26.82. Therefore, the microsegregation without the 
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latent heat is overestimated by at least 33% compared to that with the latent heat. When 

the cooling increases to �̇�𝑇 = 1 × 105 K/s , the microsegregation is 𝜒𝜒 = 37.14/1.2 =

30.95. 

Based on the above quantitative analysis, the inclusion of latent heat is important 

because it provides more realistic kinetics of dendritic growth and reduces overestimated 

microsegregation. The increased cooling rate increases the speed of phase transition and 

microsegregation. 

In this chapter, all simulations were run using 8 processors with Intel Xeon Processor 

E5-2680 (2.50 GHz) and memories of 16 GB. It took 41 hours and 31 minutes for 

simulating 11.2 ms of the case in Section 4.3.2.1, 48 hours and 22 minutes for 16 ms of the 

case in Section 4.3.2.2, and 48 hours and 42 minutes for 16 ms of the case in Section 

4.3.2.3. 

 

Figure 4.9. Composition distributions at the location of 𝑦𝑦 = 50 μm at the time of 11.2 ms 
without latent heat and 16 ms with latent heat. 

4.3.3 Simulation Results of Multi-Layer Epitaxial Grain Growth 

The simulation results of multi-layer epitaxial grain growth are shown in Figure 4.10. 

The melt pool depth is about 88 μm. The powder layer thickness is 30 μm, whereas the 
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depth of remelting layer is about 58 μm. The simulated layers of the heat-affected zone at 

different time periods are shown in Figure 4.10(b)-(d), It is observed that the epitaxial 

columnar dendritic growth dominates during the multi-layer printing processes. When the 

melt pool front boundary reaches the solidified grains, those grains are remelted and their 

grain IDs are reset to be zero. When a small nucleus is generated during the multi-layer 

printing processes based on the nucleation model, the nucleus grows quickly and competes 

with other columnar dendrites. At the end of the simulated period of 20 ms, the stored cells 

are merged as the whole build volume, as shown in Figure 4.10(e). The size of the 

simulation domain in Figure 4.10(e) is 300 μm × 350 μm. It is seen that the primary arm 

spacings of the grains at the upper portion of the simulation domain are larger than those 

at the lower portion. This phenomenon is caused by the competitive growth of columnar 

dendrites. The grains with the preferential <100> growth direction are better aligned with 

the temperature gradient and outgrow other grains. This result agrees with the observation 

in Ref. [210]. 
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Figure 4.10. Multi-layer epitaxial grain growth in SLM. 

4.4 Conclusions 

In this chapter, a nucleation model is introduced into the recently developed PF-

TLBM framework to consider the heterogeneous nucleation process at the solid-liquid 

interface. This mesoscale multiphysics model is used to simulate the nucleation and 

dendritic growth of AlSi10Mg alloy in the SLM melt pool. A new method is proposed to 

(a) Phase field at 0 ms (b) Phase field at 4.4 ms 

(c) Phase field at 10 ms (d) Phase field at 15.8 ms 

(e) Merged phase field at 20 ms 
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compute heat fluxes for a 2D small melt pool in order to approximate the actual non-

isothermal temperature field in SLM. The simultaneous considerations of solute transport, 

heat transfer, nucleation, and dendritic growth are necessary to understand complex rapid 

solidification in SLM. By considering the release of latent heat, the model can predict the 

temperature field, composition distribution, and dendritic morphology with more details 

than models without latent heat. The recalescence occurs when the latent heat is considered. 

The qualitative and quantitative analyses show that the inclusion of latent heat is necessary 

because it reveals the details of the formation of secondary arms, reduces the 

overestimation of microsegregation, and provides more realistic kinetics of dendritic 

growth. A higher cooling rate results in faster liquid-solid phase transition and higher 

microsegregation at grain boundaries.  

The PF-TLBM model is also extended to predict the multi-layer epitaxial grain 

growth in the complex heating and cooling environment in SLM. To save the 

computational cost, the Rosenthal equation method is used to predict the thermal history 

of the melt pool. A marching cell simulation scheme is used to further reduce the 

computational cost. It is demonstrated that the PF-TLBM model is capable of simulating 

multi-layer printing processes in SLM. In future work, the PF-TLBM model will be used 

to simulate the grain growth within the whole workpiece with the size of decimeters during 

the SLM process. A moving Gaussian heat source will be introduced in the thermal lattice 

Boltzmann method to predict a more accurate thermal history. 

Further work is also needed to improve the fidelity, accuracy, and efficiency of the 

PF-TLBM model. For instance, the surface tension source term could be introduced into 

the TLBM so that the effect of Marangoni flow on dendritic growth can be investigated. 
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The motion of grains can be enabled as well. Furthermore, the empirical nucleation 

parameters need to be determined and calibrated based on experimental measurements, 

first-principles calculations, or atomistic simulations. The determination of the nucleation 

energy barrier or nucleation rate can help to predict a more realistic microstructure. The 

dependence of physical properties of AlSi10Mg alloy on temperature needs to be 

considered to improve prediction accuracy, which can be found in the work of Wei et al. 

[202]. The model form and parameter uncertainties associated with the developed model 

should be quantified to provide more confidence in the prediction. A parallelized 3D PF-

TLBM is needed to simulate the dendritic growth in the melt pool with more details. Both 

the PFM and the TLBM can be modified for parallel computation without much difficulty.  

The proposed mesoscale multi-physics PF-TLBM model is a key component in a 

multiscale simulation framework for SLM processes, which involves multiple and complex 

physical phenomena. It predicts the microstructure evolution in the SLM process at a 

reasonable time scale. The predicted microstructure is the central hinge of the P-S-P 

relationship, which needs to be investigated for process design and optimization. Classical 

continuum simulation methods cannot provide fine-grained material phase and 

composition distribution, whereas atomistic models cannot simulate the time scales which 

are long enough for manufacturing processes.  
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CHAPTER 5. MULTI-FIDELITY PHYSICS-CONSTRAINED 

NEURAL NETWORK AND ITS APPLICATION IN MATERIALS 

MODELING 

5.1 Introduction 

Training machine learning tools such as neural networks requires the availability of 

sizable data, which can be difficult for engineering and scientific applications where 

experiments or simulations are expensive. In this chapter, multi-fidelity physics-

constrained neural networks (MF-PCNN) is proposed to reduce the required amount of 

training data, where physical knowledge is applied to constrain neural networks, and multi-

fidelity networks are constructed to improve training efficiency.  

Physics-constrained neural networks (PCNNs) can be constructed to approximate the 

solutions of PDEs to predict the dynamic properties of systems. Some solutions from the 

simulations serve as the training data. The prior knowledge of PDEs, including the initial 

and boundary conditions, are applied to guide the training process of PCNNs with reduced 

searching space. The multi-fidelity concept is introduced here to further reduce the cost to 

obtain training data. By combining a low-fidelity physics-constrained neural network (LF-

PCNN) and a high-fidelity physics-constrained neural network (HF-PCNN), a multi-

fidelity physics-constrained neural network (MF-PCNN) can be created with a lower 

training cost and higher prediction accuracy than traditional ANNs. The LF-PCNN is 

trained with low-fidelity simulation results, whereas the HF-PCNN is trained from high-

fidelity simulations. Then another ANN called discrepancy artificial neural network 

(DANN) is trained based on the difference between the LF-PCNN and HF-PCNN 
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predictions. The MF-PCNN is constructed by combining the predictions from the LF-

PCNN and DANN. The advantage of the MF-PCNN is that the overall computational cost 

to obtain training data can be reduced by using the data with different fidelities. In this 

chapter, three examples are used to demonstrate the MF-PCNN framework. The first 

example is the prediction of the temperature field in a heat transfer problem. The second 

example is the prediction of the phase field in a phase transition process. The third example 

is to predict the dendritic growth during solidification based on multiphysics simulations. 

It is shown that the MF-PCNN can be constructed with a limited amount of simulation data 

but achieve a good accuracy of prediction. 

In the remainder of this chapter, the training of PCNNs, the construction of MF-

PCNNs, and the setup of the computational scheme are described in Section 5.2. The 

computational results of the examples are shown in Section 5.3. 

5.2 Methodology 

In MF-PCNNs, the training data for LF-PCNNs and HF-PCNNs can be obtained 

from the analytical or numerical solutions of PDEs, e.g. from the finite-element method 

(FEM). During the training, the prior knowledge about the form of PDEs or boundary 

values is added as the regularization terms in the loss function. The knowledge constraints 

guide the searching direction for optimization. The MF-PCNN is constructed based on the 

information from the LF-PCNN as well as the additional information that the HF-PCNN 

provides. The cost of obtaining high-fidelity information is higher than that of low-fidelity 

one. Therefore, the allocation of computational resources between high- and low-fidelity 

simulations can help reduce the overall training cost. 
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5.2.1 Training of PCNNs 

Generally, a wide range of physical phenomena and dynamics can be described by 

PDEs, including heat transfer, advection-diffusion process, fluid dynamics, and others. Let 

us consider a time-dependent parametrized PDE with the general form  

 
𝑃𝑃 �𝑢𝑢,

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

,
𝜕𝜕𝑢𝑢
𝜕𝜕𝐱𝐱

,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝐱𝐱2

, …� = 𝑓𝑓(𝑡𝑡, 𝐱𝐱), 𝑡𝑡 ∈ [0,𝑇𝑇], 𝐱𝐱 ∈ Ω (5.1) 

where 𝑢𝑢(𝑡𝑡, 𝐱𝐱) is the hidden solution to be found, 𝑓𝑓(𝑡𝑡, 𝐱𝐱) is a source or sink term, 𝑡𝑡 is the 

time, 𝐱𝐱 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is the spatial vector, and Ω ∈ ℝ𝑛𝑛 denotes the definition domain. 

This general PDE is subject to initial conditions (ICs) 

 
𝐼𝐼 �𝑢𝑢,

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

, … � = 𝑔𝑔(𝐱𝐱), 𝑡𝑡 = 0, 𝐱𝐱 ∈ Ω (5.2) 

and boundary conditions (BCs) 

 
𝑆𝑆 �𝑢𝑢,

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

,
𝜕𝜕𝑢𝑢
𝜕𝜕𝐱𝐱

,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝐱𝐱2

, …� = ℎ(𝑡𝑡, 𝐱𝐱), 𝑡𝑡 ∈ [0,𝑇𝑇], 𝐱𝐱 ∈ ∂Ω (5.3) 

where ∂Ω is the boundary of the definition domain. A more compact form of the above 

initial-boundary value problem can be written as 

 𝐃𝐃[𝑢𝑢(𝑡𝑡, 𝐱𝐱)] = 𝑓𝑓(𝑡𝑡, 𝐱𝐱), 𝑡𝑡 ∈ [0,𝑇𝑇], 𝐱𝐱 ∈ Ω (5.4) 

 𝚲𝚲[𝑢𝑢(0, 𝐱𝐱)] = 𝑔𝑔(𝐱𝐱), 𝑡𝑡 = 0, 𝐱𝐱 ∈ Ω (5.5) 

 𝚪𝚪[𝑢𝑢(𝑡𝑡, 𝐱𝐱)] = ℎ(𝑡𝑡, 𝐱𝐱), 𝑡𝑡 ∈ [0,𝑇𝑇], 𝐱𝐱 ∈ ∂Ω (5.6) 

where 𝐃𝐃[∙], 𝚲𝚲[∙], and 𝚪𝚪[∙] are differential operators. For example, the three-dimensional 

(3D) heat equation without the source term corresponds to 𝐃𝐃[𝑢𝑢(𝑡𝑡, 𝐱𝐱)] = 𝑢𝑢𝑎𝑎 − 𝛼𝛼�𝑢𝑢𝑥𝑥𝑥𝑥 +

𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑢𝑢𝑧𝑧𝑧𝑧� = 0, where 𝛼𝛼 is the thermal diffusivity, and the subscripts represent the partial 

derivative with respect to either time or space. 
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In this chapter, the MLP architecture is used as a demonstration, which includes one 

input layer (𝑡𝑡, 𝐱𝐱), multiple hidden layers, and one output layer 𝑈𝑈(𝑡𝑡, 𝐱𝐱) to approximate the 

true solution 𝑢𝑢(𝑡𝑡, 𝐱𝐱). The neurons are connected with those in the neighbor layers, and the 

weights represent the strength of connections. The output from the hidden layer to the 

following layer is calculated as 

 𝑦𝑦𝑖𝑖 = 𝜑𝜑 ��𝑤𝑤𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖 + 𝑏𝑏𝑖𝑖� (5.7) 

where 𝑤𝑤𝑖𝑖𝑖𝑖  is the weight of the connection between neuron 𝑗𝑗 in the previous layer and 

neuron 𝑎𝑎 in the current layer, 𝜃𝜃𝑖𝑖  is the j-th input value from the previous layer, and 𝑏𝑏𝑖𝑖 is the 

bias for the neuron i in the current layer. 𝜑𝜑 is a nonlinear activation function, which can be 

sigmoid, tanh, rectified linear unit, or others.  

The weights of a PCNN can be learned by minimizing the mean squared loss or total 

cost function 

 𝐸𝐸 = 𝜆𝜆𝑇𝑇𝐸𝐸𝑇𝑇 + 𝜆𝜆𝑃𝑃𝐸𝐸𝑃𝑃 + 𝜆𝜆𝐼𝐼𝐸𝐸𝐼𝐼 + 𝜆𝜆𝑠𝑠𝐸𝐸𝑠𝑠 (5.8) 

where 𝐸𝐸𝑇𝑇 = 1
𝑁𝑁𝑇𝑇
∑ �𝑈𝑈(𝑡𝑡𝑖𝑖𝑇𝑇 , 𝐱𝐱𝑖𝑖𝑇𝑇) − 𝑇𝑇(𝑡𝑡𝑖𝑖𝑇𝑇 , 𝐱𝐱𝑖𝑖𝑇𝑇)�

2𝑁𝑁𝑇𝑇
𝑖𝑖=1  is the loss caused by the discrepancy 

between the training data 𝑇𝑇(∙) and the PCNN model prediction 𝑈𝑈(∙), �𝑡𝑡𝑖𝑖
(∙), 𝐱𝐱𝑖𝑖

(∙)� denotes the 

sampling points in the defined domain, and 𝑁𝑁(∙) denotes the number of sampling points. 

Similarly, 𝐸𝐸𝑃𝑃 = 1
𝑁𝑁𝑃𝑃
∑ �𝐃𝐃[𝑈𝑈(𝑡𝑡𝑖𝑖𝑃𝑃, 𝐱𝐱𝑖𝑖𝑃𝑃)] − 𝑓𝑓(𝑡𝑡𝑖𝑖𝑃𝑃 , 𝐱𝐱𝑖𝑖𝑃𝑃)�

2𝑁𝑁𝑃𝑃
𝑖𝑖=1 , 𝐸𝐸𝐼𝐼 = 1

𝑁𝑁𝐼𝐼
∑ �𝚲𝚲[𝑈𝑈(𝑡𝑡𝑖𝑖𝐼𝐼 , 𝐱𝐱𝑖𝑖𝐼𝐼)]−𝑁𝑁𝐼𝐼
𝑖𝑖=1

𝑔𝑔(𝐱𝐱𝑖𝑖𝐼𝐼)�
2

, and 𝐸𝐸𝑆𝑆 = 1
𝑁𝑁𝑆𝑆
∑ �𝚪𝚪�𝑈𝑈�𝑡𝑡𝑖𝑖𝑆𝑆,𝐱𝐱𝑖𝑖𝑆𝑆�� − ℎ�𝑡𝑡𝑖𝑖𝑆𝑆, 𝐱𝐱𝑖𝑖𝑆𝑆��

2𝑁𝑁𝑆𝑆
𝑖𝑖=1  are the losses caused by the 

violations of the model, initial conditions, and boundary conditions as the physical 

constraints from Eqs. (5.4)-(5.6). The constraint on the weights of different losses is given 

as 
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 𝜆𝜆𝑇𝑇 + 𝜆𝜆𝑃𝑃 + 𝜆𝜆𝐼𝐼 + 𝜆𝜆𝑠𝑠 = 1 (5.9) 

The relative importance of prior knowledge can be adjusted by changing the weights of 

physical constraints 𝜆𝜆𝑃𝑃, 𝜆𝜆𝐼𝐼 and 𝜆𝜆𝑆𝑆. If the total loss function only includes the training loss 

𝐸𝐸𝑇𝑇, then this is the traditional pure data-driven ANN to solve the initial-boundary value 

problem. It will be shown in Section 5.3.1 that assigning different weights will affect the 

speed of training. An adaptive scheme to assign the weights is proposed here so that the 

overall loss is calculated as  

 
𝐸𝐸 =

𝐸𝐸𝑇𝑇2 + 𝐸𝐸𝑃𝑃2 + 𝐸𝐸𝐼𝐼2 + 𝐸𝐸𝑆𝑆2

𝐸𝐸𝑇𝑇 + 𝐸𝐸𝑃𝑃 + 𝐸𝐸𝐼𝐼 + 𝐸𝐸𝑠𝑠
 (5.10) 

for each iteration during the training process. That is, the weights are proportional to 

individual losses from data and physical constraints respectively. By adding physical losses 

𝐸𝐸𝑃𝑃, 𝐸𝐸𝐼𝐼 and 𝐸𝐸𝑆𝑆 as the regularization terms, the prior physical knowledge can help to reduce 

the size of searching space and provide guidance for the searching directions in training. 

5.2.2 Construction of MF-PCNNs 

The LF-PCNN and HF-PCNN must be trained first before the MF-PCNN is 

constructed. In this work, the fidelities are determined by the resolutions of FEM 

simulations given the same density of physical constraints. To be more specific, low-

fidelity simulations are used to construct the LF-PCNN during a long time period  𝑡𝑡 ∈

[0,𝑇𝑇], whereas high-resolution simulations are applied for the HF-PCNN during a short 

time period 𝑡𝑡 ∈ [0,𝑇𝑇0] (𝑇𝑇0 < 𝑇𝑇). 

After the LF-PCNN and HF-PCNN are trained, the difference between the 

predictions of the LF-PCNN 𝑈𝑈𝐿𝐿(𝑡𝑡, 𝐱𝐱) and HF-PCNN 𝑈𝑈𝐶𝐶(𝑡𝑡, 𝐱𝐱) is calculated as 
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 𝛿𝛿(𝑡𝑡, 𝐱𝐱) = 𝑈𝑈𝐶𝐶(𝑡𝑡, 𝐱𝐱) − 𝑈𝑈𝐿𝐿(𝑡𝑡, 𝐱𝐱), 𝑡𝑡 ∈ [0,𝑇𝑇0], 𝐱𝐱 ∈ Ω (5.11) 

Then the DANN is constructed to predict the discrepancy between the LF-PCNN and HF-

PCNN, denoted as 𝑈𝑈𝛿𝛿(𝑡𝑡, 𝐱𝐱), during a longer time period 𝑡𝑡 ∈ [0,𝑇𝑇]. The weights of the 

DANN can be learned by using the observed discrepancy 𝛿𝛿(𝑡𝑡, 𝐱𝐱) as the training data to 

minimize the mean squared error loss 

 
𝐸𝐸𝛿𝛿 =

1
𝑁𝑁𝛿𝛿

�|𝑈𝑈𝛿𝛿(𝑡𝑡𝑖𝑖, 𝐱𝐱𝑖𝑖) − 𝛿𝛿(𝑡𝑡𝑖𝑖, 𝐱𝐱𝑖𝑖)|2
𝑁𝑁𝛿𝛿

𝑖𝑖=1

, 𝑡𝑡 ∈ [0,𝑇𝑇0], 𝐱𝐱 ∈ Ω (5.12) 

where 𝑁𝑁𝛿𝛿 is the number of sampling points for the DANN. It is assumed that the evolution 

of the difference between the LF-PCNN and HF-PCNN during a longer time period 𝑡𝑡 ∈

[0,𝑇𝑇] can be predicted by the DANN using the observed discrepancy 𝛿𝛿(𝑡𝑡, 𝐱𝐱) as the training 

data during the short time period 𝑡𝑡 ∈ [0,𝑇𝑇0]. Then the MF-PCNN is a combination of the 

LF-PCNN and DANN. The prediction from the MF-PCNN during the time period 𝑡𝑡 ∈

[0,𝑇𝑇] is given by 

 𝑈𝑈𝑀𝑀(𝑡𝑡, 𝐱𝐱) = 𝑈𝑈𝐿𝐿(𝑡𝑡, 𝐱𝐱) + 𝑈𝑈𝛿𝛿(𝑡𝑡, 𝐱𝐱), 𝑡𝑡 ∈ [0,𝑇𝑇], 𝐱𝐱 ∈ Ω (5.13) 

5.2.3 Experimental Setup of the Proposed MF-PCNN 

The construction and training of the MF-PCNN are accomplished by using 

Tensorflow [211], which is an open-source Python library for machine learning. The partial 

derivatives of the ANNs are calculated based on the chain rules using the automatic 

differentiation [212]. Automatic differentiation is different from numerical differentiation 

such as the method of finite difference. By applying the chain rules repeatedly, the 

derivatives of arbitrary order can be computed automatically, and accurately to working 

precision. 
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Three examples are applied to demonstrate the proposed MF-PCNN framework. The 

first example is a heat transfer problem where the evolution of the two-dimensional (2D) 

temperature distribution is modeled with the heat equation. The heat transfer example is 

used to demonstrate the effectiveness of the proposed adaptive weighting schemes of the 

total loss function. The second example is the phase transition problem where the evolution 

of the 2D phase field is modeled with the Allen-Cahn equation. The phase transition 

example is utilized to demonstrate the MF-PCNN framework. The third example is the 

dendritic growth during solidification where heat transfer and phase transition are tightly 

coupled. The purpose is to demonstrate the applicability of the proposed MF-PCNN 

framework for complex multiphysics problems in materials design. 

The details of the computational setup for different ML models in the heat transfer, 

phase transition, and dendritic growth example are listed in Table 5.1, Table 5.2, and Table 

5.3, respectively. The ANNs, LF-PCNNs, and HF-PCNNs have the same structure of 30-

20-30-20. That is, each of the networks has 4 layers. There are 30 neurons in the first and 

third layer, and 20 neurons in the second and last layer. The neural network architecture 

was identified by conducting some simple sensitivity studies. Finding the optimal 

architecture requires some systematic searching and sampling procedures, which can be 

done in future work. The structures of the tested DANNs are 5-5-5-5 and 10-10-10-10, 

which are simpler in order to avoid overfitting. For comparison purposes, two GP surrogate 

models with the RBF kernel are also constructed to predict the difference between the LF-

PCNN and HF-PCNN. Only one run of the optimizer is performed from the RBF kernel’s 

initial parameters. The noise level of the RBF kernel is set to be alpha = 0.1 to prevent 

overfitting. The hyperbolic tangent (tanh) function is used as the activation function. All 
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of the loss functions in neural networks are minimized by using a gradient-based 

optimization algorithm called Adam [213].  

The training data for the ANNs, LF-PCNNs, and HF-PCNNs come from the FEM 

solutions of COMSOL, whereas the training data for the DANNs and GPs come from the 

observed discrepancy between the predictions of the LF-PCNNs and HF-PCNNs during 

the short time period 𝑡𝑡 ∈ [0,𝑇𝑇0]. All FEM simulations are finished in less than one minute 

for these 2D problems. The training data and physical constraints for the first two examples 

are sampled uniformly in both temporal and spatial dimensions. Random sampling is used 

to obtain the LF and HF training data for the dendritic growth example.  

Notice that in a multi-fidelity modeling framework, the LF data can come from LF 

models with lower resolutions, reduced-order models, models with simplified geometry, 

and others where the computational cost is lower than HF models. In this work, LF data 

were taken from the FEM simulations with low resolutions. The proposed MF-PCNN does 

not require a fixed hierarchy of fidelities over the whole range of input parameters. That is, 

the LF and HF data do not form a nested hierarchy for both spatial and time domains.  

5.2.3.1 Example 1: Heat Transfer 

The evolution of temperature distributions can be modeled by parabolic PDEs. The 

heat equation describes the diffusion process of energy, which is important in modeling 

microstructure evolution during phase transition. The 2D heat equation with zero Neumann 

boundary conditions used in this example is 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝑢𝑢𝑎𝑎 − 0.01�𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦� = 0,   𝑡𝑡, 𝑥𝑥,𝑦𝑦 ∈ [0,1],
𝑢𝑢(0, 𝑥𝑥, 𝑦𝑦) = 0.5[𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑥𝑥) + 𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑦𝑦)],

𝑢𝑢𝑥𝑥(𝑡𝑡, 0,𝑦𝑦) = 0,    
𝑢𝑢𝑥𝑥(𝑡𝑡, 1,𝑦𝑦) = 0,   
𝑢𝑢𝑦𝑦(𝑡𝑡, 𝑥𝑥, 0) = 0,
𝑢𝑢𝑦𝑦(𝑡𝑡, 𝑥𝑥, 1) = 0.

 (5.14) 

where u is the 2D temperature field. 

The goal of training a neural network is to ensure the prediction 𝑈𝑈(𝑡𝑡, 𝑥𝑥,𝑦𝑦) from the 

neural network can approximate the true solution 𝑢𝑢(𝑡𝑡, 𝑥𝑥,𝑦𝑦) from FEM simulations with the 

desired accuracy. In the total loss function defined by Eq. (5.8), the training loss here is 

given by 

 
𝐸𝐸𝑇𝑇 =

1
𝑁𝑁𝑇𝑇

��𝑈𝑈(𝑡𝑡𝑖𝑖𝑇𝑇 , 𝑥𝑥𝑖𝑖𝑇𝑇 , 𝑦𝑦𝑖𝑖𝑇𝑇) − 𝑇𝑇(𝑡𝑡𝑖𝑖𝑇𝑇 , 𝑥𝑥𝑖𝑖𝑇𝑇 ,𝑦𝑦𝑖𝑖𝑇𝑇)�
2

𝑁𝑁𝑇𝑇

𝑖𝑖=1

 (5.15) 

The physical loss is 

 
𝐸𝐸𝑃𝑃 =

1
𝑁𝑁𝑃𝑃

��𝑈𝑈𝑎𝑎(𝑡𝑡𝑖𝑖𝑃𝑃, 𝑥𝑥𝑖𝑖𝑃𝑃, 𝑦𝑦𝑖𝑖𝑃𝑃) − 0.01 �
𝑈𝑈𝑥𝑥𝑥𝑥(𝑡𝑡𝑖𝑖𝑃𝑃, 𝑥𝑥𝑖𝑖𝑃𝑃,𝑦𝑦𝑖𝑖𝑃𝑃)

+𝑈𝑈𝑦𝑦𝑦𝑦(𝑡𝑡𝑖𝑖𝑃𝑃, 𝑥𝑥𝑖𝑖𝑃𝑃,𝑦𝑦𝑖𝑖𝑃𝑃)��
2𝑁𝑁𝑃𝑃

𝑖𝑖=1

 (5.16) 

The initial loss is given by 

 
𝐸𝐸𝐼𝐼 =

1
𝑁𝑁𝐼𝐼
��𝑈𝑈(0, 𝑥𝑥𝑖𝑖𝐼𝐼 ,𝑦𝑦𝑖𝑖𝐼𝐼) − 0.5[𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑥𝑥𝑖𝑖𝐼𝐼) + 𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑦𝑦𝑖𝑖𝐼𝐼)]�

2
𝑁𝑁𝐼𝐼

𝑖𝑖=1

 (5.17) 

The boundary loss is  

 
𝐸𝐸𝑆𝑆 =

1
𝑁𝑁𝑆𝑆
��

�𝑈𝑈𝑥𝑥�𝑡𝑡𝑖𝑖𝑆𝑆, 0,𝑦𝑦𝑖𝑖𝑆𝑆��
2

+ �𝑈𝑈𝑥𝑥�𝑡𝑡𝑖𝑖𝑆𝑆, 1,𝑦𝑦𝑖𝑖𝑆𝑆��
2

+�𝑈𝑈𝑦𝑦�𝑡𝑡𝑖𝑖𝑆𝑆, 𝑥𝑥𝑖𝑖𝑆𝑆, 0��
2

+ �𝑈𝑈𝑦𝑦�𝑡𝑡𝑖𝑖𝑆𝑆, 𝑥𝑥𝑖𝑖𝑆𝑆, 1��
2�

𝑁𝑁𝑆𝑆

𝑖𝑖=1

 (5.18) 

As shown in Table 5.1, the amount of training data for the heat transfer example is 

𝑁𝑁𝑇𝑇 = 21 × 6 × 6 , which means that there are 21 sampling points in the temporal 

dimension or time period, 6 sampling points in the x-direction, and 6 sampling points in 
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the y-direction of the spatial domain. The simulation domain is 𝑥𝑥,𝑦𝑦 ∈ [0,1] and time period 

is 𝑡𝑡 ∈ [0,1]. The training data for the heat transfer example are from the FEM simulation 

where the grid spacing is ∆𝑥𝑥 = 0.2 and the time step is ∆𝑡𝑡 = 0.05. For the PCNNs in the 

heat transfer example, the number of physical constraints is 41 × 11 × 11 = 4961. The 

grid spacing is ∆𝑥𝑥 = 0.1 and the time step is ∆𝑡𝑡 = 0.025 for physical constraints. The 

numbers of sampling points corresponding to the physical loss, initial loss, and boundary 

loss are 𝑁𝑁𝑃𝑃 = 3240, 𝑁𝑁𝐼𝐼 = 121 and 𝑁𝑁𝑆𝑆 = 1600 respectively, which sum up to 4961. In the 

heat transfer example, three different weighting schemes (PCNN1, PCNN2, and PCNN3) 

are compared. The training of ANN and PCNNs stops when the total loss E is lower than 

a threshold value of 0.01. 

Table 5.1. The setup for different ML models in the heat transfer example 

ML model Structure 
Amount of 
training data 
(𝑡𝑡 × 𝑥𝑥 × 𝑦𝑦) 

Number of physical 
constraints (𝑡𝑡 × 𝑥𝑥 × 𝑦𝑦) 

Time 
period/s 

ANN 30-20-30-20 21×6×6 0 [0, 1] 

PCNN1, PCNN2, 
PCNN3 30-20-30-20 21×6×6 41×11×11 [0, 1] 

 

5.2.3.2 Example 2: Phase Transition 

The second example is the Allen-Cahn equation, which is a nonlinear reaction-

diffusion equation that describes the process of phase transition such as grain growth and 

spinodal decomposition. It has become the foundational model for interface diffusion in 

the phase-field method, which is developed to study phase transitions and interfacial 
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dynamics in materials science. The Allen-Cahn equation with periodic boundary 

conditions in this example is 

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑢𝑢𝑎𝑎 − 0.001�𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦� = 𝑢𝑢 − 𝑢𝑢3,   𝑡𝑡, 𝑥𝑥,𝑦𝑦 ∈ [0,1],

𝑢𝑢(0, 𝑥𝑥,𝑦𝑦) = 0.5[𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑥𝑥) + 𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑦𝑦)],
𝑢𝑢(𝑡𝑡, 0,𝑦𝑦) = 𝑢𝑢(𝑡𝑡, 1,𝑦𝑦),    
𝑢𝑢𝑥𝑥(𝑡𝑡, 0,𝑦𝑦) = 𝑢𝑢𝑥𝑥(𝑡𝑡, 1, 𝑦𝑦),   
𝑢𝑢(𝑡𝑡, 𝑥𝑥, 0) = 𝑢𝑢(𝑡𝑡, 𝑥𝑥, 1),
𝑢𝑢𝑦𝑦(𝑡𝑡, 𝑥𝑥, 0) = 𝑢𝑢𝑦𝑦(𝑡𝑡, 𝑥𝑥, 1).

 (5.19) 

where a non-conserved variable u is the order parameter or phase field. 

Based on the results of the previous example, the weights of the physical constraints 

are adaptively adjusted as in Eq. (5.10). The training loss is given by 

 
𝐸𝐸𝑇𝑇 =

1
𝑁𝑁𝑇𝑇

��𝑈𝑈(𝑡𝑡𝑖𝑖𝑇𝑇 , 𝑥𝑥𝑖𝑖𝑇𝑇 , 𝑦𝑦𝑖𝑖𝑇𝑇) − 𝑇𝑇(𝑡𝑡𝑖𝑖𝑇𝑇 , 𝑥𝑥𝑖𝑖𝑇𝑇 ,𝑦𝑦𝑖𝑖𝑇𝑇)�
2

𝑁𝑁𝑇𝑇

𝑖𝑖=1

 (5.20) 

The physical loss is given by 

 𝐸𝐸𝑃𝑃 = 

1
𝑁𝑁𝑃𝑃

��
𝑈𝑈𝑎𝑎(𝑡𝑡𝑖𝑖𝑃𝑃 , 𝑥𝑥𝑖𝑖𝑃𝑃,𝑦𝑦𝑖𝑖𝑃𝑃) − 0.001�𝑈𝑈𝑥𝑥𝑥𝑥(𝑡𝑡𝑖𝑖𝑃𝑃, 𝑥𝑥𝑖𝑖𝑃𝑃,𝑦𝑦𝑖𝑖𝑃𝑃) + 𝑈𝑈𝑦𝑦𝑦𝑦(𝑡𝑡𝑖𝑖𝑃𝑃, 𝑥𝑥𝑖𝑖𝑃𝑃, 𝑦𝑦𝑖𝑖𝑃𝑃)�

−𝑈𝑈(𝑡𝑡𝑖𝑖𝑃𝑃, 𝑥𝑥𝑖𝑖𝑃𝑃,𝑦𝑦𝑖𝑖𝑃𝑃) + 𝑈𝑈3(𝑡𝑡𝑖𝑖𝑃𝑃, 𝑥𝑥𝑖𝑖𝑃𝑃 ,𝑦𝑦𝑖𝑖𝑃𝑃)
�
2𝑁𝑁𝑃𝑃

𝑖𝑖=1

 
(5.21) 

The initial loss is given by 

 
𝐸𝐸𝐼𝐼 =

1
𝑁𝑁𝐼𝐼
��𝑈𝑈(0, 𝑥𝑥𝑖𝑖𝐼𝐼 ,𝑦𝑦𝑖𝑖𝐼𝐼) − 0.5[𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑥𝑥𝑖𝑖𝐼𝐼) + 𝑎𝑎𝑎𝑎𝑛𝑛(4𝜋𝜋𝑦𝑦𝑖𝑖𝐼𝐼)]�

2
𝑁𝑁𝐼𝐼

𝑖𝑖=1

 (5.22) 

The boundary loss is given by 

 𝐸𝐸𝑆𝑆 = 

1
𝑁𝑁𝑆𝑆
��

�𝑈𝑈�𝑡𝑡𝑖𝑖𝑆𝑆, 0, 𝑦𝑦𝑖𝑖𝑆𝑆� − 𝑈𝑈�𝑡𝑡𝑖𝑖𝑆𝑆, 1,𝑦𝑦𝑖𝑖𝑆𝑆��
2

+ �𝑈𝑈𝑥𝑥�𝑡𝑡𝑖𝑖𝑆𝑆, 0,𝑦𝑦𝑖𝑖𝑆𝑆� − 𝑈𝑈𝑥𝑥�𝑡𝑡𝑖𝑖𝑆𝑆, 1,𝑦𝑦𝑖𝑖𝑆𝑆��
2

+�𝑈𝑈�𝑡𝑡𝑖𝑖𝑆𝑆, 𝑥𝑥𝑖𝑖𝑆𝑆, 0� − 𝑈𝑈�𝑡𝑡𝑖𝑖𝑆𝑆, 𝑥𝑥𝑖𝑖𝑆𝑆, 1��
2

+ �𝑈𝑈𝑦𝑦�𝑡𝑡𝑖𝑖𝑆𝑆, 𝑥𝑥𝑖𝑖𝑆𝑆 , 0� − 𝑈𝑈𝑦𝑦�𝑡𝑡𝑖𝑖𝑆𝑆, 𝑥𝑥𝑖𝑖𝑆𝑆, 1��
2�

𝑁𝑁𝑆𝑆

𝑖𝑖=1

 
(5.23) 
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In the phase transition example, two HF-PCNNs (HF-PCNN1 and HF-PCNN2) are 

trained as shown in Table 5.2. The simulation domain is 𝑥𝑥,𝑦𝑦 ∈ [0,1] and time period is 𝑡𝑡 ∈

[0,1]. The training data for the ANN and LF-PCNN are from the LF simulation where the 

grid spacing is ∆𝑥𝑥 = 0.2 and the time step is ∆𝑡𝑡 = 0.05. The training data for the HF-

PCNNs are from the HF simulation where the grid spacing is ∆𝑥𝑥 = 0.05 and the time step 

is ∆𝑡𝑡 = 0.025 . Therefore, the training data for the HF-PCNNs is more accurate and 

expensive than for the ANN and LF-PCNN.  HF-PCNN1 is trained during the time period 

𝑡𝑡 ∈ [0, 0.2], whereas the HF-PCNN2 is trained during two time periods, 𝑡𝑡 ∈ [0, 0.2] and 

𝑡𝑡 ∈ [0.8, 1]. Therefore, the amount of training data and the number of physical constraints 

for the HF-PCNN2 are twice of those for the HF-PCNN1. The observed discrepancy 

between the predictions of the LF-PCNN and HF-PCNN1 serves as the training data for 

the DANN1, DANN2, and GP1. Here, the amount of training data for the DANN1, 

DANN2, and GP1 is 9 × 26 × 26, which means that the grid spacing is ∆𝑥𝑥 = 0.04 and the 

time step is ∆𝑡𝑡 = 0.025. The difference between the HF and LF simulation data is not used 

as the training data for the discrepancy function because they may not be measured at the 

same location or time step. That is, since the data are not in a nested hierarchy, the observed 

discrepancy is obtained from the neural network predictions. Similarly, the observed 

discrepancy between the predictions of the LF-PCNN and HF-PCNN2 serves as the 

training data for the DANN3, DANN4, and GP2. In this work, the difference between the 

HF simulation data and the prediction of LF-PCNN is not used as the training data for the 

discrepancy function. This is because more accurate predictions can be obtained by adding 

physical constraints into the training of HF-PCNNs. Besides, the trained HF-PCNNs can 

provide more training data to the DANNs or GPs so that the constructed MF-PCNNs are 
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more general and have better prediction accuracy. For ANNs, LF-PCNNs, and HF-PCNNs, 

the training of a neural network stops when the total loss E is lower than a threshold value 

of 0.01. Similarly, the training of a DANN stops when the loss function 𝐸𝐸𝛿𝛿 is below 0.01. 

Table 5.2. The setup for different ML models in the phase transition example 

ML model Structure 
Amount of 
training data 
(𝑡𝑡 × 𝑥𝑥 × 𝑦𝑦) 

Number of 
physical 
constraints (𝑡𝑡 ×
𝑥𝑥 × 𝑦𝑦) 

Time period/s 

ANN 30-20-30-20 21×6×6 0 [0, 1] 
LF-PCNN 30-20-30-20 21×6×6 21×11×11 [0, 1] 
HF-PCNN1 30-20-30-20 9×21×21 5×11×11 [0, 0.2] 
HF-PCNN2 30-20-30-20 18×21×21 10×11×11 [0, 0.2], [0.8, 1] 
DANN1 5-5-5-5 9×26×26 0 [0, 0.2] 
DANN2 10-10-10-10 9×26×26 0 [0, 0.2] 
DANN3 5-5-5-5 18×26×26 0 [0, 0.2], [0.8, 1] 
DANN4 10-10-10-10 18×26×26 0 [0, 0.2], [0.8, 1] 
GP1 RBF kernel 9×26×26 0 [0, 0.2] 
GP2 RBF kernel 18×26×26 0 [0, 0.2], [0.8, 1] 

 

5.2.3.3 Example 3: Dendritic Growth 

The third example is dendritic growth during solidification, where heat transfer and 

phase transition are coupled with each other. In this multiphysics problem, the heat 

equation and the Allen-Cahn equation need to be solved simultaneously to predict the 

evolution of dendritic growth. The coupled PDEs and corresponding boundary conditions 

for the dendritic growth example are 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧0.001𝑒𝑒𝑎𝑎 − 0.0001�𝑒𝑒𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑦𝑦𝑦𝑦� = 𝑒𝑒(1 − 𝑒𝑒) �𝑒𝑒 − 0.5 +

0.9
𝜋𝜋

tan−1(10𝑞𝑞𝑒𝑒 − 10𝑞𝑞)�

𝑒𝑒(0, 𝑥𝑥,𝑦𝑦) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑥𝑥2 + 𝑦𝑦2

0.04
�

𝑒𝑒𝑥𝑥(𝑡𝑡,−2.5,𝑦𝑦) = 𝑒𝑒𝑥𝑥(𝑡𝑡, 2.5,𝑦𝑦) = 𝑒𝑒𝑦𝑦(𝑡𝑡, 𝑥𝑥,−2.5) = 𝑒𝑒𝑦𝑦(𝑡𝑡, 𝑥𝑥, 2.5) = 0
0.001�𝑞𝑞𝑎𝑎 − 𝑞𝑞𝑥𝑥𝑥𝑥 − 𝑞𝑞𝑦𝑦𝑦𝑦� = 0.001𝐾𝐾𝑒𝑒𝑎𝑎

𝑞𝑞(0, 𝑥𝑥,𝑦𝑦) = 0
𝑞𝑞𝑥𝑥(𝑡𝑡,−2.5,𝑦𝑦) = 𝑞𝑞𝑥𝑥(𝑡𝑡, 2.5,𝑦𝑦) = 𝑞𝑞𝑦𝑦(𝑡𝑡, 𝑥𝑥,−2.5) = 𝑞𝑞𝑦𝑦(𝑡𝑡, 𝑥𝑥, 2.5) = 0

𝑡𝑡 ∈ [0,1], 𝑥𝑥, 𝑦𝑦 ∈ [−2.5, 2.5]

 (5.24) 

where 𝑒𝑒 is the phase field and 𝑞𝑞 is the temperature field. The liquidus temperature 𝑞𝑞𝑒𝑒 and 

latent heat 𝐾𝐾 are materials dependent and are the design variables in materials design. That 

is, we need to find the best material compositions corresponding to the optimal values of 

these two variables so that the desirable dendritic growth behavior can be obtained. The 

evolutions of dendrites are sensitive to the liquidus temperature and latent heat of the 

materials [214]. The dendritic growth (which can be quantified by the growth speed, 

symmetry, secondary arm spacing, and other descriptors) affects the final mechanical, 

thermal, and other properties of solid crystals. Therefore, efficient ML predictions of 

dendritic growths help establish the process-structure-property relationship for materials 

design. In this simplified example, all variables in the coupled PDEs are dimensionless. A 

scaling factor of 0.001 is multiplied at both sides of the heat equation so that the magnitudes 

of the Allen-Cahn equation and the heat equation are on the same scale. The normalization 

procedure ensures the fast convergence of PCNNs. 

In order to apply the proposed MF-PCNN framework to design optimization, the 

design variables 𝑞𝑞𝑒𝑒  and 𝐾𝐾 need to be included in the inputs of the PCNN. To be more 

specific, the input for the PCNN is (𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑞𝑞𝑒𝑒 ,𝐾𝐾). The training data for the phase field 

𝑃𝑃𝑇𝑇(𝑡𝑡, 𝑥𝑥, 𝑦𝑦, 𝑞𝑞𝑒𝑒 ,𝐾𝐾)  and temperature field 𝑄𝑄𝑇𝑇(𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑞𝑞𝑒𝑒 ,𝐾𝐾)  come from FEM simulations. 

Then the outputs of the PCNN are 𝑃𝑃(𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑞𝑞𝑒𝑒 ,𝐾𝐾)  and 𝑄𝑄(𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑞𝑞𝑒𝑒 ,𝐾𝐾) , which 
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approximate the true phase field 𝑒𝑒 and temperature field 𝑞𝑞 respectively. The training of the 

PCNN for design optimization will require multiple sets of design variables and FEM 

simulation runs. In this example, we only demonstrate the feasibility of multiphysics 

prediction. Only two sets of design variables and FEM simulation data corresponding to 

two samples of dendritic growth are used for the training of MF-PCNNs. For each dendritic 

growth sample, the design variables 𝑞𝑞𝑒𝑒  and 𝐾𝐾 have constant values only, and two MF-

PCNNs with different number of physical constraints are tested. The complete framework 

of materials design based on the MF-PCNN will be demonstrated in future work. 

Similar to the previous two examples, loss functions are formulated based on the 

PDEs as well as the initial and boundary conditions. The adaptive weighting scheme in Eq. 

(5.10) is used to maximize the overall reduction speed of the total loss. The prediction of 

the MF-PCNN is a combination of the LF-PCNN prediction and the DANN as in Eq. 

(5.13). The LF-PCNN is trained with coarse simulation data during the time period 𝑡𝑡 ∈

[0, 1], and the HF-PCNN is trained with the denser simulation data during the time period 

𝑡𝑡 ∈ [0, 0.2]. The observed discrepancy between the predictions of the LF-PCNN and HF-

PCNN during the time period 𝑡𝑡 ∈ [0, 0.2]  serves as the training data for the DANN.  

In the dendritic growth example, the simulation domain is 𝑥𝑥,𝑦𝑦 ∈ [−2.5,2.5] and time 

period is 𝑡𝑡 ∈ [0,1]. As listed in Table 5.3, the training data for the LF-PCNNs are sampled 

randomly from the FEM simulation, where the grid spacing is ∆𝑥𝑥 = 0.01 and the time step 

is ∆𝑡𝑡 = 0.1. The training data for the HF-PCNNs are sampled randomly from the FEM 

simulation, where the grid spacing is ∆𝑥𝑥 = 0.01 and the time step is ∆𝑡𝑡 = 0.05. More 

training data are used for the training of the HF-PCNNs to increase the prediction accuracy. 

Compared to the LF-PCNN1 and HF-PCNN1, the LF-PCNN2 and HF-PCNN2 have more 
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physical constraints involved. The training of the LF-PCNNs and HF-PCNNs stops when 

the total loss E is lower than a threshold value of 0.0001. Similarly, the training of the 

DANNs stops when the loss function 𝐸𝐸𝛿𝛿 is below 0.005. The threshold values are lower 

than those in the previous examples because more accurate predictions are needed to 

observe the complex dendritic shape. 

Table 5.3. The setup for different ML models in the dendritic growth example 

ML model Structure Amount of training data 
(𝑡𝑡 × 𝑥𝑥 × 𝑦𝑦) 

Number of 
physical 
constraints 
(𝑡𝑡 × 𝑥𝑥 × 𝑦𝑦) 

Time 
period/s 

LF-PCNN1 30-20-30-20 2861 (random, ∆𝑡𝑡 = 0.1) 21×21×21 [0, 1] 
HF-PCNN1 30-20-30-20 3901 (random, ∆𝑡𝑡 = 0.05) 5×21×21 [0, 0.2] 
DANN1 5-5-5-5 9×51×51 0 [0, 0.2] 
LF-PCNN2 30-20-30-20 2861 (random, ∆𝑡𝑡 = 0.1) 11×41×41 [0, 1] 
HF-PCNN2 30-20-30-20 3901 (random, ∆𝑡𝑡 = 0.05) 3×41×41 [0, 0.2] 
DANN2 5-5-5-5 9×51×51 0 [0, 0.2] 

 

5.3 Computational Results 

In this section, the results for the heat transfer, phase transition, and dendritic growth 

examples are shown. The heat transfer example is used to demonstrate the effectiveness of 

the proposed adaptive weighting scheme for the total loss function. Convergence analysis 

for the ANN and the PCNN is also conducted. The phase transition example is to 

demonstrate the performance of the MF-PCNN framework. The dendritic growth example 

is used to demonstrate the applicability of the proposed MF-PCNN framework for complex 

multiphysics problems in materials design. 
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5.3.1 Heat Transfer Example 

To assess the sensitivity of weights, three weighting schemes of the total loss 

function are tested and compared with each other. In the PCNN1 listed in Table 5.1, the 

weights are equal and fixed in the total loss function 

 𝐸𝐸 = 0.25(𝐸𝐸𝑇𝑇 + 𝐸𝐸𝑃𝑃 + 𝐸𝐸𝐼𝐼 + 𝐸𝐸𝑠𝑠) (5.25) 

In the PCNN2, the weights are unequal and fixed in the total loss function 

 𝐸𝐸 = 0.125(𝐸𝐸𝑇𝑇 + 2𝐸𝐸𝑃𝑃 + 4𝐸𝐸𝐼𝐼 + 𝐸𝐸𝑠𝑠) (5.26) 

In the PCNN3, the weights are adaptive during the training as shown in Eq. (5.10). 

Assigning larger weights to the physical constraints indicates that prior knowledge will be 

more influential in the training process. When the training data are sparse, increasing the 

number of physical constraints can help improve the training efficiency. In addition, the 

weights of physical constraints need to be large enough in order to ensure training 

efficiency and prediction accuracy. When the weights of physical constraints are assigned, 

it is also necessary to consider the balance among different losses so that the reduction 

speeds of the four errors are comparable. The ideal case is that the four losses are reduced 

at the same speed so that the overall reduction speed of the total loss is maximized. 

Here, the training data come from the FEM solutions. Figure 5.1 shows the original 

FEM solution of the temperature field, as well as the predictions by the traditional ANN, 

the equally-weighted PCNN1, the unequally-weighted PCNN2, and the adaptively-

weighted PCNN3 at t = 1, respectively. The errors of the predicted temperature fields 

compared with the original FEM solution for different neural networks at t = 1 are shown 

in Figure 5.2, respectively. Here, the prediction error is the absolute difference between the 

prediction from the neural network and the FEM solution. The dots in the figures indicate 
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the sampling positions in the 2D domain, where a total of 26×26 samples are taken. It is 

seen that the prediction from the ANN is less accurate than the three PCNNs, because of 

the small training data set. The error is especially large in the area around saddle points. 

Notice that the training data for the ANN and PCNNs come from the same LF simulations. 

With the physical constraints added as regularization terms, the prediction errors of the 

PCNNs are reduced significantly. 
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Figure 5.1. The predicted temperature fields from different models at t = 1: (a) original 
FEM solution, (b) traditional ANN, (c) equally-weighted PCNN1, (d) unequally-

weighted PCNN2, and (e) adaptively-weighted PCNN3.  

(a) (b) 

(c) (d) 

(e) 
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Figure 5.2. The errors of the predicted temperature fields compared to the FEM solution 
at t = 1: (a) traditional ANN, (b) equally-weighted PCNN1, (c) unequally-weighted 

PCNN2, and (d) adaptively-weighted PCNN3. 

The learning curves for different PCNNs are shown in Figure 5.3. For the three 

different PCNNs, all losses monotonically decrease during the training. However, the 

difference between the convergence speeds of individual losses varies with the different 

weighting schemes. For the equally-weighted PCNN1, as shown in Figure 5.3(a), the initial 

loss is one order of magnitude larger than the boundary loss, meaning that the difference 

between the convergence speeds of individual losses is large. Therefore, it takes a longer 

time for the PCNN1 to converge. For the unequally-weighted PCNN2, the weights of 

physical constraints are higher in order to increase the influence of prior knowledge. As a 

(a) (b) 

(c) (d) 
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result, the different losses are within the same order of magnitude, as shown in Figure 

5.3(b). As for the adaptively-weighted PCNN3, the weights are dynamically adjusted based 

on the percentages of individual losses in the total loss function. As shown in Figure 5.3(c), 

the different losses converged at the same speed and are well-balanced. The training time 

is the shortest among the three cases. 

 

Figure 5.3. The learning curves for different PCNNs: (a) the equally-weighted PCNN1, 
(b) the unequally-weighted PCNN2, and (c) the adaptively-weighted PCNN3. 

The quantitative comparisons of training time and the mean squared error (MSE) of 

prediction for the four neural networks are listed in Table 5.4. All MSEs of prediction for 

the PCNN1 and PCNN3 are almost one order of magnitude lower than that for the ANN. 

(a) (b) 

(c) 
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As a result of stronger enforcement for the physical constraints, the prediction accuracy of 

the PCNN2 is higher than that of the PCNN1 at t = 0. However, the MSE of prediction at 

t = 1 for the PCNN2 is larger than that of the PCNN1. This could be caused by the in-

balance between different losses in the PCNN2. As shown in Figure 5.3(b), the training 

loss is still larger than the threshold value of 0.01 when the training is finished, although 

the total loss as the weighted average has reached the threshold. The adaptively-weighted 

PCNN3 has all individual losses well-balanced and has the highest prediction accuracy. 

The PCNN3 also has the least training time among the three PCNNs. Notice that the 

computational time for training the PCNNs is much longer than that for the ANN because 

additional information from physical knowledge is used in the training.   

Table 5.4. Quantitative comparison for different neural networks to solve the heat 
equation 

Neural 
network 

Training time 
(second) 

MSE of prediction at t = 
0 MSE of prediction at t = 1 

ANN 8.66 0.1998 0.0293 
PCNN1 1475.40 0.0225 0.0079 
PCNN2 1259.91 0.0125 0.0350 
PCNN3 1019.07 0.0139 0.0055 

 

The convergence speeds of the ANN and the adaptively-weighted PCNN3 with 

respect to the amount of training data are compared in Figure 5.4. It is shown that the 

required amount of training data to reach a certain accuracy level of prediction at time t = 

1 can be reduced by adding the physical constraints. Here, the number of physical 

constraints of the PCNN3 is 21×6×6 = 756. The prediction MSEs at t = 1 of both ANN and 

PCNN decrease when the training data size increases. The advantage of PCNN over ANN 

is obvious when the training data size is small. When the training data size is less than 400, 
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the prediction accuracy can have nearly one order of magnitude difference. To reach the 

same accuracy level of 0.01, the ANN requires about 900 training data points, whereas the 

PCNN only needs about 300 training data points. As the training data size increases, the 

difference in prediction accuracy between the ANN and PCNN gradually reduces.  

 

Figure 5.4. Convergence analysis for the ANN and the PCNN3. 

5.3.2 Phase Transition Example 

As shown in Eq. (5.13), the prediction of a MF-PCNN is a combination of the LF-

PCNN prediction and the discrepancy predicted by a ML model (DANN or GP). First, a 

low-cost LF-PCNN is trained during the time period 𝑡𝑡 ∈ [0, 1]  and then used as the 

baseline model. In addition, two high-cost HF-PCNNs (HF-PCNN1 and HF-PCNN2) are 

constructed. As shown in Table 5.2, the HF-PCNN1 is trained with data for the time period 

𝑡𝑡 ∈ [0, 0.2], whereas the HF-PCNN2 is trained with the data for two time periods, 𝑡𝑡 ∈

[0, 0.2] and 𝑡𝑡 ∈ [0.8, 1]. Then DANNs and GPs are trained to predict the discrepancy 

between the LF-PCNN and HP-PCNN predictions during the time period 𝑡𝑡 ∈ [0, 1]. The 

observed discrepancy between the predictions of the LF-PCNN and HF-PCNN1 during the 
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time period 𝑡𝑡 ∈ [0, 0.2]  serves as the training data for the DANN1, DANN2, and GP1. The 

network structure of DANN2 is more complex than DANN1. Similarly, the observed 

discrepancy between the predictions of the LF-PCNN and HF-PCNN2 for two time 

periods, 𝑡𝑡 ∈ [0, 0.2] and 𝑡𝑡 ∈ [0.8, 1], serves as the training data for the DANN3, DANN4, 

and GP2. Finally, the prediction of the MF-PCNN is the sum of the LF-PCNN prediction 

and the predicted discrepancy by DANNs or GPs. In this example, the mean square of the 

difference between the LF simulation and HF simulation is 0.0001 during the time period 

𝑡𝑡 ∈ [0, 0.2] . However, since a coarser mesh and larger time step is used in the LF 

simulation, errors are accumulated over time. Then, the mean square of the difference 

between the LF simulation and HF simulation becomes 0.0029 during the time period 𝑡𝑡 ∈

[0.8, 1.0]. Therefore, LF simulations are less accurate than HF simulations in the later stage. 

It is useful to adopt the MF-PCNN framework to fully utilize the training data with different 

fidelity. 

The predictions of the phase field from different models, including FEM solution, 

traditional ANN, and LF-PCNN at time t = 0.5 are shown in Figure 5.5. It is seen that the 

traditional ANN has larger prediction errors than PCNNs, especially at the saddle points 

where the true values are zeros. Adding physical constraints can significantly reduce the 

prediction errors, as in the LF-PCNN. At some saddle points, the phase field predicted by 

the LF-PCNN is still larger than zero, as shown in Figure 5.5(c). The predictions of the 

phase field from multi-fidelity models (combinations of LF-PCNN and DANNs, as well as 

LF-PCNN and GPs) at time t = 0.5 are shown in Figure 5.6. Compared to the LF-PCNN, 

the prediction errors of MF-PCNNs can be further reduced by adding the discrepancy 

prediction from DANNs or GPs. The phase field predicted by the MF-PCNNs is almost 
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zero at all saddle points. The difference between the predictions of the LF-PCNN and HF-

PCNN can be captured by DANNs or GPs very well. 

 

Figure 5.5. The predicted phase fields from different models at t = 0.5: (a) FEM solution, 
(b) ANN, and (c) LF-PCNN. 

(a) (b) 

(c) 
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Figure 5.6. The predicted phase fields from multi-fidelity models at t = 0.5: (a) LF-
PCNN+DANN1, (b) LF-PCNN+DANN2, (c) LF-PCNN+GP1, (d) LF-PCNN+DANN3, 

(e) LF-PCNN+DANN4, and (f) LF-PCNN+GP2. 

(a) (b) 

(c) (d) 

(e) (f) 
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The quantitative comparisons of training time and the MSEs of prediction for 

different ML models to solve the Allen-Cahn equation are listed in Table 5.5, where a MF-

PCNN is composed of a LF-PCNN and a ML model to predict the discrepancy. For 

example, MF-PCNN1 = LF-PCNN+DANN1 means that the MF-PCNN1 is a combination 

of the LF-PCNN and DANN1. The total training time of a MF-PCNN is the sum of training 

times for the LF-PCNN, HF-PCNN, and the discrepancy model (DANN or GP). The total 

training time of MF-PCNN1 is 774.32+324.37+79.52 = 1178.21 s, where the training times 

of the LF-PCNN, HF-PCNN1, and DANN1 are 774.32, 324.37, and 79.52 s, respectively. 

It is noted that the prediction of the HF-PCNN1 is used for the training of the MF-PCNN1, 

MF-PCNN2, and MF-PCNN3, whereas the prediction of the HF-PCNN2 is used for the 

training of the rest of the MF-PCNNs. Therefore, the training times of the MF-PCNN4, 

MF-PCNN5, and MF-PCNN6 are longer because of more training data and physical 

constraints. It is noted that the training time of the GP1 is comparable to the DANNs, 

whereas the training time of the GP2 is one magnitude longer than the DANNs. The 

standard GP is computationally more expensive because the computation of inverse 

covariance matrices is involved. Therefore, the standard GP has a cubic time complexity 

𝑂𝑂(𝑛𝑛3), whereas the standard ANN has a linear time complexity 𝑂𝑂(𝑛𝑛), where 𝑛𝑛 is the 

number of training data. Nevertheless, the GPs predict not only mean values but also the 

associated variances. Therefore, they are valuable in uncertainty quantification and robust 

optimization [126,127,215].  
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Table 5.5. Quantitative comparison between different ML models in the phase transition 
example 

ML model Training time (second) 
MSE of 
prediction at t 
= 0.5 

MSE of 
prediction at t 
= 1.5 

ANN 7.93 0.2215 0.8866 
LF-PCNN 774.32 0.0258 0.0684 
MF-PCNN1=LF-
PCNN+DANN1 774.32+324.37+79.52=1178.21 0.0133 0.0521 

MF-PCNN2=LF-
PCNN+DANN2 774.32+324.37+25.19=1123.88 0.0753 0.8508 

MF-PCNN3=LF-
PCNN+GP1 774.32+324.37+62.58=1161.27 0.0218 0.0587 

MF-PCNN4=LF-
PCNN+DANN3 

774.32+3095.68+100.38=3970.
38 0.0114 0.0399 

MF-PCNN5=LF-
PCNN+DANN4 

774.32+3095.68+58.01=3928.0
1 0.0173 0.1926 

MF-PCNN6=LF-
PCNN+GP2 

774.32+3095.68+1498.41=536
8.41 0.0129 0.0648 

 

The MSEs of predictions at different time periods for different ML models are 

compared in Figure 5.7. In general, the MSE of the prediction increases over time for 

different ML models. Since the prediction of the phase field at the current time step relies 

on the predictions from previous steps, the error will be accumulated over time. It is also 

noted that the time period 𝑡𝑡 ∈ [1, 2] is outside the time range 𝑡𝑡 ∈ [0, 1] of LF training data 

for the LF-PCNN. Therefore, the error for extrapolation is larger, which is a common issue 

for most ML models. Nevertheless, the MSEs of extrapolation for the LF-PCNN, MF-

PCNN1, MF-PCNN3, MF-PCNN4, and MF-PCNN6 are one order of magnitude lower 

than that of the ANN. 
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Figure 5.7. The change of MSE of prediction for different ML models. 

The MSE of prediction from the MF-PCNN1 is significantly lower than that of the 

LF-PCNN for 𝑡𝑡 ∈ [0, 1]. The difference between the MSEs however decreases for 𝑡𝑡 ∈

[1, 2]. Furthermore, the MSE of prediction at t = 0.5 for the MF-PCNN1 is decreased by 

about 50%, compared to that of the LF-PCNN. As for the MF-PCNN2, its MSE of 

prediction is higher than that of LF-PCNN when t > 0.5. The MSE of prediction for the 

MF-PCNN2 is almost the same as that of the ANN when t > 0.75. The increased MSE for 

the MF-PCNN2 is most likely caused by overfitting since the DANN2 has more neurons 

than the DANN1. The MSE of prediction for the MF-PCNN3 is slightly lower than that of 

the LF-PCNN but higher than that of MF-PCNN1 for 𝑡𝑡 ∈ [0, 2]. Notice that t = 0.5 is 

outside the time range 𝑡𝑡 ∈ [0, 0.2] of the HF training data for the HF-PCNN1, and the 

prediction is based on extrapolation. The errors indicate that DANN1 is better than GP1 

for extrapolation. 

With more training data and physical constraints, the HF-PCNN2 has two sampling 

spaces in the temporal dimension, which are [0, 0.2] and [0.8, 1]. The observed discrepancy 

between the predictions of the LF-PCNN and HF-PCNN2 is served as the training data for 
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the DANN3, DANN4, and GP2. Therefore, the prediction of the discrepancy between the 

LF-PCNN and HF-PCNN at t = 0.5 has become an interpolation problem. Compared to the 

MF-PCNN1, the MSE of prediction for the MF-PCNN4 is the lowest among all ML models 

for most of the time. With more training data, the MSE of prediction for the MF-PCNN5 

is lower than that of the MF-PCNN2. However, the MSE of prediction for the MF-PCNN5 

becomes higher than that of the MF-PCNN4 when t > 0.25 because of the overfitting. 

Compared to the MF-PCNN3, the MSE of prediction for the MF-PCNN6 is reduced with 

more training data when 𝑡𝑡 ∈ [0.0, 1.5]. Therefore, the MF-PCNN6 has a lower MSE of 

prediction than that of MF-PCNN3 at the cost of a longer training time. However, the MSE 

of prediction for the MF-PCNN6 becomes the same as that of the LF-PCNN when t > 1.75, 

indicating the failure of prediction by GP2. 

Among all ML models in this example, the MF-PCNN1 has the best performance 

since it has a relatively low training time and very good accuracy. The good performance 

of the MF-PCNN1 is mostly due to the simpler neural network structure of the DANN1. 

5.3.3 Dendritic Growth Example 

Here, instead of showing the complete design optimization procedure for iterative 

predictions and searching, we only show the evolutions of dendritic growth predicted by 

MF-PCNNs with two different sets of design variables. For the first design, the liquidus 

temperature is 𝑞𝑞𝑒𝑒 = 1 and latent heat is 𝐾𝐾 = 2. The predicted phase fields and temperature 

fields from FEM and the MF-PCNNs at t = 1.0 are shown in Figure 5.8. The settings for 

the two MF-PCNNs are compared in Table 5.3. There are 51×51 sampling points in the 2D 

domain. For the second design, the liquidus temperature is 𝑞𝑞𝑒𝑒 = 1.4 and latent heat is 𝐾𝐾 =

2.8. The predicted phase fields and temperature fields from FEM and the MF-PCNNs at t 
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= 1.0 are shown in Figure 5.9. For both cases, the predicted shapes of the primary arms 

from the MF-PCNNs are similar to the FEM simulation result, whereas the predicted 

secondary arms deviate from the simulation. Since secondary arms contain very thin and 

delicate features, more training data or physical constraints are needed to predict the 

secondary arms more accurately. The number of neurons also needs to be increased. For 

both dendrites, the predicted temperature fields from the MF-PCNNs correspond to the 

FEM simulation result very well, given that gradients in the temperature field are smaller 

than the phase field. The MSEs of prediction from the MF-PCNN for dendritic growth at t 

= 1.0 are shown in Table 5.6. It is shown that the MSE of prediction for the phase field is 

at least one order of magnitude larger than that for the temperature field in both cases. 

Compared to the MF-PCNN1, the MF-PCNN2 has more physical constraints. Therefore, 

the MSE of the prediction for the phase field from the MF-PCNN2 is lower than that from 

the MF-PCNN1. In future work, the architecture of MF-PCNNs needs to be optimized for 

such multiphysics examples, which will be largely determined by the resolutions of 

predicted fields.  
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Figure 5.8. The predicted phase fields and temperature fields from different models for 
the first material option (𝑞𝑞𝑒𝑒 = 1; 𝐾𝐾 = 2) at t = 1.0. Phase fields are shown in (a), (c), and 

(e). Temperature fields are shown in (b), (d), and (f). 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 5.9. The predicted phase fields and temperature fields from different models for 
the second material option (𝑞𝑞𝑒𝑒 = 1.4; 𝐾𝐾 = 2.8) at t = 1.0. Phase fields are shown in (a), 

(c), and (e). Temperature fields are shown in (b), (d), and (f). 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 5.6. MSEs of prediction from the MF-PCNN for dendritic growth at t = 1.0 

  Training time 
(second) 

MSE of 
prediction for 
phase field 

MSE of prediction 
for temperature field 

Dendrite 1 
MF-PCNN1 4320.18 0.0356 0.0047 
MF-PCNN2 8738.51 0.0346 0.0049 

Dendrite 2 
MF-PCNN1 37836.12 0.1127 0.0010 
MF-PCNN2 154791.97 0.0713 0.00384 

 

5.4 Discussion and Conclusions 

In this chapter, a new scheme of multi-fidelity physics-constrained neural networks 

is proposed to improve the efficiency of training in neural networks by reducing the 

required amount of training data and incorporating physical knowledge as constraints. 

Neural networks with two (or more) levels of fidelities are combined to improve the 

prediction accuracy. Low-fidelity networks predict the general trend, whereas high-fidelity 

networks model local details and fluctuations. For the concern of training cost, low-fidelity 

networks can be trained with low-fidelity data, and the prediction accuracy can be further 

improved with supplementary high-fidelity data. Thus, the training efficiency is improved 

from two aspects. The first one is the guidance from the physical knowledge, and the 

second one is a more cost-effective data collection and sampling strategy.  

In engineering and physical sciences, the knowledge about the system behaviors is 

typically described by PDEs as well as the associated initial and boundary condition 

information. The physical knowledge can be easily added as the regularization terms into 

the total loss functions in neural networks. The physical constraints then can help reduce 

the searching space and guide the searching direction during the training. When new 

knowledge about the system is obtained, more physical constraints can be added to PCNNs 
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to improve the prediction accuracy. Thus the LF-PCNN and HF-PCNN to construct a MF-

PCNN can be trained with different sets of constraints. It is reasonable to assume that the 

information of constraints can be obtained efficiently by the evaluation of analytical 

functions, which is less costly than obtaining simulation data for the training. The proposed 

formulation is generic and can be extended to other machine learning approaches, where 

regularization can be similarly applied.  

The proposed scheme is demonstrated with three examples of materials modeling. 

The first example is the heat equation with zero Neumann boundary conditions, which is a 

linear PDE. The second example is the Allen-Cahn equation with periodic boundary 

conditions, which is a nonlinear PDE. The PCNN is effective for these two different types 

of PDEs with different boundary conditions. The third example is the dendritic growth 

during solidification where heat transfer and phase transition are coupled. The classical 

ANN with small training data sets tends to have large prediction errors. By adding physical 

constraints, the prediction accuracy of the PCNN can be one order of magnitude higher 

than the one from the classical ANN. Even with limited training data, the prediction of the 

PCNN is comparable with the original FEM solution. The weights associated with physical 

constraints can be adjusted to reflect the importance of prior knowledge. They also affect 

the prediction accuracy. It is demonstrated that the adaptive weighting scheme results in 

higher prediction accuracy and shorter training time because the different losses in the total 

cost function are well balanced and have a similar convergence speed. The convergence 

analysis shows that the required amount of training data can be reduced by adding more 

physical constraints. Based on the computational results, DANNs are more robust than GPs 

for extrapolation to predict the discrepancy between the LF-PCNN and HF-PCNN.  
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The results in this chapter have demonstrated the effectiveness of the proposed MF-

PCNN framework for simulation prediction. The purpose of the proposed MF-PCNN 

framework is to reduce the required amount of training data by taking a gray-box approach. 

Although the offline training of MF-PCNN is slow, which takes up to several hours, its 

online evaluation or forward prediction can be done in a few seconds, once the training is 

finished. It was also shown that the training efficiency can be improved if the training data 

are from numerical simulations with different fidelities. The training data however are not 

limited to numerical simulation results only. They can also come from experimental 

measurements. The costs of experimental measurements can also be incorporated into the 

multi-fidelity scheme, where cost-effective sampling strategies can be taken.  

To enhance the capability of the developed MF-PCNN, some extensions have been 

made. The weights of different losses are systematically adjusted by the new training 

algorithm called Dual-Dimer method as shown in CHAPTER 6. The architecture of MF-

PCNNs can be further optimized for efficiency improvement by training the LF-PCNN and 

DANN together, which is shown in CHAPTER 6. Besides, to construct the process-

structure-property relationship using ML tools, the design variables should be directly 

incorporated as the input vector. The PCNN is extended to include design variables for 

rapid solidification process optimization in metal AM in CHAPTER 8. 

Future work will include several extensions. First, although classical ANN is a good 

baseline model to demonstrate the proposed MF-PCNN framework, the ANN could be 

replaced by the recurrent neural networks, such as long short-term memory neural 

networks, which may be more appropriate to solve time-dependent problems. Second, to 

further improve the training efficiency, a sequential sampling strategy can be adopted to 
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obtain an optimal combination of the HF and LF sample points for a given computational 

budget [126]. Finally, a more rigorous and comprehensive comparison of the scalability 

between the proposed MF-PCNN and multi-fidelity GP models is needed. Theoretically, 

the standard GP has a cubic time complexity, whereas the standard ANN has linear time 

complexity. However, incorporating the computational cost of data sampling in the multi-

fidelity simulation scenario will provide an overall scalability picture in terms of training 

and prediction time. 

The proposed scheme should not be regarded as the replacement of classical 

numerical simulation methods (e.g. finite element and spectral methods) for solving partial 

differential equations. Rather, it enhances the efficiency of engineering design when high-

fidelity simulations need to be run repetitively to obtain samples for design optimization. 

The required number of samples for optimization for high-dimensional problems usually 

is very large. The cost of training machine learning tools therefore can only be justified for 

complex problems with a high-dimensional searching space. For high-dimensional 

problems, the physical constraints can still be applied in the same scheme. However, as the 

number of constraints increases, they may not be treated as equally important, and those 

with trivial weights will be removed. In principle, as the dimension of the problem 

increases, the advantage of PCNNs will become more prominent because the required 

amount of training data can be reduced more significantly. The proposed scheme has the 

potential of making machine learning useful for real-world engineering applications where 

data sparsity is a common issue. 
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CHAPTER 6. A DUAL-DIMER METHOD FOR TRAINING 

PHYSICS-CONSTRAINED NEURAL NETWORKS WITH 

MINIMAX ARCHITECTURE 

6.1 Introduction 

Physics-constrained neural networks (PCNNs) can reduce the required amount of 

training data for neural networks in predicting physical phenomena. However, the weights 

of different losses from data and physical constraints are adjusted empirically in PCNNs. 

In this chapter, we propose a new formulation of PCNN to systematically search the 

optimal weights of different losses. The training of the PCNN is formulated as a minimax 

problem instead of minimization. The PCNN with the minimax architecture is called 

PCNN-MM. The training of the PCNN-MM is searching the high-order saddle points of 

the objective function. The order of saddle points indicates the number of negative 

eigenvalues of the Hessian matrix. Most of the existing saddle point search algorithms only 

find first-order saddle points. The traditional gradient descent ascent (GDA) algorithm for 

high-order saddle points has the convergence issue for nonconvex-nonconcave functions, 

where the functions are neither convex in the subspace for minimization nor concave in the 

subspace for maximization. A novel saddle point search algorithm called the Dual-Dimer 

algorithm is proposed to search high-order saddle points during the training of the PCNN-

MM.  

A multi-fidelity physics-constrained neural network with minimax architecture (MF-

PCNN-MM) is also proposed. In the MF-PCNN-MM, LF and HF data are integrated 

together to make the tradeoff between efficiency and accuracy for multi-fidelity 



 

 119 

metamodeling. The MF-PCNN-MM is composed of two ANNs. The first ANN is used to 

approximate the LF data, whereas the second ANN is adopted to approximate the mapping 

function between the LF and HF data.  

In the remainder of this chapter, the proposed PCNN-MM formulation and the Dual-

Dimer algorithm will be described in Section 6.2. The local convergence analysis of the 

Dual-Dimer algorithm is also included. The formulation of the MF-PCNN-MM is also 

described in Section 6.2. In Section 6.3, the proposed Dual-Dimer algorithm is evaluated 

using three nonconvex-nonconcave analytical functions, including a four-dimensional 

(4D) Rastrigin function, a 4D Ackley function, and a 20D Styblinski–Tang function. In 

Section 6.4, a heat transfer problem is used to demonstrate the effectiveness of the Dual-

Dimer algorithm. The performance of the PCNN-MM trained by the Dual-Dimer method 

is compared with the PCNN with the adaptive weighting scheme and the PCNN-MM 

trained by the GDA method. The convergence speed and stability of different models are 

also tested. In Section 6.5, the developed MF-PCNN-MM is demonstrated by three 2D 

examples of heat transfer, phase transition, and dendritic growth. 

6.2 Methodology 

Here, we propose a new generic formulation of physics-constrained neural networks 

with the minimax architecture. The adjustment of weights associated with physical 

constraints can be done systematically during the training process. A new high-order saddle 

point search method is also developed to train the new PCNNs with nonconvex-

nonconcave objective functions. The formulation of the PCNN-MM is described in Section 

6.2.1. The generic Dual-Dimer saddle point search method is introduced in Section 6.2.2. 



 

 120 

The local convergence analysis of the Dual-Dimer algorithm is included in Section 6.2.3. 

The formulation of the MF-PCNN-MM is shown in 6.2.4. 

6.2.1 Physics-Constrained Neural Network with Minimax Architecture 

The training of the PCNN-MM is to solve the minimax problem 

 min
𝐰𝐰

max
𝛂𝛂

𝐸𝐸(𝐰𝐰,𝛂𝛂) = 𝜆𝜆𝑇𝑇(𝛂𝛂)𝐸𝐸𝑇𝑇(𝐰𝐰) + 𝜆𝜆𝑃𝑃(𝛂𝛂)𝐸𝐸𝑃𝑃(𝐰𝐰) 

                                     +𝜆𝜆𝐼𝐼(𝛂𝛂)𝐸𝐸𝐼𝐼(𝐰𝐰) + 𝜆𝜆𝑠𝑠(𝛂𝛂)𝐸𝐸𝑠𝑠(𝐰𝐰) 
(6.1) 

where the weights of different losses 𝜆𝜆𝑇𝑇, 𝜆𝜆𝑃𝑃, 𝜆𝜆𝐼𝐼, and 𝜆𝜆𝑆𝑆 are now functions of parameters 

𝛂𝛂 = (𝛼𝛼𝑇𝑇 ,𝛼𝛼𝑃𝑃,𝛼𝛼𝐼𝐼 ,𝛼𝛼𝑆𝑆). Training is to minimize the possible loss for a worst-case (maximum 

loss) scenario. That is, we perform the maximization of the total loss 𝐸𝐸(𝐰𝐰,𝛂𝛂) over the 

parameter subspace of 𝛂𝛂 and the minimization of the total loss over the parameter subspace 

of 𝐰𝐰. During the training of the PCNN-MM, the weights of different losses 𝜆𝜆’s will be 

adjusted to maximize the total loss 𝐸𝐸(𝐰𝐰,𝛂𝛂) in 𝛂𝛂 subspace, whereas the weights of the 

neural network 𝐰𝐰’s will be tuned to minimize the total loss 𝐸𝐸(𝐰𝐰,𝛂𝛂). When one of the 

losses is larger than the other ones, its corresponding weight tends to increase to emphasize 

the importance of that particular loss so that the total loss is maximized. To counteract, the 

weights of the neural network will be adjusted to minimize the total loss so that the total 

loss can be reduced faster. That is how the weights of different losses are systematically 

adjusted. In this work, the weights of different losses are defined as the softmax functions 

as 

 
𝜆𝜆𝑖𝑖(𝛂𝛂) =

exp(𝛼𝛼𝑖𝑖)
∑ exp(𝛼𝛼𝑖𝑖)𝑖𝑖

, 𝑎𝑎 ∈ {𝑇𝑇,𝑃𝑃, 𝐼𝐼, 𝑆𝑆} (6.2) 

After applying softmax functions, the range of the weights of different losses 𝜆𝜆𝑖𝑖 will be in 

the interval [0,1], and they will add up to one.  
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Let 𝛉𝛉 = (𝐰𝐰,𝛂𝛂) denote the optimization parameters for objective function 𝐸𝐸. The 

training of the PCNN-MM is to find a minimax point or saddle point on a high-dimensional 

energy landscape 𝐸𝐸 . The training of the PCNN-MM, which is to solve the minimax 

problem in Eq. (6.1), is equivalent to finding a saddle point 𝛉𝛉∗ = (𝐰𝐰∗,𝛂𝛂∗) such that 

 𝐸𝐸(𝐰𝐰∗,𝛂𝛂) ≤ 𝐸𝐸(𝐰𝐰∗,𝛂𝛂∗) ≤ 𝐸𝐸(𝐰𝐰,𝛂𝛂∗)  (∀𝐰𝐰 ∈ ℝ𝐷𝐷 ,∀𝛂𝛂 ∈ ℝ4) (6.3) 

That is, the saddle point is the minimum in 𝐰𝐰 subspace and maximum in 𝛂𝛂 subspace. The 

sufficient conditions for 𝛉𝛉∗ = (𝐰𝐰∗,𝛂𝛂∗) to be the desired saddle point are: (1) the gradients 

of the objective function with respect to (𝐰𝐰,𝛂𝛂)  are zeros, i.e., ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗) = 𝟎𝟎  and 

∇𝛂𝛂𝐸𝐸(𝛉𝛉∗) = 𝟎𝟎; (2) the second derivatives ∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) in the 𝐰𝐰 subspace are positive semi-

definite; and (3) the second derivatives ∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗) in the 𝛂𝛂 subspace are negative semi-

definite. It is noted that the training of the PCNN-MM is different from training traditional 

neural networks where saddle points need to be avoided and overcome. The goal of training 

PCNN-MM is to search the desired saddle point which is the minimum in 𝐰𝐰 subspace and 

maximum in 𝛂𝛂 subspace. 

6.2.2 The Dual-Dimer Method 

It is known that the steepest step Δ𝛉𝛉 to reach a stationary point (local minimum, local 

maximum, or saddle point) can be obtained by Newton’s method 

 
Δ𝛉𝛉 = 𝐇𝐇−𝟏𝟏𝐟𝐟 = �

(𝐯𝐯𝑖𝑖 ∙ 𝐟𝐟)𝐯𝐯𝑖𝑖
𝛽𝛽𝑖𝑖𝑖𝑖

 (6.4) 

where 𝐟𝐟 = −∇𝐸𝐸 is the force, 𝐇𝐇 is the Hessian matrix, 𝐯𝐯𝑖𝑖 is the eigenvector, and 𝛽𝛽𝑖𝑖 is the 

corresponding eigenvalue. The drawback of the gradient descent method is not the search 

direction but the size of the step along each eigenvector direction. Therefore, a small step 

should be taken in the direction 𝐯𝐯𝑖𝑖  when the corresponding eigenvalue 𝛽𝛽𝑖𝑖  is small. By 
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rescaling the gradients in each direction with the inverse of the corresponding eigenvalue, 

Newton’s method in Eq. (6.4) can accelerate the convergence. However, in high-

dimensional problems, the computations of all eigenvectors and eigenvalues are very 

expensive.  

The Dual-Dimer method is designed to improve the computational efficiency for 

high-dimensional problems. Let 𝛽𝛽𝑠𝑠 denotes the minimum eigenvalue of ∇𝐰𝐰2 𝐸𝐸(𝛉𝛉) with its 

corresponding eigenvector 𝐯𝐯𝑠𝑠, and 𝛽𝛽𝑙𝑙 denotes the maximum eigenvalue of ∇𝛂𝛂2𝐸𝐸(𝛉𝛉) with its 

corresponding eigenvector 𝐯𝐯𝑙𝑙. By augmenting the gradient descent ascent with the rescaled 

projections of the force along the extreme eigenvectors (𝐯𝐯𝑠𝑠, 𝐯𝐯𝑙𝑙), the step to reach the desired 

high-order saddle point in the Dual-Dimer method is given by 

 Δ𝛉𝛉 = (Δ𝛉𝛉𝐰𝐰,Δ𝛉𝛉𝛂𝛂) + (Δ𝛉𝛉𝑠𝑠,Δ𝛉𝛉𝑙𝑙) 

= 𝜂𝜂�−∇𝐰𝐰𝐸𝐸(𝛉𝛉),∇𝛂𝛂𝐸𝐸(𝛉𝛉)� + �−
�𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑠𝑠

|𝛽𝛽𝑠𝑠| ,
�𝐯𝐯𝑙𝑙 ∙ ∇𝛂𝛂𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑙𝑙

|𝛽𝛽𝑙𝑙|
� 

(6.5) 

where Δ𝛉𝛉𝐰𝐰  is the gradient descent sub-step given by the first-order gradient-based 

optimization method [213] in the 𝐰𝐰 subspace, and Δ𝛉𝛉𝛂𝛂 is the gradient ascent sub-step in 

the 𝛂𝛂 subspace. 𝜂𝜂 is the learning rate for the gradient descent ascent sub-steps. Δ𝛉𝛉𝑠𝑠 is the 

projection of the force along the 𝐯𝐯𝑠𝑠 direction, and Δ𝛉𝛉𝑙𝑙 is the projection of the force along 

the 𝐯𝐯𝑙𝑙 direction. With augmented sub-steps Δ𝛉𝛉𝑠𝑠 and Δ𝛉𝛉𝑙𝑙, it is expected that at the end of 

the training ∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) does not have negative eigenvalues in 𝐰𝐰 and ∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗) does not have 

positive eigenvalues in 𝛂𝛂. Therefore, the use of the extreme eigenvalues and eigenvectors 

in the Dual-Dimer method is to make sure that the high-order saddle points are found. 

In the original dimer method [136–138], a dimer is rotated to find the minimum 

curvature direction and then translated to a first-order saddle point. The minimum curvature 

direction corresponds to the extreme eigenvector in the minimum subspace for the first-
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order saddle point. In the proposed Dual-Dimer method, the way to calculate extreme 

eigenvalues and eigenvectors for first-order saddle points in the original dimer method is 

adopted and extended to calculate the extreme values in both the minimum and maximum 

subspaces for high-order saddle points. The proposed Dual-Dimer method is also different 

from the dimer method by rescaling the step sizes along the extreme eigenvectors with the 

inverse of the extreme eigenvalues. The extreme eigenvalues (𝛽𝛽𝑠𝑠,𝛽𝛽𝑙𝑙) and eigenvectors 

(𝐯𝐯𝑠𝑠, 𝐯𝐯𝑙𝑙)  are computed by rotating two dimers in the subspaces of 𝐰𝐰  and 𝛂𝛂  without 

expensive calculations of the Hessian matrix 𝐇𝐇. The first dimer in the 𝐰𝐰 subspace is 

composed of two endpoints 𝛉𝛉1 and 𝛉𝛉2, which are slightly displaced by the fixed dimer 

length 2∆𝑅𝑅. The locations of the endpoints 𝛉𝛉1 and 𝛉𝛉2 are given by 

 �𝛉𝛉1 = 𝛉𝛉0 + ∆𝑅𝑅𝐧𝐧
𝛉𝛉2 = 𝛉𝛉0 − ∆𝑅𝑅𝐧𝐧 (6.6) 

where 𝐧𝐧 is the unit vector along the dimer axis and 𝛉𝛉0 is the midpoint of the dimer. Here, 

the components of 𝐧𝐧 in the 𝐰𝐰 subspace are nonzero, whereas the components of 𝐧𝐧 in the 𝛂𝛂 

subspace are always zero. Therefore, the rotation of the first dimer is confined in the 𝐰𝐰 

subspace. The dimer axis 𝐧𝐧 is rotated into the smallest curvature direction of the potential 

energy 𝐶𝐶(𝐧𝐧) at the dimer midpoint 𝛉𝛉0, which is to solve the minimization problem 

 
min
𝐧𝐧
𝐶𝐶(𝐧𝐧) = 𝐧𝐧𝑇𝑇𝐇𝐇𝐧𝐧 ≈

(𝐟𝐟2 − 𝐟𝐟1) ⋅ 𝐧𝐧
2∆𝑅𝑅

 (6.7) 

where 𝐇𝐇  is the Hessian matrix at the dimer midpoint 𝛉𝛉0 . 𝐟𝐟1 = −∇𝐸𝐸(𝛉𝛉1)  and 𝐟𝐟2 =

−∇𝐸𝐸(𝛉𝛉2) are the forces at the locations 𝛉𝛉1 and 𝛉𝛉2, respectively. It is noted that only first 

derivatives are required to estimate curvatures in Eq. (6.7). This is the reason that the Dual-

Dimer method is computationally efficient. Furthermore, the curvature 𝐶𝐶(𝐧𝐧) becomes the 

eigenvalue if 𝐧𝐧 is the eigenvector of the Hessian matrix. Once the smallest curvature 𝐶𝐶(𝐧𝐧) 



 

 124 

is found, the minimum eigenvalue 𝛽𝛽𝑠𝑠  in the 𝐰𝐰  subspace is equal to 𝐶𝐶(𝐧𝐧)  and the 

components of 𝐧𝐧  in the 𝐰𝐰  subspace becomes the extreme eigenvector 𝐯𝐯𝑠𝑠 . The 

minimization problem in Eq. (6.7) is numerically solved by rotating the dimer. The details 

can be found in the original dimer method [136–138].  

Similarly, the second dimer in the 𝛂𝛂 subspace is composed of two endpoints 𝛉𝛉3 and 

𝛉𝛉4 with their locations given by 

 �𝛉𝛉3 = 𝛉𝛉0 + ∆𝑅𝑅𝐦𝐦
𝛉𝛉4 = 𝛉𝛉0 − ∆𝑅𝑅𝐦𝐦 (6.8) 

where 𝐦𝐦 is the unit vector along the dimer axis. Here, the components of 𝐦𝐦 in the 𝛂𝛂 

subspace are nonzero, whereas the components of 𝐦𝐦 in the 𝐰𝐰 subspace are always zero. 

Therefore, the rotation of the second dimer is confined in the 𝛂𝛂 subspace. The dimer axis 

𝐦𝐦 is rotated into the largest curvature direction of the potential energy, which is to solve 

the maximization problem 

 
max
𝐦𝐦

𝐶𝐶(𝐦𝐦) = 𝐦𝐦𝑇𝑇𝐇𝐇𝐦𝐦 ≈
(𝐟𝐟4 − 𝐟𝐟3) ⋅ 𝐦𝐦

2∆𝑅𝑅
 (6.9) 

where 𝐟𝐟3 = −∇𝐸𝐸(𝛉𝛉3)  and 𝐟𝐟4 = −∇𝐸𝐸(𝛉𝛉4)  are the forces at the locations 𝛉𝛉3  and 𝛉𝛉4 , 

respectively. Once the largest curvature 𝐶𝐶(𝐦𝐦) is found, the maximum eigenvalue 𝛽𝛽𝑙𝑙 in the 

𝛂𝛂 subspace is equal to 𝐶𝐶(𝐦𝐦) and the components of 𝐦𝐦 in the 𝛂𝛂 subspace become the 

extreme eigenvector 𝐯𝐯𝑙𝑙. 

The details of the Dual-Dimer algorithm are shown in Table 6.1. Iteratively, the sub-

steps Δ𝛉𝛉𝐰𝐰, Δ𝛉𝛉𝛂𝛂, Δ𝛉𝛉𝑠𝑠 , and Δ𝛉𝛉𝑙𝑙  are calculated and the estimated saddle point location is 

updated. There are five hyperparameters (𝑒𝑒, 𝛿𝛿, 𝛾𝛾, 𝜂𝜂, 𝜀𝜀) that need to be tuned in the Dual-

Dimer method. Parameter 𝑒𝑒 represents the frequency of updating extreme eigenvalues and 

eigenvectors. If 𝑒𝑒 is small, the overall computational cost will be high. If 𝑒𝑒 is large, the 
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estimations of current extreme eigenvalues and eigenvectors are not accurate. Parameter 𝛿𝛿 

is introduced in the algorithm to avoid the zero-division error. When the eigenvalue is close 

to zero, it means that the curvature is very small and the saddle point degenerates. 

Parameter 𝛾𝛾 means the maximum step length of Δ𝛉𝛉𝑠𝑠 and Δ𝛉𝛉𝑙𝑙 to make sure that the training 

is converged. Parameter 𝜂𝜂 is the learning rate for the gradient descent ascent sub-steps. If 

𝜂𝜂 is small, the training will be slow. If 𝜂𝜂 is large, the training may be unstable. When the 

objective function 𝐸𝐸 or the norm of the force ‖𝐟𝐟‖2 is less than the threshold 𝜀𝜀, the search 

for the saddle points stops. Trade-offs need to be made between the computational accuracy 

and efficiency for these hyperparameters to improve the overall performance of the Dual-

Dimer method. Sensitivity studies were done in this work to tune them. A more systematic 

method to find the optimal hyperparameters is needed in future work. 

Table 6.1. The Dual-Dimer algorithm 

Input: initial optimization parameters 𝛉𝛉0 = (𝐰𝐰0,𝛂𝛂0), objective function 𝐸𝐸, 
hyperparameters 𝑒𝑒, 𝛿𝛿, 𝛾𝛾, 𝜂𝜂, 𝜀𝜀. 

Output:  desired saddle point 𝛉𝛉∗ 
Procedure: 1. Initialize the iteration 𝑡𝑡 = 0, 𝛉𝛉𝑎𝑎 = 𝛉𝛉0 

2. Evaluate energy 𝐸𝐸(𝛉𝛉𝑎𝑎) and force 𝐟𝐟 = −∇𝐸𝐸 
3. When 𝑡𝑡 𝑚𝑚𝑐𝑐𝑑𝑑 𝑒𝑒 = 0, compute the extreme eigenvalues (𝛽𝛽𝑠𝑠,𝛽𝛽𝑙𝑙) and 
eigenvectors (𝐯𝐯𝑠𝑠, 𝐯𝐯𝑙𝑙) by rotating two dimers in the subspaces of 𝐰𝐰 and 𝛂𝛂 
4. Calculate Δ𝛉𝛉𝐰𝐰 = −𝜂𝜂∇𝐰𝐰𝐸𝐸(𝛉𝛉) and Δ𝛉𝛉𝛂𝛂 = 𝜂𝜂∇𝛂𝛂𝐸𝐸(𝛉𝛉) 
5. If |𝛽𝛽𝑠𝑠| > 𝛿𝛿, Δ𝛉𝛉𝑠𝑠 = − �𝐯𝐯𝑠𝑠∙∇𝐰𝐰𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑠𝑠

|𝛽𝛽𝑠𝑠| ; otherwise, Δ𝛉𝛉𝑠𝑠 = 𝟎𝟎; If |𝛽𝛽𝑙𝑙| > 𝛿𝛿, 

Δ𝛉𝛉𝑙𝑙 =  �𝐯𝐯𝑙𝑙∙∇𝛂𝛂𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑙𝑙
|𝛽𝛽𝑙𝑙|

; otherwise, Δ𝛉𝛉𝑙𝑙 = 𝟎𝟎 

6. If ‖Δ𝛉𝛉𝑠𝑠‖2 > 𝛾𝛾, Δ𝛉𝛉𝑠𝑠 = 𝛾𝛾 Δ𝛉𝛉𝑠𝑠
‖Δ𝛉𝛉𝑠𝑠‖2

; If ‖Δ𝛉𝛉𝑙𝑙‖2 > 𝛾𝛾, Δ𝛉𝛉𝑙𝑙 = 𝛾𝛾 Δ𝛉𝛉𝑙𝑙
‖Δ𝛉𝛉𝑙𝑙‖2

 
7. 𝑡𝑡 = 𝑡𝑡 + 1 
8. Update optimization parameters by calculating Δ𝛉𝛉 = (Δ𝛉𝛉𝐰𝐰,Δ𝛉𝛉𝛂𝛂) +
(Δ𝛉𝛉𝑠𝑠,Δ𝛉𝛉𝑙𝑙) and 𝛉𝛉𝑎𝑎 = 𝛉𝛉𝑎𝑎−1 + Δ𝛉𝛉 
9. Return to step 2 until ‖𝐟𝐟‖2 < 𝜀𝜀 or 𝐸𝐸 < 𝜀𝜀 
10. Output 𝛉𝛉∗ = 𝛉𝛉𝑎𝑎 
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6.2.3 Local Convergence 

The local convergence of the Dual-Dimer method is analyzed here. Let us define a 

fixed-point function 

 𝐹𝐹(𝛉𝛉) = 𝛉𝛉 + 𝜂𝜂�−∇𝐰𝐰𝐸𝐸(𝛉𝛉),∇𝛂𝛂𝐸𝐸(𝛉𝛉)� 

              +�−
�𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑠𝑠

|𝛽𝛽𝑠𝑠| ,
�𝐯𝐯𝑙𝑙 ∙ ∇𝛂𝛂𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑙𝑙

|𝛽𝛽𝑙𝑙|
� 

(6.10) 

and assume that 𝐹𝐹(𝛉𝛉)  is differentiable. The desired saddle point 𝛉𝛉∗  can be found by 

iteratively applying the fixed-point function 𝐹𝐹(𝛉𝛉). If 𝛽𝛽𝑠𝑠 = 0 and 𝛽𝛽𝑙𝑙 = 0, as shown in Table 

6.1, then the fixed-point iteration becomes the GDA method, which is locally stable 

according to [216,217]. If 𝛽𝛽𝑠𝑠 ≠ 0 and 𝛽𝛽𝑙𝑙 ≠ 0, we have the following lemmas and theorem.  

Lemma 1. The Jacobian of the loss function at the desired saddle point 𝛉𝛉∗ = (𝐰𝐰∗,𝛂𝛂∗) is 

 
∇𝐹𝐹(𝛉𝛉∗)  = 𝐈𝐈 + 𝜂𝜂 �

−∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) −∇𝐰𝐰,𝛂𝛂
2 𝐸𝐸(𝛉𝛉∗)

∇𝛂𝛂,𝐰𝐰
2 𝐸𝐸(𝛉𝛉∗) ∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)

� 

                   +

⎝

⎛
−

1
𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) −

1
𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰,𝛂𝛂

2 𝐸𝐸(𝛉𝛉∗)

−
1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂,𝐰𝐰

2 𝐸𝐸(𝛉𝛉∗) −
1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)

⎠

⎞ 

(6.11) 

where 𝐈𝐈 is the real-valued identity matrix. If there exists an 𝜂𝜂 (𝜂𝜂 > 0) such that the absolute 

values of all the eigenvalues of ∇𝐹𝐹(𝛉𝛉∗) are less than 1, then there is an open neighborhood 

𝐾𝐾 of 𝛉𝛉∗ so that for all 𝛉𝛉 ∈ 𝐾𝐾, the fixed-point iterations of 𝐹𝐹(𝛉𝛉) in Eq. (6.10) are stable in 

𝐾𝐾. The rate of convergence is at least linear.  

Proof. Since 𝛉𝛉∗ is the desired saddle point, we have ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗) = 𝟎𝟎, ∇𝛂𝛂𝐸𝐸(𝛉𝛉∗) = 𝟎𝟎, 𝛽𝛽𝑠𝑠 ≥ 0, 

and 𝛽𝛽𝑙𝑙 ≤ 0. Furthermore 𝐹𝐹(𝛉𝛉∗) = 𝛉𝛉∗. The Jacobian ∇𝐹𝐹(𝛉𝛉∗) is given by 
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∇𝐹𝐹(𝛉𝛉∗)  = 𝐈𝐈 + 𝜂𝜂 �

−∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) −∇𝐰𝐰,𝛂𝛂
2 𝐸𝐸(𝛉𝛉∗)

∇𝛂𝛂,𝐰𝐰
2 𝐸𝐸(𝛉𝛉∗) ∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)

� 

                    +∇�−
�𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)�𝐯𝐯𝑠𝑠

|𝛽𝛽𝑠𝑠| ,
�𝐯𝐯𝑙𝑙 ∙ ∇𝛂𝛂𝐸𝐸(𝛉𝛉∗)�𝐯𝐯𝑙𝑙

|𝛽𝛽𝑙𝑙|
� 

(6.12) 

If 𝛽𝛽𝑠𝑠 > 0, then we have  

 
∇�−

�𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)�𝐯𝐯𝑠𝑠
|𝛽𝛽𝑠𝑠| � = ∇�−

�𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)�𝐯𝐯𝑠𝑠
𝛽𝛽𝑠𝑠

� 

= −𝐯𝐯𝑠𝑠 ⊗ ∇�
𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)

𝛽𝛽𝑠𝑠
� − �

𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)�������
𝟎𝟎

𝛽𝛽𝑠𝑠
�∇𝐯𝐯𝑠𝑠 

= −𝐯𝐯𝑠𝑠 ⊗ �
1
𝛽𝛽𝑠𝑠
∇�𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)� + �𝐯𝐯𝑠𝑠 ∙ ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)�������

𝟎𝟎

�∇
1
𝛽𝛽𝑠𝑠
� 

= −
1
𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠 ⊗ �∇𝑇𝑇𝐯𝐯𝑠𝑠 ∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)�������

𝟎𝟎

+ ∇𝑇𝑇�∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)�𝐯𝐯𝑠𝑠� 

= −
1
𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇�∇𝐰𝐰𝐸𝐸(𝛉𝛉∗)� 

= �−
1
𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) −

1
𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰,𝛂𝛂

2 𝐸𝐸(𝛉𝛉∗)� 

(6.13) 

Similarly, if 𝛽𝛽𝑙𝑙 < 0, we have  

 
∇� 

�𝐯𝐯𝑙𝑙 ∙ ∇𝛂𝛂𝐸𝐸(𝛉𝛉∗)�𝐯𝐯𝑙𝑙
|𝛽𝛽𝑙𝑙|

�  = �−
1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂,𝐰𝐰

2 𝐸𝐸(𝛉𝛉∗) −
1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)� (6.14) 

Therefore, we have the Jacobian 

∇𝐹𝐹(𝛉𝛉∗)  = 𝐈𝐈 + 𝜂𝜂 �
−∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) −∇𝐰𝐰,𝛂𝛂

2 𝐸𝐸(𝛉𝛉∗)
∇𝛂𝛂,𝐰𝐰
2 𝐸𝐸(𝛉𝛉∗) ∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)

� 

                                          +�
− 1

𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) − 1

𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰,𝛂𝛂

2 𝐸𝐸(𝛉𝛉∗)

− 1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂,𝐰𝐰

2 𝐸𝐸(𝛉𝛉∗) − 1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)

�. 
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According to the fixed point theorem [216], if there is an 𝜂𝜂 > 0 such that the absolute 

values of the eigenvalues of the Jacobian ∇𝐹𝐹(𝛉𝛉∗) are all smaller than 1, then there is an 

open neighborhood 𝐾𝐾 of 𝛉𝛉∗ so that for all 𝛉𝛉 ∈ 𝐾𝐾, the iterates of 𝐹𝐹(𝛉𝛉) in Eq. (6.10) are 

stable. The rate of convergence is at least linear.  

Lemma 2. Let 𝛽𝛽𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏𝑎𝑎  be the eigenvalues of the matrix 𝐀𝐀 , 𝛽𝛽𝐺𝐺 = 𝑎𝑎 + 𝑑𝑑𝑎𝑎  be the 

eigenvalues of the matrix 𝐁𝐁, where 𝑎𝑎 = √−1. The eigenvalues of the matrix 𝐈𝐈 + 𝜂𝜂𝐀𝐀 + 𝐁𝐁, 

where 𝜂𝜂 > 0, lie in the unit ball if 

 ∆= [2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑)]2 − 4(𝑎𝑎2 + 𝑏𝑏2)(𝑎𝑎2 + 2𝑎𝑎 + 𝑑𝑑2) > 0 (6.15) 

and 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 0 < 𝜂𝜂 <

−2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑) + √∆
2(𝑎𝑎2 + 𝑏𝑏2)

,

𝑎𝑎𝑓𝑓 𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑 ≥ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎2 + 2𝑎𝑎 + 𝑑𝑑2 > 0 ;

𝑚𝑚𝑎𝑎𝑥𝑥 �0,
−2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑) − √∆

2(𝑎𝑎2 + 𝑏𝑏2) � < 𝜂𝜂 <
−2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑) + √∆

2(𝑎𝑎2 + 𝑏𝑏2)
,

 𝑎𝑎𝑓𝑓 𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑 < 0;

 (6.16) 

for all eigenvalues 𝛽𝛽𝐴𝐴 of 𝐀𝐀 and 𝛽𝛽𝐺𝐺 of 𝐁𝐁. 

Proof. If the eigenvalues of the matrix 𝐈𝐈 + 𝜂𝜂𝐀𝐀 + 𝐁𝐁  lie in the unit ball, then 

|1 + 𝜂𝜂𝛽𝛽𝐴𝐴 + 𝛽𝛽𝐺𝐺|2 < 1. That is, (1 + 𝜂𝜂𝑎𝑎 + 𝑏𝑏)2 + (𝜂𝜂𝑎𝑎 + 𝑑𝑑)2 < 1, which leads to 

 (𝑎𝑎2 + 𝑏𝑏2)𝜂𝜂2 + 2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑)𝜂𝜂 + 𝑎𝑎2 + 2𝑎𝑎 + 𝑑𝑑2 < 0 (6.17) 

To find the real solutions of 𝜂𝜂, we need to make sure the discriminant is larger than zero, 

as 

 ∆= [2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑)]2 − 4(𝑎𝑎2 + 𝑏𝑏2)(𝑎𝑎2 + 2𝑎𝑎 + 𝑑𝑑2) > 0 (6.18) 

Two real roots 𝜂𝜂1 = −2(𝑎𝑎+𝑎𝑎𝑎𝑎+𝑏𝑏𝑑𝑑)−√∆
2(𝑎𝑎2+𝑏𝑏2)  and 𝜂𝜂2 = −2(𝑎𝑎+𝑎𝑎𝑎𝑎+𝑏𝑏𝑑𝑑)+√∆

2(𝑎𝑎2+𝑏𝑏2)  can be obtained. Since 𝜂𝜂 >

0, we have 
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 𝜂𝜂2 = −2(𝑎𝑎+𝑎𝑎𝑎𝑎+𝑏𝑏𝑑𝑑)+√∆
2(𝑎𝑎2+𝑏𝑏2) > 0 or √∆> 2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑) (6.19) 

If 𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑 ≥ 0, then ∆> [2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑)]2. Therefore, 

 𝑎𝑎2 + 2𝑎𝑎 + 𝑑𝑑2 > 0 (6.20) 

Meanwhile, it is obvious that 𝜂𝜂1 = −2(𝑎𝑎+𝑎𝑎𝑎𝑎+𝑏𝑏𝑑𝑑)−√∆
2(𝑎𝑎2+𝑏𝑏2) < 0. Therefore, the range of 𝜂𝜂 should 

be 0 < 𝜂𝜂 < 𝜂𝜂2  in order to satisfy Eq. (6.17). If 𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑 < 0 , automatically 𝜂𝜂2 =

−2(𝑎𝑎+𝑎𝑎𝑎𝑎+𝑏𝑏𝑑𝑑)+√∆
2(𝑎𝑎2+𝑏𝑏2) > 0  without any further conditions. The range of 𝜂𝜂  should be 

𝑚𝑚𝑎𝑎𝑥𝑥{0, 𝜂𝜂1} < 𝜂𝜂 < 𝜂𝜂2 to satisfy Eq. (6.17). 

Theorem 1. Let 𝛉𝛉∗ = (𝐰𝐰∗,𝛂𝛂∗)  be the desired saddle point, 𝛽𝛽𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏𝑎𝑎  be the 

eigenvalues of 𝐀𝐀 = �
−∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) −∇𝐰𝐰,𝛂𝛂

2 𝐸𝐸(𝛉𝛉∗)
∇𝛂𝛂,𝐰𝐰
2 𝐸𝐸(𝛉𝛉∗) ∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)

�, 𝛽𝛽𝐺𝐺 = 𝑎𝑎 + 𝑑𝑑𝑎𝑎 be the eigenvalues of 𝐁𝐁 =

�
− 1

𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰2 𝐸𝐸(𝛉𝛉∗) − 1

𝛽𝛽𝑠𝑠
𝐯𝐯𝑠𝑠𝐯𝐯𝑠𝑠𝑇𝑇∇𝐰𝐰,𝛂𝛂

2 𝐸𝐸(𝛉𝛉∗)

− 1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂,𝐰𝐰

2 𝐸𝐸(𝛉𝛉∗) − 1
𝛽𝛽𝑙𝑙
𝐯𝐯𝑙𝑙𝐯𝐯𝑙𝑙𝑇𝑇∇𝛂𝛂2𝐸𝐸(𝛉𝛉∗)

�, and 𝜂𝜂 > 0 . The fixed-point iterations of 

𝐹𝐹(𝛉𝛉) in Eq. (6.10) are locally stable if 

 ∆= [2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑)]2 − 4(𝑎𝑎2 + 𝑏𝑏2)(𝑎𝑎2 + 2𝑎𝑎 + 𝑑𝑑2) > 0 (6.21) 

and 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 0 < 𝜂𝜂 <

−2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑) + √∆
2(𝑎𝑎2 + 𝑏𝑏2)

,

𝑎𝑎𝑓𝑓 𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑 ≥ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎2 + 2𝑎𝑎 + 𝑑𝑑2 > 0 ;

𝑚𝑚𝑎𝑎𝑥𝑥 �0,
−2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑) − √∆

2(𝑎𝑎2 + 𝑏𝑏2) � < 𝜂𝜂 <
−2(𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑) + √∆

2(𝑎𝑎2 + 𝑏𝑏2)
,

 𝑎𝑎𝑓𝑓 𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑑𝑑 < 0;

 (6.22) 

for all eigenvalues 𝛽𝛽𝐴𝐴 of 𝐀𝐀 and 𝛽𝛽𝐺𝐺 of 𝐁𝐁. 

6.2.4 Multi-Fidelity Physics-Constrained Neural Network with Minimax Architecture 
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In the MF-PCNN-MM, LF and HF data are integrated together to make the tradeoff 

between efficiency and accuracy for multi-fidelity metamodeling. The optimal weights of 

training losses with different fidelities and other losses associated with physical constraints 

can be systematically searched during the training process.  

The key to multi-fidelity metamodeling is to discover the relationship between the 

LF and HF data. A comprehensive correlation function widely used in multi-fidelity 

metamodeling [122] is given by  

 𝑢𝑢𝐶𝐶(𝐱𝐱,𝑢𝑢𝐿𝐿) = 𝜌𝜌(𝐱𝐱)𝑢𝑢𝐿𝐿 + 𝛿𝛿(𝐱𝐱) (6.23) 

where 𝐱𝐱 is the input vector, 𝑢𝑢𝐿𝐿 is the LF data, 𝑢𝑢𝐶𝐶 is the HF data, 𝜌𝜌(𝐱𝐱) is the multiplicative 

correlation surrogate, and 𝛿𝛿(𝐱𝐱) is the additive correlation surrogate. To make it more 

general, the correlation function in Eq. (6.23) can be rewritten as 

 𝑢𝑢𝐶𝐶(𝐱𝐱,𝑢𝑢𝐿𝐿) = 𝐹𝐹(𝐱𝐱,𝑢𝑢𝐿𝐿) (6.24) 

where 𝐹𝐹 represents the mapping function between the LF and HF data. The output of the 

MF-PCNN-MM 𝑈𝑈𝐶𝐶(𝐱𝐱,𝑈𝑈𝐿𝐿) is used to approximate the true solution 𝑢𝑢(𝐱𝐱) of a general time-

dependent PDE in Eqs. (5.4)-(5.6). 

The training of the MF-PCNN-MM is conducted by solving the minimax problem 

 min
𝐰𝐰

max
𝛂𝛂

𝐸𝐸(𝐰𝐰,𝛂𝛂) = 𝜆𝜆𝐿𝐿(𝛂𝛂)𝐸𝐸𝐿𝐿(𝐰𝐰) + 𝜆𝜆𝐶𝐶(𝛂𝛂)𝐸𝐸𝐶𝐶(𝐰𝐰) 

                                      +𝜆𝜆𝑃𝑃(𝛂𝛂)𝐸𝐸𝑃𝑃(𝐰𝐰) + 𝜆𝜆𝐼𝐼(𝛂𝛂)𝐸𝐸𝐼𝐼(𝐰𝐰) + 𝜆𝜆𝑠𝑠(𝛂𝛂)𝐸𝐸𝑠𝑠(𝐰𝐰) 
(6.25) 

where 𝐰𝐰 are the weights of two ANNs in the MF-PCNN-MM. 𝐸𝐸𝐿𝐿 , 𝐸𝐸𝐶𝐶 , 𝐸𝐸𝑃𝑃 , 𝐸𝐸𝐼𝐼 , and 𝐸𝐸𝑆𝑆 

correspond to the losses caused by low-fidelity data, high-fidelity data, the physical model, 

initial conditions, and boundary conditions, respectively. The weights of different losses 

𝜆𝜆𝐿𝐿 , 𝜆𝜆𝐶𝐶 , 𝜆𝜆𝑃𝑃 , 𝜆𝜆𝐼𝐼 , and 𝜆𝜆𝑆𝑆  are functions of parameters 𝛂𝛂 = (𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐶𝐶,𝛼𝛼𝑃𝑃,𝛼𝛼𝐼𝐼 ,𝛼𝛼𝑆𝑆), which are 

defined by the softmax function as 
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𝜆𝜆𝑖𝑖(𝛂𝛂) =

exp(𝛼𝛼𝑖𝑖)
∑ exp(𝛼𝛼𝑖𝑖)𝑖𝑖

, 𝑎𝑎 ∈ {𝐿𝐿,𝐻𝐻,𝑃𝑃, 𝐼𝐼, 𝑆𝑆} (6.26) 

Here,  

 
𝐸𝐸𝐿𝐿 =

1
𝑁𝑁𝐿𝐿

��𝑈𝑈𝐿𝐿(𝐱𝐱𝑖𝑖𝐿𝐿)− 𝑢𝑢𝐿𝐿(𝐱𝐱𝑖𝑖𝐿𝐿)�
2

𝑁𝑁𝐿𝐿

𝑖𝑖=1

 (6.27) 

is the LF training loss caused by the discrepancy between the LF prediction 𝑈𝑈𝐿𝐿(∙) and the 

LF training data 𝑢𝑢𝐿𝐿(∙), 𝐱𝐱𝑖𝑖
(∙) denotes the sampling points in the defined domain, and 𝑁𝑁(∙) 

denotes the number of sampling points. Similarly,  
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2

𝑁𝑁𝐻𝐻

𝑖𝑖=1

 (6.28) 

is the HF training loss caused by the discrepancy between the HF prediction 𝑈𝑈𝐶𝐶(∙) and the 

HF training data 𝑢𝑢𝐶𝐶(∙). Usually, the amount of the LF training data is larger than that of 

the HF training data. It is noted that the LF prediction 𝑈𝑈𝐿𝐿(𝐱𝐱𝐶𝐶) and the HF prediction 

𝑈𝑈𝐶𝐶�𝐱𝐱𝐶𝐶,𝑈𝑈𝐿𝐿(𝐱𝐱𝐶𝐶)� share the same input 𝐱𝐱𝐶𝐶 when the HF data is used during the training 

process. In addition, 
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and  
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are the losses caused by the violations of the model, the initial condition, and boundary 

conditions as the physical constraints from Eqs. (5.4)-(5.6), respectively.  

The architecture of the proposed MF-PCNN-MM is schematically illustrated in 

Figure 6.1, which is composed of two ANNs. The first ANN 𝑈𝑈𝐿𝐿(𝐱𝐱) is used to approximate 

the LF data, whereas the second ANN 𝑈𝑈𝐶𝐶(𝐱𝐱,𝑈𝑈𝐿𝐿) is adopted to approximate the mapping 

function between the LF and HF data. If the total loss in Eq. (6.25) only includes the 

training losses associated with the LF and HF training data, then the MF-PCNN-MM will 

become the MF-NN-MM. If the total loss in Eq. (6.25) includes the training loss associated 

with the LF data and losses caused by the physical constraints, then the MF-PCNN-MM 

will become the LF-PCNN-MM by using the low-fidelity ANN only. 

 

Figure 6.1. Schematic diagram of MF-PCNN-MM. The purple dash box (green nodes) 
represents the low-fidelity ANN connected to the purple solid box (blue nodes) 

representing the high-fidelity ANN. The orange rounded boxes represent the training 
losses caused by data discrepancy, whereas the green rounded boxes represent the losses 

associated with physical constraints. (For interpretation of the colors in the figure, the 
reader is referred to the web version.) 
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6.3 Evaluation of the Dual-Dimer Algorithm 

The proposed Dual-Dimer algorithm is evaluated with three analytical nonconvex-

nonconcave functions. They are a 4D Rastrigin function, a 4D Ackley function, and a 20D 

Styblinski–Tang function. The first saddle point problem of the 4D Rastrigin function is 

given by 

 
min
𝑥𝑥1,𝑥𝑥2

max
𝑥𝑥3,𝑥𝑥4

𝐸𝐸(𝐱𝐱) = �[𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]
4

𝑖𝑖=1

 (6.32) 

The second problem of the 4D non-separable Ackley function is given by 

 

min
𝑥𝑥1,𝑥𝑥2

max
𝑥𝑥3,𝑥𝑥4

𝐸𝐸(𝐱𝐱) = −20𝑒𝑒𝑥𝑥𝑒𝑒
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⎛−0.2�
1
4
�𝑥𝑥𝑖𝑖2
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𝑖𝑖=1
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⎞ − 𝑒𝑒𝑥𝑥𝑒𝑒�
1
4
� cos(2𝜋𝜋𝑥𝑥𝑖𝑖)
4

𝑖𝑖=1

� 

                                 +20 + 𝑒𝑒 

(6.33) 

The third one of the 20D Styblinski–Tang function is given by 

 
min
𝑥𝑥1~𝑥𝑥10

max
𝑥𝑥11~𝑥𝑥20

𝐸𝐸(𝐱𝐱) =
1
2
�[𝑥𝑥𝑖𝑖4 − 16𝑥𝑥𝑖𝑖2 + 5𝑥𝑥𝑖𝑖]
20

𝑖𝑖=1

 (6.34) 

There are multiple stationary points on the surfaces of these analytical functions, which 

makes it difficult to find high-order saddle points. Since the objective functions are 

analytical, the gradients and Hessian matrices of the objective functions can be computed 

easily. Therefore, the high-order saddle points can be easily verified.  

Both GDA and Dual-Dimer methods are used to search a second-order saddle point 

of the 4D Rastrigin function, a second-order saddle point of the 4D Ackley function, and a 

tenth-order saddle point of the 20D Styblinski–Tang function. The gradient descent ascent 

steps in the GDA and Dual-Dimer method are given by the Adam algorithm with the 

learning rate of 5 × 10−4. The dimer distance is 2∆𝑅𝑅 = 2 × 10−4. The hyperparameters 
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of the Dual-Dimer method in examples of analytical functions are listed in Table 6.2. The 

search stops when the norm of the force is less than the threshold (‖𝐟𝐟‖2 < 𝜀𝜀).  

Table 6.2. Hyperparameters of the Dual-Dimer method in examples of analytical 
functions 

Hyperparameters Value 
Frequency of updating extreme eigenvalues and eigenvectors, 𝑒𝑒 40 
The parameter to avoid the zero-division error, 𝛿𝛿 1 × 10−3 
Maximum step length of Δ𝛉𝛉𝑠𝑠 and Δ𝛉𝛉𝑙𝑙, 𝛾𝛾 0.1 
Learning rate for the gradient descent ascent sub-steps, 𝜂𝜂 5 × 10−4 
The threshold for stopping search (‖𝐟𝐟‖2 < 𝜀𝜀), 𝜀𝜀 1 × 10−4 

 

The high-order saddle points found by the GDA and Dual-Dimer methods are listed 

in Table 6.3. In the examples of Rastrigin and Ackley functions, the second-order saddle 

points 𝐱𝐱∗ found by the GDA and Dual-Dimer methods are the same. In the example of 

Styblinski–Tang function, two different tenth-order saddle points were found by the GDA 

and Dual methods. By changing the random seed, different second-order saddle points can 

be found by the GDA and the Dual-Dimer method. Since variables in the Rastrigin and 

Styblinski–Tang functions are separable, all off-diagonal elements of their Hessian 

matrices are zeros. Therefore, the diagonal elements of their Hessian matrices are 

eigenvalues. On the contrary, since variables in Ackley function are non-separable, some 

off-diagonal elements of its Hessian matrix are nonzero. It is shown in Table 6.3 that the 

extreme eigenvalues (𝛽𝛽𝑠𝑠,𝛽𝛽𝑙𝑙) calculated by the Dual-Dimer method agree well with the true 

extreme eigenvalues (𝛽𝛽𝑠𝑠∗ ,𝛽𝛽𝑙𝑙∗). It is noted that the GDA method does not provide additional 

eigenvalue information, whereas the Dual-Dimer method provides. It is easy to verify that 

the norms of the gradient ‖∇𝐸𝐸(𝐱𝐱∗)‖2 at all identified saddle points are less than 1 × 10−4. 

The minimum eigenvalue 𝛽𝛽𝑠𝑠 in the minimum subspace at the saddle point 𝐱𝐱∗ is positive, 
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whereas the maximum eigenvalue 𝛽𝛽𝑙𝑙 in the maximum subspace at the saddle point 𝐱𝐱∗ is 

negative. It is demonstrated that the high-order saddle points of these nonconvex-

nonconcave analytical functions can be found by the Dual-Dimer method. 

Table 6.3. High-order saddle points found by the GDA and Dual-Dimer method 

 4D Rastrigin 
function 

4D Ackley 
function 20D Styblinski–Tang function 

Saddle point 𝐱𝐱∗ 

⎝

⎜
⎛−0.9950
−0.9950
0.5025
0.5025 ⎠

⎟
⎞

 

⎝

⎜
⎛ 0.9532

0
−2.6489
0.5255 ⎠

⎟
⎞

 

𝑥𝑥𝑖𝑖 =

�
−2.9035  𝑎𝑎 = 1,2,3,4,6,7,10 

2.7468  𝑎𝑎 = 5,8,9
0.1567  𝑎𝑎 = 11~20

 

(GDA) 
𝑥𝑥𝑖𝑖 =

�
−2.9035  𝑎𝑎 = 1,2,5,6 

2.7468  𝑎𝑎 = 2,3,7,8,9,10
0.1567  𝑎𝑎 = 11~20

 

(Dual-Dimer) 
True minimum 
eigenvalue 𝛽𝛽𝑠𝑠∗ in 
the minimum 
subspace 

∇𝑥𝑥𝑖𝑖=−0.9950
2 𝐸𝐸(𝐱𝐱∗)

= 396.53 
10.64 ∇𝑥𝑥𝑖𝑖=2.7468

2 𝐸𝐸(𝐱𝐱∗) = 29.30 

True maximum 
eigenvalue 𝛽𝛽𝑙𝑙∗ in 
the maximum 
subspace 

∇𝑥𝑥𝑖𝑖=0.5025
2 𝐸𝐸(𝐱𝐱∗)

= −392.62 
−8.18 ∇𝑥𝑥𝑖𝑖=0.1567

2 𝐸𝐸(𝐱𝐱∗) = −15.85 

Calculated 
minimum 
eigenvalue 𝛽𝛽𝑠𝑠 in the 
minimum subspace 
by Dual-Dimer 

396.53 10.83 29.30 

Calculated 
maximum 
eigenvalue 𝛽𝛽𝑙𝑙 in the 
maximum subspace 
by Dual-Dimer 

−392.62 −8.13 −15.85 

 

In addition, Figure 6.2 shows the changes in the forces or gradients for the two 

methods during the search for saddle points of the three analytical functions. It is seen that 

the force for the Dual-Dimer method decreases faster than the GDA method. The results 
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show that the Dual-Dimer method is computationally more efficient than the GDA method 

to find these high-order saddle points. Table 6.4 shows the quantitative comparison of the 

convergence between the GDA and Dual-Dimer methods. The convergence speeds of the 

Dual-Dimer method are about 10 times, 9 times, and 2 times faster than those of the GDA 

method for the Rastrigin, Ackley, and Styblinski–Tang functions, respectively. 

 

Figure 6.2. The change in the force during the search for saddle points of (a) a 4D 
Rastrigin function, (b) a 4D Ackley function, and (c) a 20D Styblinski–Tang function. 

 

 

(a) (b) 

(c) 
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Table 6.4. Comparison of convergence speeds of the GDA and Dual-Dimer methods 

Methods 

4D Rastrigin function 4D Ackley function 20D Styblinski–Tang 
function 

Training 
iteration 

Training 
time 
(second) 

Training 
iteration 

Training 
time 
(second) 

Training 
iteration 

Training 
time 
(second) 

GDA 6840 6.56 3366 3.23 13136 44.70 
Dual-Dimer 522 0.58 265 0.31 4403 16.55 

 

6.4 Demonstration of PCNN-MM 

In this section, a heat transfer example is used to demonstrate the increased 

computational efficiency of PCNNs by adopting the new minimax architecture. The 

problem description of the heat transfer example is shown in Section 5.2.3.1. In the heat 

transfer problem, the evolution of the 2D temperature distribution is predicted by a PCNN 

with the adaptive weighting scheme, a PCNN-MM trained by the GDA method, and a 

PCNN-MM trained by the Dual-Dimer method. The PCNN setup is described in Section 

6.4.1. The computational results and a quantitative comparison for different models are 

provided in Section 6.4.2. The convergence speed and stability of different models are also 

investigated. 

6.4.1 Computational Setup 

The construction of the PCNN and PCNN-MMs is accomplished by using PyTorch 

[218], which is an open-source Python library for machine learning. The PCNN and 

PCNN-MMs have the same structure of 30-20-30-20, where each network has 4 layers and 

the numbers of neurons in these layers are 30, 20, 30, and 20 respectively. The neural 
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network architecture was identified by conducting some simple sensitivity studies. The 

hyperbolic tangent (tanh) function is used as the activation function.  

The training data for the heat transfer example come from the FEM solutions by 

COMSOL. The simulation domain is 𝑥𝑥,𝑦𝑦 ∈ [0,1] and the time period is 𝑡𝑡 ∈ [0,1]. The 

training data and physical constraints are sampled uniformly in both temporal and spatial 

dimensions. The amount of training data is 𝑁𝑁𝑇𝑇 = 21 × 6 × 6 = 756, which means that 

there are 21 sampling points in the temporal dimension, 6 sampling points in the x-

direction, and 6 in the y-direction of the spatial domain. In other words, the grid spacing is 

∆𝑥𝑥 = 0.2 and the time step is ∆𝑡𝑡 = 0.05 in the FEM solution. The number of physical 

constraints is 21 × 11 × 11 = 2541, where the grid spacing is ∆𝑥𝑥 = 0.1 and the time step 

is ∆𝑡𝑡 = 0.05 for physical constraints. The numbers of sampling points corresponding to 

the physical loss, initial loss, and boundary loss are 𝑁𝑁𝑃𝑃 = 1620, 𝑁𝑁𝐼𝐼 = 121, and 𝑁𝑁𝑆𝑆 = 800 

respectively, which sum up to 2541. Once the training is finished, the temperature at 𝑡𝑡 = 1 

will be predicted from different models with a grid spacing of ∆𝑥𝑥 = 0.04, which is finer 

than the grid spacings of the training data and physical constraints.  

Both GDA and Dual-Dimer methods are used to search high-order saddle points for 

the PCNN-MM formulation. The gradient descent ascent steps in the GDA and Dual-Dimer 

method are given by the Adam algorithm with the learning rate of 5 × 10−4. The same 

Adam algorithm with the learning rate of 5 × 10−4 is used to minimize the total loss during 

the training of a PCNN. The dimer distance is 2∆𝑅𝑅 = 2 × 10−4. The hyperparameters for 

the Dual-Dimer method are listed in Table 6.5. In the heat transfer example, the search for 

a saddle point stops when the total loss is less than the threshold (𝐸𝐸 < 𝜀𝜀). This is because 

that the total loss could still be large when the norm of the force is small in the heat transfer 



 

 139 

example. In the heat transfer example, if the true solution 𝑢𝑢 is found, then the total loss 𝐸𝐸 

becomes zero. That is the reason that 𝐸𝐸 < 𝜀𝜀 is used as the criteria to determine whether a 

good prediction to approximate the true solution is found.  

Table 6.5. Hyperparameters of the Dual-Dimer method in the heat transfer example 

Hyperparameters Value 
Frequency of updating extreme eigenvalues and eigenvectors, 𝑒𝑒 40 
The parameter to avoid the zero-division error, 𝛿𝛿 1 × 10−3 
Maximum step length of Δ𝛉𝛉𝑠𝑠 and Δ𝛉𝛉𝑙𝑙, 𝛾𝛾 1 × 10−5 
Learning rate for the gradient descent ascent sub-steps, 𝜂𝜂 5 × 10−4 
The threshold for stopping search (𝐸𝐸 < 𝜀𝜀), 𝜀𝜀 1 × 10−3 

 

6.4.2 Computational Results 

The predicted temperature fields from different models at 𝑡𝑡 = 1 are shown in Figure 

6.3. The dots in the figures represent the evaluation positions of the temperature field in 

the 2D domain, where a total of 26×26 samples are taken. It is observed that the predicted 

temperature fields from the PCNN and PCNN-MMs are close to the FEM solution.  
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Figure 6.3. The predicted temperature fields from different models at 𝑡𝑡 = 1: (a) the 
original FEM solution, (b) the PCNN with the adaptive weighting scheme, (c) the PCNN-

MM trained by the GDA method, and (d) the PCNN-MM trained by the Dual-Dimer 
method. 

The changes in losses and weights for different models during the training process 

are shown in Figure 6.4. In general, most losses for different models monotonically 

decrease during the training. The total loss is less than the desired threshold at the end of 

the training. However, the convergence speeds of PCNN-MMs are greater than that of the 

PCNN because the problem formulations are different. The training of the PCNN is to 

solve the minimization problem, whereas the training of the PCNN-MM is to solve the 

minimax problem. Note that in the training of the PCNN and PCNN-MMs, the relative 

(a) (b) 

(c) (d) 
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importance of the training data and prior knowledge in the total loss function is adjusted 

dynamically by changing the weights of different losses. As shown in Figure 6.4(c), the 

weights of the PCNN are adjusted dynamically based on the percentages of individual 

losses in the total loss function. Therefore, a larger weight will be assigned to a larger loss 

term. As shown in Figure 6.4(a), different losses converge at the same speed in the later 

training stage of the PCNN when different losses have the same magnitude. In the training 

of PCNN-MMs, the weights of different losses are adjusted dynamically to maximize the 

total loss. Similarly, a larger weight is assigned to a larger loss term. As shown in Figure 

6.4(b) and Figure 6.4(d), the initial loss is high, whereas the physical loss is low in the early 

training stage of the PCNN-MM. Therefore, the weight of the initial loss increases, whereas 

the weight of the physical loss decreases. By minimizing the possible maximum total loss, 

the convergence speed of the PCNN-MM increases. The changes in losses and weights for 

different PCNN-MMs are similar because the maximum step lengths of Δ𝛉𝛉𝑠𝑠 and Δ𝛉𝛉𝑙𝑙 are 

small to avoid divergence. By using the information of extreme eigenvalues, the 

convergence speed of the PCNN-MM trained by the Dual-Dimer method is slightly higher 

than that of the PCNN-MM trained by the GDA method. Note that the purpose of using 

the extreme eigenvalues and eigenvectors in the Dual-Dimer method is not to accelerate 

the convergence, but to make sure that the high-order saddle points are found. 
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Figure 6.4. The changes in losses and weights for different models during the training 
process: (a) losses of the PCNN, (b) losses of PCNN-MMs, (c) weights of the PCNN, and 

(d) weights of PCNN-MMs. 

The changes in the forces and eigenvalues during the training of PCNN-MMs are 

shown in Figure 6.5. As is shown in Figure 6.5(a), the total loss can still be large when the 

norm of the force is small during the training process. That is the reason that 𝐸𝐸 < 𝜀𝜀 is used 

as the criteria to determine whether a good prediction is found. At the end of the training, 

the forces for both PCNN-MMs are close to zero, meaning that a critical point is found. 

Note that eigenvalues are not directly provided by the GDA method. The eigenvalues  

shown in Figure 6.5(b) and Figure 6.5(c) are recalculated by the Dual-Dimer method. At 

the end of the training, the minimum eigenvalue 𝛽𝛽𝑠𝑠  in the 𝐰𝐰 subspace is positive and 

(a) (b) 

(c) (d) 
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maximum eigenvalue 𝛽𝛽𝑙𝑙 in the 𝛂𝛂 subspace is close to zero. This means that the desired 

high-order saddle point is found. The results demonstrate the effectiveness of the proposed 

Dual-Dimer method. 

 

Figure 6.5. Forces and eigenvalues during the training of PCNN-MMs: (a) norm of force, 
(b) minimum eigenvalue in the 𝐰𝐰 subspace, and (c) maximum eigenvalue in the 𝛂𝛂 

subspace. 

To test the convergence speed and stability of different models, the PCNN and 

PCNN-MMs were run 20 times with random initial weights of neural networks.  The mean 

values of training iterations, training time, and mean squared error (MSE) for different 

models are shown in Table 6.6, where their standard deviations are also shown in 

(a) (b) 

(c) 
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parentheses. Figure 6.6 shows that the convergence speeds of PCNN-MMs are about 3 

times faster than that of the PCNN, whereas the MSEs of predictions by PCNN-MMs 

at 𝑡𝑡 =  1 are slightly larger than that by the PCNN. The MSEs of predictions by the PCNN 

and PCNN-MMs are all less than the error threshold 𝜀𝜀 = 1 × 10−3  with negligible 

differences. The results show the increased computational efficiency of PCNNs by 

adopting the new minimax architecture. The standard deviations of the training iterations 

and training time by PCNN-MMs are less than those by the PCNN, whereas the standard 

deviations of the MSEs of prediction by PCNN-MMs at 𝑡𝑡 =  1 are slightly larger than that 

by the PCNN. The results also indicate the stability of the proposed PCNN-MMs. The 

training times of the PCNN-MMs by the GDA method and the Dual-Dimer method are 

similar. However, the Dual-Dimer method can provide additional eigenvalue information 

to make sure that the desired high-order saddle points are found at the end of the training. 

The above computational results demonstrate that PCNN-MMs are computationally 

more efficient in training than the original PCNN with the adaptive weighting scheme. The 

proposed minimax architecture has the advantage of systematically adjusting the weights 

of different losses. The results also show that the local convergence of PCNN-MMs is 

stable. In addition, with the similar accuracy and efficiency of the GDA method, the Dual-

Dimer method can provide additional eigenvalue information to make sure that the desired 

saddle points are found at the end of the training. 
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Table 6.6. Quantitative comparison for different models to solve the heat transfer 
problem 

Models Training 
iteration 

Training 
time 
(second) 

MSE of 
prediction at 
𝑡𝑡 =  1 

Minimum 
eigenvalue 𝛽𝛽𝑠𝑠 in 
the 𝐰𝐰 subspace 
at the end of the 
training 

Maximum 
eigenvalue 𝛽𝛽𝑙𝑙 in 
the 𝛂𝛂 subspace 
at the end of the 
training 

PCNN 
with the 
adaptive 
weightin
g scheme 

58497 
(24878) 

2259.46 
(930.81) 

3.24 × 10−4 
(1.62 × 10−4) N/A N/A 

PCNN-
MM with 
the GDA 
method 

15322 
(7023) 

614.72 
(247.48) 

4.22 × 10−4 
(3.72 × 10−4) 0.95 (0.78) 5.84 × 10−5 

(8.19 × 10−5) 

PCNN-
MM with 
the Dual-
Dimer 
method 

13376 
(6035) 

560.85 
(246.08) 

5.56 × 10−4 
(4.13 × 10−4) 0.71 (0.53) −6.91 × 10−5 

(1.77 × 10−4) 
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Figure 6.6. Quantitative comparison for different models in (a) training iteration, (b) 
training time, and (c) MSE of prediction at 𝑡𝑡 =  1. 

6.5 Demonstration of MF-PCNN-MM 

Three examples are used to demonstrate the proposed MF-PCNN-MM framework. 

The first example is a heat transfer problem described in Section 5.2.3.1. The heat transfer 

example is used to investigate the effects of the amount of HF training data and the number 

of physical constraints on prediction accuracy. The second example is a phase transition 

problem described in Section 5.2.3.2. The phase transition example is used to illustrate the 

effectiveness of the MF-PCNN-MM framework. The third example is a dendritic growth 

(a) (b) 

(c) 
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problem described in Section 5.2.3.3. In the dendritic growth example, the liquidus 

temperature is 𝑞𝑞𝑒𝑒 = 1 and latent heat is 𝐾𝐾 = 2. The goal is to demonstrate the applicability 

of the proposed MF-PCNN-MM framework for complex multiphysics problems. 

6.5.1 Computational Setup 

The construction of different models, including the LF-PCNN-MM, MF-NN-MM, 

and MF-PCNN-MM, is implemented by using PyTorch [218]. The numbers of input and 

output variables vary with different examples. However, the structures of the hidden layers 

of different models are consistent in three examples. The structure of the LF-PCNN-MM 

is 30-20-30-20. The MF-NN-MM and MF-PCNN-MM have the same architecture, which 

is composed of a low-fidelity ANN and a high-fidelity ANN. The structure of the low-

fidelity ANN is 30-20-30-20, whereas the structure of the high-fidelity ANN is 20-20. The 

neural network architectures were identified by running some simple sensitivity studies. 

The tanh function is used as the activation function. The learning rate is 5 × 10−4. 

The training data come from the FEM solutions by COMSOL. In this work, the LF 

training data were taken from the FEM results with low resolutions, whereas the HF 

training data were taken from the FEM results with high resolutions. Notice that the LF 

and HF data do not necessarily form a nested hierarchy for both spatial and time domains. 

The physical constraints for all examples are sampled uniformly in both temporal and 

spatial dimensions. All LF data are used for training for the heat transfer and phase 

transition example. Random sampling is used to obtain the HF training data for the heat 

transfer and phase transition example, whereas random sampling is used to obtain the LF 

and HF training data for the dendritic growth example. 



 

 148 

As shown in Table 6.7, the amount of LF training data in the heat transfer example 

is 𝑁𝑁𝐿𝐿 = 396. The LF training data come from the FEM simulation where the time step is 

∆𝑡𝑡 = 0.1 and the grid spacing is ∆𝑥𝑥 = 0.2. The HF training data are randomly sampled 

from the FEM simulation with a time step  ∆𝑡𝑡 = 0.1 and finer grid spacing ∆𝑥𝑥 = 0.1. For 

the LF-PCNN-MM and MF-PCNN-MM, physical constraints are added with the finest grid 

spacing ∆𝑥𝑥 = 0.05. The training of all models stops when the mean loss 

 𝐸𝐸𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛 =
1
𝑛𝑛
�𝐸𝐸𝑖𝑖
𝑖𝑖

, 𝑎𝑎 ∈ {𝐿𝐿,𝐻𝐻,𝑃𝑃, 𝐼𝐼, 𝑆𝑆} (6.35) 

is lower than a threshold value 10−4. During the training process, the weights of different 

losses 𝜆𝜆𝑖𝑖(𝛂𝛂)  are not the same. By using 𝐸𝐸𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛 < 10−4  as the stopping criterion, the 

performance of different models can be fairly compared. 

Table 6.7. The setup for different ML models in the heat transfer example 

ML model Amount of LF 
training data 

Amount of HF 
training data 

Number of physical 
constraints 

MF-NN-
MM 

396 (∆𝑡𝑡 = 0.1, 
∆𝑥𝑥 = 0.2) 

67, 133, 199, 266, 332 
(random, ∆𝑡𝑡 = 0.1, 
∆𝑥𝑥 = 0.1) 

N/A 

LF-PCNN-
MM 

396 (∆𝑡𝑡 = 0.1, 
∆𝑥𝑥 = 0.2) N/A 4851 (∆𝑡𝑡 = 0.1, ∆𝑥𝑥 = 0.05) 

MF-PCNN-
MM 

396 (∆𝑡𝑡 = 0.1, 
∆𝑥𝑥 = 0.2) 

67, 133, 199, 266, 332 
(random, ∆𝑡𝑡 = 0.1, 
∆𝑥𝑥 = 0.1) 

216 (∆𝑡𝑡 = 0.2, ∆𝑥𝑥 = 0.2), 
726 (∆𝑡𝑡 = 0.2, ∆𝑥𝑥 = 0.1), 
1331 (∆𝑡𝑡 = 0.1, ∆𝑥𝑥 = 0.1), 
4851 (∆𝑡𝑡 = 0.1, ∆𝑥𝑥 = 0.05) 

 

Table 6.8 shows the setup for different ML models in the phase transition example. 

Similarly, the training of all models stops when the mean loss 𝐸𝐸𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛  is lower than a 

threshold value 10−4.  
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Table 6.8. The setup for different ML models in the phase transition example 

ML model Amount of LF 
training data 

Amount of HF 
training data 

Number of physical 
constraints 

MF-NN-
MM 

396 (∆𝑡𝑡 = 0.1, ∆𝑥𝑥 =
0.2) 

332 (random, ∆𝑡𝑡 =
0.1, ∆𝑥𝑥 = 0.1) N/A 

LF-PCNN-
MM 

396 (∆𝑡𝑡 = 0.1, ∆𝑥𝑥 =
0.2) N/A 4851 (∆𝑡𝑡 = 0.1, 

∆𝑥𝑥 = 0.05) 
MF-PCNN-
MM 

396 (∆𝑡𝑡 = 0.1, ∆𝑥𝑥 =
0.2) 

332 (random, ∆𝑡𝑡 =
0.1, ∆𝑥𝑥 = 0.1) 

4851 (∆𝑡𝑡 = 0.1, 
∆𝑥𝑥 = 0.05) 

 

In the dendritic growth example, as shown in Table 6.9, the training data for the LF-

PCNNs are sampled randomly from the FEM simulation, where the time step is ∆𝑡𝑡 = 0.2 

and the grid spacing is ∆𝑥𝑥 = 0.125. The training data for the HF-PCNNs are sampled 

randomly from the FEM simulation, where the time step is ∆𝑡𝑡 = 0.1 and the grid spacing 

is ∆𝑥𝑥 = 0.1. the training of all models stops when the mean loss 𝐸𝐸𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛 is lower than a 

threshold value 5 × 10−4.  

Table 6.9. The setup for different ML models in the dendritic growth example 

ML model Amount of LF training 
data 

Amount of HF training 
data 

Number of physical 
constraints 

MF-NN-
MM 

1512 (random, ∆𝑡𝑡 =
0.2, ∆𝑥𝑥 = 0.125) 

1144 (random, ∆𝑡𝑡 =
0.1, ∆𝑥𝑥 = 0.1) N/A 

LF-PCNN-
MM 

1512 (random, ∆𝑡𝑡 =
0.2, ∆𝑥𝑥 = 0.125) N/A 28611 (∆𝑡𝑡 = 0.1, 

∆𝑥𝑥 = 0.1) 
MF-PCNN-
MM 

1512 (random, ∆𝑡𝑡 =
0.2, ∆𝑥𝑥 = 0.125) 

1144 (random, ∆𝑡𝑡 =
0.1, ∆𝑥𝑥 = 0.1) 

28611 (∆𝑡𝑡 = 0.1, 
∆𝑥𝑥 = 0.1) 
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6.5.2 Computational Results 

6.5.2.1 Heat Transfer Example 

In the heat transfer example, a sensitivity study is conducted to investigate the impact 

of amounts of training data and physical constraints on the prediction accuracy. The 

predicted temperature fields from different models at t = 1 are shown in Figure 6.7. It is 

seen that the predicted temperature field from the MF-PCNN-MM agrees best with the 

FEM solution. As shown in Figure 6.8, the MF-NN-MM and the MF-PCNN-MM are 

compared with various amounts of high-fidelity training data ranging from 5% to 25% at 

t=0 and t=1. Meanwhile, the MF-PCNN-MM also varies with different amounts of physical 

constraint (the values of 𝑡𝑡 × 𝑥𝑥 × 𝑦𝑦 range from 6 × 6 × 6 to  11 × 21 × 21). It is observed 

that the MSEs of temperature fields decrease when the amount of HF training data or 

physical constraint increases. For all ML models except for the MF-PCNN-MM with the 

physical constraint of 6 × 6 × 6, the MSEs of temperature fields reach a plateau when the 

amount of HF data is more than 10%. When the amount of physical constraint is more than 

6 × 11 × 11, the MSEs of temperature fields from MF-PCNN-MMs are lower than that of 

the MF-NN-MM. It is noted that the effect of increasing the amount of HF data to improve 

the prediction accuracy decreases when the number of physical constraints increases.  

As shown in Figure 6.9, the LF-PCNN-MM and the MF-PCNN-MM are compared 

with various amounts of physical constraint at t=0 and t=1. The MF-PCNN-MM also varies 

with the amount of high-fidelity data from 5% to 25%. Notice again as the amount of HF 

data increases, the increase in physical constraints starts to play a smaller role in improving 

the prediction accuracy. Figure 6.8 and Figure 6.9 suggest that the effects of increasing 

physical constraint and high-fidelity data to improve the prediction accuracy decrease when 
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the amounts surpass a certain value. A sensitivity study can be used to find a good 

combination of the amount of HF data and physical constraints to find the tradeoff between 

computational efficiency and accuracy. In this example, when the amount of HF data is 

10% and the amount of physical constraint is 6 × 11 × 11, it reaches the balance between 

computational efficiency and accuracy. 

 

Figure 6.7. The predicted temperature fields from different models at t = 1: (a) original 
FEM solution, (b) MF-NN-MM, (c) LF-PCNN-MM, and (d) MF-PCNN-MM.  

(a) (b) 

(c) (d) 
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Figure 6.8. The MSEs of predicted temperature fields from different models with various 
amounts of HF training data (a) at t = 0 and (b) t = 1.  

 

Figure 6.9. The MSEs of predicted temperature fields from different models with various 
amounts of physical constraints (a) at t = 0 and (b) t = 1.  

6.5.2.2 Phase Transition Example 

In the phase transition example, the predicted phase fields from different models at t 

= 1 are shown in Figure 6.10. For this nonlinear PDE problem, the predictions from the 

LF-PCNN-MM and the MF-PCNN-MM are more accurate than that from the MF-NN-MM 

with the guidance of physical constraints. It is observed that the predicted phase field from 

(a) (b) 

(a) (b) 
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the MF-PCNN-MM agrees best with the FEM solution. The quantitative comparison 

between different ML models in the phase transition example is shown in Table 6.10. At t 

= 0, the MSE of prediction from the LF-PCNN-MM is two magnitudes lower than that 

from the MF-NN-MM, whereas the MSE of prediction from the MF-PCNN-MM is lower 

than that from the LF-NN-MM. At t = 1, the MSE of prediction from the LF-PCNN-MM 

is one magnitude lower than that from the MF-NN-MM, whereas the MSE of prediction 

from the MF-PCNN-MM is one magnitude lower than that from the LF-NN-MM. This 

demonstrates the effectiveness of the developed MF-PCNN-MM model. The physical 

constraint and HF data can further improve the prediction accuracy. The learning curves 

for different models are shown in Figure 6.11. The training loss of HF data is higher than 

the training loss of LF data in the MF-NN-MM, whereas the training loss of HF data 

fluctuates in the LF-PCNN-MM and the MF-PCNN-MM. This suggests that it is difficult 

to minimize the training loss of HF data for approximating accurately the mapping 

relationship between the LF data and HF data. 
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Figure 6.10. The predicted phase fields from different models at t = 1: (a) original FEM 
solution, (b) MF-NN-MM, (c) LF-PCNN-MM, and (d) MF-PCNN-MM.  

(a) (b) 

(c) (d) 
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Figure 6.11. The learning curves for different models: (a) MF-NN-MM, (b) LF-PCNN-
MM, and (c) MF-PCNN-MM.  

Table 6.10. The quantitative comparison between different ML models in the phase 
transition example 

ML model Training time/s MSE of prediction at 
t = 0 

MSE of prediction at 
t = 1 

MF-NN-
MM 100.60 0.021062 0.018291 

LF-PCNN-
MM 646335.14 0.000153 0.001725 

MF-PCNN-
MM 739397.99 0.000125 0.000217 

 

 

(a) (b) 

(c) 
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6.5.2.3 Dendritic Growth Example 

In the dendritic growth example, the predicted phase fields and temperature fields 

from different models at t = 1 are shown in Figure 6.12. The quantitative comparison 

between different ML models is shown in Table 6.11. All ML models can predict the 

primary arms of the dendrite very well, but they cannot reveal the detailed secondary arms. 

The predicted phase fields and temperature fields from the LF-PCNN-MM and MF-PCNN-

MM are slightly more accurate than those from the MF-NN-MM. The predicted phase 

fields and temperature fields from the LF-PCNN-MM are similar to those from the MF-

NN-MM. Since multiple physics are coupled with each other, the training of the ML model 

is difficult to converge. Different losses in the total objective function could be in conflict 

and the gradients of different losses could be unbalanced, both of which can lead to the 

failure of convergence. This implies that it is still a challenge to solve multiphysics 

problems, such as dendritic growth, using existing PCNNs and MF-PCNN-MMs. New 

training algorithms or neural network architectures are needed to solve multiphysics 

problems with PCNNs.  
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Figure 6.12. The predicted phase fields and temperature fields from different models at t 
= 1. Phase fields are shown in (a), (c), (e), and (g). Temperature fields are shown in (b), 

(d), (f), and (h). 

(a) (b) 

(c) (d) 

(e) (f) 

(h) (g) 
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Table 6.11. The quantitative comparison between different ML models in the dendritic 
growth example 

ML model Training time/s MSE of phase field at 
t = 1 

MSE of temperature 
at t = 1 

MF-NN-
MM 490.45 0.062626 0.001322 

LF-PCNN-
MM 24807.45 0.058481 0.001267 

MF-PCNN-
MM 136118.80 0.059111 0.001233 

 

6.6 Discussions and Conclusions 

In this chapter, a new physics-constrained neural network with the minimax 

architecture is proposed to adjust the weights of different losses systematically. The 

training of the PCNN-MM is to solve a minimax problem and search for the high-order 

saddle points of the nonconvex-nonconcave loss function. To address the challenges of 

searching high-order saddle points, a novel saddle point search algorithm called Dual-

Dimer method is proposed, where only first derivatives need to be calculated. The local 

convergence of the Dual-Dimer method is analyzed. The performance of the Dual-Dimer 

method is evaluated with three analytical nonconvex-nonconcave loss functions. It was 

shown that the Dual-Dimer method is computationally more efficient than the GDA 

method to find high-order saddle points in these analytical functions. The Dual-Dimer 

method also provides additional eigenvalue information to make sure that the desired high-

order saddle points are found at the end of the training. A heat transfer example is used to 

demonstrate the effectiveness of the PCNN-MM, where its convergence is faster than that 

of the original PCNN with the adaptive weighting scheme.  
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The adjustment of hyperparameters in this study is based on sensitivity studies. In 

future work, a more systematic method to find the optimal hyperparameters will be 

developed so that the computational efficiency of the Dual-Dimer method can be further 

improved. In addition, using more eigenvalues and eigenvectors in the Dual-Dimer method 

can potentially accelerate the saddle point search. Further investigation is needed. In this 

chapter, the softmax function is used as the form of the weights of different losses. Though 

theoretically parameter 𝛂𝛂 can be infinite in the training of the PCNN-MM, the bounds of 

𝜆𝜆’s are [0,1] because of the softmax weighting function. However, the minimax problem 

could be nonconcave in the 𝛂𝛂 subspace since the softmax function is neither convex nor 

concave. This increases the difficulty in searching the desired saddle point. The effects of 

various forms of weighting functions on the training dynamics of the PCNN-MM will be 

investigated more thoroughly in the future. The training of the PCNN-MM could be more 

efficient and robust by making the minimax problem to be strongly concave in the subspace 

of 𝜆𝜆 ’s. For instance, the minimax problem will be concave in 𝜆𝜆 ’s by using a linear 

weighting function. The parameters 𝜆𝜆 ’s can be directly optimized without using the 

parameter 𝛂𝛂. The sum of 𝜆𝜆’s can be set to unity, and a bound of [0,1] can be added for 𝜆𝜆’s 

in the training. The minimax problem in the PCNN-MM can even be strongly concave in 

𝜆𝜆’s by adding an entropy regularizer on 𝜆𝜆’s. In future work, the generic Dual-Dimer 

method can be applied to solve other minimax problems, which arise from game theory, 

generative adversarial networks, and robust optimization.  

To further reduce the computational cost, the MF-PCNN-MM is developed to 

integrate the LF and HF data. The MF-PCNN-MM is demonstrated by three examples. The 

computational results demonstrate the effectiveness of the MF-PCNN-MM. However, the 
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MF-PCNN-MM cannot solve the multiphysics dendritic growth problem very well. New 

training algorithms or neural network architectures are needed to solve multiphysics 

problems with PCNNs. The PCNN-MMs with the new training schemes will be introduced 

to solve multiphysics problems in CHAPTER 7. 
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CHAPTER 7. PHYSICS-CONSTRAINED NEURAL NETWORKS 

WITH MINIMAX ARCHITECTURE FOR MULTIPHYSICS 

PROBLEMS 

7.1 Introduction 

Data sparsity is still the main challenge to apply ML models to solve complex 

scientific and engineering problems. The root cause is the “curse of dimensionality” in 

training these models. Training algorithms need to explore and exploit in a very high 

dimensional parameter space to search the optimal parameters for complex models. 

Although PCNNs [116,118,140–144] have been used to tackle the issue of data sparsity 

recently, it is still a challenge to solve multiphysics problems using existing PCNNs. Our 

previous work in Section 5.3.3 and Section 6.5.2.3 also shows that it is difficult to solve 

multiphysics dendritic growth problems using existing PCNNs. 

In this chapter, the PCNN-MM in CHAPTER 6 is extended to solve multiphysics 

problems. To accelerate the convergence of the training of PCNN-MMs, a new sequential 

training scheme is proposed. The bottleneck of the training of the PCNN-MM is the high 

dimensionality of the 𝐰𝐰 subspace. To further alleviate the curse of dimensionality, the 

Dual-Dimer algorithm in Section 6.2.2 is extended with compressive sampling to train the 

PCNN-MM for finding a better local saddle point. This new Dual-Dimer with compressive 

sampling (DD-CS) algorithm is developed to train the PCNN-MM for solving multiphysics 

problems.  

In the remainder of this chapter, the formulation of the sequential training scheme, 

compressive sampling, and DD-CS algorithm is shown in Section 7.2. In Section 7.3, the 
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developed PCNN-MM is demonstrated by a thermal dendritic growth example and a 

thermo-solutal dendritic growth example. In each example, an ANN is trained using the 

sequential training scheme. And PCNN-MMs are trained with three training schemes: 

concurrent training with the Dual-Dimer algorithm, sequential training with the Dual-

Dimer algorithm, and sequential training with the DD-CS algorithm. The computational 

setups and computational results are included. 

7.2 Methodology 

7.2.1 Sequential Training of PCNN-MMs 

Consider a general multiphysics problem involving two physics fields 𝑢𝑢 and 𝐼𝐼. Our 

previous work in Section 5.3.3 and Section 6.5.2.3 has shown that it is difficult to train a 

single neural network to predict multiple outputs 𝑢𝑢 and 𝐼𝐼 since two outputs share the same 

weights of a single network. Therefore, it will be more flexible to train two neural networks 

without sharing degrees of freedom to predict 𝑢𝑢 and 𝐼𝐼, respectively. It is straightforward 

to train these two neural networks by using the concurrent training scheme. By adopting 

the formulation of the PCNN-MM, these two neural networks for 𝑢𝑢 and 𝐼𝐼 can be trained 

concurrently as 

 𝐰𝐰𝑢𝑢
∗ ,𝐰𝐰𝑎𝑎

∗,𝛂𝛂𝑢𝑢∗ ,𝛂𝛂𝑎𝑎∗ = 𝑎𝑎𝑎𝑎𝑔𝑔 min
𝐰𝐰𝑢𝑢,𝐰𝐰𝑣𝑣

max
𝛂𝛂𝑢𝑢,𝛂𝛂𝑣𝑣

𝐸𝐸(𝐱𝐱,𝑢𝑢, 𝐼𝐼;𝐰𝐰𝑢𝑢,𝐰𝐰𝑎𝑎,𝛂𝛂𝑢𝑢,𝛂𝛂𝑎𝑎) (7.1) 

where 𝐱𝐱 is the input vector, 𝐰𝐰𝑢𝑢 and 𝐰𝐰𝑎𝑎 are the respective weights of two neural networks, 

𝛂𝛂𝑢𝑢  and 𝛂𝛂𝑎𝑎  are the parameters to adjust the weights of different losses for 𝑢𝑢  and 𝐼𝐼 , 

respectively. The total loss including the training loss, physical loss, initial loss, and 

boundary loss are shown in Eq. (6.1). By using the Dual-Dimer algorithm to search high-
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order saddle points, the parameters of two neural networks can be updated as 𝐰𝐰𝑢𝑢
∗ , 𝐰𝐰𝑎𝑎

∗, 𝛂𝛂𝑢𝑢∗ , 

and 𝛂𝛂𝑎𝑎∗ . 

Different from the concurrent training scheme, a new sequential training scheme is 

proposed to training PCNN-MMs in this work. By using the sequential training scheme, 

two neural networks for 𝑢𝑢 and 𝐼𝐼 in the i-th iteration can be trained as  

 𝐰𝐰𝑢𝑢
∗ 𝑖𝑖+1,𝛂𝛂𝑢𝑢∗ 𝑖𝑖+1 = 𝑎𝑎𝑎𝑎𝑔𝑔min

𝐰𝐰𝑢𝑢
max
𝛂𝛂𝑢𝑢

𝐸𝐸𝑢𝑢�𝐱𝐱,𝑢𝑢𝑖𝑖, 𝐼𝐼𝑖𝑖;𝐰𝐰𝑢𝑢,𝛂𝛂𝑢𝑢� 

𝐰𝐰𝒗𝒗
∗ 𝑖𝑖+1,𝛂𝛂𝒗𝒗∗ 𝑖𝑖+1 = 𝑎𝑎𝑎𝑎𝑔𝑔min

𝐰𝐰𝒗𝒗
max
𝛂𝛂𝒗𝒗

𝐸𝐸𝑎𝑎�𝐱𝐱,𝑢𝑢𝑖𝑖+1,𝐼𝐼𝑖𝑖;𝐰𝐰𝑎𝑎,𝛂𝛂𝑎𝑎� 
(7.2) 

where 𝐸𝐸𝑢𝑢  and 𝐸𝐸𝑎𝑎  are the total loss of two neural networks for 𝑢𝑢 and 𝐼𝐼, respectively. A 

schematic illustration of the proposed network and the sequential training scheme is shown 

in Figure 7.1. In the i-th iteration, the parameters 𝐰𝐰𝑢𝑢 and 𝛂𝛂𝑢𝑢 of the neural network for 𝑢𝑢 

are optimized first based on the current input 𝐱𝐱 and outputs 𝑢𝑢𝑖𝑖, 𝐼𝐼𝑖𝑖 with the parameters 𝐰𝐰𝑎𝑎 

and 𝛂𝛂𝑎𝑎 fixed. Then the parameters 𝐰𝐰𝑎𝑎 and 𝛂𝛂𝑎𝑎 of the neural network for 𝐼𝐼 are optimized 

based on the current input 𝐱𝐱 and outputs 𝑢𝑢𝑖𝑖+1, 𝐼𝐼𝑖𝑖  with the parameters 𝐰𝐰𝑢𝑢  and 𝛂𝛂𝑢𝑢  fixed. 

The process is iterated until the convergence of the training. It is noted that the updated 

output 𝑢𝑢𝑖𝑖+1  is used to optimize the parameters of the neural network for 𝐼𝐼  in the i-th 

iteration.  

Both concurrent and sequential training schemes are general and can be applied in 

training PCNN-MMs for solving multiphysics problem which involves more than two 

physics easily. In the concurrent training scheme, multiple neural networks are trained to 

predict multiple physical fields simultaneously. In the sequential training scheme, multiple 

neural networks are trained sequentially to predict multiple physical fields respectively. By 

using the sequential training scheme, different physics fields are one-way coupled rather 

than fully coupled, which contributes to the convergence of PCNN-MMs.  
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Figure 7.1. Schematic illustration of the proposed network and the sequential training 
scheme. 

7.2.2 Compressive Sampling 

Compressive sampling or compressed sensing [219] was initially developed to solve 

the inverse problem of information recovery purely based on statistical characteristics of 

signals. It has been widely applied in signal processing, image processing, and others. Let 

vector 𝐬𝐬 ∈ ℝ𝑛𝑛 represent the original signal. The signal can be represented in the reciprocal 

space via transformation as 

 𝐬𝐬 = 𝚿𝚿𝚿𝚿 (7.3) 
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where 𝚿𝚿 ∈ ℝ𝑛𝑛×𝑛𝑛  is the transformation matrix or basis matrix, 𝚿𝚿 ∈ ℝ𝑛𝑛  is the vector of 

coefficients in the reciprocal space. If 𝑘𝑘 (𝑘𝑘 < 𝑛𝑛) elements of 𝚿𝚿 are nonzero, then 𝚿𝚿 is k-

sparse. The measurement of the signal is done by projecting it to a reduced space as 

 𝐲𝐲 = 𝚽𝚽𝐬𝐬 = 𝚽𝚽𝚿𝚿𝚿𝚿 = 𝐀𝐀𝚿𝚿 (7.4) 

where 𝚽𝚽 ∈ ℝ𝑚𝑚×𝑛𝑛 (𝑚𝑚 < 𝑛𝑛)  is the projection matrix or measurement matrix. To obtain the 

sparse solution of 𝚿𝚿 and recover the original signal from the measurement, a L1 norm 

regularization term can be introduced in solving the minimization problem 

 min
𝚿𝚿
‖𝐲𝐲 − 𝐀𝐀𝚿𝚿‖22 + 𝜆𝜆‖𝚿𝚿‖1 (7.5) 

where 𝜆𝜆 is the regularization coefficient. Using the L1 norm for regularization is also 

known as the least absolute shrinkage and selection operator (LASSO). The solution to the 

problem in Eq. (7.5) can be obtained by using the proximal gradient descent methods, such 

as the iterative soft thresholding algorithm (ISTA) [220] 

 𝚿𝚿𝑎𝑎+1 = 𝑆𝑆𝜆𝜆[𝚿𝚿𝑎𝑎 + 𝐀𝐀𝑇𝑇(𝐲𝐲 − 𝐀𝐀𝚿𝚿)] (7.6) 

where 𝑆𝑆𝜆𝜆(𝚿𝚿) is the soft thresholding operator as 

 
[𝑆𝑆𝜆𝜆(𝚿𝚿)]𝑖𝑖 = �

𝑧𝑧𝑖𝑖 − 𝜆𝜆,    𝑧𝑧𝑖𝑖 > 𝜆𝜆
0,            − 𝜆𝜆 ≤  𝑧𝑧𝑖𝑖 ≤ 𝜆𝜆
𝑧𝑧𝑖𝑖 + 𝜆𝜆,    𝑧𝑧𝑖𝑖 < −𝜆𝜆 

 (7.7) 

7.2.3 The DD-CS Algorithm 

As is shown in Section 6.2.1, the training of the PCNN-MM is to solve the minimax 

problem. The training of the PCNN-MM is divided into three stages in the proposed DD-

CS algorithm as shown in Table 7.1. The flowchart of the DD-CS algorithm is shown in 

Figure 7.2. 
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In Stage 1, the PCNN-MM is trained in the complete 𝐰𝐰 subspace and the complete 

𝛂𝛂 subspace to reach the desired high-order saddle point by the Dual-Dimer method as in 

Eq. (6.5). If ‖Δ𝛉𝛉1‖2 = ‖Δ𝛉𝛉𝐰𝐰 + Δ𝛉𝛉𝑠𝑠‖2 < 𝑎𝑎1𝜌𝜌
𝑡𝑡
𝑑𝑑, which means that the neighborhood of the 

local minimum in the 𝐰𝐰 subspace has been reached, then the training of the PCNN-MM 

will switch to Stage 2. Here, 𝑎𝑎1𝜌𝜌
𝑡𝑡
𝑑𝑑 is an adaptive threshold during the training, where 𝑎𝑎1, 𝜌𝜌 

, and 𝑑𝑑 are hyperparameters, and 𝑡𝑡 is the iteration number. 

In Stage 2, the PCNN-MM is trained in the subspace 𝐲𝐲 = 𝚽𝚽𝐰𝐰 ∈ ℝ𝑚𝑚  and the 

complete 𝛂𝛂  subspace, where 𝚽𝚽 ∈ ℝ𝑚𝑚×𝑛𝑛  is the measurement matrix. By reducing the 

dimension of the 𝐰𝐰 subspace, there is a higher chance for the search to escape the current 

local minimum and reach a lower local minimum in the 𝐰𝐰 subspace. If ‖Δ𝛉𝛉1‖2 < 𝑎𝑎2𝜌𝜌
𝑡𝑡
𝑑𝑑, 

which means the neighborhood of the local minimum in the 𝐲𝐲 subspace has been reached, 

then the training of the PCNN-MM will switch to Stage 3.  

In Stage 3, the compressive sampling technique in Section 7.2.2 is used to recover 

the original weight 𝐰𝐰 from the reduced weight 𝐲𝐲 can be represented in a reciprocal space 

as  

 𝐲𝐲 = 𝚽𝚽𝐰𝐰 = 𝚽𝚽𝚿𝚿𝚿𝚿 = 𝐀𝐀𝚿𝚿 (7.8) 

where 𝚿𝚿 ∈ ℝ𝑛𝑛×𝑛𝑛  is the discrete cosine transform matrix, 𝚿𝚿 ∈ ℝ𝑛𝑛  is the vector of 

coefficients in the reciprocal space. To obtain the sparse solution of 𝚿𝚿 , a L1 norm 

regularization term is introduced to recover the original weight 𝐰𝐰  by solving the 

minimization problem in Eq. (7.5). By using the solution in Eq. (7.6), the proximal gradient 

descent step to update the weight 𝐰𝐰 is  

 Δ𝛉𝛉4 = 𝚿𝚿𝑆𝑆𝝀𝝀[𝚿𝚿−1𝐰𝐰 + 𝐀𝐀𝑇𝑇(𝒚𝒚 −𝚽𝚽𝐰𝐰)] −𝐰𝐰 (7.9) 
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If ‖Δ𝛉𝛉4‖2 < 𝜁𝜁, where 𝜁𝜁 is a threshold, then the recovery of the original 𝐰𝐰 is completed 

and the training of the PCNN-MM will switch back to Stage 1. Therefore, the training 

iterations with the three-stage cycle will continue. Since the adaptive thresholds 𝑎𝑎1𝜌𝜌
𝑡𝑡
𝑑𝑑 and 

𝑎𝑎2𝜌𝜌
𝑡𝑡
𝑑𝑑 gradually decrease as the iterations continue, the chance to switch to Stages 2 and 3 

is getting lower. Then the PCNN-MM will be eventually trained in the original 𝐰𝐰 subspace 

and the search will gradually converge to the desired saddle point. 

There are thirteen hyperparameters (𝑒𝑒, 𝛿𝛿, 𝛾𝛾, 𝜂𝜂, 𝜌𝜌, 𝑎𝑎1, 𝑎𝑎2, 𝑑𝑑, 𝑚𝑚0, 𝑡𝑡𝑏𝑏,  𝜆𝜆, 𝜁𝜁, 𝑡𝑡𝑚𝑚) that 

need to be tuned in the DD-CS algorithm. When the iteration number is larger than the 

maximum iteration number 𝑡𝑡𝑚𝑚 , the training of the PCNN-MM stops. 𝑎𝑎1 and 𝑎𝑎2  are the 

prefactors of the adaptive thresholds 𝑎𝑎1𝜌𝜌
𝑡𝑡
𝑑𝑑  and 𝑎𝑎2𝜌𝜌

𝑡𝑡
𝑑𝑑 , respectively. 𝜌𝜌  and 𝑑𝑑  control the 

exponential decay rate of the adaptive thresholds. If the adaptive thresholds are too large, 

then the training of the PCNN-MM will switch to Stage 2 and 3 more frequently, which 

may cause instability in the training process. If the adaptive thresholds are too small, then 

the training of the PCNN-MM may never switch to Stage 2 and 3, which cannot help to 

find a better local saddle point. 𝜁𝜁 is a threshold to determine when the training of the 

PCNN-MM will switch from Stage 3 to Stage 1. If 𝜁𝜁 is too large, then the recovery error 

of the original 𝐰𝐰 will be large. If 𝜁𝜁 is too small, then the training of the PCNN-MM may 

never switch from Stage 3 to Stage 1. The regularization parameter 𝜆𝜆 controls data fitting 

and the sparsity of the solution. 𝑚𝑚0 is the minimum of the reduced dimension 𝑚𝑚, whereas 

𝑡𝑡𝑏𝑏 determines the linear growth speed of the reduced dimension 𝑚𝑚. It is expected that the 

PCNN-MM is trained in a small reduced space in Stage 2 at the beginning when 𝑚𝑚 is small. 

Therefore, more fluctuations can be introduced in the training so that there is a higher 

chance for the search to escape the current local minimum and reach a lower local 
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minimum in the 𝐰𝐰 subspace. In the later stage of the training, the reduced dimension 𝑚𝑚 is 

closer to the complete dimension of the 𝐰𝐰 subspace. Therefore, the training of the PCNN-

MM will be more stable in order to converge to a local minimum in the 𝐰𝐰 subspace. Trade-

offs need to be made between the computational accuracy and efficiency for these 

hyperparameters to improve the overall performance of the DD-CS algorithm. A sensitivity 

study has been conducted to investigate the effects of the hyperparameters of the DD-CS 

algorithm on the training of the PCNN-MM. A more systematic method to find the optimal 

hyperparameters is needed in future work. 

 

Figure 7.2. The computational flowchart of the DD-CS algorithm. 
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Table 7.1. The DD-CS algorithm 

Input: initial optimization parameters 𝛉𝛉0 = (𝐰𝐰0,𝛂𝛂0), objective function 𝐸𝐸, 
hyperparameters 𝑒𝑒, 𝛿𝛿, 𝛾𝛾, 𝜂𝜂, 𝜌𝜌, 𝑎𝑎1, 𝑎𝑎2, 𝑑𝑑, 𝑚𝑚0, 𝑡𝑡𝑏𝑏,  𝜆𝜆, 𝜁𝜁, 𝑡𝑡𝑚𝑚 

Output:  desired saddle point 𝛉𝛉∗ 
Procedure: 1. Initialize the parameters 𝑡𝑡 = 0, 𝛉𝛉𝑎𝑎 = 𝛉𝛉0, stage1 = true, stage2 = false, 

stage3 = false, 𝚿𝚿 
2. Evaluate energy 𝐸𝐸(𝛉𝛉𝑎𝑎) and force 𝐟𝐟 = −∇𝐸𝐸 
3. When 𝑡𝑡 𝑚𝑚𝑐𝑐𝑑𝑑 𝑒𝑒 = 0, compute the extreme eigenvalues (𝛽𝛽𝑠𝑠,𝛽𝛽𝑙𝑙) and 
eigenvectors (𝐯𝐯𝑠𝑠, 𝐯𝐯𝑙𝑙) by rotating two dimers in the subspaces of 𝐰𝐰 and 𝛂𝛂 
4. Calculate Δ𝛉𝛉𝐰𝐰 = −𝜂𝜂∇𝐰𝐰𝐸𝐸(𝛉𝛉) and Δ𝛉𝛉𝛂𝛂 = 𝜂𝜂∇𝛂𝛂𝐸𝐸(𝛉𝛉) 
5. If |𝛽𝛽𝑠𝑠| > 𝛿𝛿, Δ𝛉𝛉𝑠𝑠 = − �𝐯𝐯𝑠𝑠∙∇𝐰𝐰𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑠𝑠

|𝛽𝛽𝑠𝑠| ; otherwise, Δ𝛉𝛉𝑠𝑠 = 𝟎𝟎; 

    If |𝛽𝛽𝑙𝑙| > 𝛿𝛿, Δ𝛉𝛉𝑙𝑙 =  �𝐯𝐯𝑙𝑙∙∇𝛂𝛂𝐸𝐸(𝛉𝛉)�𝐯𝐯𝑙𝑙
|𝛽𝛽𝑙𝑙|

; otherwise, Δ𝛉𝛉𝑙𝑙 = 𝟎𝟎 

6. If ‖Δ𝛉𝛉𝑠𝑠‖2 > 𝛾𝛾, Δ𝛉𝛉𝑠𝑠 = 𝛾𝛾 Δ𝛉𝛉𝑠𝑠
‖Δ𝛉𝛉𝑠𝑠‖2

; If ‖Δ𝛉𝛉𝑙𝑙‖2 > 𝛾𝛾, Δ𝛉𝛉𝑙𝑙 = 𝛾𝛾 Δ𝛉𝛉𝑙𝑙
‖Δ𝛉𝛉𝑙𝑙‖2

 
7. 𝑡𝑡 = 𝑡𝑡 + 1 
8. Calculate Δ𝛉𝛉1 = Δ𝛉𝛉𝐰𝐰 + Δ𝛉𝛉𝑠𝑠 and Δ𝛉𝛉2 = Δ𝛉𝛉𝛂𝛂 + Δ𝛉𝛉𝑙𝑙 
9. If stage1 = true and ‖Δ𝛉𝛉1‖2 < 𝑎𝑎1𝜌𝜌

𝑡𝑡
𝑑𝑑: 

        stage1 = false, stage2 = true; 
        get the reduced dimension 𝑚𝑚 = �𝑚𝑚0 + 𝑎𝑎

𝑎𝑎𝑏𝑏
�; 

        get the measurement matrix 𝚽𝚽 and the measurement index 𝐤𝐤 
10. If stage2 = true: 
        Δ𝛉𝛉3 = 𝟎𝟎 ∈ ℝ𝑛𝑛, Δ𝛉𝛉3[𝐤𝐤] = Δ𝛉𝛉1[𝐤𝐤], Δ𝛉𝛉1 = Δ𝛉𝛉3; 
        if ‖Δ𝛉𝛉1‖2 < 𝑎𝑎2𝜌𝜌

𝑡𝑡
𝑑𝑑: 

                stage2 = false, stage3 = true; 
                get the reduced weight 𝐲𝐲 = 𝚽𝚽𝐰𝐰 
11. If stage3 = true: 
        Δ𝛉𝛉4 = 𝚿𝚿𝑆𝑆𝝀𝝀[𝚿𝚿−1𝐰𝐰 + 𝐀𝐀𝑇𝑇(𝒚𝒚 −𝚽𝚽𝐰𝐰)]−𝐰𝐰; 
        Δ𝛉𝛉1 =   Δ𝛉𝛉1 + Δ𝛉𝛉4; 
        if ‖Δ𝛉𝛉4‖2 < 𝜁𝜁: 
                stage3 = false, stage1 = true 
12. Update optimization parameters by 𝛉𝛉𝑎𝑎 = 𝛉𝛉𝑎𝑎−1 + Δ𝛉𝛉 = 𝛉𝛉𝑎𝑎−1 +
(Δ𝛉𝛉1,Δ𝛉𝛉2) 
13. Return to step 2 until 𝑡𝑡 ≥ 𝑡𝑡𝑚𝑚 
14. Output 𝛉𝛉∗ = 𝛉𝛉𝑎𝑎 
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7.3 Demonstration 

In this section, the developed PCNN-MM and the DD-CS algorithm are 

demonstrated with two examples: a thermal dendritic growth example and a thermo-solutal 

dendritic growth example. In each example, an ANN will be trained using the sequential 

training scheme. And PCNN-MMs are trained with three training schemes: concurrent 

training with the Dual-Dimer algorithm, sequential training with the Dual-Dimer 

algorithm, and sequential training with the DD-CS algorithm.  

7.3.1 Thermal Dendritic Growth Example 

7.3.1.1 Computational Setup 

The first example is the thermal dendritic growth during solidification, where heat 

transfer and phase transition are coupled with each other. In this multiphysics problem, the 

heat equation and the Allen-Cahn equation need to be solved simultaneously to predict the 

evolution of dendritic growth. The coupled PDEs and corresponding boundary conditions 

for the dendritic growth example are 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧0.001𝑒𝑒𝑎𝑎 − 0.0001�𝑒𝑒𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑦𝑦𝑦𝑦� = 𝑒𝑒(1 − 𝑒𝑒) �𝑒𝑒 − 0.5 +

0.9
𝜋𝜋

tan−1(10 − 10𝑞𝑞)�

𝑒𝑒(0, 𝑥𝑥,𝑦𝑦) =
1
2

[1 − 𝑎𝑎𝑔𝑔𝑛𝑛(𝑥𝑥2 + 𝑦𝑦2 − 0.04)]

𝑒𝑒𝑥𝑥(𝑡𝑡,−2.5,𝑦𝑦) = 𝑒𝑒𝑥𝑥(𝑡𝑡, 2.5,𝑦𝑦) = 𝑒𝑒𝑦𝑦(𝑡𝑡, 𝑥𝑥,−2.5) = 𝑒𝑒𝑦𝑦(𝑡𝑡, 𝑥𝑥, 2.5) = 0
0.01�𝑞𝑞𝑎𝑎 − 𝑞𝑞𝑥𝑥𝑥𝑥 − 𝑞𝑞𝑦𝑦𝑦𝑦� = 0.02𝑒𝑒𝑎𝑎

𝑞𝑞(0, 𝑥𝑥,𝑦𝑦) = 0
𝑞𝑞𝑥𝑥(𝑡𝑡,−2.5,𝑦𝑦) = 𝑞𝑞𝑥𝑥(𝑡𝑡, 2.5,𝑦𝑦) = 𝑞𝑞𝑦𝑦(𝑡𝑡, 𝑥𝑥,−2.5) = 𝑞𝑞𝑦𝑦(𝑡𝑡, 𝑥𝑥, 2.5) = 0

𝑡𝑡 ∈ [0,1], 𝑥𝑥, 𝑦𝑦 ∈ [−2.5, 2.5]

 (7.10) 

where 𝑒𝑒 is the phase field and 𝑞𝑞 is the temperature field.  

In this dendritic growth example, the simulation domain is 𝑥𝑥,𝑦𝑦 ∈ [−2.5,2.5] and 

time period is 𝑡𝑡 ∈ [0,1]. The training data are sampled randomly from the FEM simulation 
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with a sampling percentage of 20%, where the grid spacing is ∆𝑥𝑥 = 0.1 and the time step 

is ∆𝑡𝑡 = 0.1 . The amount of training data is 𝑁𝑁𝑇𝑇 = 5722 . The physical constraints are 

sampled uniformly in both temporal and spatial dimensions. The number of physical 

constraints is 11 × 51 × 51 = 28611, which means that there are 11 sampling points in 

the temporal dimension, 51 sampling points in the x-direction, and 51 in the y-direction of 

the spatial domain. The grid spacing is ∆𝑥𝑥 = 0.1 and the time step is ∆𝑡𝑡 = 0.1  for physical 

constraints.  

The ANN and PCNN-MMs have the same hidden layer structure of 30-30-30-30, 

where each network has 4 layers and the number of neurons in each layer is 30 The 

hyperbolic tangent (tanh) function is used as the activation function. The hyperparameters 

of the Dual-Dimer algorithm and the DD-CS algorithm in the thermal dendritic growth 

example are listed in Table 7.2. The training of all ML models stops when the maximum 

number of iterations 𝑡𝑡𝑚𝑚 is reached. 

Table 7.2. Hyperparameters of the Dual-Dimer algorithm and the DD-CS algorithm in the 
thermal dendritic growth example 

Parameter 𝑒𝑒 𝛿𝛿 𝛾𝛾 𝜂𝜂 𝜌𝜌 𝑎𝑎1 𝑎𝑎2 
Value 40 0.001 1 × 10−5 5 × 10−4 0.9 0.003 0.0015 
Parameter 𝑑𝑑 𝑚𝑚0 𝑡𝑡𝑏𝑏 𝑡𝑡𝑚𝑚 𝜆𝜆 𝜁𝜁  
Value 1000 0.2 1 × 105 2 × 104 0.02 0.05  

 

7.3.1.2 Computational Results 

The predicted phase fields and temperature fields from different models at t = 1.0 are 

shown in Figure 7.3 and Figure 7.4, respectively. The quantitative comparison for different 

models to solve the thermal dendritic growth problem is shown in Table 7.3. It is seen that 

the predicted phase fields from PCNN-MMs are more accurate that that from the ANN 
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since the physical constraints are added to guide the training process. It demonstrates the 

effectiveness of the PCNN-MM. The predicted phase fields from PCNN-MMs with the 

sequential training scheme are more consistent than that from the PCNN-MM with the 

concurrent training scheme. It suggests that the sequential training scheme is better than 

the concurrent sequential training scheme since it helps the convergence of the PCNN-MM. 

The predicted phase field from the PCNN-MM with the DD-CS algorithm is slightly worse 

than that from the PCNN-MM with the Dual-Dimer algorithm. Future work is needed to 

adjust the hyperparameters of the DD-CS algorithm or improve the DD-CS algorithm. The 

predicted temperature fields from different models are similar.  

The learning curves from different models are shown in Figure 7.5. Though the 

training loss of the phase field is about 10−5 at the end of the training for the ANN, the 

MSE of the predicted phase field is higher than those from the PCNN-MMs. This suggests 

that the ANN tends to be overfitted without the physical constraints. For the PCNN-MM 

with the concurrent training scheme, different losses decrease first and then reach the same 

magnitude during the training. For the PCNN-MM with the sequential training scheme and 

the Dual-Dimer algorithm, different losses are not at the same magnitude in the later stage 

of the training, which may accelerate the convergence of the training. As shown in Figure 

7.5(d), multiple spikes are introduced in the learning curve for the PCNN-MM with the 

DD-CS algorithm. When the iteration increases, fewer spikes are observed. Those spikes 

are designed to help the training of the PCNN-MM to escape the local saddle point so that 

the neural network can converge to a better saddle point.  
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Figure 7.3. The predicted phase fields from different models at t = 1.0: (a) the original 
FEM solution, (b) the ANN with sequential training, (c) the PCNN-MM with concurrent 

training and Dual-Dimer algorithm, (d) the PCNN-MM with sequential training and 
Dual-Dimer algorithm, and (e) the PCNN-MM with sequential training and DD-CS 

algorithm. 

(a) (b) 

(c) (d) 

(e) 
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Figure 7.4. The predicted temperature fields from different models at t = 1.0: (a) the 
original FEM solution, (b) the ANN with sequential training, (c) the PCNN-MM with 

concurrent training and Dual-Dimer algorithm, (d) the PCNN-MM with sequential 
training and Dual-Dimer algorithm, and (e) the PCNN-MM with sequential training and 

DD-CS algorithm. 

(a) (b) 

(c) (d) 

(e) 
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Figure 7.5. The learning curves from different models: (a) the ANN with sequential 
training, (b) the PCNN-MM with concurrent training and Dual-Dimer algorithm, (c) the 
PCNN-MM with sequential training and Dual-Dimer algorithm, and (d) the PCNN-MM 

with sequential training and DD-CS algorithm. 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Table 7.3. Quantitative comparison for different models to solve the thermal dendritic 
growth problem 

 
The ANN with 
sequential 
training 

The PCNN-
MM with 
concurrent 
training and 
Dual-Dimer 
algorithm 

The PCNN-
MM with 
sequential 
training and 
Dual-Dimer 
algorithm 

The PCNN-
MM with 
sequential 
training and 
DD-CS 
algorithm 

MSE of 
phase field 0.0248 0.0189 0.0195 0.0221 

MSE of 
temperature 
field 

0.0004 0.0003 0.0005 0.0008 

 

7.3.2 Thermo-Solutal Dendritic Growth Example 

7.3.2.1 Computational Setup 

The second example is the thermo-solutal dendritic growth during the rapid 

solidification process, where heat transfer, solute transport, and phase transition are 

coupled with each other. The kinetic equation for the phase field 𝜙𝜙 is described by Eq. 

(3.6), where 𝑀𝑀𝜙𝜙 = 𝑀𝑀0�1 − 1.5𝜀𝜀 + 2.5𝜀𝜀�𝑛𝑛𝑥𝑥4 + 𝑛𝑛𝑦𝑦4��  is the effective interface mobility, 

𝜎𝜎∗ = 𝜎𝜎0∗�1 + 1.5𝜀𝜀 − 2.5𝜀𝜀�𝑛𝑛𝑥𝑥4 + 𝑛𝑛𝑦𝑦4�� is anisotropic interface energy stiffness. The kinetic 

equation for the composition field is given by Eq. (4.1). The heat conduction equation is 

described by Eq. (4.2). The cooling rate is �̇�𝑇 = −1 × 104 K/s. The physical properties of 

Ti-6Al-4V alloy are shown in Table 3.1. The training data comes from the PF-TLBM 

simulation as described in Section 3.2. In the PF-TLBM simulation, the fine grid spacing 

is 𝑑𝑑𝑥𝑥 = 0.5 μm and the time step is 𝑑𝑑𝑡𝑡 = 1 μs. The length and width of the 2D simulation 

domain are 𝐿𝐿𝑥𝑥 = 𝐿𝐿𝑦𝑦 = 200 𝑑𝑑𝑥𝑥 = 100 μm. The interface width is 𝜂𝜂 = 5 𝑑𝑑𝑥𝑥.  
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At the beginning of the simulation, a circular nucleus is planted at the center of the 

simulation domain. The initial condition for the phase field is 

 

𝜙𝜙 =

⎩
⎪
⎨
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⎧ 1 (𝑅𝑅 < 𝑎𝑎 −

𝜂𝜂
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 (7.11) 

where 𝑅𝑅  is the distance between a location (𝑥𝑥,𝑦𝑦) and the center of the nucleus in the 

domain, and 𝑎𝑎 = 8 𝑑𝑑𝑥𝑥 is the radius of the nucleus. The initial composition of the solute 

𝐶𝐶0 = 10 wt% and the initial temperature 𝑇𝑇0 = 1928 K are set for the whole simulation 

domain. Zero Neumann conditions are set at all boundaries for the phase field 𝜙𝜙 , 

composition field 𝐶𝐶, and temperature field 𝑇𝑇. The simulation time is 𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥 = 0.01 s and the 

simulation results are stored every 0.5 ms. 

Since the values of different physical fields can differ from each other by several 

orders of magnitude, they need to be scaled to make the training of the PCNN-MM easier 

to converge. The scaled variables are defined as 𝑥𝑥∗ = 𝑥𝑥/𝐿𝐿𝑥𝑥 , 𝑦𝑦∗ = 𝑦𝑦/𝐿𝐿𝑦𝑦 , 𝑡𝑡∗ = 𝑡𝑡/𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥 , 

𝑇𝑇∗ = (𝑇𝑇 − 𝑇𝑇𝑠𝑠)/(𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑠𝑠) , and 𝐶𝐶𝑙𝑙∗ = 𝑘𝑘𝑒𝑒(𝐶𝐶𝑙𝑙 − 𝐶𝐶0)/[(1− 𝑘𝑘𝑒𝑒)𝐶𝐶0] , respectively. After 

scaling, all the variables have values with magnitudes ranging from zero to unity. Phase 

field 𝜙𝜙 does not need to be scaled since it is already in the range of [0,1]. By plugging the 

scaled variables into the kinetic equations, initial conditions, and boundary conditions for 

all physical variables, the scaled form of the multiphysics model for thermo-solutal 

dendritic growth is used. 

Partial PF-TLBM simulation results were used to train the ML models, where 5% of 

the simulation data along different time frames were randomly selected as the training data. 

Specifically, the number of training data points is 𝑁𝑁𝑇𝑇 = 42421 . Knowledge of the 
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multiphysics model as the supplement is used to guide the training of the PCNN-MM. That 

is, the physical constraints are evaluated uniformly in both temporal and spatial domains. 

The number of physical constraints is 𝑡𝑡∗ × 𝑥𝑥∗ × 𝑦𝑦∗ = 11 × 51 × 51 = 28611, where the 

time step is ∆𝑡𝑡∗ = 0.1 and the grid spacing is ∆𝑥𝑥∗ = ∆𝑦𝑦∗ = 0.02 for physical constraints. 

The numbers of sampling points corresponding to the physical loss, initial loss, and 

boundary loss are 𝑁𝑁𝑃𝑃 = 24010, 𝑁𝑁𝐼𝐼 = 2601, and 𝑁𝑁𝑆𝑆 = 2000, respectively, which add up 

to 28611. Both physical constraints and training data are employed in the training. Once 

the training is finished, all physical variables at 𝑡𝑡∗ = 1 are predicted from the PCNN-MM 

with a grid spacing of ∆𝑥𝑥∗ = ∆𝑦𝑦∗ = 0.005, which is finer than the grid spacing of the 

physical constraints. The predicted values of temperature, phase field, and concentration 

are converted back to the original scale. 

The ANN and PCNN-MMs have the same hidden layer structure of 30-30-30-30-30, 

where each network has 5 layers and the number of neurons in each layer is 30 The 

hyperbolic tangent (tanh) function is used as the activation function. The hyperparameters 

of the Dual-Dimer algorithm and the DD-CS algorithm in the thermo-solutal dendritic 

growth example are listed in Table 7.4.  

Table 7.4. Hyperparameters of the Dual-Dimer algorithm and the DD-CS algorithm in the 
thermo-solutal dendritic growth example 

Parameter 𝑒𝑒 𝛿𝛿 𝛾𝛾 𝜂𝜂 𝜌𝜌 𝑎𝑎1 𝑎𝑎2 
Value 40 0.001 1 × 10−5 5 × 10−4 0.96 0.0004 0.0002 
Parameter 𝑑𝑑 𝑚𝑚0 𝑡𝑡𝑏𝑏 𝑡𝑡𝑚𝑚 𝜆𝜆 𝜁𝜁  
Value 1000 0.2 2 × 105 2 × 104 0.02 0.05  
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7.3.2.2 Computational Results 

The predicted phase fields, temperature fields, and composition fields from different 

models at t = 1.0 for the thermo-solutal dendritic growth example are shown in Figure 7.6, 

Figure 7.7, and Figure 7.8, respectively. The quantitative comparison for different models 

to solve the thermo-solutal dendritic growth problem is shown in Figure 7.9. It shows that 

the predicted phase field and composition field from the PCNN-MM with the concurrent 

training scheme are slightly worse than those from the ANN. The predicted phase field and 

composition field from the PCNN-MM with the sequential training scheme and the Dual-

Dimer algorithm are more accurate than those from other ML models. It demonstrates the 

effectiveness of the PCNN-MM with the sequential training scheme and the Dual-Dimer 

algorithm. It also suggests that the sequential training scheme is better than the concurrent 

training scheme since it helps the convergence of the PCNN-MM. The PCNN-MM with 

the DD-CS algorithm has the highest prediction errors among all ML models in this 

example, which could be caused by improper sets of hyperparameters. Future work is 

needed to adjust the hyperparameters of the DD-CS algorithm or improve the DD-CS 

algorithm. The predicted temperature fields from PCNN-MMs are not as accurate as of that 

from the ANN, which could be caused by the simulation error. Theoretically speaking, the 

temperature field should be four-fold symmetric, similar to what PCNN-MMs predict. 

PCNN-MMs were trained based on both simulation data and the original physical models. 

However, the simulated temperature field in the TLBM is not four-fold symmetric. This is 

likely caused by the coarse mesh used in the TLBM model. In the PF-TLBM, the mesh 

size in TLBM is coarser than the one in the phase field. Further investigation is needed to 

provide more accurate simulations and neural network predictions. 
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The learning curves from different models are shown in Figure 7.9. For the PCNN-

MM with the concurrent training scheme, different losses decrease first and then reach 

about the same magnitude during the training. For the PCNN-MM with the sequential 

training scheme and the Dual-Dimer algorithm, different losses are not at the same 

magnitude in the later stage of the training, which may help the convergence of the training. 

Some spikes are observed in the later stage of the training for the PCNN-MM with the 

sequential training scheme and the Dual-Dimer algorithm, which may contribute to the 

convergence of the training. As shown in Figure 7.9(d), multiple spikes are introduced in 

the learning curve at the beginning of the training for the PCNN-MM with the DD-CS 

algorithm. When the iteration increases, fewer spikes are observed. Those spikes are 

designed to help the training of the PCNN-MM to escape the local saddle point so that the 

neural network may converge to a better saddle point.  
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Figure 7.6. The predicted phase fields from different models at t = 0.01: (a) the original 
PF-TLBM solution, (b) the ANN with sequential training, (c) the PCNN-MM with 
concurrent training and Dual-Dimer algorithm, (d) the PCNN-MM with sequential 

training and Dual-Dimer algorithm, and (e) the PCNN-MM with sequential training and 
DD-CS algorithm. 

(a) (b) 

(c) (d) 

(e) 



 

 182 

 

Figure 7.7. The predicted temperature fields from different models at t = 0.01: (a) the 
original PF-TLBM solution, (b) the ANN with sequential training, (c) the PCNN-MM 

with concurrent training and Dual-Dimer algorithm, (d) the PCNN-MM with sequential 
training and Dual-Dimer algorithm, and (e) the PCNN-MM with sequential training and 

DD-CS algorithm. 

(a) (b) 

(c) (d) 

(e) 
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Figure 7.8. The predicted composition fields from different models at t = 0.01: (a) the 
original PF-TLBM solution, (b) the ANN with sequential training, (c) the PCNN-MM 

with concurrent training and Dual-Dimer algorithm, (d) the PCNN-MM with sequential 
training and Dual-Dimer algorithm, and (e) the PCNN-MM with sequential training and 

DD-CS algorithm. 

(a) (b) 

(c) (d) 

(e) 
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Figure 7.9. The learning curves from different models: (a) the ANN with sequential 
training, (b) the PCNN-MM with concurrent training and Dual-Dimer algorithm, (c) the 
PCNN-MM with sequential training and Dual-Dimer algorithm, and (d) the PCNN-MM 

with sequential training and DD-CS algorithm. 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Table 7.5. Quantitative comparison for different models to solve the thermo-solutal 
dendritic growth problem 

 
The ANN with 
sequential 
training 

The PCNN-
MM with 
concurrent 
training and 
Dual-Dimer 
algorithm 

The PCNN-
MM with 
sequential 
training and 
Dual-Dimer 
algorithm 

The PCNN-
MM with 
sequential 
training and 
DD-CS 
algorithm 

MSE of 
phase field 0.0112 0.0118 0.0096 0.0142 

MSE of 
temperature 
field 

0.0017 4.6777 5.3205 5.9412 

MSE of 
composition 
field 

3.2124 4.0891 2.8251 4.0629 

 

7.4 Discussions and Conclusions 

In this chapter, a new sequential training scheme is developed to aid the convergence 

of PCNN-MMs for solving multiphysics problems. A new saddle point search algorithm 

called the DD-CS algorithm is also developed to alleviate the curse of dimensionality in 

searching high-order saddle points during the training. The developed PCNN-MM and the 

DD-CS algorithm are demonstrated by two examples: thermal dendritic growth example 

and thermo-solutal dendritic growth example. In each example, different ML models with 

various training schemes are compared with each other.  

The computational results suggest that the sequential training scheme is better than 

the concurrent sequential training scheme since it facilitates the convergence of the PCNN-

MM. In the sequential training scheme, multiple neural networks are trained sequentially 

to predict multiple physical fields respectively. By using the sequential training scheme, 

different physics fields are one-way coupled rather than fully coupled, which accelerates 
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the convergence of PCNN-MMs. In this work, each neural network is trained only once 

within one iteration in the sequential training scheme. In future work, sensitivity studies 

need to be conducted to investigate the effects of the training frequency of different neural 

networks on prediction accuracy and training efficiency of PCNN-MMs. 

The predicted phase field from the PCNN-MM with the DD-CS algorithm is slightly 

worse than that from the PCNN-MM with the Dual-Dimer algorithm. The spikes in the 

learning curve are designed to help the training of the PCNN-MM to escape the local saddle 

point so that the neural network may converge to a better saddle point. Future work is 

needed to adjust the hyperparameters of the DD-CS algorithm or improve the DD-CS 

algorithm. The training dynamics of the PCNN-MM with the DD-CS algorithm needs to 

be analyzed by mathematical analysis or computational experiments. The training 

dynamics of the PCNN-MM around the spikes needs more attention to improve the training 

efficiency and robustness. Rather than choosing adaptive thresholds by trial and error, a 

more rigorous and systematic approach is needed to search optimal hyper parameters. For 

instance, the information on gradients and extreme eigenvalues may be used to choose the 

optimal adaptive thresholds. The DD-CS algorithm is a promising training algorithm to 

find the high-order saddle points, which may be applied to alleviate the curse of 

dimensionality in other general ML models and applications.  

As a deterministic surrogate, the constructed PCNN-MM model can provide fast 

predictions from some given inputs. However, it does not provide the uncertainty 

information about the predictions. In future work, the uncertainty of the PCNN-MM model 

should be quantified to provide more confidence in the predictions. Uncertainty 

quantification has been widely applied in multiscale modeling and simulation [221–225]. 
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Uncertainty can be generally classified into two main categories, epistemic uncertainty and 

aleatory uncertainty [226,227]. Epistemic uncertainty is caused by the lack of data or 

knowledge, which is reducible, whereas aleatory uncertainty is the variability that is due to 

inherently random effects and is irreducible. In a model, the major components of epistemic 

uncertainty are model-form uncertainty and parameter uncertainty. Model-form 

uncertainty results from simplification, approximation error, and subjectivity of model 

choice. The model-form uncertainty of the PCNN-MM model comes from the subjective 

choice of neural network structure, including architecture (fully-connected neural network, 

convolutional neural network, recurrent neural network, etc.), number of hidden units and 

layers, activation functions, etc. Parameter uncertainty is related to model calibration. The 

parameters of models need to be calibrated properly to reduce parameter uncertainty. The 

parameter uncertainty of the PCNN-MM model comes from the training process when 

training data are inaccurate or the prior physical knowledge used in the PCNN is not 

perfect. The model-form and parameter uncertainties of one model can propagate to 

another when the former is used as the baseline to calibrate the latter, and the errors can 

remain in simulation data. Experimental data can contain measurement errors caused by 

instruments or human operators. The parameter uncertainty of the PCNN-MM model can 

also come from the formulation of the training algorithm and the choices of 

hyperparameters of the training algorithm. In the Dual-Dimer algorithm, the extreme 

eigenvalues and eigenvectors are approximated by rotating two dimers, which could cause 

parameter uncertainty. In the third stage of the DD-CS algorithm, the reconstruction error 

of the weights for the neural network can be introduced by the compressive sampling 

methods, which can lead to parameter uncertainty. Some uncertainty quantification 



 

 188 

methods have been applied in deep learning, which include Bayesian techniques (Monte 

Carlo dropout, Markov chain Monte Carlo, variational inference, Bayesian active learning, 

Bayes by backprop, variational autoencoders, Laplacian approximations) and ensemble 

techniques [228]. Most Bayesian techniques can be used to quantify parameter uncertainty, 

whereas ensemble techniques can be used to quantify both model-form and parameter 

uncertainty. 
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CHAPTER 8. RAPID SOLIDIFICATION PROCESS 

OPTIMIZATION FOR ADDITIVE MANUFACTURING 

8.1 Introduction 

In simulation-based design optimization, the objective functions are usually 

expensive to be evaluated. Because of the high-dimensionality of P-S-P relationships, it 

requires a significant amount of simulations or training of ML models to conduct the 

process optimization. In order to reduce the number of function evaluations during the 

optimization, surrogate models [124] are commonly used to assist design optimization. In 

this chapter, a new generic process design framework is developed. It is demonstrated with 

the optimization of the initial temperature and cooling rate in the SLM process to achieve 

the desirable microstructures. The dendritic growth of Ti-6Al-4V alloy is simulated using 

the developed PF-TLBM model under various initial temperatures and cooling rates. A 

surrogate model of process-structure relationships is constructed based on the PCNN-MM 

in CHAPTER 7 trained by the simulation data from PF-TLBM in CHAPTER 3. The 

constructed surrogate model is used in single-objective and multi-objective BO to search 

the optimal process parameters so that the desired dendritic area and composition 

distributions can be achieved. 

In the remainder of this chapter, multi-objective Bayesian optimization is introduced 

in Section 8.2. A generic process design framework and optimization problems are 

described in Section 8.3. In Section 8.4, the proposed process design framework is 

demonstrated by optimizing the initial temperature and cooling rate for the rapid 

solidification of Ti-6Al-4V alloy with single-objective and multi-objective BO. 
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8.2 Multi-Objective Bayesian Optimization 

In general, multi-objective optimization problems are formulated as 

 min
𝐱𝐱
𝐅𝐅(𝐱𝐱) = {𝑓𝑓1(𝐱𝐱),𝑓𝑓2(𝐱𝐱), … , 𝑓𝑓𝑖𝑖(𝐱𝐱), … ,𝑓𝑓𝑛𝑛(𝐱𝐱)} 

𝑎𝑎. 𝑡𝑡.    𝑔𝑔𝑖𝑖(𝐱𝐱) ≤ 0,   𝑗𝑗 = 1,2, … ,𝑚𝑚 

𝐱𝐱𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝐱𝐱 ≤ 𝐱𝐱𝑚𝑚𝑎𝑎𝑥𝑥 

(8.1) 

where 𝐅𝐅(𝐱𝐱) is the total objective function including 𝑛𝑛 objective functions among which at 

least two objective functions are conflicting with each other, 𝐠𝐠(𝐱𝐱) are the constraints, 𝐱𝐱 is 

the design variable, and 𝐱𝐱𝑚𝑚𝑖𝑖𝑛𝑛  and 𝐱𝐱𝑚𝑚𝑎𝑎𝑥𝑥  are the lower bounds and upper bounds, 

respectively. Since there are trade-offs among those objective functions, the problem in 

Eq. (8.1) usually has a set of optimum solutions in the Pareto sense. Namely, there is no 

optimum that is superior to the other with respect to all objectives. These solutions form as 

Pareto set or Pareto front. 

As a surrogate-based global optimization technique, BO [229] has been applied 

successfully in machine learning and design optimization. The uniqueness of BO is that 

the sequential sampling strategy is adopted to reach a balance between exploration 

(sampling in the most uncertain region) and exploitation (sampling in the region with the 

best predictions) for robust global optimization under uncertainty. Compared to other 

optimization techniques, the major advantages of BO include derivative-free, active 

learning, uncertainty quantification, and robustness in high-dimensional continuous design 

space. Based on a surrogate model, such as Gaussian process (GP), which approximates 

the objective function, BO performs sequential sampling to find the optimal solution. The 

sequential sampling strategy is to choose one solution that maximizes an acquisition 

function. The acquisition function needs to be constructed in the same design space as the 
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objective surrogate. Commonly used acquisition functions include expected improvement 

(EI), probability of improvement (PI), and lower confidence bound (LCB). The EI function 

is used here for single-objective BO. 

Consider the optimization problem 

 min
 
𝑓𝑓(𝐱𝐱) (8.2) 

Given some samples 𝐗𝐗 = {𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑛𝑛}  and their responses 𝑓𝑓(𝐗𝐗) =

{𝑓𝑓(𝐱𝐱1),𝑓𝑓(𝐱𝐱2), … ,𝑓𝑓(𝐱𝐱𝑛𝑛)}, the EI acquisition function is given by 

 𝑎𝑎EI(𝐱𝐱) = 𝑎𝑎(𝐱𝐱)𝛾𝛾(𝐱𝐱)Φ�𝛾𝛾(𝐱𝐱)� + 𝑎𝑎(𝐱𝐱)𝜙𝜙�𝛾𝛾(𝐱𝐱)� (8.3) 

where 𝑎𝑎(𝐱𝐱) is the posterior standard deviation, 𝜙𝜙(∙) and Φ(∙) are the probability density 

function and cumulative distribution function, respectively. The deviation away from the 

best sample 𝐱𝐱best is given by 

 
𝛾𝛾(𝐱𝐱) =

𝜇𝜇(𝐱𝐱) − 𝑓𝑓(𝐱𝐱best)
𝑎𝑎(𝐱𝐱)  (8.4) 

where 𝜇𝜇(𝐱𝐱) is the posterior mean.  

The LCB acquisition function is given by 

 𝑎𝑎LCB(𝐱𝐱) = 𝜇𝜇(𝐱𝐱)− 𝑘𝑘𝑎𝑎(𝐱𝐱) (8.5) 

where 𝑘𝑘  controls the exploitation/exploration ratio. A new sample point is selected by 

maximizing the EI function or negative LCB function. Then the GP model is updated with 

the new sample point. The iteration continues until a stop criterion is met. The advantage 

of using LCB as the acquisition function is that there is no need to calculate the integrals 

as in the EI and PI functions. The calculation of high-dimensional integrals is expensive 

for multi-objective problems. 
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To enhance the capability of the classical BO framework, many extensions, including 

multi-objective [230,231], multi-fidelity [232], constrained [233], mixed integer [234], and 

discrete [235], have been proposed. The multi-objective BO approach in Ref. [231] is used 

in this chapter. In this approach, a novel acquisition function is used to determine the next 

sample point, which helps improve the diversity and convergence of the Pareto solutions. 

The modified hyperarea difference (MHD) and modified overall spread (MOS) are used to 

measure the quality of Pareto fronts. The acquisition function is given by 

 𝑎𝑎(𝐱𝐱) = max
 
�𝐼𝐼MHD(𝐱𝐱), 𝐼𝐼MOS(𝐱𝐱)� (8.6) 

where 𝐼𝐼MHD(𝐱𝐱)  and 𝐼𝐼MOS(𝐱𝐱)  are the relative improvements in MHD and MOS, 

respectively, as 

 
𝐼𝐼MHD(𝐱𝐱) = �

MHD({𝐃𝐃𝑛𝑛, 𝐱𝐱})− MHD(𝐃𝐃𝑛𝑛)
MHD(𝐃𝐃𝑛𝑛) � 

𝐼𝐼MOS(𝐱𝐱) = �
MOS({𝐃𝐃𝑛𝑛,𝐱𝐱}) − MOS(𝐃𝐃𝑛𝑛)

MOS(𝐃𝐃𝑛𝑛) � 

𝐱𝐱𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝐱𝐱 ≤ 𝐱𝐱𝑚𝑚𝑎𝑎𝑥𝑥 

(8.7) 

where 𝐃𝐃𝑛𝑛 are existing 𝑛𝑛 sample points, MHD(𝐃𝐃𝑛𝑛) and MOS(𝐃𝐃𝑛𝑛) represent the MHD and 

MOS based on 𝐃𝐃𝑛𝑛 , whereas MHD({𝐃𝐃𝑛𝑛,𝐱𝐱})  and MOS({𝐃𝐃𝑛𝑛, 𝐱𝐱})  represent the updated 

MHD and MOS when 𝐱𝐱 is added in the sample set. The LCB functions in Eq. (8.5) are used 

as the objectives to calculate MHD({𝐃𝐃𝑛𝑛, 𝐱𝐱}) and MOS({𝐃𝐃𝑛𝑛,𝐱𝐱}). A new sample point will 

be selected to update the GP model by maximizing the acquisition function in Eq. (8.6). 

More details about the multi-objective BO can be found in Ref. [231]. 
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8.3 Process Design Framework 

In this chapter, the generic process design framework shown in Figure 1.1 is 

developed. A surrogate model of process-structure relationship is built for AM based on 

PF-TLBM in CHAPTER 3 and PCNN-MM in CHAPTER 7. The dendritic growth under 

different process parameters (initial temperature 𝑇𝑇0 and cooling rate �̇�𝑇) are simulated by 

PF-TLBM. The simulation outputs include phase field, temperature field, and composition 

field. Partial simulation results serve as the training data for the training of the PCNN-MM 

and physical constraints will be added to reduce the required amount of training data. The 

normalized initial temperature (𝑇𝑇0 − 𝑇𝑇𝑠𝑠)/(𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑠𝑠)  and cooling rate �̇�𝑇 ∗ 𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥/(𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑠𝑠) 

are added into the PCNN-MM as the inputs so that the PCNN-MM can predicted the 

microstructure under different process parameters. The developed Dual-Dimer algorithm 

in Section 6.2.2 is used for the training of PCNN-MM. Once the training of the PCNN-

MM is completed, the output microstructures from the PCNN-MM are characterized as 

dendritic area and microsegregation. In this way, a surrogate model of the process-structure 

relationship is built for SLM. After training, this surrogate model can predict 

microstructures from process parameters efficiently without relying on expensive 

simulations or experiments. Based on the surrogate model, BO is utilized to search the 

optimal initial temperature and cooling rate to obtain the desired dendritic area 𝑆𝑆𝑑𝑑∗   and 

microsegregation 𝜒𝜒∗ level. The definition of the microsegregation is shown in Eq. (4.18).  

When the dendritic area is larger during a fixed period of solidification time, it is 

quicker to solidify the melt and print the part under the current process parameters. When 

the microsegregation is smaller, the mechanical strength of the printed part will be 

improved. Therefore, the dendritic area should be as large as possible to reduce the printing 
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time. The microsegregation should be as small as possible to increase the mechanical 

strength. However, the increase of the dendritic area and the decrease of the 

microsegregation are usually in conflict, which makes multi-objective optimization 

necessary. A designer usually has a target performance. The design objectives are to find 

the optimal initial temperature and cooling rate to meet the target dendritic area and 

microsegregation level. Therefore, the two-objective optimization problem is given as  

 min
𝑇𝑇0,�̇�𝑇

𝐅𝐅�𝑇𝑇0, �̇�𝑇� = �𝑓𝑓1�𝑇𝑇0, �̇�𝑇�,𝑓𝑓2�𝑇𝑇0, �̇�𝑇�� 

= ��𝑆𝑆𝑑𝑑�𝑇𝑇0, �̇�𝑇� − 𝑆𝑆𝑑𝑑∗�
2

, �𝜒𝜒�𝑇𝑇0, �̇�𝑇� − 𝜒𝜒∗�
2
� 

𝑇𝑇0,𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑇𝑇0 ≤ 𝑇𝑇0,𝑚𝑚𝑎𝑎𝑥𝑥 

�̇�𝑇𝑚𝑚𝑖𝑖𝑛𝑛 ≤ �̇�𝑇 ≤ �̇�𝑇𝑚𝑚𝑎𝑎𝑥𝑥 

(8.8) 

where 𝑆𝑆𝑑𝑑�𝑇𝑇0, �̇�𝑇�  is the predicted dendritic area from the PCNN-MM, 𝜒𝜒�𝑇𝑇0, �̇�𝑇�  is the 

predicted microsegregation. 𝑇𝑇0,𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑇𝑇0,𝑚𝑚𝑎𝑎𝑥𝑥 are the lower and upper bound of the initial 

temperature, respectively. �̇�𝑇𝑚𝑚𝑖𝑖𝑛𝑛 and �̇�𝑇𝑚𝑚𝑎𝑎𝑥𝑥  are the lower and upper bound of the cooling 

rate, respectively.  

Constructing the Pareto front usually is the goal of multi-objective optimization. 

However, it may be computationally infeasible if resources do not allow. A more efficient 

approach is combining multiple objectives into one as a weighted average, if the weights 

as the designer’s preference can be predetermined. Then the problem is converted to single-

objective optimization. Thus, the two-objective optimization problem in Eq. (8.8) can also 

be formulated as a single-objective optimization problem as 
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min
𝑇𝑇0,�̇�𝑄

𝑓𝑓�𝑇𝑇0, �̇�𝑇� = 𝛼𝛼1 �
𝑆𝑆𝑑𝑑�𝑇𝑇0, �̇�𝑇� − 𝑆𝑆𝑑𝑑∗

𝑆𝑆𝑑𝑑,𝑚𝑚𝑎𝑎𝑥𝑥
�
2

+ 𝛼𝛼2 �
𝜒𝜒�𝑇𝑇0, �̇�𝑇� − 𝜒𝜒∗

𝜒𝜒𝑚𝑚𝑎𝑎𝑥𝑥
�
2

 

𝑇𝑇0,𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑇𝑇0 ≤ 𝑇𝑇0,𝑚𝑚𝑎𝑎𝑥𝑥 

�̇�𝑇𝑚𝑚𝑖𝑖𝑛𝑛 ≤ �̇�𝑇 ≤ �̇�𝑇𝑚𝑚𝑎𝑎𝑥𝑥 

(8.9) 

where 𝛼𝛼1 and 𝛼𝛼2 are the weights of the objective functions of the dendritic area and the 

microsegregation, respectively. Since the scales of the dendritic area and the 

microsegregation are different, 𝑆𝑆𝑑𝑑,𝑚𝑚𝑎𝑎𝑥𝑥 and 𝜒𝜒𝑚𝑚𝑎𝑎𝑥𝑥 are used to normalize the objectives of 

the dendritic area and the microsegregation.  

8.4 Results and Discussion 

The proposed process design framework is demonstrated by optimizing the initial 

temperature and cooling rate for the rapid solidification of Ti-6Al-4V alloy so that the 

desired dendritic area and microsegregation level can be achieved. The computational 

setup for simulating the dendritic growth in the rapid solidification of Ti-6Al-4V alloy is 

described in Section 7.3.2.1. The dendritic growth of Ti-6Al-4V alloy is simulated using 

the developed PF-TLBM model under various initial temperatures and cooling rates. The 

design of experiment and simulation outputs (dendritic area and microsegregation) are 

shown in Table 8.1. The range of the initial temperature is [1918, 1928] K, whereas the 

range of the cooling rate is [−10000,−5000] K/s. The range of the dendritic area is 

[1475, 3436.74] μm2, whereas the range of the microsegregation is [8.79, 12.25]. 
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Table 8.1. The design of experiment and simulation outputs  

Case number Initial 
temperature (K) 

Cooling rate 
(K/s) 

Dendritic area 
(μm2) Microsegregation 

1 1918 -5000 1914.64 9.09 
2 1918 -6250 2314.78 9.79 
3 1918 -7500 2646.96 10.39 
4 1918 -8750 3016.11 11.16 
5 1918 -10000 3436.74 12.25 
6 1920.5 -5000 1778.65 8.96 
7 1920.5 -6250 2217.93 9.65 
8 1920.5 -7500 2611.06 10.41 
9 1920.5 -8750 2990.45 11.24 
10 1920.5 -10000 3366.18 12.04 
11 1923 -5000 1713.26 9.01 
12 1923 -6250 2073.77 9.50 
13 1923 -7500 2511.03 10.33 
14 1923 -8750 2902.44 11.09 
15 1923 -10000 3222.27 11.19 
16 1925.5 -5000 1561.22 9.05 
17 1925.5 -6250 1999.84 9.57 
18 1925.5 -7500 2400.67 10.25 
19 1925.5 -8750 2738.54 10.84 
20 1925.5 -10000 3170.99 11.90 
21 1928 -5000 1475.00 8.79 
22 1928 -6250 1843.84 9.19 
23 1928 -7500 2284.36 9.92 
24 1928 -8750 2678.61 10.59 
25 1928 -10000 2997.04 11.36 
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Figure 8.1. Dendritic morphology of Ti-6Al-4V alloy under various initial temperatures 
and cooling rates. 
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Figure 8.2. The effects of the initial temperature and cooling rate on (a) dendritic area and 
(b) microsegregation. 

The dendritic morphology of Ti-6Al-4V alloy at t = 10 ms under various initial 

temperatures and cooling rates is shown in Figure 8.1. The effects of the initial temperature 

and cooling rate on dendritic area and microsegregation are shown in Figure 8.2. When the 

initial temperature increases or the undercooling decreases, the dendritic area and the 

microsegregation decrease. The primary arm is thinner as the initial temperature increases. 

When the magnitude of the cooling rate increases, the dendritic area and the 

microsegregation increase. The primary arm is thicker as the cooling rate increases. 

The partial PF-TLBM simulation results are used to train the PCNN-MM model, 

where 5% of the simulation data along different time frames are randomly selected as the 

training data. Since the training dataset is very large (about a million data points), the mini-

batch training scheme is used to train the PCNN-MM. The learning curve of the training 

of the PCNN-MM is shown in Figure 8.3. It shows that the losses related to the temperature 

field are difficult to be minimized. After training, the PCNN-MM model can predict 

microstructures from process parameters efficiently without relying on expensive 

(a) (b) 
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simulations or experiments. For single forward prediction, the average evaluation time of 

the PF-TLBM model is 2880 seconds, whereas the average evaluation time of the PCNN-

MM model is only 0.08 seconds. This means that the evaluation of the PCNN-MM model 

is 36000 times as fast as that of the PF-TLBM model. The high computational efficiency 

of the PCNN-MM model makes it to be a suitable surrogate model used in BO for process 

optimization so that the overall evaluation cost can be reduced. To find a feasible 

microstructure, the desired dendritic area is 𝑆𝑆𝑑𝑑∗ = 3000 μm2 and microsegregation is 𝜒𝜒∗ =

10.0. 𝑇𝑇0,𝑚𝑚𝑖𝑖𝑛𝑛 = 1918 K and 𝑇𝑇0,𝑚𝑚𝑎𝑎𝑥𝑥 = 1928 K are the lower and upper bound of the initial 

temperature, respectively. �̇�𝑇𝑚𝑚𝑖𝑖𝑛𝑛 = −10000 K/s  and �̇�𝑇𝑚𝑚𝑎𝑎𝑥𝑥 = −5000 K/s  are the lower 

and upper bound of the cooling rate, respectively. 

 

Figure 8.3. The learning curve during the training of the PCNN-MM. 
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8.4.1 Single-Objective Bayesian Optimization 

The single-objective optimization problem described in Eq. (8.9) is first solved. The 

effects of the weights of individual objective functions on optimization results are 

investigated by sensitivity analysis. Since the scales of the dendritic area and the 

microsegregation are different, 𝑆𝑆𝑑𝑑,𝑚𝑚𝑎𝑎𝑥𝑥 = 3500 μm2  and 𝜒𝜒𝑚𝑚𝑎𝑎𝑥𝑥 = 14.0  are used to 

normalize the objectives of the dendritic area and the microsegregation. This single-

objective optimization problem is solved by single-objective BO from a python package 

called pyGPGO [236]. The EI acquisition function is used in single-objective BO. The BO 

stops once the maximum number of iterations of 100 is reached. The computation time for 

single iteration is about 0.54 seconds.  

The simulation results from the PF-TLBM model and the predictions from the 

PCNN-MM at t = 10 ms under the optimal process parameters with different combinations 

of weights (𝛼𝛼1 = 0.25  and 𝛼𝛼2 = 0.75 ; 𝛼𝛼1 = 0.5  and 𝛼𝛼2 = 0.5 ; 𝛼𝛼1 = 0.75  and 𝛼𝛼2 =

0.25) are shown in Figure 8.4, Figure 8.5, and Figure 8.6, respectively. The quantitative 

comparison between the PF-TLBM simulation result and PCNN-MM prediction during the 

Bayesian optimization is shown in Table 8.2. It is observed that the predicted primary arm 

from the PCNN-MM during the optimization agrees well with the simulation result, 

whereas the PCNN-MM cannot reveal the full details of secondary arms. Nevertheless, the 

predicted dendritic area and microsegregation agree well with the simulation results, which 

demonstrates the effectiveness of the PCNN-MM model to estimate the quantities of 

interest. When 𝛼𝛼1 increases or 𝛼𝛼2 decreases, the predicted dendritic areas are closer to the 

desired dendritic area, whereas the predicted microsegregations are further away from the 

desired microsegregation. This demonstrates that the weights of individual objective 
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functions can help the designer to produce desired microstructure. The relative errors of 

the dendritic area and the microsegregation for the PF-TLBM and the PCNN-MM are 

calculated based on the desired dendritic area and microsegregation. The relative errors of 

dendritic area for the PF-TLBM and the PCNN-MM are less than 5%, whereas the relative 

errors of microsegregation for both models are less than 12%. The relative errors of 

microsegregation are larger than those of dendritic area for both models because the desired 

microsegregation is 300 times as small as the desired dendritic area.  

 

Figure 8.4. The simulation results from the PF-TLBM model and the predictions from the 
PCNN-MM at t = 10 ms under the optimal process parameters from single-objective BO 

when 𝛼𝛼1 = 0.25 and 𝛼𝛼2 = 0.75: (a) simulated phase field, (b) simulated composition 
field, (c) predicted phase field, and (d) predicted composition field. 

(a) (b) 

(c) (d) 
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Figure 8.5. The simulation results from the PF-TLBM model and the predictions from the 
PCNN-MM at t = 10 ms under the optimal process parameters from single-objective BO 
when 𝛼𝛼1 = 0.5 and 𝛼𝛼2 = 0.5: (a) simulated phase field, (b) simulated composition field, 

(c) predicted phase field, and (d) predicted composition field. 

(a) (b) 

(c) (d) 



 

 203 

 

Figure 8.6. The simulation results from the PF-TLBM model and the predictions from the 
PCNN-MM at t = 10 ms under the optimal process parameters from single-objective BO 

when 𝛼𝛼1 = 0.75 and 𝛼𝛼2 = 0.25: (a) simulated phase field, (b) simulated composition 
field, (c) predicted phase field, and (d) predicted composition field. 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Table 8.2. Quantitative analysis for single-objective Bayesian optimization  

Weights of 
objectives 

Optimal processing 
parameters Model 𝑆𝑆𝑑𝑑 (μm2) 𝜒𝜒 

Relative 
error of 
𝑆𝑆𝑑𝑑 

Relative 
error of 
𝜒𝜒 

𝛼𝛼1 = 0.25 
𝛼𝛼2 = 0.75 

𝑇𝑇0∗ = 1921.38 K 
�̇�𝑇∗ = −8551.19 K/s 

PF-
TLBM 2854.28 10.94 4.86% 9.40% 

PCNN
-MM 2863.38 10.31 4.55% 3.10% 

𝛼𝛼1 = 0.5 
𝛼𝛼2 = 0.5 

𝑇𝑇0∗ = 1922.80 K 
�̇�𝑇∗ = −8907.11 K/s 

PF-
TLBM 2906.16 11.11 3.13% 11.10% 

PCNN
-MM 2919.20 10.44 2.69% 4.40% 

𝛼𝛼1 = 0.75 
𝛼𝛼2 = 0.25 

𝑇𝑇0∗ = 1920.84 K 
�̇�𝑇∗ = −8807.93 K/s 

PF-
TLBM 2949.69 11.16 1.68% 11.60% 

PCNN
-MM 2949.70 10.53 1.68% 5.30% 

 

8.4.2 Multi-Objective Bayesian Optimization 

The multi-objective optimization problem described in Eq. (8.8) is also applied. The 

multi-objective BO approach in Ref. [231] with the acquisition function in Eq. (8.6) 

defined by MHD and MOS is used to solve this problem. The multi-objective BO stops 

once the maximum number of iterations of 500 is reached. The computational time for 

single iteration is about 0.75 seconds. The Pareto front of the two-objective optimization 

problem of dendritic growth is shown in Figure 8.7. The original Pareto front based on 25 

initial sampling points before the optimization is compared with the new Pareto front based 

on the updated sampling points after the optimization. The original process parameters of 

the initial sampling points at the original Pareto front before the optimization and the 

optimal process parameters at the new Pareto front after the optimization are shown in 

Figure 8.8. 
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Figure 8.7. Pareto front of the two-objective optimization problem of dendritic growth. 

 

Figure 8.8. Processing map for dendritic growth. 

One set of the optimal initial temperature 𝑇𝑇0∗ = 1924.93 K and cooling rate �̇�𝑇∗ =

−9445.31 K/s at the Pareto front are identified by multi-objective BO. The simulation 

results from the PF-TLBM model and the predictions from the PCNN-MM at t = 10 ms 

under the optimal process parameters are shown in Figure 8.9. The quantitative comparison 
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between the PF-TLBM simulation and the PCNN-MM prediction during the multi-

objective Bayesian optimization is shown in Table 8.3. It is observed that the predicted 

dendritic area and microsegregation agree well with the simulation, which demonstrates 

the effectiveness of the PCNN-MM model to estimate quantities of interest. The relative 

errors of dendritic area for the PF-TLBM and the PCNN-MM model are less than 0.8%, 

whereas the relative errors of microsegregation for both models are less than 15%. 

Similarly, the relative errors of microsegregation for both models are large because the 

desired microsegregation is 300 times as small as the desired dendritic area. The 

optimization results demonstrate the feasibility and potential of the process design 

framework for process optimization. The advantage of using multi-objective BO is that the 

Pareto front and the processing map can be constructed after the optimization. There is no 

need to use a weighted-sum objective function, which can introduce prior bias by 

subjectively selecting the weights in the objective function. It is noted that the initial 

sampling points should cover the process window properly. This is because that the GP 

surrogate model used in BO is good at interpolation and bad at extrapolation. If the initial 

sampling points only occupy a small part of the process window, it may fail for BO to 

search optimal processing parameters. 
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Figure 8.9. The simulation results from the PF-TLBM model and the predictions from the 
PCNN-MM at t = 10 ms under the optimal process parameters from multi-objective BO: 
(a) simulated phase field, (b) simulated composition field, (c) predicted phase field, and 

(d) predicted composition field. 

Table 8.3. Quantitative analysis for multi-objective Bayesian optimization  

Optimal processing 
parameters Model 𝑆𝑆𝑑𝑑 (μm2) 𝜒𝜒 Relative 

error of 𝑆𝑆𝑑𝑑 
Relative 
error of 𝜒𝜒 

𝑇𝑇0∗ = 1924.93 K 
�̇�𝑇∗ = −9445.31 K/s 

PF-TLBM 2977.40 11.47 0.75% 14.70% 

PCNN-MM 2998.85 10.73 0.04% 7.30% 

 

(a) (b) 

(c) (d) 
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8.4.3 Discussions 

There are some limitations of the current constructed PCNN-MM surrogate model. 

First, since the PCNN-MM model is built for single material, the predictions from the 

PCNN-MM model may not be accurate when the material is changed. Second, the PCNN-

MM model needs more training when the initial and boundary conditions are changed. 

Third, the PCNN-MM model only predicts the single dendritic growth rather than multiple 

dendritic growth. In future work, the simulation results of multiple dendritic growth for 

different materials and various initial and boundary conditions will be used to train the 

PCNN-MM model. The material properties, initial and boundary conditions can be added 

as input parameters of the PCNN-MM model to predict the process-structure relationship 

for different materials and various initial or boundary conditions. For instance, the multiple 

dendritic growth can be predicted by the PCNN-MM model by changing the number, 

locations, and orientations of nuclei in the initial condition of phase field. Domain 

decomposition [237,238] or coordinate mapping [239] can be used to handle complex 

boundary conditions in irregular geometric domains. It is known that nucleation affects the 

accuracy of simulated microstructures in metal AM. However, the heterogeneous 

nucleation is not predicted by the PCNN-MM model. As a stochastic process, nucleation 

can be modeled by adding Langevin noise terms in the kinetic equations of phase field and 

composition field. Therefore, the PCNN-MM model can potentially be used to predict 

nucleation and dendritic growth process by incorporating stochastic PDEs as physical 

constraints in the training process. 

The constructed PCNN-MM model should not be regarded as the replacement of 

simulations. Rather, it provides an alternative to predict process-structure relationships 
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when high-fidelity simulations are computationally expensive. The advantages of physics-

based simulations include high fidelity, good interpretability of results, and high accuracy 

if used as extrapolation, whereas their disadvantages include the reliance on prior physical 

knowledge and high computational cost for forward evaluation. The advantages of PCNN 

models include the low cost of forward evaluation and the capability of discovering 

unknown relationships. Yet they generally have some disadvantages for the fidelity and 

interpretability of results, as well as low accuracy in extrapolation, in comparison with 

simulations. The use of both simulations and PCNNs is expected in constructing high-

dimensional P-S-P relationships at an affordable cost. 

The PCNN-MM surrogate model can have three potential applications. First, the 

PCNN-MM model enhances the efficiency of process design when high-fidelity 

simulations need to be run repetitively to obtain samples for design optimization. 

Simulations can provide training data to train the PCNN-MM model, which is then used as 

the surrogate model for process design. Once optimal process parameters are identified, 

high-fidelity simulations can be used for verification. The required number of samples for 

high-dimensional optimization problems usually is very large. The cost of training PCNNs 

therefore can only be justified for complex problems with a high-dimensional searching 

space. Second, compared to high-fidelity simulations, the PCNN-MM model makes it 

possible to predict microstructure evolution in a larger domain with a lower computational 

cost. By using domain decomposition, the trained PCNN-MM model can be run multiple 

times to predict multiple dendritic growth in subdomains. The challenge is to take care of 

boundary conditions between subdomains. Third, the PCNN-MM model can be used in the 

digital twins [240] of AM processes to guide real-time process control, which has a high 
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demand for computational efficiency. In metal AM processes, the real-time thermal data 

can be collected by sensors and passed to the PCNN-MM model for predicting 

microstructure evolution. If the generated microstructure does not meet the requirement, 

then process parameters can be adjusted quickly. 

8.5 Conclusions 

In this chapter, a new generic process design framework is developed. The dendritic 

growth of Ti-6Al-4V alloy is simulated using the developed PF-TLBM model under 

various initial temperatures and cooling rates. A surrogate model of process-structure 

relationships is constructed based on the PCNN-MM trained by the simulation data from 

PF-TLBM. The evaluation of the PCNN-MM model after training is 36000 times as fast 

as that of the PF-TLBM model. The constructed surrogate model is used in single-objective 

and multi-objective BO to search the optimal process parameters so that the desired 

dendritic area and microsegregation can be achieved. For single-objective BO, the effects 

of the weights of individual objective functions on optimization results are investigated by 

sensitivity analysis. The computational results demonstrate that the weights of individual 

objective functions can help the designer to produce desired microstructure.  

The Pareto front and processing map for dendritic growth are constructed by multi-

objective BO. For multi-objective BO, the relative errors of dendritic area for the PF-

TLBM and the PCNN-MM are less than 0.8%, whereas the relative errors of 

microsegregation for both models are less than 15%. The relative errors of 

microsegregation for both models are large because the desired microsegregation is 300 

times as small as the desired dendritic area. The computational results demonstrate the 

feasibility and potential of the process design framework for process optimization. The 
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advantage of using multi-objective BO is that the Pareto front and the processing map can 

be constructed after the optimization. It is noted that the initial sampling points should 

cover the process window properly so that BO can search optimal processing parameters. 

In future work, the generic process design framework will be extended for materials 

design so that the optimal process parameters can be searched to reach desired materials 

properties by using the constructed surrogate. To improve the efficiency of GP and BO for 

large sample sizes, reduced-rank sparse matrix approximation methods will be used to 

estimate the inverse of the covariance matrix (the main computational bottleneck of GP) 

where only a subset of samples (inducing points) will be selected to construct GP. 
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CHAPTER 9. CONCLUSIONS 

9.1 Summary of the Work 

The objective of this research is to investigate the feasibility of a hybrid physics-

based data-driven process optimization approach to establish reliable surrogates of process-

structure-property relationships for metal additive manufacturing aided by mesoscale 

multiphysics simulation and physics-constrained machine learning. A new mesoscale 

multiphysics simulation model called PF-TLBM is developed to reveal the details of rapid 

solidification with predictions of grain morphology and composition distributions in 

microstructures. To reduce the computational costs in establishing the process-structure 

relationships, a new physics-constrained machine learning model called PCNN-MM is 

developed to serve as the surrogate to predict grain morphology and alloy compositions 

from process parameters, after being trained with simulation data and experimental data. 

After training, PCNN-MM can predict microstructures from process parameters efficiently 

without relying on expensive simulations or experiments. The predicted process-structure 

mappings can be applied to construct the process-structure surrogate relationship and 

perform optimization. A multi-objective Bayesian optimization approach is used to search 

the optimal process parameters so that the desired grain morphology and composition 

distributions can be achieved. 

In CHAPTER 3, PF-TLBM is developed to simulate rapid solidification of Ti-6Al-

4V alloy by concurrently coupling solute transport, heat transfer, latent heat, fluid 

dynamics, and phase transition. In this model, the phase-field method simulates the 

dendrite growth of alloys, whereas the thermal lattice Boltzmann method models heat 
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transfer and fluid flow. The phase-field method and the thermal lattice Boltzmann method 

are tightly coupled. The effects of latent heat and melt flow on the dendrite growth are 

investigated. This work also contains experimental comparison, sensitivity analysis of 

mesh sizes, as well as quantitative analyses of the temperature gradient, growth velocity, 

and their combinations. The simulation results of Ti-6Al-4V show that the consideration 

of latent heat is necessary because it reveals the details of the formation of secondary arms 

and provides more realistic kinetics of dendrite growth. The effect of fluid flow on dendrite 

growth is small under rapid solidification. The proposed multi-physics simulation model 

provides new insights into the complex solidification process in AM.  

In CHAPTER 4, a nucleation model is introduced in the PF-TLBM model to simulate 

heterogeneous nucleation at the boundary of the melt pool in SLM of AlSi10Mg alloy. A 

new method is proposed to compute heat fluxes for a 2D small melt pool in order to 

approximate the actual non-isothermal temperature field in SLM. The effects of latent heat 

and cooling rate on dendritic morphology and solute distribution are studied. The 

qualitative and quantitative analyses show that the inclusion of latent heat is necessary 

because it reveals the details of the formation of secondary arms, reduces the 

overestimation of microsegregation, and provides more realistic kinetics of dendritic 

growth. A higher cooling rate results in faster liquid-solid phase transition and higher 

microsegregation at grain boundaries. The PF-TLBM model is also extended to predict the 

multi-layer epitaxial grain growth in the complex heating and cooling environment in SLM. 

To save the computational cost, the Rosenthal equation method is used to predict the 

thermal history of the melt pool. A marching cell simulation scheme is used to further 
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reduce the computational cost. This work demonstrates the capability of the PF-TLBM 

model to simulate multi-layer printing processes in SLM.  

In CHAPTER 5, a novel MF-PCNN is proposed to reduce the required amount of 

training data, where physical knowledge is applied to constrain neural networks, and multi-

fidelity networks are constructed to improve training efficiency. A low-cost low-fidelity 

physics-constrained neural network is used as the baseline model, whereas a limited 

amount of data from a high-fidelity physics-constrained neural network is used to train a 

second neural network to predict the difference between the two models. The proposed 

framework is demonstrated with 2D heat transfer, phase transition, and dendritic growth 

problems, which are fundamental in materials modeling. Physics is described by PDEs. 

With the same set of training data, the prediction errors of PCNNs can be one order of 

magnitude lower than that of the classical ANN without physical constraints. The accuracy 

of the prediction is comparable to those from direct numerical solutions of equations. 

In CHAPTER 6, a new PCNN-MM is proposed to adjust the weights of different 

losses systematically. The training of the PCNN-MM is to solve a minimax problem and 

search for the high-order saddle points of the nonconvex-nonconcave loss function. To 

address the challenges of searching high-order saddle points, a novel saddle point search 

algorithm called Dual-Dimer method is proposed, where only first derivatives need to be 

calculated. The local convergence of the Dual-Dimer method is analyzed. The performance 

of the Dual-Dimer method is evaluated with three analytical nonconvex-nonconcave loss 

functions. It was shown that the Dual-Dimer method is computationally more efficient than 

the GDA method to find high-order saddle points in these analytical functions. The Dual-

Dimer method also provides additional eigenvalue information to make sure that the 
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desired high-order saddle points are found at the end of the training. A heat transfer 

example is used to demonstrate the effectiveness of the PCNN-MM, where its convergence 

is faster than that of the original PCNN with the adaptive weighting scheme. To further 

reduce the computational cost, an MF-PCNN-MM is developed to integrate the LF and HF 

data. The MF-PCNN-MM is demonstrated by three examples. The computational results 

demonstrate the effectiveness of the MF-PCNN-MM. 

In CHAPTER 7, a new sequential training scheme is developed to improve the 

convergence and prediction accuracy of PCNN-MMs in solving multiphysics problems. A 

new saddle point search algorithm called DD-CS is also developed to alleviate the curse of 

dimensionality in searching high-order saddle points during the training. The developed 

PCNN-MM and the DD-CS algorithm are demonstrated by two examples: thermal 

dendritic growth example and thermo-solutal dendritic growth example. In each example, 

different ML models with various training schemes are compared with each other. The 

computational results suggest that the sequential training scheme is better than the 

concurrent sequential training scheme since it helps the convergence of the PCNN-MM. 

The predicted phase field from the PCNN-MM with the DD-CS algorithm is slightly worse 

than that from the PCNN-MM with the Dual-Dimer algorithm. The spikes in the learning 

curve are designed to help the training of the PCNN-MM to escape the local saddle point 

so that the neural network may converge to a better saddle point. 

In CHAPTER 8, a new generic process design framework is developed. The dendritic 

growth of Ti-6Al-4V alloy is simulated using the developed PF-TLBM model under 

various initial temperatures and cooling rates. A surrogate model of process-structure 

relationships is constructed based on the PCNN-MM trained by the simulation data from 
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PF-TLBM. The constructed surrogate model is used in single-objective and multi-objective 

BO to search the optimal process parameters so that the desired dendritic area and 

microsegregation can be achieved. For single-objective BO, the effects of the weights of 

individual objective functions on optimization results are investigated through sensitivity 

analyses. The computational results demonstrate that the weights of individual objective 

functions can help the designer to produce desired microstructure. The Pareto front and 

processing map for dendritic growth are constructed by multi-objective BO. The 

computational results demonstrate the feasibility and potential of the process design 

framework for process optimization. 

9.2 Contributions of the Dissertation 

The novel contributions of the dissertation are highlighted as follows. 

• A new mesoscale multiphysics simulation model called PF-TLBM is 

developed to predict microstructure evolution of alloys in rapid solidification 

by concurrently coupling heterogeneous nucleation, solute transport, heat 

transfer, latent heat, fluid dynamics, and phase transition. A new method is 

proposed to compute heat fluxes for a two-dimensional small melt pool in 

order to approximate the actual non-isothermal temperature field in metal 

AM processes. To reduce the computational cost, a new marching cell 

simulation scheme is developed and introduced in the PF-TLBM model to 

predict the multi-layer epitaxial grain growth in metal AM processes. The 

developed PF-TLBM model enables a deeper understanding of the rapid 

solidification process in metal AM and makes it possible to simulate the 

microstructure evolution within the whole building part. 
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• A novel physics-based machine learning model called MF-PCNN is proposed 

to reduce the required amount of training data, and multi-fidelity networks 

are constructed to improve training efficiency. A new PCNN-MM is 

proposed to adjust the weights of different losses systematically. A novel and 

general saddle point search algorithm called Dual-Dimer method is proposed 

to train the developed PCNN-MM. To reduce the computational cost, a new 

MF-PCNN-MM is developed to integrate the LF and HF data. A new 

sequential training scheme is developed to aid the convergence of PCNN-

MMs for solving multiphysics problems. A new saddle point search 

algorithm called DD-CS is also developed to alleviate the curse of 

dimensionality in searching high-order saddle points during the training. The 

developed physics-constrained machine learning models and training 

algorithms are promising approaches to alleviate the curse of dimensionality 

in general ML applications. 

• A new generic process design framework is developed for process 

optimization. A surrogate model of process-structure relationships is 

constructed based on the PCNN-MM trained by the simulation data from PF-

TLBM. The constructed surrogate model is used in multi-objective BO to 

search the optimal process parameters so that the desired dendritic area and 

composition distribution can be achieved. 

9.3 Future Work 

In future work, the developed PF-TLBM model will be validated with ex-situ and in-

situ experiments by comparing both phase field and composition field. Qualitative 
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comparison of grain morphology and texture is not enough to validate simulation models. 

A more comprehensive approach is needed to compare both phase field and composition 

field quantitatively, since the composition of the solidified workpiece also significantly 

affects its mechanical properties (e.g., precipitation strengthening) and electrochemical 

properties (e.g., corrosion resistance). Quantities such as primary arm spacing, composition 

distribution, grain size distribution, and grain orientation distribution will be compared in 

model validation.  

The PF-TLBM model will be extended to simulate columnar-to-equiaxed transition, 

solid-state phase transformation, as well as multi-component PFM so that the more 

complete AM microstructure formation process can be modeled. Future extensions will 

also include 3D modeling, where efficient parallel algorithms will be developed. Note that 

there is still missing physics in the PF-TLBM simulation, such as Marangoni flow, 

defect/pore generation, and alloying element loss due to vaporization. The inclusion of 

those aspects in the future simulation framework will be necessary to model the variation 

of metal AM processes. The PF-TLBM model will be used to simulate the grain growth 

within the whole workpiece in decimeters during the SLM process in future work. A 

moving Gaussian heat source will be introduced in the thermal lattice Boltzmann method 

to predict the accurate thermal history. Furthermore, the empirical model parameters, such 

as interface energy, interface mobility, nucleation rate, and nucleation activation energy, 

need to be determined and calibrated based on experimental measurements, first-principles 

calculations, or atomistic simulations. The model form and parameter uncertainties 

associated with the developed model should be quantified to provide more confidence in 

the prediction. 
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In future work, the ANN architecture in the PCNN-MM could be replaced by 

recurrent neural networks, such as long short-term memory neural networks, which may 

be more appropriate to solve time-dependent problems. To further improve the training 

efficiency of the MF-PCNN and the MF-PCNN-MM, a sequential sampling strategy can 

be adopted to obtain an optimal combination of the HF and LF sample points for a given 

computational budget. The adjustment of hyperparameters for the Dual-Dimer algorithm 

and the DD-CS algorithm is based on sensitivity studies. In future work, a more systematic 

method to find the optimal hyperparameters will be developed so that the computational 

efficiency of both algorithms can be further improved. The developed MF-PCNN, PCNN-

MM, and MF-PCNN-MM can be applied in other general applications such as battery life 

prediction, climate modeling, and others. The generic saddle point search method including 

the Dual-Dimer algorithm and the DD-CS algorithm will be applied to solve other minimax 

problems, which arise from game theory, generative adversarial networks, and robust 

optimization. A new method will be developed to quantify the uncertainties from the 

predictions of PCNNs. 

In future work, other simulation models such as crystal plasticity can be adopted to 

predict mechanical properties of predicted microstructure from the PF-TLBM model. In 

this way, the surrogate model of complete process-structure-property relationships can be 

constructed using the PF-TLBM model, the PCNN-MM, and the crystal plasticity model. 

The generic process design framework will be extended for materials design so that the 

optimal process parameters can be searched to reach desired materials properties by using 

the constructed surrogate. To improve the efficiency of GP and BO for large sample sizes, 

reduced-rank sparse matrix approximation methods will be used to estimate the inverse of 
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the covariance matrix (the main computational bottleneck of GP) where only a subset of 

samples (inducing points) will be selected to construct GP.  
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