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. . . We are no bigger than a gnat in the universe or a grain of corn in the vast ocean. Our

life is brief and evanescent, while I envy the eternity of time like the unending flow of this

great river. . . . The water passes continually by, and yet it is always here. The moon waxes

and wanes but it always remains the same moon. If you look at the changes that take place

in the universe, there is nothing in it that lasts more than a fraction of a second. But if you

look at the unchanging aspect of things, then you realise that both the things and ourselves

are immortal. . . .

-Su Shi, Former Ode on the Red Cliffs, 1082 (translated by Lin Yutang in “The Gay

Genius: The Life and Times of Su Tungpo”, 1947)



To my family.
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SUMMARY

This thesis focuses on analyzing the physics and designing multiscale methods for non-

linear dynamics in mechanical systems, such as those in astronomy. The planetary systems

(e.g., the Solar System) are of great interest as rich dynamics of different scales contribute

to many interesting physics. Outside the Solar System, a bursting number of exoplanets

have been discovered in recent years, raising interest in understanding the effects of the

spin dynamics to the habitability. In part I of this thesis, we investigate the spin dynamics

of circumbinary exoplanets, which are planets that orbit around stellar binaries. We found

that habitable zone planets around the stellar binaries in near coplanar orbits may hold

higher potential for stable climate compared to their single star analogues. And in terms of

methodology, secular theory of the slow dominating dynamics is calculated via averaging.

Beyond analyzing the dynamics mathematically, to simulate the spin-orbit dynamics for

long term accurately, symplectic Lie-group (multiscale) integrators are designed to simu-

late systems consisting of gravitationally interacting rigid bodies in part II of the thesis.

Schematically, slow and fast scales are tailored to compose efficient algorithms. And the

integrators are tested via our package GRIT. For the systems that are almost impossible

to simulate (e.g., the Solar System with the asteroid belt), how can we understand the

dynamics from the observations? In part III, we consider the learning and prediction of

nonlinear time series purely from observations of symplectic maps. We represent the sym-

plectic map by a generating function, which we approximate by a neural network (hence

the name GFNN). And we will prove, under reasonable assumptions, the global prediction

error grows at most linearly with long prediction time as the prediction map is symplectic.

xvii



CHAPTER 1

INTRODUCTION

Since “the Big Bang” around 13.8 billion years ago [1], the universe has been evolving

never-ending – for days and nights, minutes and seconds. Zooming in the evolution of the

Earth, dynamics of different scales have been constantly changing our world – in the mil-

lions to billions of years’ scale, the tectonic plates drift and collide, forming the landscape

of the Earth’s surface [2]; in the thousands to millions of years’ scale, ice sheets advance

and retreat during cycles of glacial periods, dynamically changing the climate of the Earth

[3, 4]; every year, the Earth revolves around the Sun once, bringing a variety of weathers

for life on the Earth; furthermore, the changing and evolution of our world take place every

moment - in tiny scales of seconds, milliseconds etc. Since the mechanics of our universe

are naturally evolving with fast and slow scales mixed together, properly modeling and

understanding the multiscale dynamics in methodology and in specific scientific questions

are important both mathematically and physically.

Over the past several centuries, the Solar System was discovered and understood by

humanity step by step through observations, analyses, simulations and explorations. How-

ever, in the mechanical view, the Solar System is still far from fully understood because of

its rich dynamics of different scales. For example, to understand the orbital dynamics of the

planets in the Solar System, beyond the point mass planetary interactions, in the long run,

how the asteroid belt and the planetary spins affect the orbital dynamics are still unclear.

To understand the spin-orbit dynamics, simulations of systems consisting of rigid bodies

with long term accuracies is the holy grail. However, simulation is not always an appro-

priate approach – the asteroid belt, consisting of millions of asteroids, is almost impossible

to simulate. A possible approach to tackle those problems is to understand the dynamics

(e.g., the asteroid belt) by fusing machine learning with domain knowledge.

1



Towards understanding not only our Solar System, but also the exoplanetary systems,

three projects are explored in the following chapters in terms of analyzing the spin dynam-

ics, designing accurate symplectic integrators for spin-orbit coupled systems and predicting

the (Hamiltonian) dynamics from observations.

In Chapter 2, the spin dynamics of Earth-like planets in circumbinary systems are mod-

eled and analyzed to study the effects of the spin-axis variations to the stability of the

planet’s climate. In this system, periodic / oscillatory dynamics exist in different scales:

from fast spins, orbital evolutions to slow precessions, and five major dynamics are list

here – 1. The planet self-rotates periodically. 2. The inner binary stars revolve periodi-

cally. 3. The planet orbits around the binary stars every orbital period. 4. The planetary

orbit precesses, reflected in the oscillation of orbital inclinations and the orbit’s longitude

of ascending node. 5. The spin-axis of the planet precesses, evolving the phase of the

spin. Due to the rich dynamics described above, resonances need to be carefully studied

to reveal the underlying physics. Here, we are interested in the spin-orbit resonance of the

last two angles above, and this resonance is the main reason of the planets’ large obliquity

variations (e.g., the Moonless Earth [5, 6], the Mars [7]). For circumbinary systems, we

find that the large quadrupole potential of the stellar binary could speed up the planetary

orbital precession, and detune the system out of spin-orbit resonances compared to their

single star analogues. This leads to very small obliquity variations for planets that reside

near the same plane as the stellar binaries. Mathematically, we carefully average the fast

angles [8] and isolate the dominating slow dynamics of the spin axis – our secular theory

agrees well with the numerical simulations (see Chapter 3 for our symplectic integrators).

In Chapter 3, we develop symplectic Lie-group (multiscale) integrators to simulate sys-

tems consisting of gravitationally interacting rigid bodies to study the spin-orbit dynamics

of planetary systems (e.g., the circumbinary systems described in Chapter 2). Three dif-

ferent classes of schemes, namely the T -series, theM-series, and the K-series methods,

are designed via different splitting and composition strategies. Specifically, tailored split-
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tings (M-series methods and K-series methods) are utilized in the stage of splittings to

divide the slow and fast scales, therefore a better trade-off between efficiency and accuracy

of numerical schemes can be achieved. Numerically, the conservation properties and con-

vergences of our integrators are tested via our package GRIT1. As a demonstration, this

package is applied to Trappist-I. It shows that the differences in transit timing variations

due to spin-orbit coupling could reach a few min in ten year measurements, and strong

planetary perturbations can push Trappist-I f, g and h out of the synchronized states.

In Chapter 4, instead of analyzing dynamics using traditional mathematical tools (Chap-

ter 2) / numerical methods (Chapter 3), the fashion of our age, machine learning, is incorpo-

rated to investigate the dynamics purely from data. Specifically, we consider the problem

of learning the underlying dynamics from a nonlinear time series generated by a latent

symplectic map. A special case is Hamiltonian systems, whose solution flows give such

symplectic maps. For this special case, both generic approaches based on learning the vec-

tor field of the latent ODE and specialized approaches based on learning the Hamiltonian

that generates the vector field exist. Our method, however, is different as it does not rely

on the vector field nor assume its existence; instead, it directly learns the symplectic evo-

lution map in discrete time. Moreover, we do so by representing the symplectic map via a

generating function, which we approximate by a neural network (hence the name GFNN).

This way, our approximation of the evolution map is always exactly symplectic. This addi-

tional geometric structure allows the local prediction error at each step to accumulate in a

controlled fashion – the global prediction error grows at most linearly with long prediction

time for an integrable system. In contrast, the error grows exponentially for non-symplectic

predictions. In addition, as a map-based and thus purely data-driven method, GFNN avoids

two additional sources of inaccuracies common in vector-field based approaches, namely

the error in approximating the vector field by finite difference of the data, and the error in

numerical integration of the vector field for making predictions. The effectiveness of our

1https://github.com/GRIT-RBSim/GRIT
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algorithm and the validity of our theory on reduced error are also demonstrated experimen-

tally on various types of dynamical systems.
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CHAPTER 2

SPIN DYNAMICS OF CIRCUMBINARY PLANETS

2.1 Introduction

Orientation of planetary spin axis plays an important role in the climate of a planet. For

Earth, the spin-orbit misalignment, known as obliquity, varies between 21.4◦ and 24.4◦,

and this together with the variations in the orbit’s eccentricity (oscillating up to ∼ 0.06)

are the main causes of the Milankovitch cycles of Earth climate variations, and may lead

to glacial cycles [3, 9, 10, 11]. For Mars, the spin axis exhibits wild variation that can

reach ∼ 60◦ [12, 5, 7], which has drastic effects: with a high obliquity of ∼ 45◦, Mars’

atmosphere could have partially collapsed due to CO2 condensation; this is consistent with

the glacier-like landform discovered in the tropics and mid-latitude of Mars [13, 14].

Beyond the Solar System, the rapidly growing number of detected exoplanets calls for a

better understanding of the uniqueness of life and searches for habitable worlds in the uni-

verse. Inspired by the discovery that, if Moon did not exist, Earth spin-axis would be chaot-

ically varying with obliquity ranging between ∼ 0 − 50◦ at the billion-year timescale [15,

16], this article joins the contemporary effort of studying Exo-Milankovitch cycles by quan-

tifying obliquity variations in exoplanetary systems. Although it was predicted based on

energy balance models that the habitable region can be increased if a planet has a high

obliquity [17], terrestrial planets with massive CO2 atmospheres (typically expected in the

outer regions of habitable zones) can be subject to snowball transitions and experience par-

tial atmospheric collapse [18, 19]. Therefore, a large obliquity variation could limit the

habitability of an Earth-like planet.

Are the spin-axes dynamics of exoplanets typically stable, or do they also require a

massive moon for the stabilization, like Earth? Detailed analysis has been conducted for
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particular exoplanets residing in the habitable zone and with one host star. For instance,

Kepler-186f likely has a stable spin axis and does not need a moon, due to their weak

couplings with its companion planets [20]. In addition, the maximum extent of chaotic

regions of obliquity has then been estimated for a wide range of exoplanetary systems [21].

Although planets orbiting around single stars, analogous to those in Solar System, have

been studied in great details, it was unclear how planetary spin-axes would vary if the planet

orbits around stellar binaries. This is actually a meaningful question because roughly half

of Solar-type stars are in binaries [22, 23]. Moreover, planet orbiting around both of the

binary components are in fact common (c.f. planet orbiting around just one star of the

binary, whose obliquity variation has been studied in [24]): over a dozen such planets

have been discovered [25, 26], and the occurrence rate of these planets are similar to those

around single stars [27, 28]. Thus, it is important to better understand the habitability of

circumbinary planets, and we do so from the perspective of spin-axis dynamics.

In general, large obliquity variations manifest due to resonances between gravitational

torque from the host star and the orbital perturbations from a planet’s companions. Specif-

ically, if there were just one star, the planetary spin axis is torqued by the only star. This

would lead to spin-axis precession in the same way as the precession of a top under Earth’s

gravity. If the spin axis precession frequency could coincide with the orbital oscillation

frequency, the spin axis can vary with large amplitude due to the spin-orbit resonance.

However, because in the single star case the planetary orbit is almost constant over time

with no planetary companions1, there is no spin-orbit resonances and obliquity will be a

constant. Having two stars in the center completely changes the physics, because (i) there

are torques from both stars, and (ii) the planetary orbit is no longer stationary. Therefore,

the obliquity variation can be very different from the well understood case, and the tradi-

tional framework for analyzing single star systems cannot be directly applied. Therefore,

this article develops a secular theory for the obliquity variations of circumbinary planets

1It would be exactly constant as the solution to a two-body problem if the planet and star were point
masses

6



and investigates their detailed evolutions. Results are also confirmed and strengthened by

a newly developed numerical tool [29] and its simulations.

2.2 Notations

M∗i The mass of the i-th Star (i = 1, 2)

δ
M∗2

M∗1+M∗2

mp The mass of the planet

µp
mp(M∗1+M∗2 )

M∗1+M∗2+mp

µ∗
M∗1M∗2
M∗1+M∗2

Ip =


I
(1)
p 0 0

0 I
(2)
p 0

0 0 I
(3)
p

 The (standard) moment of inertia tensor of the planet

R The radius of the equator of the planet

D∗ = {l∗, g∗, h∗, L∗, G∗, H∗} The Delaunay variables of the inner orbit

D = {ld, gd, hd, Ld, Gd, Hd} The Delaunay variables of the outer orbit

A = {ga, ha, la, Ga, Ha, La} The Andoyer variables of the planet

Spin-Axis Angle and Obliquity. The spin-axis angle is the angle between the plan-

etary spin-axis (i.e.
−→
Ga) and the normal to the reference plane (i.e. E3) as shown in

Figure 2.2. The obliquity is the angle between the spin-axis and the normal to the

planetary orbital plane. Variations in both orbital orientation and the spin-axis affect

the obliquity.

2.3 Main Results

Different from planets around a single star, we find that spin-axis variations of circumbi-

nary planets are typically low. This is because the stellar binary in the center produces

a much larger quadrupole moment, which leads to faster orbital precession comparing to
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the cases of a single star. This detunes the system from spin-orbit resonances and leads

to low variations in planetary spin-axis. section 2.3.1 uses a heuristic calculation to illus-

trate this intuition, and then we will obtain more accurate and detailed results using both

analytical secular theory and full rigid-body simulations. More precisely, the spin-axis

dynamics admits different behaviors over separated timescales: the fast timescale corre-

sponds to rotations along the orbit, and the slower timescales correspond to spin-axis and

orbital variations. We average out the faster timescales to obtain the secular theory. We

start with the single planet case in section 2.3.2 for simplicity, where section 2.3.2 presents

our secular theory, and its results are verified using rigid-body simulations in section 2.3.2.

Our results are then generalized to multi-planet systems in section 2.3.3: an analytical ap-

proach based on the Lagrange-Laplace method for multiplanetary systems is described in

section 2.3.3, followed by systematic numerical investigations in section 2.3.3.

2.3.1 Heuristic Calculation

For a planet orbiting around a stellar binary, its orbit precesses around the orbit of the

stellar binary, and the spin-axis precesses around the planetary orbital orientation. When

the orbital precession frequency matches that of the spin-axis, spin-orbit resonance occurs

which can drive large obliquity variations.

The frequency of the orbital precession can be estimated as [30]:

ḣd =
3

4 cos (δi)
n
(ab
ap

)2 M∗1M∗2
(M∗1 +M∗2)2

, (2.1)

where δi is the mutual inclination between the orbit of the stellar binary and that of the

planet, and n is the orbital frequency, ab and ap are the semi-major axes of the stellar

binary and the planet, and M∗1 and M∗2 are the masses of the stellar binary.

On the other hand, the planet spin-axis precession can be estimated too. In the case

of single host star, this precession frequency due to the torque from a central star can be
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Figure 2.1: Stellar binary period (Porb in days) that leads to planet spin-orbit resonances.
Spin-orbit resonances could only occur for closely separated stellar binaries (Porb . 1
day), unless the mass ratio of the stellar binary is below . 0.05 for fast rotating planets
with rotating period of . 5 hours.

expressed as α cos ε [5], where

α =
3G

2ω

M∗
a3p
Ed, (2.2)

ε is the spin-orbit misalignment (obliquity), ω is the spin rate of the planet, M∗ is the

mass of the central star and Ed is the dynamical ellipticity of the planet. For Earth-like

planets (with mass and interior structure similar to Earth), Ed = Ed,⊕(ω/ω⊕)2, where

Ed,⊕ = 3350 × 10−6 and ω⊕ are the dynamical ellipticity and rotation rate of the Earth

separately.

To obtain a rough estimation of the spin-precession frequency in the case around a

stellar binary, we substitute the mass of the central star with the total mass of the stellar

binary, while assuming the average distance to each of the stars are roughly ∼ ap. Then,

the spin-axis e.g. the Moonless Earth, Mars precession frequency becomes 3n2/(2ω)Ed.

The separation of the stellar binary components and their masses determines the quadrupole

moment and the possibilities of spin-orbit resonances for Earth-like planets. Thus, as-

suming the planet is Earth-like and located at one Earth flux, we can estimate the pe-

riod of the stellar binary that could drive to slow enough orbital precession to excite spin-
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Figure 2.2: The demonstration of a planet orbiting around the stellar binary.

orbit resonances. Setting the total mass of the stars to be one solar mass for illustration,

Fig.Figure 2.1 plots the stellar binary period as a function of the planets rotation rate (ω/ω⊕)

and the stellar binary mass ratio. We assume the luminosity of the stars follows the mass-

luminosity relation (L ∝ m3.5) for simplicity. The qualitative results are the same for

different total masses of the stellar binaries. The maximum rotation rate we included in the

plot is the breakup angular velocity (
√
Gmp/R3

p).

Fig.Figure 2.1 shows that spin-orbit resonances could only occur when stellar binary

period is less than 1 day, unless the mass ratio of the stellar binary is very small (. 0.05)

and when the planet rotates much faster (& 5ω⊕). However, so far, no circumbinary planets

have been detected that orbit stellar binary with a period less than seven days. This is likely

due to the formation processes that leads to the orbital decay of the stellar binary to short

periods via Kozai-Lidov oscillations [27, 31, 32]. Thus, it is challenging to excite the

obliquity of circumbinary planets via spin-orbit resonances.

2.3.2 Single Planet Around Binary Stars

Secular Theory

Existing spin-axis secular theories in the literature focused on single star systems, where the

mean anomaly increases linearly with time [33]. This is no longer the case for circumbinary

planets, whose mean anomalies change at time-varying rates. To correctly characterize the
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long term effective behavior, we adopt rigorous normal-form-based treatment for averaging

multiple nonlinear angles, which physically corresponds to averaging over time instead of

the mean anomaly of a planet in a Hamiltonian setup2.

In order to accurately characterize the spin dynamics, the planet is modeled as a rigid

body instead of a point mass. The problem set up is shown in Fig. 2.2, where the two

yellow dots represent the stellar binary and the blue one represents the planet. E1,2,3 are

the principal axes of the reference frame3, and e1,2,3 are those of the planetary body where

e3 aligns with the symmetry body axis.

The original, unaveraged Hamiltonian in canonical variables (Delaunay variables for

the orbit and Andoyer variables for the spin-axis) is denoted by

H (A,D, l∗, L∗)

=T linear (D) + T rot (A) + V (A,D, l∗, L∗)
(2.3)

where T linear is the linear kinetic energy of the rigid body, T rot is the rotational kinetic

energy of the rigid body Eq. (2.25):

T rot(A) =
H2
a

2I
(1)
p

+
G2
a −H2

a

2I
(3)
p

. (2.4)

and V is the gravitational potential generated by the binary stars on the oblate planet, l∗ is

the mean anomaly of the inner orbit, and L∗ is its conjugate momentum.

Appropriately averaging over the stellar binary’s orbital phase, planet’s orbital phase

and planet spin, we can obtain the secular dynamics of the planetary obliquity, governed

by the following ODE system (see sections 2.4.1 and 2.4.2 for derivation):

2How to do so is well studied [8, 34]. Two distinctions between this work and the rich field of restricted
3-body dynamics [35, 36, 37, 38] to which these tools also apply are: (i) the latter considers point masses
only, thus no spin; (ii) there is no/negligible orbital resonance in our considered physical parameter range.

3We will follow the convention used for Andoyer variable and call an inertial frame the reference frame.
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Ẋ = sin(h)

[
C1X
√

1−X2 + 4C2 cos(h)(1−X2)
]
,

ḣ =
C1 cos(h) (1− 2X2)√

1−X2
− 2C2X cos(2h) + C3 + 2C4X,

(2.5)

where X = Ha/Ga is the cosine value of the angle between spin’s angular momentum and

E3, and h = hd − ha is the phase difference between the precessions of the planet’s orbit

and the planetary spin. Similar to the single star case [15], X, h together give a secular

approximation of the planetary spin dynamics. We note that planetary orbital dynamics

is not affected by the spin-axis variations in the secular limit. This can be understood

intuitively since the angular momentum of the planetary spin is much lower than that of the

orbit. However, the spin-axis evolution is sensitive to the orbital oscillations. In particular,

in the secular limit for planets around the stellar binary, planetary orbital shape (semi-major

axis a and eccentricity e) and inclination are constants over time, and the orbital orientation

(argument of pericenter gd and hd) are changing slowly due to the stellar binary quadrupole

potential. C1−4 in our secular equation of motion (eq.Equation 2.5) depend on the constant

parameters of the planetary orbit and the masses of the planet and the stars, and the spin-

axis variations also depend on the nodal precession of the orbit.

A remark is that the dynamics above (Equation 2.5) corresponds to Hamiltonian

H(X, h) =C1

√
1−X2X cos(h) + C2

(
1−X2

)
cos(2h)

+ C3X + C4X
2.

(2.6)

For circumbinary planets in physical parameter range, the value of C3 is much bigger

than those of C1,2,4 (see e.g., Fig. 2.3) unless the planet’s orbit is nearly orthogonal to the

binary’s. These values, according to our secular equations of motion (Equation 2.5), lead

to X being nearly a constant and h linearly changing with time (note h ∈ T, not R), which

corresponds to fast precession of the spin axis along the orbital normal direction and near
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Figure 2.3: C1,C2,C3,C4 change with respect to mutual inclination ip of Kepler-47 system.

constant obliquity. This is how the developed secular theory elucidates the low obliquity

variation.

We now illustrate a fuller picture of what the secular theory can say about the effect of

stellar binary on the planetary spin dynamics. To be concrete, we use Kepler-47 system

(a∗ = 0.0836AU , M∗1 = 1.043M�, M∗2 = 0.362M�) as an example, but the dynamics

and bifurcations are topologically the same for general circumbinary systems. Varying

one parameter (ip) of the system and keeping others fixed, the spin dynamics undergoes

a series of bifurcations and switches between topologically different dynamics with 2, 4, 6

fixed points (the 2, 4, 6 fixed points cases respectively correspond to ip = 0◦ to the 1st

bifurcation point near ip = 89◦, the 1st to the 2nd bifurcation point near ip = 89.99◦, and

the 2nd bifurcation point to ip = 90◦ in Fig. 2.4).

Comparing to the single star system, the circumbinary system has an additional bifur-

cation. More precisely, the spin dynamics in the ≤ 1 saddle point parameter regime (from

ip = 0◦ to the 2nd bifurcation point in Fig. 2.4) are similar to the single star system [21]

as both bifurcations are due to the 1 : 1 spin-orbit resonance [39, 21]; however, the regime

with two saddle points is unique to the circumbinary system. In particular, a second saddle
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point is created out of a previously stable fixed point when the mutual inclination between

the inner and the outer orbits reaches nearly 90◦, as the consequence of a Hamiltonian pitch-

fork bifurcation. Two additional centers also appear from the bifurcation, corresponding

to configurations for which torques from the two stars cancel out. For illustration, phase

portraits of fixing three different ip values in Fig. 2.4 are plotted in Fig. 2.5 with ip before

the 1st bifurcation, between the 1st and the 2nd bifurcation and after the 2nd bifurcation

respectively from the left to the right. To better observe the spin dynamics in 3D space,

the phase diagrams in spheres in Fig. 2.5 are wrapped from the 2D phase portraits, demon-

strating the trajectories of the spin direction (with respect to the planetary orbit) as the level

sets in the sphere. Specifically, in Fig. 2.4, from the 1st column to the 2nd column, one

center and one saddle emerge from around (−1, 0) and this bifurcation is due to the 1 : 1

spin-orbit resonance (it is common to single star systems); from the 2nd column to the 3rd

column, the fixed point around (π, 1) changes from a stable center to an unstable saddle

with two centers symmetric to h = π emerge around it due to the 2nd bifurcation and the

two emerged centers take place around (π/2, 0.4), (3π/2, 0.4) in the phase diagram of the

3rd column.

Mathematically this corresponds to the case where C3 is no longer dominating. Physi-

cally, this corresponds to a previously stable configuration changing into an unstable one,

accompanied by two libration-like stable regions emerging nearby, encircled by larger scale

transports outside. It happens especially when the planetary orbits are largely tilted with

respect to the plane of the stellar binary.

It is unclear yet how physical a near 90◦ inclination is. However, our main claim,

namely the reduced obliquity variation due to the existence of two host stars, is due to the

quantitative behavior of the secular dynamics (Equation 2.5) for inclinations away from

90◦ (not the emergence of a 2nd bifurcation). The new behavior after the 2nd bifurcation

(near 90◦) is currently just a theoretical prediction and a by-product (our main result is still

the modest obliquity variation in the low inclination cases).
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Full-body Simulations

An accurate and efficient numerical method for simulating gravitationally interacting rigid

bodies (as opposed to point masses) was recently developed based on symplectic Lie group

integrators [29]. We conduct such simulations, which will be termed as full-body simu-

lations, for two purposes: (i) to validate our secular theory, and (ii) to demonstrate that

stabilization of the long-term obliquity dynamics is a rather general phenomenon.

More specifically, this section will first detail a case study and then sample through

the parameter space of circumbinary planetary systems to quantify the ubiquity of stable

obliquity dynamics. For the relevance to habitability, we will focus on Earth-like planets

in near circular orbits. The planet mass, semi-major axis/rotation period, eccentricity, and

oblateness are set to be the same as that of the Earth; however, a wide range of inclinations

is considered.

The case study is based on a concrete example: Fig. 2.6 quantifies the spin axis variation

of an Earth-like planet in a circumbinary system analogous to Kepler-47 (a∗ = 0.0836AU ,

M∗1 = 1.043M�, M∗2 = 0.362M�) [40]. Results based on both rigid body dynamics sim-

ulations (solid line) and our secular approximation (dashed line; see section 2.4.2 for details

of this theory) were both included. Different colors represent different mutual inclinations

between the planet and the stellar binary.

The upper panel of Fig. 2.6 presents the results of the spin-angle, which measures the

tilt of the spin-axis relative to the invariable plane (the plane normal to the total angular

momentum of the system). It illustrates the dynamical variation of the spin-axis. The solid

lines represent the full body simulation and the dashed lines represent our secular results

in figure Fig. 2.6, and it shows that the secular approximation agrees very well with that of

the rigid body simulations. Fig. 2.6 shows that the spin-angle variations remain very small

(. 1◦) for all mutual inclinations. This suggests that the effect of a stellar ‘perturber’ is

different from that of planetary perturbers; for example, both Moon-less Earth and Mars are

known to have large and chaotic spin-angle variations as a result of spin-orbit resonances
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due to the perturbation of the planetary companions [15, 7]. Similar to the results based on

the secular theory, when orbiting around a stellar binary, the spin precession frequencies

are much faster than the orbital precession frequency due to the large quadrupole potential

of to the stellar binary in the center. Thus, the spin-orbit resonances are absent, and the

spin-angle only has very small oscillations.

The example in Fig. 2.6 shows that for a near coplanar circumbinary system analogous

to Kepler-47, both the spin-angle and the planetary obliquity variations are small, due to

the lack of spin-orbit resonances. Does this feature persist for a single planet orbiting

around generic stellar binaries? Typical ranges of the properties of stellar binaries hosting

circumbinary planets are not yet well understood, due to the limited sample size of the

observed transiting systems (11 so far). However, the understanding so far include that

(i) the stellar binaries hosts typically have orbital periods longer than seven days, which

are larger than those of eclipsing stellar binaries (∼ 3days) [27]; (ii) the mass ratio of the

binaries is consistent with that of the stellar binaries in the field (roughly uniform) [41]. In

order to make a robust claim, we consider a broad range of binary configurations.

Specifically, we enumerate stellar binary configurations by varying M∗2
M∗1
∈ [0.01, 1] and

a∗ ∈ [0.05, 0.3]. We set the sum of the stellar binaries to be one solar mass for an intuitive

comparison with Solar system. The lower limit of the mass ratio is set so that the binary

components are both with stellar masses. The minimum semi-major axis corresponds to

orbital periods of ∼ 4 days, and the maximum semi-major axis corresponds to orbital

period of ∼ 60days. The maximum semi-major axis is set so that a planet at 1AU remains

stable [42]. Then, we calculate the amplitude of the spin-angle variations of an Earth-like

planet with 1◦ inclination (from the orbital plane of the stellar binary) using our secular

theory to illustrate the effects quantitatively.

Results are summarized in Fig. 2.7. The spin angles mostly have variations less than

1◦ for stellar mass ratio larger than 0.01 and stellar separation larger than & 0.05AU (cor-

responding to a binary period & 4 days). This suggests that the latitudinal distribution of
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Figure 2.6: Spin-Angle (upper panel) and obliquity (lower panel) versus time for an Earth-
like planet orbiting around a binary star. The binary stars’ orbital parameters were set
according to the stellar binary properties of Kepler-47 system, and the planet was chosen
to be Earth-like. Multiple colors represent different mutual inclinations between the planet
and the stellar binary, and the solid / dashed lines represent results from rigid body sim-
ulation / secular theory. It shows that the spin angles have only small variations, and the
obliquity variations are mainly due to planetary orbital variations.
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Figure 2.7: Spin-Angle variations of circumbinary planets around different types of stellar
binaries. The x-axis is the semi-major axis of the orbit of the stellar binary, and the y-axis
is the mass ratio of two stars. The color represents the largest spin-angle variation for an
Earth-like planet. Red dots represent currently observed circumbinary planetary systems.
It illustrates that the amplitudes of the spin angle variations are very small (. the variation
of the Earth) for a wide range of binary systems, except when the binary separation and
mass ratio are both low and the quadrupole moment of the binary is small, corresponding
to the lower left corner of the figure.

the stellar radiations have small variations for a wide range of Earth-like planets around

stellar binaries in the near co-planar configurations. This phenomenon can be understood

intuitively, because higher stellar binary mass ratio and separation both lead to a larger

quadrupole momentum at the center of the planetary orbit. This drives fast orbital preces-

sion and avoids spin-orbit resonances and variations in the planetary spin-axis. Because

circumbinary planets are more likely formed in a coplanar configuration around wide orbit

stellar binaries above ∼ 7 days [31, 32], it is unlikely to have large spin-axis variations for

near co-planar Earth-like planets around stellar binaries.

2.3.3 Circumbinary Systems with Multiple Planets

Similar to single star systems, it is common to have multiple planets in a circumbinary

system. An example is the observed Kepler-47 system (at least 3 planets). Interactions

between planets can give extra perturbations to their orbital dynamics and increase the

likelihood of spin-orbit resonances and large amplitude obliquity variations. For instance,

19



0   100 200 300 400 500 600 700 800 900 1000
  0

°

 10
°

 20
°

 30
°

 40
°

 50
°

 60
°

 70
°

 80
°

 90
°

100
°

110
°

0 500 1000

Time (kyr)

4.95
°

   5
°

5.05
°

 23.4
°

23.45
°

 23.5
°

34.95
°

   35
°

35.05
°

49.95
°

   50
°

50.05
°

64.95
°

   65
°

65.05
°

79.95
°

   80
°

80.05
°

Figure 2.8: Obliquity variations of the Moon-less Earth, orbiting Sun (solid) and orbiting
a stellar binary (dash), with companion planets. Similar to the results in [5, 6], the Moon-
less Earth has large obliquity variations when obliquity is below 50◦. On the other hand, if
orbiting a binary, the Earth’s obliquity would be stable even without the help of the Moon.

for Earth, perturbations of the terrestrial planets would introduce orbital oscillations that

resonate with the precession of Earth’s spin-axis and lead to large amplitude obliquity vari-

ations, if Moon weren’t there to stabilize the spin dynamics [15, 43].

How variable would the spin-axis be, if Earth orbited around a stellar binary with its

Solar System planetary companions? To focus on the stabilizing effect of the binary, we

consider the moon-less Earth with its seven companion planets in the solar system. The

stellar binary are assumed to be in the elliptic plane. We arbitrarily set the stellar binary to

be composed of a 0.7M� star and a 0.3M� star, so the sum of the masses is the same as

our own Sun. We set the semi-major axis of the binary to be 0.05AU, so that the effects of

the stellar binary is strong comparing with that of the planets but the separation is not wide

enough to create instability in millions of years (this was numerically verified).

Fig. 2.8 shows the obliquity variations of the Earth-like planet orbiting around a stellar

binary (dashed lines) and around a single star, obtained from our full-body simulations.

Different colors correspond to different initial obliquities. The case of the moonless Earth
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agrees with the secular results and the rigid body simulations in the literature [15, 6], which

show large amplitude obliquity oscillations when the obliquity is below ∼ 50◦. Unlike the

case of a single-star Moon-less Earth, the obliquity is nearly stable for all initial obliquities

around the stellar binary. It shows the Earth’s obliquity can be stabilized by the stellar

binary even without the Moon.

How general is this stabilization effect? We now investigate it both analytically (sec-

tion 2.3.3) and numerically (section 2.3.3).

Analytical Results

In single star systems (e.g., the Solar System), the oscillation frequency of a planet’s incli-

nation can be estimated using Laplace-Lagrange method [44]. Here, we combine Laplace-

Lagrange with our circumbinary secular theory to approximate the orbits of multiple cir-

cumbinary planets, so that whether obliquity variations are large can be predicted [5]. Un-

der the common physical approximation that planetary perturbation on the stellar binary is

negligible, we assume the stellar binary to have fixed Keplerian orbits. The Hamiltonian of

the system is the following:

H(q,p) =
n∑
i=1

pTi pi
2mi

− GM∗1mi

‖qi − q∗1‖
− GM∗2mi

‖qi − q∗2‖
+ Rplanets

i , (2.7)

where qi, pi are respectively planet i’s position and momentum, q∗1 and q∗2 are time-

dependent locations of the stars, M∗1 and M∗2 are stellar masses, the planets [44].

In order to obtain a nearly-integrable form amenable to analysis, we split the gravita-

tional potential between the planets and the stars into two parts and rewrite the Hamiltonian

as:

H(q,p) =
n∑
i=1

Hkepler
i +

[
R∗1i + R∗2i + Rplanets

i

]
. (2.8)
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Here Hkepler
i is the Hamiltonian of a two-body system, composed of two stars merged at

their center of mass and the ith planet, which alone would produce a Keplerian orbit. R∗1i

and R∗2i are disturbing functions modeling (exact) corrections of the gravitation potential

generated by the binary due to separations from their center of mass. Rplanets
i are again

inter-planet potentials.

We then decompose the perturbative non-integrable part
∑n

i=1

(
R∗1i + R∗2i + Rplanets

i

)
into two groups: the group due to having two stars

∑n
i=1 (R∗1i + R∗2i ), and the group due

to having companion planets:
∑n

i=1R
planets
i .

Under the influence of the stellar binary (the first group), the planetary orbit would

precess with a near constant angular frequency (Di), in the low eccentricity and low incli-

nation limit (see [45], and SI) , where the orbital inclination Ii is fixed and the longitude of

ascending node Ωi decreases at constant rate Di. Then, the dynamical evolution under the

disturbing potential of
∑n

i=1 (R∗1i + R∗2i ) follows the expression below:



dhi
dt

= Diki,

dhj
dt

= 0, j 6= i.

dki
dt

= −Dihi,

dkj
dt

= 0, j 6= i.

(2.9)

where hi = Ii cos (Ωi) , ki = Ii sin (Ωi).

On the other hand, the approximated dynamics due to planetary companions (the latter

group) can be expressed via Laplace-Lagrange theory as described in [44]:


dh

dt
= A · k

dk

dt
= −A · h

(2.10)
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whereA =


a11 · · · a1n

... . . . ...

an1 · · · ann

 ∈ Rn×n is a constant matrix that depends on planetary semi-

major axes and masses of planets, satisfying
∑

j aij = 0.

For a first-order perturbative approximation, it can be computed that the effective con-

tributions of these two nonresonant fast processes (quadrupole contribution of the binary

and planet-planet interaction) are additive, and we have the following approximated dy-

namics 
dh

dt
= B · k

dk

dt
= −B · h

(2.11)

where B = A + D and D =


D1 · · · 0

... . . . ...

0 · · · Dn

 , and this system is a linear system with

coefficient matrix

 0 B

−B 0

.

For planets in the habitable region close to the stellar binary, the effects of the stellar

binary dominates over that of the planetary companions (as illustrated numerically in the

next section subsubsection 2.3.3). Therefore, in most of the cases A � D and this will

thus be assumed (the validity of this assumption will be illustrated in the next section).

Under this condition, B is diagonalizable with real eigenvalues λ1, λ2, . . . , λn satisfying

λi ≈ Di + Ai, where Ai is the ith diagonal element of A (proof in section A.1). Denoting

the corresponding eigenvectors by v1,v2, . . . ,vn, solutions to Eq. (2.11) are in the form


h =

∑
j

C
(1)
j sin (λjt)vj + C

(2)
j cos (λjt)vj,

k =
∑
j

−C(2)
j sin (λjt)vj + C

(1)
j cos (λjt)vj.

(2.12)

Thus, similar to the single planet case, the inclination oscillation frequencies are dom-
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Figure 2.9: Region of the companion planet to allow obliquity variations. The x-axis is the
semi-major axis of the orbit of the stellar binary a∗. The y-axis is the mass ratio of two stars
M∗2
M∗1

. For each choice of these two values as well as p2’s mass log-uniformly sampled from
[10−3, 10−6]M�, we compute the interval of p2’s semi-major values that can potentially
place p1 in spin-orbit resonance, and use color to represent the largest width of this interval
(brighter means higher likelihood of larger variation), maximized over all enumerated p2
mass values. Red dots correspond to observed circumbinary systems.

inated by the stellar potential, and are typically much larger than that of the spin-axis pre-

cession frequencies. Therefore, spin-orbit resonances are thus avoided and obliquity varia-

tions are typically still low for Earth-like circumbinary planets in the habitable zone like in

section 2.3.2, even when planetary companions are present.

Parameter Space Survey Based on the Analytical Theory

To make a robust claim about the obliquity variations of circumbinary multi-planetary sys-

tems, we again conduct a systematic study, this time of a binary star system with two

planets. We set one of the planets to be an Earth-like planet, and vary the mass and loca-

tion of the other planet. Denote by p1 the Earth-like planet and p2 the other planet. For

dynamically cold systems, we assume that the eccentricity and inclination of the planetary

companion are low.

In order to see if the addition of an additional planet can create large obliquity varia-

tion, we not only sample the parameter space of the stellar binary over a∗ and M∗2
M∗1

, but also

scan through a wide range of semi-major axes for p2 (ap2). For each ap2 , we run over all
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possible masses of p2: mp2 ∈ [10−3, 10−6]M�. For each setup, we calculate the inclination

oscillation modal frequencies based on the secular approach described in section 2.3.3, and

record the interval (max (ap2)−min (ap2)) in which the modal frequencies are close to the

spin-axis precession frequencies (for an overestimation, we define ‘close’ as ∼ 0.8 − 1.2

times the spin-axis precession frequency). The interval is considered to be an overestima-

tion of ap2 values that may lead to spin-orbit resonances — for this, we note that the exact

proximity of the spin-axis precession frequency that could lead to the spin-orbit resonances

depends on the width of the resonances, which is affected by the configuration of the cir-

cumbinary system (e.g., obliquity of p1, the amplitude of the inclination oscillation, as well

as the separation of the stellar binary) [12, 20]. In general, the larger the interval length,

the higher chance the Earth-like planet would experience large spin-angle variations.

The results are shown in Fig. 2.9. The likelihood of larger obliquity variation depends

on the mass of p2 and the separation of the stellar binary: when the planets are more

massive, they can better compete with the perturbation from the star and allow a higher

chance for spin-angle variations. However, including maximum planetary mass up to 0.1%

that of the star, the planets still need to be very close to each other (. 0.1−0.3AU) to allow

large spin-angle variations.

In short, large spin-angle variations may only occur with high probability in the cir-

cumstance of a heavy planet (mp2 > 10−3M�) being very close to the Earth-like planet.

We note that separations between planets are typically larger than∼ 12Rhill ∼ 0.15−1AU

for Earth-like planet with Earth-like to Jupiter-like companions around Sun-like stars, and

these separations are larger if the planetary masses are higher. Thus, the yellow region in

Fig. 2.9 is unlikely to be physical due to orbital stability of the system.
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2.4 Derivation of the Secular Theory

2.4.1 Canonical Variables for Spin-Orbit Dynamics

Building on the canonical Delaunay variables and the Andoyer variables [46, 47, 48, 49],

our secular theory of one planet rotating around binary stars not only reduces the dimen-

sions of a system by averaging out the separated fast variables, but also provides insights of

the physical behaviors of the system as both sets of variables have clear physical meanings.

Specifically, the orbital dynamics are characterized by the Delaunay variables, whereas the

spin dynamics are characterized by Andoyer variables. In the following, we will introduce

the procedure for properly constructing these variables in a circumbinary system, where

two stars are unaffected by the planet and thus modeled as point masses, and the planet is

modeled as a moving and rotating rigid body. Firstly, three frames (the reference frame,

the body frame and the angular momentum frame) involved in our discussion will be in-

troduced. Secondly, the Delaunay variables will be introduced as a canonical change of

coordinates from the spatial positions and momenta of all three bodies’ centers of mass. In

the end, the orientation and the spin of the rigid planet will be characterized using Andoyer

variables.

Three Frames

The reference frame is a fixed frame in R3 with orthogonal basis (E1,E2,E3). Under the

reference frame, the spatial position and the translational speed of a body can be expressed

by vectors in R3. In our setup, as the inner orbit’s oscillation is relative small compared

with the planet’s orbit, we make the assumption that the inner orbit is near Keplerian. Thus,

we may choose the reference frame (Fig. 2.2) such that E1-axis matches the semi-major

axis of the initial inner orbit;E2-axis matches the semi-minor axis of the initial inner orbit;

E3-axis matches the normal vector of the initial inner orbit.

On the other hand, the body frame (Fig. 2.10) is the moving frame attached to the
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Figure 2.10: The body frame

rotating body (i.e., the planet), giving each particle of the body fixed coordinates. As can

be seen from Fig. 2.10, orthogonal bases (e1, e2, e3) formed a body frame of this rigid

body. As the body moving along the dashed trajectory following arrows as well as self

rotating from time t0 to time t1, coordinates of points P,Q under the body frame stay the

same, despite of the motion of the rigid body. Since we have assumed that each planet is a

spheroid, for the body frame (see Fig. 3.1), we fix the body plane (spanned by e1 and e2)

the plane of equator and fix the origin the center of the rigid body.

In addition to the body frame and the fixed reference frame (inertial frame), The angu-

lar momentum frame is any frame that the rotational angular momentum of the rigid body

matches the z-direction.

In Fig. 2.11, three frames of a spinning rigid body are shown together with symbols

explained in Table. 2.1. For these three frames, the reference frame is fixed; the body frame

is moving with respect to the orientation of the body; while the angular momentum frame

is moving with respect to the spinning direction of the body.

Explanations:
−→
Ga is the angular momentum vector of the rigid body; α is the angle

between the z-axis of the angular momentum frame and the z-axis of the reference frame;

27



Table 2.1: x, y, z-axis of three frames

x-axis y-axis z-axis

Reference Frame E1 E2 E3

Body Frame e1 e2 e3

Angular Momentum Frame − − −→
Ga

Figure 2.11: Three Frames with Andoyer Variables
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β is the angle between the z-axis of the angular momentum frame and the z-axis of body

frame.

Converting Cartesian Spatial Positions and Momenta to the Delaunay Variables

In the system of one planet rotating around binary stars, there are two orbits: the inner orbit

of two stars and the outer orbit of the planet rotating around the center of mass of the binary

stars. As the inner orbit’s oscillation is relative small compared with the planet’s orbit, we

make the assumption that the inner orbit is near Keplerian, while the outer orbit has its

osculating orbital elements being oscillatory (except for the anomaly variable). We denote

the orbital elements [50] of the inner orbit and the outer orbit as (a∗, e∗, i∗, ω∗,Ω∗, ν∗),

(ap, ep, ip, ωp,Ωp, νp) respectively. Here, for the inner orbit (relative orbit of the 2nd star

around the 1st star), a∗ is the length of semi-major axis; e∗ is the eccentricity; i∗ is the

inclination; ω∗ is the argument of periapsis; Ω∗ is the longitude of ascending node; and we

set ν∗ to be the true anomaly. For the outer orbit of the planet around the center of mass of

two stars, ap is the length of semi-major axis; ep is the eccentricity; ip is the inclination; ωp

is the argument of periapsis; Ωp is the longitude of ascending node; and νp the true anomaly

of the planet. Expressing the positions of the three bodies using orbital elements, we have



q∗1 = δ · a∗ (1− e2∗)
1 + e∗ cos (ν∗)

·Rx (Ω∗) ·Rz(i∗) ·Rx(ω∗) ·


cos ν∗

sin ν∗

0

 ,
q∗2 = −M∗1

M∗2
q∗1 ,

qp =
ap
(
1− e2p

)
1 + ep cos νp

·Rx (Ωp) ·Rz(ip) ·Rx(ωp) ·


cos νp

sin νp

0

 ,
(2.13)
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with q∗i , i = 1, 2 the positions of two stars, qp the position of the planet and Rx(·), Ry(·),

Rz(·) are defined in Eqs. (2.14) to (2.16).

Rx(ϕ) :=


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 , (2.14)

Ry(ϕ) :=


cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

 , (2.15)

Rz(ϕ) :=


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 . (2.16)

Denote the corresponding Delaunay variables of the inner orbit as

D∗ = {l∗, g∗, h∗, L∗, G∗, H∗} (2.17)

=

{
M∗, ω∗,Ω∗, µ∗

√
G(M∗1 +M∗2)a∗, L∗

√
1− e2∗, G∗ cos i∗

}
, (2.18)

with µ∗ =
M∗1M∗2
M∗1+M∗2

and M∗ the mean anomaly of the inner orbit. Similarly, the Delaunay

variables of the outer orbit is denoted as

D = {ld, gd, hd, Ld, Gd, Hd} (2.19)

=

{
Mp, ωp,Ωp, µp

√
G (M∗1 +M∗2 +mp) ap, Ld

√
1− e2p, Gd cos ip

}
, (2.20)
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with µp =
mp(M∗1+M∗2 )

M∗1+M∗2+mp
and Mp the mean anomaly of the outer orbit. In Eqs. (2.17)

and (2.19), l∗, g∗, h∗, lp, gp, hp are angle variables with L∗, G∗, H∗, Lp, Gp, Lp their conju-

gate momemta. Mapping the orbital elements in Eq. (2.13) to Delaunay variables defined

above, the positions can be expressed as functions of Delaunay variables. Noting that dif-

ferent anomalies are used in Eq. (2.13) and Eq. (2.17), Eq. (2.19), one need to solve the

Kepler equation to perform the mapping from the orbital elements to the Delaunay vari-

ables.

The Orientation and the Rotational Momenta of the Rigid Planet in the Andoyer Variables

As we are interested in the dynamics of the planet’s spin, the planet is modeled as a rigid

body to account for its finite size, thus the orientation and the rotation of the rigid body

are necessary to represent the rigid body. As is well known, each rotation matrix R ∈

SO(3) rotates 3-dimensional vectors in Euclidean space in a unique way (we will use the

convention of column vectors and left multiplication). Thus we may use a time dependent

rotation matrix to represent the transformation from the body frame to the reference frame

in our dynamics (i.e. the orientation of the rigid body). Angles extracted from the Andoyer

variables are used to reflect the orientation by a sequence of standard rotations (Eqs. (2.14)

to (2.16)). Also the rotational angular momentum of the rigid body can be expressed with

the momentum variables of the Andoyer variables, conjugating to the three angle variables.

Moreover, other than just representing the state of the rigid body, the Andoyer variables

also separate the slow and fast scales of the dynamics.

In detail, similar to the Delaunay variables, the Andoyer variables are canonical coor-

dinates. They consist of three angle variables {ga, ha, la}, and their conjugate momenta

{Ga, Ha, La}. The angle variables are defined by the orientation of three frames (see
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Fig. 2.11), while Ga, Ha, La are defined as the following [51, 49],


Ga =

∣∣∣−→Ga

∣∣∣ ,
Ha = Ga cosα =

∣∣∣−→Ga ·E3

∣∣∣ ,
La = Ga cos β =

∣∣∣−→Ga · e3
∣∣∣ ,

(2.21)

with α, β are described in Fig. 2.11. In other words, Ga is the magnitude of the angular

momentum; Ha is the magnitude of
−→
Ga’s orthogonal projection toE3; La is the magnitude

of
−→
Ga’s orthogonal projection to e3.

Setting the angular momentum frame as an intermediate frame, we may represent

the rotation matrix R as a product of a sequence of standard rotations using angles in

Fig. 2.11 [49],

R = Rz(ha) ·Rx(α) ·Rz(ga) ·Rx(β) ·Rz(la). (2.22)

Since cosα = Ha
Ga

and cos β = La
Ga

, replacing α, β in Eq. (2.22), the rotation matrix

can be represented purely using the Andoyer variables {ga, ha, la, Ga, Ha, La} (name it as

RA),

RA = Rz (ha) ·Rx

(
arccos

(
Ha

Ga

))
·Rz (ga) ·Rx

(
arccos

(
La
Ga

))
·Rz (la) . (2.23)

2.4.2 Dynamics of the Spin for an Earth-like Planet in Circumbinary Systems: two point

mass stars + one rigid body planet

Hamiltonian Formulation

In this section, we will express the Hamiltonian using the canonical Delaunay and Andoyer

variablesD,D∗,A introduced in section 2.4.1. In short, H = T∗1 +T∗2 +Tp+V∗+V1 +V2

with T∗i kinetic energies of the ith star, Tp the kinetic energy of the planet, V∗ potential
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energy between two stars and Vi potential energies between ith star and the planet. We

assume that the inner orbit is near circular and near Keplerian (as the perturbation of the

planet is negligible) such that during the dynamics O(i∗) = O(e∗) = O
(
(a∗/ap)

3). Then

T∗1 + T∗2 + V∗ = −G
2(M∗1+M∗2 )

2µ3∗
2L2
∗

+O
(
(a∗/ap)

3). We will calculate Tp, V1 and V2 terms

and conclude the Hamiltonian in action angle variables in the following under the assump-

tion of O(ep) = O(β) = O
(
(a∗/ap)

3). Note that all O
(
(a∗/ap)

3) terms are dropped to

the remainder term R̃ (see Eq. (2.50)) and neglected when analyzing the dynamics, the

effective Hamiltonian we consider in fact only relies on variablesA,D, L∗, l∗ and the inner

orbit we consider is in fact a Keplerian orbit due to the dropped perturbation. In the end,

after dropping O
(
(a∗/ap)

3) terms, an approximated Hamiltonian will be obtained with 6

pairs of conjugate variables corresponding to separated slow and fast scales.

The total kinetic energy of the planet is the sum of its linear kinetic energy T linear (D)

and its rotational kinetic energy T rot (A, L∗, l∗). The former is

T linear =
G2(M∗1 +M∗2 +mp)

2µ3
p

2L2
d

. (2.24)

For the latter, by the definition of the Andoyer variables, we may express the rotational

kinetic energy as

T rot(A) =
G2
a sin2 β

2I
(1)
p

+
G2
a cos2 β

2I
(3)
p

=
H2
a

2I
(1)
p

+
G2
a −H2

a

2I
(3)
p

. (2.25)

with

Ip =


I
(1)
p 0 0

0 I
(2)
p 0

0 0 I
(3)
p

 (2.26)

the (standard) moment of inertia tensor of the planet.
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The potential energy of the planet is influenced by both stars,

V (A,D, l∗, L∗) = V1 + V2. (2.27)

Without loss of generality, we will only derive V1 here. Integrating the potential for

each mass point of the rigid planet,

V1 =

∫
B
− GM∗1ρ(x)

‖(qp +Rpx)− q∗1‖
dx

=GM∗1mp

{
− 1

‖qp − q∗1‖
− tr[Ip]

mp ‖qp − q∗1‖3
+

3(qp − q∗1)TRpIpRp
T (qp − q∗1)

2mp ‖qp − q∗1‖5
}

+O
(( R
‖qp − q∗1‖

)3
)
,

(2.28)

with qp, q∗i in the Delaunay variables D,D∗ and Rp the rotation matrix in the Andoyer

variables A (Eq. (2.23)). Term by term, we will show how we express Eq. (2.28) in the

Delaunay variables and the Andoyer variables with higher order terms separated.

In detail, to analyze the term in Eq. (2.28) with Rp, we assume the angle β (the angle

between the spin axis and the e3-axis of the planet) small as physically, the oblate shape

of the planet is flattened by the spinning of the planet. Thus we may rewrite RpIpR
T
p in
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Eq. (2.28) by separating the higher order terms of O (β),

RpIpR
T
p =Rz(ha) ·Rx(α) ·Rz(ga) ·Rx(β) ·Rz(la) · Ip

·RT
z (la) ·RT

x (β) ·RT
z (ga) ·RT

x (α) ·RT
z (ha)

=Rz(ha) ·Rx(α) ·Rz(ga) ·Rx(β) · Ip ·RT
x (β) ·RT

z (ga) ·RT
x (α) ·RT

z (ha)

=Rz(ha) ·Rx(α) · Ip ·RT
x (α) ·RT

z (ha) +O(β)

=I(1)p I3×3

+ (I(3)p − I(1)p ) ·Rz(ha) ·Rx(α) ·


0 0 0

0 0 0

0 0 1

 ·RT
x (α) ·RT

z (ha)

+O(β).

(2.29)

For ‖qp − q∗1‖, using Eq. (2.13), we have

‖q∗1 − qp‖2 = ‖qp‖2 ·
(

1 + 2 ·P(ν∗, νp, ip, ωp,Ωp) ·
‖q∗1‖
‖qp‖

+

(‖q∗1‖
‖qp‖

)2
)
, (2.30)

with

P(ν∗, νp, ip, ωp,Ωp)

= sin (νp) cos (ν∗)
[

cos (ip) cos (ωp) sin (Ωp) + sin (ωp) cos (Ωp)
]

− sin (ν∗)
[

cos (ip) cos (Ωp) · sin (νp + ωp) + sin (Ωp) cos (νp + ωp)
]

+ cos (νp) cos (ν∗)
[

cos (ip) sin (ωp) sin (Ωp)− cos (ωp) cos (Ωp)
]
,

(2.31)

and

‖q∗1‖
‖qp‖

= δ
a∗(1 +O(e∗))

ap(1 +O(ep))
= δ

a∗
ap

+O(e∗) +O(ep). (2.32)
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Applying Legendre polynomial for the expansion of 1

‖q∗1−qp‖ with ‖q∗1 − qp‖ calcu-

lated in Eq. (2.30) , we have

1

‖q∗1 − qp‖
=

1

‖qp‖

(
1− ‖q∗1‖‖qp‖

P +

(‖q∗1‖
‖qp‖

)2(
3

2
P2 − 1

2

)
+O

((‖q∗1‖
‖qp‖

)3
))

=
1

ap

(
1− δ

(
a∗
ap

)
P + δ2

(
a∗
ap

)2(
3

2
P2 − 1

2

)
+O

((
a∗
ap

)3
))

+O(e∗) +O(ep).

(2.33)

Denote

D1 =
1

ap

[
−δP + δ2

(
a∗
ap

)(
3

2
P2 − 1

2

)]
, (2.34)

We can rewrite Eq. (2.33) as

1

‖q∗1 − qp‖
=

1

ap
+

(
a∗
ap

)
D1 +O

((
a∗
ap

)3
)

+O(e∗) +O(ep). (2.35)

Similarly, we have

1

‖q∗1 − qp‖3
=

1

a3p
+

(
a∗
ap

)
D3 +O

((
a∗
ap

)3
)

+O(e∗) +O(ep). (2.36)

and

1

‖q∗1 − qp‖5
=

1

a5p
+

(
a∗
ap

)
D5 +O

((
a∗
ap

)3
)

+O(e∗) +O(ep). (2.37)
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Let

Q∗1 = δ · a∗ ·


cos ν∗

sin ν∗

0

 , (2.38)

and

Qp = ap ·Rx (Ωp) ·Rz(ip) ·Rx(ωp) ·


cos νp

sin νp

0

 . (2.39)

According to Eq. (2.13), we have

q∗1 = Q∗1 +O(e∗), qp = Qp +O(ep). (2.40)

Plugging Eqs. (2.29), (2.35) to (2.37) and (2.40), into Eq. (2.28) and absorbingO
(
(R/ap)

3)
into the O

(
(a∗/ap)

3) term asR � a∗, we have

V1 =GM∗1mp

{
− 1

ap
− a∗
ap

D1 −
tr[Ip]− 3

2
I
(1)
p

mp

(
1

a3p
+
a∗
ap

D3

)
+
I
(3)
p − I(1)p

mp

·
(

1

a5p
+
a∗
ap

D5

)

· (Qp −Q∗1)
T ·Rz(ha) ·Rx(α) ·


0 0 0

0 0 0

0 0 1

 ·RT
x (α) ·RT

z (ha) (Qp −Q∗1)

}

+O(β) +O(e∗) +O(ep) +O
((

a∗
ap

)3
)

=− GM∗1mp

ap
+
a∗
ap

R1 +O(β) +O(e∗) +O(ep) +O
((

a∗
ap

)3
)

=− GM∗1mp

ap
+
a∗
ap

R1 +O
((

a∗
ap

)3
)

(2.41)
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where

R1 =GM∗1mp

{
−D1 −

tr[Ip]− 3
2
I
(1)
p

mp

(
1

a2pa∗
+ D3

)
+
I
(3)
p − I(1)p

mp

·
(

1

a4pa∗
+ D5

)
· (Qp −Q∗1)

T

·Rz(ha) ·Rx(α) ·


0 0 0

0 0 0

0 0 1

 ·RT
z (ha) · (Qp −Q∗1)

}
.

(2.42)

Similarly, V2 = −GM∗2mp
ap

+ a∗
ap
R2 +O

((
a∗
ap

)3)
.

Changing coordinates from (ap, ep, ip, ωp,Ωp, νp) to D, we have V = V1 + V2 as a

function of A,D, l∗ and L∗. Note that νp is the true anomaly and Mp (in D) is the mean

anomaly, and we expressedMp as νp+O(ep) instead of solving the Kepler equation exactly.

Summing the kinetic energy and the potential energy, the full Hamiltonian is:

H (A,D, l∗, L∗) = T linear (D) + T rot (A) + V (A,D, l∗, L∗)

= −G
2(M∗1 +M∗2)

2µ3
∗

2L2
∗

+
G2(M∗1 +M∗2 +mp)

2µ3
p

2L2
d

+ T rot (A)

+ V (A,D, l∗, L∗) .

(2.43)

Plugging in the potential V1 and V2 to Eq. (2.43), one sees that the Hamiltonian only
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depends on S = {ld, hd, gd, Ld, Hd, Gd, ld, ga, ha, Ga, Ha, La, l∗, L∗},

H (S) =− G
2(M∗1 +M∗2)

2µ3
∗

2L2
∗

+
G2(M∗1 +M∗2 +mp)

2µ3
p

2L2
d

+ T rot(S) + V1 + V2,

=− G
2(M∗1 +M∗2)

2µ3
∗

2L2
∗

+
G2(M∗1 +M∗2 +mp)

2µ3
p

2L2
d

+
H2
a

2I
(1)
p

+
G2
a −H2

a

2I
(3)
p

− G
2(M∗1 +M∗2 +mp)

2µ3
p

L2
d

+
a∗(L∗)

ap(Ld)
(R1 + R2) + R̃,

=− G
2(M∗1 +M∗2)

2µ3
∗

2L2
∗

− G
2(M∗1 +M∗2 +mp)

2µ3
p

2L2
d

+
H2
a

2I
(1)
p

+
G2
a −H2

a

2I
(3)
p

+
a∗(L∗)

ap(Ld)
(R1 + R2) + R̃,

(2.44)

with R̃ = O
((

a∗
ap

)3)
.

Using Averaging Theory to Construct an Approximated Dynamics

The dynamics of the above Hamiltonian system (Eq. (2.44)) consists of the slow compo-

nents Sslow = {hd, gd, Ld, Hd, Gd, ha, Ga, Ha, L∗}, as well as the fast components Sfast =

{l∗, ld, ga}, which correspond to binary’s orbital phase, planet’s orbital phase, and planet

spin. The fast and slow components are separated by scaling η1 and η2, where η1 = a∗
ap

is a

small parameter corresponding to the stellar binary are closer to each other than the planet,

and η2 =
I
(1)
p −I

(3)
p

I
(3)
p

is another small parameter modeling the oblateness of the planet. In the

observed circumbinary systems, 0.084 ≤ η1 ≤ 0.23 [30]; and η2 ≈ 0.00334 for Earth-like

planets. Let us now compare the relative timescales of the variables, in order to determine

and justify the order of a sequence of averaging approximations. Specifically, the slow

variables change with rate either O(η1) or O(η2). On the other hand, l̇∗ = O
(
η
−3/2
1

)
,

l̇d = O(1) and ġa equals the spin rate of the planet around the direction of the angular

momentum. Here, we assume that the frequencies of l∗, ld and ga are not commensurable.

Thus, we may average over l∗ and ld in sequence, assuming no resonance occurs between
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l∗, ld, ga, then we saw that ga is decoupled from the system.

Average over binary’s orbital phase l∗

A closer look at H (S) reveals that all terms dependent on l∗ are of order O(η21). Thus,

H (S) can be written as

H (S, l∗, L∗)

=H0 (L∗) + η1H1 (S\ {l∗, L∗}) + η21H2 (S) + η31H3 (S)

+O
(
η41
)
.

(2.45)

As H(S) is nearly-integrable, canonical averaging theory (e.g., [50]) guarantees that

averaging H(S, l∗, L∗) over l∗ is equivalent to first-order averaging of the Hamiltonian

dynamics. After l∗ is averaged, L∗ becomes a conserved quantity. Therefore, excluding

H0(L∗), we obtain the averaged Hamiltonian

H (S) = H1 (S\ {l∗, L∗}) +
1

2π

∫ 2π

0

η1H2 (S) + η21H3 (S)

l̇∗
dl∗

= H1 (S\ {l∗, L∗}) + η1 · 0 + η21H3 (S\ {l∗, L∗})

= H1 (S\ {l∗, L∗}) + η21H3 (S\ {l∗, L∗})

. (2.46)
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which generates an approximated dynamics (see Eq. (2.47)).



l̇d =
G2(M∗1 +M∗2 +mp)

2µ3
p

L3
d

− η21
(δ − 1)δG2(M∗1 +M∗2 +mp)

2µ3
p

(
G2
d (3 cos (2 (gd + ld))− 1) + 6H2

d sin2 (gd + ld)
)

4G2
dL

3
d

,

ġd = −3(δ − 1)δH2
dG2(M∗1 +M∗2 +mp)

2µ3
pη

2
1 sin2 (gd + ld)

2G3
dL

2
d

,

ḣd =
3(δ − 1)δHdG2(M∗1 +M∗2 +mp)

2µ3
pη

2
1 sin2 (gd + ld)

2G2
dL

2
d

,

L̇d =
3(δ − 1)δG2(M∗1 +M∗2 +mp)

2µ3
pη

2
1 (G2

d −H2
d) sin (2 (gd + ld))

4G2
dL

2
d

,

Ġd =
3(δ − 1)δG2(M∗1 +M∗2 +mp)

2µ3
pη

2
1 (G2

d −H2
d) sin (2 (gd + ld))

4G2
dL

2
d

,

Ḣd = 0,

ġa =
Ga

I
(3)
p

+ η2

(
f
(1)
0 (S) + η21 · f (1)

1 (S)
)
,

ḣa = η2 ·
(
f
(2)
0 (S) + η21 · f (2)

1 (S)
)
,

Ġa = 0,

Ḣa = η2 ·
(
f
(3)
0 (S) + η21 · f (3)

1 (S)
)
.

(2.47)

From the above averaged Hamiltonian Eq. (2.46), we may derived the corresponding

dynamics Eq. (2.47). Then, we average the vector field over the fast angle ld. Important

to note is, l̇d actually depends on ld, and therefore one cannot just average L̇d (for exam-

ple) uniformly over ld from 0 to 2π. A proper ergodic averaging can be done either via

integration against time, or, essentially equivalently, a weighted average that reflects the

non-uniform ergodic measure of ld on the torus (which can be rigorously derived using

normal form).
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For example, for Ld, the averaged dynamics is

L̇d =

1
2π

∫ 2π

0
L̇d
l̇d
dt

1
2π

∫ 2π

0
1
l̇d
dt
. (2.48)

Performing the same operation for Gd, Hd, gd, hd, Ga, Ha, ga, ha, we obtain the averaged

dynamics Eq. (2.49).
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Resulting Approximated Dynamics

After averaging over l∗ and ld, another fast angle ga is decoupled from the system (see

Eq. (2.49)).

L̇d = Ġd = Ḣd = Ġa = 0,

ġd =
3(δ − 1)δH2

dG2(M∗1 +M∗2 +mp)
2µ3pη

2
1

L2
d

(
G3
d

(
(δ − 1)δη21 − 4

)
− 3(δ − 1)δGdH

2
dη

2
1

) ,
ḣd = −

3(δ − 1)δHdG2(M∗1 +M∗2 +mp)
2µ3pη

2
1

L2
d

(
G2
d

(
(δ − 1)δη21 − 4

)
− 3(δ − 1)δH2

dη
2
1

) ,
ḣa =

3η2G4I(3)p µ7p(mp +M∗1 +M∗2)4

8mpG2
dL

6
dL

3
a

√
1− H2

a
L2
a

(
G2
d

(
(δ − 1)δη21 − 4

)
− 3(δ − 1)δH2

dη
2
1

)
(
G4
dHaLa

√
1− H2

a

L2
a

(
−85(δ − 1)δη21 +

(
223(δ − 1)δη21 − 16

)
cos (2 (hd − ha))− 16

)
+ 2G3

dHd

(
125(δ − 1)δη21 − 16

)√
1− H2

d

G2
d

cos (hd − ha)
(
2H2

a − L2
a

)
+ 2G2

dH
2
dHaLa

√
1− H2

a

L2
a

(
−95(δ − 1)δη21 +

(
8− 68(δ − 1)δη21

)
cos (2 (hd − ha)) + 24

)
+ 174(δ − 1)δGdH

3
dη

2
1

√
1− H2

d

G2
d

cos (hd − ha)
(
2H2

a − L2
a

)
− 87(δ − 1)δH4

dHaLaη
2
1 (cos (2 (hd − ha)) + 3)

√
1− H2

a

L2
a

)

Ḣa = −
3η2G4I(3)p µ7p sin (hd − ha) (mp +M∗1 +M∗2)4

4mpG2
dL

6
dL

2
a

(
G2
d

(
(δ − 1)δη21 − 4

)
− 3(δ − 1)δH2

dη
2
1

)(
G4
d

(
223(δ − 1)δη21 − 16

)
cos (hd − ha)

(
H2
a − L2

a

)
− 8G2

dH
2
d

(
17(δ − 1)δη21 − 2

)
cos (hd − ha)

(
H2
a − L2

a

)
+G3

dHdHaLa
(
16− 125(δ − 1)δη21

)√
1− H2

d

G2
d

√
1− H2

a

L2
a

− 87(δ − 1)δGdH
3
dHaLaη

2
1

√
1− H2

d

G2
d

√
1− H2

a

L2
a

+ 87(δ − 1)δH4
dη

2
1 cos (hd − ha)

(
L2
a −H2

a

))
(2.49)
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and ga decoupled from the system. Changing coordinates to X = Ha/Ga and h = hd−ha,

from Eq. (2.49), we have


Ẋ = sin(h)

[
C1X
√

1−X2 + 4C2 cos(h)(1−X2)
]
,

ḣ =
C1 cos(h) (1− 2X2)√

1−X2
− 2C2X cos(2h) + C3 + 2C4X,

(2.50)

with

C1 =
3η2G4I(3)p µ7

p

√
1− H2

d

G2
d
(mp +M∗1 +M∗2)

4

4mpGdL6
dLa (G2

d ((δ − 1)δη21 − 4)− 3(δ − 1)δH2
dη

2
1)(

G2
dHd

(
125(δ − 1)δη21 − 16

)
+ 87(δ − 1)δH3

dη
2
1

)
C2 =

3η2G4I(3)p µ7
p (G2

d −H2
d) (mp +M∗1 +M∗2)

4

16mpG2
dL

6
dLa (G2

d ((δ − 1)δη21 − 4)− 3(δ − 1)δH2
dη

2
1)
,

(
G2
d

(
223(δ − 1)δη21 − 16

)
+ 87(δ − 1)δH2

dη
2
1

)
C3 =− 3(δ − 1)δG2Hdµ

3
pη

2
1(mp +M∗1 +M∗2)

2

L2
d (G2

d ((δ − 1)δη21 − 4)− 3(δ − 1)δH2
dη

2
1)
,

C4 =
3η2G4I(3)p µ7

p(mp +M∗1 +M∗2)
4

16mpG2
dL

6
dLa (G2

d ((δ − 1)δη21 − 4)− 3(δ − 1)δH2
dη

2
1)(

G4
d

(
85(δ − 1)δη21 + 16

)
+ 2G2

dH
2
d

(
95(δ − 1)δη21 − 24

)
+ 261(δ − 1)δH4

dη
2
1

)
(2.51)

By definition, we know that Ha is the angular momentum’s orthogonal projection to E3

axis and hd− ha is the phase difference between the two precessions (the precession of the

planet’s orbit and the precession of the angular momentum). Thus X, h together give the

approximated dynamics of the spin.

The Hamiltonian corresponding to the dynamics above is Eq. (2.50)

H(X, h) =C1

√
1−X2X cos(h) + C2

(
1−X2

)
cos(2h)

+ C3X + C4X
2.

(2.52)
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The averaged dynamics has anO
(
max(η1,

√
η2)
)

error at least till timeO
(

1
max(η1,

√
η2)

)
,

and numerically, we observed that the approximation remains accurate over an even longer

time span.

2.5 Conclusion and Discussions

Stellar binaries are common in the Solar neighborhood, and thus to understand the habit-

ability of their planets, if any, is as important as that for single star systems. We adopt a

dynamics approach, in which we show that the planetary spin evolution can be very differ-

ent when a second host star is present. This is because torques from both stars act on the

spin-axis of its planets. This fact, together with more significant deviations from Keplerian

orbits, makes it difficult to directly apply existing theory for obliquity designed for single

star systems. We investigated the circumbinary case both analytically and numerically in

this article, and discovered that the spin angle variations of circumbinary planets residing

near their stellar binary orbital plane are typically much less pronounced than their single

star analogue. Thus, their obliquity (spin-orbit misalignment) variations are mostly low.

The physical intuition behind our result is, planets orbiting around a stellar binary reside

in a gravitational potential composed of a large quadrupole component due to the stellar

separation. The quadrupole potential result in a shorter oscillation period. This detunes

systems from spin-orbit resonances and avoid large spin-axis variations. The same result

holds for both single planet and multi-planetary systems. However, we note that large

moons (& mass of our own Moon) close to the planets (slightly outside its Laplace radius

∼ 15 Earth-radius) would significantly increase the precession rate [52], and this can lead to

enhanced spin-axis variations. Thus, contrary to the Moon of Earth, moons of circumbinary

planets could lead to large obliquity variations.

In our secular theory, we neglected mean motion resonances between the stellar binary

and the planetary orbit. This simplification was made because lower order mean motion

resonances (within 3 : 1) reside inside the region of orbital instability [53], and higher or-
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der mean motion resonances are weak. We also assumed no resonance between planetary

rotation and its orbital mean motion, which could lead to interesting dynamics [54]. This

is also a reasonable assumption – circumbinary planets typically orbit wide stellar binaries

beyond orbital period of 7 days, with planet orbital period & 30 days in the orbital stable

region [27]. Thus, planet orbital periods tend to be much longer than Earth-like rotation

periods, and low order resonances between planet spin and orbital mean motion are thus

absent. In addition, over long (∼Gyr) timescales, tidal interactions could aligned the plan-

etary orbit with that of the stellar binary and could affect the planet spin-axis dynamics

[55]. As we focus on how planet spin affects insolation and hence habitability, which is al-

ready a meaningful subject of investigation in shorter timescales, our study neglected tidal

interactions.

Our assumption on the interested planet being Earth-like (with Earth’s mass, inertia

tensor and rotation rate) is not required by either our theory or numerical methods, but

only a choice for starting the investigation. Recently, observational techniques of planetary

obliquity and oblateness have been proposed [56, 57, 58], and the first constraint on obliq-

uities of planets outside of the Solar System has been made [59]. In addition, the spin-rate

of planets have been measured and revealed to us important clues on planetary formation

[60]. Such progress in observation will help us better understand planetary spin properties

to constrain obliquity variations. However, so far, these observational techniques could

only be applied to massive Jupiter-sized planets, and the spin measurement of terrestrial

planets is still beyond the limit of observational sensitivity. For planets whose obliquity

observation is available, our work also opens up a possibility of probing otherwise-hard-

to-observe planet properties from its obliquity dynamics, as one can apply our tools in an

inverse problem setup. In this sense, the application of our theory and numerical tool is

beyond constraining habitability.
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CHAPTER 3

STRUCTURE-PRESERVING INTEGRATION OF RIGID BODY DYNAMICS

To carefully study effects of spin-orbit coupling (e.g. the spin-axis dynamics of circumbi-

nary planets in Chapter 2), we develop symplectic algorithm (“Gravitationally interacting

Rigid-body InTegrator”, GRIT) starting with the first-principal rigid body dynamics, so that

the mutual interactions between spin and orbital dynamics can be accurately accounted for.

3.1 Introduction

Among thousands of detected exoplanetary systems, a significant fraction of them involve

planets with close-in orbits. In particular, the occurrence rate for the compact systems

(e.g., multiple planets with periods of less than 10 days) are estimated to be ∼ 20 − 30%

[61, 62]. The close separations between the planets allow strong planetary interactions that

could lead to rich features in the dynamical evolution of the compact planetary systems.

In particular, spin-axis dynamics becomes very interesting in compact planetary sys-

tems. For instance, rotational and tidal distortion of the planets can lead orbital precession

due to planet spin-orbit coupling, and this causes variations in transit timing. Recently, [63]

showed that the transit timing variations due to spin-orbit coupling could be detectable for

Trappist-I, which could in turn help one constrain physical properties of the planets. In

addition, although tidal effects are strong for planets with close-in orbits, strong interac-

tions between the planets could push these planets (with orbital periods in ∼ 10 days) out

of synchronized states [64]. Moreover, secular resonance-driven spin-orbit coupling could

drive to large obliquity variations and lead to obliquity tides. This sculpts the exoplanetary

systems: the obliquity tide could explain the overabundance of planet pairs that reside just

wide of the first order mean-motion resonances [65].

Integrator involving spin-axis coupling have been developed to study these effects.
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There are mainly two different approaches: 1) evolving the orbital dynamics separately

from the spin-axis evolutions [e.g., 5, 43, 64]; 2) evolving the spin and orbit evolution si-

multaneously [e.g, 66, 67, 68, 6, 69, 70, 65]. In the first approach, orbital evolution of

the systems are first integrated using N-body simulation packages assuming the objects are

point-mass particles, and then spin-axis dynamics are computed using the results of the

orbital evolution. This approach assumes that the effects of the spin on orbital dynamics

are weak. In the second approach, additional force due to spin-orbit coupling is included

in the N-body simulation package, which could affect the orbital evolution as well as the

spin-axis evolution.

Symplectic Lie-Poisson integrator for rigid body has already been constructed in the

seminal work of [71] for systems with near Keplerian orbits, focusing on a system with

1 rigid body (for systems with more than 1 rigid bodies, the spin dynamics of each rigid

body is considered separately under it’s own frame). However, for systems that involve

close-encounters, the orbits of object are no longer Keplerian. The original version of the

method in [71] was not high-order (in the time step) either. Building upon the existing

progress, we no longer assume near Keplerian orbits for wider applicability, and our pack-

age includes several high-order implementations. Moreover, we put all the bodies under

the same inertia frame such that the spin orbit interactions are all considered altogether in

one Hamiltonian framework. We also note that symplectic integrator for secular spin-orbit

dynamics have been developed by [72], while our method is based on direct (non-secular)

numerical simulations and therefore suitable for resonant situations.

The development of our integrator is tightly based on the profound field of geometric

integration. This is because rigid body dynamics can be intrinsically characterized by me-

chanical systems on Lie groups. More precisely, the phase space is T ∗SE(3)
⊗
n, where

n is the number of interacting bodies and the special Euclidean group SE(3) is where the

center of mass and rotational orientation of each body lives. How to properly simulate

such systems in a structure preserving way, so that symplecticity can be conserved and the
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dynamics remain on the Lie group, has been extensively studied. See e.g., [73, 74, 75]

for general Lie group integrators, and more broadly, [76, 77, 78, 79] for monographs on

geometric integration.

Regarding rigid body integrators in particular, the following is an incomplete list in ad-

dition to [71]. Firstly, the work of [80] used a splitting approach (similar to [71] in essence,

however split differently) to construct symplectic and Lie-group-preserving integrators for

rigid molecules. The main idea is to split the Hamiltonian into a free rigid body part, includ-

ing both translational and rotational kinetic energies, plus a potential part. The latter can be

exactly integrated, and the former too when the rigid body is axial symmetric; otherwise,

it is further split into a symmetric top and a correction term, both of which can be exactly

integrated in a cheap way (without using special functions). Methods in the proposed pack-

age (which are explicit, high-order integrators) are largely based on this idea. Secondly, we

note various splitting schemes for integrating free rigid bodies were compared in [81]. Re-

call that the free rigid body is integrable, and its numerical simulation based on multiple

ways of expressing the exact solution were also proposed (e.g., [82, 83]), but the exact

expressions involve special functions (unless the bodies are axial symmetric), which can

be computationally expensive. Moreover, the ‘exact’ solutions are not exact due to round-

off errors, and this complication is studied (and remedied) in [84]. For simple and robust

arithmetic, the free-rigid-body part of our method will be based on a sub-splitting into an

axial-symmetric part and a small correction, as most rotating celestial bodies relevant to

this study are (almost) axial-symmetric. Also worth mentioning is, geometric integrators

for (non-free but) gravitationally interacting rigid bodies have also been proposed; besides

[71], [85] constructed variational integrators using elegant geometric treatments; however,

those integrators are implicit, and computational efficiency is hence not optimal.

As we are interested in gravitationally interacting rigid bodies, GRIT uses tailored split-

ting schemes. This way, the existence of small parameters and separation of timescales in

the system is utilized so that a better trade-off between efficiency and accuracy can be
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achieved (see section 3.6.1 for details). Our treatment is of course based on extensive exist-

ing studies of splitting methods, and some more general discussions on splitting methods

can be found, e.g., in [86, 87, 88].

This chapter is organized as the following: section 3.2 describes the rigid body for-

mulation adopted in the algorithms, section 3.4 derives the equations of motion of the

N-rigid-body dynamics and section 3.6 presents our symplectic algorithms. We then show

consistency between our simulation using GRIT and secular theories in section 3.7, for the

case of a moonless Earth and the case of a hypothetical Earth-Moon system that include

tidal interactions.

3.2 Rigid Body Representation

As we are interested in the dynamics of the planet’s spin-axis, the planet is modeled as a

rigid body to account for its finite size and rotation. Other than the spatial position and

the linear momentum, the rotational orientation and angular momentum of the rigid body

are necessary to represent its state. The above are 12-dimensional in total, and besides the

spatial position (3-dim) and its conjugate linear momentum (3-dim), we still need a set of

variables (6-dim) to represent the orientation and the rotation of the rigid body.

3.2.1 The Body Frame and The Rotation Matrix

Under a specific fixed reference frame of Euclidean space R3 with basis (E1,E2,E3), the

spatial position and the translational speed of a body can be expressed by vectors in R3. On

the other hand, the body frame (Fig. 3.1) attached to the body gives fixed coordinates of

each small particle of the body. As can be seen from Fig. 3.1, orthogonal bases (e1, e2, e3)

form a body frame of this rigid body. As the body moving along the dashed trajectory

following arrows as well as self rotating from time t0 to time t1, coordinates of points P,Q

under the body frame stay the same, without subjecting to the motion of the rigid body.

The configuration of a rigid body is described by both the position of its center of mass
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Figure 3.1: The body frame.

and its rotational orientation. The orientation in the reference frame can be expressed as

an rotation by an orthogonal matrixR(t) ∈ SO(3) from the body frame (e.g., z-axis of the

body frame at time t will beR(t) ·
[
0 0 1

]T
in the reference frame). To switch between

the inertia frame and the body frame, one can simply left multiply the rotation matrix R

or R−1. Note that R ∈ SO(3) and if a numerical method can keep R exactly in this Lie

group, its inverse will be equal to its transpose, i.e.R−1 = RT .

3.2.2 The Angular Velocity and the Angular Momentum

Denoting Ω =

[
Ω1 Ω2 Ω3

]T
∈ R3 the angular velocity of the rigid body under the

body frame, then the direction of Ω matches the rotational axis and ‖Ω‖2 represents the

rotational speed. Consider a mass point x =

[
x1 x2 x3

]T
in one rigid body under the

body frame, its speed under the body frame can be expressed as

Ω× x =


0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



x1

x2

x3

 = Ω̂x, (3.1)
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where the hat-map ·̂ is an isomorphism from the Lie algebra so(3) to 3-by-3 skew-symmetric

matrices, defined by

Ω̂ :=


0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (3.2)

In addition, the inverse map of ·̂ is denoted by ·̌.

With the angular velocity, the rotational kinetic energy of this rigid body can be ex-

pressed as

T rot (Ω) =

∫
B
ρ(x)

1

2
‖Ω× x‖22 dx

=

∫
B
ρ(x)

1

2
‖x̂Ω‖22 dx

=
1

2
ΩT

[∫
B
ρ(x)x̂T x̂ dx

]
Ω

=
1

2
ΩTJΩ

(3.3)

with J the (standard) moment of inertia tensor. Specifically, for an ellipsoid with semiaxes

a, b, c and mass M , choosing the principal axes as the body frame such that x, y, z-axes

matches semi-axes and taking the integral, we have the following moment of inertia tensor

for a uniform density object.

J =

∫
B
ρ(x)x̂T x̂ d3x

=


1
5
M(b2 + c2) 0 0

0 1
5
M(a2 + c2) 0

0 0 1
5
M(a2 + b2)

 .
(3.4)

Note that one may substitute this with the principal moment of inertia directly.
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Alternatively, the rotational kinetic energy can also be expressed as

T rot
(
Ω̂
)

=

∫
B
ρ(x)

1

2

∥∥∥Ω̂x∥∥∥2
2
dx

=
1

2

∫
B
ρ(x)Tr

[
Ω̂xxT Ω̂T

]
dx

=
1

2
Tr
[
Ω̂JdΩ̂

T
]
. (3.5)

with J (d) =
∫
B ρ(x)xxT dx (nonstandard) moment of inertia. We also have J (d) =

1
2
Tr [J ] I3×3 − J (J = Tr

[
J (d)

]
I3×3 − J (d)).

By definition, the angular momentum in the body frame is Π = JΩ. Left multiplying

the rotation matrixR, the angular velocity and the angular momentum in the inertia frame

are ω = RΩ and π = RΠ respectively.

3.2.3 The Relation between the Rotation Matrix and the Angular Velocity

Express R(t) =

[
c1(t)|c2(t)|c3(t)

]
where c1(t), c2(t), c3(t) are columns of R(t). We

have c1(t), c2(t), c3(t) representing directions of three axes of the body in the reference

frame respectively. By the definition of angular velocity, we have ċi(t) = ω̂ci(t) for i =

1, 2, 3, thus

Ṙ(t) = ω̂R(t). (3.6)

Multiplying both sides of Eq. (3.6) withR(t)T , we have Ṙ(t)R(t)T = ω̂ which is a skew-

symmetric matrix. Considering the speed of an arbitrary mass point x, vx = RΩ̂x =

ω̂ [Rx]. ThusRΩ̂ = ω̂R, which implies Ω̂ = RT ω̂R = RT Ṙ.

To summarize, for a rigid body, it’s angular velocity and angular momentum in different

frames are denoted as the following,

with Π = JΩ and π = Jω. Specifically, we have Ω̂ = RT Ṙ and ω̂ = ṘRT .

The rotation matrixR and the angular momentum Π will be utilized to describe a rigid

body when we design an N-rigid-body integrator later (details can be found in section 3.6).
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The inertia frame The body frame
(fixed) (moving)

Angular ω (=RΩ) Ω
velocity
Angular π (=RΠ) Π

momentum

3.3 The Constrained Hamiltonian of an N-rigid-body System

Denote mi the mass of the i-th body; qi ∈ R3 the position of the i-th body; pi ∈ R3

the linear momentum of the i-th body; Ri ∈ SO(3) the rotation matrix of the i-th body;

Πi ∈ R3 the angular momentum of the i-th body; Ji ∈ R3×3 the (standard) moment of

inertia tensor for the i-th body.

The Hamiltonian of this system consists of the linear kinetic energy T linear =
∑

i
1
2
pTi pi/mi,

the rotational kinetic energy T rot =
∑

i
1
2
ΠT
i J
−1
i Πi and the potential energy

V (q,R) =
∑
i<j

Vij (qi, qj,Ri,Rj) . (3.7)

Denote q = {q1, q2, . . . , qN}, p = {p1,p2, . . . ,pN}, Π = {Π1,Π2, . . . ,ΠN}, R =

{R1,R2, . . . ,RN}. The Hamiltonian can be expressed as

H(q, p,Π,R) =
∑
i

1

2
pTi pi/mi

+
∑
i

1

2
ΠT
i I
−1
i Πi + V (q,R) withRi ∈ SO(3).

(3.8)

The true potential energy between i-th body and j-th body is

∫
Bi

∫
Bj
− Gρ(xi)ρ(xj)

‖ (qi +Rixi)− (qj +Rjxj) ‖
dxj dxi. (3.9)

We may approximate it as Vij (in Eq. (3.7)) by Taylor expanding the denominator.

Expanding to the 2nd order with respect to the radius of the planet over the distance between
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two bodies (see appendix section B.1), the approximated potential is,

∫
Bi

∫
Bj
− Gρ(xi)ρ(xj)

‖ (qi +Rixi)− (qj +Rjxj) ‖
dxj dxi

≈ − Gmimj

‖qi − qj‖
− G (miTr[Ji] +mjTr[Jj])

2 ‖qi − qj‖3

+
3G(qi − qj)T

(
mjRiJiR

T
i +miRjJjR

T
j

)
(qi − qj)

2 ‖qi − qj‖5

(3.10)

with − Gmimj‖qi−qj‖ being the potential of purely point mass interactions and the rest part being

the corrections of the potential due to the body i and j being not point masses. If we further

expand the potential to the 4th order (see appendix section B.1), rigid body – rigid body

interactions will also be included as higher order corrections.

3.4 Review: Equations of Motion of an N-rigid-body System

We will first review the derivation of equations of motion of one rigid body in a potential

using two approaches then apply it to the N-rigid-body systems.

3.4.1 Equations of Motion of One Rigid Body in a Potential

The Lagrangian for a system consisting of one rigid body is a function of R(t) and Ṙ(t)

by plugging in Ω̂ = RT Ṙ in Eq. (3.5),

L
(
R, Ṙ

)
=

1

2
Tr
[
ṘJdṘ

T
]
− V (R). (3.11)

Utilizing the constraint RTR − I = 0 (approach 1 below) or using the variational

principle of Hamilton’s for Lie group (approach 2 below), one can derive the equations of
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motion 
Ṙ = RĴ−1Π,

Π̇ = Π× J−1Π−
(
RT ∂V (R)

∂R
−
(
∂V (R)

∂R

)T
R

)∨
.

(3.12)

Approach 1

We can viewR to be in the embedded Euclidean space R3×3 ←↩ SO(3) and useR ∈ SO(3)

as a holonomic constraint. The Lagrangian L (Eq. (3.11)) has 9-DOF before applying the

constraintR ∈ SO(3). The conjugate variable ofR(t) will be denoted by P (t).

The constraint of a system forces the evolution of the system in a specific manifold,

and the manifold can be directly calculated from the constraint (one may refer Chapter VII

of [89] for details). For a rigid body dynamics represented by a rotation matrix R(t), the

constraint is R(t)TR(t) − I3×3 = 03×3. [90], [89] have shown the procedure of finding

equations of motion by utilizing the constraint for a rigid body system with aR dependent

potential. Using Lagrange multipliers [89] for the constraint RTR − I3×3 = 0, we have

the following Lagrangian,

L
(
R, Ṙ

)
=

1

2
Tr
[
ṘJdṘ

T
]
− V (R)− 1

2
Tr
(
ΛT
(
RTR− I3×3

))
, (3.13)

with 6-dim Lagrange multipliers Λ =


λ1 λ4 λ6

λ4 λ2 λ5

λ6 λ5 λ3

 ∈ R3×3 a symmetric matrix.

Doing Legendre transform for Eq. (3.13), we have

P =
∂L
(
R, Ṙ

)
∂Ṙ

= ṘJd, (3.14)
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and the corresponding Hamiltonian,

H(R,P ) =
1

2
Tr
[
PJ−1d P

T
]

+ V (R) +
1

2
Tr
(
ΛT
(
RTR− I3×3

))
. (3.15)

As the constraint for R is RTR = I3×3, according to [89], the constraint for P can be

obtained by taking time derivative for RTR− I3×3 = 03×3, i.e. J−1d P
TR +RTPJ−1d =

03×3.

So,


Ṙ =

∂H

∂P
= PJd

−1,

Ṗ = −∂H
∂R

= −∂V (R)

∂R
−RΛ,

(3.16)

on the manifold

M =
{

(R,P ) |RTR = I3×3,J
−1
d P

TR+RTPJ−1d = 03×3
}
. (3.17)

Note that Ω̂ = RTPJ−1d with Ω being the body’s angular velocity. Taking time deriva-

tive for Ω̂, we have

ˆ̇Ω = J−1d P
TPJ−1d +RT

(
−∂V (R)

∂R
−RΛ

)
J−1d . (3.18)

Physically, we want to find dynamics of R and the body’s angular momentum Π. Since

Π̂ = ĴΩ = Tr [Jd] Ω̂ − ĴdΩ = Ω̂Jd − JdΩ̂T (see appendix section B.2), we may find

dynamics of Π,

̂̇Π =
(
J−1d P

TP − P TPJ−1d
)

+

((
∂V (R)

∂R

)T
R−RT ∂V (R)

∂R

)
, (3.19)

with the symmetric Λ vanished 1.

1Since Λ is symmetric, applying ˆ̇Ω ∈ so(3), Λ can actually be solved from Eq. (3.18).
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As P = RΩ̂Jd, properties of hat-map (see appendix section B.2) lead to

̂̇Π =
(
Ω̂T Ω̂Jd − JdΩ̂T Ω̂

)
+

((
∂V (R)

∂R

)T
R−RT ∂V (R)

∂R

)

= ̂Ω× JdΩ +

((
∂V (R)

∂R

)T
R−RT ∂V (R)

∂R

)
.

(3.20)

Thus

Π̇ = Ω× JdΩ−
(
RT ∂V (R)

∂R
−
(
∂V (R)

∂R

)T
R

)∨

= Ω× (Tr[Jd]− J) Ω−
(
RT ∂V (R)

∂R
−
(
∂V (R)

∂R

)T
R

)∨

= −Ω× JΩ−
(
RT ∂V (R)

∂R
−
(
∂V (R)

∂R

)T
R

)∨

= Π× J−1Π−
(
RT ∂V (R)

∂R
−
(
∂V (R)

∂R

)T
R

)∨
(3.21)

So, equations of motion with respect toR and Π for one rigid body system are


Ṙ = RĴ−1Π,

Π̇ = Π× J−1Π−
(
RT ∂V (R)

∂R
−
(
∂V (R)

∂R

)T
R

)∨
.

(3.22)

Approach 2

How to obtain Euler-Lagrange equation for the Hamilton’s variational principle on a Lie

group has been well studied (e.g., [91, 92]). Here we summarize the results for the special

case of rigid bodies from the expository part of [93].

Denote the infinitesimally varied rotation by Rε = R exp(εη̂) with ε ∈ R and η ∈ R3,
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where exp(·) is a mapping from so(3) to SO(3). The varied angular velocity is

Ω̂ε = RT
ε Ṙε = e−εη̂RT

(
Ṙeεη̂ +R · eεη̂ε ˆ̇η

)
= e−εη̂Ω̂eεη̂ + ε ˆ̇η = Ω̂ + ε

{
ˆ̇η + Ω̂η̂ − η̂Ω̂

}
+O(ε2).

(3.23)

Consider the action

S (Ω,R) =

∫ t1

t0

L (Ω,R) dt =

∫ t1

t0

1

2
Tr
[
Ω̂JdΩ̂

T
]
− V (R) dt. (3.24)

Taking the variation of the action S, we have

Sε (Ω,R) =S (Ωε,Rε)

=S (Ω,R) + ε

∫ t1

t0

1

2
Tr
[
− ˆ̇η

(
JdΩ̂ + Ω̂Jd

)
+ η̂Ω̂

(
JdΩ̂ + Ω̂Jd

)
− η̂

(
JdΩ̂ + Ω̂JdΩ̂

) ]
+ Tr

[
η̂RT ∂R

∂R

]
dt+O(ε2).

(3.25)

Using Hamilton’s Principle, we have d
dε

∣∣∣
ε=0
Sε = 0, i.e.

1

2

∫ t1

t0

Tr

[
η̂

{
ĴΩ̇ + Ω̂× JΩ + 2RT ∂V

∂R

}]
= 0 (3.26)

for any η ∈ R3. Therefore,
{
ĴΩ̇ + Ω̂× JΩ + 2RT ∂V

∂R

}
must be skew-symmetric, which

gives us

ĴΩ̇ = −Ω̂× JΩ +

(
∂V

∂R

T

R−RT ∂V

∂R

)
. (3.27)

Thus

̂̇Π = ̂Π× J−1Π +

(
∂V

∂R

T

R−RT ∂V

∂R

)
. (3.28)

59



3.4.2 Equations of Motion of an N-rigid-body System

Deriving the translational equations of motion directly from the Hamiltonian Eq. (3.8) and

applying Eq. (3.12) to each object for the rotational dynamics, the equations of motion of

the N-rigid-body system for the Hamiltonian (Eq. (3.8)) are,



q̇i =
pi
mi

,

ṗi = −∂V
∂qi

,

Ṙi = RiĴ
−1
i Πi,

Π̇i = Πi × J−1i Πi −
(
RT
i

∂V

∂Ri

−
(
∂V

∂Ri

)T
Ri

)∨
.

(3.29)

3.5 Review: Symplectic Integrators of Hamiltonian Systems via Splitting and Com-

position Methods

Symplectic integrators are suitable for the Hamiltonian system as it preserves the symplec-

tic structure, which benefits the integrators with conservation properties, nice long time

global accuracy under some general assumptions [89] etc. And a widely used method to

construct symplectic integrators of a Hamiltonian system is the splitting and composition

method, which firstly divide the Hamiltonian into several integrable parts, then compose

the flows together. For our system Eq. (3.8), different ways of splittings will be shown in

section 3.6. Given the flows of the split sub-Hamiltonians, then the composition method is

employed to construct different orders of schemes via different composition coefficients.

We list the composition methods used in the paper below for the general H = A + B and

perturbative Hamiltonian H = A + εB (e.g. near-integrable Hamiltonians) in Table. 3.1

and Table. 3.2 respectively.
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Table 3.1: Composition methods C(·, ·) of general H = A+ B. ϕAh and ϕBh are flows of A
and B respectively.

composition method order

CEuler
(
ϕAh , ϕ

B
h

)
:= ϕAh ◦ ϕBh (1)

CVerlet
(
ϕAh , ϕ

B
h

)
:= ϕAh/2 ◦ ϕBh ◦ ϕAh/2 (2)

CTriJump
(
ϕAh , ϕ

B
h

)
:= ϕγ1h ◦ ϕγ2h ◦ ϕγ1h

with ϕh := CVerlet(ϕ
A
h , ϕ

B
h ) and γ1 = 1/(2−21/3), γ2 = 1− 2γ1[94].

(4)

CS6
(
ϕAh , ϕ

B
h

)
:= ϕa1h ◦ ϕa2h ◦ ϕa3h ◦ ϕa4h ◦ ϕa3h ◦ ϕa2h ◦ ϕa1h

with ϕh := CVerlet(ϕ
A
h , ϕ

B
h ) and a1 = 0.784513610477560, a2 =

0.235573213359357, a3 = −1.17767998417887, a4 = 1− 2(a1 + a2 +
a3)[95]

(6)

Table 3.2: Composition methods C(·, ·) of perturbative H = A+ εB. ϕAh and ϕBh are flows
of A and εB respectively.

composition method order

CBAB22(ϕ
A
h , ϕ

B
h ) = ϕBh/2 ◦ ϕAh ◦ ϕBh/2 (·, 2, 2)

CABA22(ϕAh , ϕBh ) = ϕAh/2 ◦ ϕBh ◦ ϕAh/2 (·, 2, 2)

CABA42(ϕAh , ϕBh ) = ϕA
(3−
√
3)h

6

◦ ϕBh
2

◦ ϕAh√
3

◦ ϕBh
2

◦ ϕA
(3−
√
3)h

6

. (SABA2 in

[96] or equivalently the order (4, 2) ABA method with s = 2 in [97])

(·, 4, 2)
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3.6 Rigid Body Simulation: Structure-Preserving Algorithms via Specially Designed

Splittings and Compositions

In this section, we will design symplectic integrators of the N-rigid-body system using

splitting methods. The splitting method is basically to view the Hamiltonian (Eq. (3.8)) as

the sum of several integrable parts, and then to compose the flow of each part over some

pre-designed time duration to achieve a certain order of local error. In the following, we

will introduce the Hamiltonian, build the symplectic integrators and analyze the accuracy of

integrators step by step. In addition, we will provide a way to incorporate non-conservative

forces into the integrators, such as the tidal force and post Newtonian effects.

3.6.1 The T -series,M-series andK-series Methods for the System with Axis-symmetric

Bodies via Different Splitting and Composition Strategies

In this section, we utilize the splitting method to construct symplectic integrators. A diverse

range of symplectic integrators with different accuracy and time complexities can be de-

signed as the splitting method is quite flexible in terms of splitting and composition. Based

on our Hamiltonian of the N-rigid-body system, we will explore three different types of

integrators, namely the T -series methods, theM-series methods and the K-series methods

– the T -series methods split the Hamiltonian into two parts with comparable size while the

M-series and the K-series methods split the Hamiltonian into, respectively, four and three

parts corresponding to various magnitudes and hence different timescales.

In terms of the shape of rigid bodies, we make the axis-symmetric assumption in this

section for simplicity. That is, without loss of generality, Ji =


J
(1)
i 0 0

0 J
(1)
i 0

0 0 J
(3)
i

. For

general rigid bodies that are not axis-symmetric, different splitting mechanisms can be

applied (see section 3.6.3).
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Classical Splitting for Rigid-Body (T -series Methods): H = H1 +H2 with H1

H2
= O(1)

One way of splitting is H = H1 +H2 following [80], with


H1(q, p,Π,R) =

∑
i

1

2
pTi pi/mi +

∑
i

1

2
ΠT
i J
−1
i Πi,

H2(q, p,Π,R) = V (q,R) =
∑
i 6=j

Vij (qi, qj,Ri,Rj) .
(3.30)

For H1, the equations of motion are



q̇i =
pi
mi

,

ṗi = 0,

Ṙi = RiĴ
−1
i Πi,

Π̇i = Πi × J−1i Πi.

(3.31)

In Eq. (3.31), the 4th equation is the Euler equation for a free rigid body. It is exactly

solvable, and the solution expression is particularly simple for axial-symmetric bodies:

Πi(t) = exp

−θt
̂

0

0

1


Πi(0) := RT

z (θt)Πi(0) (3.32)

with θ =

(
1

J
(3)
i

− 1

J
(1)
i

)
ΠT
i (0)


0

0

1

 and Rz being the rotation matrix. Take Πi(t) back to

the 3rd equation of Eq. (3.31), we can obtainRi(t) too.
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Therefore, the flow φ
[1]
t of H1 is,



qi(t) = qi(0) +
pi
mi

t,

pi(t) = pi(0),

Ri(t) = Ri(0) RΠ(0)

(
‖Π(0)‖
J
(1)
i

t

)
Rz (θt) ,

Πi(t) = RT
z (θt) Π(0),

(3.33)

with Rz and RΠ(0) being rotation matrices representing the rotations around the z-axis and

Π(0) respectively.

For H2, the equations of motion are



q̇i = 0,

ṗi = −∂V
∂qi

,

Ṙi = 0,

Π̇i = −
(
RT
i

∂V

∂Ri

−
(
∂V

∂Ri

)T
Ri

)∨
.

(3.34)

As qi and Ri stay constants, we have pi and Πi changing at constant rates. Therefore, the

flow φ
[2]
t for H2 is given by



qi(t) = qi(0),

pi(t) = pi(0)− ∂V

∂qi
t,

Ri(t) = Ri(0),

Πi(t) = Πi(0)−
(
RT
i

∂V

∂Ri

−
(
∂V

∂Ri

)T
Ri

)∨
t.

(3.35)

We may compose φ[1]
t and φ[2]

t via C to construct different symplectic integrators [see

e.g., 86] (see Fig. 3.2). To name a few, set C as CEuler, φh = φ
[1]
h ◦ φ

[2]
h is a 1st order scheme
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φh

φ
[1]
h φ

[2]
h

C

Figure 3.2: Composition of φ[1]
h and φ[2]

h . The root node represent the final scheme. The
leaves represent the basic ingredients of the composition which are exact flows. The red
arrow represent the composition method specialized in composing two child flows with
comparable scales.

with h being the step size (see appendix section 3.5 for CEuler and the following composition

methods CVerlet and CS6).

Applying symmetric composition CVerlet, a 2nd order integrator T2 is in the form of

φVerlet
h := CVerlet

(
φ
[1]
h , φ

[2]
h

)
= φ

[1]
h
2

◦ φ[2]
h ◦ φ

[1]
h
2

(3.36)

Applying φTriJump
h [94], we have the following 4th-order scheme T4,

φVerlet
γ1h
◦ φVerlet

γ2h
◦ φVerlet

γ3h
, (3.37)

with γ1 = γ3 = 1
2−21/3 , γ2 = 1− 2γ1. Similarly, a 6th-order scheme T6 can be constructed

by composing φ[1]
h , φ[2]

h with CS6
In the package, T2, T4 and T6 are implemented.

Tailored Splitting I (M-series Methods): H = H1 + H2 + H3 + H4 with H1

H2
= O(1) and

H3

H1
, H4

H2
= O(ε)

Different from point mass systems which can already exhibit dynamics over multiple timescales,

the N-rigid-body system can have additional timescales created by the rotational dynamics.

Thus, we further split the Hamiltonian into more terms of different magnitudes, which

produce flows at different timescales, and then carefully compose them2. More specifically,

2Similar techniques have already been employed; see e.g., [88] and references therein. The structure of
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consider H = H1 +H2 +H3 +H4 with



H1(q, p) =
∑
i

1

2
pTi pi/mi

H2(q, p) = −
∑
i<j

Gmimj

‖qi − qj‖
,

H3(Π) =
∑
i

1

2
ΠT
i J
−1
i Πi,

H4(q,R) = V (q,R)−H2.

(3.38)

Here, H1, H2 have comparable size and H3

H1
, H4

H2
= O (ε) with ε being a small scaling

parameter determined by the properties of the system. Based on scales of the dynamics, we

denote H fast = H1 + H2 and Hslow = H3 + H4. For example, consider the solar system,

setting all the bodies to be point masses except the Earth, ε ≈ 10−6.

The flows
{
ϕ
[1]
t , ϕ

[2]
t , ϕ

[3]
t , ϕ

[4]
t

}
of {H1, H2, H3, H4} can be derived similarly to sec-

tion 3.6.1 and the schemes are build by hierarchically composing
{
ϕ
[i]
t

}4

i=1
together. Specif-

ically, as shown in Fig. 3.3, we firstly group the flows of the fast dynamics ( ϕ[1]
t and ϕ[2]

t )

as a sub-scheme ϕfast
h via Cfast and the flows of the slow dynamics (ϕ[3]

t and ϕ[4]
t ) as a sub-

scheme ϕslow
h via Cslow respectively. Then composing ϕfast

h and ϕslow
h together as the final

scheme ϕmulti
h via Cmulti. Cfast and Cslow are composition methods of composing two Hamil-

tonian flows with comparable scales [86]. Cmulti is a composition method specialized in

perturbative Hamiltonian systems of the form H = A + εB [97, 96, 88]. Note that the

flows ϕfast
h , ϕslow

h are not exact, so the order of ϕmulti
h is not the same as the order of Cmulti

applied for exact flows. In fact, the global error of ϕmulti
h is the summation of the global

errors of all three methods Cfast, Cslow and Cmulti (see appendix section B.3 for proof).

For example, if we set Cfast, Cslow and Cmulti as CS6, CVerlet and CABA42 (see appendix

section 3.5) respectively. The global error of the above method is O(h6) + O(ε2h2) +

O(εh4+ε2h2), i.e.O (h6 + εh4 + ε2h2). We name itM642 scheme with 6, 4, 2 representing

our system, however, is new (due to the rigid-body part) and thus so is our specific splitting.
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ϕ
[3]
h ϕ
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Cmulti

Cfast Cslow

Figure 3.3: Hierarchical composition tree. The root node represents the final scheme. The
leaves represent the basic ingredients of the composition which are exact flows. Nodes in
the middle represent the intermediate composition flows. Red arrows represent the com-
position methods specialized in composing two child flows with similar scales. The blue
arrow represent the composition methods specialized in composing two child flows with
different scales.

Table 3.3: Comparisons of different schemes with respect to the number of dominating
expensive stages and the global error order. The number of expensive stages are counted in
an isolated step without considering the concatenation of the last stage with the first stage
of the next step. The notation in the ‘order’ column is explained in the main text.

scheme expensive stages order
T2 3 (2)
T4 7 (4)
T6 15 (6)
M42 3 (4, 2)
M642 6 (6, 4, 2)

the power of h of each term in the order andM representing multiscale splitting.

Similarly, we design theM42 scheme by choosing Cfast, Cslow and Cmulti as CTriJump, CVerlet

and CABA22 respectively with the global error being O(h4 + εh2).

Compared with schemes in section 3.6.1, tailored splitting is able to mixing the fast

and slow flows flexibly, thus being able control the time complexity. In fact, T (φ
[1]
h ) =

T (ϕ
[1]
h ) +T (ϕ

[3]
h ), T (φ

[2]
h ) = T (ϕ

[2]
h ) +T (ϕ

[4]
h ) with T (·) being the number of operations of

the one-step forward flow and evolving ϕ[3]
h , ϕ[4]

h are much more expensive than evolving

ϕ
[1]
h , ϕ[2]

h . Since ϕ[3]
h and ϕ[4]

h are (expensive) slow dynamics that can be evolved with less
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effort (e.g. larger step size, less stages) than fast dynamics when evolving together and tai-

lored splitting makes it possible to control the number of expensive stages. To compare, the

number of expensive stages and the global errors of all schemes mentioned (in section 3.6.1

and section 3.6.1) are listed in Table. 3.3. In Table. 3.3, the order index (o0, o1, . . .) repre-

sents the power of h in front of ε0, ε1, . . . (e.g. a scheme of order (o0, o1, o2) has a global

error of O(ho1 + εho2 + ε2ho3)).

Moreover, since the hierarchical composition is a general framework, one can easily

extend the family of numerical schemes, such as to construct higher order schemes, by

applying a variety of existing splitting and composition methods.

Tailored Splitting II (K-series Methods): H = K1 +K2 +K3 with K3

K1
, K2

K1
= O(ε

K
)

We also provide an option to use the popular Wisdom-Holman [98] scheme for the or-

bital part, which works well for the specific but common setup of near Keplerian orbits;

such systems usually correspond to N − 1 well-separated bodies orbiting around a massive

central body (indexed by 1 in our following description). This method is similar to the ap-

proach by [71], except that their coordinates are set using the body-frame and we provided

a higher-order implementation.

Isolating the Keplerian dynamics as K1, combining the rotational kinetic energy with

the rest translational kinetic energy as K2, and putting the rest potential energy to K3,

H = K1 +K2 +K3 with



K1(q, p) = HKepler(Q,P) =
N∑
i=2

1

2
P T
i Pi/mi −

Gm1mi

‖Qi‖
,

K2(p,Π) =
N∑
i=1

1

2
ΠT
i J
−1
i Πi +

∥∥∥p1 − m1

mtot

∑N
i=1 pi

∥∥∥2
2m1

,

K3(q,R) = V (q,R) +
N∑
i=2

Gm1mi

‖qi − q1‖
,

(3.39)

andK2, K3 � K1. Here, V (q,R) is defined in Eq. (3.7). Note thatK1 represents Keplerian
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orbits in Q,P variables, which are canonical democratic heliocentric variables [99] with

Qi =


qi − q1 i 6= 1,∑N

j=1mjqj

mtot

i = 1,

(3.40)

and

Pi =


pi −

mi

mtot

N∑
j=1

pi i 6= 1,

N∑
j=1

pi i = 1.

(3.41)

So when evolvingK1 dynamics, additional steps of switching back and force between (q, p)

and (Q,P) coordinates are necessary. In terms of compositions, similarly, we first compose

the flows of K2 and K3 together as ϕK,slowh via CKslow, then compose the flow of K1 (ϕK,fast
h )

with ϕK,slow
h via a multiscale compositing method CKmulti. The error of such composition is

the summation of the global errors of two methods CKslow, CKmulti (and the numerical error of

evolving Keplerian orbits).

For instance, K·2 method in our package is based on choosing CKslow, CKmulti as CVerlet and

CABA22, and its global error is O(ε
K
h2).

Which One to Use, the T -series, theM-series, or the K-series Methods?

In general, the orders of the T -series methods are only h dependent, while theM-series

and K-series methods are (h, ε) dependent and (h, ε
K

) dependent respectively. Here, ε

and ε
K

are system specific, and they affect the choice of method. For example, ε ≈ 10−6

and ε
K
≈ 10−3 in Solar system simulations with Earth being the only rigid body – note

that ε
K

represents the scale of the orbital planetary interactions while the ε in section 3.6.1

represents the scale of the spin and the potential correction due to rigidity, so in practice,

ε� ε
K

. With the small parameters incorporated, the tailored splitting methods are usually
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more efficient. In general, the K-series methods specialize in near-Keplerian problems,

while the M-series methods are more generic and at the same time almost always faster

than the T -series methods with nearly no trade-offs of the accuracy; in fact, oftentimes the

M-series methods are both more accurate and more efficient due to delicate splittings and

compositions3. However, T -series methods are recommended for extreme cases with large

ε and ε
K

(e.g., a super fast spinning body might contribute to a large ε).

3.6.2 Adding Non-Conservative Forces

Non-conservative forces such as tidal forces and post Newtonian corrections are incorpo-

rated in the package. As the implemented schemes are based on symmetric splitting and

composition the corresponding non-conservative momentum update is inserted in the mid-

dle of the composition. This is similar to how dissipative forces were added in REBOUNDx

[100].

Tidal Forces

We model the tidal dissipation between each pair of bodies using the constant time lag

equilibrium tide model, following [66, 67]. Note that we only adopted the dissipative

component in the tidal force here. The expression of the acceleration of the tidal force is

atidalhost,guest = −
9σm2

guestA
2

2µhost,guestd10

[
3d
(
d · ḋ

)
+
((
d× ḋ

)
− ωd2

)
× d

]
.

(3.42)

Here, mhost,mguest denote the masses of the host and the guest body respectively; d =

qguest− qhost denotes the relative position of the guest body; d = ‖d‖ denotes the distance

between two bodies; µhost,guest =
mhost·mguest

mhost+mguest
denotes the reduced mass; ω denotes the

3One should not be misled to think an error like O(h4 + εh2) is larger than O(h4); for example, if
ε = h2, the former may actually be smaller due to different constant factors; see section 3.7.1 for practical
illustrations.
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angular velocity of the host body under the reference frame (the inertia frame); the constant

σ denotes the dissipation rate; A is defined as

A =
d5Q

1−Q, (3.43)

with Q the constant that measures quadrupolar deformability of the objects.

The dissipation rate σ is related to the time lag τ by the following formula,

τ =
3σd5

4G ·
Q

1−Q. (3.44)

We may integrate the tidal acceleration atidali,j to our integrator after each time step by

considering all pairs of bodies under tidal interactions. Note that each atidali,j only calculates

the force of each (host, guest) pair, where each pair (i, j) treat i as the extended object and

j as the point mass object. Thus, the equations of motion due to tidal dissipation are listed

below: 
pi = pi + h

∑
j 6=i

(
−µi,j atidali,j + µj,i a

tidal
j,i

)
,

Πi = Πi − h
∑
j 6=i

µi,jR
T
i

(
(qj − qi)× atidali,j

)
.

(3.45)

General Relativistic Effects

We added the first-order post-Newtonian correction for general relativistic effects following

e.g., [101]. For planetary systems, we assumed the central object (the host star) is much

more massive comparing to the surrounding objects (the planets). Thus, we only included

the correction due to the star. The acceleration can be expressed as the following [e.g., 102,

103]:

a =
GMstar

r3c2

[(4GMstar

r
− v2

)
r + 4(v · r)v

]
(3.46)
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3.6.3 Asymmetric Case

For planets with close-in orbits, both rotational flattening and tidal force distort the shape

of the planets, and lead to non-axial symmetric distortions. Thus, we include the option to

study non-axial symmetric planets here, where one could specify the principal moment of

inertia or the semi-axes of the planets directly. In this case, J (1)
i 6= J

(2)
i 6= J

(3)
i in Ji, and

our splitting of the Hamiltonian is modified as the previous Hamiltonian plus Hasymmetric,

where

Hasymmetric(R,Π) =
∑
i

(
1

J
(2)
i

− 1

J
(1)
i

)
· Π

(2)
i

2

2
, (3.47)

and Hasymmetric � H3 in Eq. (3.38).

The dynamics of Eq. (3.47) is


Ri(t) = Ry

(
δΠ

(2)
i t
)
Ri(0),

Πi(t) = Ry(−δΠ(2)
i t) Πi(0),

(3.48)

with δ = 1

J
(2)
i

− 1

J
(1)
i

. Based on the symmetric schemes in section 3.6.1, we simply evolve

Hasymmetric half step at the beginning and the end of each step.

3.7 Code Validation

3.7.1 Numerical Tests

Conservation Properties

The conservation properties of the integrators are tested for T4 and M42 schemes in the

Sun-Earth-Moon system with all three bodies being rigid. As shown in Fig. 3.4, both

schemes conserve linear momentum and angular momentum (except there are arithmetic

inaccuracies due to machine precision), and the energies exhibit no drift but only fluctuate

at magnitudesO(h4) andO(h4+εh2) for T4 andM42 respectively. In the simulations, tides
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Figure 3.4: Conservation of momentum maps and near conservation of energy by our meth-
ods. Relative error of energy E, error of the total linear momentum p and relative error of
the total angular momentum π are measured. p(0) = [0, 0, 0]. The potential order is set to
be 2.

are not included (otherwise the system is no longer conservative) and initial conditions are

set to be the data of epoch J2000 from JPL HORIZONS System.

Here floating-point format is set to be double-precision, although our package can also

use long-double or single.

Our integrators also (exactly) preserve symplecticity when tidal dissipation is excluded,

because they are Hamiltonian splitting schemes. The definition of symplecticity in a non-

Euclidean setup is not completely trivial, but the symplecticity of splitting approaches con-

sidered here has been established in, e.g., [104] (with r(t) = 0; otherwise one gets a more

general result, namely conformal symplecticity).

Convergence Tests and Accuracy Comparisons

We now numerically illustrate how the integration error depends on h for different numer-

ical schemes, which include both methods we implemented in GRIT and SMERCURY-T.

SMERCURY-T is a concurrent simulation package that can evolve an object’s spin-axis
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under obliquity tide [105]. It is based on the Mercury simulation package [106]. Specif-

ically, it includes a subroutine to evolve the spin-axis dynamics following the procedure

outlined in [6], which is based on the Lie-Poisson integrator of rigid-body dynamics de-

veloped by [71]. In addition, it includes a subroutine for obliquity tide following the algo-

rithms outlined in [69]. The model for tidal interaction of SMERCURY-T is different from

what we included in GRIT, which natually contains both obliquity tide and tidal effects

due to non-tidally synchronized orbits. Thus, we focus on the rigid-body dynamics here,

where we do not include tidal interactions in our convergence test. We also turned off, in

comparisons presented here, our rigid-body rigid-body interaction option, which is mainly

for accurate simulations of rigid bodies’ close encounters, because such interactions are

supported only in GRIT.

We first test on the Sun-Earth-Moon system (Fig. 3.5). One observation in this case

is, if the step size is too large so that splitting into H1 + H2 + H3 + H4 (GRIT’s M42,

M642) doesn’t work, SMERCURY-T doesn’t work either (unlike expected by some). More

precisely, with h = 2 · 10−2 yr,M42 and SMERCURY-T cannot resolve the the motion of

the Moon orbiting around the Earth, whose period is a month, and even the performance of

the 6th order methodM642 is not ideal, and significant errors are observed in all methods.

Accuracy is improved for stepsizes below this stability limit, and the rate of improvement

is, as expected, dependent on the order of the numerical scheme. Consequently, higher

order methods such asM42 andM642 show substantially smaller errors when smaller step

sizes are applied (readers interested in understanding this together with computational costs

are referred to section 3.7.1).

We then test on a non-Keplerian system (note SMERCURY-T performs well for near

Keplerian problems as designed): an Earth-like planet orbiting around two stars alterna-

tively in a stellar binary system (Fig. 3.6). As there is no single body that has the dominant

mass of the system and the the planet is alternatively captured by the two stars, the plane-

tary orbit is not nearly Keplerian, and splitting into H1 + H2 + H3 + H4 is more accurate
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Figure 3.5: Error of Earth’s obliquity (ε) over the range of ε’s fluctuation and the relative
error of the semi-major axis of the Moon for the Sun-Earth-Moon system. Earth, Sun,
Moon are rigid body, point mass and point mass respectively. The benchmark is simulated
using the T6 scheme with h = 10−5 yr.

than SMERCURY-T for all choices of step sizes here. Specifically, as shown in Fig. 3.6,

the orbital position of SMERCURY-T saturates toO(1) relative error after a relatively short

period of time, no matter if h = 10−3, 10−4, or 10−5 yr. The orbital inaccuracy naturally

affects the spin angle as well. Meanwhile,M42 andM642 do not have this issue.

For reproducibility, the initial condition used is

qstar1 =

[
−0.5 0 0

]T
, vstar1 =

[
0 −0.0086012119 0

]T
,

qstar2 =

[
0.5 0 0

]T
, vstar2 =

[
0 0.0086012119 0

]T
,

qplanet =

[
1.16 0 0

]T
, vplanet =

[
0 0.0164271047 0

]T

in units of AU and AU/day, and mstar1 = mstar2 = 0.5m�, mplanet = m⊕.

Investigation of Efficiency

We now demonstrate the improved computational efficiency of the tailored splitting schemes.

A comparison of the time efficiency among the traditional splitting method T4, T6 and the
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Figure 3.6: Error of spin angle (the angle between the angular momentum and the z-axis
of the inertia frame) and position for an Earth-like planet orbiting around two stars alterna-
tively. The Earth-like planet, star 1 and star 2 are set to be rigid body, point mass and point
mass respectively. The benchmark is simulated using the T6 scheme with h=1e-5.

tailored splitting schemeM42,M642,K·2 in the 10 rigid body (Sun with 8 planets and the

Moon) is shown in Table. 3.4.M42 (M642) is about twice the speed of T4 (T6) with compa-

rable integrating accuracy. Note SMERCURY-T cannot be compared against here, because

its currently available version4 can only set one of the objects as rigid-body.

To gain additional understanding of the performance of GRIT, complementary re-

sults that include comparisons to SMERCURY-T are also provided. For a fair compari-

son, we continue using the Solar system example, which is a near Keplerian problem that

SMERCURY-T specializes in, but we had to alter it by setting only the Earth to be a rigid

body and all others as point masses. Results are in Table. 3.5, whereM42 shows improved

accuracy over SMERCURY-T, whileM642 is even more accurate however with traded-off

time complexity.

Also for the sake of fairness, note that wall-clock counts are platform dependent and

therefore should only be used as a qualitative (not quantitative) indicator. Experiments

reported here are conducted on a machine with AMD Ryzen 7 3700X 8-Core Processor, 16

4https://github.com/SMKreyche/SMERCURY-T/tree/cbc25299825559f255cee096c7650f379af41aa5
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Table 3.4: Efficiency comparison among scheme T4, T6, M42, M642 and K·2. The Solar
system with 8 planets and the Moon (10 rigid bodies in total) is simulated till 1000 years
with h = 10−3 yr and h = 10−4 yr for all schemes using a single thread. The benchmark is
simulated using the T6 scheme with h = 10−5 yr and long-double precision. Mean absolute
errors (MAE) of the Earth’s obliquity (rad) are measured. Data is output every 0.1 yr.

h = 10−3 yr Wall time (s) MAE of Earth’s Obliquity
T4 30.573 1.996646e-05
M42 15.488 1.997454e-05
T6 72.55 1.728156e-08
M642 40.626 4.365093e-10
K·2 14.673 2.186379e-05

SMERCURY-T N/A N/A
h = 10−4 yr
T4 273.71 2.680897e-09
M42 140.58 3.817091e-09
T6 708.26 8.689218e-11
M642 395.52 2.039980e-10
K·2 131.56 1.292609e-05

SMERCURY-T N/A N/A
h = 10−5 yr
K·2 1299.9 1.378428e-07

GB memory and the Linux distribution of openSUSE Leap 15.2. GRITwas compiled using

GNU C++ compiler and SMERCURY-T using GNU Fortran compiler, both with the default

compilation options. Single-thread is used for experiments in both Tables 3.4 and 3.5

for fairness (note a parallelization option is available in GRIT; we recommend turning it

on when the simulated system has large numbers of rigid objects). We also noted that

SMERCURY-T slows down more significantly than GRIT when its integration is outputted

more frequently, and thus chose a large output step size to reduce SMERCURY-T’s I/O

overhead so that the focus can be on the integration time itself.

Summary of Section 3.7.1 Numerical Tests

In general, GRIT suits not only near-Keplerian orbits but also non-Keplerian ones. Multiple

splitting and composition options are provided in GRIT too so that, if preferred, a user

can choose the classical Wisdom-Holman scheme for the orbital part which specializes in
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Table 3.5: Efficiency comparison among scheme M42, M642 and SMERCURY-T. The
Solar system with 8 planets and the Moon (9 point masses and 1 rigid body (the Earth)
in total) is simulated till 1000 years with h = 10−3 yr and h = 10−4 yr for all schemes
using a single thread. The benchmark is simulated using the T6 scheme with h = 10−5 yr
and long-double precision. Mean absolute errors (MAE) of the Earth’s obliquity (rad) are
measured. Data is output every 0.1 yr.

h = 10−3 yr Wall time (s) MAE of Earth’s Obliquity
M42 6.408 1.997119e-05
M642 23.122 3.841649e-10

SMERCURY-T 8.638 2.157662e-05
h = 10−4 yr
M42 53.782 3.833661e-09
M642 216.09 1.990336e-10

SMERCURY-T 39.079 1.903458e-05

near-Keplerian orbits (e.g., K·2). Furthermore, equipped with higher order methods, GRIT

integrations have errors that decrease very rapidly as step size decreases in a reasonable

range.

3.7.2 Comparison with Secular Results

To further verify the accuracy of our integration package, we compare our simulation re-

sults to secular theory here. We include two examples: the first one integrate the obliquity

variation of a moon-less Earth without the influence of tidal interactions, and the second

example considers tidal interactions between a hypothetical Earth-Moon system. We find

good agreement between our simulation package with the results of the secular theory.

Obliquity Variations of a Moon-less Earth

Spin-orbit resonances lead to large obliquity variations for a moonless Earth [15], and this

classical example can serve as a test case for our simulation package. Specifically, planetary

companions of the Earth (from Mercury to Neptune) all perturb Earth’s orbit and lead to

forced oscillations in the orbital plane of Earth. At the same time, torquing from the Sun

leads to precession of Earth’s spin axis. The natural precession frequency coincides with

78



0 0.2 0.4 0.6 0.8

time (Myr)

0

20

40

60

80

o
b
li

q
u
it

y
N-rigid-body

Secular

Figure 3.7: Obliquity variations of a moon-less Earth. The solid lines represent the rigid-
body simulations, and the dashed lines represent the secular results following [5]. The
results of our simulation package agree well with the secular theory.

the forcing frequencies and drives resonant obliquity variations of Earth. Tidal interactions

are weak in this case, so we neglected tidal effects in our code and considers the dynamical

coupling between the planetary spin axes and its orbit.

We include the eight Solar System planets in this system, and we adopt the position

and velocity of the Solar System planets from JPL database [107]. We only treat the Earth

as a rigid object with oblateness of 0.00335, and set the other planets and the Sun as point

particles.

Figure Figure 3.7 shows the comparison of the obliquity variations of the moon-less

Earth with that from the secular theory shown in [15, 43]. We included three examples

starting with different initial obliquities, and all of them show good agreement with the

secular results. In particular, below ∼ 40◦, large obliquity variations can be seen due to the

spin-orbit resonances. We chose a time step of 10−4yrs, in order to resolve the spin of the

Earth. The fractional change in energy is at the order of 10−14 and the fractional change

in angular momentum is at the order of 10−12 for all the three runs with different initial

obliquities.
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Figure 3.8: Tidal interaction in a hypothetical Earth-Moon system. The spin rate (Ω) in-
creases rapidly to the pseudo-synchronized state, which is then followed by a much slower
decay as the orbit circularizes under tide. The solid lines represent the simulation results
and the dashed lines represent the secular results. The results of our simulation package
agree well with the secular theory.

Tidal Interactions of a Hypothetical Earth-Moon System

To illustrate the accuracy of our simulation package including tidal interactions, we use a

simple hypothetical Earth-Moon two-body system here. We set the initial semi-major axis

and eccentricity to be 0.0018AU and 0.4. For the Earth, we set the spin period to be 1 day,

oblateness to be 0.00335, love number to be 0.305 and tidal time lag to be 698sec. For the

Moon, we set the spin period to be 14 days, oblateness to be 0.0012, love number to be

0.02416 and tidal time lag to be 8, 639sec.

Figure Figure 3.8 shows the agreement between our simulation package (solid lines)

with the secular results (dashed lines). The secular results are obtained following [67].

The upper panel plots orbital eccentricity versus time and the lower panel plots the spin

rate of the Moon versus time. It shows that the spin rate of the Moon increases to the

pseudo-synchronized state within a few hundred years, and then slowly decreases as orbital

eccentricity decays due to tide. We chose a time step of 10−4yr to resolve the spin of the

Earth, and the total fractional change in angular momentum is 7× 10−12.
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3.8 Applications to Trappist-I

Spin-orbit coupling leads to profound dynamics in planetary systems, in particular for plan-

ets with close-in orbits. For Trappist-I, it is shown that tidal and rotational deformation of

the planets leads to orbital precession that can be detected in the TTV measurements [63].

In addition, strong interactions between planets in resonant chains can push habitable zone

Trappist-I planets into non-synchronous states [64].

To illustrate the effects of the spin-orbit coupling, we use our numerical package to sim-

ulate the long-term dynamics of spin-axis variations, as well as the short-term effects on

TTV for Trappist-I. We note that both our numerical package and POSIDONIUS [70, 63]

consider tidal effects and spin-orbit coupling, beyond point mass dynamics based on New-

tonian interactions and GR corrections. In particular, [63] obtained both dissipative and

non-dissipative forces from tidal dissipation and tidal torquing separately, and considered

forcing due to planetary rotational deformation.

Using our numerical package, we find that the habitable zone planets can indeed allow

large spin-state variations, consistent with the findings by [64]. In addition, we find that

allowing the non-synchronized states could lead to significantly larger TTVs, which could

reach a magnitude of ∼ min in ten-year timescale.

3.8.1 System set up

We use the same orbital initial condition and physical properties for the planets in Trappist-

I following [63] (Table A.2 in [63]), in order to compare the magnitude of TTVs, and we

use the same reference tidal parameters for the star and the planet (e.g., k2f,∗ = 0.307,

k2f,p = 0.9532, ∆τp = 712.37sec). The Q coefficient in the tidal model can then be

calculated (k2 = Q/(1−Q)) [67, 108, 109].

To calculate the moment of inertia along the three principal axes (A, B, C), we follow

the derivation by [110], assuming a homogeneous model for simplicity and assuming the
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rotation velocity of the planet is close to the orbital velocity. Specifically, the moment of

inertia can be expressed as the following:

A = I0(1−
1

3
α− 1

2
β)

B = I0(1−
1

3
α +

1

2
β)

C = I0(1 +
2

3
α)

where

α =
5

4
q(1 + kf )

β =
3

2
q(1 + kf )

and kf is the love number, and q is the ratio of the centrifugal acceleration to the gravi-

tational acceleration. We assume all the planets have the same radius of gyration squared

rg2p = 0.3308 following [63], and we include in Table. 3.6 the moment of inertia of the

planets.

Moreover, because the planets are very close to their host star, general relativistic pre-

cession plays a non-negligible role in the transit time. Thus, we also included the first order

post-Newtonian correction in our simulation code (see §subsubsection 3.6.2).

Table 3.6: Principal moment of inertia of the Trappist-I planets.

Planet A (M�km2) B (M�km2) C (M�km2)
b 50.5245 50.8474 50.955
c 54.3319 54.4432 54.4803
d 7.6321 7.6396 7.6421
e 26.384 26.391 26.3933
f 39.9836 39.9898 39.9918
g 58.8644 58.8698 58.8716
h 7.8901 7.8904 7.8905
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Figure 3.9: Transit-timing variations (TTVs) of planets (b, c, d) in Trappist-I. The upper
panels show TTVs of the planets assuming they are point mass particles and neglect effects
due to GR. The lower panels show the differences in TTVs due to GR, rotational flattening
of the planets and all the effects (GR, rotational flattening, tidal precession and tidal dissi-
pation combined). The differences due to GR and rotational flattening are consistent with
the results in [63], while assuming the planets to be rigid bodies, the TTV differences are
larger.

3.8.2 Transit-timing Variations

The measurement of transit-timing variations (TTVs) is a powerful method to derive phys-

ical properties of planets, in particular masses and eccentricity of planets [111]. Most

studies consider only point-mass dynamics. However, full-body dynamics including tidal

effects and distortion of the planets could also play an important role [112, 113, 114, 115].

It is recently shown that new measurements of the TTV of the Trappist-I system lead to

significant increase in the mass estimate for planet b and c, which may be due to unac-

counted physical processes including tidal effects and rotational distortion of the planets

[116, 117, 63]. Thus, we use our simulation package to estimate the TTV of the inner

planets in Trappist-I here as an example, in comparison with the study by [63].

We include the result of the transit-timing variations for Trappist-I b,c and d in 1500

days in Figure Figure 3.9, to compare our results with those in [63]. Similar to Figure

1 in [63], the upper panels show the transit timing variations assuming the planets are all

point-mass particles, and the lower panels show the differences in the TTVs due to different
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Figure 3.10: Differences in transit-timing variations (TTVs) of planets (b, c, d) in Trappist-I
over ten year measurements. With larger spin-misalignment, transit-timing variations could
reach ∼ mins.

effects. The differences due to GR and rotational flattening of the planets computed using

our simulation package are agreeable with that in [63]. Different from [63], we assume

the objects are rigid-bodies when considering tidal interactions with the central star using

our rigid-body simulator. This leads to slightly larger TTV differences. We note that the

magnitude of the differences in the TTVs depend on the misalignment between the elon-

gated principal axis and the location direction of the planet from the central star. For the

illustrative example, we assume the planets all start with their long-axes perfectly aligned

to the direction of the central star.

As the system evolve further, the misalignment could be excited to larger values (as

discussed further in section subsection 3.8.3). The differences in TTVs could reach ∼ 5sec
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Figure 3.11: Illustration of the long-axis misalignment. Low variations in ψ correspond to
a tidally locked planet.

for 1500 days, and a few minutes in 10 year measurements, shown in Figure Figure 3.10.

A detailed study of how the TTVs depend on the physical properties of the planets (e.g.,

the love number, tidal time lag, etc.) is out of the scope of this paper, and will be discussed

in a follow up project.

3.8.3 Long-term dynamics

Long-term dynamics of spin-axes of planets, in particular their synchronized states, play

an important role in the atmosphere circulation of the planets. When the planets are tidally

locked, the extreme temperature differences on one side of the planet facing the star from

the other side may lead to the collapse of planetary atmosphere [118, 119, 120]. For

Trappist-I, [64] developed a framework studying the spin-axis variations of the planets

and found that the mean motion resonant chain could drive the habitable zone planets out

of the synchronized state.

Specifically, [64] evolves the longitude of the substellar point separately based on re-

sults of orbital evolution of Trappist-I using the Rebound simulation package [121]. This

does not include effects of the variation of the spin-axis on the orbits, and the developed

framework neglected the 3-D variations of the planetary spin-axis (i.e., assuming zero plan-
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Figure 3.12: Spin-axis misalignment as a function of time. Planet f, g and h all have large
long-axes variations, and are not tidally locked.

etary obliquities) for simplicity. To evaluate the spin-axis dynamics more accurately, we

use our simulation package, which allows backreactions of the spin-axis dynamics on the

orbit, as well as the full 3-D dynamics of the planetary spin-axis.

We use the same initial condition as those in section subsection 3.8.2 for the long-term

dynamical simulation over 100, 000yrs. We start the planets in synchronized configurations

and we calculate the misalignment between the long axes of the planets and their radial

direction from the host star, which is ψ illustrated in Figure Figure 3.11.

Figure Figure 3.12 shows this misalignment (ψ) of the planets. Planet b, c, d and e are

closer to the host star, and allow stronger tidal interactions. This leads to low variations in

the long-axes of the planets. However, planet f, g and h are further away, where planetary

interactions could compete with tidal re-alignment and drive larger spin-axis variations.

We note that the obliquities of these planets still remain low (within a few degrees). The
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detailed dependence of the spin-axis variations on the parameters of the planets are beyond

the scope of this article, and will be invested in a follow up paper.

3.9 Conclusions

In this article, we developed symplectic integrators and provided a package “GRIT” for

studying the spin-orbit coupling of N-rigid-body systems. We split the Hamiltonian into

four parts with different evolution timescales (tailored splitting), and compose the four parts

together in a hierarchical way so that the expensive slow scale evolution is more efficient.

In general, the tailored splitting is more flexible and efficient than the traditional splitting.

To illustrate the validity of the integrator, we showed that it provides results consistent

with the secular theories for the obliquity variation of a moonless Earth, and the tidal evo-

lution of a hypothetical Earth-Moon system. This allowed us to confidently apply it to the

less well understood system Trappist-I, and show that the differences in transit-timing vari-

ations could reach a few seconds for a four year measurements, and planetary interactions

could push planet f, g and h out of the synchronized states, which are consistent with [63]

and [64].

We assume the objects are rigid bodies in our simulation package. This is a good

approximation when the deformation of the objects are slow. Thus, our simulation package

can be applied for objects with a slow change of rotation rate or tidal distortion. When the

deformation rate is faster than the orbital variation timescales, spin-orbit coupling using

hydrodynamical simulations could provide more accurate results [e.g., 122].
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CHAPTER 4

DATA-DRIVEN PREDICTION OF GENERAL HAMILTONIAN DYNAMICS VIA

LEARNING EXACTLY-SYMPLECTIC MAPS

4.1 Introduction

Given a collection of sequences, each being a multidimensional time series produced by the

same latent mechanism, we consider learning this mechanism and predicting a sequence’s

future evolution. More precisely, suppose there is an unknown (possibly highly nonlinear)

map φ that evolves any initial condition in discrete time i according to

xi+1 = φ(xi).

Provided with training data {xi,j}, where each j ∈ [M ] corresponds to such a sequence (i ∈

{0, . . . , Nj}), we’d like to learn φ purely from the data, or more precisely an approximation

of its image φ̃(x) ≈ φ(x) for any x in the problem domain. This way, one can for example

perform continuation of existing sequences via x̃i+1,j = φ̃(x̃i,j) for i ≥ Nj and x̃Nj ,j =

xNj ,j , or predict a sequence evolved from a new initial condition via yi+1 = φ̃(yi) for i > 0.

This task of course appears in many contexts (see e.g., section 4.2). This article con-

siders a very specific one, for which the latent map φ is assumed to be symplectic: for

simplicity we will work with finite dim. vector spaces equipped with canonical symplec-

tic structure, which means each x can be written as x = [p, q] where p, q ∈ Rd, and the

Jacobian of φ satisfies

(φ′)TJφ′ = J,

where J =

 0 I

−I 0

 is a 2d-by-2d matrix with 0 and I being d-by-d blocks.

The consideration of symplectic evolution maps is largely motivated by the learning
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and prediction of mechanical behaviors, which recently attracted significant attention (see

section 4.2 3rd paragraph). More precisely, if the latent evolution mechanism is provided by

a Hamiltonian mechanical system, each time series is given by a solution to the Hamiltonian

ODE system sampled at discretized time points. That is, xi = [pi, qi], pi = p(ih), qi =

q(ih), with

ṗ(t) = −∂H
∂q

(p(t), q(t)), q̇(t) =
∂H

∂p
(p(t), q(t)), (4.1)

where H(·, ·) is the latent Hamiltonian function and h > 0 is the sampling time step. In

this case, the latent φ we’re trying to learn is the flow map of ODE (Equation 4.1), defined

as

φ[p(t), q(t)] := [p(t+ h), q(t+ h)], ∀t.

Given any h > 0, the corresponding φ is a symplectic map (e.g., [123]), and that is why the

learning of symplectic maps is relevant.

Worth noting is, a popular and successful line of thoughts is based on learning the

right hand side of the latent ODE, which in our case (Eq. (4.1)) amounts to either generic

approaches that learn the vector-valued function f(p, q) := [−∂H/∂q, ∂H/∂p] (see sec-

tion 4.2 1st paragraph), or specialized methods that utilize the problem structure and learn

the scalar-valued function H(p, q) (see section 4.2 3rd paragraph). This article, however,

is based on a different idea, namely to directly learn the evolution map φ.

The advantages of doing so include: (i) Generality: it works no matter whether there

is an underlying ODE system (see Sec.subsection 4.5.4 for an example where there isn’t).

(ii) Local Accuracy: for purely data driven problems, learning the map has one source

of error, namely the approximation error of the map, whereas learning vector field gener-

ally has three: first one has to estimate the vector field from data, for example by finite

difference which incurs error, then there is approximation error of the vector field, and fi-

nally the vector field needs to be numerically integrated in order to make predictions and

this creates error too. (iii) Symplecticity (and Global Accuracy): we will propose a simple
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way to exactly maintain the symplecticity of φ despite using an approximation1; we will

also rigorously show, when considering how local error accumulates for making long time

predictions, exact symplecticity can help significantly by keeping the error accumulation

additive, so that global error grows linearly instead of exponentially.

Example 1. To make things concrete, consider latent Hamiltonian dynamics ẋ = Ax

where A = −AT . A vector-field-based method aims at learning the function Ax, but

if discrete time-series are the only available data, it actually learns Ãx instead, where

Ã = (exp(Ah) − I)/h if 1st-order finite difference is used for estimating the vector-field.

A map-based method seeks the map exp(Ah)x instead. When later making predictions,

the vector-field-based method numerically integrates the vector field Ãx, which oftentimes

corresponds to constructing a polynomial in h approximation of exp(Ãh); on the contrary,

a map-based method requires no numerical integration. A similar comparison holds for

nonlinear cases too.

In order to learn a symplectic evolution map, we use a tool known as generating func-

tions, which have one-to-one correspondence with symplectic maps. We use a Neural

Network, however not for approximating the latent symplectic map, but to approximate its

corresponding Generating Function (the method is thus called GFNN). By doing so, the

associated evolution map is always symplectic, whether or not it is a good approximation

of the latent evolution map, and an appropriate neural network, even just a feedforward

one, will be a good approximation after training (see Rmk. 3). This symplectic map repre-

sentation is intrinsic, purely due to the symplectic structure, and no regularization is used.

Moreover, the guaranteed symplecticity originated from the generating function tech-

nique allows us to obtain a nontrivial, linearly growing bound on the prediction error:

Theorem 1 (Informal version of Thm.Equation 4). Consider latent dynamics far from

chaos (more precisely, being integrable). If the latent generating function is approximated

1Vector-field-based methods can also be designed to make symplectic predictions; see Sec.section 4.2 4th
paragraph.
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with ≤ ε error in first derivatives, then except for a set of initial conditions whose measure

goes to 0 as ε ↓ 0, the deviation between the predicted sequence (p0, q0) , (p1, q1, ) , . . .

and the true sequence satisfies


‖pn − p (nh)‖2 ≤ C · (nh) · ε,

‖qn − q (nh)‖2 ≤ C · (nh) · ε,
∀n ≤ h−1ε−1,

for some constant C > 0, where n is the number of prediction steps and h is the sampling

time step of the data.

The merit of this bound lies in long time predictions: note n can be arbitrarily large as ε

can be infinitesimal (h is fixed by the training data, and nh is the physical prediction time).

A brief summary of main contributions:

• (Algorithm) Learn map instead of vector field. Exact symplecticity guaranteed by

generating function representation.

• (Theory) Linear bound on long-time prediction error.

• (Validation) Systematic empirical investigations.

4.2 Related Works and Discussions

Learning and then predicting dynamics from data is an extremely active research direction.

While it is impossible to review all important works, we first mention the classical area of

time series (e.g., [124, 125, 126, 127]), where latent differential equations may or may not

be assumed. For cases where a latent differential equation is believed to exist, which may

correspond to a complex and/or un-modeled underlying dynamical process, some seminal

works include [128, 129, 130], and more recent progress include those based on learning

(part of) the vector field via sparse regression of a library (e.g., [131, 132, 133, 134, 135,

136, 137]), learning the vector field via neural network (e.g., [138, 139, 140, 141]), and

learning the vector field via other approaches such as Gaussian processes (e.g., [142]).
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‘Model-free’ approaches that are based on machine learning techniques for sequences

have also been proposed, such as [143] (vanilla RNN), [144] (LSTM), [145] (reservoir

computing), [146] (CNN), and [147] (transformer).

Faced with the extreme success of these generic methods, interests have also been grow-

ing in incorporating domain knowledge and specific structures of the underlying problems

into the otherwise-black-box schemes (see e.g., [148]). In terms of mechanical problems

modeled by Hamiltonian systems, seminal progress include HNN [149] and an independent

work [150], SRNN [151], SympNets [152], and [153, 154, 155, 156, 157], all of which, ex-

cept SympNets, are related to learning some quantity that produces the Hamiltonian vector

field.

In particular, both HNN and SRNN are based on the great idea of learning (using a

neural network) the Hamiltonian that generates the vector field (VF), instead of learning

the VF itself; this improves accuracy as the Hamiltonian structure of the VF will not be

lost due to approximation. HNN learns the Hamiltonian by matching its induced VF with

the latent VF (when such information is unavailable, for example in a purely data driven

context, data-based approximation such as finite-difference is needed). Then it predicts

by numerically integrating the learned VF, and for this we note a Hamiltonian VF doesn’t

guarantee the symplecticity of its integration2. SRNN, on the other hand, learns the Hamil-

tonian by matching its symplectic integration with the training sequences, and its prediction

is then given by symplectic integration of the learned Hamiltonian. It is therefore the closer

to GFNN as it essentially learns a symplectic map; it is just that SRNN represents this

map by a symplectic integration of a neural-network-approximated Hamiltonian, whereas

GFNN represents it by a neural-network-approximated generating function. Because of

this, SRNN doesn’t need finite-difference approximation and has good prediction accu-

racy, but it only works for symplectic maps originated from Hamiltonian ODEs, and its

2Unless a symplectic integrator is used. Note the seminal work of HNN used RK45 which is not sym-
plectic, however with small error tolerance (thus good precision but high computation cost).
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accuracy is hampered if the latent Hamiltonian is nonseparable3.

In comparison, GFNN is not based on Hamiltonian vector fields. It is purely data

driven, always symplectic, and works the same for separable-, nonseparable-, or even non-

Hamiltonian latent systems.

Worth mentioning is the clever recent work of SympNets [152], which also enjoys most

of the aforementioned qualitative features of GFNN. It complements GFNN and echoes

with our view that directly approximating symplectic maps (instead of Hamiltonian vector

fields) in an exactly symplectic way is advantageous (note SRNN can also be seen as a

(different) way of doing so). Algorithmically, SympNets stack up triangular maps (inspired

by symplectic integrator) to construct specialized (new) neural networks, which represent

only symplectic maps, and then use them to directly approximate the latent evolution map;

GFNN on the other hand uses generating function to indirectly represent the evolution map,

and because of its mathematical structure, exact symplecticity is automatically guaranteed,

and no special neural network is needed for representing the generating function. Con-

sequently, the theory of SympNets is devoted to a universal approximation theorem that

characterizes the local prediction error, whereas we focus on the global prediction error

(i.e., error after many steps of prediction, instead of one) and rigorously show a nontrivial

fact that local errors only accumulate linearly into global error; no approximation theo-

rem needed as it’s already established for generic networks. In terms of performance, we

observe SympNets outperforming vector-field-based approaches (as reasoned above), but

GFNN has further improved performance; see e.g., Fig. 4.2, for which we tried up to 30

layers with 10 sublayers using SympNets’ code (both LA- and G-SympNets) and plotted its

best result, namely LA-SympNets with 30 layers and 10 sublayers (c.f., here GFNN used

5 layers). We feel SympNets generally require a significantly deeper network than GFNN

to achieve high approximation power, but then training and computational challenges may

arise.
3The original SRNN is based on symplectic integrators for separable Hamiltonians, and nonsymplectic

integrators for nonseparable ones; see Footnote footnote 6 for additional information.
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One more remark is, a good amount of existing work considered predicting chaotic dy-

namics, but a major part of this work is concerned with structured, non-chaotic dynamics,

for which controlled long time (strong) accuracy in individual trajectories becomes possi-

ble. Predicting chaos is nontrivial, but sometimes the existence of a chaotic attractor makes

the system forgiving, and because of that, prediction errors do not accumulate as much

as they can in non-chaotic systems. Besides, one often cares more about statistical accu-

racy for chaotic systems (e.g., [158]), as opposed to strong accuracy in trajectory (which

usually grows too fast in chaos; see Rmk. 4). Meanwhile, accurately predicting the trajec-

tory of non-chaotic systems is desirable in numerous applications. Nevertheless, GFNN’s

predictive power for chaos will be empirically confirmed too.

4.3 Methods

4.3.1 Symplectic Map and Generating Function

As we do not assume or seek a latent ODE system but directly approximate the evolution

map, a representation of this symplectic map is essential. Instead of directly approximating

it, which has the extra difficulty of losing symplecticity (which has to be exact), we use a

mathematical tool known as generating function. Let us be more specific:

Firstly, given a (type-2) generating function, there is an associated symplectic map

(a.k.a. canonical transformation):

Lemma 1. Consider a differentiable function F (q,P ) which shall be called a generating

function. The map [p, q] 7→ [P ,Q] implicitly defined by p = ∂F
∂q

(q,P ),Q = ∂F
∂P

(q,P ), is

a symplectic map.

Proof. See e.g., [123].

The converse is also true, as long as the latent map doesn’t correspond to an evolution

time too long (otherwise singularities can be developed):
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Lemma 2. For any infinitesimal symplectomorphism (i.e., symplectic map) on T ∗Rd (i.e.,

vector phase space), there is a corresponding generating function.

Proof. This is because the first cohomology group of T ∗Rd is trivial; see e.g., [159].

Remark 1 (generating functions and Hamiltonian system). We do not assume the latent

map that generates the data in discrete time corresponds to an underlying Hamiltonian

ODE system in continuous time. There are symplectic maps that do not have such corre-

spondence (see e.g., Sec.subsection 4.5.4).

On the other hand, given a Hamiltonian system, its flow map, defined as φt : [p(0), q(0)] 7→

[p(t), q(t)], is symplectic for any t. Therefore, there is a family of corresponding generat-

ing functions F (q,P , t), each of which generates the symplectic map [P ,Q] = φt[p, q].

Moreover, the relation between the Hamiltonian H and F can be made more direct via the

Hamilton-Jacobi PDE: H
(
∂F
∂q
, q, t

)
+ ∂F

∂t
= 0.

Because of their 1-to-1 correspondence, instead of approximating the symplectic evo-

lution map φ : [p, q] 7→ [P ,Q], we use a Feedforward Neural Network to approximate the

corresponding generating function F (q,P ). This way, no matter how much error the FNN

has in approximating F , it always gives to an evolution map that is exactly symplectic.

4.3.2 Learning Based on Generating Function Training

The type-2 generating function corresponding to a h-time flow map is F (q,P ) = q ·P +

O(h), and what varies across different problems is inside the O(h) term. Therefore, for

easier training we learn an equivalent, modified generating function Sh, defined through

F (q,P ) = q · P + h · Sh (q,P ). It generates a sequence via iteration


pi = pi+1 + h · ∂1Sh (qi,pi+1) ,

qi+1 = qi + h · ∂2Sh (qi,pi+1) ,

(4.2)

as long as an initial condition [p0, q0] is provided.
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To learn the latent Sh, GFNN uses a neural-network approximation Sθh, and trains for a

good parameterization θ to best satisfy (Equation 4.2). See Algorithm. 1.

Algorithm 1: GFNN

Data: The data set
{(

[pi,j, qi,j]
Nj
i=0

)M
j=1

}
is observed from sequences generated

by a symplectic map φh, with [pi,j, qi,j] ∈ D ⊆ Rd × Rd ∼= T ∗Rd and
pi+1,j, qi+1,j = φh (pi,j, qi,j).
Training: Optimize the loss function

LGFNN =
1∑M

j=1Nj

M∑
j=1

Nj−1∑
i=0(∥∥h∂2Sθh(qi,j,pi+1,j)− (qi+1,j − qi,j)

∥∥2
2

+
∥∥h∂1Sθh(qi,j,pi+1,j)− (pi,j − pi+1,j)

∥∥2
2

)
.

(4.3)

with respect to neural network parameters θ (see Appendix for our experimental
details).
Prediction: Given any initial condition (q0,p0) ∈ D, one step evolution to
(q̃1, p̃1) can be solved from{

p0 = p̃1 + h · ∂1Sθh (q0, p̃1) ,

q̃1 = q0 + h · ∂2Sθh (q0, p̃1) .
(4.4)

This can be iterated.

4.4 Global Error Analysis

We now show that, under reasonable assumptions, GFNN’s prediction will be close to the

true sequence (continued by the latent φ) for a very long time, as a linearly growing long

time error bound will be established. This will be contrasted with an obtainable exponen-

tially growing error bound for generic vector-field-based methods. The latter methods are

of course more versatile but they do not utilize the special symplectic structure. Proofs are

based on normal form and KAM-type techniques and deferred to Appendix.

The main condition needed for this mild error growth is integrability, which, very

roughly speaking, requires the latent system to be far from chaos, but it could still be highly

96



nonlinear; see e.g., [160]. In order to make it precise, some mathematical preparations are

needed, but one can jump to Thm.Equation 4 for the main results if preferred.

Definition 1. A function g(p, q) is called a 1st-integral or a constant of motion of the

dynamics if it remains constant as p, q evolves in (continuous or discrete) time.

Definition 2. The (canonical) Poisson bracket of two arbitrary functions f(p, q), g(p, q)

is another function defined as {f, g} := 〈∂f/∂q, ∂g/∂p〉 − 〈∂f/∂p, ∂g/∂q〉.

Theorem 2 (Arnold-Liouville). Consider a d-degree-of-freedom Hamiltonian system. As-

sume there exist d independent 1st integrals in the sense that the Poisson bracket of every

pair is 0. If the d-dim. surfaces implicitly defined by the level sets of those 1st integrals are

compact, then there exists a canonical transformation from p, q to I,ϕ, such thatϕ can be

defined on the d-torus, and in the new variables the Hamiltonian only depends on I . In this

case, I , ϕ, and the Hamiltonian are respectively called the action, angle variables, and an

integrable Hamiltonian.

Proof. See e.g., [160].

Remark 2. In an integrable system, the action variables I remain constants (they are

canonical versions of the first integrals), while the angle variablesϕ evolve on an invariant

torus
{
I = I (0) ,ϕ ∈ Td

}
, where

Td = Rd/(2πZd) = {(ϕ1, . . . , ϕd) mod 2π;ϕi ∈ R} .

It is easy to show that the fixed time step generating function for an integrable system takes

the form of Sh (I0,ϕ1) = H (I0), as the exact time-h flow is defined as the following


I1 = I0,

ϕ1 = ϕ0 + h ∂1Sh (I0,ϕ1) = ϕ0 + h∇H (I0) .

(4.5)
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Denote∇H (I) by ω (I) = [ω1 (I) , . . . , ωd (I)]. It can be directly seen from Eq. (4.5) that

ωi (I) represents the change rate (i.e., frequency) of the angle variable ϕi.

Our theory works for almost all initial frequencies, and to describe what are the ex-

ceptions we need the following definition, which generalizes irrational numbers in some

sense.

Definition 3 ((γ, ν)-Diophantine condition4). Frequency vector ω = {ω1, ω2, . . . , ωd} sat-

isfies (γ, ν)-Diophantine condition iff |k · ω| ≥ γ · ‖k‖1
−ν , ∀k ∈ Zd, k 6= 0, for some

γ > 0, ν > 0.

Definition 4 (ε-neighborhood condition). (p, q) ∈ Rd×Rd of an integrable system satisfies

ε-neighborhood condition if there exists I∗ ∈ Rd, such that ω (I∗) satisfies the (γ, ν)-

Diophantine condition (definition 3), and ‖I (p, q)− I∗‖2 ≤ c · |log ε|−ν−1 for some ε

independent constant c (defined in the Appendix) with I (p, q) being the actions of the

system.

With these preparations, we see the action and angle variables I,ϕ form a new coordi-

nate system alternative to p, q (note even if the system is not integrable and/or time is no

longer continuous, one is still free to perform any canonical coordinate transformation; it’s

just doing so may or may not reveal structured dynamics any more). In fact, they give finer

estimates of the prediction error:

Theorem 3 (GFNN’s long-time prediction error in actions and angles). Consider an in-

tegrable Hamiltonian system written in action-angle variables, whose exact time-h flow

map corresponds to generating function Sh(·, ·). Predict its trajectory using GFNN with

learned generating function Sθh (·, ·) in a bounded data domain D = D1 × Td ⊆ Rd × Td.

∃ ε > 0, ρ > 0, such that if the learned generating function Sθh (extended in a complex

4also known as strong non-resonance condition
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neighborhood of D) is analytic and satisfies

∑
i=1,2

∥∥∂iSθh (·, ·)− ∂iSh (·, ·)
∥∥
∞ ≤ C1ε,

for some ε independent constant C1, where the L∞ norm is defined over the ε independent

complex neighborhood Bρ (D) of D, then, ∀ (I0,ϕ0) ∈ D that satisfies ε-neighborhood

condition (definition 4), the predicted sequence (I0,ϕ0) , (I1,ϕ1, ) , . . . generated by GFNN

satisfies


‖In − I(0)‖2 ≤ C · ε,

‖ϕn −ϕ(nh)‖2 ≤ C · (nh) · ε,
∀n ≤ h−1ε−1, (4.6)

for some constant C.

The intuition behind the proof of Thm. 3 (which is in Appendix) is the following: the

predicted dynamics (In,ϕn) and the true dynamics (I(nh),ϕ(nh)) deviate because each

step of the prediction introduces some error due to inaccurate Sθh, but these errors accumu-

late in a very delicate way; in fact, earlier errors cannot be amplified too much in order for

a linear bound to exist. The key reason, as the proof will recover, is that In’s dynamics is

mostly just oscillatory in time. We show this by decomposing the predicted dynamics into

a macroscopic part plus microscopic oscillations. The macroscopic part can be proved to

correspond to a barely changing action. The microscopic part, on the other hand, does not

accumulate.

Specifically, we introduce a carefully-chosen near-identity canonical coordinate change

T : [I,ϕ] 7→ [J ,θ], T ≈ id + O(ε), and show that the new variables [Jn,θn] describe,

roughly, the macroscopic part of the predicted dynamics.
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We then prove, when compared to the true dynamics,


‖I(nh)− Jn‖2 = O (ε) ,

‖ϕ(nh)− θn‖2 = nh · O(ε),

∀nh = O
(
ε−1
)
.

Since T is near-identity, [Jn,θn] = [In,ϕn] + O(ε) for all n, and the triangle inequality

then completes the proof. �

Figure 4.1: Main components in the proof of linear error growth.

Now we can relate the error bound in Thm. 3 back to that for the original variables p, q.

The big picture is summarized by Fig.Figure 4.1. In the end, our theory only requires the

existence of action and angle variables, and no knowledge about how to find the actions

and angles is needed.

Theorem 4 (linear growth of GFNN long-time prediction error). Consider an integrable

Hamiltonian system whose exact solution is denoted by p(t), q(t) ∈ Rd. Denote by Sh (·, ·)

the generating function corresponding to its exact time-h flow map. Consider predicting its

trajectory using GFNN with learned generating function Sθh (·, ·) in a bounded data domain

D ⊆ Rd × Rd. ∃ ε > 0, ρ > 0, such that if the learned generating function Sθh (extended in

a complex neighborhood of D) is analytic and satisfies

∑
i=1,2

∥∥∂iSθh (·, ·)− ∂iSh (·, ·)
∥∥
∞ ≤ C1ε, (4.7)
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for some ε independent constant C1, where the L∞ norm is defined over the ε independent

complex neighborhood Bρ (D) of D, then, ∀ (p0, q0) ∈ D that satisfies ε-neighborhood

condition (definition 4) with nonlinear frequency ω(·) being given by Sh, the predicted

sequence (p0, q0) , (p1, q1, ) , . . . generated by GFNN satisfies


‖pn − p (nh)‖2 ≤ C · (nh) · ε,

‖qn − q (nh)‖2 ≤ C · (nh) · ε,
∀n ≤ h−1ε−1, (4.8)

for some constant C > 0.

Remark 3. It is known that neural networks can approximate functions and their deriva-

tives with any precision; see e.g., the classical work [161] and a more recent discussion

[162]. (Equation 4.7) can thus be attained.

Remark 4. The integrability assumption in Thm.Equation 4 is nontrivial, however reason-

able. This is because it rules out the possibility of a positive Lyapunov exponent, which

by definition indicates that a deviation between two trajectories can exponentially grow in

time (e.g., [163]). Naturally, if the latent system does have a positive Lyapunov exponent,

then in general one should not expect a linearly growing prediction error, as an arbitrarily

small approximation error, even if it’s just made in one step, can be exponentially amplified.

A simple illustration of this is a Hamiltonian system ẋ = y, ẏ = x, which is not in-

tegrable due to noncompactness (not even chaos). It has a Lyapunov exponent of +1.

Consider predictions based on approximation ẋ = y + δx, ẏ = x + δy, then no matter

how small δx and δy are, the difference between its solution and the original one grows like

exp(t) except for measure zero δx and δy values.

As a comparison, if the prediction map is not symplectic, either due to nonsymplectic

numerical integration, or because the learned vector field is no longer Hamiltonian, local

prediction error (in each step) may get amplified and long time prediction error may grow

exponentially:

101



Theorem 5. Consider the latent dynamics ẋ = f(x) and its prediction via an Euler in-

tegration of the learned vector field xi+1 = xi + hf̃(xi), with consistent initial condition

x(0) = x0. Assume f is L-Lipschitz continuous, C1, the learned vector field is accurate

up to δ in the sense that ‖f̃ − f‖∞ ≤ δ, and the prediction remains bounded. Then the

accuracy of the prediction at time T = nh satisfies

‖x(T )− xn‖ ≤
exp(LT )− 1

L
(δ + Lh/2).

Proof. See Appendix.

Remark 5. This exponential growth with T (and n) is not an overestimation. A simple

example that attains it is f(x) = x and f̃(x) = x + δ. This is of course because the latent

dynamics is structurally bad and does not forgive past errors, but that is exactly our point:

when the latent dynamics has specific structures such as being a symplectic flow, utilizing

those structures in the prediction could lead to much better controlled accumulation of

errors.

Remark 6. In the context of learning dynamics from data, two sources contribute to the

difference between f and f̃ . One is approximation error, for instance of the neural network;

the other is because one doesn’t have an oracle about the latent vector field f but only its

approximation from the data, for example f(xi) ≈ (xi+1 − xi)/h. A map based approach

doesn’t directly use f and thus can avoid the latter error, and it doesn’t have numerical

integration errors in the next phase of predictions either. A neural ODE type treatment

[155] can avoid the latter error too, but integration errors in the prediction phase remain

(unless computationally expensive small steps are used).
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4.5 Experiments

Let’s now systematically (within the page limit) investigate the empirical performances

of GFNN. It was conjectured that invariant sets of a smooth map with a dense trajectory

are typically either periodic, quasiperiodic5, or chaotic [164]. Thus, Sec.subsection 4.5.1-

subsection 4.5.4 will study classical examples that respectively correspond to periodic,

quasiperiodic+chaotic, quasiperiodic, and quasiperiodic+chaotic cases. We’ll see smaller

and linearly growing errors of GFNN in both periodic and quasiperiodic cases, even when

the latent system is not integrable. In chaotic cases, GFNN will also exhibit pleasant statis-

tical accuracy.

VFNN stands for: learning the Vector Field via a Neural Network (without caring about

the Hamiltonian structure).

Details of data preparation and training are in section C.2.

4.5.1 An Integrable and Separable Hamiltonian: 2-Body Problem

Consider the motion of 2 gravitationally interacting bodies. Letting their distance be q(t)

and the corresponding momentum be p(t), the problem can be equivalently turned into

(after unit normalization) an ODE system governed by

H (p, q) = ‖p‖22/2− 1/ ‖q‖2 .

Despite its high nonlinearity, this is an integrable system. Analytical solutions known as

Keplerian orbits exist and are periodic in bounded cases. Each solution is described by im-

portant physical quantities known as orbital elements, which include semi-major axis and

eccentricity, that characterize the shape of the elliptic orbit. As shown in Fig. 4.2, GFNN

outperforms other methods and keeps the errors of semi-major axis and eccentricity small

5A function f(t) is quasiperiodic if ∃ some constants n ∈ Z+, Ω1, · · · ,Ωn ∈ R, and some function F
1-periodic in each argument, s.t., f(t) = F (Ω1t, · · · ,Ωnt). An integrable system’s solution is quasiperiodic
if LCM(ω1(I), · · · , ωd(I)) doesn’t exist (see Rmk.Equation 2 for ωi(I)); otherwise it is periodic.
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and bounded, which is consistent with Thm. 3 because semi-major axis and eccentricity

are functions of actions known as Delaunay variables [50]. The advantage of GFNN can

also been seen in the original variables (e.g., q), and the zoomed-in plots in row 2 show

that the next two top performers are SRNN (seq len=2) and SRNN (seq len=5); SympNets

has notably larger error in the orbital phase but its accuracy in the orbital shape is actually

comparable to SRNN.
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Figure 4.2: Comparison of 2D Keplerian orbit predicted by different methods. The 1st row
is the error growth of two variables of physical importance, namely semi-major axis and ec-
centricity (for this problem, their true values are both constants). Mean values of prediction
errors starting from 1,000 i.i.d. initial conditions are plotted with shades corresponding to 1
standard deviation. The 2nd row zooms in the position variables of one predicted sequence
(in q1 and q2 respectively). Data sequences are prepared with time step 0.1.
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4.5.2 A Non-integrable but Separable Hamiltonian System: Hénon-Heiles

The Hénon-Heiles system describes the motion of stars around a galactic center [165]. It is

a classical non-integrable system with very complex dynamics, governed by Hamiltonian

H (p1, p2, q1, q2) =
(p21 + p22)

2
+

(
q21 + q22

2
+ q21q2 +

q32
3

)
.

Both chaotic and (quasi)-periodic solutions exist. Initial conditions corresponding to higher

energy (i.e., H’s value) are more likely to be chaotic. We investigate GFNN’s performance

in both cases.

Non-periodic but regular motions

For a non-chaotic initial condition, numerically observed was that the long time prediction

error of GFNN still grows linearly even though the latent system is no longer integrable;

see Fig. 4.3. Notably, SRNN also exhibits linear error growth (although at a higher rate),

and this is consistent with our intuition as SRNN also learns a symplectic evolution map

(indirectly via the symplectic integration of a Hamiltonian to-be-learned). HNN, on the

other hand, has exponentially growing error which quickly saturates to maximum values

(due to boundedness of trajectories).

GFNN’s linear error growth despite non-integrability is due to the existence of math-

ematical objects known as KAM-tori (e.g., [166]). They correspond to part of the phase

space where dynamics are topologically equivalent to integrable ones. A by-product is,

solutions in this region are either quasiperiodic or periodic (see Footnote footnote 5).

Dynamics in chaotic sea

To visualize the prediction of chaotic dynamics, which take place in 4D, we use the standard

tool of Poincaré section, which plots where an orbit intersects with a 2D slice of the 3D

constant-energy manifold. Fig. 4.4 shows the Poincaré section produced by predictions
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Figure 4.3: Error of predictions of a quasi-periodic trajectory with energy level near 1
12

of
the Hénon-Heiles system. Data sequences are prepared with time step 0.5.

of different methods, based on the same initial condition that leads to chaotic motion via

the latent dynamics. The true chaotic motion is ergodic on a submanifold of the phase

space, and when restricting to the Poincaré section, it gives intersections that are dense in

a subset known as the chaotic sea. Therefore, the shapes of the dense area and the holes

inside it (often corresponding to regular islands on which motions are (quasi)-periodic)

are indicators of the prediction accuracy. Among methods tested in Fig. 4.4, only VFNN

didn’t produce a pattern similar to the truth. Quantitative comparisons are conducted by

comparing the empirical distributions of points on the Poincaré section, and KL divergences

between their marginals and the truth are annotated along with the histograms. GFNN has

the smallest errors.

4.5.3 A Non-integrable and Non-separable Hamiltonian:

Planar Circular Restricted 3-Body Problem (PCR3BP)

PCR3BP is a special case of the gravitational 3-body problem. In addition to a co-planar

restriction, it assumes two bodies massive and the third infinitesimal, which models settings

like mission design for a space shuttle near Earth and Moon [37], and understanding a
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Figure 4.4: Quantifying the statistical accuracy in predicting a chaotic orbit of the Hénon-
Heiles system. Left 3 columns: Poincaré section; right column: marginal distributions and
their KL divergences from the truth. The plotted orbit corresponds to energy 1

6
; Poincaré

section is given by q2(t), p2(t) at q1(t) = 0. Data sequences are prepared with time step
0.5.

planet’s motion around binary stars [30, 167]. Its Hamiltonian takes the form

H (p, q) =
p21 + p22

2
+ p1q2 − p2q1

− 1− µ
‖(q1 + µ, q2)‖2

− µ

‖(q1 + µ− 1, q2)‖2
,

with µ ∈ (0, 1) a constant mass parameter. Note it cannot be written as K(p) + V (q),

hence nonseparable.

In order to focus on comparing with SOTA methods for trajectory accuracy, we predict

solutions in the nearly-integrable (non-chaotic) regime of PCR3BP; see Fig.Figure 4.5.

GFNN still has the smallest error among those experimented, and its growth is again linear.

SRNN typically performs the best among tested existing approaches, but its published ver-

sion loses symplecticity in this case due to non-separability6, and its accuracy deteriorated.

Note also that for methods that learn, in the separable case, V (q) in the Hamiltonian or

6A possible remedy based on our nonseparable symplectic integrators [168] was mentioned in SRNN as
a future direction. This remedy is implemented in a concurrent work [157], which successfully reduces the
error of predicting nonseparable dynamics to the level of SRNN for separable dynamics.
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∇V (q) in the vector field, now they cannot just do so but have to learn the entire H(p, q)

in doubled dimensions.
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Figure 4.5: Comparison of PCR3BP orbit predicted by different methods. L-L O-NET
(in SRNN paper) is selected instead of SRNN as the Hamiltonian is not separable. Data
sequences are prepared with time step 0.1.

4.5.4 A Discrete-time Non-(Smooth-)Hamiltonian System: the Standard Map

The standard map is a classical model in accelerator physics. It is a chaotic system whose

statistical property is (relatively) well understood. It is a symplectic map in 2D given by


pn+1 = pn +K sin(θn),

θn+1 = θn + pn+1.

(4.9)

The dynamics is genuinely in discrete time, as no smooth Hamiltonian ODE can produce a

flow map like it7. K is a positive constant that controls the strength of nonlinearity, and it

has been estimated that the region of initial conditions leading to chaos has size increasing

with K [169].

Methods based on vector fields (e.g., VFNN) or Hamiltonian (e.g., HNN, SRNN) are

7This is because autonomous Hamiltonian systems in 2D are never chaotic (the Hamiltonian itself is a 1st
integral) but the standard map is chaotic.
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not very suitable for this prediction task because there is no latent continuous (Hamilto-

nian) dynamics. One can still apply these methods regardless, for example by using finite

differences to construct a fictitious vector field for VFNN and HNN to learn, or just use

SRNN without realizing that no Hamiltonian will be able to produce the training data.

Their results (obtained using h = 1) will be compared with those of GFNN, which is still

applicable here as it directly learns evolution maps.

Fig. 4.6 illustrates the predicted evolutions of a fixed initial condition in the chaotic

sea (of the true dynamics, K = 1.2) by various methods. Note both θ and p have been

mod 2π as this quotient compactifies the phase space into the 2-torus without affecting

the dynamics (see Eq. (4.9)). Like before, the prediction quality can be inferred from the

geometric shape of the set of plotted points, which should match that of the truth (i.e.,

the latent chaotic sea), and quantitative comparisons can be made using distances between

empirical distributions of p, θ values collected along long time predictions (KL divergences

from the truth are provided).

One can see GFNN is the only method that captures the major regular islands (the big

holes), but even GFNN does not capture the minor regular islands well. The standard map

seems to be a challenging problem; HNN and SRNN did not manage to reproduce any

chaotic motion, and VFNN completely distorted the chaotic sea.

Fig. 4.7 on the other hand illustrates predictions in regular islands (of the true dynamics,

K = 0.6). The two (not three, note periodic boundary conditions) elliptical shapes near

p ≈ π and θ ≈ 0, π correspond to quasiperiodic orbits, and GFNN is the only one that

captures them: the exact trajectory is jumping back and forth between two islands, so does

GFNN’s prediction, while other methods tend to produce continuous trajectories without

capturing the jumps.
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Figure 4.6: Predict a chaotic orbit of the standard map. Left 3 columns: the predicted orbit
in phase space; right column: marginals of its empirical measure and their KL divergences
from the truth.

Figure 4.7: Predict a regular orbit of the standard map. The 1st plot is orbits predicted by
various methods in phase space. The 2nd and 3rd plots shows how their two coordinates
change with time.
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APPENDIX A

SUPPLEMENTARY MATERIALS OF CHAPTER 2

A.1 Supplementary Information: Perturbative Analysis for Combining Lagrange-

Laplace Theory with Our Circumbinary Secular Theory

Theorem 6. Given A =


λ1 0 0

0
. . . 0

0 0 λn

 and B =


b11 · · · b1n
... . . . ...

bn1 · · · bnn

, the eigenvalues of

A+ εB are λi + εbii +O(ε2) for i = 1, . . . , n.

Proof. Let vi be the i-th unit vector. Obviously Avi = λivi and vTj A = λjv
T
j . Matching

O(ε) terms in

(A+ εB)(vi + εδvi) = (λi + εδλi)(vi + εδvi)

gives

Bvi + Aδvi = δλivi + λiδvi.

Multiplying vTi from the left gives

bii + vTi λiδvi = δλi + λiv
T
i δvi.

Therefore, δλi = bii. P.S. One can also find about entries δvi by left multiplication by vTj .

Multiplying vTj from the left gives

bji + vTj λjδvi = λiv
T
j δvi =⇒ vTj δvi =

bji
λj − λi

(we need
1

λj − λi
= O(1)).
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A.2 Properties of the Dynamical System Corresponding to the Secular Theory

Note that the bifurcations of a physical system happen in the vicinity of ip = 90◦, one has

to zoom in the ip to capture the bifurcation. In addition, the topology of the phase portraits

across the bifurcations are twisted. Therefore, as a complementary, we explore bifurcation

of parameter C4 by plotting the phase portraits and the bifurcation diagram of X , h under

a set of unphysical C1, C2, C3 in Figs. A.1 and A.2. We fix C1 = C2 = C3 = −1 in

Eq. (2.50) and varying C4. It can be seen from Figs. A.1 and A.2 that bifurcations happen

at C4 = −1, 7±
√
17

8
and the Hamiltonian pitchfork bifurcation at C4 = 7+

√
17

8
have similar

topological change of the phase portraits (shown from Fig. A.2g to Fig. A.2h) with the

Hamiltonain bifurcation in Fig. 2.4.
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Figure A.1: Bifurcation diagram with the varying parameter being C4. Families of fixed
points are denoted by different colors. Dots indicate bifurcation locations. Fixed point
2,3,5,6,7,8 are centers; fixed point 1 changes from center to saddle at bifurcation point 1;
fixed point 4 changes from saddle to center at bifurcation point 2. Bifurcation point 1
(Hamiltonian pitchfork bifurcation): for C4 > 7−

√
17/8, fixed point 4 is a center; for C4 <

7−
√
17/8, fixed point 4 is a saddle, there are two more centers (fixed point 5,6). Bifurcation

point 2 (Hamiltonian pitchfork bifurcation): for C4 < 7+
√
17/8, fixed point 1 is a center; for

C4 > 7+
√
17/8, fixed point 1 becomes a saddle, there are two more centers (fixed point 7,8).

Bifurcation point 3 is a saddle-node bifurcation.
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Figure A.2: Figs. A.2c, A.2e and A.2g are phase portraits where bifurcations take place.
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APPENDIX B

SUPPLEMENTARY MATERIALS OF CHAPTER 3

B.1 Approximation of the Potential Energy

The procedure to approximate V (qi, qj,Ri,Rj) in Eq. (3.9) by Taylor expansion is shown

below:

V (qi, qj,Ri,Rj)

=

∫
Bi

∫
Bj
− Gρ(xi)ρ(xj)

‖(qi +Rixi)− (qj +Rjxj)‖
dxidxj

=

∫
Bi

∫
Bj
− Gρ(xi)ρ(xj)√
‖qi − qj‖2 + ‖Rixi −Rjxj‖2 + 2(qi − qj)T (Rixi −Rjxj)

dxidxj

=

∫
Bi

∫
Bj
−Gρ(xi)ρ(xj)

‖qi − qj‖

(
1− 1

2

[
‖Rixi −Rjxj‖2 + 2(qi − qj)T (Rixi −Rjxj)

‖qi − qj‖2

]

+
3

8

[
‖Rixi −Rjxj‖2 + 2(qi − qj)T (Rixi −Rjxj)

‖qi − qj‖2

]2)
dxidxj +O(η3)

=− Gmimj

‖qi − qj‖
+
G
(
miTr[J

(d)
i ] +mjTr[J

(d)
j ]
)

2 ‖qi − qj‖3

−
3G(qi − qj)T

(
mjRiJ

(d)
i R

T
i +miRjJ

(d)
j R

T
j

)
(qi − qj)

2 ‖qi − qj‖5
+O(η3)

(B.1)
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where η =
max(Ri,Rj)
‖qi−qj‖ (Ri is the largest distance from the center in the ith body). If we use

J instead of Jd, we have

V (qi, qj,Ri,Rj)

=− Gmimj

‖qi − qj‖
− G (miTr[Ji] +mjTr[Jj])

2 ‖qi − qj‖3

+
3G(qi − qj)T

(
mjRiJiR

T
i +miRjJjR

T
j

)
(qi − qj)

2 ‖qi − qj‖5
+O(η3)

(B.2)

117



Higher order expansions:

V
(
qi, qj ,Ri,Rj

)
=Gmimj

{
−

1∥∥qi − qj

∥∥ +
1

2
∥∥qi − qj

∥∥3
[
1

5

(
a
2
i + b

2
i + c

2
i + a

2
j + b

2
j + c

2
j

)]

−
3

2
∥∥qi − qj

∥∥5 (qi − qj
)T
Ri

1

5


a2i 0 0

0 b2i 0

0 0 c2i

R
T
i + Rj

1

5


a2j 0 0

0 b2j 0

0 0 c2j

R
T
j

(qi − qj
)

−
3

8
∥∥qi − qj

∥∥5
(

1

35
(3a

4
i + 3b

4
i + 3c

4
i + 2(a

2
i b

2
i + a

2
i c

2
i + b

2
i c

2
i )) +

1

35
(3a

4
j + 3b

4
j + 3c

4
j + 2(a

2
jb

2
j + a

2
jc

2
j + b

2
jc

2
j ))

)

−
3

4
∥∥qi − qj

∥∥5 Tr
RT

i Rj
1

5


a2j 0 0

0 b2j 0

0 0 c2j

R
T
j Ri

1

5


a2i 0 0

0 b2i 0

0 0 c2i




+
15

4
∥∥qi − qj

∥∥7
(qi − qj

)T
Ri

1

35


a2i

(
3a3i + b2i + c2i

)
0 0

0 b2i

(
a2i + 3b2i + c2i

)
0

0 0 c2i

(
a2i + b2i + 3c2i

)
R

T
i

(
qi − qj

)


+
15

4
∥∥qi − qj

∥∥7
(qi − qj

)T
Rj

1

35


a2j

(
3a2j + b2j + c2j

)
0 0

0 b2j

(
a2j + 3b2j + c2j

)
0

0 0 c2j

(
a2j + b2j + 3c2j

)
R

T
j

(
qi − qj

)


+
15

4
∥∥qi − qj

∥∥7
 1

5

(
a
2
i + b

2
i + c

2
i

) (
qi − qj

)T
Rj

1

5


a2j 0 0

0 b2j 0

0 0 c2j

R
T
j

(
qi − qj

)


+
15

4
∥∥qi − qj

∥∥7
 1

5

(
a
2
j + b

2
j + c

2
j

) (
qi − qj

)T
Ri

1

5


a2i 0 0

0 b2i 0

0 0 c2i

R
T
i

(
qi − qj

)


+
15∥∥qi − qj

∥∥7
(qi − qj

)T
Ri

1

5


a2i 0 0

0 b2i 0

0 0 c2i

R
T
i Rj

1

5


a2j 0 0

0 b2j 0

0 0 c2j

R
T
j

(
qi − qj

)


−
35

8
∥∥qi − qj

∥∥9
Tr

(qi − qj
) (

qi − qj
)T

Ri
3

35


a4i 0 0

0 b4i 0

0 0 c4i

R
T
i

(
qi − qj

) (
qi − qj

)T



−
35

8
∥∥qi − qj

∥∥9
Tr

(qi − qj
) (

qi − qj
)T

Rj
3

35


a4j 0 0

0 b4j 0

0 0 c4j

R
T
j

(
qi − qj

) (
qi − qj

)T



−
105

4
∥∥qi − qj

∥∥9 (qi − qj
)T

Ri
1

5


a2i 0 0

0 b2i 0

0 0 c2i

R
T
i

(
qi − qj

) (
qi − qj

)T
Rj

1

5


a2j 0 0

0 b2j 0

0 0 c2j

R
T
j

(
qi − qj

)}
+O

(
η
5
)
.

(B.3)

B.2 Properties of the hat-map

With u,v,w ∈ R3, D =


d1 0 0

0 d2 0

0 0 d3

, we have

• ûv = u× v.
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• û× v = ûv̂ − v̂û.

• ûD −DûT = Tr [D] û− D̂u.

• ûT ûD −DûT û = ̂u×Du

B.3 Proof of the Hierarchical Composition Error

Theorem 7. Given four Hamiltonian flows {ϕ[i]
t }

4

i=1 of Hi with H = H1 + H2 + H3 +

H4. Construct an integrator ϕh := C3(C1(ϕ[1]
h , ϕ

[2]
h ), C2(ϕ[3]

h , ϕ
[4]
h )) via composition methods

Ci, i = 1, 2, 3 such that

Ci(ϕAh , ϕBh ) = ϕA
a
[i]
1 h
◦ ϕB

b
[i]
1 h
◦ ϕA

a
[i]
2 h
◦ ϕB

b
[i]
2 h
◦ · · ·ϕA

a
[i]
ni
h
◦ ϕB

b
[i]
ni
h
.

Then E(ϕh) equals to the summation of orders of Ci, i = 1, 2, 3 with E(·) being the global

error function.

Proof. Assume the associated Lie operators of ϕ[i]
t ’s vector fields are LHi . There exists a

Lie operator A1 such that for C1(ϕ[1]
h , ϕ

[2]
h ),

ea
[1]
1 LH1eb

[1]
1 LH2ea

[1]
2 LH1eb

[1]
2 LH2 · · · ea[1]n1LH1eb

[1]
n1
LH2 = eA1 = eLH1

+LH2
+E1

with the order of E1 equals the order of C1. Similarly, we have

ea
[2]
1 LH3eb

[2]
1 LH4ea

[2]
2 LH3eb

[2]
2 LH4 · · · ea[2]n2LH3eb

[2]
n2
LH4 = eA2 = eLH3

+LH4
+E2

with the order of E2 equals the order of C2. Further for C3,

ea
[3]
1 A1eb

[3]
1 A2ea

[3]
2 A1eb

[3]
2 A2 · · · ea[3]n3A1eb

[3]
n3
A2

=eA3 = eA1+A2+E3 = eLH1
+LH2

+LH3
+LH4

+E1+E2+E3 ,
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with the order of E3 equals the order of C3. Therefore, the global error of ϕh is the summa-

tion of the orders of Ci, i = 1, 2, 3.
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APPENDIX C

SUPPLEMENTARY MATERIALS OF CHAPTER 4

C.1 Mathematical Proof

C.1.1 Proof of the Generic Prediction Error Bound

Proof of Thm. 5 is shown below.

Lemma 3. Consider ẋ = f(x) and ẏ = f(y), where f is L-Lipschitz continuous. Then

‖x(t)− y(t)‖ ≤ exp(Lt)‖x(0)− y(0)‖. (C.1)

Proof. Since

x(t) = x(0) +

∫ t

0

f(x(τ))dτ

y(t) = y(0) +

∫ t

0

f(y(τ))dτ,

triangular inequality and Lipschitz continuity give

‖x(t)− y(t)‖

≤ ‖x(0)− y(0)‖+

∫ t

0

‖f(x(τ))− f(y(τ))‖dτ

≤ ‖x(0)− y(0)‖+

∫ t

0

L‖x(τ)− y(τ)‖dτ.

Gronwall inequality thus gives Eq. (C.1).
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Lemma 4. Consider ẋ = f(x), with x(0) = x0 and L-Lipschitz continuous f . Then

‖x(h)− x0‖ ≤
exp(Lh)− 1

L
‖f(x0)‖. (C.2)

(Note exp(Lh)−1
L

= O(h).)

Proof. Note

x(h) = x0 +

∫ h

0

f(x(τ))dτ

= x0 +

∫ h

0

f(x(τ))− f(x0) + f(x0)dτ.

Let D(t) := x(t)− x0. Then triangular inequality and Lipschitz continuity of f give

D(h) ≤
∫ h

0

LD(τ) + ‖f(x0)‖dτ

Gronwall lemma thus yields

D(h) ≤ exp(Lh)D(0) +
exp(Lh)− 1

L
‖f(x0)‖.

Since D(0) = 0, Eq. (C.2) is proved.

Proof of Thm. 5. Let En = ‖x(nh) − xn‖ denote the prediction accuracy, and φhx0 be the

h-time flow map of the latent dynamics, i.e., φhx0 := x(h) where x(·) satisfies ẋ = f(x)

subject to x(0) = x0. Then

x((n+ 1)h)− xn+1 = x((n+ 1)h)− φhxn + φhxn − xn+1,

and therefore

En+1 ≤ ‖x((n+ 1)h)− φhxn‖+ ‖φhxn − xn+1‖.
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The first term is exactly ‖φhx(nh) − φhxn‖, and by Lemma. 3, it is bounded by

‖φhx(nh) − φhxn‖ ≤ exp(Lh)‖x(nh)− xn‖ = exp(Lh)En.

For the second term, Taylor expansion gives

φhxn = xn + hf(xn) + h2/2f ′(φξxn)f(φξxn)

for some ξ ∈ [0, h], and therefore

‖φhxn − xn+1‖ = ‖h(f(xn)− f̃(xn)) + h2/2f ′(φξxn)f(φξxn)‖

≤ hδ + h2/2‖f ′(φξxn)‖‖f(φξxn)‖.

Note ‖f ′‖ ≤ L as f is C1 and L-Lipschitz. For the f(φξxn) factor, note Lemma. 4 gives

‖φξxn − xn‖ ≤
exp(Lξ)− 1

L
‖f(xn)‖,

and therefore

‖f(φξxn)‖ = ‖f(xn) + f(φξxn)− f(xn)‖

≤ ‖f(xn)‖+ ‖f(φξxn)− f(xn)‖

≤ ‖f(xn)‖+ L‖φξxn − xn‖

≤ exp(Lξ)‖f(xn)‖

Since 0 ≤ ξ ≤ h, exp(Lξ) is bounded. Moreover, f(xn) is bounded because f is Lipschitz

and therefore continuous and xn is assumed to be bounded. Therefore, there exists constant

C such that

‖f ′(φξxn)‖‖f(φξxn)‖ ≤ C
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Summarizing both terms, we have

En+1 ≤ En exp(Lh) + hδ + Ch2/2.

Mathematical induction thus gives

EN ≤ E0exp(Lh)N

+
(

exp(Lh)N−1 + exp(Lh)N−2 + · · ·+ 1
)

(hδ + Ch2/2)

= E0 exp(LT ) +
exp(LT )− 1

exp(Lh)− 1
(hδ + Ch2/2)

≤ E0 exp(LT ) +
exp(LT )− 1

Lh
(hδ + Ch2/2)

=
exp(LT )− 1

L
(δ + Ch/2).

C.1.2 Proof of GFNN’s Prediction Error Bound

Definition 5 (Diophantine condition). A frequency vector ω = {ω1, ω2, . . . , ωd} satisfies

Diophantine condition if and only there exists positive constants γ, ν such that ω satisfies

(γ, ν)-Diophantine condition.

Definition 6 ((γ, ν)-Diophantine set). For a set Ω ⊆ Rd, the corresponding (γ, ν)-Diophantine

set is defined as

Ω∗ (γ, ν)
def
=
{
ω ∈ Ω :

ω satisfy (γ, ν) -Diophantine condition
}
.

Definition 7 (Diophantine set). For a set Ω ⊆ Rd, the corresponding Diophantine set is
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defined as

Ω∗
def
=

⋃
γ>0,ν>0

Ω∗ (γ, ν) .

Theorem 8. For any bounded domain Ω ⊆ Rd, there exists C > 0, such that the Lebesgue

measure of the complementary of (γ, ν)-Diophantine set with ν ≥ d is bounded from above,

λ (Ω\Ω∗(γ, ν)) ≤ C · γ.

Proof. See for instance [89].

Theorem 9. For any bounded domain Ω ⊆ Rd, Diophantine frequencies exist almost ev-

erywhere.

Proof. Since λ (Ω\Ω∗) ≤ λ (Ω\Ω∗ (γ, ν)), ∀γ > 0, ν > 0, Thm. 8 gives, ∀γ > 0,

λ (Ω\Ω∗) ≤ C · γ,

meaning that Diophantine frequencies exist almost everywhere in Ω.

Remark 7. Even Diophantine frequencies exist almost everywhere in bounded domain

Ω ⊆ Rd, Ω\Ω∗ is still an open and dense set in Rd (see for instance [89]).

Lemma 5 (Cauchy’s inequality). Suppose that f is a holomorphic function on a closed

ball Br (θ∗) ⊂ C with r > 0. If |f (θ)| ≤ M for all θ on the boundary of Br (θ∗), then for

all n ≥ 0,

∣∣f (n) (θ∗)
∣∣ ≤ n!M

rn
.

Proof. See for instance [170].
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Definition 8 (average over angles). Assume F (θ) is periodic in each argument, i.e., F :

Td → R, then the (angle) average of F is defined as

F =
1

(2π)d

∫
Td
F (θ) dθ. (C.3)

Definition 9 (complex extension of Td). The complex extension of Td of width ρ is defined

as

Bρ
(
Td
)

=
{
θ ∈ Td + iRd; ‖Imθ‖ < ρ

}
. (C.4)

Definition 10. For an analytic function f(·) =

[
f1(·), . . . , fd(·)

]
∈ Cd, we define the

following norm

‖f‖∞,S :=
d∑
i=1

sup
x∈S
|fi(x)| . (C.5)

Lemma 6. Suppose ω ∈ Rd satisfies the (γ, ν)-Diophantine condition and G(θ) ∈ R is a

bounded and analytic function on Bρ
(
Td
)
. Then, with G being the average of G(θ), the

PDE

DF (θ) · ω +G(θ) = G (C.6)

has a unique real analytic solution F (·) with F = 0. Moreover, for every positive δ <

min (ρ, 1), F is bounded on Bρ−δ
(
Td
)

by


‖F‖∞,Bρ−δ(Td) ≤ κ0δ

−α+1 ‖G‖∞,Bρ(Td) ,

‖∂θF‖∞,Bρ−δ(Td) ≤ κ1δ
−α ‖G‖∞,Bρ(Td) ,

with α = ν + d+ 1 and κ0 = ν−18d2νν!, κ1 = ν−18d2ν+1 (ν + 1)!.

Proof. See for instance [89].
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Lemma 7. Consider a nearly integrable system with generating function S (I0,ϕ1) =

S0 (I0) + εS1 (I0,ϕ1). Suppose S0 and S1 are analytic and bounded in a complex neigh-

borhood of D1 ⊆ Rd and D = D1 × Td respectively. Then, there exists a real analytic

canonical transformation (J ,θ) ↔ (I,ϕ) generated by T (J ,ϕ) = J · ϕ + εT1 (J ,ϕ),

such that the generating function in J ,θ variables takes the form of

S̃ (J0,θ1) = S̃0 (J0) + ε2R̃2 (J0,θ1, ε) . (C.7)

with ε2R̃2 being a higher-order perturbation to a new integrable system S̃0. Moreover, this

result is constructive: the transformation J ,θ ↔ I,ϕ is given by T through


Ii = ∂2T (Ji,ϕi) ,

θi = ∂1T (Ji,ϕi) .

∀i = 0, 1 (C.8)

and T1 is the solution to the PDE

∂2T1 (J ,ϕ) · ω (J) +G1 (J ,ϕ) = G1(J), (C.9)

where ω(·) = ∇S0 (·), G1(J ,ϕ) = S1(J ,ϕ+h∇S0(J)), and G1(J) is its angle average.

Proof. The generating function S in J ,θ variables (S̃) can be converted in the following
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using Eq. (C.8),

S̃ (J0,θ1) = S (I0,ϕ1)

=S (J0 + ε∂2T1 (J0,ϕ0),ϕ1)

=S0 (J0 + ε∂2T1 (J0,ϕ0))

+ εS1 (J0 + ε∂2T1 (J0,ϕ0),ϕ0 + h∂1S(I0,ϕ1))

+O
(
ε2
)

=S0 (J0) + ε∂2T1 (J0,ϕ0) · ∇S0 (J0)

+ εS1 (J0,ϕ0 + h∇S(J0)) +O
(
ε2
)

=S0 (J0) + ε
{
∂2T1 (J0,ϕ0) · ∇S0 (J0)

+S1 (J0,ϕ0 + h∇S(J0))
}

+O
(
ε2
)

(C.10)

with h the constant in Eq. (4.4). Collecting all O(ε2) terms, denoting them by a remainder

term R̃2, and converting all angles in R̃2 to θ1, we have

S̃ (J0,θ1)

=S0 (J0) + ε
{
∂2T1 (J0,ϕ0) · ∇S0 (J0)

+S1 (J0,ϕ0 + h∇S0(J0))
}

+ ε2R̃ (J0,θ1, ε) .

(C.11)

As long as the terms underlined in Eq. (C.11) add up to a function of J0 only, S̃ (J0,θ1)

won’t have angle dependence till the O (ε2) term. This leads to a solvability requirement.

More precisely, letG1(J0,ϕ0) = S1(J0,ϕ0 +h∇S0(J0)) andG1(J0) be its angle average.

Then the PDE

∂2T1 (J0,ϕ0) · ∇S0 (J0) +G1 (J0,ϕ0) = G1(J0) (C.12)

has a solution T1, and it makes the underlined terms G1(J0). Therefore, T1 and hence the

generating function T can be solved for from Eq. (C.12). The generating function S̃ in
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J ,θ variables takes the form

S̃ (J0,θ1) = S̃0 (J0) + ε2R̃2 (J0,θ1, ε) ,

with S̃0(J0) = S0(J0) + εG(J0).

Remark 8. Note that boundedness of R̃2 requires some extra condition on ∇S0 (being

Diophantine at some point; see Lemma. 9 for details). With bounded R̃2, the generating

function S (·, ·) in I,ϕ variables is near integrable of order O (ε) while S̃ (·, ·) in J ,θ

variables is near integrable of order O (ε2). Therefore, under the transformation T , we

get a ‘better’ set of variables J ,θ instead of I,ϕ, as the J ,θ dynamics is closer to being

integrable, hence the dynamics of J ,θ can be estimated for longer time.

Remark 9. As angles satisfy periodic boundary conditions, T1 and S1 can be expanded in

Fourier series 
T1 (J ,θ) =

∑
k∈Zd

tk (J) · ei(k·θ),

S1 (J ,θ) =
∑
k∈Zd

sk (J) · ei(k·θ).
(C.13)

Plugging Eq. (C.13) into Eq. (C.9), we have

tk · (k · ω (J)) + sk = 0.

Noting that if ω doesn’t satisfy Diophantine condition, k · ω can be small and may even

vanish for some k ∈ Zd, meaning that under some circumstances, the transformation

constructed by T (J ,ϕ) = J ·ϕ+ εT1 (J ,ϕ) is no longer of near identity (Id+O(ε)) as

T1 is not of order O (1) any more.

Lemma 8. Consider a nearly integrable system with generating function S (I0,ϕ1) =

S0 (I0)+εS1 (I0,ϕ1). Suppose S0 and S1 are analytic and bounded in a complex neighbor-
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hood ofD1 ⊆ Rd andD = D1×Td respectively. Then, there exists a real analytic canonical

transformation (J ,θ) ↔ (I,ϕ) generated by T (J ,ϕ) = J · ϕ +
∑N−1

k=1 ε
k · Tk (J ,ϕ),

such that the dynamics produced by the original generating function S rewritten in J ,θ

variables corresponds to a transformed generating function S̃ given by

S̃ (J0,θ1) = S̃0 (J0) + εN R̃N (J0,θ1, ε) , (C.14)

where εN R̃N is a high-order perturbation to a new integrable system S̃0(J0). Here, J ,θ ↔

I,ϕ is defined by T through


Ii = ∂2T (Ji,ϕi) ,

θi = ∂1T (Ji,ϕi) ,

∀i = 0, 1. (C.15)

Proof. Apply T (J ,ϕ) = J · ϕ+ εT1 + εT2 + . . . + εN−1TN−1 to S̃(J0,θ1) = S(I0,ϕ1)

like in the proof of Lemma. 7, Taylor expand, and put all O(εN) terms into R̃N . Then we

have

S̃(J0,θ1) = S0(J0)

+ ε (∂2T1(J0,ϕ0) · ω(J0) +G1(J0,ϕ0))

+ ε2 (∂2T2(J0,ϕ0) · ω(J0) +G2(J0,ϕ0))

+ . . .

+ εN R̃N (J0,θ1, ε) ,

(C.16)

for some functionsG1, · · · , GN−1 periodic in the angles, andω(·) := ∇S(·). Similar toG1

in the proof of Lemma. 7, G2, G3, · · · can be explicitly computed from Taylor expansions,

but our proof does not require their specific expressions. Lemma. 7 solved for T1 (periodic

in angles) by making the underlined expression independent of the angles. Repeating a

similar procedure at different orders of ε, Ti (periodic) can be obtained for i = 1, 2, · · · .
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Specifically, Ti satisfies the PDE

∂2Ti(J0,ϕ0) · ω(J0) +Gi(J0,ϕ0) = Gi(J0) (C.17)

(The existence of the solution to this is proved in Lemma. 6). In general,

S̃ (J0,θ1) = S0 (J0) +
N−1∑
k=1

εkGk (J0) + εN R̃N (J0,θ1)

= S̃0 (J0) + εN R̃N (J0,θ1) ,

with S̃0 (J0) = S0 (J0) +
∑N−1

k=1 ε
kGk (J0).

Note that R̃N is not necessarily uniformly bounded in the whole data domain in Lem-

mas. 7 and 8, but in most cases, the uniform boundedness can be established (Lemma. 9)

and under that circumstance, we will be able to quantitatively estimate the J ,θ dynamics

(Lemma. 10).

Lemma 9. Consider a nearly integrable system with generating function S (I0,ϕ1) =

S0 (I0) + εS1 (I0,ϕ1). Suppose S0 and S1 are analytic and bounded in a complex neigh-

borhood of D1 and D = D1 × Td ⊆ Rd × Td respectively. There exists a real analytic

symplectic change of coordinates of orderO (ε): (I,ϕ)↔ (J ,θ) and under this transfor-

mation, the generating function in J ,θ takes the form

S̃ (J0,θ1) = S̃0 (J0) + εN R̃N (J0,θ1, ε) .

Suppose that ω(J∗) satisfies the (γ, ν)-Diophantine condition for some J∗ ∈ D1. Then,

for any fixed N ≥ 2, there exist positive constants ε0, c, C, ρ such that if ε ≤ ε0, then

∥∥∥R̃N (·, ·)
∥∥∥
∞,B2δ(J∗)×Bρ(Td)

≤ C

with δ = c(N2 |log ε|)−ν−1.
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Proof. Applying the canonical transformation T constructed in Lemma. 8, ∃ρ′, C ′ > 0

such that

∥∥∥R̃N (J∗, ·)
∥∥∥
∞,Bρ′ (Td)

≤ C ′(N, d, γ, ν) (C.18)

Approximate S with respect to angle variables using Fourier series Ŝm till termm ∝ |log ε|

such that the error is of orderO(εN) in a complex neighborhood of the torus
{
J = J∗,ϕ ∈ Td

}
.

Since |k · ω (J∗)| ≥ γ ‖k‖−ν1 , ∀k ∈ Zd, then ∃ sufficiently small c > 0 such that

|k · ω (J)| ≥ 1

2
γ ‖k‖−ν1 , ‖k‖1 ≤ Nm (C.19)

for all J ∈ B2δ(J∗) with δ = c(N2 |log ε|)−ν−1. As the Fourier coefficients of Ŝm vanishes

for ‖k‖1 > Nm, thus according to condition Eq. (C.19) and combining S = Ŝm +O(εN),

∃ ρ′′ > 0 and C ′′ > 0, such that

∥∥∥R̃N (J , ·)
∥∥∥
∞,Bρ′′ (Td)

≤ C ′′(N, d, γ, ν) (C.20)

for all ‖J − J∗‖ ≤ 2δ.

In general, ∃C and ε independent ρ such that

∥∥∥R̃N (·, ·)
∥∥∥
∞,B2δ(J∗)×Bρ(Td)

≤ C(N, d, γ, ν).

(for the specific forms of C ′, C ′′, which are lengthy but obtainable using tools of Fourier

series and Cauchy’s inequality, see for instance [89]).

Lemma 10. Consider a nearly integrable system with generating function S (I0,ϕ1) =

S0 (I0) + εS1 (I0,ϕ1). Suppose S0 and S1 are analytic and bounded in a complex neigh-

borhood of D1 and D = D1×Td ⊆ Rd×Td respectively. Then there exists a real analytic

near identity symplectic change of coordinates (I,ϕ) 7→ (J ,θ) of order O(ε) and under
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this transformation, the generating function S̃ in J ,θ variables takes the form

S̃ (J ,θ) = S̃0 (J) + εN R̃N (J ,θ, ε) .

where S̃0 only depends on actions. Suppose that ω (J∗) satisfies the (γ, ν)-Diophantine

condition for some J∗ ∈ D1. Then, for any fixed N ≥ 2, ∃ positive constants ε0, c, C, ρ

such that if ε ≤ ε0, the dynamics of J ,θ (generated by S̃) with ‖J0 − J∗‖2 ≤ c |log ε|−ν−1

satisfies


‖Jn − J0‖2 ≤ CnhεN ,

‖θn − ω̃ (J0)nh− θ0‖2

≤ C
(
n2h2 + nh |log ε|ν+1) εN .

(C.21)

Here ω (·) = ∇S0 (·) and ω̃ (·) = ∇S̃0 (·).

Proof. According to Lemma. 9, ∃c > 0, ρ > 0, C ′ > 0 such that for δ = c(N2 |log ε|)−ν−1,

J ∈ Bδ (J∗) and θ ∈ Bρ
(
Td
)
,
∣∣∣R̃N (J ,θ)

∣∣∣ ≤ C ′. As ∀J ∈ Bδ (J∗), Bδ (J) ⊂ B2δ (J∗),∣∣∣R̃N

(
J̃ ,θ

)∣∣∣ ≤ C ′ for all J̃ ∈ Bδ (J) and θ ∈ Bρ
(
Td
)
. Using Cauchy’s inequality

(Lemma. 5), we have

∥∥∥∂2R̃N

∥∥∥
∞,Bδ(J∗)×Bρ(Td)

≤ C ′ (C.22)

and

∥∥∥∂1R̃N

∥∥∥
∞,Bδ(J∗)×Bρ(Td)

≤ C ′

δ
. (C.23)
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Plug Eq. (C.22) in the dynamics of J ,θ


Ji = Ji+1 + h∂2S̃ (Ji,θi+1) ,

θi+1 = θi + h∂1S̃ (Ji,θi+1) ,

(C.24)

we have

‖Ji+1 − Ji‖2 ≤ C ′hεN , ∀i ∈ N

=⇒ ‖Jn − J0‖2 ≤ C ′nhεN .

for the J sequence. On the other hand, for θ sequence, plug Eq. (C.23) in Eq. (C.24), we

have

‖θi+1 − (θi + hω̃ (Ji))‖2 ≤
C ′

δ
hεN . (C.25)

Since ω̃ is analytic on a bounded domain, ω̃ is Lipschitz. Thus, changing Ji in Eq. (C.25)

to J0, ∃C ′′ such that

‖θi+1 − (θi + hω̃ (J0))‖2 ≤ C ′′nh2εN +
C ′

δ
hεN .

Therefore, letting C = max(C ′, C ′′), we have

‖θn − (θ0 + nhω̃ (J0))‖2

≤
n−1∑
i=0

‖θi+1 − (θi + hω̃ (J0))‖2

≤ Cnh

(
nh+

1

δ

)
εN

≤ Cnh
(
nh+ |log ε|ν+1) εN ,

and Eq. (C.21) is proved.
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Proof of Thm. 3. Since it is assumed that analytic Sh and Sθh satisfy

∑
i=1,2

∥∥∂iSθh (·, ·)− ∂iSh (·, ·)
∥∥
∞ ≤ C1ε

on a bounded domain D, Sθh is an O(ε) perturbation of Sh (note they can also be different

by an O(1) constant, but adding a constant to a generating function does not change its

induced dynamics, and we thus assume without loss of generality that there is no such

constant difference). Therefore, as Sh is integrable, Sθh can be written as Sθh(I0,ϕ1) =

Sh(I0) + εS1(I0,ϕ1) for some function S1 modeling the (normalized) perturbation, and is

thus nearly integrable. The latent dynamics, i.e., the exact solution of the integrable Sh(I0)

with initial condition I0,ϕ0 is


I (t) = I0,

ϕ (t) = (ϕ0 + ω (I0) t) mod 2π.

Applying Lemma. 10 with N ≥ 3 (so that the (nh)2εN term is of order O(ε) when nhε =

O(1)) , there exists a near identity canonical transformation (I,ϕ) 7→ (J ,θ) of order ε

such that the solution of Sθh in J ,θ variable satisfies


‖Jn − J0‖2 ≤ C ′ε,

‖θn − (θ0 + ω̃ (J0)nh)‖2 ≤ C ′εnh,

(C.26)

for some constant C ′ (ε independent) ∀n ≤ h−1ε−1 (so that nhε is of order O(1)) with

ω̃ (·) defined in Lemma. 10. Note that the canonical transformation holds for all (Ii,ϕi)↔

(Ji,θi), we have ‖Ii − Ji‖2 ≤ kε, ‖ϕi − θi‖2 ≤ kε, ∀i ∈ N for some constant k > 0 and

‖ω̃ (J0)− ω (I0)‖2 ≤ k′ε for some positive constants k′. Applying triangular inequality,
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∃C > 0, such that


‖In − I0‖2 ≤ Cε,

‖ϕn − (ϕ0 + ω (I0)nh)‖2 ≤ Cεnh,

for n ≤ h−1ε−1.

Remark 10. h−1ε−1 is actually a conservative bound for n and one can extend the bound to

be h−1ε(1−N)/2, ∀N ≥ 3. Since N can be arbitrary, even if ε cannot be made infinitesimal,

as long as it is below a threshold, the time of validity of the error bound in Thm. 3 can be

extended to arbitrarily long.

C.2 Experimental Details

Like most neural-network based algorithms for learning dynamics, the full potential of

GFNN is achieved in the data rich regime. When preparing training data, we not only

prepared in an unbiased way, but also emphasized on fair comparisons so that each of the

existing methods is given the same or more training data.

More specifically, for each experiment, the training set contains a number of sequences

starting with different initial conditions. When training for predicting Hamiltonian dy-

namics (continuous), each sequence in the training set is stroboscopically sampled from

simulated ground truth, which is obtained using high-order numerical integrator with suf-

ficiently small timestep τ � h. For each experiment, the data set with sequences of length

2 will be denoted as D2, and the data set with sequences of length 5 will be denoted as D5.

VFNN, HNN, SRNN (seq len=2), and GFNN are trained with the same data set D2, while

SRNN (seq len=5) is trained with D5. Note the number of flow maps (φ) needed for each

sequence in D5 is 4, while the number of maps for each sequence of D2 is 1. Therefore,

for fairness, the number of sequences in D2, ntrain(D2), is set to be four times ntrain(D5)

in most examples (exceptions will be explained).
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All experiments are performed with PyTorch (CUDA) on a machine with GeForce RTX

3070 graphic card, AMD Ryzen 7 3700X 8-Core Processor, 16 GB memory and the Linux

distribution of openSUSE Leap 15.2.

Codes are provided.

C.2.1 2-Body Problem

The step size of each data sequence in D2 and D5 is h = 0.1. The ground truth tra-

jectory is simulated using a 4th order symplectic integrator with step size 10−3. The

initial condition of each data sequence is uniformly drawn from the orbits with semi-

major axis a ∈ (0.8, 1.2), eccentricity e ∈ (0, 0.05). In terms of the number of samples,

ntrain(D2) = 100, 000, ntrain(D5) = 100, 000. Note SRNN (seq len=5) is provided more

training data ntrain(D5) than described above, which would be 25, 000 instead, because

less training data didn’t provide good performance. The time derivative data of the vector

field based methods (VFNN, HNN) are generated using (1st-order) finite difference.

Sθh is represented using multilayer perceptron (MLP), with 5 layers and 200, 100, 50, 20

neurons in hidden layers. The Adam optimizer is utilized with batch size 200. The model

is trained for more than 20 epochs with initial learning rate 0.01. HNN, SRNN, SympNets

are trained by their provided codes. HNN, SRNN are trained under default training setups

and SympNets is trained using LA-SympNets with 30 layers and 10 sublayers (deeper than

their default setups for improved performance).

C.2.2 Hénon-Heiles System

The step size of each data sequence in D2 and D5 is h = 0.5. The ground truth trajectory is

simulated using a 4th order symplectic integrator with step size 10−3. The initial condition

of each data sequence is drawn from a centered Gaussian perturbation of states along one

orbit randomly with variance 0.012. In terms of the number of samples, ntrain(D2) =

100, 000, ntrain(D5) = 25, 000. The data sets for the regular motion experiment and for the
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chaotic dynamics experiment are generated separably around a trajectory with energy level

1
12

and 1
6

respectively. The time derivative data of the vector field based methods (VFNN,

HNN) are generated using (1st-order) finite difference.

The MLP that represents Sθh has 5 layers and 200, 100, 50, 20 neurons in hidden layers.

The Adam optimizer is utilized with batch size 200. The model is trained for more than

20 epochs with initial learning rate 0.01. HNN, SRNN are trained by their provided codes

under default training setups.

C.2.3 PCR3BP

The step size of each data sequence in D2 and D5 is h = 0.1. The ground truth trajectory

is simulated using RK4 with step size 10−3. The initial condition of each data sequence

is drawn from a centered Gaussian perturbation of states along one orbit randomly with

variance 0.052. In terms of the number of samples, ntrain(D2) = 100, 000, ntrain(D5) =

25, 000. The time derivative data of the vector field based methods (VFNN, HNN) are

generated using (1st-order) finite difference.

The MLP that represents Sθh has 5 layers and 200, 100, 50, 20 neurons in hidden layers.

The Adam optimizer is utilized with batch size 200. The model is trained for more than

20 epochs with initial learning rate 0.01. HNN, SRNN are trained by their provided codes

under default training setups.

C.2.4 Standard Map

The step size of each data sequence inD2 andD5 is h = 1. The ground truth map is directly

evolved from the discrete-time evolution map Eq. (4.9). The initial condition of each data

sequence is drawn from a Gaussian perturbation of states along one orbitrandomly with

variance 0.52. In terms of the number of samples in training / testing data, ntrain(D2) =

1, 000, 000, ntrain(D5) = 250, 000. The data sets of the regular motion experiment and for

the chaotic dynamics experiment are generated separably with K = 0.6 and K = 1.2 and

138



correspondingly different initial conditions respectively. The time derivative data of the

vector field based methods (VFNN, HNN) are generated using (1st-order) finite difference

(with ∆t = 1).

The MLP that represents Sθh has 5 layers and 500, 500, 200, 20 neurons in hidden layers.

The Adam optimizer is utilized with batch size 1000. The model is trained for more than

20 epochs with initial learning rate 0.001. HNN, SRNN are trained by their provided codes

under default training setups.
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[166] J. Pöschel, “Integrability of Hamiltonian systems on cantor sets,” Communications
on Pure and Applied Mathematics, vol. 35, no. 5, pp. 653–696, 1982.

[167] B. Quarles, G. Li, V. Kostov, and N. Haghighipour, “Orbital stability of circum-
stellar planets in binary systems,” The Astronomical Journal, vol. 159, no. 3, p. 80,
2020.

[168] M. Tao, “Explicit symplectic approximation of nonseparable hamiltonians: Algo-
rithm and long time performance,” Physical Review E, vol. 94, no. 4, p. 043 303,
2016.

[169] B. V. Chirikov, “A universal instability of many-dimensional oscillator systems,”
Physics reports, vol. 52, no. 5, pp. 263–379, 1979.

[170] E. M. Stein and R. Shakarchi, Complex analysis. Princeton University Press, 2010,
vol. 2.

154


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Spin Dynamics of Circumbinary Planets
	Introduction
	Notations
	Main Results
	Derivation of the Secular Theory
	Conclusion and Discussions

	3 | Structure-Preserving Integration of Rigid Body Dynamics
	Introduction
	Rigid Body Representation
	The Constrained Hamiltonian of an N-rigid-body System
	Review: Equations of Motion of an N-rigid-body System
	Review: Symplectic Integrators of Hamiltonian Systems via Splitting and Composition Methods
	Rigid Body Simulation: Structure-Preserving Algorithms via Specially Designed Splittings and Compositions
	Code Validation
	Applications to Trappist-I
	Conclusions

	4 | Data-Driven Prediction of General Hamiltonian Dynamics via Learning Exactly-Symplectic Maps
	Introduction
	Related Works and Discussions
	Methods
	Global Error Analysis
	Experiments

	Appendices
	A | Supplementary Materials of Chapter 2
	B | Supplementary Materials of Chapter 3
	C | Supplementary Materials of Chapter 4

	References

