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Vainly facing the hermit in sparkling snow-clad hills;

I forget not the fairy in lone woods beyond the world.

Xueqin Cao



This thesis is dedicated to my friend Nuomin, who encourages me to march forward.
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SUMMARY

Modern robot navigation systems enable robots to automatically achieve navigation

goal in an obstacle filled surroundings by fusing sensor information and estimating robot

state. Most of the current researches make use of pose based controllers and intend to

localize robots more accurately for less trajectory tracking error in navigation. However,

pose estimation in Cartesian space is vulnerable to system latency, IMU drift, GPS error,

and image noise. Therefore, we prefer to redefine and resolve navigation problems in

perception space without absolute positioning rather than in world space.

This thesis first describes an image based visual servoing (IBVS) system for a nonholo-

nomic robot to achieve good trajectory following without real-time robot pose information

and without a known visual map of the environment. We call it trajectory servoing. The

critical component is a feature-based, indirect SLAM method to provide a pool of available

features with estimated depth, so that they may be propagated forward in time to generate

image feature trajectories for visual servoing.

Subsequently, we investigate the robustness of trajectory servoing against image noise

which is commonly researched in prior works. Trajectory servoing is demonstrated to de-

crease the tracking error compared with SLAM pose based control from both theoretical

analysis and experimental benchmark in noise environment. Additionally, a Gaussian un-

certainty model will also be proposed to help build a feature covariance weighted least

square controller that will improve the trajectory tracking performance. The covariance of

desired anchor features could be obtained by uncertainty propagation between perception

and world spaces along the trajectory.

Benchmark results via different evaluation metrics show trajectory servoing is more

accurate than pose based feedback with or without image noise when both rely on the

same underlying SLAM system. Moreover, uncertainty based trajectory servoing further

improves the tracking performance when using noisy images.

xii



CHAPTER 1

INTRODUCTION

1.1 Introduction

Navigation systems with real-time needs often employ hierarchical schemes that decom-

pose navigation across multiple spatial and temporal scales. Doing so permits the naviga-

tion solution to respond in real-time to novel information gained from sensors, while being

guided by the more slowly evolving global path. At the lowest level of the hierarchy lies

trajectory tracking to realize the planned paths or synthesized trajectories. In the absence

of an absolute reference (such as GPS) and of an accurate map of the environment, there

are no external mechanisms to support trajectory tracking. Onboard mechanisms include

odometry through proprioceptive sensors (wheel encoders, IMUs, etc.) or visual sensors.

Pose estimation from proprioceptive sensors is not observable, thus visual sensors provide

the best mechanism to anchor the robot’s pose estimate to external, static position refer-

ences.

Indeed visual odometry (VO) or visual SLAM (V-SLAM) solutions are essential in

these circumstances. However, they too experience drift, mostly due to the integrated ef-

fects of measurement noise and system latency. Specificly, the feedback rate from multiple

sensor (IMU, Camera, etc.) and control loops are impossible to be perfectly matched since

each latency varies, therefore, raw IMU data uncorrected by VO may be directily sent to

controller and cause tracking deviation [1]. Additionally, the accumulation of noise (e.g.

IMU bias, camera noise, calibration error, etc.) will cause the VO drift [2] and further un-

dermine the trajectory tracking. From the limitation of cost, cameras that are compatible

with small robots are easily be affected by Johnson-Nyquist thermal noise [3]. In the thesis,

it is proved that such typical Gaussian additive noise to each pixel will make SLAM pose
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based trajectory tracking inaccurate.

The hypothesis explored in this paper is that performing trajectory tracking in the image

domain reduces the sensitivity of trajectory tracking systems reliant on VO or V-SLAM for

accuracy. In essence, the trajectory tracking problem is shifted from feedback in pose space

to feedback in perception space. Perception space approaches have several favorable prop-

erties when used for navigation [4, 5]. Shifting the representation from being world-centric

to being viewer-centric reduces computational demands and improves run-time properties.

For trajectory tracking without reliable absolute pose information, simplifying the feedback

pathway by skipping processes that are not relevant to–or induce sensitivities to–the local

tracking task may have positive benefits. Using imaging sensors to control motion relative

to visual landmarks is known as visual servoing. Thus, the objective is to explore the use

of image-based visual servoing for long-distance trajectory tracking with a stereo camera

as the primary sensor. The technique, which we call trajectory servoing, will be shown to

have improved properties over systems reliant on VO or V-SLAM for pose-based feedback.

Trajectory tracking has been improved by skipping of uncertainty-affected localization

using IBVS and reciprocally, IBVS will also be improved by SLAM feature tracking mod-

ule in trajectory servoing. Gazebo simulations show SLAM tracking will help IBVS to

track the features more resistant to image noise. Compared with feature selection methods

used in SLAM pose based navigation to achieve more accurate localization, we build an

uncertainty model, propagate uncertainty through feature trajectory for all tracked features,

and use them in a novel optimization based IBVS controller with a covariance weighting

strategy. From the benchmark result, improved trajectory servoing is better than good fea-

ture (GF) SLAM pose based tracking system and basic trajectory servoing system with

respect to multiple metrics.
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Figure 1.1: A trajectory servoing system has two major components. One steers the robot
to track short paths, while the other ensures the sufficiency of features to use by querying a
SLAM module.

1.2 Contribution

The system described in the thesis blends visual servoing, SLAM, and basic concepts from

visual teach and repeat (VTR) to enable trajectory tracking of feasible paths by a mobile

robot in unknown environments with sufficient visual texture. We call this combination

of methods trajectory servoing because the objective is to perform long-term trajectory

tracking using visual servoing techniques. What enables this objective to be met is a stereo

visual SLAM system [6], which ties the desired trajectory to the image information.

The algorithmic components and information flow of a trajectory servoing system are

depicted in Fig. 1.1, and consist of two major components. The first one, described in §4.1,

is a trajectory servoing system for a set of world points and specified trajectory. These

points are obtained from the V-SLAM system as well as tracked over time. It is capable

of guiding a mobile robot along short paths. The second component, described in §4.2,

supervises the core trajectory servoing system and confirms that it always has sufficient

features from the feature pool to operate. Should this quantity dip too low, it queries the

V-SLAM module for additional features and builds new feature tracks. We also discuss the

potential trajectory servoing benefits in §4.3, especially the robustness of tracked feature

coordinates to image noise.
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Gaussian model is built in §5.1 for each tracked feature and propagated along the fea-

ture trajectory to provide additional uncertainty information to trajectory servoing process.

§5.2 proposes uncertainty-based trajectory servoing (U-TS) to mitigate the negative effects

of image noise described in §3.1.3. Based on weighted least square, U-TS applies adap-

tive covariance related weights for each feature to balance their contributions for a more

accurate control variable and less tracking error.

Relevant benchmark results in §6 show the evidence how (uncertainty-based) trajec-

tory servoing outperform baselines. Both §6.1 and §6.2 include experiment results about

the performance of core trajectory servoing system for short paths and the entire system

for long paths without image noise. Trajectory servoing is pretty unique in that short-term

trajectories can be tracked as well as pose-based feedback control with access to perfect

odometry. Though long-term accuracy is undermined by the reliance on SLAM, trajec-

tory servoing minimizes the reliance and exhibits less sensitivity to estimation error than

pose feedback methods. These image noise free tests tell us trajectory servoing indeed has

architectural advantages by shifting feedback from real time raw pose in Cartesian space

to pose triggered feature trajectory in perception space. §6.3 shows the benchmark results

in different image noise levels. The performance of trajectory servoing is far better than

SLAM pose based controller in each trajectory and U-TS is able to further decrease TS

tracking error in noisy environment.
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CHAPTER 2

BACKGROUND

2.1 Visual Teach and Repeat

Evidence that visual features can support trajectory tracking or consistent navigation through

space lies in the Visual Teach and Repeat (VTR) navigation problem in robotics [7, 8].

Given data or recordings of prior paths through an environment, robots can reliably retrace

past trajectories. The teaching phase of VTR creates a visual map that contains features

associated with robot poses obtained from visual odometry [7, 9, 10, 11, 12]. Extensions

include real-time construction of the VTR data structure during the teaching process, and

the maintenance and updating of the VTR data during repeat runs [9, 10]. Feature descrip-

tor improvements make the feature matching more robust to the environment changes [12,

13]. Visual data in the form of feature points can have task relevant and irrelevant features,

which provide VTR algorithms an opportunity to select a subset that best contributes to the

localization or path following task [9, 11]. While visual map construction seems similar to

visual SLAM, map construction is usually not dynamic; it is difficult to construct or update

visual map in real-time while in motion because of the separation of the teach and repeat

phases. In addition, VTR focuses more on local map consistency and does not work toward

global pose estimation [11] since the navigation problems it solves are usually defined in

the local frame.

Another type of VTR uses the optical flow [8, 14] or feature sequence [15, 16, 17]

along the trajectory, which is then encoded into a VTR data structure and control algorithm

in the teaching phase. Although this method is similar to visual servoing, the system is

largely over-determined. It can tolerate feature tracking failure, compared with traditional

visual servo system, but may lead to discontinuities [18]. Though this method handles
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long trajectories, and may be be supplemented from new teach recordings, it can only track

taught trajectories.

2.2 Visual Servoing

Visual servoing (VS) has a rich history and a diverse set of strategies for stabilizing a

camera to a target pose described visually. VS algorithms are classified into one of two

categories: image based visual servoing (IBVS) and position based visual servoing (PBVS)

[19, 20]. IBVS implementations include both feature stabilization and feature trajectory

tracking [20, 21]. As a feedback strategy IBVS regulation does not guarantee what path is

taken by the robot since the feature space trajectory has a nonlinear relationship with the

Cartesian space trajectory of the robot. Identifying a feature path to track based on a target

Cartesian space trajectory requires mapping the robot frame and the target positions into

the image frame over time to generate the feature trajectory [21, 22], precisely what is done

here.

The target application is trajectory tracking for a mobile robot. Mobile robots have

been studied as candidates for visual servoing [7, 8, 23, 24, 25, 26, 27]. Some of them use

IBVS but do not use the full IBVS equations involving the image Jacobian. The centroid

of the features [7][26], the most frequent horizontal displacement of the matched feature

pairs [8] or other qualitative cost functions [25] are used to generate [7] or correct [8] the

feedforward angular velocity of mobile robot. These simplifications are reasonable since

the lateral displacement of the features reflects task relevant movement to be regulated by

the robot. However, they are best suited to circumstances with higher inaccuracy tolerance

such as an outdoor, open field navigation. We use more precise velocity relations between

the robot and feature motion to generate a feedback control signal for exact tracking similar

to [23]. That work studied the path reaching problem with a visible path, which does not

hold here.
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2.3 Navigation Using Visual SLAM

Visual simultaneous localization and mapping (V-SLAM) systems estimate the robot’s tra-

jectory and world structure as the robot moves through space [28]. For some autonomous

robots, the SLAM pose estimates provide good signals for using pose-based feedback to

track trajectories using standard control policies. The problem associated to reliance on

SLAM is the potential to accrue large estimation drift, which degrades trajectory tracking

and goal attainment.

Pose estimation accuracy of SLAM is a major area of study [6, 29, 30, 31, 32]. How-

ever, most studies only test under open-loop conditions [6, 29, 30, 32], i.e., they only

analyze the pose estimation difference with the ground truth trajectory, and do not con-

sider the error induced when the estimated pose informs feedback control. More recently,

closed-loop evaluation of V-SLAM algorithms as part of the feedback control and naviga-

tion system are tested for individual SLAM systems [33, 34, 35] or across different systems

[1]. Closed-loop studies expose the sensitivity of pose-based feedback control and navi-

gation, e.g., sensitivity to V-SLAM estimation drift and latency. Our work builds upon an

existing closed-loop benchmarking framework and shows sensitivity reduction over con-

ventional pose based closed-loop navigation solution. The proposed trajectory servoing

(TS) method is not tied to a specific V-SLAM implementation.

2.4 Noise Effects in SLAM and Visual Servoing

SLAM pose drift (especially IMU drift) could be significantly corrected by visual odometry

(VO) whose accuracy is based on feature matching and tracking [36, 37]. However, image

noise will negatively affect VO from the following aspects: feature matching [37, 38],

feature tracking [37, 39, 40] and pose drifting [41, 38], each of which may cause potential

problems. Therefore, many improvements have been applied to mitigate noise effects. For

feature matching, FFDNet [42] is used to denoise the image which leads to an increase of
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correct matching rate of SIFT, SURF and ORB [38]. For feature tracking, image motion

models are usually applied to minimize the regional dissimilarity [39] and set up rejection

rules to remove outliers caused by uncertainties like occlusion, scale variation, and wrong

association[40].

Unfortunately, VO will still be undermined by drift [36, 38] even we have perfect

matching and tracking, since noise could also contribute to VO via inliers and accumulate

from the incremental pose estimation in ORB SLAM2 [36, 43, 44] if no global feedback

happens (loop closure or global BA). Therefore, some references including prior works of

our lab investigate the relations between pose estimation and conditioning of inliers [45,

46, 47, 48, 49, 50]. and only use those well conditioned features to localize.

IBVS has been recognized to be more robust to noise than pose based visual servoing

(PBVS) [19, 20], since pose estimation from feature patterns is sensitive to uncertainty

[51]. Simulation results also show that IBVS only has a fairly gradual, linear increase

of error when the image noise level is increasing [52]. Therefore, we have the reason to

hypothesize that trajectory servoing may perform better than SLAM pose based trajectory

tracking since it also bypasses localization which will cause drift and amplify the feature

noise.

2.5 Good Feature Selection

In V-SLAM or visual navigation systems, localization or navigation is usually over deter-

mined by the excess number of tracked features. Sometimes it is beneficial to select part

of the most informative or best conditioning feature points, lines or patches to reduce the

noise contributions and achieve better system properties (i.e. estimation accuracy, real-time

property etc.). In OOMC-SLAM [47, 48], the observability matrix is used to select the most

observable triplets and find the maximum consensus set to update the system with Extended

Kalman Filter (EKF). It shows higher accuracy than 1-point RANSAC [53] which initial-

izes models through only 1 point. In addition, the non-filter bundle adjustment based ORB
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SLAM, good feature selection could also be implemented to improve the performance of

least square pose optimization [49, 6]. Similarly the selection of most informative sub-

segment from each 3D line plays the same role in line-assisted VO/VSLAM [50]. Finally,

the most recent research [54] shows that dynamically assigning an appropriate size budget

and selecting a condition-maximized subgraph for BA estimation will contribute to better

BA-based V-SLAM back-ends, which extends the concept of selection from features to

graphs.

Some visual servoing controllers also aim to manage the features they use in order to

achieve better control properties. To guarantee a smooth tracking, some visual servoing

controllers set different weights to all of the features according to their positions in the

image instead of strictly using a feature subset [55, 56]. It inspires us to further improve

the accuracy of trajectory servoing using a feature covariance weighting strategy.

2.6 Uncertainty Modeling

The stochastic representation of environment enables robot to understand its observations

from a probabilistic aspect [57, 58]. Similar to [57], we derive the depth uncertainty from

the first order approximation relation between depth and disparity. Another depth model-

ing method named inverse depth parametrization could be used to cope with the scenarios

where features have infinite distance at the cost of more computational resources for 6D

parameters rather than 3D [59], which does not hold true here. As for the pixel coordi-

nate error, we use a common zero mean Gaussian distribution [60] where the variance is

extracted from ORB-SLAM2.

In addition to uncertainty modeling, feature covariance propagation is also widely dis-

cussed [60, 61, 62, 63, 64, 65]. Uncertainty propagation in stereo reconstruction is initially

described in [61, 62] with respect to camera calibration and image noise. Then the co-

variance propagation in general stereo configurations (not rectified) is proposed in [60, 63,

64]. More detailed and comprehensive analysis including uncertainty propagation between
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different camera views could be found in [65, 66]. For those features with long depth, bias

introduced in the calculation of depth should also be estimated and compensated [67, 68].

Some researchers have quantitatively investigated how the feature uncertainty affects

visual servoing [65, 69, 70]. Even it derives visual servoing tracking error caused by

tracked feature uncertainty [69, 70], neither of them consider the desired feature uncertainty

or improve the controller with the knowledge of uncertainty information. The uncertainty

modeling and propagation in the thesis is similar to [65] which includes the projection and

reconstruction process. However, its controller is not compatible with trajectory servoing.

Therefore, a new controller is designed considering the uncertainty information.
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CHAPTER 3

PRELIMINARY KNOWLEDGE

This chapter will introduce some prerequisite knowledge about the thesis. §3.1.1 de-

scribes the SLAM system definitions, classifications, and development. §3.1.2 introduces

the good feature (GF) ORB-SLAM system on which we build navigation system and the

ROS/Gazebo based benchmark environment. §3.1.3 shows the problems of noise effects in

V-SLAM pose estimation. §3.2.1 and §3.2.2 illustrate visual servoing basic concepts and

derive the rate equations from robot motion to feature velocity. In general, this chapter will

give readers a rough understanding of basic knowledge for the remaining thesis and we

recommend to carefully read relevant papers [6, 71, 43, 44] for more details.

3.1 Simultaneous Localization and Mapping (SLAM)

3.1.1 SLAM Basics

Simultaneous localization and mapping (SLAM) comprises the simultaneous estimation of

the state of a robot equipped with on-board sensors and the construction of the environment

map that the sensors are perceiving [71]. It is widely used in navigation, localization and

mapping tasks for indoor mobile robots where there is no GPS absolute positioning.

SLAM is an integrated system containing various subsystems that could be compatible

with multiple platforms. Generally it could be divided into front end, used to extract and

model sensor data, and back end, used to infer states from the obtained information. The

mainstream types of visual SLAM front end are based on direct methods and feature based

methods. The feature based methods use descriptors to match features between two frames

and estimate camera relative motion. On the other hand, the direct methods estimate camera

motion using optical flow or intensity information without calculating descriptors. As for
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the back end, nearly all the pose estimation methods, including filter based, graph based or

bundle adjustment (BA) based ones commonly condense down to successive linearizations

(e.g. Gauss-Newton, Levenberg-Marquardt).

The development of SLAM is broken into three stages: classical age, algorithmic anal-

ysis age and robust perception age. Basic probabilistic approaches and data association

methods are proposed in the classical age. The algorithmic analysis age mainly studies

the properties of SLAM (e.g. observability, convergence, and consistency). Now we have

stepped into the robust perception age where we care about the robustness of SLAM and

computation resources. The state-of-art ORB-SLAM [43, 44] system absorbs the advan-

tages of prior works and achieves good real time property with the uniform using of ORB

features in all tasks and recovers from tracking failure by real time camera relocalization.

Therefore, we select this SLAM system to be the base of trajectory servoing.

3.1.2 Code Base

Good Feature (GF) ORB-SLAM

The code platform used in the thesis is based on ORB-SLAM, a feature-based SLAM

system that operates in real time, for small and large indoor and outdoor environments

[43]. It is compatible with multiple visual sensors: monocular camera, RGBD camera and

stereo camera [44], therefore, it is a commonly used platform in navigation and mapping

problems. The use of ORB features guarantees an outstanding balancing between accuracy

and efficiency: ORB is not as time-consuming as SIFT and SURF but still remains good

invariance to rotation, scale and illumination. Therefore, we are allowed to assign more

computational resources to pose optimization, loop closing and camera relocalization from

covisibility graphs and essential graphs without compromising much accuracy.

The ORB-SLAM system includes three parallel threads: tracking, local mapping, and

loop closing (see Figure 3.1). The tracking module tracks features from the previous frame

or from the searching of local map reprojection. Then it uses all the features to update pose
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Figure 3.1: ORB-SLAM System [43]

information and decides if a new keyframe should be inserted. Next, the key frames are sent

to local mapping module that performs local BA by g2o [72] to obtain an optimal camera

pose and feature positions. Selecting for high quality points and culling for redundant key

frames are also executed in the local mapping thread. The loop closing first detects the

loop from the key frames and then performs pose graph optimization to achieve global

consistency. These components coordinate and facilitate with each other towards more

accurate robot pose estimation and environment mapping.

Good Feature (GF) ORB-SLAM proposed in [6] modifies the tracking thread of ORB-

SLAM by selecting a subset of the matched inliers for more accurate pose estimation.

It investigates a common bundle adjustment pose optimization process in feature based

VO/VSLAM:

arg min ‖h(x, p)− z‖2 (3.1)

where x is the pose of the camera, p is the 3D feature points and z the is corresponding

measurements on 2D image frame. The measurement function, h(x, p), is a combination

of world-to-camera transformation and pinhole projection. Based on Gaussian-Newton:

x(s+1) = x(s) −H+
x

(
z − h

(
x(s), p

))
(3.2)
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Figure 3.2: Good Feature Selection

where Hx is the Jacobian of h
(
x(s), p

)
. It connects the pose optimization error to measure-

ment and map errors:

εx = H+
x (εz −Hpεp) (3.3)

Hp is a block diagonal matrix of size 2n× 3n, where n is the number of matched features.

The discussion about the aspects of map and measurement variance and bias concludes

that optimizing the spectral properties ofHc, the combination ofHx andHp, could improve

least squares pose optimization accuracy. Therefore, the stochastic-greedy-based Max-

logDet feature selection algorithm is used to meet real-time demand of ORB-SLAM. It

first selects a subset of all the observations, then finds the maximizer observation of log-det

and combines it into the set of selected features until a predefined number of features has

been selected (see Figure 3.2).

Codebase Implementation

We need a code base on which we could build our trajectory servoing system. For quan-

tifiable and reproducible outcomes, the ROS/Gazebo SLAM evaluation environment from
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Figure 3.3: Gazebo environment top view and robot view with SLAM features. The two
red dots are the start poses of the robot. The right figure is the simulated camera image
with Gaussian noise and tracked features from (GF) ORB-SLAM.

[1] is used for the tests. The simulated robot is a Turtlebot. To benchmark the trajec-

tory servoing performance with camera noise, zero-mean Gaussian noise is added to its

stereo camera. Figure 3.3 shows a top down view of the world plus robot views without

and with image noise. Part of the robot’s software stack includes the Good Feature (GF)

ORB-SLAM system [6] for estimating camera poses. It is configured to work with a stereo

camera and integrated into a loosely coupled, visual-inertial (VI) system [1, 73] based on a

multi-rate filter to form a VI-SLAM system. The trajectory servoing system will interface

with the GF-ORB-SLAM system to have access to tracked features for IBVS.

We mainly use four ROS packages to achieve the system. The package of gf orb slam 2

includes GF ORB-SLAM2 functions that solve and publish visual odometry (VO) for robot

[1]. Then VO is fused with IMU pose estimation in ethzasl msf package, which is an open

source library to implement MultiSensor-fusion extended kalman filter (MSF-EKF) [73].

The trajectory servoing package contains trajectory planning, feature trajectory generating

and IBVS controller functions. Finally trajectory servoing benchmark package organizes

the functions above, repeats trajectory servoing processes records robot poses and analyze

tracking error. Other related auxiliary ROS packages for ROS messages defining, odometry

converting etc. are not introduced here due to space limitations.

3.1.3 Noise Effects in V-SLAM

Image noise will significantly affect the matching, tracking and localization in V-SLAM

system thus the accuracy of visual odometry. The odometry dramatically drifts since un-
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certainty of bundle adjustment (BA) and robot motion will locally accumulate when no

global feedback (e.g. global BA, loop closure) is activated, especially for an ORB-SLAM

system that uses only relative motion without GPS absolute positioning. More specificly,

(3.4) gives the covariance of camera pose error [41]:

ΣGt = JΣGt−1J
T + ΣMt−1,t (3.4)

where ΣGt and ΣMt are the covariance matrices of camera pose and relative motion re-

spectively. J is the Jacobian matrix relating robot states during consecutive time steps. It

is clear that the pose estimation covariance is propagated along the trajectory and relative

motion uncertainty is continuously added up.

Experimentally, benchmarking results on ORB-SLAM shows mild image noise will

contribute to significant pose estimation error [38]. When the standard deviation (STD) of

irradiance-independent image noise σc increases from σc = 0.005 to σc = 0.05, the RMSE

of ATE increases from 6.7 cm to 26.2 cm, a non-negligible increase of 19.5 cm.

Therefore, many improvements (e.g. feature filtering, feature selection, image denois-

ing etc.) are designed to increase V-SLAM localization accuracy in noisy environment (see

§2.4 and §2.5). Such improvement will improve the performance of SLAM pose based

trajectory tracking, however, trajectory servoing that uses IBVS controller is possible to

be even more robust to noise compared with these advanced V-SLAM pose based tracking

system. In §6, the good feature (GF) ORB-SLAM [49] will be the strong baseline methods

in which localization accuracy has been significantly improved from basic ORB-SLAM.

3.2 Visual Servoing (VS)

3.2.1 Visual Servoing Basics

Visual servoing employs vision information in close loop systems to control robot motion.

It mainly includes two categories: position based visual servoing and image based visual
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Figure 3.4: PBVS Control System

Figure 3.5: IBVS Control System

servoing. The former one builds the mapping between image signals and robot pose and

compares the desired and current pose to form close loop control. The latter one directly

designs a control law in image space to make current features converge to desired ones and

relates feature velocity to robot velocity with the image Jacobian.

The block diagrams of the two visual servoing control system are shown at Figure 3.4

and Figure 3.5. PBVS has an extra pose observer in the feedback loop and feeds pose

differences to its pose based controller. IBVS directly uses the image Jacobian to convert

image feature error to control variable. For both systems, linear and angular velocities are

usually used as control commands that send to robot low-level servo driver (red dashed

blocks represent robot).

3.2.2 Image-Based Visual Servoing Rate Equations

The core algorithm builds on IBVS [74], thus this section covers IBVS with an emphasis

on how it directly relates the velocity of image features to the robot velocities via the

image Jacobian [19, 20]. These equations will inform the trajectory tracking problem under

non-holonomic robot motion. We use more modern notation from geometric mechanics
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[75] since it provides equations that better connect to contemporary geometric control and

SLAM formulations for moving rigid bodies.

Non-Holonomic Robot and Camera Kinematic Models

Let the motion model of the robot be a kinematic Hilare robot model where the pose state

gWR ∈ SE(2) evolves under the control u = [ν, ω]T as

ġWR = gWR ·


1 0

0 0

0 1


ν
ω

 = gWR · ξu, (3.5)

for ν a forward linear velocity and ω an angular velocity, and ξu ∈ se(2). The state is

the robot frame R relative to the world frameW . The camera frame C is presumed to be

described as hRC relative to the robot frame. Consequently, camera kinematics relative to

the world frame are

ḣWC = gWR · hRC · Ad−1
hRC
·


1 0

0 0

0 1


ν
ω

 . = gWR · hRC · ζu (3.6)

with ζu ∈ se(2). Now, let the camera projection equations be given by the function H :

R3 → R2 such that a point qW projects to the camera point r = H ◦ hCW(qW). Under

camera motion, the differential equation relating the projected point to the camera velocity

is

ṙ = DH(qC) ·
(
ζu · qC

)
, (3.7)

where the point q is presumed to be static, i.e., q̇ = 0, and qC = hCWq
W , and D is the

differential operator. Since the operation ξ · q is linear for ξ ∈ se(2), q ∈ R3, it can be
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written as a matrix-vector product M(q)ξ leading to,

ṙ = DH(qC) ·M(qC)ζu = L(qC)ζu. (3.8)

where L : R3 × se(2) is the Image Jacobian. Given the point and projection pair (q, r) ∈

R3 × R2, L works out to be

L(q) = L(q, r) =

− f
q3

0 r2

0 − f
q3
−r1

 , (3.9)

where f is the focal length. Recall that r = H(q). Re-expressing it as a function of

(q, r) simplifies its written form, and exposes what information is available from the image

directly r ∈ R2 and what additional information must be known to compute it: coordinate

q3 from qC ∈ R3 in the camera frame, which is also called depth. With a stereo camera,

the depth value is triangulated. The next section will use these equations for image-based

trajectory tracking.
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CHAPTER 4

TRAJECTORY SERVOING SYSTEM

4.1 Trajectory Servoing

Pose-based feedback control is generally used in trajectory tracking. In the absence of

global position knowledge, V-SLAM system provides the pose estimates needed for feed-

back. Tracking performance will largely depend on localization accuracy since the V-

SLAM system serves as an observer of robot pose in the feedback loop. Figure 4.1 shows

the block diagram of the typical V-SLAM pose-based control architecture. Pose estimation

is sensitive to image measurements. Any uncertainty (e.g. IMU bias, camera noise, calibra-

tion error, etc.) will accumulate [2], immediately affect the feedback loop and further affect

the control result. In addition, high visual processing latency will cause lower estimation

accuracy due to late correction of raw IMU data [1]. To overcome these shortcomings, we

design a mobile robot tracking method that bypasses pose feedback and provides feedback

control directly through the image space.

The standard IBVS equations presented in §3.2.2 typically apply to tracked features

with known static positions in the world (relative to some frame attached to these posi-

tions). As described in §2.1 and §2.2, a visual map or visible targets are usually necessary.

The prerequisites needed for stable tracking and depth recovery of features are major chal-

lenges regarding the use of visual servoing in unknown environments. Fortunately, they

are all possible to obtain based on information and modules available within the software

stack of an autonomous mobile robot. This section describes the basic trajectory servoing

implementation and describes how to build a solution that satisfies the prerequisites. It fo-

cuses on short-term navigation where sufficient image features remain within the field of

view for the entire trajectory.
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Figure 4.1: Block Diagram for V-SLAM Posed Based Control
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gWR (t)

S∗(t)
S(t)

Robot
Pose

H ◦ hCW(ti) H ◦ hCW(ti+1)
QW

Figure 4.2: Trajectory servoing process. Matches from S∗ to S define the control u, where
S∗(t) is defined by the desired trajectory.

Trajectory servoing requirements condense down to the following: 1. A set of image

points, S∗(t0), with known (relative) positions; 2. A given trajectory and control signal

for the robot starting at the robot’s current pose or nearby, gWR (t0); and 3. The ability to

index and associate the image points across future image measurements, S∗(t) ↔ S(t),

when tracking the trajectory. The trajectory servoing process and variables are depicted

in Figure 4.2. The autonomy modules contributing this information are the navigation and

V-SLAM stacks. The navigation stack generates a trajectory to follow. An indirect, feature-

based V-SLAM stack will keep track of points in the local environment and link them to

previously observed visual features while also estimating their actual position relative to

the robot.

4.1.1 Trajectory and control signals

Define S = { ri }nF
1 ⊂ R2 as a set of image points in the current camera image, sourced

from the set Q =
{
qWi
}nF

1
⊂ R3 of points in the world frame. Suppose that the robot

21



should attain a future pose given by g∗, for which the points in Q will project to the image

coordinates S∗ = H ◦ (g∗hRC )−1(Q). For simplicity, ignore field of view issues and oc-

clusions between points. Their effect would be such that only a subset of the points in Q

would contribute to visual servoing.

Assume that a specific short-duration path has been established as the one to follow,

and has been converted into a path relative to the robot’s local frame. It either contains

the current robot pose in it, or has a nearby pose. Contemporary navigation stacks have a

means to synthesize both a time varying trajectory and an associated control signal from the

paths. Here, we apply a standard trajectory tracking controller [76] to generate ξ∗u(t) and

gW,∗
R (t) by forward simulating (3.5); note that ξ∗u contains the linear velocity ν∗ and angular

velocity ω∗. Some navigation stacks use optimal control synthesis to build the trajectory.

Either way, the generated trajectory is achievable by the robot.

In the time-varying trajectory tracking case, we assume that a trajectory reference hWC (t)

exists along with a control signal u∗(t) satisfying (3.6). It would typically be derived from

a robot trajectory reference gWR (t) and control signal u∗(t) satisfying (3.5). Using those

time-varying functions, the equations in (3.6) are solved to obtain the image coordinate

trajectories. Written in short-hand to expose only the main variables, the forward integrated

feature trajectory S∗ is:

Ṡ∗ = L ◦ hCW(t)(QW) · ζu∗(t), with

S∗(0) = H ◦ hCW(0)(QW).

(4.1)

It will lead to a realizable visual servoing problem where ν∗, ω∗, and S∗(t) are consistent

with each other. The equations will require converting the reference robot trajectory to a

camera trajectory hW,∗
C (t) using Ad−1

hRC
.
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4.1.2 Features and feature paths

The V-SLAM module provides a pool of visible features with known relative position for

the current stereo frame, plus a means to assess future visibility if desired. Taking this

pool to define the feature set S∗(0) gives the final piece of information needed to forward

integrate (4.1) and generate feature trajectories S∗(t) in the left camera frame. This process

acts like a short-term teach and repeat feature trajectory planner but is simulate and repeat,

for on-the-fly generation of the repeat data.

A less involved module could be used besides a fully realized V-SLAM system, how-

ever doing so would require creating many of the fundamental building blocks of an in-

direct, feature-based V-SLAM system. Given the availability of strong performing open-

source, real-time V-SLAM methods, there is little need to create a custom module. In

addition, an extra benefit to tracked features through V-SLAM system is that a feature map

is maintained to retrieve same reappeared features. As will be shown, this significantly

improves the average lifetime of features, especially compared to a simple frame by frame

tracking system without the feature map.

After the V-SLAM feature tracking process, we are already working with this feasible

set whereby the indexed elements in S correspond exactly to their counterpart in S∗ with

the same index, i.e., the sets are in correspondence.

4.1.3 Trajectory Servoing Control

Define the error to be E = S − S∗ where elements with matched indices are subtracted.

The error dynamics of the points are:

E = Ṡ − Ṡ∗ = Lu(h
C
W(Q),S;hRC ) · u− Ṡ∗ (4.2)

where we apply the same argument adjustment as in (3.9) so that dependence is on im-

age features then point coordinates as needed. Further, functions or operations applied to
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indexed sets will return an indexed set whose elements correspond to the input elements

from the input indexed set. Since the desired image coordinates S∗ are not with respect to

a static goal pose but a dynamic feature trajectory, Ṡ∗ 6= 0, see (4.1). Define e, s, s∗, and

L to be the vectorized versions of E, S, S∗ and L. Then,

ė = L(hCW(q), s;hRC ) · u− ṡ∗ (4.3)

is an overdetermined set of equations for u when nF > 2. Removing the functional de-

pendence and breaking apart the different control contributions, the objective is to satisfy,

ė = L · u− ṡ∗ = L1ν + L2ω − ṡ∗ = −λe. (4.4)

A solution is to define,

ω =
(
L2
)† (−L1ν − λe + ṡ∗

)
, (4.5)

so that

ė = −λe + ∆e, (4.6)

where ∆e is mismatch between the true solution and the computed pseudo-inverse solution.

If the problem is realizable, then ∆e will vanish and the robot will achieve the target pose.

If ∆e does not vanish, then there will be an error (usually some fixed point ess 6= 0). It

is common for the robot’s forward velocity to be set to a reasonable constant ν = ν̄ in the

angular control solution (4.4). This law drives the camera frame to the target pose (relative

toW).

Since the desired feature set is time varying from S∗(t) in equation (4.1):

ṡ∗ = L1(qC
∗
(t), s∗(t))ν∗ + L2(qC

∗
(t), s∗(t))ω∗. (4.7)
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The vectorized steering equations (4.5) lead to

ω =
(
L2(qC, s)

)†(
L1(qC

∗
(t), s∗(t))ν∗ − L1(qC, s)ν + L2(qC

∗
(t), s∗(t))ω∗ − λe

)
.

(4.8)

They consist of feedforward terms derived from the desired trajectory and feedback terms

to drive the error to zero. The feedforward terms should cancel out the Ṡ∗ term in (4.2),

or equivalently the now non-vanishing ṡ∗ term in (4.3). When traveling along the feature

trajectory S∗(t), the angular velocity ω is computed from (4.8), where starred terms and ν

are known quantities. To the best of our knowledge, no general IBVS tracking equations

have been derived that combine feed-forward and feedback control elements.

4.2 Long Distance Trajectory Servoing

Short-term trajectory servoing cannot extend to long trajectories due to feature impoverish-

ment. When moving beyond the initially visible scene, a more comprehensive trajectory

servoing system would augment the feature pool S∗ with new features. Likewise, if navi-

gation consists of multiple short distance trajectories, then the system must have a regener-

ation mechanism for synthesizing entirely new desired feature tracks for the new segment.

The overlapping needs for these two events inform the creation of a module for feature

replenishment and trajectory extension.

4.2.1 Feature Replenishment

The number of feature correspondences nF in S and S∗ indicates whether trajectory ser-

voing can be performed without concern. Let the threshold τfr determine when feature

replenishment should be triggered. Define S∗i (t)|
ti,e
ti,s as the ith feature trajectory starting

from ti,s and ending at ti,e. The case i = 0 represents the first feature trajectory segment

generated by (4.1) for ti,s = 0, integrated up to the maximum time tend of the given tra-
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Figure 4.3: Feature replenishment process. There are three segments of feature trajectories.
Stars are observed point sets at corresponding time. Each circle is the start or end time of
next or this segment of feature trajectory. Three feature trajectories are generated by the
feature replenishment equation (4.9).

jectory. The time varying function nF(t) is the actual number of feature correspondences

between S(t) and S∗i (t) as the robot proceeds.

When nF(t) ≥ τfr, the feature trajectory S∗i (t) may be used for trajectory servoing.

When nF(t) < τfr, the feature replenishment process will be triggered at the current time

and noted as ti,e. The old feature trajectory S∗i (t)|
ti,e
ti,s is finished. A new feature trajectory

is generated with

S∗i+1(t)|
ti+1,e

ti+1,s
= H ◦ (g∗(ti,e, t)h

R
C )−1(QW(ti,e)), (4.9)

where g∗(ti,e, t) is the transformation between the current robot pose and a future desired

pose (t > ti,e) on the trajectory. The poses behind the robot are not included. The set

QW(ti,e) consists of observed points at the current time ti,e. The feature pool is augmented

by these current features. When this regeneration step is finished, the exact time will be

assigned as the ti+1,s. Trajectory servoing is performed on this new feature trajectory until

the regeneration is triggered again or the arriving at the end of the trajectory. The process

of regenerating new feature tracks is equivalent to dividing a long trajectory into a set of

shorter segments pertaining to the generated feature trajectory segments. An example of

this feature replenishment is shown in Figure 4.3.

During navigation, (4.9) requires the current robot pose relative to the initial pose to
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Figure 4.4: Block Diagram for long-term Trajectory Servoing

be known. In the absence of an absolute reference or position measurement system, the

only option available is to use the estimated robot pose from V-SLAM, or some equivalent

process. Although there are some drawbacks to relying on V-SLAM, it attempts to keep

pose estimation as accurate as possible over long periods through feature mapping, bun-

dle adjustment, loop closure, etc.. To further couple V-SLAM and trajectory servoing, we

design a multi-loop scheme, see Figure 4.4. The inner loop is governed by trajectory ser-

voing with V-SLAM tracked features. The V-SLAM estimated pose will only be explicitly

used in the outer loop when performing feature replenishment. In this way, the inner visual

feedback loop will not be affected by the uncertainty from pose estimation. Plus the outer

loop will only be activated when starting a new feature replenishment; and since the visual

information is received, fused, and optimized with an IMU, it generates a robot pose that

is more reliable than the raw poses used in the inner loop of V-SLAM pose based control

(shown in Figure 4.1). However, relying on V-SLAM still introduces measurement error or

drift, which means that long-term trajectory servoing along an absolute, desired trajectory

will accrue error.

4.3 Trajectory Servoing Benefits in Image Noise

Simply speaking, trajectory servoing is composed of IBVS with V-SLAM feature tracking

and replenishing. Therefore, it not only inherits all the IBVS benefits but also enjoys a

stable feature tracking from V-SLAM.

IBVS has the property to be resistant to noise [19, 20]. Relevant experiments [52]
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have shown it will only have a fairly gradual, linear increase of error under increasing

image noise level. It also shows there appears to be no significant benefit by increasing the

number of feature points in IBVS. These discoveries support the potential use of trajectory

servoing when navigating in a noisy environment with a time-variant feature pool.

In addition, V-SLAM feature tracking process will automatically track those low un-

certainty features with high probability and vice versa. It guarantees trajectory servoing

primarily to navigate with those low uncertainty features and could be verified by Monte

Carlo simulation in Gazebo environment. The base configurations of trajectory servoing

has been described in §3.1.2. We repeat the Monte Carlo simulations with the images con-

taminated by additive Gaussian noise at different standard deviations (STD) σI from 0.02

to 0.2 with the step of 0.01, i.e.

σI = 0.02, 0.03, 0.04, ..., 0.2 (4.10)

Given Gazebo simulation platform, we are able to publish zero control command to Turtle-

bot to maintain its initial position and record consecutive R frames with tracked points

from the left camera.

To avoid potential confusions, we name the map points as points and their observa-

tions as features in this section. Tracking thread of ORB-SLAM (see Figure 3.1) will

assign a unique and permanent ID to all the observed features associated to the same map

point for consistent tracking. Without the loss of generality, we assume the allocated ID

numbers i = 1, 2, ..., Q, where Q is the total number of visible points in R frames. And

ith point could be observed at frames Fi = {fj|j = 1, 2, ..., Ni} with the coordinates

Xi = {xj = (uj, vj) ∈ R2}Ni
j=1, where |Fi| = Ni is the number of frames ith point ap-

pears in. Under these assumptions and definitions, we could easily obtain and represent the

numerical characteristics of ith feature.

Define the observability score Pi of ith point as the ratio between the number of frames
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where ith point could be observed Ni and the total frame number R, i.e.

Pi =
Ni

R
∈ [0, 1] (4.11)

The sample mean X̄i and variance Di are defined as:

X̄i =
1

Ni

N∑
j=1

xj (4.12)

Di =
1

Ni

Ni∑
j=1

(
Xj − X̄j

)2 (4.13)

Figure 4.5 (a) shows the distributions of tracked features when σI = 0.03 and each observed

feature has one vote from its observing score and variance. X axis shows the variance of the

tracked features, Y axis shows observability scores (i.e. the observation probability of each

point in one frame which is obtained from Equation 4.11), and Z axis shows the frequency

of tracked features fallen in each bin.

The STDs of feature coordinate observations corresponding to ith point implies their

accuracy and reliability, hence, the means of all visible point STDs reflects the general un-

certainty at each noise level. Therefore, this mean could also be weighted by observability

score and compared with the raw one to detect if those points with lower STDs will have

higher observability scores. Suppose D̄ to be mean of STDs and D̄w to be weighted one,

we obtain:

D̄ =
1

Q

Q∑
i=1

Di (4.14)

D̄w =

Q∑
i=1

PiDi (4.15)

Figure 4.5 (b) presents the weighted and unweighted results at each noise level. It is ob-

served that when the image is exposed to noise, the weighted means of STD is lower than

29



(a) (b)

Fe
at

ur
e

C
oo

rd
in

at
es

St
d

Noise Level Std

Fr
eq

ue
nc

y

Obserability Score
Feature Pixel Variance

Figure 4.5: (a) Feature distribution with 0.03 noise standard deviation; (b) Feature coordi-
nates standard deviation with different noise levels. Blue line is the unweighted std. Red
line is the weighted std.

the unweighted ones.

These simulations show that most of the low variance features could be observed in

a large number of frames through the 200 frame and vice versa. It supports the claim

that those noise resistant features are more likely to be tracked as a subset of original

ORB features that are spatial evenly distributed. Such prerequisite of noise robustness is

beneficial to trajectory servoing since it is highly possible that those features vulnerable to

noise will not appear in the first frame used for generating the feature trajectory thus not

served as desired features in trajectory servoing process.
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CHAPTER 5

UNCERTAINTY BASED TRAJECTORY SERVOING

From the aforementioned analysis, we have reasons to think trajectory servoing can per-

form better with feature noise. Furthermore, unlike pure IBVS where tracking tasks are

defined on the image space, trajectory servoing tracks a feature trajectory in the image

space which projects features seen from initial pose forward along the desired poses of the

planned trajectory in Cartesian space. Therefore, the uncertainty of features in the initial

image will propagate along feature trajectories and influence the accuracy of trajectory ser-

voing. In the following part we will reveal that the uncertainty modeling and propagation

are helpful to improve the design of IBVS controller.

5.1 Uncertainty Modeling and Propagation

We first specify the notations used here. Define the jth desired features in the desired

image at time step ti as S∗i = {si∗j = (si1,∗j , si2,∗j ) ∈ R2}ni
j=1 sourced from Q∗i = {qi∗j =

(qi1,∗j , qi2,∗j , qi3,∗j ) ∈ R3}ni
j=1 in the camera frame at ti, where ni is the number of desired fea-

tures in the frame at ti. Also define the observation of S∗i as Ŝ
∗
i = {ŝi∗j = (ŝi1,∗j , ŝi2,∗j )}ni

j=1

sourced from Q̂
∗

= {q̂i∗j = (q̂i1,∗j , q̂i2,∗j , q̂i3,∗j ) ∈ R3}ni
j=1 (observation here means the de-

sired feature coordinated calculated from noised initial features, namely what we are able to

obtain in reality compared with precise values without noise effect). Features seen by cam-

era are defined in a similar way with notation S,Q, Ŝ. The camera observation variance

along the image width and height directions are defined as σ2
u, σ

2
v . We assume the trajectory

servoing process starts at time step t0. hC(ti, td) ∈ SE(2) is the camera pose transforma-

tion from time step ti to time step td. Note the homogeneous transform of camera pose
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from t0 to td as:

hC(t0, td) =

R t

0 1

 (5.1)

In the following parts, K is the camera matrix, f and b are the focal length and baseline of

the stereo camera, and dij and d̂ij are the disparities and its measurement of the jth feature

at time step ti . To simplify the notations, we will sometimes ignore the indicator of time i

or the feature index j in the remaining part of this chapter.

5.1.1 Uncertainty propagation from image to 3D space

In this section we discuss how to propagate the Gaussian uncertainty from image to 3D

world. The basic assumption here is that different features and left and right stereo camera

are observed independently.

The following discussion is about jth feature pair. If no subscript or superscript is

applied, we indicate the jth feature in ith frame by default. First estimate the distribution

of the measurement of disparity d̂:

d̂ = ŝ1r − ŝ1l (5.2)

ŝ1r ∼ N (s1r, σ
2
u), ŝ

1
l ∼ N (s1l , σ

2
u)

The distribution of d̂ is:

d̂ ∼ N (s1r − s1l , σ2
u + σ2

u = 2σ2
u) , N (µd, σ

2
d) (5.3)

The next step is to estimate the distribution of the measured feature depth q̂3. Considering
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the first order linear approximation of the depth equation of stereo cameras:

q̂3 =
fb

d̂
≈ fb

d
− fb

d2
(d̂− d) (5.4)

And calculate the distribution of q̂3 as:

q̂3 ∼ N

(
fb

d
,

(
fb

d2

)2

σ2
d

)
(5.5)

This linear approximation holds true if the error of disparity measurement is small. When

the depth observation error is small enough, the (inverse) projection model of the camera

is nearly locally linear. Therefore, linear approximation still applies when propagating

uncertainty from image space to 3D Cartesian space. Here is the pinhole inverse projection

model:

q̂ = q̂3K−1
hŝ ≈K−1


q̂3 0 0

0 q̂3 0

0 0 1


︸ ︷︷ ︸

J


ŝ1

ŝ2

q̂3


︸ ︷︷ ︸
X̂H

(5.6)

where hŝ is the homogeneous coordinates of ŝ. The covariance matrix is Cov(X̂H) =

diag(σ2
u, σ

2
v , σ

2
qz), therefore:

q̂ ∼ N (X̂H ,Jdiag(σ2
u, σ

2
v , σ

2
qz)J

T ) (5.7)

5.1.2 Uncertainty propagation from 3D space to desired image

The distribution of feature 3D coordinates in the current camera frame is obtained in the

previous section. However, the needed uncertainty in trajectory servoing should be those of

desired features which are directly used in the IBVS controller. To obtain the distribution

of desired features on 2D image space, the distribution in the current camera frame should
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be transformed to the desired frame and projected back from 3D space to the desired image

space. In this section, we suppose the current time is t = t0 and the desired time we expect

to transform to is t = td. The jth 3D coordinate transform from t0 to td is:

q̂dj = Rq̂ + t (5.8)

So the distribution of q̂dj could be calculated:

q̂dj ∼ N (Rq̂ + t,Cov(q̂dj ) = RCov(q̂)RT ) (5.9)

Then we will calculate the projection of such Gaussian uncertainty to the desired image.

The projection model is reused:

ŝdj =
1

q̂d3j
K [1:2,:] (Rq̂ + t) ,

1

q̂d3j
Kp (Rq̂ + t) (5.10)

Finally,

ŝdj ∼ N

 1

q̂d3j
Kp (Rq̂ + t) ,

(
1

q̂d3j

)2

KpCov(q̂
d
j )K

T
p

 (5.11)

5.1.3 Uncertainty Model Verification

Matlab SLAM Toolbox [77] is used to verify previous mathematics derivation of uncer-

tainty model with Monte Carlo method. There are two robots located on the curve trajec-

tory with zero control input and landmarks for on-board cameras are randomly generated

on the map (see Figure 5.1). We name the two robots as Rob1 and Rob2, and the cameras

on the two robots as Cam1 and Cam2. Similar to the simulation in §4.3, we also add zero

mean Gaussian noise with standard deviation σI = 4 to Cam1. However, the Gaussian

noise is directly added to feature coordinate positions, not the intensities of each pixel for

more persuasive evidence to support our model. Define the images captured by the two
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Figure 5.1: Robots and Environment in Matlab Simulation: Rob1 locates at the beginning
of the trajectory and Rob2 locates at the middle of the trajectory. Black ’+’ are landmarks
and those with blue numbers are the landmarks which have been seen by robots.

cameras Cam1 and Cam2 as:

Fi = {f ji |j = 1, 2, ..., R}, i = 1, 2 (5.12)

where f ji is the ith camera image in jth independent random experiment. R is the total

number of experiments and i = 1, 2 indicates the camera index. Also define the features in

frame f ji as:

f ji = {xj,ki = (uj,ki , v
j,k
i ) ∈ R2}Nk=1 (5.13)

Where N is the number of commonly visible features in Cam1 and Cam2. Define the

operator Π as the transform from the feature with the same ID in Cam1 to Cam2, i.e.

f j2 = Π ◦ f j1 (5.14)

We calculate F2 from all R = 388 repeated runs of independent random experiment and

compare it with the uncertainty model from Equation 5.11.

Figure 5.2 shows the uncertainty ellipses generated by the uncertainty model. The 3
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Figure 5.2: Desired Image in Random Experiments

ellipses around each set of points represent 90%, 95% and 99% confidence interval. The

distribution of each group of points obeys the uncertainty model. Therefore, it validates

our uncertainty derivations.

5.2 Generalized least square in controller design

After the uncertainty modeling of the desired and current features, we have more infor-

mation about the features than the traditional visual servoing controllers. In the baseline

controller Equation 4.8, we find the angular velocities that minimize the error on the image

through the pseudo inverse of partial image Jacobian. The reason we include linear veloc-

ity in the feedforward loop rather than feedback loop is that we have finely discretized the

feature trajectory by way-points. The difference between the current and desired feature

coordinates (especially the low depth features contributing most to translation observation)

are small and nearly not observable in the sense of translation estimation. The smallest

singular value of the full image Jacobian is sufficiently small for the observation noise to

dominate the reconstruction of linear and angular velocities in the least square problem.

To improve the basic trajectory servoing controller, we turn it into an optimization

problem to incorporate uncertainty information into the algorithm. The cost function of the
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controller has the form of generalized least square which is weighted by the inverse covari-

ance of features. In this way, we give more weight to the features with less uncertainty in

the error terms in least square. So we turn the original trajectory servoing controller (see

Equation 4.8)

ω =
(
L2(qC, s)

)†
P where

P = L1(qC
∗
(t), s∗(t))ν∗ −L1(qC, s)ν + L2(qC

∗
(t), s∗(t))ω∗ − λe (5.15)

to an equivalent least square problem:

ω̂ = arg min
ω
‖

C1(ω)︷ ︸︸ ︷
L2(qC, s)ω−P︸ ︷︷ ︸

C(ω)

‖22 (5.16)

The redefinition of the calculation of ω as an optimization problem helps us understand

the actual meaning of ω from the overdetermined system: a minimizer of the difference

between feature motion on the image plane and that required by the control law. Simul-

taneously, since we have the distribution of desired features and observed features, it is

reasonable to apply higher weight to the error terms associated with low variance features

when calculating cost and vice versa.

Calculate the covariance of C(ω):

Ω , Cov (C(ω)) = λ2Cov(ŝ− ŝ∗)

= λ2Cov
(
[I,−I][ŝ, ŝ∗]T

)
= λ2(Cov(ŝ) + Cov(ŝ∗)) (5.17)

Generalized least square means that we optimize the following objective function:

ω̂ = arg min
ω

C(ω)T (Cov (C(ω)))−1 (C(ω)) (5.18)
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The difference between cost function Equation 5.18 and the ordinary least square one Equa-

tion 5.16 is that the contribution of error terms are weighted by the inverse of the covariance

matrix. Since low variance means low observation error, the selection of ω should primarily

decrease cost terms associated with these accurate features.

The analytical solution of generalized least square optimization has the form:

ω̂ =
(
C1(ω)TΩ−1C1(ω)

)−1
C1(ω)TΩ−1P (5.19)
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter focus on the evidence that supports the conclusions summarized from previous

chapters: 1. trajectory servoing requires SLAM to obtain stably tracked features and it is

more accurate than SLAM pose based navigation. 2. trajectory servoing is more robust to

image noise compared with SLAM pose based navigation. 3. uncertainty based trajectory

servoing (U-TS) improves the performance of baseline trajectory servoing (TS) using noisy

images. §6.1 and §6.2 shows short and long trajectories benchmark results without image

noise and compares the results with respect to tracking error, terminal error, control effort

and pose estimation error. Its conclusion supports claims 1. With similar environment and

task settings, §6.3 adds noise to image and use a diversity of statistics to prove claims 2 and

3. Finally, §6.4 defines a real navigation task completed by trajectory servoing.

6.1 Short Trajectory Benchmark

This section runs several short distance trajectory servoing experiments to evaluate the ac-

curacy of the image based feedback strategy supplemented by stereo V-SLAM. The hypoth-

esis is that mapping trajectory tracking to image space will improve short term trajectory

tracking by mitigating the impact of SLAM estimation drift from the feedback loop.

6.1.1 Experimental Setup

Some basic configurations have been stated in §3.1.2. Turtlebot is tasked to follow a spe-

cific short-distance trajectory. A total of five paths were designed, loosely based on Dubins

paths. They are denoted as straight (S), weak turn (WT), straight+turn (ST), turn+straight

(TS), turn+turn (TT), and are depicted in Fig. 6.1. Average length of all trajectories are

∼4m. Longer paths would consist of multiple short segment reflecting variations on this
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S WT ST TS TT
Figure 6.1: Short-distance template trajectories

path set. They are designed to ensure that sufficient feature points visible in the first frame

remain visible along the entirety of the path. Five trials per trajectory are run. The de-

sired and actual robot poses are recorded for performance scoring. Performance metrics

computed are average translation error (ATE).

6.1.2 Navigation Methods Tested

In addition to the trajectory servoing algorithm, several baseline methods are implemented.

The first is a pose feedback strategy using perfect odometry (PO) as obtained from the

actual robot pose in the Gazebo simulator. The second replaced PO with the SLAM es-

timated pose, which are delayed and have uncertainty. The third is a trajectory servoing

method without the V-SLAM system, which would be a naive implementation of visual

servoing based on (4.8). It is called VS+ to differentiate from trajectory servoing, and

uses a frame-by-frame stereo feature tracking system [78]. Pose-based control [1] uses a

geometric trajectory tracking controller with feedforward [ν∗, ω∗]T and feedback

νcmd = kx ∗ x̃+ ν∗

wcmd = kθ ∗ θ̃ + ky ∗ ỹ + ω∗
(6.1)

where,

[x̃, ỹ, θ̃ ] T ' g̃ = g−1g∗ =
(
gWR
)−1

(t)
(
gW,∗
R

)
(t). (6.2)

The controller gains have been empirically tuned to give good performance for the perfect

odometry case, and have been extensively used in prior work [1, 4, 5].
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Figure 6.2: Short-distance trajectory benchmarking results

Table 6.1: Trajectory Tracking ATE (cm)
Seq. PO SLAM TS VS+

S 2.27 3.67 0.76 x
WT 1.62 3.62 0.76 x
ST 2.50 2.96 1.06 x
TS 1.58 3.24 1.33 x
TT 2.35 3.50 1.04 x

Avg. ATE 2.06 3.40 0.99 x

Table 6.2: Terminal Error (cm)
Seq. PO SLAM TS

S 2.47 5.44 1.29
WT 1.83 5.93 1.30
ST 2.85 1.50 2.99
TS 1.85 1.76 2.04
TT 2.34 3.07 2.27

Avg. 2.27 3.54 1.98
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Table 6.3: Control Effort
Seq. PO SLAM TS

ν ω ν ω ν ω
S 7.88 0.20 7.10 0.19 5.86 1.17

WT 8.14 0.55 7.35 0.48 6.16 1.84
ST 7.58 4.73 6.70 3.47 5.67 3.38
TS 8.18 4.92 7.33 4.27 6.19 4.46
TT 8.47 4.82 7.72 4.24 6.46 4.75

Avg. 8.05 3.04 7.24 2.53 6.07 3.12
11.09 9.77 9.19

Table 6.4: Estimation ATE (cm)
Seq. SLAM TS

S 1.16 1.41
WT 1.63 1.66
ST 2.48 3.00
TS 4.22 3.91
TT 3.75 3.36

Avg. 3.02 2.67

6.1.3 Results and Analysis

Tables 6.1 to 6.3 quantify the outcomes of all methods tested. Figure 6.2 consists of box-

plots of the trajectory tracking error for the different template trajectories and methods

(minus VS+). The first outcome to note is that VS+ fails for all paths. The average length

of successful servoing is 0.4m (∼10% of the path length). Inconsistent data association

rapidly degrades the feature pool and prevents consistent use of features for servoing feed-

back. Without the feature map in V-SLAM, a reappeared feature will be treated as a new

feature and assigned with a different index, which easily violates the correspondence rule

from §4.1.2. As noted there, any effort to improve this would increasingly approach the

computations found in a V-SLAM method. Maintaining stable feature tracking through

V-SLAM is critical to trajectory servoing.

Comparing SLAM and TS, the Table values show lower errors across the board, and

lower control cost. Trajectory tracking error is lower by 71% and terminal error is lower

by 44%. Interestingly, the pose estimation error is only reduced by around 12%, which
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indicates weak improvement in pose estimation from the better tracking via TS. This is

most likely a result of the SLAM pose predictions being decoupled from the control system,

leading to uninformed motion priors. ORB-SLAM uses a motion prior based on its own

internal estimates. Tightly coupling the two parts may improve the SLAM system, but may

also introduce new sensitivities. The TS approach reduces control effort by 19%.

Comparing PO with TS shows better performance by TS, which was not expected. This

might suggest some additional tuning would be necessary. However, usually there is trade-

off between tracking error and control cost. Attempts to improve tracking usually increase

the control cost, and vice-versa. Based on the values of the Tables, it is not clear that better

would be possible. Tests later in this manuscript will show that the benefit does not persist

for longer paths, thus the improvement for short trajectories is of limited use. The finding

here is that implementing a purely image-based approach to trajectory tracking through

unknown environments is possible, and can work well over short segments in the absence

of global positioning information.

6.2 Long Trajectory Benchmark

This section modifies the experiments in §6.1 to involve longer trajectories that will trigger

feature replenishment and synthesize new feature trajectory segments. The set of trajecto-

ries to track is depicted in Figure 6.3. They are denoted as right u-turn (RU), left u-turn

(LU), straight+turn (ST), and zig-zag (ZZ). Each trajectory is longer than 20m. Testing and

evaluation follows as before (minus VS+).

RU LU ST ZZ
Figure 6.3: Long-distance trajectories
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6.2.1 Results and Analysis

Figure 6.4 consists of boxplots of the translation-only trajectory tracking ATE for the tem-

plate trajectories. As hypothesized, the error over longer trajectories is affected by the need

to use SLAM pose estimates for regeneration. The PO method outperforms TS, but TS

still operates better than SLAM. However, it appears that in the one case where the SLAM

system performed the worst, the TS approach had better performance. The tabulated results

in Table 6.5 and Table 6.6 indicates that on average the TS approach improved over SLAM

by 39% and 21% in terms of tracking error and terminal error. What is interesting is that

the estimation ATE of both systems is comparable (Table 6.8), which indicates that trajec-

tory servoing may have better closed-loop noise rejection properties by working directly in

image-space instead of using inferred pose estimates from the SLAM estimator. Table 6.7

suggests that control efforts of both ν and ω are the lowest. The combined control effort of

TS is reduced 19% and 10% from PO and SLAM. That TS may change the performance

vs. cost trade-off curves should be studied further.

Figure 6.4: Long trajectory benchmarking results
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Table 6.5: Tracking ATE (cm)
Seq. PO SLAM TS
RU 2.40 6.19 4.02
LU 3.47 17.22 7.30
ST 2.25 7.95 6.06
ZZ 5.19 11.01 8.30

Avg. ATE 3.33 10.59 6.42

Table 6.6: Terminal Error (cm)
Seq. PO SLAM TS
RU 2.33 11.61 6.77
LU 3.14 26.06 18.90
ST 2.38 8.61 7.74
ZZ 4.28 5.22 7.18

Avg. 3.03 12.88 10.15

Table 6.7: Control Effort
Seq. PO SLAM TS

ν ω ν ω ν ω
RU 15.51 14.95 13.94 12.08 11.94 10.80
LU 17.77 9.53 16.38 9.24 13.67 9.94
ST 17.80 13.87 16.00 12.96 13.74 12.29
ZZ 23.17 11.73 21.00 10.67 17.97 10.89

Avg. 18.56 12.52 16.83 11.24 14.33 10.98
31.08 28.07 25.31

Table 6.8: Estimation ATE (cm)
Seq. SLAM TS
RU 9.15 8.49
LU 13.68 11.09
ST 7.00 7.96
ZZ 12.13 10.37

Avg. 10.49 9.48
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6.3 Navigation with Image Noise

6.3.1 Experimental Setups

In order to show the robustness of trajectory servoing to image noise and improvements of

uncertainty-based trajectory servoing (U-TS), we have benchmark experiments in the noise

standard deviation (STD) from 0.05 to 0.07 with 0.005 as the step (see §3.1.2).

Figure 3.3 shows two robot start poses to simulate different sets of the environment,

which stabilizes and generalizes the benchmark results. The same 5 short trajectories as in

§6.1 and the first 3 long trajectories in §6.2, RU, LU and ST are used respectively for the

two starting points. In order to have representative and persuasive results, 10 runs for short

trajectories and 5 runs for long trajectories are repeated for each trajectory.

6.3.2 Evaluation Metrics

There are five different metrics to evaluate the tracking performance. Average Tracking Er-

ror (ATE) shows the averaged performance along the entire trajectory. Max Tracking Error

(MTE) represents the extreme error in each tracking task. From the generation of boxplot,

outliers of tracking errors are extracted. Therefore, MTE is computed with/without these

outliers. Moreover, in boxplots, the value of the upper quartile means the range of major

data samples. Upper Quartile Tracking Error (UQTE) is derived from this. The last is the

Control Effort computed as the norm of all control signals, i.e. linear and angular velocities,

to finish each tracking task. To be noted, each metric is computed from the combination

of varying noise standard deviations, robot start poses and multiple repeated runs. From

the comparisons of these metrics, it is reasonable to statistically evaluate different tracking

methods: V-SLAM pose based controller (SLAM), baseline trajectory servoing (TS) and

uncertainty-based trajectory servoing (U-TS).
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6.3.3 SLAM versus TS

The first set of benchmark aims to compare the tracking performance between the SLAM

pose based controller and baseline trajectory servoing with image noise. The boxplots of

short and long distance trajectory benchmark are shown in Figure 6.5 (a)(b). It could be

observed that the baseline trajectory servoing has better tracking performance in both short

and long trajectory benchmarks. The SLAM and TS columns in Table 6.9-Table 6.14 show

quantitative statistic results.

First, in Table 6.9 and Table 6.10, by adding noise, ATEs of SLAM increase 130% for

short trajectories and 252% for long trajectories. However, ATEs of baseline trajectory

servoing only increase 34% for short trajectories and 80% for long trajectories. Trajectory

servoing has lower ATE increase with image noise. Next looking at the results of SLAM

and TS with noise, ATE of trajectory servoing decreases 83% for short trajectories and 72%

for long trajectories. In Table 6.11 and 6.12, other tracking error statistics also support the

huge improvement from SLAM to TS by: 83% and 62% for MTE with Outliers, 83% and

66% for MTE without Outliers, 84% and 69% for UQTE in short and long trajectories,

which shows its consistency among these tracking error metrics.

From Table 6.13 and 6.14, the control effort of linear velocity v decreases nearly 19%

in both short and long trajectory benchmarks. The reason is that trajectory servoing is

constrained to work under the planned linear velocity, however, SLAM pose-based con-

troller may have over-actuated velocities. The control effort of angular velocity ω for TS

increases only 2.8% in short distance benchmark and only 4% in long distance benchmark,

which means both are comparable. The improvement of control effort is more observable

in long trajectory benchmark since it is easier for a long-term control process to amplify its

effort.

These benchmark results demonstrate that trajectory servoing system is more robust to

image noise and can achieve much better tracking performance when involving with un-

certainty. The improvement is more obvious in the short trajectory benchmark, because
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inaccurate SLAM estimated poses used in the feature trajectory regeneration may under-

mine the long term performance of trajectory servoing.
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Figure 6.5: Box plots of benchmarks. (a) Short distance benchmark between VSLAM
pose-based controller (red) and baseline trajectory servoing (green); (b) Long distance
benchmark between VSLAM pose-based controller (red) and baseline trajectory servoing
(green). (c) Short distance benchmark between baseline (green) and uncertainty-based
(blue) trajectory servoing; (d) Long distance benchmark between baseline (green) and
uncertainty-based (blue) trajectory servoing.

48



Table 6.9: Short Distance: Trajectory Tracking ATE (cm)

Seq. SLAM TS U-TS
¬noise noise ¬noise noise noise

S 3.67 8.55 0.76 1.13 0.98
WT 3.62 9.63 0.76 1.31 1.08
ST 2.96 5.89 1.06 1.02 0.93
TS 3.24 7.09 1.33 1.42 1.15
TT 3.50 8.18 1.04 1.74 1.49

Avg. ATE 3.40 7.81 0.99 1.32 1.13

Table 6.10: Long Distance: Trajectory Tracking ATE (cm)

Seq. SLAM TS U-TS
¬noise noise ¬noise noise noise

RU 6.19 23.63 4.02 7.10 6.19
LU 17.22 45.68 7.30 10.42 9.21
ST 7.95 41.19 6.06 13.75 11.82

Avg. ATE 10.45 36.8 5.79 10.42 9.07

Table 6.11: Short Distance: Other Tracking Errors from Boxplots (cm)

Seq. MTE w/ Outliers MTE w/o Outliers Upper Quartile TE
SLAM TS U-TS SLAM TS U-TS SLAM TS U-TS

S 39.14 6.80 7.51 25.55 3.32 2.74 12.14 1.56 1.30
WT 94.56 11.26 8.56 26.24 3.49 2.85 12.74 1.64 1.40
ST 31.80 5.61 5.54 15.97 3.03 2.95 8.12 1.42 1.33
TS 75.16 14.30 5.38 14.62 3.24 3.45 7.97 1.72 1.61
TT 63.26 12.95 7.38 20.75 4.31 4.89 10.73 2.10 2.21

Avg. 60.78 10.18 6.87 20.63 3.48 3.38 10.34 1.69 1.57
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Table 6.12: Long Distance: Other Tracking Errors from Boxplots (cm)

Seq. MTE w/ Outliers MTE w/o Outliers Upper Quartile TE
SLAM TS U-TS SLAM TS U-TS SLAM TS U-TS

RU 152.46 26.53 31.69 62.50 19.66 16.77 31.09 9.50 8.17
LU 176.31 94.13 47.98 123.23 32.39 28.41 64.20 14.88 13.18
ST 164.46 68.27 75.65 114.31 50.97 41.98 56.29 22.24 18.64

Avg. 164.41 62.98 51.77 100.01 34.34 29.05 50.53 15.54 13.33

Table 6.13: Short Distance: Control Effort

Seq. SLAM TS U-TS
v ω v ω v ω

S 7.43 0.28 5.97 1.31 5.98 0.98
WT 7.73 0.54 6.27 2.01 6.26 1.62
ST 7.05 3.59 5.62 3.65 5.63 3.62
TS 7.73 4.38 6.32 4.60 6.31 4.50
TT 8.00 4.28 6.78 4.91 6.78 4.73

Avg. 7.59 3.23 6.19 3.32 6.19 3.11
10.82 9.51 9.30

Table 6.14: Long Distance: Control Effort

Seq. SLAM TS U-TS
v ω v ω v ω

RU 14.71 11.80 11.97 11.27 11.96 11.39
LU 16.85 9.10 13.67 9.60 13.67 9.97
ST 16.97 12.80 13.65 14.15 13.64 13.89

Avg. 16.18 11.47 13.10 11.67 13.09 11.75
27.65 24.77 24.84
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6.3.4 TS versus U-TS

These experiments aim to evaluate the performance of the uncertainty based trajectory ser-

voing (U-TS) versus the baseline (TS). The same benchmark configurations are performed.

Boxplots are shown in Figure 6.5(c)(d). Statistical results are provided in the U-TS columns

in Table 6.9-6.14. It shows uncertainty-based trajectory servoing can further improve the

performance.

From Table 6.9-6.12, tracking errors of U-TS decrease for both short and long distance

benchmarks: 15% (short) and 13% (long) for ATE, 33% (short) and 18% (long) for MTE

with outliers. When excluding the outliers, the improvement of short distance decreases

a little: 3% (short) and 15% (long) for MTE without outliers, 7% (short) and 14% (long)

for UQTE. The statistics are more consistent for long trajectories, since short trajectory

percentages are easier to be perturbed by small disturbance of original values.

In Table 6.13 and 6.14, the control effort of linear velocity is not changed since the

same sequence of linear velocities are applied. For short distance benchmark, the control

effort of angular velocity of U-TS decreases 6% from TS. Therefore, U-TS can reduce the

overall control effort compared with TS in short trajectories. Howevce in the long trajectory

benchmark, U-TS control effort has a negligible increase (0.66%) that may come from a

more intense angular correction. In conclusion, uncertainty based trajectory servoing (U-

TS) can achieve better tracking with higher accuracy with a similar control effort.

6.4 Navigation with online path planning

To show how trajectory servoing works for a navigation task, we move the environment

down to the ground and create a 2D occupancy map. Given a goal, the global planner

identifies a feasible collision-free path from the map. The online global path is used for

the robot to apply trajectory servoing. The full system in Figure 1.1 is used. Figure 6.6

shows one successful navigation task for three tracking methods. The robot starts from the
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(a) (b) (c)

Figure 6.6: Navigation with global planning. Blue point is the robot starting position. Or-
ange points are 6 goal points for navigation. In each figure, green is the collision-free global
path. Red is the real robot trajectory overlaying on the green trajectory. The figures show
successful navigation examples of the same goal point with three different controllers. (a)
Pose-based trajectory tracking with perfect odometry. (b) Vision-based trajectory servoing.
(c) Pose-based trajectory tracking with estimated poses from V-SLAM. It can be observed
that the red trajectory has less deviations from the green trajectory with TS (b) than SLAM
(c).

blue point, and ends at 6 different positions, marked as orange points. The average ATE

for PO, SLAM and TS are 1.31cm, 7.39cm and 7.30cm. And the average terminal errors

are 1.46cm, 14.49cm and 13.13cm. Trajectory servoing, enabled by V-SLAM, has better

performance than using V-SLAM for pose-based feedback. The smaller performance gap

between TS and SLAM for these navigation tasks requires further investigation. Per Tables

6.4 and 6.8, it appears to be dependent on SLAM estimation error, as the gap is close to

the estimation gap (∼10%). There may be a mechanism to better estimate motion from the

initial pose to the terminal pose of a trajectory segment, which might involve more tightly

coupling the short distance module with the SLAM module (see Fig. 1.1).
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CHAPTER 7

CONCLUSION & FUTURE WORK

7.1 Conclusion

In the thesis, we presented a vision-based navigation approach for a non-holonomic mobile

ground robot called trajectory servoing, which combines the IBVS and V-SLAM. This tra-

jectory tracking method can successfully follow a given short trajectory without externally

derived robot pose information. By integrating with estimated robot poses from V-SLAM,

it can achieve long-term navigation. The V-SLAM system also provides robust feature

tracking to support stable trajectory servoing. Experiments demonstrated improved track-

ing accuracy over pose-based trajectory tracking using estimated SLAM poses.

Similar to related works, we also investigated image noise effects of trajectory servoing

based visual navigation. The close loop benchmark shows that trajectory servoing is more

robust to the image noise than traditional SLAM pose based controller. In §4.3 we find that

the important reason is that trajectory servoing only tracks low uncertainty features con-

sistently. Besides, an improved controller is designed based on weighted least square that

balance features contribution to control result ω by their covariance. Experiment results

also show the further improvement of tracking performance although it is not that signifi-

cant. Overall, trajectory servoing is a more preferable trajectory tracking method compared

with SLAM pose based one and directly closing loop in the perception space for trajectory

tracking is a reasonable solution to have better performance.

7.2 Future Work

In the future work, we will apply this uncertainty-based trajectory servoing on a real Turtle-

bot platform to test its performance. In addition, we may extract the most informative and

53



observable features to control linear velocity. Hopefully, we could also investigate a more

integrated and tighter coupling of SLAM and visual servoing besides tracking and posi-

tioning for a better coordination between SLAM and trajectory tracking.

54



REFERENCES

[1] Y. Zhao, J. S. Smith, S. H. Karumanchi, and P. A. Vela, “Closed-loop benchmark-
ing of stereo visual-inertial SLAM systems: Understanding the impact of drift and
latency on tracking accuracy,” ICRA, pp. 1105–1112, 2020.

[2] H. Liu, R. Jiang, W. Hu, and S. Wang, “Navigational drift analysis for visual odom-
etry,” Comput. Informatics, vol. 33, pp. 685–706, 2014.

[3] J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev., vol. 32,
pp. 97–109, 1 Jul. 1928.

[4] J. S. Smith and P. A.Vela, “PiPS: Planning in perception space,” in ICRA, May 2017,
pp. 6204–6209.

[5] J. S. Smith, S. Feng, F. Lyu, and P. A. Vela, “Real-time egocentric navigation using
3d sensing,” in Machine Vision and Navigation, O. Sergiyenko, W. Flores-Fuentes,
and P. Mercorelli, Eds. Cham: Springer International Publishing, 2020, pp. 431–484,
ISBN: 978-3-030-22587-2.

[6] Y. Zhao and P. A. Vela, “Good feature matching: Toward accurate, robust VO/VSLAM
with low latency,” T-RO, vol. 36, no. 3, pp. 657–675, 2020.

[7] S. Šegvić, A. Remazeilles, A. Diosi, and F. Chaumette, “A mapping and localiza-
tion framework for scalable appearance-based navigation,” CVIU, vol. 113, no. 2,
pp. 172–187, 2009.
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